
Creating a virtual source inside a medium from reflection data with internal multiples:
a stationary-phase analysis
Filippo Broggini∗ and Roel Snieder, Center for Wave Phenomena - Colorado School of Mines;

Kees Wapenaar, Delft Univ. of Technology

SUMMARY

Seismic interferometry allows one to create a virtual source in-

side a medium, assuming a receiver is present at the position of

the virtual source. We discuss a method that creates a virtual

source inside a medium from reflection data measured at the sur-

face, without needing a receiver inside the medium and, hence,

going beyond seismic interferometry. In addition to the reflec-

tion data, an estimate of the direct arrivals is required. However,

no information about the medium is needed. We analyze the pro-

posed method for a simple configuration using physical arguments

based on the stationary-phase method and show that the retrieved

virtual-source response correctly contains the multiples due to the

inhomogeneous medium. The proposed method can serve as a

basis for data-driven suppression of internal multiples in seismic

imaging.

INTRODUCTION

We propose and discuss a new approach to reconstruct the re-

sponse to a virtual source inside a medium, going beyond seis-

mic interferometry. Controlled-source interferometric methods

(Curtis et al., 2006; Bakulin and Calvert, 2006; Schuster, 2009)

allow us to retrieve such a response without the need to know

the medium parameters, but these methods require a receiver at

the location of the virtual source in the subsurface and assume

the medium is surrounded by sources. Our new approach re-

moves the constraint of having a receiver at the virtual source lo-

cation and is based on an extension of the 1D theory proposed ear-

lier (Broggini et al., 2011, 2012b; Broggini and Snieder, 2012)1.

They show that, given the reflection response of a 1D layered

medium, it is possible to reconstruct the response to a virtual

source inside the medium, without having a receiver at the virtual

source location and without knowing the medium.

Wapenaar et al. (2011) made a first attempt to generalize the 1D

method to 3D media. They used physical arguments to propose

an iterative scheme that transforms the reflection response of a 3D

medium into the response to a virtual source inside the unknown

medium. Apart from the reflection data measured at the surface,

our proposed method also requires an estimate of the direct ar-

rivals between the virtual source location and the acquisition sur-

face. These arrivals are a key element of the method, because they

specify the location of the virtual source in the subsurface. For

this reason, the proposed method is not fully model-independent.

However, a model that relates the direct arrival to a virtual source

position is simpler than a model that correctly handles the mul-

tiples. In the proposed method, the reflection data contributes to

the multiple-scattering part of the virtual-source response.

As in seismic interferometry, our goal is to retrieve the response

to a virtual source inside an unknown medium, removing the im-

1Broggini et al., 2012b, submitted to Geophysics.
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Figure 1: The black dot indicates the location of the virtual source

xV S. The star shaped symbols indicate the locations of the mirror

images of the virtual source. The triangles denotes the receivers

at z = 0. The virtual source and its mirror images lie on the line

z = z1 + x/a, with z1 = 1000 m and a = 1/3.

print of a complex subsurface. This is helpful in situations where

waves have traversed a strongly inhomogeneous overburden (e.g.,

in subsalt imaging, Sava and Biondi, 2004). Following the work

of Wapenaar et al. (2012a)2, we analyze the iterative scheme for a

simple 2D configuration. We use physical arguments based on the

stationary-phase method to show that the method converges and

allows for the reconstruction of the wavefield originating from the

virtual source location.

STATIONARY-PHASE ANALYSIS

We use a geometrical approach to the method of stationary phase

to solve the Rayleigh-like integrals, which yield the reflected re-

sponse to an arbitrary incident field.

Configuration

We consider a configuration of three parallel dipping reflectors

in a lossless, constant velocity, variable density medium (Fig-

ure 1). We choose a constant velocity medium because the re-

sponse obeys simple analytical expressions. The proposed itera-

tive scheme is, however, not restricted to constant velocity media.

We denote spatial coordinates as x = (x,z). The acquisition sur-

face is located at z = 0 m and is transparent (i.e., the upper half-

space has the same medium parameters as the first layer). The first

dipping reflector obeys the relation z = z1 − ax with z1 = 2000

m and a = 1/3. The black dot denotes the position of the vir-

tual source, with coordinates xV S = (xV S,zVS) = (475,3425) m.

