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SUMMARY

We analyze seismic interferometry for the response of a sin-
gle point diffractor. By writing each of the Green’s functions
involved in the correlation process as a superposition of a di-
rect wave and a scattered wave, the interferometric relations
are rewritten as a superposition of four terms. Starting with a
model based on the Born approximation, we show that a three
term approximation yields a nearly exact result, whereas the
full four term expression results in a significant non-physical
event. For the correct, non-linear diffractor model, it appears
that the result of the three term approximation contains a non-
physical event, which disappears by taking all four terms into
account.

INTRODUCTION

The aim of this paper is to discuss seismic interferometry for
the response of a single point diffractor. We start by reviewing
the Green’s function representation for interferometry. Next
we apply this to the response of a point diffractor and show
that this leads to a paradox when the diffractor is modeled
with the Born approximation. We show that the paradox is
resolved if we use a non-linear model for the point diffractor.

In the space-frequency domain (x,w), the general Green’s func-
tion representation for seismic interferometry is given by
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where 0D is a closed surface with outward pointing normal
vector n = (n1,n2,n3), G’(xB,xA,w) is the Green’s function
at angular frequency w between points x4 and xp inside 0D,
p(x) is the mass density, j is the imaginary unit, superscript *
denotes complex conjugation and R denotes the real part. This
representation is exact for arbitrary inhomogeneous, lossless
media (Wapenaar et al., 2005).

For later convenience we consider a slightly different form of
the Green’s function representation. To this end we introduce
a modified Green’s function G = ]%G. With this definition,

equation 1 becomes
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where & denotes the imaginary part (van Manen et al., 2005).
Throughout this paper we assume that JD is a sphere with
large radius and its center at the origin, and we assume that
the medium outside this sphere is homogeneous. Using the
equation of motion and far field assumptions, equation 2 thus
becomes
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where p and ¢ are the constant mass density and propagation
velocity of the medium outside the sphere. In the time domain,
this last equation becomes
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where * denotes convolution. The Green’s functions on the
right-hand side are the responses of a source at x at the
closed surface 0, observed by receivers at x4 and xg. The
right-hand side involves cross-correlating these responses at
x4 and x g, integrating over all sources at 0D, and taking the
time-derivative of the result. According to equation 4, this
gives the Green’s function for a source at x4 and a receiver
at xp, minus its time-reversed version. The right-hand side
can be further simplified for a distribution of uncorrelated
noise sources on 0D, but this is beyond the scope of this paper.

APPLICATION TO A POINT DIFFRACTOR

In the following we consider a point diffractor at the origin,
embedded in an otherwise homogeneous medium with mass
density p and propagation velocity c¢. We write for the Green’s
function
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where é(xB, x4,w) and G*(xp,x4,w) are the direct and scat-
tered wave fields, respectively. The direct wave field in the
embedding is given by
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in 2D, where H(()Q) is the zeroth order Hankel function of the
second kind. The scattered wave field can be written as
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where d(w) is the diffraction coefficient of the point diffractor.
Substitution of equation 5 and similar expressions for the other
Green’s functions into equation 3 gives
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BORN APPROXIMATION

We illustrate these expressions with a 2D numerical exper-
iment. Figure 1 shows the configuration. 720 sources are
equally distributed along a circle with a radius of 500 m
and its center at the origin. The receiver coordinates are
x4 = (0,—150) and xp = (200,0). The propagation veloc-
ity of the homogeneous embedding is ¢ = 1500 m/s. The point
diffractor at the origin is denoted by the star. It is modeled as
a contrast in compressibility, according to Ak(x) = Akod(x).
In the Born approximation, the diffraction coefficient is thus

given by d(w) = w?Axo.
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Fig. 1: Single point diffractor in a homogeneous embedding.
The receivers are at x4 and xp. The numerical integration is
carried out along the sources at surface 0D. The main contri-
butions come from the stationary points a, b, c, and e.
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Fig. 2: (a) Time domain representation of the integrand of
equation 10. (b) The sum of all traces in (a). These events
represent the direct wave G(xp,xa,t) and its time-reversed

version —G(xp,XA,—t).

