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SUMMARY

Recent work on autofocusing with the Marchenko equation has
shown how the Green’s function for a virtual source in the sub-
surface can be obtained from reflection data. The response to
the virtual source is the Green’s function from the location of
the virtual source to the surface. The Green’s function is re-
trieved using only the reflection response of the medium and
an estimate of the first arrival at the surface from the virtual
source. Current techniques, however, only include primaries
and internal multiples. Therefore, all surface-related multiples
must be removed from the reflection response prior to Green’s
function retrieval. Here, we extend the Marchenko equation
to retrieve the Green’s function that includes primaries, inter-
nal multiples, and free-surface multiples. In other words, we
retrieve the Green’s function in the presence of a free surface.
We use the associated Green’s function for imaging the subsur-
face. The information needed for the retrieval are the reflection
response at the surface and an estimate of the first arrival at the
surface from the virtual source. The reflection response, in this
case, includes the free-surface multiples; this makes it possi-
ble to include these multiples in the imaging operator and it
obviates the need for surface-related multiple elimination.

INTRODUCTION

To focus a wavefield at a point in a medium only requires sur-
face reflection data and an estimate of the first arriving wave
at the surface from a point source at the focusing location
(Broggini et al., 2012; Broggini and Snieder, 2012; Wapenaar
et al., 2013). Unlike in seismic interferometry (Bakulin and
Calvert, 2006), no receivers are required at the desired focus-
ing location, i.e. the virtual source location. Significantly, the
detailed medium parameters need not be known to focus the
wavefield. However the travel-time of the direct-arrival of the
virtual source to the surface is required. To obtain this travel
time, one only needs a macro-model of the velocity.

The focusing scheme of Broggini et al. (2012), Broggini and
Snieder (2012), and Wapenaar et al. (2013) is an extension
of the algorithm of Rose (2002a,b) who shows an iterative
scheme that solves the Marchenko equation for wavefield fo-
cusing in one dimension. The focused events in the wavefield
for the virtual source consist of primaries and internal mul-
tiples (Wapenaar et al., 2013) but not free-surface multiples.
Importantly, Rose (2002a,b) derived the focusing method (aut-
ofocusing) for single-sided illumination with sources and re-
ceivers on one side of the medium, similar to current geophys-
ical acquisition methods.

The algorithm of Broggini et al. (2012) requires the removal
of free-surface multiples from the reflection response of the
medium to retrieve the Green’s function by autofocusing. The
removal of the free-surface multiples can be achieved by Sur-
face Related Multiple Elimination (SRME) (Verschuur et al.
(1992)).

Wapenaar et al. (2011a) illustrate imaging with the Green’s
function in 1D and also discuss how to image in multi-dimensions
(2D and 3D). Similarly, Behura et al. (2012) introduce an imag-
ing algorithm based on the auto-focusing scheme that images
not only primaries but also internal multiples, thereby reduc-
ing imaging artifacts. Broggini et al. (2014) extend the work
of Behura et al. (2012) by using multidimensional deconvolu-
tion (MDD) as the imaging condition in place of conventional
cross-correlation or deconvolution, which further reduces the
artifacts. In other words, Broggini et al. (2014) retrieve the
Green’s function from the acquisition surface to any point in
the medium. This Green’s function is essentially an imaging or
downward continuation operator. Since this Green’s function
includes both primaries and internal multiples, we expect im-
proved subsurface images compared to using primaries alone.

In this paper, we modify the earlier focusing algorithms (Rose,
2002a; Broggini et al., 2012; Wapenaar et al., 2013) to focus
not only primaries and internal multiples but also the free-
surface multiples. We achieve such focusing using reflected
waves in the presence of a free surface and an estimate of the
first arrival from the focus location to the surface. Notably, our
proposed auto-focusing scheme obviates the need for SRME.

The free surface is the strongest reflector in the system; there-
fore, in general, the free-surface multiples are stronger than
internal multiples. In addition, free-surface multiples can be
used to provide better illumination, higher fold, and better ver-
tical resolution of the subsurface (Schuster et al., 2003; Jiang
et al., 2007; Muijs et al., 2007a,b). For these reasons, by re-
trieving the Green’s function which includes primaries and all
multiples (including free-surface multiples) and using the imag-
ing condition proposed by Behura et al. (2012), we expect bet-
ter imaging of the subsurface.

THEORY

The theory of focusing the wavefield without a free surface,
i.e. retrieving the Green’s function G0, is discussed by Rose
(2002a), Broggini et al. (2012), and Wapenaar et al. (2013).
In our notation, any wavefield quantity with a subscript 0 (e.g
R0) signifies that no free-surface multiples are present. In the
focusing scheme of Broggini et al. (2012), and Wapenaar et al.
(2013) they remove the free-surface multiples from the reflec-
tion response R (by SRME) to get R0 and then compute G0,



the Green’s function in the absence of the free surface.

