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Summary

The goal of Marchenko redatuming is to reconstruct, from
single-sided reflection data, wavefields at virtual subsurface
locations containing transmitted and reflected primaries and
internal multiples, while relying on limited or no knowledge
of discontinuties in subsurface properties. Here, we address
the limitations of the current Marchenko scheme in retrieving
waves in highly heterogeneous media, such as subsalt or sub-
basalt. We focus on the initial focusing function that plays
a key role in the iterative scheme, and propose an alternative
focusing function that uses an estimate of the inverse trans-
mission operator from a reference model that contains sharp
contrasts (e.g., salt boundaries). Using a physics-drivenes-
timate of the inverse transmission operator, we demonstrate
that the new approach retrieves improved subsurface wave-
fields, including enhanced amplitudes and internal multiples,
in a subsalt environment.

Introduction

The retrieval of wavefields within the earth’s subsurface where
no receivers or sources are available is a key component of
wave-equation imaging and inversion; however, retrievingfull-
wave responses containing internal multiples with improved
amplitudes has long presented a challenge to imaging practice.
The method of Marchenko redatuming or autofocusing (Brog-
gini et al., 2011; Wapenaar et al., 2013) proposes to retrieve
such wave responses inside the subsurface, while using rela-
tively little information about the earth’s properties. The fields
retrieved by Marchenko redatuming can, in principle, be used
to improve imaging beyond current capabilities, as discussed
by Behura et al. (2012), van der Neut et al. (2013), Brog-
gini et al. (2014), Slob et al. (2014),Wapenaar et al. (2014a)
and Vasconcelos et al. (2014). Recently, Ravasi et al. (2015)
validated the imaging capabilities of the method on ocean-
bottom field data. While indeed capable of retrieving internal
multiples and correcting amplitudes, recent studies in thepres-
ence of highly complex media brought forth some limitations
of the current Marchenko scheme (van der Neut et al., 2014a;
Wapenaar et al., 2014b). With the aim of applying Marchenko
redatuming in geologically complex media such as subsalt, we
review the limitations of the existing approach and proposean
alternative scheme capable of accounting for higher medium
complexity.

Marchenko redatuming

The underlying equations of Marchenko redatuming (Wape-
naar et al., 2013, 2014a) can be compactly written in discrete-
matrix form as (van der Neut et al., 2014b)

G− + F−
1 = R F+

1 , (1)

and
G+⋆ + F+

1 = R⋆ F−
1 , (2)

where the matricesG− andG+ contain the Green’s functions
due to sources at every point on the surface∂D0, which are re-
spectively either up- or downgoing at all receiver locations on
an arbitrary datum at depth∂Da (Figure 1). The⋆ superscript
denotes time-reversed fields; here, we assume equations to be
in the frequency domain, although the form of the Marchenko
equations is the same in the time domain. TheR matrix is the
reflection response of the medium due to sources and receivers
on the surface∂D0 and acts as a multidimensional convolution
operator in the Marchenko system (e.g., van der Neut et al.,
2014b; Wapenaar et al., 2014a). The focusing functionsF+

1
andF−

1 are key to the Marchenko formulation, with, by defini-
tion,

I = TA F+
1 (3)

andF−
1 = RAF+

1 , whereRA andTA are the full reflection and
transmission responses for a medium that is truncated between
the surfaces∂D0 and ∂Da (Figure 1). Following Wapenaar
et al. (2013), the identity in equation 3 states that when injected
as a source field at the top surface∂D0, F+

1 produces a purely-
downgoing field that focuses at each point on∂Da at depth.

In the practice of Marchenko redatuming, the only known quan-
tity is R, which is given by the complete reflection response
due to all sources and receivers on top of the real medium (e.g.,
Figure 1a). Both of theG± responses and focusing functions
F+,−

1 are unknown, and the purpose of Marchenko redatuming
is to estimate these quantities from the input reflection data
R. To accomplish this task, the Marchenko scheme (Broggini
et al., 2011; Wapenaar et al., 2013) relies on two other ele-
ments in addition to the reflection data: a separation operator
Θ and an initial focusing functionF+

1,0. The initial F+
1,0 func-

tion is such that the desiredF+
1 = F+

1,0+F+
1,m, whereF+

1,m is
to be updated by the scheme. Assuming the separation opera-
tor satisfiesΘG− = 0, ΘG+⋆ = 0, ΘF−

