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Summary 
 
In order to retrieve a high-resolution reservoir model from 
seismic and well data, an approach was developed based on 
an a priori layered model from well data, specifically the 
acoustic impedances derived from the sonic and density 
logs. The procedure consists of using a forward model of 
the well data as a priori information that is then iteratively 
matched with the seismic data using a Bayesian inversion 
process. The inversion is then extended to 2D, whereby the 
extrapolation is guided by a simple geometric envelope 
described with a small number of parameters. It is tested on 
a seismic data set containing a deltaic clinoform in the 
North Sea, whereby the clinoform geometry is 
parameterized by a sigmoid and used as prior information. 
In the subsequent optimization the clinoform geometry is 
further refined with a limited number of local knots to 
improve the match with the seismic data. This low-
parameterization inversion approach thus uses geological 
shapes and well constraints to obtain a subsurface model 
than can have a substantially higher resolution than the 
seismic wavelength. 
 
Introduction 
 
Most problems in geophysical inverse theory are ill-posed 
in the sense of Hadamard. For inverse problems with real-
world data, e.g. a signal contaminated by noise, very 
different models may fit the data equally well. One of the 
possible methods to overcome such problems of ill-
conditioning and noise inherent to solving inverse problems 
is a technique known as Bayesian approach. This technique 
incorporates data-independent a priori information in order 
to favor realistic models over unrealistic models.  
 
Several recent studies have emphasized the importance of 
high-resolution inversion techniques in order to resolve 
thin-bedded reservoirs, having thicknesses at the sub-
wavelength scale. The primary focus of this paper is the 
development of a 2D method (in x-t cross-sections of the 
data set) that estimates the acoustic parameters and 
thicknesses of a clinoform sequence composed of layers at 
the sub-seismic scale.  
Clinoforms are typical progradational patterns that occur 
over a wide range of scales and in a broad spectrum of 
depositional environments, all of which may be conducive 
to form potential reservoirs. The method was tested on an 
example of the Upper Cenozoic fluvio-deltaic system in a 
3D seismic dataset of block F3 in the North Sea. 

 
Field description 
 
Geological setting 
F3 is a block in the Dutch sector of the Southern North Sea. 
During the Cenozoic era, much of the North Sea region was 
characterized by a thermally subsiding epicontinental basin 
most of which was confined by landmasses (Sørensen et 
al., 1997). During the Neogene, sedimentation rates 
exceeded the subsidence rate and consequently shallowing 
of the basin occurred. A large fluvio-deltaic system 
dominated the basin, draining the Fennoscandian High and 
the Baltic Shield. The Cenozoic succession can be 
subdivided into two main packages, separated by the Mid-
Miocene Unconformity MMU (Figure 1). The lower 
package consists mainly of relatively fine-grained 
aggradational Paleogene sediments (Steeghs et al., 2000), 
while the package above the MMU consists of coarser-
grained Neogene sediments with much more complex 
geometries. Most of it is a progradational deltaic sequence 
that can be subdivided into three units, corresponding to 
three sequences of delta evolution, depicted in Figure 1 as 
Unit 1, 2, and 3. The dominant direction of progradation is 
towards West-Southwest and is expressed as sigmoidal 
lineaments in the dip section (Tigrek, 1998). A seismic 
cross-section through this delta sequence is displayed in 
Figure 2. Unit 2, containing a conspicuous clinoform 
package, was chosen as target zone for this study.  
 

 
 
Figure 1: Schematic seismic interpretation of the Tertiary 
sequence in the area of interest (after Tigrek 1998) 
 
Data 
A 3D seismic survey in block F3 covering an area of 
approximately 16×23 km2 has become publicly available 
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and is provided by a monograph of Aminzadeh & de Groot 
(2006). The data volume consists of 646 in-lines and 947 
cross-lines. The line spacing is 25 m for both in-lines and 
cross-lines, and the sample rate is 1 ms. A standard seismic 
data processing sequence was applied to the data. Data 
from four wells in the area are available, in particular well 
logs in true vertical depths, including sonic and gamma ray 
logs. Density logs were reconstructed from the sonic logs 
using neural network techniques. The sonic logs were also 
used to calculate porosity logs for all wells. Unit 2 has a 
time thickness of about 90 ms and is fully penetrated by 
well F03-04, whose location is shown in Figure 2. Its 
check-shot and well logs have been used for time–depth 
conversion and to validate the general seismic 
interpretation. 
 

 
 
Figure 2: Seismic line with the clinoform in Unit 2 and the 
location of well F03-04 
 
Method 
 
In order to achieve the main goal of this paper - a 2D sub-
seismic characterization of the deltaic sequence - two major 
steps are performed. First the acoustic parameters of the 
clinoform package are estimated close to the well location. 
Then the clinoform elements are geometrically modeled 
using a Bayesian optimization procedure. These then will 
guide the prediction of the initial acoustic properties and 
layer thicknesses for the next trace as priors. 
 
