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Summary

Marchenko redatuming, imaging, monitoring and multiple elim-
ination methods are based on Green’s function representations,
with the underlying assumption that the wave field in the sub-
surface can be decomposed into downgoing and upgoing waves
and that evanescent waves can be neglected. In this paper
we show that up/down decomposition in the subsurface is ac-
tually not needed for the derivation of these representations.
This opens the way for research into new Marchenko methods
which are not limited by the assumption that up/down decom-
position is possible and which, in principle, can handle evanes-
cent waves.

Introduction

Current Marchenko methods for seismic redatuming, imaging,
monitoring and multiple elimination (Ravasi et al., 2016; Star-
ing et al., 2018; Jia et al., 2018; Lomas and Curtis, 2019; Mild-
ner et al., 2019; Brackenhoff et al., 2019; Zhang and Slob,
2020; Elison et al., 2020; Reinicke et al., 2020) are derived
from representation integrals for up/down decomposed wave
fields (Slob et al., 2014; Wapenaar et al., 2014). Promising ap-
plications in large-scale problems have been developed (Pereira
et al., 2019; Staring and Wapenaar, 2020; Ravasi and Vascon-
celos, 2020). Of course there are also limitations, some of
them caused by the underlying assumption that the wave fields
inside the medium can be decomposed into downgoing and up-
going waves and that evanescent waves inside the medium can
be neglected.

Recently, several approaches have been proposed to circum-
vent up/down decomposition inside the medium in the deriva-
tion of Marchenko methods (Kiraz et al., 2020; Diekman and
Vasconcelos, 2021; Wapenaar et al., 2021), each with their
own pros and cons. Here we discuss the last mentioned ap-
proach, which derives Green’s function representations for the
Marchenko method without up/down decomposition inside the
medium, and we illustrate these representations with numeri-
cal examples. A discussion of the application of these repre-
sentations in new Marchenko methods is beyond the scope of
this paper.

Wave field representation

We consider a lossless inhomogeneous acoustic medium, which
is bounded by a transparent horizontal surface dDg (the half-
space above this surface is homogeneous, with propagation ve-
locity ¢o and mass density pg). The acoustic pressure p(x,t)
in this medium obeys the wave equation .¥p = —d;q, where
Z is the acoustic wave field operator and g(x,?) is a volume-
injection rate source. In this section we discuss an integral rep-
resentation for p. In the classical approach, wave field repre-
sentations make use of Green’s functions. Here we use focus-
ing functions for the representation. We introduce a focusing
function F(x,Xg,#) which obeys the source-free wave equa-
tion .ZF = 0 and which focuses at xg at dDg, see Figure 1.

Homogeneous half-space

Inhomogeneous half-space

Figure 1: The focusing function F (X,Xg,?).

We define Xg as Xg = (Xg g, X3,r), Where Xy g is the horizontal
position of the focal point and x3 ¢ is the depth of dDg. We
define the focusing condition as

O (X —Xp,R)0(1). )

The wave equation .ZF = 0, the focusing property of equa-
tion 1, and the condition that F(x,xg,f) is upgoing at dDg,
together determine the focusing function. Note that inside the
inhomogeneous half-space, the focusing function is a full (not
decomposed) wave field, which is indicated by the up/down
arrows in Figure 1. Only at and above dDy this function is
upgoing, indicated by the upward pointing arrows in Figure 1.

F(X7XR7I)|X3=X3.R =

We transform the wave field and focusing function to the fre-
quency domain, giving p(x,®) and F(x,Xg,®), respectively
(o is the angular frequency). For convenience we use the same
symbols p, F and .Z in both domains. Hence, the wave equa-
tions for p and F in the frequency domain are .£’p = iwg and
ZLF =0, respectively (i is the imaginary unit), and the focus-
ing property of equation 1 transforms to

F(X,XR,0)|x=x;z, = O(XH—XHR)- @)

We express p in terms of F and F* (where the asterisk denotes
complex conjugation) as follows

pxo) = / F(x, %z, @)p~ (%, 0)dxg
JDg

+ / F*(x,Xg, 0)p™ (xg, 0)dxg.  (3)
JDg

The superscripts + and — denote downgoing and upgoing waves,
respectively, at the boundary dDg.

