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Summary 
In controlled-source Seismic Interferometry (SI) we 
redatum source locations at the surface to receiver locations 
in the subsurface without requiring information about the 
medium between sources and receivers. SI is generally 
based on cross-correlation (CC), but in particular cases it 
can also be obtained by multi-dimensional deconvolution 
(MDD). MDD requires the inversion of a general integral 
equation, which we implement in a least-squares sense. We 
apply SI by MDD to a laterally invariant medium and study 
the stability and accuracy of the inversion for various 
numbers of sources and receivers. Results are compared 
with CC-based SI. Both methods prove equally sensitive to 
reducing the number of sources, deteriorating the 
illumination of the target area. CC is independent on the 
number of receivers, but MDD is not. Limiting the amount 
of receivers reduces the number of sample points at which 
MDD is evaluated, which simplifies the inversion process 
and improves the stability. We show that accurate data can 
be retrieved by MDD with a limited number of receivers, 
given that decent wavefield decomposition is provided. 
Only for very short receiver arrays artifacts show up, which 
may be due to undersampling of the general integral that 
we aim to invert. For any number of sources and receivers 
we tested, MDD was able to improve CC-based SI. 
 
Introduction 
Various authors have shown that cross-correlation of two 
receiver registrations can yield a Green’s function between 
these receivers, given that the receivers are surrounded by a 
closed boundary of sources, being sampled sufficiently 
densely and uniformly; see Wapenaar et al. (2006) for an 
overview. We refer to this principle as Seismic 
Interferometry (SI) by cross-correlation (CC). Applications 
can be found both in passive seismics, where the sources 
are typically either noise sources or other uncorrelated 
events (Draganov et al., 2006) as well as active seismics, 
where SI can be used to redatum sources from their actual 
locations at the surface to a receiver level in the subsurface, 
as is done in the Virtual Source (VS) method (Bakulin & 
Calvert, 2006) and related techniques; see Schuster & Zhou 
(2006) for an overview. Recently it has been shown that the 
procedure of CC can be replaced by multi-dimensional 
deconvolution (MDD) (Wapenaar et al., 2008, Schuster & 
Zhou, 2006). Advantages of MDD may include improved 
radiation characteristics of the retrieved (virtual) sources 
and a relaxation of some assumptions, including the 
absence of loss terms and knowledge of the source wavelet. 
Disadvantages include the higher costs, the need for 

accurate wavefield decomposition and instabilities that 
might occur in the matrix inversion that forms the core of 
MDD. Van der Neut et al. (2008) show applications for 
multi-component seismic data and compare MDD results 
with CC-based redatuming. Wapenaar (2008) derive an 
equivalent method for applying MDD to passive seismic 
data. The implementation of MDD requires a rigorous 
matrix inversion which can be difficult to stabilize. In this 
abstract we focus on the stabilization of the MDD by least-
squares inversion. We introduce a misfit function to 
describe the performance of the inversion in comparison 
with CC-based redatuming. We study the behavior of this 
function for various numbers of sources and receivers in a 
laterally invariant synthetic elastic model. 
  
Theory 
Our aim is to redatum source locations from their original 
positions in an array at the earth surface to a receiver array 
that is situated in a horizontal borehole at depth, without 
requiring information about the medium between the 
sources and receivers. The source array consists of two-
component sources, imposing vertical and horizontal 
forces, respectively. In the receiver array we register 
particle velocities and traction. We decompose the multi-
component registrations of each multi-component shot at 
the receiver array into their flux-normalized downgoing 
constituents ( )ˆ , ,R S ω+p x x  and upgoing constitutents 

( )ˆ , ,R S ω−p x x  (Wapenaar, 1998), where 
Rx  is the receiver 

location, 
Sx  the source location and ω  the angular 

frequency (the circumflex denotes the frequency-domain). 
These wavefields are related to each other via the reflection 
response of the medium below the receiver array 

( )0
ˆ , ,R R ω+ ′R x x  via the following integral equation 

(Wapenaar & Verschuur, 1996; Amundsen, 1999; Holvik 
& Amundsen, 2005; Schuster & Zhou, 2006; Wapenaar et 
al., 2008): 
 

( ) ( ) ( )0
ˆˆ ˆ, , , , , ,

R

R S R R R S R
D

dω ω ω− + +

∂

′ ′ ′= ∫p x x R x x p x x x ,(1) 

 
where the integral takes place over the entire receiver array 

RD∂ . The purpose of SI by MDD is to solve this integral 
equation by least-squares inversion. Therefore we rewrite 
equation 1 in vector-matrix notation (Berkhout, 1982) as 
 

0
ˆ ˆ ˆ− + +=P R P .      (2) 
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Here ˆ ±P  is a matrix of vectors ( )ˆ , ,R S ω±p x x , where the 

columns have fixed source type and location but variable 
receiver type and location and the rows have fixed receiver 
type and location but variable source type and location. 