Step 1: 1D Sub-seismic characterization of the deltaic 
sequence 
 
Construction of the a priori information 
Over the last 30 years the Bayesian-based seismic inversion 
technique has been extensively enhanced in its accuracy 
and efficiency (Tarantola, 1984, Duijndam, 1988). 
Tikhonov & Arsenin (1977) developed a regularization 
method that restricts the family of models that fit the data.  
The two main issues in the Bayesian approach that received 
most attention are how to obtain a priori information and 
how to evaluate parameter uncertainty. Gouveia & Scales 

(1998) described an approach where in situ (borehole) 
measurements are used to derive an empirical prior for 
seismic data. The a priori knowledge of parameters usually 
consists of the expected values expressed as the mean and 
the standard deviation (to indicate the uncertainties of these 
values). A frequently used probability density function to 
describe this type of information is the Gaussian 
distribution. Here the log data of well F03-04 were used to 
estimate the a priori parameters.  
 
Lithofacies Analysis 
The vertical resolution of seismic data is in the order of 
tens of meters, whereas the resolution of well data is in the 
order of tens of centimeters. Therefore a “Thick-layer 
Model” with typical thicknesses of 2-30 m was created 
based on sonic, density and gamma ray logs. These layers 
are below the seismic resolution, with thicknesses of up to 
1/15th of the wavelength, but considerably thicker than the 
resolution of the well logs. Thus they are expected to have 
some indirect effect on the seismic signal. The logs were 
first smoothed with a 2 m long arithmetic, box-shaped filter 
along the entire length to reduce noise and remove smaller 
details. From the gamma-ray and the sonic log 24 sand- and 
shale-rich layers were determined over the main clinoform, 
resulting in the “Thick-layer Model” depicted in Figure 3 
(left). The acoustic properties (P-velocity and density) were 
then averaged within each layer and an acoustic impedance 
trace for the normal-incidence-angle case was generated, 
together with a reflectivity trace to serve as a priori means. 
The standard deviation of these parameters was calculated 
based on the parameter distribution along the target zone. 
 

 
 
Figure 3: Well data with: The “Thick-layer Model”, sonic, 
density and gamma ray logs, the seismic trace at the well 
location, and the synthetic seismic trace. 
 
The Forward Model 
The forward model consists of a 1D convolution method 
using primaries. The source wavelet is convolved with the 
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normal-incidence reflectivity time-series to simulate a 1D 
seismic trace. The time sampling step was set to dt =1ms, 
which is identical to the time sampling step of the actual 
seismic data set.  
 
Wavelet Extraction 
The statistical extraction method used in estimating the 
wavelet assumes that the autocorrelation of the wavelet is 
the same as the truncated autocorrelation of the seismic 
trace. The average autocorrelation from several seismic 
traces is used to provide a more representative estimate. 
The wavelet depends on the depth and rock properties of 
the target zone. Therefore, the seismic data cube was 
cropped to a sub-volume of 100 in-lines by 100 cross-lines 
around the well in the lateral directions and from 661 to 
840 ms (the target zone) in the vertical direction. The 
resulting extracted wavelet is a zero-phase wavelet with a 
central frequency of 55 Hz and is shown in Figure 4 
together with its spectrum. 
 

   
 
Figure 4: The extracted wavelet and its spectrum 
 
A well-based synthetic seismogram was then created by 
convolving the reflectivity trace (computed from the 
“Thick-layer Model”) with the extracted wavelet. The 
resulting synthetic seismogram, depicted in Figure 3 
(right), does not show a good match with the real data. A 
better match can be obtained by refining the thicknesses 
and the acoustic layer properties, and hence the reflectivity 
trace, through Bayesian inversion by employing a nonlinear 
least-squares estimator that maximizes the a posteriori 
probability. Here the quasi-Newton method with the 
Broyden-Fletcher-Goldfarb-Shanno update formula for the 
Hessian matrix is used as an optimization tool. The P-
velocities, densities and thicknesses of the “Thick-layer 
Model” in the clinoform are then obtained through 
optimization of the match between the updated synthetic 
and the real seismic.  

 
Step 2: 2D Sub-seismic characterization of the deltaic 
sequence 
 
Once the acoustic parameters of the seismic data are 
estimated at the well location, the next step is to extrapolate 
this knowledge in a lateral direction along the clinoform 

dip. For this, we first have to determine the exact clinoform 
shapes.  
 
The Forward Model 
From a geometrical point of view a clinoform sequence can 
be approximated by a set of translated sigmoidal curves. 
The sigmoid function ( )if x  may be described by four 

parameters using 
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where ia  is a lateral scaling, ib is a depth scaling, ic is a 

depth offset andid is a lateral translation.  