1 = F−
1 , andΘF+

1,0 = 0,
then once applied to equations 1 and 2, it yields

F−
1 = ΘR

[

F+
1,0+F+

1,m

]

, (4)

and
F+

1,m = ΘR⋆ F−
1 . (5)

The system formed by equations 4 and 5 comprises Fredholm
integrals of the second kind, which can be solved by means of
Neumann series expansions (Kato, 1982). This result yields
an iterative solution of the Marchenko system, whereK-order
solutions to the focusing functions are given by

F+(K)
1 = ΩKF+

1,0 andF−(K)
1 = ΘRΩKF+

1,0 , (6)

with the series kernels

ΩK =
K
∑

k=0

(ΘR⋆ΘR)k . (7)

Note that equation 6 shows that the retrieval ofF+
1 is the cen-

tral step in the iterative Marchenko scheme, since it follows
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Figure 1: Acquisition geometry and wavespeed models used for Marchenko redatuming. Sources atxs and receiversxr are placed
on the top surface∂D0, whereas∂Da represents an arbitrary surface at depth where the redatuming locationsxa lie. (a) The true
model where the reflection dataR are acquired, corresponding also to the desired redatumed fieldsp+,−. (b) The reference model
used to generate the transmission and reflection responses,TA,0 andRA,0, necessary for the Marchenko scheme. Density is constant
at 1000 kg/m3. For R, we model 221 shots, each recorded by 221 receivers. Shot andreceiver lines coincide, starting at 1300 m
with a 20-m increment. For transmission responses, sourcesshare the same lateral configuration, but are instead placedat a depth
of 1300 m.

thatF−(K)
1 =ΘRF+(K)

1 . Finally, theF+
1 andF−

1 estimates from
equation 6 can be inserted into equations 1 and 2 to yieldK-
order estimates of the desired redatumed fieldsG+ andG−.

In this paper, we revisit the scheme described by Wapenaar
et al. (2014a) by modifying the inputF+

1,0 function to accom-
modate highly complex media. Throughout this paper, our
choice forΘ is the same traveltime-based windowing approach
used in previous versions of the Marchenko scheme (Broggini
et al., 2012; Wapenaar et al., 2013).

Transmission inverses in Marchenko redatuming

In principle, it follows from equation 3 that

F+
1 = T−1

A = (T†
ATA)

−1T†
A = B−1

A T†
A ; (8)

i.e.,F+
1 is by definition an inverse to the transmission response

of the real medium truncated between∂D0 and ∂Da (Fig-
ure 1a). Equation 8 denotesF+

1 in a least-squares sense, where

the adjointT†
A can be thought of as a version ofT−1

A “blurred”

by the operatorBA = T†
ATA. As a result,B−1

A “deblurs” T†
A;

thus, yieldingF+
1 .

Because the retrieval ofF+
1 is a key objective of the Marchenko

scheme, the true-medium responseTA is not available at the
outset; instead, one begins with a responseTA,0 corresponding
to a reference medium. In previous forms of the Marchenko
scheme (e.g., Wapenaar et al., 2014a),TA,0 is taken from a

smooth velocity model, andF+
1,0 = T†

A,0 is chosen so that, e.g.,

F+(K)
1,ad j = ΩKT†

A,0 = ΩK(BA,0T−1
A,0) (9)

results from the iterative scheme (equation 6), which is shown
to ignore the effect ofBA,0 in the theorically desiredF+

1,0 (equa-
tion 8). Wapenaar et al. (2014a) shows that when the reference
medium forTA,0 is smooth, the structure ofBA,0 approaches

that of an identity matrix, and thusT†
A,0 ≈ T−1

A,0, apart from
scaling factors.

However, to account for scattering effects in highly complex
media such as subsalt, we can drawTA,0 from a reference

model such as that in Figure 1b, which contains large contrasts
across sharp interfaces. In that case, the structure ofBA,0 is

more complex, and thusT−1
A,0 6= T†

A,0 makingT†
A,0 a less op-

timum choice forF+
1,0. Here, based on equations 3 and 8, we

choose insteadF+
1,0 = T−1

A,0, which yields

F+(K)
1,inv = ΩK(B−1

A,0T†
A,0) , (10)

with F−(K)
1,inv = ΘRF+(K)

1,inv (equation 6). At this point, the es-

timate of the deblurring operatorB−1
A,0 becomes the defining

factor in differentiating the result in equation 10 from that in
equation 9. While it is possible to estimate a direct numer-
ical inverse ofBA,0 (e.g., by Tikhonov regularization), here,
we choose instead to apply a physical approximation to that
inverse because it yields a more numerically stable result.To
accomplish that task, we invoke the identity

