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SUMMARY

With the acoustic Marchenko method it is possible to retrieve
the Green’s response to a virtual source in the subsurface from
the single-sided reflection response at the surface. The acous-
tic Marchenko method relies on the separability of the Green’s
functions and focusing functions in the time domain. Recently,
the first steps have been made towards extending the single-
sided Marchenko method to the elastodynamic situation. A
complication of the elastodynamic scheme is that the Green’s
functions and focusing functions partly overlap each other.
The iterative Marchenko method does not retrieve the parts
of the focusing functions that overlap with the Green’s func-
tions. Ideally, the overlapping parts of the focusing functions
are defined as the initial condition for the iterative Marchenko
method. This leads to a perfect retrieval of the elastodynamic
Green’s functions. In this paper we investigate the results
of the Marchenko method when we use less stringent initial
conditions. It appears that using an initial focusing function
which contains single events leads to an accurate retrieval of
two components of the Green’s matrix, provided the converted
reflection responses are included in the Marchenko scheme.

INTRODUCTION

Building on work on 1D acoustic autofocusing of Rose (2001,
2002), Broggini and Snieder (2012) designed a method to re-
trieve the 1D Green’s response to a virtual source in the sub-
surface from the single-sided reflection response at the surface.
We extended this method to more dimensions (Wapenaar et al.,
2013) and used it to design a new method of seismic imag-
ing which accounts for internal multiples (Wapenaar et al.,
2014; Broggini et al., 2014; Behura et al., 2014; Singh et al.,
2015). Because this method is based on iteratively solving the
Marchenko equation (Marchenko, 1955; Lamb, 1980; Chadan
and Sabatier, 1989), we use the name “Marchenko imaging”
next to “autofocusing”. Snieder (2015) discusses Marchenko
imaging in its broader historical context and van der Neut et al.
(2015) explain the method in an intuitive way.

Recently, the first steps have been made towards extending
Marchenko imaging to the elastodynamic situation (da Costa
et al., 2014; Wapenaar, 2014). The extension from the acous-
tic to the elastodynamic situation is not trivial. The acoustic
Marchenko method relies on the separability of the Green’s
functions and the so-called focusing functions in the time do-
main. In the elastodynamic situation the Green’s functions
and the focusing functions partly overlap each other (Wape-
naar and Slob, 2014). Although we do not exclude that it is
possible to retrieve these overlapping functions entirely from
the reflection response, the methods developed to date do not
retrieve the parts of the focusing functions that overlap in time
with the Green’s functions. These parts of the focusing func-
tions are either ignored or should be estimated separately. This

implies different initial conditions for the iterative Marchenko
scheme, leading to different accuracies of the retrieved Green’s
functions. Evaluating these differences is the aim of this paper.

GREEN’S FUNCTION REPRESENTATIONS

For the analysis in this paper we restrict ourselves to oblique
plane waves in a horizontally layered medium. Consider the
following 1D elastodynamic Green’s function representations
in the rayparameter intercept time (p,τ) domain (Slob et al.,
2014; Wapenaar, 2014)

G−,+(p,z0,zi,τ)+F−1 (p,z0,zi,τ) =∫
τ

−∞

R(p,z0,τ− τ
′)F+

1 (p,z0,zi,τ
′)dτ

′, (1)

G−,−(p,z0,zi,τ)+F+
1 (−p,z0,zi,−τ) =∫

τ

−∞

R(p,z0,τ− τ
′)F−1 (−p,z0,zi,−τ

′)dτ
′. (2)

Here R(p,z0,τ) is the single-sided elastodynamic reflection
response at the acquisition surface z0. This surface is consid-
ered to be transparent, which corresponds to the situation after
surface-related multiple elimination. Moreover, assuming the
reflection response has been decomposed into compressional
(P) and shear (S) waves, it can be written as

R(p,z0,τ) =

(
RP,P RP,S
RS,P RS,S

)
(p,z0,τ). (3)

