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SUMMARY

Using only surface reflection data and first-arrival infor-
mation, we generate up- and down-going wavefields at
every image point using the algorithm of Rose (2002b,a)
and Wapenaar et al. (2011, 2012a). An imaging condition
is applied to these up- and down-going wavefields directly
to generate the image. Since the above algorithm is based
on exact inverse scattering theory, the reconstructed
wavefields are accurate and contain all multiply scattered
energy in addition to the primary event. As corroborated
by our synthetic examples, imaging of these multiply
scattered energy helps illuminate the subsurface better
than reverse-time migration. We also demonstrate that
it is possible to perform illumination compensation using
our imaging algorithm that results in improved imaging
at large depths.

INTRODUCTION

Wapenaar et al. (2011) propose a methodology for re-
constructing the 3D impulse response for any “virtual
source” in the subsurface using surface reflection data
and the direct arrivals from the “virtual source” to
the receivers on the surface. Their proposal is the 3D
extension of the 1D iterative algorithm of Rose (2002b,a)
who shows that in layered media, it is possible to focus all
the energy at a particular time (or depth if the velocity
is known) by using a complicated source signature.

It is imperative to briefly discuss the pioneering work of V.
Marchenko, R.G. Newton, and J.H. Rose on inverse scat-
tering theory (Prosser, 1969; Gopinath & Sondhi, 1971;
Burridge, 1980; Bojarski, 1981; Newton, 1989) that is
instrumental in the development of the methodology of
Rose (2002b,a) and Wapenaar et al. (2011, 2012a) and
the imaging algorithm presented here. In 1D scattering
theory, Marchenko’s integral equation (Marchenko, 2011)
determines the relation between the wavefield in the inte-
rior of a medium and the reflected impulse response. New-
ton (1980, 1981, 1982) derived a similar relation, called
as the Newton-Marchenko integral equation, that uses all
scattered waves (reflected and transmitted) in 2D and 3D
media. In 1D, this relation is given by

u+sc(t, e, x) =
∑

e′=−1,1

R(t+ e′x,−e′, e)

+
∑

e′=−1,1

∫
∞

−∞

R(τ + e′x,−e′, e)u+sc(τ, e′, x) dτ, (1)

where t is time, e is the direction of wave propagation, x
is the 1D space, u+sc represents the scattered wavefield,
and R is the impulse response function. A physical expla-
nation of the above inverse scattering theory was provided
by Rose (2002b,a) who showed that the ideas of focusing
and time-reversal in fact result in the Newton-Marchenko
equation.

The first step involved in solving for the scattering po-
tential is to solve the Newton-Marchenko integral equa-
tion and find the wavefield everywhere inside the medium.
Newton (1980, 1981, 1982) solved the inverse scattering
problem for the Schrödinger wave equation by combin-
ing the Newton-Marchenko integral equation with high-
frequency asymptotics. A significant breakthrough was
made by Rose (2002b,a) who proposed an iterative ap-
proach, which he named ‘single-sided’ autofocusing, that
determines the wavefield in 1D media by focusing the in-
cident wave at a specified time. Rose proved that the
incident wave that focuses the wavefield in the interior
comprises of a delta function (band-limited in practice)
followed by the time-reversed solution of the Marchenko
equation. Rose’s algorithm was recently implemented on
1D seismic data by Broggini et al. (2011) who again show
that a ’virtual source’ response can be generated from
surface reflection data alone. Besides extending Rose’s
iterative algorithm to higher dimensions, Wapenaar et al.
(2011, 2012a) also showed that the wavefield at any in-
terior location can also be decomposed into the up- and
down-going wavefields.

Here, we show how the up- and down-going wavefields
can be used directly for imaging the subsurface. In
honor of the contribution of Newton, Marchenko, and
Rose, we call the imaging algorithm introduced here as
Newton-Marchenko-Rose Imaging, NMRI1 in short. Be-
sides demonstrating our imaging technique on synthetic
examples, we discuss its advantages over existing imaging
methods, in particular reverse-time migration (RTM).

ALGORITHM

Any seismic imaging algorithm consists of two steps -
wavefield reconstruction and imaging condition. For
example, RTM is a two-way imaging technique that
utilizes wavefields reconstructed in time by accurately
implementing the wave equation (Baysal et al., 1983;
Whitmore, 1983; McMechan, 1983) in a smooth velocity
model. Wavefield reconstruction in RTM is followed
by the application of an imaging condition (commonly
cross-correlation) to image the reflectors.

In NMRI, the up- and down-going wavefields are con-
structed at every location in space using the recipe of
Wapenaar et al. (2011, 2012a). An imaging condition is
applied to these two wavefields to obtain the image. The
pseudo-code for NMRI is given in Algorithm 1.