I = T†
A,0TA,0 + R†

A,0RA,0 , (11)

which enforces power conservation between transmission and
reflection responses (Wapenaar and Herrmann, 1996; Wape-
naar et al., 2004). This identity allows for anN-order estimate
of the inverse ofBA,0 to be expressed as the series

B−1
A,0 = I +

N
∑

n=1

(R†
A,0RA,0)

n . (12)

When using this result in equation 10, we obtain

F+(K)
1,inv = F+(K)

1,ad j + ΩK(
N
∑

n=1

(R†
A,0RA,0)

n)T†
A,0 . (13)

This equation shows that our physical estimate ofB−1
A,0 in equa-

tion 12 yields an estimate ofF+(K)
1,inv that is the result from pre-

vious Marchenko schemes,F+(K)
1,ad j, superimposed with a cor-

rection term containing(R†
A,0RA,0)

n for n≥ 1.
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Subsalt example

For our numerical example, we use the Sigsbee models in Fig-
ure 1. The reflection responseR is modeled for source (red
stars) and receiver (white triangles) locations on top of the
model in Figure 1a. The migration velocity model in Figure 1b
is used to obtain the reference transmissionTA,0, which is
generated using only the medium between the levels∂D0 and
∂Da, with sources at depth (circles in Figure 1b) and receivers
on the surface in the same configuration as forR (see Figure 1).
From a slightly smoothed version of the model in Figure 1b,
we extract the direct-wave traveltimes between points on∂Da

and the surface, which are used to create the muting masks that
make up theΘ operator (Wapenaar et al., 2014a).

Waveform modeling is performed by staggered-grid, first-order-
PDE, acoustic finite differences with a 20-Hz peak-frequency
Ricker wavelet as a source pulse. The source pulse is decon-
volved from the modelled data to yieldR, but kept inTA,0.
One essential detail for the purpose of this paper is that all
fields in the equations above areflux-normalized fields(Wape-
naar, 1998), so that one-way reciprocity relations such as,e.g.,
those denoted by equation 11 indeed hold. As such, the physi-
cal fields output by the finite-difference modeling require nor-
malization by local impedance at∂D0 for R andRA,0, and at
∂Da for TA,0. This is particularly important at depth, where
the datum∂Da lies over large lateral variations in impedance
between sediment and salt. In Figure 2, we show the matrices
in the power-conservation relation in equation 11 forTA,0 and
RA,0 after impedance normalization, from the model and ge-

ometry in Figure 1b. Figure 2a shows thatR†
A,0RA,0 is slightly

more dominated by signals corresponding to the prominent salt
reflections on the right-hand side of the model, whileT†

A,0TA,0
in Figure 2b is dominated by sources and receivers on the left
side of the model where transmitted waves are less obstructed
by the salt body. When superposed (Figure 2c), these two ma-
trices approach the identity predicted by theory (equation11).
At the same time, the result in Figure 2c is not a perfect iden-
tity matrix due to the finite aperture of source and receiver ar-
rays and the existence of laterally propagating energy (e.g.,
salt diffractions), which prevent equation 11 from being nu-
merically exact.

The Marchenko-retrieved fields and corresponding initial fo-
cusing functions are shown in Figure 3 for a chosen depth
location (white circle in Figure 1). Thep notation for the
fields in the Figure denotes convolution of theG-fields with
the source wavelet. Moreover, thepS field in Figure 3a shows
the waves in the true medium that cannot be simulated with
the reference model in Figure 1b; thus, being the unknown re-
sponse we wish to retrieve with the Marchenko estimates in
Figures 3b and 3c. The Marchenko estimate in Figure 3b uses
the initial focusing function in Figure 3d, which is a columnof
F+

1,0 = B−1
A,0T†

A,0 with the deblurring operator given by equa-
tion 12 withn = 2. Figure 3c is the result of the Marchenko
scheme withF+

1,0 = T†
A,0, where the intial focusing function in

Figure 3e is simply the time-reversed version of the field mod-
eled betweenxa and the surface using the reference model.
When comparing Figures 3b and 3c, we observe that using the
initial function in Figure 3d yields an overall better estimate

of the field in Figure 3a: not only does the field in Figure 3b
provide an improved amplitude update along the first arrivals,
it also retrieves several of the salt-related internal multiples,
particularly toward the edges of the gather. Albeit better,the
estimate in Figure 3b also contains artifacts not present inFig-
ure 3c.