We generalize the formulation of Wapenaar et al. (2013) to in-
clude free-surface multiples. In our case, the reflections from
the free surface are included in the focusing scheme similar to
the treatment by Wapenaar et al. (2004) of free-surface multi-
ples; hence no SRME is required.

We begin by defining our spatial vector field by its horizontal
coordinates and depth coordinates, for instance, x0 =(xH,x3,0),
where xH are the horizontal coordinates at a depth x3,0. We de-
fine a solution for the waves that focus at a point in a medium,
called the focusing solutions. Wapenaar et al. (2013) define
two focusing solutions; f1 and f2. The f1 solution involves
waves that focus at x′i at a defined depth level (∂Di) for in-
coming and outgoing waves at the acquisition surface (∂D0) at
x0. The solution f2 is somewhat the opposite of f1 as it is a
solution for waves that focus just above ∂D0 at x′′0 for incom-
ing and outgoing waves at ∂Di. The focusing solutions exist
in a reference medium that has the same material properties
as the actual inhomogeneous medium between ∂D0 and ∂Di
and that is homogeneous above ∂D0 and reflection-free below
∂Di. Therefore, the boundary conditions on ∂D0 and ∂Di in
the reference medium, where the focusing solution exist, are
reflection free. Note that this boundary condition need not be
the same as the actual medium. The focusing solutions can
be separated into up-going and down-going waves; the first fo-
cusing solution in the frequency domain reads (Wapenaar et al.
(2013))

f1(x,x′i,ω) = f+1 (x,x′i,ω)+ f−1 (x,x′i,ω), (1)

while the second focusing solution reads

f2(x,x′′0 ,ω) = f+2 (x,x′′0 ,ω)+ f−2 (x,x′′0 ,ω). (2)

In this paper the superscirpt (+) refer to down-going waves
and (−) to up-going waves.

We find relationships between the focusing solutions by sepa-
rating these solutions into one-way wavefields (Wapenaar et al.,
2013) and applying these wavefields to reciprocity theorems,
Wapenaar and Grimbergen (1996). For instance, in the fre-
quency domain, the up-going wavefield of f1 at ∂D0 is
f−1 (x0,x′i,ω) while the down-doing wavefield is f+1 (x0,x′i,ω).
At or just below ∂Di, the up-going wavefield of f1 vanishes
since in the reference medium below ∂Di is homogeneous,
while the down-going wavefield is f+1 (xi,x′i,ω)= δ (xH−x′H).
The solution f2 is separated into one-way wavefields using
similar reasoning, (more details of the relationships between
these solutions are given in Wapenaar et al. (2013)). The rela-
tionship between the focusing solutions are (Wapenaar et al.,
2013):
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The wavefields in our actual medium can also be separated into
one-way wavefields at the different depth levels, i.e. ∂D0 and
∂Di, as shown in Figure 1. Note, that the additional one-way
wavefields that are added to the actual medium, in our case, in
the presence of the free surface in comparison to without the
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Figure 1: Green’s functions in the actual inhomogeneous
medium in the presence of a free surface.

free surface are the reflected waves from the free surface rR.
In Figure 1, rR denotes the reflected waves from the free sur-
face, where r is the reflection coefficient of the free surface and
R are the recorded reflected waves from the subsurface. Con-
sequently, in our case, the Green’s functions at the different
depth levels all include reflected waves from the free surface.

We use the convolution and cross-correlation reciprocity theo-
rems to find relationships for the one-way wavefields of f1 and
the wavefields in the actual medium:
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where ∗ represents the complex conjugate, and r = −1 is the
reflection coefficient of the free surface. R is flux normal-
ized so that the one-way reciprocity equations (Wapenaar and
Grimbergen (1996)) holds. Note the up-going Green’s func-
tion (G−) in the actual inhomogeneous medium at ∂D0 is the
reflection response R for a downward radiating source at ∂D0.

The two-way Green’s function is obtained by adding equations
5 and 6 as well as using equations 1, 2 and the relationship
between f1 and f2 (equations 3 and 4):
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(7)

We retrieve G the same way we retrieve G0 as discussed in
Wapenaar et al. (2013), except we use equation 7 instead of



equation 8 for the Green’s function equation.
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Equation 8 is the expression to retrieve the Green’s function
which includes primaries and internal multiples but not free-
surface multiples. Importantly, equation 7 simplifies to equa-
tion 8 in the limiting case when r→ 0 since we will no longer
have reflections from the free surface.

