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SUMMARY

The Marchenko equation can be used to retrieve the Green’s
function at depth as a full function or decomposed into its up-
and downgoing parts. We show that the equation can be rewrit-
ten to create a decomposition scheme that can decompose a full
wavefield, that was recorded at depth, into its up- and down-
going parts. We show that this can be done without a smooth
velocity model that the Marchenko scheme requires and with-
out any knowledge of the medium properties that traditional
decomposition methods require. Instead we only need a the re-
flection response and a wavefield that has been recorded at the
surface due to a source at depth or (by using source-receiver
reciprocity) that was measured down in a borehole due to a
source at the surface. We also validate our results by compar-
ing them to directly modeled up- and downgoing wavefields.

INTRODUCTION

In recent years the Marchenko equation has been utilized for
seismic data processing and imaging. The method was first
developed for seismic data processing and imaging by (Brog-
gini et al., 2014) and further expanded in 2D/3D by (Wapenaar
et al., 2014). They showed that the Marchenko equation al-
lows the retrieval of Green’s function at any virtual receiver
location in a medium as a full function or as its up- and down-
going components. The Green’s function at depth can be used
for various purposes, such as the elimation of multiples (Meles
et al., 2015) or imaging of the subsurface (Ravasi et al., 2016).
The Marchenko scheme requires only the reflection response
measured at a single recording surface of the medium and an
estimation of the first arrival at the virtual receiver location.
This is in contrast to other theoretical wave methods, such as
time-reverse migration, which require a full recording surface
around the medium. However, the Marchenko equation can
also be used for other applications, such as wavefield decom-
position. Decomposition is the practice of separating a full
wavefield into its up- and downgoing parts. These one-way
wavefields can be used for various purposes, including seismic
imaging (Wapenaar et al., 2014). Decomposition can be ap-
plied to various types of data, such as using ocean cable bottom
data (Amundsen and Reitan, 1995), streamer data (Day et al.,
2013) or down in boreholes (Mehta et al., 2007; Grobbe et al.,
2015). Traditional decomposition methods require multicom-
ponent data, meaning that both the particle velocity and pres-
sure wavefields need to be measured. Using the Marchenko
method we can use single component measurements to de-
compose the full wavefield into its up- and downgoing parts.
In order to do this we require a reflection response without
free-surface multiples of the medium of interest that has been
recorded at the surface. This reflection response is the only
knowledge we need of the actual medium. If we record a wave-
field that contains up- and downgoing waves in the medium we

Figure 1: Schematic view of a borehole containing a receiver.
The receiver is located downhole in the borehole, while the
sources are present at the surface. Several raypaths have been
drawn to show the arrival of up- and downgoing events at the
receiver. There are also several receivers at the surface that
measure the reflection response of the medium below.

can decompose the full wavefield. This is very useful for when
a receiver is present in a borehole, which is illustrated in Fig.1.
Sources at the surface create a wavefield that can measured by
the receiver in the borehole. Because the receiver is downhole,
it will measure both the up- and downgoing wavefields, which
is illustrated in the figure by several raypaths. Furthermore,
there are several receivers at the surface that measure the re-
flection response of the medium. Using this single receiver
in this borehole and the reflection response, we can then de-
compose the wavefield that was measured down in the bore-
hole. Alternatively there could also be a source present in
the medium itself, either in the borehole or as a microseismic
event. The receivers at the surface will measure the response
of this source and by using source-receiver reciprocity we will
receive the wavefield at depth, which can be decomposed as
well. This scheme can be used without any knowledge of the
physical parameters of the medium and without the need of
an estimated first arrival that the Marchenko scheme would re-
quire.

THEORY

A Green’s function is composed of upgoing waves and down-
going waves:

G(xE ,x, t) = G+(xE ,x, t)+G−(xE ,x, t), (1)

where G is the full Green’s function at time t at location xE
due to a source at location x, G+ is its downgoing compo-
nent and G− is its upgoing component. Using source-receiver
reciprocity, the location of the source and receiver can be in-
terchanged. For G this will produce the exact same wavefield.
Using the Marchenko method and a reflection response these
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Green’s functions can be retrieved as described in Wapenaar
et al. (2014) and van der Neut et al. (2015). The important
equations of these papers can be summarized as:

