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SUMMARY

Seismic interferometry by multi-dimensional deconvolution
(MDD) has recently been proposed as an alternative to the
crosscorrelation method. Interferometry by MDD circumvents
several of the underlying assumptions of the correlation
method. We discuss a Green’s function representation of
the convolution type for seismic interferometry by MDD and
illustrate it with a numerical example.

INTRODUCTION

Despite the strength of seismic interferometry to retrieve
new seismic responses by crosscorrelating observations at
different receiver locations, the method relies on a number of
assumptions which are not always fulfilled in practice. Some
practical circumstances that may hamper interferometry
by crosscorrelation are: one-sided illumination, irregular
source distribution, varying source spectra, multiples in the
illuminating wave field, intrinsic losses, etc. To account for
some or more of these effects, several authors have proposed
interferometry by deconvolution, using a variety of approaches
(Schuster and Zhou, 2006; Snieder et al., 2006; Mehta et
al., 2007; Vasconcelos and Snieder, 2008; Wapenaar et al.,
2008a, 2008b; van der Neut and Bakulin, 2009; Berkhout and
Verschuur, 2009; van Groenestijn and Verschuur, 2010). Here
we discuss a Green’s function representation of the convolution
type as a unifying framework for seismic interferometry by
multi-dimensional deconvolution (MDD).

GREEN’S FUNCTION REPRESENTATIONS

Consider an arbitrary inhomogeneous medium with acoustic
propagation velocity c(x) and mass density ρ(x) (where x =
(x1, x2, x3) is the Cartesian coordinate vector). In this medium
we consider an arbitrary closed surface S, with outward point-
ing normal vector n = (n1, n2, n3), enclosing a volume V. We
consider two points in V, denoted by coordinate vectors xA and
xB , see Figure 1a. We define the Fourier transform of a time-
dependent function u(t) as û(ω) =

∫

∞

−∞
exp(−jωt)u(t)dt, with

j the imaginary unit and ω the angular frequency. Assuming
the medium in V is lossless, the correlation-type representa-
tion for the acoustic Green’s function between xA and xB in
V reads (Wapenaar et al., 2005; van Manen et al., 2005)

2ℜ{Ĝ(xB ,xA, ω)}=

∮

S

−1

jωρ(x)

(

∂iĜ(xB ,x, ω)Ĝ∗(xA,x, ω)

−Ĝ(xB ,x, ω)∂iĜ
∗(xA,x, ω)

)

ni dx (1)

(Einstein’s summation convention applies to repeated lower
case Latin subscripts). This representation is the basic expres-
sion for seismic interferometry (or Green’s function retrieval)
by crosscorrelation. The asterisk ∗ denotes complex conjuga-
tion, hence, the products on the right-hand side correspond
to crosscorrelations in the time domain of observations at two
receivers at xA and xB . Representation 1 is exact, hence, it
accounts not only for the direct wave, but also for primary and
multiply scattered waves.
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Fig. 1: (a) Configuration for the correlation-type Green’s func-
tion representation (equation 1). The medium in V is as-
sumed lossless. The rays represent full responses, including
primary and multiple scattering due to inhomogeneities inside
as well as outside S. (b) Configuration for the convolution-
type Green’s function representation (equation 2). Here the

medium does not need to be lossless. The bar in ˆ̄G refers to a
reference state with possibly different boundary conditions at
S and/or different medium parameters outside S.

Next, we consider a convolution-type representation for the
Green’s function. We slightly modify the configuration by tak-
ing xA outside S and renaming it xS , see Figure 1b. For this
configuration the convolution-type representation is given by

Ĝ(xB ,xS , ω) =

∮

S

−1

jωρ(x)

(

∂i
ˆ̄G(xB ,x, ω)Ĝ(x,xS , ω)

− ˆ̄G(xB ,x, ω)∂iĜ(x,xS , ω)
)

ni dx. (2)

The bar in ˆ̄G is usually omitted because Ĝ and ˆ̄G are usually
defined in the same medium throughout space. Here the
bar is introduced to denote a reference state with possibly
different boundary conditions at S and/or different medium
parameters outside S (but in V the medium parameters for
ˆ̄G are the same as those for Ĝ). Due to the absence of



Green’s function representation for interferometry by deconvolution

complex conjugation signs, the products on the right-hand
side correspond to crossconvolutions in the time domain. An
important difference with the correlation-type representation
is that this representation remains valid in media with losses.
Slob and Wapenaar (2007) use the electromagnetic equivalent
of equation 2 as the starting point for interferometry by cross-
convolution in lossy media. A discussion of interferometry
by crossconvolution is beyond the scope of this paper. We
will use equation 2 as the starting point for interferometry by

deconvolution. By considering ˆ̄G(xB ,x, ω) under the integral
as the unknown quantity, equation 2 needs to be resolved by
MDD.

