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Summary 
 
Using a novel form of seismic interferometry as a basis, we 
derive new, dynamically correct expressions for reflected 
and converted P- and S-wave responses to both P- and S-
wave sources. We use these expressions to derive a 
generalized form of relationship between PP, PS, and SS 
waves, often referred to as PP + PS = SS. By relating this 
method to seismic interferometry, it is possible to see 
further applications of the new relationships in acquisition 
and processing of P- and S-waves, and also in the 
development of new imaging and inversion schemes related 
to interferometry.  
 
Introduction 
 
Generally, seismic interferometry refers to the process of 
generating responses to imagined or virtual impulsive 
sources by crosscorrelation (Wapenaar, 2003; van Manen et 
al., 2006; Wapenaar and Fokkema, 2006), crossconvolution 
(e.g., Slob et al., 2007), or deconvolution (e.g., Wapenaar et 
al., 2008) of wavefields from surrounding energy sources 
recorded at two different receiver locations. Recent work 
has shown that inter-source wavefields can be estimated by 
crosscorrelating recordings of a pair of sources at a range of 
azimuths (Curtis et al., 2009). Further, Curtis and Halliday 
(2010) showed that it is possible to use interferometry to 
estimate the wavefield between a source and a receiver, 
allowing interferometry to be used in any combination of 
source and receiver geometries. Halliday and Curtis (2010) 
also showed that the source-receiver relationships allow 
establishment of a direct link between seismic 
interferometry and seismic imaging. They show explicitly 
that these theorems are generalized forms of existing 
imaging methods, e.g., the methods of Oristaglio (1989) 
and Vasconcelos et al. (2009). 
 
In this paper, we extend the applicability of these new 
source-receiver relationships by using the results of Curtis 
and Halliday (2010) to find interferometric relationships 
that describe the recovery of P- and S-wave responses 
between sources and receivers. The shear-wave component 
of the wavefield is important in determining the shear-wave 
velocities in any medium, for example, in the Earth’s 
subsurface where shear-wave information allows fluid and 
rock properties to be discriminated, and also in studying 
anisotropic media. Typically, converted (PS) waves (P-
waves down to a reflector at which the wave reflects and 
converts to S energy that propagates back to the surface) 
are used to infer shear-wave velocity structure. However, 
this is undesirable from several points of view. For 

example, Grechka and Tsvankin (2002) discuss the 
difficulty of velocity analysis for converted PS waves. 
Problems arise from the asymmetric moveout of the 
reflected and converted PS waves. Ideally, pure PP waves 
and pure SS waves would be analyzed independently. 
However, while sources of P-wave energy are available as 
standard industrial equipment, it is far more difficult to 
inject significant S-wave energy into the ground 
economically.  
 
Grechka and Tsvankin (2002) and Grechka and Dewangan 
(2003) proposed a potential solution to this problem: by 
combining PP and PS responses, pseudoshear-wave data 
can be generated that has the same kinematics as pure SS 
waves. Presumably, as the interest in full waveform 
imaging and inversion grows, the recovery of shear-wave 
velocity profiles, and the study of anisotropic media will 
come under greater scrutiny. Therefore, it is important to 
consider approaches such as that presented by Grechka and 
Tsvankin (2002) and Grechka and Dewangan (2003).  
 

 
Figure 1: Canonical geometries for source-receiver interferometry 
for (a) the correlation-correlation, (b) the correlation-convolution, 
and (c) the convolution-convolution forms (Curtis and Halliday, 
2010). Note the different positions of x1 and x2 relative to the 
boundaries.  
 
The relationships between P- and S-wave energy sources 
and recordings developed in this paper may allow better 
understanding of such approaches, and also the 
development of new methods of P- and S-wave acquisition, 
processing, imaging, and inversion. We derive the PP + PS 
= SS equation of Grechka and Dewangan (2003) from 
source-receiver interferometry. While the previous 
derivation was in part heuristic and was purely kinematic, 
here, we show that this can also be derived from first 
principles in a fully dynamically consistent form. The 
source-receiver representations that we consider are derived 
directly from reciprocity and representation theorems 
(Curtis and Halliday, 2010). This approach reveals the key 
approximations and assumptions inherent in the approach 
of Grechka and Tsvankin (2002) and Grechka and 
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Dewangan (2003), and provides a theoretical framework to 
develop future processing, imaging, and inversion 
algorithms.  
 
