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SUMMARY

We propose a novel acoustic decomposition operator for time
slices, loosely based on conventional surface decomposition
operators. The proposed operators hold for constant velocity
models and require two 2D Fourier Transforms (one forward,
one backward) per decomposed time slice per decomposition
direction. We then demonstrate the capabilities of our oper-
ators on a constant velocity model and the Marmousi model.
The decomposition results prove that we can decompose into
up-, down-, left- and right-going waves for complex velocity
media.

INTRODUCTION

Wavefield decomposition is a powerful seismic processing tech-
nique used in a plethora of processing steps ranging from ghost
and multiple removal techniques to redatuming, imaging and
inversion techniques. Historically, wavefield decomposition
was applied to surface recordings, by for example Amundsen
and Reitan (1995), to decompose wavefields entering and ex-
iting surfaces. More recently, with the advancement of Re-
verse Time Migration (RTM) and Full Waveform Inversion
(FWI), geoscientists became interested in decomposing wave-
fields everywhere inside a medium, instead of only on some
surface. These configurations were simpler to decompose in
the wavenumber frequency domain by decomposing in the di-
rection of the wavenumber, however recording wavefields for
all time steps everywhere came at significant computational
cost.

We therefore propose a decomposition scheme that no longer
decomposes after sufficient recording in time, but decomposes
on time-slices, for constant velocity density media, and will
demonstrate that it is applicable to more heterogeneous me-
dia. This is achieved by following a very similar approach as
in Wapenaar and Berkhout (1989), but substituting for the fre-
quency instead of the surface-normal wavenumber.

CONVENTIONAL DECOMPOSITION

With the advancements of RTM in the seismic industry as the
tool for depth migration, migration noise became more and
more of a problem. It can be shown that one can alleviate
the problem by directionally decomposing wavefields, as done
in Dı́az and Sava (2015). Yoon and Marfurt (2006) had al-
ready developed a new RTM imaging condition based on de-
composing acoustic wavefields based on their Poynting vector,
an electromagnetic concept introduced by Poynting (1884), to
improve imaging and reduce RTM noise. Poynting decompo-
sition advanced as a powerful local decomposition technique
that failed when wavefields interfered, as in the acoustic case
it is simply the multiplication of the pressure wavefield p with

the particle velocity in the decomposition direction of interest
v. Since then Poynting RTM imaging has been further refined,
by, for example, Chen and He (2014).

Alternatively, one can record the wavefield everywhere for all
time samples, which comes at high storage costs. One can
then decompose the waves into up- and down-going in the ver-
tical wavenumber-frequency domain or left- and right-going
in the horizontal wavenumber-frequency domain, as demon-
strated by Hu and McMechan (1987). To get the up-going
wavefield one mutes all terms for which the product of the ver-
tical wavenumber and the frequency is negative.

However it was found, by Frasier (1970) among others, that
recording the entire wavefield everywhere in time and space
is not necessary to decompose it, as long as the recordings
are multicomponent. By scaling the particle velocity along a
surface in the direction of decomposition, which must be nor-
mal to the surface, in the wavenumber-frequency domain, it is
possible to decompose the wavefield assuming constant veloc-
ity and density. Wapenaar and Grimbergen (1996) extended
this to heterogeneous velocities by deriving approximate op-
erators with limited lateral support. These operators however
are hardly applicable to time-slices of wavefields. We also re-
alized that most operators in the literature are in the ω-kx or
ω-kz domain, the kx-kz, decomposition was missing. We will
now fill this gap.

THEORY

To derive our acoustic decomposition operators we begin with
the source free linearized equation of motion and continuity
in Einstein’s summation notation for homogeneous media in
the space-time domain (Aki and Richards, 2002), more specifi-
cally the (x,z, t) domain, where in 2D x and z are the horizontal
and vertical directions respectively and t is time:

ρc2
∂ivi =−∂t p (1a)

ρ∂tvi =−∂i p (1b)

where ∂ denotes derivatives in their subscript direction and
Latin subscripts denote the two spatial dimensions. Here vi(x,z, t)
is the particle velocity, p(x,z, t) is the pressure, c is the homo-
geneous medium velocity and ρ is the homogeneous density.
Transforming to the wavenumber-frequency domain (kx,kz,ω),
where kx and kz are the horizontal and vertical wavenumber re-
spectively and ω is the angular frequency, gives:

ρc2kiṼi = ωP̃ (2a)

ωρṼi = kiP̃ (2b)

Capital letters denote temporally Fourier transformed data while
∼ hats indicate wavenumber transformed data.Transforming
the single-depth-level decomposition relation (Wapenaar and
Berkhout, 1989) from the (kx,z,ω) domain to the (kx,kz,ω)
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where the vertical Helmholtz operator κz is defined as:
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We now make use of the dispersion relation:

ω2

c2 = kiki (4)

to substitute for κz and ω:
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The square roots were chosen positive. This allows us to find:
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The scale factor is now independent of ω , allowing us to trans-
form back to the time domain easily:
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Transforming back to the space domain we find:
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Expressions for left-right decomposition may be found:
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Similar relations can be found for decomposed velocity wave-
fields:
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v→z =
kz

kx
v→x (11c)

v←z =
kz

kx
v←x (11d)

There are analogous expressions for theup- and down-ward
propagating horizontal particle velocity vx. Using the thus far
derived decomposed pressures and particle velocities, we can
now combine them to decompose our wavefields into quad-
rants. For example the up-right going pressure wavefield may
be written in two ways as:
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Analogs exist for quadrant particle velocity decomposition. To
extend this to 3D, the square root term for the up-down decom-
position has an additional (ky/kz)

2 term, this can be extended
to other decomposition directions. We can now use these equa-
tions to decompose snapshots for homogeneous velocity-density
models.

