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SUMMARY

The Marchenko method represents a constructive technique to
obtain Green’s functions between the acquisition surface and
any arbitrary point in the medium. The process generally in-
volves solving an inversion starting with a direct-wave Green’s
function from the desired subsurface position, which is typi-
cally obtained using an approximate velocity model. In this
study, we first propose to formulate the Marchenko method in
the time-imaging domain. We recognize that the traveltime
of the direct-wave Green’s function is related to the Cheop’s
traveltime pyramid commonly used in time-domain process-
ing and can be readily obtained from the local slopes of the
common-midpoint (CMP) gathers. This observation allows
us to substitute the need for a prior velocity model with the
data-driven slope estimation process. Moreover, we show that
working in the time-imaging domain allows for the specifica-
tion of the desired subsurface position in terms of vertical time,
which is connected to the Cartesian depth position via the time-
to-depth conversion. Our results suggest that the prior velocity
model is only required when specifying the position in depth
but this requirement can be circumvented by making use of the
time-imaging domain and its usual assumptions. Provided that
those assumptions are satisfied, the estimated Green’s func-
tions from the proposed method have comparable quality to
those obtained with the knowledge of a prior velocity model.

INTRODUCTION

Green’s functions between the surface and any subsurface point
serve as the main ingredient in seismic redatuming and imag-
ing. The Marchenko method provides a constructive frame-
work to obtain such information using the reflection data at the
surface and an estimate of the direct-wave Green’s function
from the desired subsurface position (Broggini and Snieder,
2012; Broggini et al., 2012; Slob et al., 2014; Wapenaar et al.,
2014b, 2017). Given a prior approximate (smooth) velocity
model of the subsurface in Cartesian coordinates, one can spec-
ify the subsurface position and obtain the direct-wave Green’s
function from this position to the surface using a simple for-
ward extrapolation (Wapenaar et al., 2014b; Thorbecke et al.,
2017). An alternative strategy involves a separate inversion for
the direct-wave Green’s function from the common focal point
(CFP) technology based on the same starting velocity model
(Berkhout, 1997; Thorbecke, 1997). Therefore, a caveat to the
current Marchenko method and its implementation is the re-
quirement for prior velocity knowledge.

Conventional seismic imaging is accomplished in either time
or depth domain. The former generally performs with higher
computational efficiency, but becomes less accurate than the

Image ray

Depth coordinates Time coordinates

Figure 1: The relationship between depth- and time-imaging
coordinates. An example image ray originating from xa with
orthogonal slowness vector to the surface is shown. Every
point along this ray is mapped to the same lateral distance in
the time domain with different traveltime ta.

latter when dealing with geologically complex areas such as
subsalt regions (Yilmaz, 2001). The shortcomings of time-
imaging methods are largely due to the following (Fomel, 2013,
2014):

1. Approximate direct-wave Green’s functions are used for
imaging, which typically depend on hyperbolic or slightly
non-hyperbolic traveltime approximations.

2. Each time-domain image point is associated with its own
approximate effective velocity under the assumption of straight-
ray geometry relative to the surface.

3. When lateral heterogeneity is present, the final images are
generated in distorted coordinates defined by image rays
(Hubral, 1977) as shown in Figure 1.

However, in view of areas with moderately complex geology
where such assumptions are approximately valid, we can turn
these limitations into our advantages. In particular, recent re-
search on time-domain imaging has led to an alternative data-
driven time-imaging workflow for improved efficiency and ac-
curacy with local event slopes from CMP gathers instead of
velocity (Fomel, 2007). This development leads to an oppor-
tunity to bring in a velocity-independent data-driven technique
from time-domain imaging to estimate the direct-wave Green’s
functions and contribute to the Marchenko method.

In this paper, we first study the Marchenko method in the time-
imaging domain and establish relationships between the focus-
ing functions obtained from the Marchenko methods in both
time- and depth-imaging domains. Making use of the slope-
based time-domain processing workflow, we subsequently pro-
pose a scheme to obtain the direct-wave Green’s function from
the desired subsurface position on a reflector to the surface. We
show by numerical examples that the newly estimated direct-
wave Green’s function can be used in the Marchenko method
and leads to comparable results to those that rely on the prior
knowledge of a velocity model.