SIMPLIFICATION OF THE INTEGRAND

The right-hand side of equation 2 contains a combination of
two convolution products. We show how we can combine these

two terms into a single term. The Green’s function ˆ̄G(xB ,x, ω)
under the integral is the unknown that we want to resolve by

MDD. The Green’s function Ĝ(xB ,xS , ω) on the left-hand side

and Ĝ(x,xS , ω) under the integral are related to the observa-

tions. Hence, Ĝ is defined in the actual medium inside as well

as outside S, but for ˆ̄G we are free to choose convenient bound-
ary conditions at S. In the following we let S be an absorbing

boundary for ˆ̄G(xB ,x, ω). Furthermore, we write Ĝ(x,xS , ω)
as the superposition of an inward and outward propagating

field at x on S, according to Ĝ = Ĝin + Ĝout. In the high-
frequency regime, the derivatives are approximated by mul-
tiplying each constituent (direct wave, scattered wave, etc.)
with ±jk| cos α|, where k = ω/c and α is the angle between
the relevant ray and the normal on S. The main contributions
come from stationary points on S. At those points the ray an-

gles for Ĝ and ˆ̄G are identical. However, the stationary points

are different for terms containing Ĝin than for those contain-

ing Ĝout. For terms containing Ĝin we have at the stationary
points

(

(∂i
ˆ̄G)Ĝin − ˆ̄G(∂iĜ

in)
)

ni ≈ (3)

−jk | cos α|
(

ˆ̄GĜin − ˆ̄G(−Ĝin)
)

=

−2jk | cos α| ˆ̄GĜin ≈ 2(ni∂i
ˆ̄G)Ĝin,

whereas for terms containing Ĝout we have
(

(∂i
ˆ̄G)Ĝout − ˆ̄G(∂iĜ

out)
)

ni ≈ (4)

−jk | cos α|
(

ˆ̄GĜout − ˆ̄GĜout
)

= 0.

Using equations 3 and 4 in equation 2, and rewriting x as xA

(standing for a receiver coordinate vector), we obtain

Ĝ(xB ,xS , ω) = (5)
∮

Srec

−2

jωρ(xA)

(

ni∂
A
i

ˆ̄G(xB ,xA, ω)
)

Ĝin(xA,xS , ω) dxA.

We added a subscript ‘rec’ in Srec to denote that the integration

surface contains the receivers of the Green’s function Ĝin. The
superscript A in ∂A

i denotes that the differentiation is carried
out with respect to the components of xA, hence, this opera-

tion turns the monopole response ˆ̄G(xB ,xA, ω) into a dipole
response. For convenience we introduce a dipole Green’s func-
tion as

ˆ̄Gd(xB ,xA, ω) =
−2

jωρ(xA)

(

ni∂
A
i

ˆ̄G(xB ,xA, ω)
)

, (6)

so that equation 5 simplifies to

Ĝ(xB ,xS , ω) =

∮

Srec

ˆ̄Gd(xB ,xA, ω)Ĝin(xA,xS , ω) dxA. (7)

In the underlying representation (equation 2) it was assumed
that xB lies in V. In several applications of MDD xB is a
receiver on Srec. For those applications we take xB just inside
Srec to avoid several subtleties of taking xB on Srec. In those
applications it is often useful to consider only the outward
propagating part of the wave field at xB . Applying decompo-
sition at both sides of equation 7 gives

Ĝout(xB ,xS , ω) =

∮

Srec

ˆ̄Gd
out(xB ,xA, ω)Ĝin(xA,xS , ω) dxA.

(8)

Equation 8 is nearly the same (except for a different normal-
ization) as our previously derived one-way representation for
MDD (Wapenaar et al., 2008a). In the following we continue
with equation 7. In most practical situations receivers are not
available on a closed boundary, so the integration in equa-
tion 7 is necessarily restricted to an open receiver boundary
Srec. When the sources are located on one side of Srec (out-
side V), then it suffices to take the integral over this open
receiver boundary: since the underlying representation (equa-
tion 2) is of the convolution type, radiation conditions ap-
ply on the half-sphere that closes the boundary (assuming the
half-sphere boundary is absorbing and its radius is sufficiently
large), meaning that the contribution of the integral over that
half-sphere vanishes. Hence, in the following we replace the
closed boundary integral by an open boundary integral. In the
time domain equation 7 thus becomes

G(xB ,xS , t) =

∫

Srec

Ḡd(xB ,xA, t) ∗ Gin(xA,xS , t) dxA, (9)

where the asterisk ∗ denotes temporal convolution. This
is an implicit representation of the convolution type for
Ḡd(xB ,xA, t). If it were a single equation, the inverse
problem would be ill-posed. However, equation 9 exists
for each source position xS , which we will denote from

hereon by x
(i)
S

, where i denotes the source number. Solv-

ing the ensemble of equations for Ḡd(xB ,xA, t) involves MDD.