0
ˆ +R  

is a matrix of multi-component reflection matrices 
( )0

ˆ , ,R R ω+ ′R x x , holding the different wave-mode reflections 

as its components.  Equation 2 can be solved by least-
squares inversion as 
 

( ) ( ) { }
1† †

2
0

ˆ ˆ ˆ ˆ ˆε ε
−

+ − + + +⎡ ⎤≈ +⎢ ⎥⎣ ⎦
R P P P P I ,    (3) 

 
where ε  is introduced as a stabilization factor, superscript 
†  denotes the complex-conjugate transpose and I  is the 
identity matrix. The stability and accuracy of the inversion 
strongly depends on our choice for the stabilization factor. 
For large ε , the term between the square brackets behaves 
like a scaled version of the identity matrix and the retrieved 
reflection response resembles nothing but a scaled version 
of  ( )†ˆ ˆ− +P P . This can be rewritten in integral notation as 

 

( ) ( ) ( ){ }†

0
ˆ ˆ ˆ, , , , , ,

S

R R R S R S S
D

dω ω ω+ − +

∂

′ ′≈ ∫R x x p x x p x x x .(4) 

 
We will refer to the retrieved reflection response by 
equation 4 as the CC-based result, which can be interpreted 
as a multi-component equivalent of the Virtual Source (VS) 
method applied to decomposed wavefields, as proposed by 
Mehta et al. (2007). Note however, that the best practice of 
the VS method requires time-gating of the downgoing wave 
field before applying equation 4, which we do not consider 
in this abstract. For smaller ε  the response of MDD will be 
different from CC. To characterize the performance of 
MDD as a function of ε  we introduce a relative misfit 
function. We compute the normalized retrieved amplitude 
spectrum of a virtual PP shot record by MDD in the 
frequency domain as a function of ε  and refer to it as 

( )ˆ
MDDA ε . The equivalent spectrum retrieved by CC is 

referred to as ˆ
CCA . The misfit function ( )E ε   is now 

defined as 
 

( )
( )ˆ ˆ

ˆ ˆ

MDD GT
f x

CC GT
f x

A A
E

A A

ε
ε

−
=

−

∑∑

∑∑
,    (5) 

 
where ˆ

GTA  is the normalized amplitude spectrum of the PP 
Ground Truth (GT) response, that is computed by directly 
modeling the response that we want to retrieve. 
Summations take place over frequency and x , representing 

the receiver location. Note that for ε →∞  MDD 
converges to CC and the relative misfit converges to 1. 
Misfit E  can thus be interpreted as a quantification of the 
relative improvements ( 1E < ) or deteriorations ( 1E > ) 
of MDD compared to CC. 
 
Results 
In the following example we evaluate the results of MDD 
applied to a laterally invariant elastic model for different 
numbers of sources and receivers. A source array of 1600 
meter consists of SN  vertical as well as horizontal force 
sources, situated at the surface. The upper 200 m of the 
subsurface consist of finely layered material. An array of 
400 m consisting of 

RN  multi-component receivers is 
situated in a homogeneous layer at 250 m depth. Below the 
array we find four strong reflectors that we want to reveal. 
The data are decomposed into flux-normalized up- and 
downgoing P- and S-wave fields (Wapenaar, 1998). We 
apply MDD with several stabilization factors and compute 
the misfit function through equation 5 for a default scenario 
where 321SN =  and 81RN = .  The misfit function for this 
case is shown as a solid line with a logarithmic ε -axis in 
Figure 1.  For large ε  MDD converges to CC, resulting in 