Here RX ,Y stands for the reflection response that is obtained
with sources for downgoing Y -waves at z0, observed by re-
ceivers for upgoing X-waves at z0. G−,+(p,z0,zi,τ) is the
Green’s function with sources for downgoing (+) waves at
depth level zi and receivers for upgoing (−) waves at the sur-
face z0. It can be seen as a reflection response of which the
sources have been redatumed from z0 to zi. G−,−(p,z0,zi,τ)
is defined in a similar way, except that the sources at zi are now
emitting upgoing waves. F+

1 (p,z0,zi,τ) is a focusing func-
tion, containing the downgoing waves at z0 that collapse to
Iδ (τ) at zi (if the half-space below zi would be homogeneous).
F−1 (p,z0,zi,τ) is the upgoing response to F+

1 (p,z0,zi,τ), ob-
served at z0 (if the half-space below zi would be homoge-
neous). The Green’s functions and focusing functions are par-
titioned in a similar way as the reflection response, hence

G−,± =

(
G−,±P,P G−,±P,S
G−,±S,P G−,±S,S

)
, F±1 =

(
f±P,P f±P,S
f±S,P f±S,S

)
. (4)

ONE-WAY WAVE FIELD EXTRAPOLATION

Before we discuss the Marchenko method, let us briefly re-
view standard one-way wave field extrapolation from z0 to zi.
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Figure 1: Horizontally layered elastic model.

Let T(p,zi,z0,τ) denote the transmission response of the lay-
ered medium between z0 and zi. We define Td(p,zi,z0,τ) as
the direct arrivals of this transmission response, ignoring all
multiples and wave conversions. Applying the inverse of this
matrix to the reflection response, according to

G−,+(p,z0,zi,τ)≈
∫

τ

−∞

R(p,z0,τ− τ
′)Tinv

d (p,zi,z0,τ
′)dτ

′,

(5)
is the standard way of redatuming the sources from z0 to zi.
Note that this expression resembles equation 1, with the focus-
ing function F+

1 (p,z0,zi,τ) replaced by Tinv
d (p,zi,z0,τ), while

ignoring F−1 (p,z0,zi,τ) on the left-hand side. We illustrate
equation 5 for the horizontally layered medium shown in Fig-
ure 1. We modelled the elastodynamic reflection response
R(p,z0,τ) for p = 0.0002 s/m, and convolved it with a Ricker
wavelet with a central frequency of 50 Hz (not shown). The
focusing depth level is chosen as zi = 1800 m. Figure 2 shows
the diagonal elements of Tinv

d (p,zi,z0,τ) (the non-diagonal el-
ements are zero because wave conversions are ignored). Note
that both elements contain a single event at a negative time,
defined by the P and S velocities of the layered medium. The
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Figure 2: Inverse direct arrivals of transmission response.
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Figure 3: Green’s functions, obtained by one-way wave field
extrapolation.

diagonal elements of G−,+(p,z0,zi,τ), obtained with equation
5, are shown in Figure 3 (in blue), compared with the directly
modelled Green’s functions (in green). Note that the events
indicated by the red ellipses arrive prior to the first arrival of
the exact Green’s function. These acausal events will cause
significant artefacts in imaging. The non-diagonal elements of
G−,+(p,z0,zi,τ) (not shown) exhibit a similar behavior.

THE ELASTODYNAMIC MARCHENKO EQUATION

Equations (1) and (2) form a set of two equations with four
unknowns, namely G−,+, G−,−, F+

1 and F−1 . The reflection
response R is assumed to be known. To solve this set of equa-
tions, we use the causality of the Green’s functions to remove
them from the equations. Throughout the following analysis
we assume zi is not “too close” to an interface. We define
τd

XY (p) as the arrival time of the first arrival of G−,−X ,Y (p,z0,zi,τ).