The representation of equation 3 can be derived by solving two
boundary conditions at dDg (Wapenaar et al., 2021), but here
we explain it with intuitive arguments, assuming for the mo-
ment that the medium is source-free, hence .2 p = 0. For x in
the upper half-space, the function F(x,xg,®) in the first in-
tegral is an upgoing field, which, for x above dDg, apparently
emerges from xg at dDg, see Figure 1. Hence, the first integral
represents the response to a distribution of Huygens sources
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along dDg, with strength p~ (xg, ®). This gives the forward
propagated upgoing field p~(x,®) in the upper half-space.
Similarly, still considering x in the upper half-space, the func-
tion F*(x,xg, ) in the second integral is a downgoing field
(ignoring evanescent waves), which, for x above dDg, con-
verges to xg at dDg. Hence, the second integral represents the
acausal response to a distribution of Huygens sinks along dDDg,
with strength p™ (xg, ®). This gives the backward propagated
downgoing field p™ (x, @) in the upper half-space. Hence, the
sum of the two integrals gives p~ (x,®) + p™ (x,®) = p(x, ®)
for x in the upper half-space. However, since equation (3)
holds in an entire half-space and since p, F and F* are so-
lutions of the same wave equation for all x (i.e., Zp = LF =
ZLF* =0 for all x), we may conclude that equation (3) holds
throughout space. Of course for x in the lower half-space, the
two integrals cannot be separately associated with p~ (x, ®)
and pT (x,®); only the sum of the two integrals gives p(x, ®).
Next, let the source g for the field p be non-zero in the upper
half-space x3 < x3 g. Then equation 3 breaks down in the upper
half-space, but it still holds in the lower half-space x3 > x3 g,
where p, F and F* obey the same source-free wave equation.

Note that we assumed that evanescent waves can be neglected
at and above dDg (by assuming F* is a downgoing field).
However, evanescent waves inside the medium (for example
in high-velocity layers) can still be taken into account, as will
be illustrated later with a numerical example.

Green’s function representation

Equation 3 holds for x3 > x3 g for any wave field p(x, ®) obey-
ing £p = iwq, as long as g is zero in the lower half-space.
Hence, it also holds for the Green’s function G(x,xs, ®), with
ZG =ind(x —Xg), as long as xg lies above dDg. Let us
choose X5 = (X 5,x3,5) just above dIDg, hence, x3 5 = x3 g —
€. We turn the monopole response G(x,Xg,®) into a dipole
source response I'(x,Xg, @) via

2
I'(x,xg,®) = ———0d3 sG(X, X5, ® 4
(x,Xs5, ) ia)p03’5( s, 0), )
where d3 s denotes differentiation with respect to the source
coordinate x3 5. The reason for changing the source type is
that the downgoing part of the response to a dipole just below
the source position is a simple spatial delta function, hence

O(XH —XH,5)- ©)

We define the upgoing part at dDg of the dipole Green’s func-
tion as

r+ (x,x5,®) |X3:X3.R =

I (xg,X5,0) = R(xXg,Xs,0), (6)

for xg at dDg, where R(xg,Xg, ®) is the reflection response of
the inhomogeneous medium below dDg. Replacing p, p~ and
p™T in equation 3 by I', [~ and I'", we obtain (using equations
5 and 6)

Fxxs,@) = / F(x,%g, @)R(x, X5, 0)dxg
8]D)R

+ F'(x,x5,0), for x3>x3p. (7

The Green’s function I'(x,Xg, ) on the left-hand side is a
dipole source response. Equation 7 can be modified into a rep-
resentation for a monopole Green’s function (Wapenaar et al.,

2021), which yields

G(XaXva) = f(X7XR7w)R(XS7XR7w)dXR

JDg
+ f* (X7XS7 (1))7 for X3 2 X3 R (8)

where f(x,Xg, ) is related to F(x,xg, ®) via

2
—— A Rrf(X,XR,0), )