MARCHENKO METHOD IN TIME-IMAGING DOMAIN

Reciprocity theorems with curvilinear datum levels

The key component to deriving the Marchenko equations is the
one-way reciprocity theorems of both convolution and correla-
tion types (Wapenaar and Grimbergen, 1996; Wapenaar et al.,
2014a; van der Neut et al., 2015). Assuming that the image
rays are well-defined with no caustics, we first recognize that
a constant depth level in the Cartesian coordinates generally
corresponds to a curved level in the time-imaging domain and
vice versa. In other words, the current Marchenko method has
already been implemented with respect to a curved level in the
time-imaging domain. To show that a converse relationship ex-
ists, we need to find the Marchenko equations for a curvilinear
level in depth that corresponds to a constant time surface.

Because the time-imaging domain is defined by image rays,
it represents a special curvilinear coordinate system of semi-
orthogonal type (Sava and Fomel, 2005) due to the orthogonal-
ity between the ray direction and the wavefront. The one-way
reciprocity theorems for such curvilinear systems (ξ1, ξ2, ξ3)
= (ξξξ , ξ3) are given by (Frijlink and Wapenaar, 2010):∫

Sa

(
p+A p−B − p−A p+B

)
dξξξ =

∫
S f

(
p+A p−B − p−A p+B

)
dξξξ , (1)∫

Sa

(
p+A p+∗B − p−A p−∗B

)
dξξξ =

∫
S f

(
p+A p+∗B − p−A p−∗B

)
dξξξ ,

(2)

where equations 1 and 2 represent the one-way reciprocity the-
orems of convolution and correlation types, respectively. Here,
p denotes the flux-normalized wavefields in the frequency do-
main decomposed into upgoing (−) and downgoing (+) con-
stituents with respect to ξ3 at Sa and S f . The superscript ∗ de-
notes complex conjugation. The integrations are done at every
point ξξξ over the acquisition surface Sa and the focusing surface
S f . Both of which no longer need to represent constant-depth
surfaces. Similarly to the current derivation of the Marchenko
method, the subscripts A and B denote the two acoustic states
— the truncated medium and the true medium. Moreover, the
considered region between Sa and S f is assumed to have simi-
lar medium parameters and is source-free.

Marchenko equations in image-ray coordinates

We can clearly observe that equations 1 and 2 are similar to the
one-way reciprocity theorems for the case of flat datum levels
except that the integrations are now done over curvilinear sur-
faces. Therefore, we can follow a similar procedure as in the
previous works and derive the Marchenko equations (Wape-
naar et al., 2014a,b; van der Neut et al., 2015). This leads to
the following system of equations in the frequency domain:

g−(ξξξ f ,ξξξ a) =

∫
Sa

R(ξξξ ′a,ξξξ a) f+1 (ξξξ ′a,ξξξ f )dξξξ
′
a− f−1 (ξξξ a,ξξξ f ) ,

−g+∗(ξξξ f ,ξξξ a) =

∫
Sa

R∗(ξξξ ′a,ξξξ a) f−1 (ξξξ ′a,ξξξ f )dξξξ
′
a− f+1 (ξξξ a,ξξξ f ) ,

(3)

which is similar to the original Marchenko system except for
the integration over the curvilinear boundary Sa. g± denote the

Green’s functions and f±1 are the focusing functions defined in
the truncated medium with a curved boundary. The variables
ξξξ a and ξξξ

′
a are defined on the surface Sa, whereas ξξξ f is defined

at the focusing level S f . Assuming that the acquisition surface
Sa is flat, we have ξξξ a = xa = (x, y) and the reflection response
R can be expressed as (Wapenaar et al., 2014b):

R(x′a, xa) =
2∂z g−(x′a, xa)

jωρ(xa)
, (4)

which is twice the pressure recording at x′a from a vertical
dipole source at xa.