Moreover, τ
d,ε
XY (p) = τd

XY (p)− ε defines the onset of the first
arrival when the Green’s function is convolved with a wavelet.
We define a time-window matrix W(p,τ), according to

W(p,τ) =

(
H(τd,ε

PP − τ) H(τd,ε
PS − τ)

H(τd,ε
SP − τ) H(τd,ε

SS − τ)

)
, (6)

where H(τ) is the Heaviside step function. Note that W(p,τ)◦
G−,±(p,z0,zi,τ) = O, where O is the null matrix and ◦ de-
notes Hadamard matrix multiplication (i.e., element-wise mul-
tiplication). Moreover, with the assumption made above, we
have W(p,τ)◦F−1 (p,z0,zi,τ)=F−1 (p,z0,zi,τ) (Wapenaar and
Slob, 2014). Hence, applying W(p,τ) to both sides of equa-
tions (1) and (2) we obtain

F−1 (p,z0,zi,τ) = (7)

W(p,τ)◦
∫

τ

−∞

R(p,z0,τ− τ
′)F+

1 (p,z0,zi,τ
′)dτ

′,

W(p,τ)◦F+
1 (−p,z0,zi,−τ) = (8)

W(p,τ)◦
∫

τ

−∞

R(p,z0,τ− τ
′)F−1 (−p,z0,zi,−τ

′)dτ
′.

We have now a system of two equations for two unknowns.
However, the complicating factor is that F+

1 in the left-hand
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Figure 4: Green’s functions, retrieved with decoupled scalar
Marchenko schemes, using initial conditions with single events
(Figure 2).

side of equation 8 is muted by the window function. We define

W(p,τ)◦F+
1 (−p,z0,zi,−τ) = M+(−p,z0,zi,−τ) (9)

and write the focusing function F+
1 (p,z0,zi,τ) as

F+
1 (p,z0,zi,τ) = F+

1,0(p,z0,zi,τ)+M+(p,z0,zi,τ). (10)

Substituting equations 9 and 10 into equations 7 and 8 yields
a set of two equations for the unknowns M+ and F−1 . We call
this the elastodynamic Marchenko equations. Assuming R and
F+

1,0 are known, the elastodynamic Marchenko equations can
be solved iteratively, taking F+

1,0 as initial estimate of F+
1 . Af-

ter convergence, the Green’s functions G−,+ and G−,− are ob-
tained from equations 1, 2, 9 and 10. In the following sections
we investigate the effect of the choice of initial condition F+

1,0.

APPROXIMATE INITIAL CONDITION

In the acoustic case, f+1,0 consists of a single event, at the ar-
rival time of the time-reversed direct arrival of the Green’s
function G−,−. This underlies the relative simplicity of the
acoustic Marchenko scheme. In this section, we let also the
elements of the elastodynamic initial condition F+

1,0 consist
of single events. To this end, we define F+

1,0(p,z0,zi,τ) =

Tinv
d (p,zi,z0,τ), see Figure 2.

In a first experiment we replace R(p,z0,τ) by its diagonal (i.e.,
we set RS,P and RP,S in equation 3 to zero). Because the ini-
tial condition F+

1,0(p,z0,zi,τ) is diagonal as well, the elasto-
dynamic Marchenko equations decouple in this case into two
independent scalar equations. As a matter of fact, the scheme
for the upper-left element reduces to the acoustic scheme, ap-
plied to the elastic response RP,P. The results of the two inde-
pendent schemes are shown in Figure 4. Note that there is no
significant improvement compared with the standard one-way
extrapolation results in Figure 3. Acausal artefacts, indicated
by the red ellipses, still exist, except that prior to τ

d,ε
XX (p) they

have been suppressed by the window functions. The remaining
acausal events will cause artefacts in imaging.