Integrals for P- and S-waves 
 
Following Curtis and Halliday (2010, Appendix A), by 
using two correlation-type representation theorems, the 
response between a real source and a receiver can be 
expressed as, 
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Here, Gim(x2,x1) is the Green’s function representing the ith 
component of particle displacement at x2 due to a 
unidirectional point force in the m-direction at x1, nj is the 
jth component of the normal vector on the boundary S, ∂k 
denotes a spatial derivative in the k-direction, and cnjkl is the 
stiffness tensor. Primed and unprimed quantities indicate 
that these relate to the primed and unprimed boundaries, 
respectively (Figure 1a), and Einstein’s summation 
principle for repeated indices applies throughout.  
 
Equation 1 describes the recovery of a Green’s function 
(and its time reverse due to the complex conjugate on the 
left side) between a source at x1 and a receiver at x2 in 
elastic media, using only Green’s functions from x1 to a 
surrounding boundary S´ of receivers, and Green’s 
functions from a surrounding boundary S (Figure 1a). The 
integral in equation 2 describes a first step where the 
boundary 'S  is used to determine the Green’s functions 
(and their time reverse) between the source at x1 and each 
source on the boundary S ; hence, this first step turns the 
source x1 into a virtual receiver. In a second step, the 
boundary S  is used to determine the Green’s function 
between the receiver at x2 and the newly generated virtual 
receiver x1. Thus, this interferometric integral uses both 
surrounding sources and receivers to reconstruct source-
receiver wavefields. This specific form of the integral is 
derived by combining two representation theorems of the 
correlation type. Figures 1b and 1c show other 
configurations that can be derived using both correlation- 
and convolution-type representation theorems, and two 
convolution-type representation theorems, respectively 
(Curtis and Halliday, 2010). 

 
To extend equation 1 to describe the recovery of P and S 
responses, we recall from Wapenaar and Fokkema (2006), 
that the P- and S-wave components of the wavefield can be 
expressed as a sum of partial derivatives of the 
displacement, 
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where cS 

 is the local S-wave velocity at x2, cP is the local 
P-wave velocity at x2, ρ is the density, ω is the angular 
frequency, ),( 12 xxmk

Gψ
 is the Green’s function 

representing the S-wave polarized in the plane with normal 
nk, due to a point force in the m-direction at x1, and 

),( 120
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 is the equivalent Green’s function for a P-

wave at
 
x2. εijk is the alternating tensor with ε123 = ε312 = ε231 

= -ε213 = -ε321 = -ε132 = 1. When we interpret equations 3 
and 4 as P- and S-wave Green’s functions, we assume that 
the medium is homogeneous and isotropic locally around 
the receiver point, x2. In the following, we will use one 
Green’s function, ),( 12 xxmK

Gψ
, with K equal to 0, 1, 2, or 

3. K = 0 denotes P-waves (cf. equation 3) and K = 1, 2, or 3 
denotes a shear wave polarized in the plane with normal nK 
(cf. equation 4), assuming appropriate P or S velocities are 
used.  
 
Equations 3 and 4 are weighted sums of the spatial 
derivatives of point-force responses (and likewise, by 
reciprocity, we can find similar expressions for the particle 
displacement due to P- and S-wave sources – see Wapenaar 
and Fokkema (2006)). Hence, we can use appropriately 
weighted sums of partial derivatives of equation 1 to 
represent P- and S-wave source and receiver Green’s 
functions: 
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Here, ),( 12 xx

MI
G ψψ

 is the Green’s function representing 

the P- or S-wave component of the wavefield at x2 due to a 
P- or S-wave source at x1. ),( 1xx′′ MnG ψ

 is the Green’s 
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function representing the n´th component of particle 
displacement at x´ due to a P- or S-wave source at x1. On 
the source component, the uppercase subscript M runs from 
0 to 3, with 0 denoting a P-wave source, and 1 to 3 
denoting a shear-wave source polarized in the plane with 
normal nM. 
 