G−(xE ,x, t)+ f−1 (x,xE , t) = {R f+1 }(x,xE , t) (2)

G+(xE ,x,−t)− f+1 (x,xE , t) =−{R� f−1 }(x,xE , t), (3)

where R indicates a space-time convolution with the reflection
response and R� indicates a space-time convolution with the
time-reversed reflection response. Note also that the downgo-
ing Green’s function is reversed in time. f+1 and f−1 indicate
the downgoing and upgoing focusing function at time t at lo-
cation x which will focus downwards to location xE . Similarly
to the Green’s function the full focusing function can be con-
structed from the upgoing and downgoing components:

f1(x,xE , t) = f+1 (x,xE , t)+ f−1 (x,xE , t), (4)

The downgoing focusing function f+1 is defined as the inverse
of the transmission response in a truncated medium, where
there are no reflectors below the focusing location. Based on
causality arguments, under specific circumstances, the focus-
ing function and Green’s function can be separated in time
from each other through the use of a time gate. This is be-
cause all of the events of the focusing function arrive before
the Green’s function, with the exception of the first arrival. We
define the time gate Θ−ε which removes the Green’s function
but retains the focusing functions, with the exception of the
first arrival of f+1 . We also define the complement of Θ−ε ,
which is the time gate Ψ+ε , which retains the Green’s func-
tions, but removes the focusing functions except for the first
arrival of f+1 . The time gates are symmetrical in time so time-
reversal does not affect the gates. Note that due to the band-
limited character of seismic data a small time shift needs to
be applied to the windows in order to ensure that part of the
wavelet is not removed. This is indicated by the ε , which in-
dicates we shift the time gate limit by a small amount ε . For
Θ this shift is backwards (−ε) so the direct arrival is removed
and for Ψ the shift is forward (+ε) so the direct arrival is re-
tained. We now apply Ψ+ε to eqn. 2 to remove the focusing
function (Ψ+ε f−1 = 0) and apply time-reversal:

G−(xE ,x,−t) = {Z Ψ+εR f+1 }(x,xE , t) (5)

In eqn. 5, we have introduced a time-reversal operator Z so
that the focusing function is forward in time. This was done to
make the derivation easier later on. We also apply Θ−ε to eqn.
2 to remove the Green’s function (Θ−ε G = 0):

f−1 (x,xE , t) = {Θ−εR f+1 }(x,xE , t) (6)

The result of eqn. 6 can be inserted into eqn. 3 to obtain:

G+(xE ,x,−t) = {(I−R�Θ−εR) f+1 }(x,xE , t) (7)

When eqn. 5 and eqn. 7 are added together we arrive at an
expression for the full Green’s function:

G(xE ,x,−t) = {(I− (R�Θ−εR−Z Ψ+εR)) f+1 }(x,xE , t),
(8)

which can be solved using inversion. Alternatively eqn. 8 can
be solved by the following Neumann expansion:

f+1 (x,xE , t) =
∞�

k=0

(R�Θ−εR−Z Ψ+εR)kG(xE ,x,−t) (9)

Eqn. 9 demonstrates how the focusing function can be re-
trieved from the full Green’s function, which can then be in-
serted into eqn. 5 and eqn. 7 to obtain the upgoing and down-
going Green’s functions. As can be seen by eqn. 9 the only
requirements are a reflection response to generate the opera-
tor R and a measurement of the wavefield G. This means that
no additional knowledge of the medium itself is required and
a single component measurement is sufficient for decomposi-
tion. Also, because the input data of the first iteration is the
measured wavefield, we do not need to model the first arrival,
which the Marchenko scheme requires.

