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SUMMARY

Interferometric redatuming is a velocity-independent method
to turn downhole receivers into virtual sources. Accurate re-
datuming involves solving an inverse problem, which can be
highly ill-posed, especially in the presence of noise, incom-
plete data and limited aperture. We address these issues by
combining interferometric redatuming with transform-domain
sparsity promotion, leading to a formulation that deals with
data imperfections. We show that sparsity promotion improves
the retrieval of virtual shot records under a salt flank. To reduce
acquisition costs, it can be beneficial to reduce the number of
sources or shoot them simultaneously. It is shown that sparse
inversion can still provide a stable solution in such cases.
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Figure 1: The Sigsbee model with an array of 128 sources at
the surface in red and an array of 128 receivers in a horizontal
well in black.

INTRODUCTION

With interferometric redatuming, physical receivers can be turned
into virtual sources without information about the propagation
velocity (Schuster, 2009). One of the many applications of this
concept is to redatum seismic sources from the Earth’s sur-
face to receiver locations in a horizontal well, which is the key
idea behind the virtual source method (Bakulin and Calvert,
2006). Although the theory for interferometry assumes illumi-
nation from all directions, interferometric redatuming is gener-
ally applied with one-sided illumination from the surface and
limited aperture, which can result in the retrieval of spurious
events and blurring effects (Snieder et al., 2006; Wapenaar,
2006). To overcome these problems, it is better to solve in-
terferometric redatuming by inversion (multidimensional de-
convolution). Wapenaar et al. (2011) do so least-squares in-
version. In many cases, the interferometric redatuming prob-
lem is poorly conditioned and heavy regularization is required
to stabilize the inversion (Minato et al., 2011). If the prob-
lem is underdetermined, for instance in case of source under-
sampling or simultaneous source acquisition, the situation can

be especially detrimental. Solving interferometric redatuming
with curvelet-domain sparsity promotion (referred to as sparse
inversion) can circumvent some of these problems. Sparsity
promotion has proven useful in a range of geophysical appli-
cations, such as denoising (Hennenfent and Herrmann, 2006),
recovery of missing data (Herrmann et al., 2008b), surface-
related multiple elimination (van Groenestijn and Verschuur,
2009; Lin and Herrmann, 2011), removing crosstalk of simul-
taneous source data (Herrmann et al., 2008a; Neelamani et al.,
2010; van Groenestijn and Verschuur, 2011) and (least-squares)
imaging (Herrmann and Li, 2012; Tu et al., 2012).

THE FORWARD MODEL

In the following representation, sources and receivers are lo-
cated at the Earth’s surface and in a horizontal well, respec-
tively. An example of such configuration is shown in Figure 1.
In this case, the receiver array is located below a salt body, dis-
torting the transmitted wavefields significantly. Our aim is to
redatum the sources to the receiver array without information
about the salt body and to use the obtained signals for local
(sub-salt) imaging. By combining multi-component record-
ings, the downgoing and upgoing constituents of the wave-
field at depth can be separated. This is done with a sparsity-
promoting decomposition algorithm, developed by van der Neut
and Herrmann (2012). Knowing the (flux-normalized) decom-
posed fields, the following forward model for interferometric
redatuming can be derived (Wapenaar et al., 2008):

u = Dg0. (1)

Here,u is the flux-normalized upgoing wavefield at the hori-
zontal receiver array in vectorized form in the time-space don-
main. D is a matrix that involves forward Fourier transforma-
tion, multidimensional convolution with the downgoing field
and inverse Fourier transformation. The vectorg0 is the un-
known Green’s function as if there were virtual sources in
the well, also vectorized in the time-space domain. To re-
duce acquisition costs, it can be beneficial to sub-sample the
source array by removing random shot locations or to shoot
sources simultaneously with random time delays as in blended
acquistion (Berkhout, 2008). For these scenarios, the upgoing
wavefieldu and matrixD can be written asu = RMu0 and
D = RMD0, whereu0 andD0 are the upgoing wavefield and
’operator-matrix’ for full recording geometry,M is a mixing
matrix andR a restriction matrix. For missing sources,R is an
identity matrix with a number of rows deleted (corresponding
to the missing sources) andM is an identity matrix. For simul-
taneous sources,M introduces the source mixing and phase
encoding (i.e. the individual source emission times) (Wason
et al., 2011) andR is an identity matrix .
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CROSSCORRELATION

Interferometric redatuming by crosscorrelation can be imple-
mented by applying the adjoint (indicated by superscript∗) of
D to u, yielding the correlation functionc:

c = D∗u. (2)