The evaluation of equation 10 is illustrated in Figure 2. Fig-
ure 2a shows the integrand in the time domain. Each trace is
the result of a cross-correlation of the direct waves G(xa,x,t)
and G(xp,x,t) for one specific source position x at the sur-
face dD. The source coordinate is represented by the angle
¢ (conform its definition in Figure 1). Note that the Green’s
functions have been convolved with a Ricker wavelet with a
central frequency of 50 Hz and that the correlation result has
been differentiated with respect to time. Figure 2b shows the
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Fig. 3: (a) Time domain representation of the integrand
of equation 11. (b) The sum of all traces in (a). The
event at 0.233 s represents the scattered Green’s function

G%(xB,%x4,t); the event at 0.033 s has no physical meaning.
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Fig. 4: (a) Time domain representation of the integrand of
equation 12. (b) The sum of all traces in (a). The event at
-0.233 s represents the time-reversed scattered Green’s func-
tion —G°(xp,xa,—t); the event at 0.033 s has no physical
meaning.

result of the integration. The main contributions come from
the Fresnel zones around the stationary points denoted by ‘a’
and ‘b’ in Figures 1 and 2a. The two events in Figure 2b cor-
respond to the direct wave G(xp,X4,t) and its time-reversed
version —G(xp,xa,—t). The arrival times are +t4p, with
tap = |xB — xal|/c=0.167 s.

Figure 3a is the time domain representation of the integrand
of equation 11. The first stationary point, denoted by ‘c’, oc-
curs at ¢ = —90°. For this source both Green’s functions
G(x4,x,t) and G°(xp,x,t) have the path from x to x4 in
common, hence, in the cross-correlation process the travel time
from x to x4 is subtracted from that of the scattered Green’s
function G%(xp,x,t). The remaining travel time is t4 + tp =
(Jxal+|xB|)/c = 0.233 s, which is the travel time of the arrival
in the scattered Green’s function G%(xp,x4,t). Hence, the
arrival at 0.233 s in Figure 3b represents G®(xp,x4,t). The
second stationary point in Figure 3a, denoted by ‘d’, occurs at
¢ = +90°. For this source, the travel time of the correlation
result is tg —ta = (|Jxp| — |x4|)/c = 0.033 s. The arrival at
0.033 s in Figure 3b has no physical meaning.

Figure 4a is the time domain representation of the integrand
of equation 12. At the stationary point, denoted by ‘e’, the
Green’s functions G*(x4,%,t) and G(xg,x,t) have the path
from x to xp in common. The travel time of the correlation



result is —(t4 +tp) = —0.233 s. The arrival at this travel time
in Figure 4b represents the time-reversed scattered Green’s
function —G%(xp,x4,—t). The stationary point denoted by
‘f” contributes to the non-physical arrival at 0.033 s in Figure
4b. Note that this arrival is opposite in sign compared to the
arrival at 0.033 s in Figure 3b.

We now superpose the results of equations 10, 11 and 12. Fig-
ure 5 shows the sum of the results in Figures 2, 3 and 4.
The events in Figure 5b are G(xp,xa,t) — G(xB,xA,—t) +
G%(xB,x4,t) — G%(xB,x4,—t). Note that the non-physical
arrivals at 0.033 s canceled each other. Hence, the result in
Figure 5b represents the complete Green’s function between
x4 and x g, minus its time-reversed version, i.e., G(xp,x4,t)—
G(xp,%xAa, —t). Figure 6 shows again the result of Figure 5b,
together with the directly modeled Green’s function between
x4 and xp. The match is nearly perfect.

Finally we evaluate equation 13. The scattered Green’s func-
tions G%(x4,x,t) and G*(xB, x,t) have the path from x to the
point diffractor in common for all x. Hence, the travel time of
the correlation result is equal to tg — t4 = (|xB| — |x4]|)/c =
0.033 s for all x, see Figure 7a. The integration result is shown
in Figure 7b. Note that the amplitude of this non-physical
event is stronger than any of the physical events in Figure
6. Following equation 9, we add this result to the other three
terms and compare it again with the modeled Green’s function,
see Figure 8.
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Fig. 5: (a) Superposition of Figures 2a, 3a and 4a. (b) The

sum of all traces in (a). This represents the complete Green’s

function between x4 and xp, minus its time-reversed version,

i.e., G(xp,xa,t) — G(xB,x4,—1).
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Fig. 6: Three-term approzimation of equation 9 (i.e., the result
of Figure 5b, here denoted by the solid line), compared with the
directly modeled Green’s function between x4 and xp (denoted
by the +signs).
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Fig. 7: (a) Time domain representation of the integrand of

equation 13. (b) The sum of all traces in (a). The event at

0.233 s has no physical meaning.
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Fig. 8: All four terms of equation 9 (i.e., the result of Figure 6,
with the non-physical event of Figure 7b added to it), compared
with the directly modeled Green’s function between x4 and xp
(denoted by the +signs).