To decompose wavefields in more heterogeneous velocity mod-
els, we locally approximate the operation at each grid point by
replacing the homogeneous velocity with the actual velocity
of the gridpoint. Effectively stating that c = c(xm,zn) in the
neighborhood of the gridpoint (m,n). This yields very accept-
able results as our second decomposition demonstrates.

NUMERICAL EXAMPLES

We will now discuss two constant density numerical models,
a constant 1 km/s model and the Marmousi model (Brougois
et al., 1990), to highlight the advantages and limitations of
this decomposition method on grids over other decomposition
techniques.

Constant velocity & density

Figure 1 shows a snapshot of an acoustic wavefield in a con-
tant 1 km/s constant 1 g/cm model. The data were modeled
using using a 2nd order finite difference acoustic scheme with
a volume injection source at the center of the model, injecting
a 60 Hz Ricker wavelet. Horizontal and vertical grid spacing
were 1 m, the modeling time step was 0.5 ms, and the pressure
and velocity grid were staggered with rigid boundaries.

In Figures 1b, 1c, and 1d, which show the decomposed fields,
we see that there is some leakage of the wavefield. It should be
noted that at earlier time steps, when the source is active, the
leakage is stronger because the source is not properly taken
into account by our decomposition scheme. The leakage, in
Figure 1, is primarily due to the fact that the modeling grids
are both staggered in time and space, we corrected for this in
the space domain, but there is still a half time step difference
between the two. To reduce edge artifacts the data were ta-
pered at the edges of the model and for non-physical arrivals.
There are also some low wavenumber spurious artifacts where
the wavefields do not propagate in the decomposition direc-
tion.
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Figure 1: a) shows the full pressure wavefield for a constant density constant 1 km/s model, b) and c) show the right- and down-
going pressure and d) shows the down-right-going pressure. Normalized to the maximum pressure in the time-slice.

Another point of interest is that, although we taper the edges
to reduce low vertical wavenumber artifacts, rigid boundary
reflections are taken into account without having to include
them specifically in the equations.

Marmousi

Figure 2 shows a snapshot of an acoustic wavefield due to a
source at the center of the Marmousi model. Figure 2a shows
the total pressure wavefield, Figure 2b shows the rightward
propagating pressure,Figure 2c shows the upward propagat-
ing pressure and Figure 2d shows the model. The data were
normalized to the maximum pressure in each time slice. The
data were modeled in the same fashion as the constant velocity
model but the horizontal and vertical grid spacing were 4 m,
the peak frequency of the Ricker wavelet was 20 Hz and the
modeling time step was 0.2 ms.

We see that we are able to directionally decompose the wave-
fields very nicely and they look much cleaner when compared
to the total pressure. There is no visible leakage of the down-
ward propagating wavefield in Figure 2c. In the lower left or
right corners in Figure 2c, one can see that we are able to ac-
curately decompose interfering wavefields, something that is
not possible for Poynting decomposition (Yoon and Marfurt,
2006). We note that errors due to complex velocity models
are not directly apparent, which is surprising as the expression
were derived assuming constant velocity. We can see the same
features in the right-going wavefield in Figure 2b.

At early time steps we found that the upward propagating wave-
field nicely separates from the downward propagating wave-
field at interfaces. This kind of decomposition directly at inter-
faces is very difficult for the previously discussed conventional
decomposition along depth levels.

COMPUTATIONAL IMPLICATIONS

This decomposition technique allows us to decompose our wave-
fields on time-slices, common in RTM or FWI. Previously one
had to accept the limitations of Poynting decomposition if one
wanted to decompose on a snapshot, or one had to record the
modeled wavefield everywhere for all time slices before de-
composing at the end, a computationaly very expensive task.

Decomposition on time-slices alleviate the above, however,
care should be taken in the numerical implementation of the
decomposition. The edges of the snapshots should be tapered
to avoid wrap-around effects due to operations in the wavenum-
ber domain; padding the model before transforming also helps.
Poles arise in the square root operators when the wavenumber
in the decomposition direction tend to zero. These can be ap-
proximated via the zero-wavenumber terms from the directions
orthogonal to the decomposition direction. The scale factor of
the zero wavenumber component is always 1. A similar ap-
proach should be taken when converting one velocity compo-
nent to another.
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Figure 2: a) shows the pressure wavefield for the velocity model in d), b) and c) show the right- and up-going pressure wavefields.
Normalized to the maximum pressure in the time-slice.

Care must also be taken when sources are active. The derived
expressions are for the source free case. The expressions can
be extended to include source terms, or one only decomposes
when the time-slice is source free. The errors associated with
the source may be large and overprint the decomposition.

CONCLUSIONS

We have derived n acoustica time-slice decomposition scheme
for homogeneous velocity media, based on similar operators to
those for single level decomposition, and approximated these
to more complex velocity models. The decomposition scales
the particle velocity in the direction of decomposition in the
wavenumber domain to the pressure. This now allows us to
decompose wavefields efficiently on time-slices without suf-
fering from artifacts like in the faster Poynting decomposi-
tion. This technique could prove very useful for RTM and
FWI where wavefield decomposition is growing in importance.
It may also be possible to use the decomposition to imple-
ment absorbing boundaries for finite difference or finite ele-
ment modeling schemes. This may be achieved by subtracting
the wavefield propagating back into the model from the wave-
field propagating out of the model in a boundary region at the
edge of the model.
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