F(x,xg,0) = om0

with f(x,Xg, @) obeying the focusing property

1®pPo

> 1)
The representation of equation 8 is similar to our earlier Green’s
function representation for the Marchenko method, with fo-
cusing function f, instead of f (Slob et al., 2014; Wapenaar
et al., 2014), but it has been derived here without applying
up/down decomposition inside the medium. The classical fo-
cusing function f; is defined in a truncated medium and is re-
lated to decomposed focusing functions f1+ and f|” via

fZ(XAuxRuw) :fﬁ(XR7XA7w) _{fr(XR7XA7a))}*' (11)

It is important to note that, in general, our new focusing func-
tion f(x,Xg,®) does not obey such a relation, as we demon-
strate later. The only conditions for f are the wave equation
ZLf =0, the focusing property of equation 10 and the require-
ment that f is upgoing at dDg.

BRI(XXR, O)xy=xs, = (xu —xpgg). (10)

Homogeneous Green’s function representation

Replacing the coordinate vectors in equation (8) according to
Xs — XR, Xg — Xg, X — X4 (and interchanging the source and
receiver on the left-hand side) yields

G(xg,xp,0) = /au) R(xg,Xs, @) f(Xa,Xg, 0)dxg
R

+  fH(Xa,Xg, @), for x34>x3g. (12)

In this form, the representation describes source-redatuming
from all xg at the surface to virtual-source position X4 in the
subsurface. Next, we want to redatum the receivers from all
Xg at the surface to virtual-receiver position X in the subsur-
face. We cannot substitute G(x,x4,®) for p(x) in equation
3, since G(x,X4,®) has its source below dDg. However, the
homogeneous Green’s function Gy(x,X4,®) = G(X,X4,®) +
G*(x,%4,®) (Porter, 1970; Oristaglio, 1989) obeys .£Gy, =
0 and hence can be substituted for p(x) in equation 3. At
JdDp the Green’s function G(xX,x4, ®) is purely upgoing, since
x4 lies below 0Dy and the half-space above dDg is homo-
geneous, hence p~(xg, ) = G(xg,x4,®) and pT (xg, ®) =
G*(xg, X4, @) for xg at dDg (again ignoring evanescent waves
at dDg). With these substitutions, equation 3 yields

Gulexan0) = [ Fxxe,0)G(xex,0)ix0
dDg
+ / F*(x,Xg, ®)G* (Xg,Xs, ®)dxg, (13)
I
or
Gn(x,%4,0) = 2R F(x,Xg, 0)G(XR, X4, 0)dxg, (14)

JDg
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where R denotes the real part. Similar homogeneous Green’s
function representations have previously been derived by Wape-
naar et al. (2016), Van der Neut et al. (2017) and Singh and
Snieder (2017), but here we avoided up/down decomposition
in the subsurface. The combination of equations 12 and 14 de-
scribes a two-step procedure for redatuming the sources and
receivers from xg and xp at the surface to x4 and X, respec-
tively, in the subsurface. This two-step process generalises
classical primary redatuming (Berkhout, 1982; Berryhill, 1984)
to full wavefield redatuming, accounting for primaries, multi-
ples and evanescent waves. It can be further generalised for
elastodynamic waves (Wapenaar et al., 2021).

Numerical examples

Although evanescent waves are not the main motivation for de-

riving the new representations, we illustrate the representations

with numerical examples for a horizontally layered medium

with high-velocity layers with tunneling evanescent waves. For

a horizontally layered medium we consider oblique plane waves
in the slowness intercept-time (s, 7) domain. In this domain,

equation 8 transforms to

T
G(sl7x37x3,Ra T) = / f(Sl,X3,X37R7 T/)R(SI7X3’R7T7 T/)dT/

+f(s1,%3,X38,—T), for x3>x3g, (15)

with f(s1,x3,x3 g, T) obeying the focusing property

P55, (16)