The second and third reflector are parallel to the first one, so that

all mirror images of the virtual source lie on a line perpendicular

to the reflectors. This line obeys the relation z = z1 + x/a. The

first, second, and third reflectors cross this line at x1 = (x1,z1),

2Wapenaar et al., 2012a, submitted to Geophysical Journal International.
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Figure 2: Initial incident wavefield (t < 0) and its reflection re-

sponse (t > 0), both measured at z = 0. Initial incident wavefield

is the time-reversal of the direct arrivals. We show the reflection

response only until 2.5 s. The solid black lines denote the time of

the direct arrivals and its time-reversed counterpart. These lines

are repeated in the subsequent figures.

x2 = (x2,z2), and x3 = (x3,z3), respectively. The velocity of

the medium is constant and given by c = 2000 m/s. The den-

sities in the four layers are ρ1 = ρ3 = 1000 kg/m3, ρ2 = 5000

kg/m3, and ρ4 = 4000 kg/m3, respectively. The reflection co-

efficients for downgoing waves at the three interfaces are rn =
(ρn+1−ρn)/(ρn+1+ρn), where n = 1,2,3 denotes the layer. The

reflection coefficients for upgoing waves are −rn. The transmis-

sion coefficients for downgoing (+) and upgoing (−) waves are

t±n = 1± rn. Since the velocity is constant in this configuration,

the reflection and transmission coefficients hold for all the angles

of incidence, not only for normal incidence. The large contrast be-

tween the density of the layers causes strong multiple reflections.

Primary arrivals

We introduce the Green’s function G(x,xS, t) as a solution of the

wave equation LG =−ρδ (x−xS)
∂δ (t)

∂ t
, with L = ρ∇ · (ρ−1∇)−

c−2 ∂ 2

∂ t2 . Defined in this way, the Green’s function is the response

to an impulsive point source of volume injection rate at xS (de Hoop,

1995). Using the Fourier convention F̂(ω)=
∫ +∞
−∞ f (t)exp(− jωt)dt,

the frequency domain Green’s function Ĝ(x,xS,ω) obeys the equa-

tion L̂Ĝ =− jωρδ (x−xS), with L̂ = ρ∇ · (ρ−1∇)+ω2/c2. Here

j is the imaginary unit, ω denotes the frequency domain. We

write Ĝ = Ĝd + Ĝs, where superscripts d and s stand for direct

and scattered waves, respectively. As mentioned in the introduc-

tion, we need an estimate of the direct arrivals. For the constant

velocity model of Figure 1, the high-frequency approximation of

the Fourier transform of the direct Green’s function Gd(x,xVS, t)
is given by Ĝd(x,xV S,ω) = t−1 t−2 ρ3Ĝd

0(x,xV S,ω), with

Ĝd
0(x,xVS,ω) = jω

exp{− j(ω|x−xVS|/c+µπ/4)}
√

8π|ω||x−xVS|/c
, (1)

with µ = sign(ω) (Snieder, 2004). The event with label 1 in

Figure 2 shows the time-reversed version of the direct arrivals

Gd(x,xV S, t) ∗ s(t), where s(t) is a Ricker wavelet with a central

frequency of 20 Hz. It is essential that s(t) is zero phase.

Reflection response

To retrieve the virtual-source response G(x,xV S, t), we need the

reflection response at the surface R(xR,xS, t)∗ s(t), in addition to

an estimate of the direct arrivals. We assumed that the acquisition

surface is transparent, hence the reflection response does not in-

clude any surface-related multiples. For this purpose, R(xR,xS, t)∗
s(t) can be obtained from reflection data measured at z = 0 after

surface-related multiple elimination (Verschuur et al., 1992). Fol-

lowing Bleistein (1984), the reflection response can be derived
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Figure 3: Analysis of the response of the first and second reflec-

tors to the initial incident wavefield p+0 (x, t). Stationary rays for

different receivers. (a) The response of the first reflector seems

to originate from x
(1)
V S

. (b) The response of the second reflector

seems to originate from x
(2)
V S

.

from a Rayleigh-type integral:

p̂−(xR,ω) =

∫ ∞

−∞

2

jωρ1

[

∂ Ĝs(xR,x,ω)

∂ z
p̂+(x,ω)

]

z=0

dx, (2)

where p̂+ and p̂− are the Fourier transform of the downgoing

and upgoing wavefields, respectively. Hence, in the frequency

domain, we define the reflection response in terms of the scattered

Green’s function Ĝs via

R̂(xR,xS,ω)ŝ(ω) =
2

jωρ1

∂ Ĝs(xR,xS,ω)

∂ zS
ŝ(ω), (3)

for zR = zS = 0 and after multiplying both sides by the spectrum

of the source wavelet s(t).