TRANSIENT SOURCES

For practical applications the Green’s functions G and Gin in
equation 9 should be replaced by responses of real sources,
i.e., Green’s functions convolved with source functions. For
transient sources we write for the responses at xA and xB

uin(xA,x
(i)
S

, t) = Gin(xA,x
(i)
S

, t) ∗ s(i)(t), (10)

u(xB ,x
(i)
S

, t) = G(xB ,x
(i)
S

, t) ∗ s(i)(t). (11)

Convolving both sides of equation 9 with s(i)(t) we obtain

u(xB ,x
(i)
S

, t) =

∫

Srec

Ḡd(xB ,xA, t) ∗ uin(xA,x
(i)
S

, t) dxA.

(12)

Equation 12 is illustrated in Figure 2a for the situation of
direct-wave interferometry and in Figure 2b for reflected-wave
interferometry (with superscripts ‘out’ added).
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Fig. 2: (a) Illustration of the convolutional model (equation
12), underlying interferometry by MDD for the situation of
direct-wave interferometry. (b) Idem, for reflected-wave in-
terferometry.

RELATION WITH THE CORRELATION METHOD

To make the relation with the correlation method more trans-
parent, we crosscorrelate both sides of equation 12 with

uin(x′

A,x
(i)
S

, t) (with x′

A on Srec) and take the sum over all
sources, as proposed by van der Neut et al. (2010). This gives

C(xB ,x′

A, t) =

∫

Srec

Ḡd(xB ,xA, t) ∗ Γ(xA,x′

A, t) dxA, (13)

where

C(xB ,x′

A, t) (14)

=
∑

i

u(xB ,x
(i)
S

, t) ∗ uin(x′

A,x
(i)
S

,−t)

=
∑

i

G(xB ,x
(i)
S

, t) ∗ Gin(x′

A,x
(i)
S

,−t) ∗ S(i)(t),

Γ(xA,x′

A, t) (15)

=
∑

i

uin(xA,x
(i)
S

, t) ∗ uin(x′

A,x
(i)
S

,−t)

=
∑

i

Gin(xA,x
(i)
S

, t) ∗ Gin(x′

A,x
(i)
S

,−t) ∗ S(i)(t),

with
S(i)(t) = s(i)(t) ∗ s(i)(−t). (16)
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Fig. 3: Fields involved in the illumination function
Γ(xA,x′

A, t) (equation 15).

The correlation function C(xB ,x′

A, t) defined in equation 14
is the traditional interferometry relation (for example as em-
ployed in the virtual source method of Bakulin and Calvert
(2006)). Equation 13 shows that this correlation function is
proportional to the Green’s function Ḡd(xB ,xA, t), smeared
in space and time by Γ(xA,x′

A, t). According to equation 15,
Γ(xA,x′

A, t) is the crosscorrelation of the inward propagating
wave fields at xA and x′

A, summed over the sources, see Fig-
ure 3. We call Γ(xA,x′

A, t) the illumination function (van der
Neut et al., 2010). If we would have a regular distribution of
sources with equal autocorrelation functions S(t) along a large
source boundary, and if the medium between the source and
receiver boundaries was homogeneous and lossless, the illumi-
nation function would approach Γ(xA,x′

A, t) ≈ (ρc/2)2δ(xA −
x′

A)S(t) [here δ(xA − x′

A) is defined for xA and x′

A both on
Srec; the approximation sign accounts for the fact that in real-
ity the illumination function is spatially band-limited because
the correlation in equation 15 does not compensate for evanes-
cent waves]. Hence, for this situation, equation 13 would sim-
plify to C(xB ,x′

A, t) ≈ (ρc/2)2Ḡd(xB ,x′

A, t) ∗ S(t), so the

Green’s function Ḡd(xB ,x′

A, t) could be simply obtained by
deconvolving the correlation function C(xB ,x′

A, t) for S(t). In
practice, there are many factors that make the illumination
function Γ(xA,x′