Note that equation 2 involves crosscorrelation and summation
over sources, as typically applied in interferometry by cross-
correlation (Schuster, 2009) and the virtual source method (Bakulin
and Calvert, 2006). From equations 1 and 2, it follows that
c = D∗Dg0, being the normal equation. In simple media with
perfect acquisition conditions,D∗D (referred to as the point-
spread function) will be close to a bandlimited identity matrix
and, consequently,c can be interpreted as a bandlimited rep-
resentation ofg0 (Wapenaar et al., 2011). In complex settings
with shadow zones, or when sources are missing or shooting
simultaneously,D∗D can be defocused or contain crosstalk. In
such cases, equation 1 should be inverted to optimize the esti-
mate ofg0.

LEAST-SQUARES INVERSION

One approach is to solve equation 1 by regularized least-squares
inversion (Wapenaar et al., 2008). In this case the following
minimization scheme is implemented:

minimize
g0

1
2
||u−Dg0||

2
2+λ 2 ||g0||

2
2 . (3)

Here, subscript 2 denotes theℓ2-norm andλ is a regularization
parameter to constrain the solution length||g0||

2
2. Regulariza-

tion also smoothens the solution, which can result in the loss
of high frequency information.

SPARSE INVERSION

In many cases the forward problem of equation 1 is poorly
conditioned (Minato et al., 2011) and it can be beneficial to
impose additional constraints on the sparsity of the solution.
It has been shown that seismic data is generally sparse in the
curvelet domain (Herrmann et al., 2008b). For this reason,
we define the transformS = C2 ⊗W, whereC2 is the two-
dimensional curvelet transform along the virtual source and
receiver coordinates,W is the discrete wavelet transform and
⊗ denotes a Kronecker product. The desired Green’s function
g0 can be written in terms of its transform-domain coefficients
x0, according to

g0 = S∗x0. (4)

We assume that the representation of the Green’s function in
terms ofx0 is sparse, which is exploited by solving the follow-
ing (convex) optimization problem (Herrmann et al., 2008b):

minimize
x0

||x0||1subject to||u−DS∗x0||2 ≤ σ . (5)

Here,σ is a user-defined noise level quantifying the tolerated
mismatch in the residual of the forward problem and subscript
1 denotes theℓ1-norm. Once the coefficientsx0 are found, the
desired Green’s functiong0 can be constructed by evaluation
of equation 4. An additional debiasing step can be applied
for amplitude balancing, by minimizing theℓ2-norm residual
of equation 1 using only the non-zero entries ofg0 found by
sparse inversion (Figueiredo et al., 2008).
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Figure 2: Virtual shot records retrieved from all sources by a)
direct modeling, b) crosscorrelation, c) least-squares inversion
and d) sparse inversion.

EXAMPLES

In the following example, 128 source locations are redatumed
from the Earth’s surface to a receiver array in a horizontal well
below a salt body (Figure 1). Prior to redatuming, Gaussian
noise is added to the data withSNR = 5 (Signal-to-Noise Ra-
tio). The upgoing and downgoing fields are separated with a
sparsity promoting inversion scheme (van der Neut and Her-
rmann, 2012). In Figure 2a a shot record from the desired
Green’s function is shown, obtained by direct modeling. Early
arrival times have been muted to remove strong reflections
from heterogeneties at the receiver level. In Figure 2b we show
the redatumed shot record obtained by crosscorrelation, using
all 128 sequential sources. We observe the strong reference
reflector att ≈ 1.5s and the weaker reflections earlier in the
section. The response also contains many artefacts. Least-
squares inversion can improve the results considerably (Figure
2c), but the retrieved response is rather noisy, despite severe
regularization. The results of sparse inversion is accurate and
relatively free of noise, see Figure 2d.

Next we make 32 supershots, each containing of 4 randomly
selected sources encoded with random time shifts between 0s
and 1.6s. One supershot is shown in Figure 3a for illustra-
tion, where it is clear that various events are interfering. Ap-
plying interferometric redatuming by crosscorrelation results
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in severe crosstalk, see Figure 3b. Although least-squares in-
version can remove some crosstalk, the response is noticably
noisy, see Figure 3c. Sparse inversion allows us to recover the
Green’s function with a relatively low noise floor, as shown in
Figure 3d.