In NMRI, as the complicated incident wavefield focuses at
the imaging point, a reflection is generated depending on
whether there is actually a reflector at that point in space.
In the presence of a reflector, the incident wavefield gen-
erates a reflected-wave going in the direction opposite of

1NMRI also stands for Nuclear Magnetic Resonance Imag-

ing which is a medical imaging technique.
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Fig. 1: Up- and down-going wavefields at a reflector posi-
tion (a) and a depth devoid of reflectors (b). The arrows
point to parts of the wavefield generated from internal
multiples. (c) The density model of the subsurface and
(d) the NMRI image. A constant velocity of 2000 m/s
was used for modeling and imaging. Since the normal-
incidence reflection coefficient is approximately 0.1 for
both reflectors, the internal multiples are weak.

the incident wave; while in the absence of a reflector, no
reflected waves are gererated at the image point. There-
fore, only at a reflector location the incident-wavefield
coincides with the reflected-wavefield which gives rise to
a non-zero zero-lag cross-correlation (Figure 1a).

Since the Newton-Marchenko equation is based on exact
inverse scattering, the reconstructed wavefields contain
all multiply-scattered energy. Note the presence of these
multiples in Figures 1a and 1b. Any multiply-scattered
wave that is incident on a scatterer will also have a cor-
responding scattered wave occuring at the same time. In
Figure 1a, the multiply-scattered incident- and reflected-
waves occur at the same time, while in Figures 1b, they do
not coincide in time. Hence, in addition to the primary
wavefield, all multiply-scattered energy will also be im-
aged accurately using NMRI. Other advantages of NMRI
are discussed later.

NMRI IN ACTION

Here, we present three synthetic data results to demon-
strate the performance and effectiveness of NMRI. The
layer-cake (Figure 1) and Lena (Figure 3) models are
constant velocity, variable density models while the fold
model (Figure 2) has a variable velocity and constant
density. The data acquisition is a fixed surface spread in
each case where the sources and receivers are at z = 0m.
The source and receiver spacing is 10m in all the three
acquisitions. Time sampling is also the same (0.004 s)
in each case. The direct arrivals were muted from the
shot gathers. Besides this, no other processing was

Algorithm 1 Algorithm for NMRI. Superscript “-” rep-
resents time reversal and “*” depicts convolution. R is
the reflection response.

for any x,y,z in image space do
Compute initial incident wavefield ui

0 from first-
arrivals

ui
1,2 ← ui

0, u
s
1,2 ← 0

repeat
Mute us

1,2 beyond first arrival
Update incident wavefield:

ui
1 ← ui

0 − us−
1 ,ui

2 ← ui
0 + us−

2

Updated scattered wavefield:
us
1 ← ui

1 ∗R,us
2 ← ui

2 ∗R
until us

1,2 converge
Compute uup, udn using the recipe of Wapenaar et

al. (2011,2012)
Apply imaging condition to uup and udn

end for

performed on the data; the data contain all orders of
internal multiples.

Ray-tracing was used in computing the first breaks for
the layercake model and for Lena; for the fold model, the
first breaks were computed using a finite-difference wave-
propagation code in a smoothed version (Figure 2b) of
the true velocity model.

Note that NMRI produced a satisfactory image (Fig-
ures 1d,2c, and 3d) in each case. Some steeply-dipping
events were not imaged accurately for the fold model
and for Lena because of the lack of illumination of these
features. Application of a low-cut filter to Lena (Fig-
ure 3e) shows that many small details have been imaged
in detail. Even though the reflection data is complicated
(Figure 3b) and contains all orders of internal multiples,
NMRI imaged the primary as well as all the scattered
events appropriately.

ADVANTAGES OVER RTM

True amplitude/AVA: NRMI is based on exact inverse
scattering theory and therefore the reconstructed wave-
field in the interior of the medium is accurate irrespective
of the velocity and density distributions in the subsurface.
Hence, the NMRI image should be closer to the true
reflectivity of the subsurface. Angle gathers for NMRI
can be generated in the same way as in RTM. AVA
analysis (on angle gathers) for NRMI, however, should
be more reliable because the wavefields are accurate.