fGsi »X3,X3.R; Dlo=xe = m

where o = arcsin(sjcg). We consider an oblique plane wave,
with s; = 1/2800 s/m, incident from dDy to the horizontally
layered medium of Figure 2a. This wave becomes evanes-
cent in the two high-velocity layers, with ¢, = ¢4 = 3000 m/s.
The reflection response R(s1,X3 g, T), convolved with a Ricker
wavelet with a central frequency of 50 Hz, is shown in Fig-
ure 2b. The numerically modelled classical focusing function
f2(s1,x3,%3 g, T) (equation 11) is shown in Figure 2c. It ex-
hibits the expected behavior in the low-velocity layers with
¢1 = ¢3 = ¢5 = 2000 m/s, but the tunneling in the high-velocity
layers is wrong, see the panel on the right, which shows the
normalized power-flux as a function of depth. Figure 2d shows
the numerically modelled focusing function f(s,x3,x3g,7)
(which does not make use of equation 11), with correct tun-
neling behavior in the high-velocity layers.

Next, the Green’s function G(s1,X3,X3 g, T) is derived from the
reflection response of Figure 2b and the focusing function, us-
ing equation 15. First we use the classical focusing function f
of Figure 2c. The result is shown in Figure 3a. This Green’s
function shows the expected behavior in the low-velocity lay-
ers, but inside the high-velocity layers the retrieved Green’s
function is wrong. This is emphasised in Figure 3b, which
shows the retrieved Green’s function at x3 = x3 4 = 210 m,
halfway the first high-velocity layer (green), compared with
the exact Green’s function (red). We repeat the same process,
but this time with the correct focusing function f of Figure
2d. The results are shown in Figures 3c and d. Note that this
time the Green’s function is perfectly retrieved, in the low- and
high-velocity layers. This confirms that the representation of
equation 15 correctly accounts for evanescent waves.
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Figure 2: (a) Horizontally layered medium. (b) Reflection re-
sponse R(s,x3 g, T) at the surface. (c) Numerically modelled
classical focusing function f>(s1,x3,x3 g, 7). (d) Numerically
modelled new focusing function f(sq,x3,x3 g, 7).
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Figure 3: (a) Green’s function G(s1,x3,X3 g, T) obtained from
Figures 2(b) and 2(c) via the representation of equation (15).
(b) G(s1,%34,x3r,T), taken from figure (a) for x3 4 = 210
m (green), compared with directly modelled Green’s func-
tion (red). (c) Green’s function G(s1,x3,X3 g, T) obtained from
Figures 2(b) and 2(d) via the representation of equation (15).
(d) G(s1,x3.4,%3 g, T), taken from figure (c) for x3 4 =210 m,
compared with directly modelled Green’s function.
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Figure 4: Homogeneous Green’s function Gp(sq,x3,%34,7)
for x3 4 = 300 m, obtained from representation 17.

Finally, we transform the representation of equation (13) to the
slowness intercept-time domain, hence

Gn(s1,%3,X34,7)

T
:/ F(s1,x3,x38,7)G(s1,x3 g, X34, T — 7' )d7’

+/ F(s1,x3,x3 8, —T')G(s1,X3 g, X34, 7T — 7)d7’, (17)
T

with
2.cos 0

F(s1,x3,x3R,T) =
(la 3,43,R» ) Poco

f(51,%3,X3 8, 7). (18)
Using the focusing function of Figure 2d and the Green’s func-
tion of Figure 3c, this time for fixed x3 4 = 300 m, equation 17
gives the homogeneous Green’s function shown in Figure 4.
The causal part is the response to a virtual source at x3 4 = 300
m, observed by virtual receivers at variable x3. Note the re-
verberations in the wave guide between the high-velocity lay-
ers, and the leaking of energy via tunneling through the high-
velocity layers. This example shows that also the homoge-
neous Green’s function representation of equation 17 accounts
for propagating and evanescent waves.

Conclusions

We have shown that the Green’s function representations for
the Marchenko method can be derived without assuming the
fields inside the medium can be decomposed into downgoing
and upgoing waves and without ignoring evanescent waves in-
side the medium. These representations have potential applica-
tions in the development of new Marchenko methods that can
take refracted and evanescent waves into account. However,
this development will also need careful consideration of the
temporal overlap of Green'’s functions and focusing functions.
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