MODELING

In order to show the validity of our method we decompose a
1D wavefield. The model is shown in Fig.2-a and Fig.2-b. It
contains both velocity and density variations. The reflection
response of this model that is measured at the surface is shown
in Fig.2-c. Using this model, we modeled a full Green’s func-
tion at depth using a 1D code. The results can be found in
Fig.2-d, which we will use for reference. Both positive and
negative times are shown, but the Green’s function only ex-
ists at the positive times because it is causal. Using another
1D code we also retrieve the transmission response at depth
in a truncated medium, where there are no reflectors present
below the receiver location. By inverting this transmission re-
sponse, we get the downgoing focusing function (Wapenaar
et al., 2014). The result is shown in Fig.2-e, which we will
also use for reference. Notice that the first event in the focus-
ing function is arriving at the negative time of the first arrival in
the Green’s function, but the amplitude of the direct arrival of
the focusing function is higher. Except for the first arrival, all
of the other events of the focusing function are located within
the red dashed lines. The events of the Green’s function are lo-
cated outside of the lines. These lines indicate the limits of the
time gates and show how the separation works that we used
in the equations in the previous section. The coda of the fo-
cusing function is located entirely within the indicated limits
(corresponding to Θ−ε ) and the direct arrival and all events
of the Green’s function are located outside these limits (corre-
sponding to Ψ+ε . This shows how the two different types of
wavefields can be separated.

We now use the full Green’s function in Fig.2-d as the input us-
ing the indicated time gates along with the reflection response
in Fig.2-c to show how the focusing function is constructed us-
ing eqn. 9. The first iteration will be the time-reversed Green’s



Decomposition of the Green’s function using the Marchenko equation

2000 3000
Velocity [m/s]

500

1000

1500

2000

2500

3000

z 
[m

]

(a)

1000 2000

Density [kg/m3]

500

1000

1500

2000

2500

3000

z 
[m

]

(b)

-0.4 -0.2 0 0.2
Amplitude [-]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t (
s)

(c)

-1 0 1
Amplitude [-]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t (
s)

(d)

-1 0 1
Amplitude [-]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t (
s)

(e)

Figure 2: (a) Velocity and (b) density of the 1D model. The
depth of our receiver is indicated by the light blue dashed
line. (c) The reflection response measured at the surface of
the model in (a) and (b). (d) The Green’s function response at
the receiver. (e) The downgoing focusing function response at
the receiver. The events in (c), (d) and (e) have all been con-
volved with a 30 Hz Ricker wavelet. The limits of the time gate
Θ−ε and Ψ+ε are indicated in dashed red. The results in (d)
and (e) were obtained using 1D modeling codes and will be
used for reference to validate the results.

function, but subsequent iterations will be calculated by the
terms in brackets and added to this first iteration. In this re-
gard, each iteration can be seen as an update to the previous
estimation. We will demonstrate how the update that is asso-
ciated to the second iteration is constructed. The process for
the first update is shown in Fig.3. First, we time-reverse the
Green’s function, which is shown in Fig.3-a. All the events
are now at negative times and are still all outside the time gate
limits. Because the events in the reflection response are all at
positive times a convolution will shift the events backwards in
time. The convolution of the reflection response and the time-
reversed Green’s function is shown in Fig.3-b. There are now
several events inside the limits of the time gate and there are
also some present outside the time gate at positive and negative
times. Using the time gate we can separate these events from
each other. We apply Ψ+ε to the events and time-reverse the
results as shown in Fig.3-c. This is one half of the update in
eqn. 9, Z Ψ+εRG(−t). Because these events are all outside
the time gate limits they do not contribute to the desired events
in the reconstructed focusing function, but are only meant to
dampen the artifacts that should not be present. The only ex-
ception is the first arrival of the focusing function, which it
does update, but is present outisde the limits of the time gate.
If instead of Ψ+ε we apply Θ−ε to the events in Fig.3-b and we
apply a convolution with the time-reversed reflection response.
We get the result shown in Fig.3-d. This is the other half of the
update R�Θ−εRG(−t). This update contains events that are
both inside and outside the limits of the time gate. It updates
the events that should be present in the focusing function and
also dampens the unwanted artifacts. By subtracting the results
in Fig.3-c from the results in Fig.3-d, we get the full update as
shown in Fig.3-e. If we were to add this result to the time-
reversed Green’s function in Fig.3-a, we see that the amplitude
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Figure 3: Overview of the construction of the first update using
eqn. 9. (a) The time-reversed version, G(−t), of the Green’s
function from Fig.2-d. (b) The function from (a) convolved
with the reflection response from Fig.2-c, RG(−t). (c) The
time-reversed events outside the limits of the time gates in (b),
Z Ψ+εRG(−t). (d) The results of the convolution with the
time-reversed reflection response from Fig.2-c and the events
within the limits of the time gates in (b), R�Θ−εRG(−t) (e)
The full update as a result of substracting the events in (b) from
the events in (d), (R�Θ−εR−Z Ψ+εR)G(−t). The time gate
limits are indicated in dashed red.

of the direct arrival is increased, which it should as we can see
from the reference data, and the other events in that function
are damped. Furthermore, several events within the time gate
limits are added. There are also events outside the time gate
that are added, which should not be present. These events will
be removed in subsequent iterations. Also not all of the ampli-
tudes of the updates are strong enough to completely remove
the artifacts. Several more updates will be required to retrieve
the correct focusing function.