A, t) deviate from a spatial delta function.
Among these factors are the irregularity of the source distri-
bution (Wapenaar et al., 2008b; van der Neut et al., 2010),
medium inhomogeneities (van der Neut and Bakulin, 2009), a
finite aperture (Schuster and Zhou, 2006), asymmetric illumi-
nation of saltflanks (van der Neut and Thorbecke, 2009) or of
inter-well reflectors (Minato et al., 2009), multiple reflections
in the illuminating wavefield (Wapenaar and Verschuur, 1996;
Amundsen, 1999), intrinsic losses (Slob et al., 2007; Hunziker
et al., 2009; Fan et al., 2009), etc. In all those cases equation
13 needs to be inverted by MDD, i.e., the effects of the illu-
mination function Γ(xA,x′

A, t) need to be removed from the
correlation function C(xB ,x′

A, t) to obtain the Green’s func-

tion Ḡd(xB ,xA, t).

This is illustrated with a numerical example in Figure 4. The
North-South array in central USA in Figure 4a represents Srec,
the East-West array a number of xB positions, and the blue
dots along the East coast represent an irregular distribution

of source positions x
(i)
S

. Figure 4b is the illumination func-
tion Γ(xA,x′

A, t) for fixed x′

A (the red dot in Figure 4a) and
variable xA (the North-South array in Figure 4a). Figures 4c
and d show in red the correlation function C(xB ,x′

A, t) and

the deconvolution result Ḡd(xB ,x′

A, t), respectively, for fixed
x′

A (the red dot) and variable xB (the East-West array in Fig-

ure 4a). The obtained Green’s function Ḡd(xB ,x′

A, t) matches
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the reference solution (in black) significantly better than the
correlation function.

Note that the illumination function plays a similar role in
interferometry by MDD as the point-spread function (or
spatial resolution function) in seismic migration (Schuster
and Hu, 2000; Gelius et al., 2002). The point-spread function
is defined as the migration result of the response of a single
point scatterer and as such is a useful tool to asses migration
results in relation with geological parameters, background
model, acquisition parameters, etc. Moreover, it is sometimes
used in migration deconvolution to improve the spatial
resolution (Hu et al., 2001). An important difference is that
the illumination function is obtained from measured responses
whereas the point-spread function is modeled in a background
medium. As a result, the illumination function accounts
much more accurately for the distorting effects of the medium
inhomogeneities, including multiple scattering.

NOISE SOURCES

We show that equation 13 also holds for the situation of simul-
taneously acting uncorrelated noise sources. To this end, we
define the correlation function and the illumination function,
respectively, as

C(xB ,x′

A, t) = 〈u(xB , t) ∗ uin(x′

A,−t)〉, (17)

Γ(xA,x′

A, t) = 〈uin(xA, t) ∗ uin(x′

A,−t)〉, (18)

where the noise responses are defined as

uin(x′

A, t) =
∑

i

Gin(x′

A,x
(i)
S

, t) ∗ N(i)(t), (19)

uin(xA, t) =
∑

j

Gin(xA,x
(j)
S

, t) ∗ N(j)(t), (20)

u(xB , t) =
∑

j

G(xB ,x
(j)
S

, t) ∗ N(j)(t), (21)

and where the noise signals are mutually uncorrelated, accord-
ing to

〈N(j)(t) ∗ N(i)(−t)〉 = δijS(i)(t). (22)

Upon substitution of equations 19 − 21 into equations 17
and 18, using equation 22, it follows that the correlation
function and the illumination function as defined in equations
17 and 18 are identical to those defined in equations 14 and
15. Hence, whether we consider transient or noise sources,
equation 13 is the relation that needs to be inverted by MDD
to resolve the Green’s function Ḡd(xB ,xA, t). It is beyond
the scope of this paper to discuss the numerical aspects of this
inversion.

CONCLUSIONS

We have derived a Green’s function representation for seismic
interferometry by MDD. It appears that the correlation func-
tion, used in correlation interferometry, can be written as the
true Green’s function, smeared in space and time by an il-
lumination function. Similar as the correlation function, the
illumination function is obtained directly from the measured
data. Interferometry by MDD removes the illumination func-
tion from the correlation function and thus compensates for the
effects of one-sided illumination, irregular source distribution,
intrinsic losses, etc. The theory discussed here covers most of
the configurations usually considered, except that for passive
reflected-wave interferometry some modifications are required,
see van der Neut et al. (2010) for a further discussion.
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Fig. 4: Illustration of interferometry by MDD for surface
waves. (a) Configuration. (b) Illumination function. (c)
Crosscorrelation result (red) compared with reference solution
(black). (d) MDD result.
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