A PARADOX

From the analysis in the previous section it appears that taking
only three of the four terms of equations 10 — 13 into account
leads to a better retrieval of the Green’s function (Figure 6)
then when all terms are taken into account, as prescribed by
the theory (Figure 8). In most practical situations it will not be
possible to do the cross-correlation term-by-term: when the full
responses are cross-correlated the fourth term is automatically
included. Apart from this practical issue, a more intriguing
question is how it is possible that the three-term approximation
leads to a better result than the full four term expression.

The answer is that we used the Born approximation to model
the point diffractor. This approximation implies that we only
consider first order scattering at the diffractor, so in order to
be consistent we should only consider terms up to first order
scattering. Equations 10 — 12 obey this condition, but equa-
tion 13 describes the cross-correlation of two scattered Green’s
functions, so this term is proportional to second order scat-
tering and should be omitted in this analysis. Apparently we
should go beyond Born modeling of the point diffractor if we
want to get a consistent result when all four terms of equation
9 are taken into account.

Snieder et al. (2008) analyzed integrals like those in equations
10 — 13 by the method of stationary phase for the situation of
an arbitrary scattering object with compact support around
the origin. They showed that the non-physical events in the
three integrals 11 — 13 cancel each other on account of the



Fig. 9: Diagrammatic representation of the non-linear diffrac-
tion coefficient (after Snieder, 1999). The single line denotes
the regularized Green’s function 3{G(0,0,w)}. The open cir-
cle denotes the coefficient 4. and the black circle stands for the
non-linear diffraction coefficient d.

generalized optical theorem (Glauber and Schomaker, 1953)
and thus solved the paradox.! Halliday and Curtis (2009)
applied a similar analysis for surface waves. In the following
we show the implications for the point diffractor response.

A NON-LINEAR DIFFRACTOR MODEL

We will use the optical theorem to derive a better model for a
point diffractor. For an omnidirectional scatterer the general-
ized optical theorem (Glauber and Schomaker, 1953) simplifies

to
_S(f) = k‘f|27

where f is the scattering coefficient (the minus-sign on the left-
hand side is usually absent; it stems from our definition of the
temporal Fourier transform). Because of the factor p/4w in
equation 6 in our definition of the 3D Green’s function, our
diffraction coefficient d(w) in equation 8 is related to f via
d(w) = %’f, which leads to the following modified version of
the optical theorem for a point diffractor in 3D space

(14)
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Similarly, for a point diffractor in 2D space we have
~(d) = sgn(w) Z |d|2. (16)
These equations are solved by
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respectively, where 4 is still an undetermined quantity. Using
${G(0,0,w)} = —Z—f: (3D; equation 6), or ${G(0,0,w)} =
—sgn(w)p/4 (2D; equation 7), we may rewrite both equations
17 and 18 as
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where _é'oreg stands for j%{é(0,0,w)}. Note that, whereas

G(0,0,w) diverges, its imaginary part is finite, which is why

IWe can also turn the argument: since the interferomet-
ric representation 3 is correct, the non-physical events must
vanish, hence the optical theorem follows from equation 3.
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Fig. 10: (a) Three-term approxzimation, as in Figure 5a, but

this time for the non-linear diffractor model of equation 19.

(b) The sum of all traces in (a). Note that the non-physical

events at tg —tx = 0.033 s do not cancel.
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Fig. 11: All four terms of equation 9, as in Figure 8, but this
time for the non-linear diffractor model of equation 19. Note
that the fourth term canceled the non-physical event of Figure
10b.

Gge8 is called the regularized Green’s function (van Rossum
and Nieuwenhuizen, 1999). The series expansion in equation
19 clearly shows that the coefficient d accounts for primary
and multiple scattering at the point diffractor, see Figure 9. It
can be seen as the 3D (or 2D) complement of a 1D expression
discussed by (Snieder, 1999). The first term of this expan-
sion represents the Born approximation, hence for a contrast
in compressibility we take & = w?Akyp.

We repeat the numerical experiments, this time using the non-
linear diffractor model of equation 19. Figure 10 shows the
result of the three term approximation, analogous to Figure 5.
Note that the non-physical events at tg —t4 = 0.033 s resulting
from equations 11 and 12 do not cancel. Unlike in Figures
3 and 4, where these events showed a zero-phase behavior,
here they are not zero-phase as a result of the complex-valued
diffraction coefficient and therefore they do not cancel. By
adding the fourth term, resulting from the cross-correlation of
the scattered Green’s functions (equation 13), the non-physical
event is canceled, as shown in Figure 11.

CONCLUSIONS

We have shown that the Born approximation is an insufficient
model to explain all aspects of seismic interferometry applied
to the response of a single point diffractor. Via the general-
ized optical theorem we arrived at a more advanced, non-linear
diffractor model and showed that with this model seismic in-
terferometry retrieves the scattered Green’s function very well.
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