The differences in the Marchenko estimates stem from the dif-
ferences in the initial focusing functions in Figures 3d and3e,
which, as equations 6 and 13 show, condition the final itera-
tive estimates ofF+,−

1 (Figure 4) that are at the core of the
redatuming scheme. When comparing the final focusing func-
tions in Figure 4, we see that most of the arrivals retrieved by
meansT†

A,0, are present inF+,−
1 from T−1

A,0, albeit with differ-
ent relative amplitudes. In addition, and more noticeably in
Figure 4a, the fields derived withT−1

A,0 contain additional ar-
rivals over the entire gather. By inspecting the initial functions
in Figures 3d and 3e, we observe thatF+

1,0 from T−1
A,0 contains

energy at times past the direct arrival inT†
A,0, but is also notice-

ably different before the direct arrivals as well. The presence
of physical energy inF+

1,0 before the direct arrivals in Figure 3d

violates the conditionΘF+
1,0 = 0 (equations 4 and 5) whenΘ

is the windowing operator described by, e.g., Wapenaar et al.
(2014a). The design of an alternativeΘ operator to account for
the complexity ofF+

1,0 is the subject of ongoing research.

Conclusions

In this paper, using a compact matrix-based formalism for the
Marchenko equations, we review the main elements of the
Marchenko iterative scheme while showing that the iterative
reconstruction of the downgoing focusing function at depth
is the central step of the method. The retrieval of this focus-
ing operator relies on seismic reflection data, together with a
data separation filter and an initial/reference focusing function
which are in turn drawn from a reference model. Here, we
study the role of the initial focusing function, by showing that
the initial focusing function chosen in previous Marchenko
schemes, while suitable for relatively simple models, has lim-
itations in highly complex models such as subsalt, particularly
when the reference model contains large parameter contrasts
and sharp interfaces.

To handle more complex subsurface scenarios, we propose
the use of alternative initial focusing functions based on the
inverse of transmission responses extracted from a reference
model (e.g., conventional migration models). We provide a
formalism that accounts for such improved focusing functions,
and discuss its relationship with previous versions of the Marchenko
scheme. In addition, we offer a reflection-based physical ap-
proximation to the inverse transmission matrices that yields
stable numerical solutions while discussing its implementation
details. Using a subsalt numerical example, we demonstrate
that the new focusing functions provide improved estimates
of subsurface wavefields, with higher first-arrival amplitude fi-
delity and by successfully retrieving a greater number of inter-
nal multiple reflections. Finally, we also point out that this new
scheme produces some artifact arrivals, which are could be as-
sociated with using the time-domain windowing employed by
the original Marchenko approaches.
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Figure 2: Discrete matrices corresponding to the identity in equation 11 for the reference model in Figure 1b, at a fixed frequency
of 20 Hz. (a) The power ofR†

A,0RA,0, (b) the power ofT†
A,0TA,0 and (c) the superposition of panels (a) and (b). Here, all matrices

are normalized by the maximum power of theT†
A,0TA,0 matrix in (b).
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Figure 3: Comparison between true and Marchenko-estimatedsubsurface fields, along with initial focusing functions. The fields
in panels (a) and (b) represent pressure responses for a source atxa (white circle in Figure 1) and receivers on the surface. The
field ptrue

S in (a) is the difference between the full pressure field usingthe true model in Figure 1a and the reference pressure field
using the model in Figure 1b. The responses in (b) and (c) are the result of the superposition of up- and downgoing fields from
Marchenko redatuming, i.e.,p++p−, minus the reference pressure field using the model in Figure1b. The Marchenko field in (b)
results from using an estimate of the inverse transmission operatorT−1

A,0, while the field in (c) is obtained by the original Marchenko

scheme using the adjoint operatorT†
A,0. The initial focusing functions are illustrated by panels (d) and (e), which representF+

1,0

between a fixedxa (white circle in Figure 1b) and the surface, fromT−1
A,0 andT−1

A,0, respectively.
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Figure 4: Final focusing functions after four iterations ofthe Marchenko scheme (equation 6). (a) and (b) show the time-domain
version ofF+

1 andF−
1 for a fixedxa (white circle in Figure 1a), that result from using the inverse transmission operatorT−1

A,0 as

the initial focusing function. Analogously, the fields in (c) and (d) result from the adjoint transmission operatorT†
A,0 as the initial

focusing function.