In a second experiment we apply the elastodynamic Marchenko
scheme to the full response matrix R(p,z0,τ), but still use the
initial condition with single events (Figure 2). The result is
shown in Figure 5. Note that the retrieved Green’s functions
G−,+P,P and G−,+S,P in Figures 5a,c match the directly modeled
Green’s functions (green) remarkably well. The acausal events
in the red ellipses have almost entirely disappeared. The other
two results, G−,+P,S and G−,+S,S in Figures 5b,d, contain again
acausal events. Experiments with other configurations indicate
that this overall behavior is persistent, which is promising for
imaging applications. By correlating G−,+P,P (p,z0,zi,τ) with the
direct downgoing P-wave (Wapenaar et al., 1987), an estimate
of RP,P(p,zi,τ) is obtained of which the first event corresponds
to the first reflector below zi. This forms a basis for imaging
the primary PP reflectivity, without artefacts related to internal
multiples and conversions.

EXACT INITIAL CONDITION

In a previous analysis we found that the initial condition F+
1,0 is

ideally defined as the inverse of the “forward-scattering” trans-
mission response matrix Tfs(p,zi,z0,τ), i.e., the part of the
transmission response that includes direct and forward con-
verted waves, but no internal multiples (Wapenaar and Slob,
2014). Hence, we define F+

1,0(p,z0,zi,τ) = Tinv
fs (p,zi,z0,τ),

see Figure 6. Applying the elastodynamic Marchenko scheme
to the full response matrix R(p,z0,τ), using the exact initial
condition, yields a near exact estimate of the Green’s func-
tions G−,+(p,z0,zi,τ) (Figure 7) and G−,−(p,z0,zi,τ) (not
shown). In Figure 7 the retrieved Green’s functions (blue) are
almost exactly overlaid by the directly modelled Green’s func-
tions (green). Also the acausal artefacts have almost entirely
disappeared (red ellipses). These Green’s functions form the
perfect starting point for elastodynamic Marchenko imaging
by deconvolution (see the supporting information in Wapenaar
and Slob (2014)). Note that defining the forward-scattering
transmission response matrix Tfs(p,zi,z0,τ) requires more in-
formation about the medium than defining the direct transmis-
sion response matrix Td(p,zi,z0,τ).

CONCLUSIONS

We have compared four ways to retrieve the elastodynamic
Green’s matrix G−,+(p,z0,zi,τ) from the reflection response
matrix R(p,z0,τ) at the surface.

(1) Standard one-way wave field extrapolation involves appli-
cation of the inverse of the direct transmission response ma-
trix Td(p,zi,z0,τ) (Figure 2) to the reflection response matrix
R(p,z0,τ) (equation 5). The result (Figure 3) contains acausal
events prior to the first arrival, which will cause significant
artefacts in imaging. This standard one-way method can be
seen as the first step of the Marchenko method (compare equa-
tion 5 with equation 1).
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Figure 5: Green’s functions, retrieved with full elastodynamic Marchenko scheme, using initial conditions with single events.
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Figure 6: Exact initial conditions: inverse direct and forward scattered arrivals of transmission response.
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Figure 7: Green’s functions, retrieved with full elastodynamic Marchenko scheme; exact initial conditions (Figure 6).

(2) Applying the Marchenko method with initial condition F+
1,0(p,z0,zi,τ) = Tinv

d (p,zi,z0,τ) (Figure 2) to the diagonal of the
reflection response matrix results in two simple scalar schemes, which do not give a significant improvement (Figure 4).

(3) Applying the Marchenko method with the same initial condition to the full reflection response matrix (including the conversions)
gives a significant improvement for two components of the retrieved Green’s matrix (Figures 5a,c).

(4) Applying the Marchenko method with initial condition F+
1,0(p,z0,zi,τ) = Tinv

fs (p,zi,z0,τ) (the inverse of the forward scattered
transmission matrix, Figure 6) gives a near perfect result (Figure 7).

Method (4) gives the best results but requires more knowledge about the medium than the other methods. For practical applications
method (3) seems to be a good compromise. Note that da Costa et al. (2014) discuss similar approximations as discussed here under
(2) and (3), but they do not apply wave field decomposition prior to applying their Marchenko method. It remains to be investigated
whether our observations for methods (2) and (3) also hold for their approach.
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