Multiples are imaged : As mentioned above, since the
wavefields in NMRI are reconstructed accurately, the im-
age should be better than existing imaging algorithms.
Also, all orders of multiples are reconstructed and im-
aged accurately. Reflectors not illuminated by the di-
rect arrival, might be illuminated by internal multiples
(Fleury, 2012); these reflectors would be visible on the
NMRI image but not on the RTM image. This is also
corroborated by the virtual-source imaging of internal
multiples of Wapenaar et al. (2011) and Wapenaar et al.
(2012b).Imaging of multiples also renders multiple (both
surface-related and inter-bed) prediction and suppression
unnecessary. Although, none of the examples presented
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Fig. 2: (a) The original velocity model of the fold system and (b) the smoothed version used for imaging with the
corresponding NMRI image (c). A constant density of 1 gm/cm3 was used in generating the reflection data.

here contain surface-related multiples, the theory under-
lying NMRI imposes no limitations on the type of multi-
ples.

Illumination compensation: Illumination compensation
can be performed by manipulating the amplitude of the
leading delta function in the incident wavefield such that
each primary arrival at the image point has the same am-
plitude. By using the same unit delta function for all first
arrivals, we ensure that the reflector is equally illuminated
from all incidence angles and has the same illumination
at all depths. However, if the Green’s function is used
instead of a uniform delta function, the image at larger
depths is poor because of insufficient illumination. For
example, Figure 3c generated using the correct Green’s
function (as the first arrival) can be interpreted as the
best possible RTM image (generated from data containing
only primary reflections). The above argument explains
why the NMRI image (Figure 3d) is significantly better
than the best possible RTM image (Figure 3c). Moreover,
AVA would become more reliable as all the incident waves
have the same amplitude.

Targeted imaging : Since the computation of the first
breaks (using ray-tracing or finite-differences) can be done
independently for each image point, it is possible to per-
form targeted imaging using NMRI. The targeted imaging
of Lena’s left eye is shown in Figure 3f.

Computationally cheap: In NMRI, wavefield computation
is done by convolving the incident wavefield with the re-
flected impulse response for a few iterations (in our tests
two iterations were enough in most cases). If ray-tracing
is used to compute the incident wavefield, then NMRI
would be significantly faster than RTM. A thorough quan-
titative analysis is necessary to ascertain this.

High frequencies: The cost of RTM increases significantly
with increasing frequency content because the extrapola-
tion grid has to be more finely sampled. Wavefield com-
putation using NMRI, on the other hand, has no such
limitation because the frequency content of the incident
wave and the impulse response are only limited by the
temporal nyquist limit.

Highly parallelizable: Since the image at each location
in the image space can be computed independently, the
algorithm is highly parallelizable in the image space.

Anisotropy : Wavefield extrapolation in anisotropic media
using numerical methods is expensive. In addition, de-
pending on the dispersion relation used, the wavefield can

contain shear-wave artifacts and incorrect P-wave ampli-
tudes. In NMRI, however, if the first breaks are computed
using ray-tracing, then imaging in anisotropic media be-
comes extremely cheap compared to RTM. Moreover, the
wavefields in NRMI are accurate in amplitude even if the
medium exhibits velocity anisotropy.

DISCUSSION AND CONCLUSIONS

The first arrivals at the surface from an impulse at any
image point can be computed either using ray-tracing
or solving the wave equation numerically using finite-
differences. In the case of ray-tracing, the incident
wavefield can then be designed by convolving the trav-
eltime with a delta function (Rose, 2002b,a). If the
background velocity field results in multipathing, one
must make sure that the incident wavefield contains all
multiple arrivals; if not, the incident wave would not
focus at the image point. However, if the first arrivals
are computed by numerically solving the wave-equation,
one must normalize each incident wave with it’s energy
content to make sure that all incident waves have similar
energy. In the absence of normalization, deeper reflectors
will not be imaged properly. First arrivals computed
using kinematic ray-tracing might not yield the correct
phase; instead, dynamic ray-tracing or gaussian-beam
modeling could be used instead. Ray-tracing, however,
has one significant advantage: it is substantially cheaper
than solving the wave equation numerically (especially
in anisotropic media).

Newton-Marchenko-Rose Imaging, which is based on ex-
act inverse scattering theory, shows promise in imaging
complicated subsurfaces. Besides primaries, it can be
used for illumination compensation and can image both
surface-related and internal multiples. This should make
NMRI useful for imaging poorly illuminated areas, espe-
cially underneath salt bodies. In comparison to RTM,
NMRI has other important advantages, such as, it is po-
tentially computationally cheaper, can image arbitrarily
anisotropic media, can be used for targeted imaging, and
should generate accurate AVA response.
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Fig. 3: (a) The density model used in imaging Lena. (b) A sample shot gather. A constant velocity of 2000 m/s was
used for modeling and imaging. The NMRI image after one (c) and two (d) iterations. In (c), the Green’s function
is used for the first arrival while in (d), all the first arrivals are the same delta function. (e) Low-cut filtered version
of (d). (f) Targeted imaging of Lena’s left eye.
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