Similar to our treatment of the focusing function f2, we can
define another focusing function g2 such that

g2(x,x′′0 ,ω) = f+2 (x,x′′0 ,ω)− f−2 (x,x′′0 ,ω). (9)

Analogously, we can define a difference Green’s function G̃
that is related to g2 similar to expression 7 by
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We call G̃ the difference Green’s function since
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To yield the up-going Green’s function, we subtract equations
7 and 11:
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Similarly, we obtain the down-going Green’s function by adding
equations 7 and 11:
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These up- and down-going (G+ and G−) Green’s functions at
the focal point are used for imaging and include primaries and
all multiples. The up- and down-going Green’s functions have
been used for imaging the subsurface, (Behura et al., 2012;
Broggini et al., 2014, 2012; Wapenaar et al., 2011a). How-
ever, their Green’s function only contains primaries and inter-
nal multiples. In this paper, the up- and down-going Green’s
function also includes free-surface multiples.

The use of up- and down-going wavefield for imaging is not
a new principle. Claerbout (1971), Wapenaar et al. (2000)
and Amundsen (2001) have shown that one can get the reflec-
tion coefficient below an arbitrary depth level once the up- and
down-going wavefields are available. The governing equation
for imaging with these up- and down-going waves is
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Figure 2: Velocity model with high impedance layer at 1.5 km;
the dot is the position of the virtual source.

where ∂Di is an arbitrary depth level, R∪0 is the reflection re-
sponse below ∂Di. In addition, R∪0 at ∂Di is reflection-free
above this depth level. We can think of R∪0 as the reflection re-
sponse from a truncated medium; where the truncated medium
is the same as the true medium below ∂Di and reflection free
above. Equation 14 states that we can recover G− from the
convolution of G+ with R∪0 and integrate along all source po-
sitions x′ of R∪0 .

We solve for R∪0 by multidimensional deconvolution (Wape-
naar et al., 2008, 2011b) as the time integral is a convolution.
The subsurface image is given by taking the zero lag of R∪0 , i.e.
t = 0 at each depth level in the model, (for each ∂Di), this is
called the multidimensional imaging condition. Alternatively,
once we obtain R∪0 at an arbitrary ∂Di we can also apply a stan-
dard imaging procedure to image below ∂Di. This is because
R∪0 is the reflection response of the truncated medium below
∂Di for sources and receivers at ∂Di.

NUMERICAL EXAMPLE

We consider a 1D model that has a high impedance layer generic
to salt models as shown in Figure 2. A Receiver at the surface
records the reflected waves. To retrieve the Green’s function
in 1D, one needs the travel time of the first arriving wave from
the virtual source to the surface. In 2D or 3D media, a smooth
version of the slowness (1/velocity) can be used to get an es-
timate of the direct arriving wave from the virtual source to
the surface. The direct arriving wave can be obtained using
finite-difference modeling of the waveforms.

We obtain the focusing function f2 by setting the left-hand side
of equation 7 to zero and evaluating this expression for a time
earlier than the first arriving wave. The focusing function is
substituted in equation 7 to retrieve the Green’s function lo-
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Figure 3: Retrieved Green’s function (normalized by maxi-
mum amplitude), G, from a depth of 2.75 km to the surface
(white). The model Green’s function is displayed (in black) in
the background.
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Figure 4: Autofocusing imaging of Figure 2 in yellow, with
the true reflectivity (in black) in the background.

cated at 2.75 km to the surface, Figure 3. This Green’s func-
tion G, arbitrarily scaled to its maximum amplitude (Figure 3),
is the response at the surface ∂D0 to the virtual source (located
at 2.75 km [dot in Figure 2]).

We also model the Green’s function using finite differences
to ensure that the Green’s function retrieved from our autofo-
cusing algorithm is accurate, and superimposed this result on
Figure 3. The vertical scale of Figure 3 is enlarged to better il-
lustrate the model and retrieved Green’s function. For this rea-
son, the first arrival at time 1.0 s is clipped. The corresponding
autofocus image of the model in Figure 2 illustrates the correct
location of the reflectors as well as the correct scaled reflection
coefficient shown in Figure 4. In 1D, the autofocus image is
the deconvolution of the up- and down-going Green’s function
at each image point for t = 0. There are some anomalous am-
plitudes in the autofocus image (especially around 200 m) but
they are small compared to the actual reflectors’ amplitude.

DISCUSSION/CONCLUSION

In summary, we extended the retrieval of the Green’s func-
tion to include the presence of a free surface. This function
includes primaries, internal multiples, and now free-surface
multiples. Significantly, our proposed method does not require
any surface-related multiple removal of the reflection response.
Although we show 1D numerical examples, the equations that
solve for the Green’s function are multidimensional as well as
our imaging condition, thus our autofocusing imaging (which
uses primaries, internal multiples and free surface multiples)
is extendable in 2D and 3D. In addition, we need an estimate
of the first arrival at the surface from the virtual source in the
subsurface. To obtain the first arrival, we only need a macro
model of the velocity, but the small scale details of the velocity
and density need not be known.
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