1E → . Around 1ε =  we notice a drop in the misfit, 
representing the improvements brought by the inversion in 
comparison with CC. Lowering ε  even further is 
counterproductive as we quickly face instabilities, resulting 
in relatively high values of E . The optimal 1.23ε =  can be 
found as the minimum in the misfit-curve. In Figure 2 we 
demonstrate the effect of  ε  on MDD in the FK-domain. 
Figure 2A represents the GT response that we want to 
retrieve. Figure 2B shows an attempt with 1000ε = , being 
analogous to CC. In Figure 2C we show the result with the 
optimal 1.23ε = , showing a better convergence to the GT 
than CC. If we choose ε  too small, we face instabilities 
causing local amplifications in the FK-domain – see Figure 
2D for an illustration. In Figure 3 we illustrate that the 
optimal ε -value leads to a good match with the GT 
response in the time domain, slightly improving CC (Figure 
4).  
Both MDD and CC responses are sensitive to the number 
of sources in the array. In CC-based methods the source 
spacing determines the sampling of the integral over the 
source locations, as it appears in equation 4. In MDD the 
number of sources determines the number of evaluations of 
integral equation 1 that are used in the inversion. Each 
source can thus be interpreted as an extra equation in the 
MDD, providing additional information that stimulates the 
convergence of the inversion process. The default case of 
321 sources and 81 receivers can be considered as an over-
determined least-squares problem. Next we consider the 
even determined problem by reducing the number of 
sources to 81 and a strongly underdetermined problem with 
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only 21 sources – see the dashed lines in Figure 1. The 
curve for 81 sources shows little difference to the default 
curve with 321 sources, but for the case with 21 sources it 
can be seen that the misfit gets slightly worse but still does 
not exceed the level 1E =  representing the CC-based 
response. Since the misfit is normalized with the misfit of 
the CC method (see equation 5), which suffers from 
increasing the source spacing, the general quality of MDD 
deteriorates when reducing the number of sources in a 
similar way as CC, as we demonstrate in Figure 5. In 
conclusion MDD and CC seem about equally sensitive to 
reducing the number of sources.  
Next we limit the number of receivers in the array, while 
keeping 321 sources. Since CC can be interpreted as a 
trace-to-trace correlation process, it is independent on 
receiver spacing. In MDD, the number of receivers depicts 
the number of sample points of the major integral as given 
in equation 1, but also the number of unknowns that we aim 
to solve for. In Figure 6 we show that limiting the number 
of receivers simplifies the choice of the stabilization factor 
as the system becomes more overdetermined. Instead of a 
sharp minimum we find a range of ε -values where the 
inversion yields desirable results, making it easier to 
stabilize MDD. We can thus show that with 21 receivers 
we can retrieve a MDD response being as good as, or even 
better, than what we obtained with 81 receivers – see 
Figure 7. Removing even more receivers deteriorates the 
response slightly as we see both in Figures 6 and 8. This 
may be due to undersampling of the general integral 
equation 1 that we aim to solve.  
 
Conclusions 
Seismic Interferometry (SI) by multi-dimensional 
deconvolution (MDD) can be an alternative for various 
cross-correlation (CC) based redatuming methods that 
recently appeared in applied geophysics. We showed that 
MDD can indeed, in some cases, improve CC by testing 
both techniques on an elastic laterally invariant model. We 
quantified these improvements by a relative misfit function, 
providing insight in both the accuracy and stability of the 
least-squares inversion compared to CC-based 
methodology. The number of sources determines the 
illumination at the receiver array which is crucial for 
convergence to the desired reflection response. MDD and 
CC seem equally sensitive for this effect. The CC method, 
requiring only a trace-to-trace cross-correlation process, is 
independent on the amount of receivers, but MDD is not. 
The presence of more receivers results in more sample 
points in the general integral equation. However, it also 
results in more unknowns that need to be solved for, while 
the number of evaluations (sources) remains the same, 
making the least-squares problem less determined. 
Therefore, including extra receivers can make MDD more 
difficult to stabilize and does not automatically imply better 

results. Only very short receiver arrays produce additional 
artifacts that are possibly due to undersampling of the 
general integral equation that MDD aims to solve. For all 
the tested number of sources and receivers, MDD was able 
to produce better results than CC, given that an optimal 
stabilization factor could be chosen. Finally it should be 
noted that reducing the number of receivers generally 
deteriorates the quality of elastic decomposition, which is 
crucial for MDD. This effect has not been accounted for in 
this study. 
 
Acknowledgements 
We thank Andrey Bakulin and Kurang Mehta of Shell 
International E&P for sharing the elastic model that was 
used in this study. 

 
Figure 1: Relative misfit curves for source arrays of 321, 81 and 
21 sources, respectively. 

 

 
Figure 2: FK-representations of the Ground Truth (panel A) and 
retrieved data by MDD for 1000ε =  (panel B; equivalent to CC), 
the optimum fit 1.23ε =  (panel C) and an instable case 

0.0285ε =  (panel D). 
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Figure 3: Results of MDD-based interferometry (red) versus the 
Ground Truth response (black) for a case with 321 sources and 81 
receivers (only 11 receivers are shown). 

 
Figure 4: Results of CC-based interferometry (red) versus the 
Ground Truth response (black) for a case with 321 sources (only 
11 receivers are shown). 

 
Figure 5: Results of MDD-based interferometry (red) versus the 
Ground Truth response (black) for a case with 21 sources and 81 
receivers (only 11 receivers are shown). 

 
Figure 6: Misfit curves for arrays of 81, 41, 21 and 11 receivers, 
respectively. 

 
Figure 7: Results of MDD-based interferometry (red) versus the 
Ground Truth response (black) for a case with 321 sources and 21 
receivers (only 11 receivers are shown). 

 
Figure 8: Results of MDD-based interferometry (red) versus the 
Ground Truth response (black) for a case with 321 sources and 11 
receivers. 