Initiating the iterative process

We define the initial incident downgoing wavefield at z = 0 as the

time-reversed version of the direct arrivals at the recording surface

excited by the virtual source xV S. Hence, the initial wavefield is

p+0 (x, t) = Gd(x,xVS,−t)∗ s(t) and is shown in Figure 2 with the

label 1. The subscript 0 of p+0 (x, t) indicates the initial wavefield

(or the 0th iteration). In Figure 2, we also define two traveltime

curves, indicated by the solid black lines. The upper curve is taken

directly after the initial incident wavefield p+0 (x, t) and the lower

curve is defined as the time-reversal of the upper curve. These two

curves allow us to define a window function

w(x, t) = 1 between the solid black lines of Figure 2

w(x, t) = 0 elsewhere. (4)

This window function is a key component of the iterative scheme.

The reflected upgoing wavefield p−0 (x, t) is obtained by convolv-

ing the downgoing incident wavefield p+0 (x, t) with the decon-

volved reflection response and integrating over the source posi-

tions:

p−0 (xR, t) =

∫ ∞

−∞

[

R(xR,x, t)∗ p+0 (x, t)
]

z=0
dx, (5)

for zR = 0. Equation (5) is the time-domain version of the Rayleigh

integral described by equation (2). We discuss and solve this in-

tegral with geometrical arguments based on the method of station-

ary phase (a detailed mathematical proof is given by Wapenaar et al.,

2012a). Figure 3 shows a number of stationary rays for different

receiver positions. These rays are said to be stationary because

the rays of the incident field (converging in xV S) and of the reflec-
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Figure 4: Panel a and b show the first and second iteration of the

incident wavefield (t < 0) and its reflection response (t > 0), re-

spectively (both measured at z = 0). The numbers identify events

in the total field. We show the reflection response only until 2.5 s.

tion response (for the first reflector) have the same direction (see

the appendix of Wapenaar et al., 2010). With simple geometrical

arguments it follows that these rays cross each other at the mirror

image of the virtual source with respect to the first reflector, i.e., at

x
(1)
V S

. The traveltimes of the convolution product are given by the

length of the rays from x
(1)
V S

to the surface, divided by the velocity.

Hence, it is as if the response of the first reflector to the initial in-

cident field originates from a source at x
(1)
V S

. This response is thus

equal to r1Gd(xR,x
(1)
V S

, t)∗ s(t) and is shown as the event with la-

bel 2 in Figure 2. Following similar stationary-phase arguments,

the response of the second reflector to the initial downgoing field

apparently originates from a mirror image of the virtual source

with respect of the second reflector, i.e., at x
(2)
V S

. This response is

equal to t−1 r2t+1 Gd(xR,x
(2)
V S

, t) ∗ s(t), see the event with label 3 in

Figure 2. However, the multiple reflected responses to the initial

incident field also apparently originate from mirror images of the

virtual source, all located along the line z = z1+x/a, see Figure 1.

We derived these responses with the method of stationary phase,

hence they are free of artifacts.