In another test, we use seqential sources but a random selection
of 50% of the shots are removed. An example of a common
receiver gather of the input data is shown in Figure 4a. The
undersampling causes additional noise when crosscorrelation
is used for redatuming (Figure 4b). Once again a noisy result
is obtained with least-squares inversion (Figure 4c), whereas
the result of sparse inversion is relatively clean (Figure 4d).
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Figure 3: a) Example of the pressure recordings of one super-
shot. Virtual shot records retrieved from simultaneous sources
by b) crosscorrelation, c) least-squares inversion and d) sparse
inversion.
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Figure 4: a) Example of a common receiver gather with 50% of
the sources missing. Virtual shot records retrieved with miss-
ing sources by b) crosscorrelation, c) least-squares inversion
and d) sparse inversion.

INTERFEROMETRIC IMAGING

Interferometric redatuming is often followed by local imag-
ing in a target area below the well. This strategy requires a
background velocity model of the medium below the well but
no information of the medium above the well. For accurate
imaging, the following forward model can be derived under
the Born approximation (i.e. internal scattering is not taken
into account) (Plessix and Mulder, 2004):

g0 ≈ Kδm0. (6)

Here the vectorδm0 describes the perturbations of the back-
ground medium in vectorized form andK is the Born scatter-
ing operator describing the propagation from the virtual sources
to the perturbations and from there to the receivers. Reverse-
Time-Migration (RTM) can be implemented by applying the
adjoint ofK to the retrieved Green’s functions. In this way, an
imageδm of the medium perturbations can be obtained:

δm = K∗g0. (7)

In Figure 5a we show the true perturbationsδm0 in the tar-
get area below the receivers that we aim to image. In Figure
5b, we show the RTM image obtained from the Green’s func-
tions as retrieved by crosscorrelation. Note the artefact that
is indicated by the white arrow (which might be caused by a
reflection from the salt flank). Redatuming by least-squares
inversion and RTM can remove this artefact and improve the
resolution drastically but the result is slightly noisy, see Figure
5c. Using Green’s functions obtained by sparse inversion pro-
duces a relatively clean image, as shown in Figure 5d. Similar
conclusions hold for the case with simultaneous sources (Fig-
ure 6) and missing sources (Figure 7), although these images
tend to appear slightly more noisy.

Figure 5: a) True perturbations in the target area and RTM im-
ages from Green’s functions retrieved by b) crosscorrelation,
c) least-squares inversion and d) sparse inversion of sequential
source data.
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Figure 6: a) True perturbations in the target area and RTM im-
ages from Green’s functions retrieved by b) crosscorrelation,
c) least-squares inversion and d) sparse inversion of simulta-
neous source data.

DISCUSSION

By substituting equation 6 into equation 7, it follows thatδm=

K∗Kδm0. The imageδm can thus be interpreted as a repre-
sentation of the true medium perturbationsδm0 blurred with
the so-called image resolution functionK∗K (Schuster and
Hu, 2000). With least-squares migration (Nemeth et al., 1999;
Plessix and Mulder, 2004) or migration deconvolution (Yu et al.,
2006) we aim to remove the imprintK∗K from the image.
Herrmann and Li (2012) shows how this can effectively be
done with sparsity promotion in the image domain. Instead
of solving interferometric redatuming and imaging as sequen-
tial steps, they can also be combined. This can be shown by
substituting equation 1 into equation 7, yielding the following
forward problem:

u ≈ DKδm0. (8)

The upgoing fieldu is now described in terms of data-driven
operatorD, describing the propagation above the receivers and
model-driven operatorK, describing the propagation below
the receivers. AlthoughK is derived under the Born approxi-
mation, operatorD correctly accounts for multiple scattering
in the overburden (Wapenaar et al., 2008). By defining an
appropriate transform domainS (for instance the curvelet do-
main) and expressing the medium perturbations in terms of
their transform-domain coefficientsδx0 = S∗δm0, the follow-
ing optimization problem can be introduced:

minimize
δx0

||δx0||1 subject to||u−DKS∗δx0||2 ≤ σ . (9)

To speed up computation time, it might be possible to replace
the computationally expensive multidimensional convolution
operationDK by a single Born scattering operatorK that in-
cludes the downgoing field in the source function. A compa-

rable strategy has been aplied by Tu et al. (2012) to include
surface-related multiples in the source function ofK for least-
squares migration of full wavefields.

CONCLUSIONS

Sparsity promotion in the curvelet domain has been applied
succesfully for robust interferometric redatuming with simul-
taneous and missing sources, producing virtual shot records
with relatively low noise levels. Results depend strongly on
a good choice ofσ , governing the balance between sparsity
promotion and signal preservation.
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Figure 7: a) True perturbations in the target area and RTM im-
ages from Green’s functions retrieved by b) crosscorrelation,
c) least-squares inversion and d) sparse inversion of sequential
source data with missing sources.
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