Since equation 3 is similar to that in the case of a constant-
depth focusing level, we can argue that the form of the Marchenko
system remains the same as long as there exists a transforma-
tion between the Cartesian coordinates and some semi-orthogonal
curvilinear coordinates, whose level curve matches with the
desired curvilinear datum level. In the case of the time-imaging
domain, the coordinate transformation is defined by the map-
ping of image rays for the time-to-depth conversion (Cameron
et al., 2007; Sripanich and Fomel, 2018). In this paper, we de-
fine the image-ray coordinates as ξ1 = x0, ξ2 = y0, and ξ3 = t0
(Figure 1). The first two coordinates x0 and y0 define the es-
cape location of the image rays at the acquisition surface Sa
and t0 is their one-way traveltimes. The curved datum level in
depth then corresponds to a curve of some constant time t0 that
represents the image wavefront. Given the same focusing func-
tions at the acquisition surface, the focusing position defined
in the time-imaging domain (x0, y0, t0) can be translated to its
corresponding Cartesian position through the same mapping.
Equipped with these results, we can proceed with making use
of efficient time-domain techniques to solve the Marchenko
equations and obtain focusing functions associated with some
specified position in the time-imaging domain.
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Figure 2: A schematic summarizing the concept behind
prestack time migration after Fowler (1997).

SLOPE-BASED TIME-DOMAIN PROCESSING

The process of time-domain imaging can be conceptually sum-
marized as shown in Figure 2 (Fowler, 1997). The recorded
CMP data (m, h, t) is first migrated to zero-offset (xn, tn) through
a combination of normal and dip moveouts. Poststack time
migration subsequently maps the result to (x0, t0) for a correct
position of subsurface reflecting point. The entire process con-
stitutes the time-imaging routine and is equivalent to prestack
time migration process. Fomel (2007) showed that under the
regular assumptions of hyperbolic traveltime and straight-ray



geometry of time imaging, prestack time migration (mapping)
can be done with local event slopes as follows:

t2
0 =

t ph
[
(t−hph)

2−h2 p2
m
]2

4(t−hph)2
[
t ph +h(p2

m− p2
h)
] , (5)

x0 = m−
ht py

t ph +h(p2
m− p2

h)
, (6)

where t is the two-way reflection traveltime. pm = ∂ t/∂m and
ph = ∂ t/∂h are estimated local event slopes from the CMP
gathers in the midpoint and half-offset directions, respectively.

From Figure 2, we can observe that the traveltime of direct-
wave Green’s function from the same subsurface position is
represented by the same value of t0 in the time-imaging do-
main. Consequently, the desired traveltime of the direct-wave
Green’s function from that location is simply a contour of time
t0 of the one-way traveltime map (equation 5). Therefore,
we can summarize the steps to obtain slope-based direct-wave
Green’s function and solve the Marchenko system as follows:

1. Given the CMP gathers, measure the slopes of primaries us-
ing methods such as plane-wave destruction (Fomel, 2002)
and generate the traveltime t0(m, h, t) and distance x0(m, h,
t) maps according to equations 5 and 6.

2. Remap the t0 data according to the x0 data to correctly po-
sition the traveltime across the midpoint coordinate and ob-
tain t0(x0, h, t).

3. Specify a desired focusing position in (x0, t0) and obtain
the traveltime of the direct-wave Green’s function from the
corresponding contour of t0(x0, h, t).

4. Simply convolve with a zero-phase wavelet to obtain the
approximate direct-wave Green’s function.

5. Use the time-reversed direct-wave Green’s function as the
initial focusing function and solve the constrained Marchenko
system 3 (van der Neut et al., 2015).

EXAMPLES

In this section, we apply the proposed workflow to two cases
of 1D and 2D layered media. The CMP gathers are generated
with Kirchhoff modeling based on an accurate two-point ray-
tracing scheme (Sripanich and Fomel, 2014).