The iterative process

We now discuss an iterative scheme, which uses the (k-1)th itera-

tion of the reflection response p−
k−1

(x, t) to create the kth iteration

of the incident field p+
k
(x, t). The objective is to iteratively update

the incident field in such a way that, within the upper and lower

solid black lines shown in Figure 2, the field is anti-symmetric in

time. The meaning of this criterion will be evident in the next sec-

tion, where we show how to reconstruct G(x,xV S, t). The method

requires a combination of time reversal and windowing and the

kth iteration of the incident field is defined by

p+
k
(x, t) = p+0 (x, t)−w(x, t)p−

k−1
(x,−t), for x at z = 0, (6)

where the time window w(x, t) is defined by equation (4). The

reflection response is then obtained using equation (5), that we

rewrite here as

p−
k
(xR, t) =

∫ ∞

−∞

[

R(xR,x, t)∗ p+
k
(x, t)

]

z=0
dx, (7)

for x and xR at z = 0. The first and second iteration of the in-

cident and reflected fields are shown in Figures 4a and 4b, re-

spectively. The events of p+2 (x, t) labeled 2,3,4 in Figure 4b

correspond to the events of p−1 (x, t) labeled 6,5,4 in Figure 4a

(time-reversed and multiplied by −1). For this particular configu-

ration, the kth iteration of the incident field (for k > 2) is similar to

p+2 (x, t) and it is composed by four events, as show in Figure 4b

for t < 0. The events labeled 1 and 4 remain unchanged in the iter-

ative process. The other two events (labeled 2 and 3) correspond

to −A
(2)
k

Gd(xR,x
(2)
V S

,−t) ∗ s(t) and −A
(3)
k

Gd(xR,x
(3)
V S

,−t) ∗ s(t),

respectively. The coefficient A
(2)
k

varies at each iteration and is

equal to the partial sum of the geometric series c + cx + cx2 +
cx3 + cx4 + · · ·+ cxk where c = t+1 r2t−1 t−2 t−1 and x = r2

1 . The sum

of the series converges, because x < 1, and it yields

∞
∑

k=0

cxk =
c

1− x
= r2t−2 t−1 , (8)

where we used that 1− r2
1 = t−1 t+1 . The coefficient of the third

event, A
(3)
k

(labeled 3 in Figure 4b), is equal to −r1A
(2)
k

and it con-

verges to −r1r2t−2 t−1 . Figure 5a shows the thirtieth iteration and,

within the time window w(x, t), the wavefield is antisymmetric in

time. This is the result we predicted when we described the itera-

tive method. The antisymmetry was actually the design criterion

for the iterative scheme. This procedure is expected to converge

because in each iteration the reflected energy is smaller than the

incident energy. We consider the proposed method as a correction

scheme that minimizes the energy inside the time window w(x, t).

Wavefield reconstruction from the virtual source

After showing that the method converged to the desired result,

we define pk(x, t) as the superposition of the kth version of the

incident and reflected wavefields: pk(x, t) = p+
k
(x, t)+ p−

k
(x, t).

Figures 2, 4a, 4b and 5a show pk(x, t) for k = 0,1,2, and30, re-

spectively. For brevity, we define p(x, t) = p30(x, t). We remind

the reader that, within the solid black lines, the total field at z = 0

is antisymmetric in time and this particular feature was the design

criterion for the iterative scheme. Consequently, if we stack the

total field and its time-reversed version, i.e., p(x, t) + p(x,−t),
all events inside the time window cancel each other, as shown

in Figure 5b. Note that p(x, t) + p(x,−t) also obeys the wave

equation because we consider a lossless medium. The causal part

of this superposition corresponds to p−(x, t)+ p+(x,−t) and the

anti-causal part is equal to p+(x, t)+ p−(x,−t), as shown in Fig-

ure 5b for t < 0 and t > 0, respectively. From a physical point

of view, time-reversal changes the propagation direction, hence it

follows that the causal part propagates upward at z = 0 and the

anti-causal part propagates downward at z = 0. The first event

of the causal part of Figure 5b has the same arrival time of the

direct arrival of the response to the virtual source at xV S. If we

combine this last observation with the fact that the causal part is

upward propagating at z = 0, and that the total field obeys the

wave equation in the inhomogeneous medium and is symmetric,

it is plausible that the total field in Figure 5b is proportional to

G(x,xV S, t) + G(x,xV S,−t). More precisely, we speculate that

G(x,xV S,−t) and G(x,xV S, t) are proportional to the anti-causal

and causal parts of Figure 5b, respectively. This deduction does

not take into account any particular feature of the configuration

used in this analysis, hence it should hold for more general situ-
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Figure 5: (a) Thirtieth iteration of the incident wavefield (t < 0)

and its reflection response (t > 0), both measured at z = 0. Within

the solid black lines, the total field is antisymmetric in time and

this particular feature was the design criterion for the iterative

scheme. (b) Superposition of the total field and its time-reversed

version after the method has converged. Here, unlike the previous

figures, we show the wavefield for the time interval −4 < t < 4 s.

ations. We will check its validity for the response in Figure 5b.