We show the construction of the focusing function in Fig.4,
plotted against the iteration number. The updates are shown in
black and the desired focusing function from Fig.2-e is plotted
in dashed green over the updates for reference. The trace at
iteration 0 is the time-reversed Green’s function and the trace
at iteration 1 is the result of the first trace after applying the
update in Fig.3-e. As indicated several events are added. Ad-
ditionally, there are also events that were already present and
have their amplitude changed. The first arrival and several
desired events are not strong enough yet and there are sev-
eral artifacts added that should not be present. Subsequent
updates fix these problems. The amplitudes of the desired
events are all updated to be correct and the artifacts are re-
moved. The amount of energy that is added and removed de-
creases with each iteration, indicating that the solution is con-
verging. After about 8 iterations the updates are so small that
they are no longer visible on the trace. When comparing the
constructed focusing function to the desired one, we can see
that they match very well. There are no strange events present
in the focusing function and the desired events overlap. We
can now use the retrieved focusing function in combination
with eqn. 5 and 7 to see if the retrieved up- and downgoing
waves are accurate.
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Figure 4: Updates of the constructed focusing function against
each update number. The black lines represent the focusing
function per update. Over each update the desired focusing
function from Fig.2-e is plotted in dashed green. The time gate
limits are shown in dashed red.

In Fig.5 we show the retrieved wavefields. In Fig.5-a we show
the upgoing wavefield and in Fig.5-b we show the downgoing
wavefield. The retrieved wavefields do not show any obvious
errors and the amplitudes are all within the range of the orig-
inal input. Using eqn. 1 we can see that the retrieved results
should add up to the input data. This is done in Fig.5-c, where
the dashed green trace is the input data and the solid black line
is the summation of the traces of the previous two figures. Vi-
sually the two traces appear to have complete overlap. The first
arrival of the downgoing wavefield should be the same as the
one of the full Green’s function. In the upgoing field there is
no event present at the time of the first arrival in the downgoing
field. To further prove the accuracy of the results, in Fig.5-d
we show the error between the two traces in Fig.5-c. The re-
sult appears to be an empty trace. This shows that the retrieved
amplitudes are so accurate that the errors are not visible on the
trace, similar to the result we got on the retrieved and reference
focusing function. The decomposition can accurately recover
the up- and downgoing wavefield from a full wavefield using
only the reflection response and the measured wavefield in the
subsurface.

CONCLUSION AND DISCUSSION

We have shown that we can derive a decomposition scheme
from the Marchenko equation. This decomposition scheme
can decompose single component wavefield with accurate re-
sults. It does not require multicomponent recording or knowl-
edge of the medium properties that other decomposition meth-
ods require. It also does not require an estimation of the first ar-
rival from a smooth velocity model that the Marchenko method
requires. The method does have its limitations. Unlike other
decomposition methods it requires an reflection response and,
like many other Marchenko based methods, it is very sensi-
tive to errors in the reflection response. Furthermore, in or-
der to use this method a measured wavefield is required and
therefore either a downhole receiver needs to be present. The
method could be used for other cases as well, such as when
microseismic events are measured. If a microseismic at depth
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Figure 5: Comparison of the retrieved wavefields in black with
the reference wavefields in dashed green. The retrieved (a)
upgoing field and (b) downgoing field. (c) Comparison of the
full Green’s function of the reference wavefield from Fig.2-d,
in dashed green, and the sum of the wavefields in (a) and (b),
in solid black. (d) Error between the wavefields in (c)

is measured at the surface, source-receiver reciprocity could
be used to use the receivers at the surface as sources and the
source of the event at depth as a receiver, mimicking the situ-
ation of a downhole receiver in a borehole. The decomposed
wavefield themselves can be used for a variety of purposes. All
of our examples in this abstract were in 1D, but currently we
are working to extend this work to 2D.