 
Figure 2: (a) Sketch geometry for an ideal application of equations 
8 or 9 to recover PP, PS, or SS responses. (b) Sketch geometry 
illustrating the configuration used by Grechka and Dewangan 
(2003). Thin lines indicate the free surface, white triangles and 
stars indicate boundary receivers and sources respectively, and 
yellow triangles and stars indicate receivers and sources between 
which the wavefield is estimated. For illustration purposes, the 
thick black line indicates a reflector.  
 
PP + PS = SS 
 
We now show that equation 5 is the exact form of the 
kinematic equation used by Grechka and Dewangan (2003, 
equation 5) to recover SS responses from conventional 
seismic data. We follow Wapenaar and Fokkema (2006) in 
changing the source and receiver quantities on S and S´ to 
be P- and S-wave sources or receivers, respectively. First, 
we consider the integral in equation 6: from Wapenaar and 
Fokkema (2006, equations 72 and 73) we can write, 
 

SdGG
S ljl MKKM

′′′∂=Ψ ∫ ′ ′′′ ),(),(2),( 1
*

21 xxxxxx ψψψψ ω
. (7) 

 
Because we use P- and S-wave

 
quantities on the boundary, 

we are assuming that the medium at and outside the 
boundary S ′  is homogeneous and isotropic. Applying the 
same principles to the integral over S such that it consists of 
only recordings of P- and S-wave sources, we obtain: 
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Again, we assume that the medium at and outside the 
boundary S  is isotropic and homogeneous. Equation 8 is a 
generalized form of the PP + PS = SS equation used by 
Grechka and Dewangan (2003). This describes the recovery 
of any combination of P- and S-wave response. We can 
split the right side into integrals dependent on PP (ψK = ψ´K 
= 0), PS (ψK = 0, ψ´K = ψ´k), SP (ψK = ψk, ψ´K = 0), and SS                  
(ψK = ψk, ψ´K = ψ´k), and further, if we wish to recover the 
SS response (ψI = ψi, ψM = ψm), we can write: 
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We have moved all terms dependent on SS responses to the 
left-hand side. Grechka and Dewangan (2003) consider 
only PP and PS responses, and from equation 9, we see this 
is equivalent to assuming that the surface integrals on the 
left-hand side of equation 9 are equal to zero. This is 
equivalent to assuming that P-wave quantities dominate on 
both boundaries. Further, if both boundaries S ′  and S  are 
spheres with very large radius such that energy to (from) 
location x1 (x2) leaves (arrives) at the boundary 
approximately perpendicularly, then the spatial derivatives 
in equation 9 can be approximated by, 

Kj cjω−=∂ , 

where, cK = cP for K = 0, and cK = cS for K = 1, 2, or 3. 
Equation 9 can then be written as: 
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Finally, Grechka and Dewangan (2003) also assume that 
one of the boundaries has collocated source and receivers, 
and the locations x2 and x1 can be receiver locations. While 
this introduces zero-offset Green’s functions, we can avoid 
complications by assuming that we are only interested in 
the reflected and/or scattered part of the wavefield.  
 