Following the steps that led to the field shown in Figure 5b, we

find for the causal part that

p−30(x, t)+ p+30(x,−t) = (9)

t+1 t+2

{

Gd(x,xVS, t)+ r3Gd(x,x
(4)
VS

, t)−

r2(r1 + r3)G
d(x,x

(5)
VS

, t)− r3r2(r1 + r3)G
d(x,x

(6)
VS

, t)−

(r1r3 − r2
2(r1 + r3))G

d(x,x
(7)
V S

, t) . . .
}

∗ s(t),

with the virtual source position and its mirror images shown in

Figure 1. For the configuration of Figure 1, this is proportional to

the wavefield G(x,xV S, t)∗ s(t) originated from the virtual source

and recorded at the surface (with t+1 t+2 as the coefficient of pro-

portionality). The directly modeled response to the virtual source

is shown in Figure 6 and it matches the causal part of the field

shown in Figure 5b. For the total wavefield we obtain

p(x, t)+ p(x,−t) = t+1 t+2 Gh(x,xVS, t)∗ s(t), (10)

where Gh(x,xV S, t) = G(x,xV S, t)+G(x,xV S,−t). We note that

G(x,xV S,−t) obeys the same wave equation as G(x,xVS, t), i.e.,

LG(x,xV S,−t)=−ρ3δ (x−xV S)
∂δ (−t)
∂ (−t)

= ρ3δ (x−xVS)
∂δ (t)

∂ t
. So,

Gh obeys the homogeneous equation LGh =−ρ3δ (x−xVS)
∂δ (t)

∂ t
+

ρ3δ (x− xV S)
∂δ (t)

∂ t
= 0. This is in agreement with the fact that

p(x, t)+ p(x,−t) has been constructed without introducing a sin-

gularity (i.e., a real source) at xV S. Gh is called the homogeneous

Green’s function, after Porter (1970) and Oristaglio (1989) (but
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Figure 6: Total field originated by a real source located at xV S,

i.e., G(x,xVS, t)∗ s(t).

note that these authors take the difference instead of the sum of

the causal and acausal Green’s functions because of a different

definition of the source in the wave equation).

CONCLUSIONS

We proposed a generalization to 2D of the model-independent

wavefield reconstruction method of Broggini et al. (2011, 2012b).

The proposed data driven procedure yields the response to a vir-

tual source and reconstructs correct internal multiples, without

needing a receiver at the virtual source location and without need-

ing detailed knowledge of the medium. The method requires (1)

the direct arriving wave front at the surface originated from a vir-

tual source in the subsurface, and (2) the reflection impulse re-

sponses for all source and receiver positions at the surface. For

a simple configuration, the stationary-phase analysis gives insight

into the mechanism of the 2D iterative scheme and confirms that

the methods converges to the virtual-source response. Follow-

ing the physical arguments in the previous section, it is plausible

that the proposed methodology will also apply to more complex

environments. The method will also have its limitations. The

effects of a finite acquisition aperture, triplications, head waves,

fine-layering, errors in the direct arrivals, etc. need further inves-

tigation. A numerical test by one of us with a variable-velocity

syncline model shows promising results with respect to the han-

dling of triplications (Broggini et al., 2012a)3. Errors in the es-

timated direct arrivals will cause defocusing and mispositioning

of the virtual source (as in standard imaging algorithms). Such

errors, however, do not affect the handling of the internal mul-

tiples and do not deteriorate their reconstruction, which is han-

dled by the actual medium through the reflection data (that in-

cludes all the information about the medium itself). Because the

proposed method is non-recursive, the reconstruction of internal

multiples will not suffer from error magnification, unlike other

imaging methods that aim at internal multiple suppression. Since

no actual receivers are needed inside the medium, virtual sources

can be created anywhere. The virtual-source responses contain all

internal multiples, hence the method could be used as a basis for

imaging without internal multiples (Wapenaar et al., 2012b).
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