Although the sigmoid may qualitatively describe the global 
trend, such a simple analytical function cannot be expected 
to exactly match an actual geological body. Since our aim 
is to arrive at a sub-wavelength resolution in the description 
of the clinoform, it needs to be modeled with a higher 
accuracy. We use a nonlinear geometric disturbance by 
locally stretching or compressing the sigmoid in the lateral 
direction. This is done between a set of equi-lateral spaced 
control points (knots) along the sigmoid. Only in areas 
where the discrepancy between the clinoform and the 
sigmoid curve exceeds a certain threshold, the knots are 
displaced to improve the fit. The number of knots depends 
on the ratio of the lateral size of the clinoform and the 
amount of seismic traces available in that area. The more 
knots are used, the more unknown variables are needed in 
the minimization procedure, but, on the other hand, more 
knots allow a better approximation of the actual clinoform. 
Therefore, an optimum model complexity needs to be 
strived for.  
 
For the current clinoform model, a set of tests was done in 
order to find an optimum number of knots (25 per curve) 
needed for the best approximation. This geometrical 
disturbance was applied separately to each curve, after 
which the clinoform boundaries remain monotonic 
functions resembling a sigmoid, but are mathematically no 
longer exact sigmoidal curves. The advantage of using this 
method above a standard approach, where every point of 
the clinoform is perturbed, is the considerably smaller 
amount of parameters that needs to be estimated. 
 
Construction of the a priori information 
An initial guess of the four parameters describing the 
sigmoid function ( )if x  for the first (oldest) clinoform 

curve is made from the seismic section by visual 
inspection. The parameters accounting for local 
stretching/compressing are initially zero and have a prior 
with zero mean. The Bayesian inversion method is used to 
optimize all sigmoid parameters. 
We assume that geological objects are not random 
structures, but that they follow certain typical patterns 
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caused by the depositional processes that formed them. 
Therefore, three sigmoid parameters are expected not to 
vary significantly for subsequent clinoforms within a 
clinoform package. Only the lateral translation parameter 

id  requires to be adjusted by introducing a shift (equal to a 

small fraction of the length of the clinoform) for every 
curve. Since local stretching or compressing parameters are 
individual for every clinoform their initial value and prior 
mean remain zero. The procedure uses the output of the 
optimization routine of the preceding clinoform as the 
initial value and prior, and this is repeated for every 
following clinoform within the deltaic sequence. 
 
Results 
The acoustic parameters (P-velocity and density) and 
thicknesses for each layer of the “Thick-layer Model” were 
estimated with an error of less than 10%.  Based on these 
data, an updated reflectivity trace was computed for a 
normal-incidence case. Then new synthetic seismograms 
were calculated by convolution of the updated reflectivity 
time-series with the extracted wavelet. The comparison of 
the real data, well-based synthetic seismogram and 
optimized synthetics are represented in Figure 5. 
 

 
 
Figure 5: Comparison of traces of the well-based synthetic 
seismic (1), the estimated model (2) and the actual seismic 
data (3) 
 
Four selected clinoforms from the deltaic package were 
subsequently estimated in 2D using the results of the 
preceding clinoform as a priori means. The resulting 
optimized clinoforms are depicted in Figure 6 in red, 
together with a semi-automated pick from the seismic 
section in blue and the a priori model in green. Although 
the a priori lines differ greatly from the optimized results, 
the latter are seen to match the blue (“ground truth”) lines 
very well. Figure 7 shows an enlargement of the same area 
with the optimized clinoforms plotted over the seismic 
section. As can be seen here as well, the match with the real 
data is very good. 

 
Figure 6: Comparison of the clinoforms of the a priori 
(green), the estimated model (red) and the seismic 
interpretation (blue)  
 

 
 
Figure 7: Enlargement of the seismic line showing the 
estimated clinoforms (dotted line) and the seismic 
interpretation (solid lines) 
 
Conclusions 
 
The Bayesian seismic inversion method presented here uses 
a priori information obtained from well data and shows 
encouraging results when applied to a clinoform field 
example from the North Sea.  
Acoustic parameters (P-velocity and density) of the sub-
seismic layers with thicknesses as thin as 1/15th of the 
seismic wavelength were estimated with a high accuracy 
(errors of less than 10%).  
The proposed automated procedure results in a two-
dimensional geological model of the subsurface and to 
incorporate these models in the high-resolution Bayesian 
inversion process. The results demonstrate a good match 
with the measured seismic and the a priori information. 
The clinoform model can be used to steer the trace 
inversion. From the estimated acoustic parameters and 
layer thicknesses a depositional model with sub-seismic 
resolution can be constructed. 
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