1D model

We first consider a horizontally layered model shown in Fig-
ure 3a and look at the Green’s function from (0, 1000) on the
third reflector. The true Green’s function from forward model-
ing is shown in Figure 4a overlain by the traveltime prediction
(magenta line) of the direct wave using the proposed slope-
based workflow. We use the prediction to generate the ini-
tial focusing function and solve the Marchenko system (equa-
tion 3). The result from the usual velocity-based workflow is
shown in Figure 4b in comparison with that from the proposed
slope-based method in Figure 4c. The results are comparable
in quality indicating the validity of the proposed method.

(a)

(b)

Figure 3: Synthetic models: (a) 1D with vertical image rays
and (b) 2D with bending image rays used in our numerical
experiments.

(a) (b)

(c)

Figure 4: A comparison in a 1D model of the true Green’s
function (a) and estimated ones using the true velocity to gen-
erate initial focusing functions (b) and that from the proposed
slope-based workflow (c). The dashed magenta line in (a) de-
notes the estimated traveltime of the direct wave using local
slopes.



(a) (b) (c)

Figure 5: A comparison in a 2D model of the true Green’s function (a) and estimated ones using the true velocity to generate initial
focusing functions (b) and that from the proposed slope-based workflow (c). The dashed magenta line in (a) denotes the estimated
traveltime of the direct wave using local slopes.

2D model

Next, we turn to a 2D layered model with lateral heterogeneity.
In this example, the image rays are no longer vertical and the
focusing positions in the time- and depth-imaging domains are
related through the mapping defined by image rays. We con-
sider the Green’s function from (-35, 1000) on the third reflec-
tor because this is the position where the image ray originating
from (0, 0) will pass through. We follow the same procedure
as before and the comparison of Green’s functions are shown
in Figure 5. The results again are comparable in quality and
similar conclusions can be drawn. We emphasize that the fo-
cusing position is defined in terms of (x0, t0) as opposed to (x,
z) in the usual Marchenko workflow. To confirm that the spec-
ified focusing (x0, t0) translate to the Cartesian (x, z) according
to the image ray mapping, we back propagate the computed
focusing function and the result is shown in Figure 6. The
dashed line is vertical, whereas the solid line is the image ray
originating from (0, 0). We can observe that the response is
now positioned along the image ray and is at the reflector we
chose to compute our slope for the traveltime prediction in the
first place.

Figure 6: The focused response in the 2D model. Due to the
specification of focusing position in the time-imaging domain
(x0, t0), the focused position lies along the image ray (solid).

DISCUSSION AND CONCLUSION

In this paper, we first formulate the Marchenko system in the
time-imaging domain defined by image rays. We show that
the resulting Marchenko equations remain the same as in the
previous case of a constant-depth datum level except that the
integrations are now carried out along curved space boundaries
of constant time. The prior knowledge of subsurface velocity
is no longer needed and the Marchenko method can be accom-
plished by making use of local event slopes measured directly
from CMP gathers. The focusing positions are now defined in
terms of image-ray coordinates related to the surface location
and vertical traveltime easily obtained from the data without
any prior knowledge of the subsurface model.

We emphasize that we only make use of the slope-based work-
flow to obtain the traveltime of the direct-wave Green’s func-
tion. The amplitude information is controlled by the choice
of the convolving waveform. The coda of the resulting fo-
cusing functions and Green’s functions from our scheme is
therefore, scaled proportionately to this choice. Finding a dy-
namically appropriate waveform from slopes is a subject of
future research. In a companion paper (Sripanich and Vascon-
celos, 2018), we investigate another benefit from considering
the Marchenko method in the time-imaging domain by analyz-
ing the directionality of the focused responses with respect to
the surface data aperture.

Finally, in our scheme, it is crucial that only the slopes of tar-
get primary reflection events are used for traveltime prediction.
This can be done by prior interpretation of target reflections or
by means of an expeditious multiple removal based on local
slopes using simple velocity filtering (Cooke et al., 2009).
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