Equations 8 to 10 require that both surface integrals are 
closed. This is never the case in exploration seismology. 
However, if source and receiver lines are long enough, we 
can treat these as pseudo-infinite boundaries (i.e., we 
assume that the integrand approaches zero as we approach 
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the ends of the lines). Unfortunately, we then also require 
that lines of sources and receivers are located in the 
subsurface, such that our pseudo-infinite lines enclose the 
medium of interest on both sides. This ideal scenario is 
illustrated in Figure 2a, which shows two receiver lines 
(white triangles) forming the boundary S’, and two source 
lines (white stars) forming the boundary S, with a separate 
source (yellow star) and receiver (yellow triangle) forming 
a geometry similar to that in Figure 1a. The thick black line 
indicates a single plane reflector, but the medium in our 
equations may be arbitrarily complex. Now consider the 
configuration used in equation 10. Grechka and Dewangan 
(2003) consider surface seismic data; therefore, our 
configuration in Figure 2a changes to that shown in Figure 
2b. We do not have source and receiver boundaries in the 
subsurface, and all sources and receivers are located on the 
same datum. Therefore, we no longer have a geometry 
corresponding to that in Figure 1a. Despite this, Grechka 
and Dewangan (2003) show that pseudo-shear-wave data 
can be recovered using such geometry, but due to the 
approximations mentioned above, the correct amplitudes 
are not recovered. 
 
Discussion 
 
We have derived a generalized form of the PP + PS = SS 
equation used by Grechka and Dewangan (2003) that 
correctly describes the recovery of PP, PS, SP, and SS 
wavefields between two points. This new approach 
identifies that, for an exact recovery of the SS response, we 
require: 
- A closed acquisition surface (with sources and 

receivers on independent surfaces)  
- All SS responses between x1, S, and S’, and between x2, 

S, and S’. Hence, some SS responses must be known to 
recover the exact SS response between x1 and x2 using 
this method.  

 
Thus, we have identified the two key requirements for the 
exact application of the method proposed by Grechka and 
Tsvankin (2002) and Grechka and Dewangan (2003). In 
practice, it is unlikely that these requirements will be 
satisfied. Despite this, Gechka and Dewangan (2003) show 
that the method can still be used to give useful results. This 
is similar to many applications of seismic interferometry, 
where approximations and assumptions are made to allow 
the method to be applied to real seismic data (for 
approximations and assumptions, see Wapenaar and 
Fokkema, (2006); for an example application of 
interferometry to real data, see Bakulin and Calvert, 
(2006)). 
 
Using the generalized relationship in equation 8, we can 
also derive other relationships between P- and S-wave 

responses. For example, by following the same steps used 
to reach equation 9, but with I = 0, M = 0 we can write: 
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As in equation 9, all terms dependent on SS have been 
moved to the left-hand side. Note, with I = 0, and M = 0, 
only one surface integral is dependent on SS. Equation 11 
could, therefore, be used to formulate an inverse problem to 
find ),( xx′

′ kk
G ψψ

 given all combinations of PP and PS. Such 

an approach may be related to the multidimensional 
deconvolution approach to interferometry (e.g., Wapenaar 
et al., 2008). 
 
As well as reformulating PP + PS = SS, it is likely that 
further applications of equation 8 could include novel 
approaches to P- and S-wave acquisition and processing. 
For example Curtis and Halliday (2010) propose various 
applications of the point-force version of these 
interferometric representations, including the combination 
of active and passive recordings, balancing directionally 
biased active or passive wavefields, and replacing missing 
or dead traces in land seismic surveys. Hence, it is likely 
that similar applications may be found using the P- and S-
wave version of the integral. Applications may also be 
found in imaging and inversion. Halliday and Curtis (2010) 
have shown that the crosscorrelation imaging condition of 
Oristaglio (1989) is a special case of the source-receiver 
interferometric representation of scattered waves. Thus, 
expressions such as equation 9 may find applications in 
imaging and inversion of P- and S-wave data. 
 
Conclusions 
 
We have derived generalized source-receiver 
interferometric integrals for P- and S-waves. We have 
shown that the fully dynamic PP + PS = SS method is a 
special case of these integrals. This general form includes 
all components of any source and receiver type, and allows 
derivation of new relationships between P- and S-wave 
responses. We have shown that the new relationships may 
be used to formulate an inverse problem to estimate SS 
responses from PP and PS data. The new relationships may 
find further applications in acquisition and processing, and 
in imaging and inversion, of P- and S-wave data.  
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