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Summary

Standard Marchenko redatuming and imaging schemes neglect
evanescent waves and are based on the assumption that decom-
position into downgoing and upgoing waves is possible in the
subsurface. Recently we have shown that propagator matri-
ces, which circumvent these assumptions, can be expressed
in terms of Marchenko focusing functions. In this paper we
generalize the relation between the propagator matrix and the
Marchenko focusing functions for a 3D inhomogeneous dis-
sipative medium. Moreover, for the same type of medium we
discuss a relation between the transfer matrix and the Marchenko
focusing functions.

Introduction

Marchenko redatuming and imaging schemes suppress inter-
nal multiples in a data-driven way. The nucleus of these schemes
is formed by the Marchenko focusing function, comprised of
a time-reversed event (similar as the standard primary focus-
ing operator), and a specific multiple coda. Whereas the time-
reversed event is defined by a macro subsurface model, the
scattering coda is retrieved from the reflection data measured at

the surface. The main underlying assumption of most Marchenko

schemes is that evanescent waves can be neglected and that de-
composition into downgoing and upgoing waves is possible in
the subsurface. Recently, several authors suggested ways of
circumventing one or more of these assumptions (Kiraz et al.,
2021; Diekmann and Vasconcelos, 2021; Wapenaar et al., 2021).
Moreover, it has been shown that the Marchenko focusing func-
tion is closely related to the propagator matrix concept (Becker
et al., 2016; Wapenaar et al., 2017; Elison et al., 2021; Wape-
naar and de Ridder, 2022). A propagator matrix (Gilbert and
Backus, 1966; Kennett, 1972; Woodhouse, 1974) “propagates”
a full wave field (pressure and particle velocity) from one depth
level to another through a multilayered medium. It implicitly
accounts for downgoing and upgoing, propagating and evanes-
cent waves.

This work is structured as follows. We start by reviewing the
propagator matrix and its relation with the Marchenko focus-
ing function. However, we generalize this relation for dissi-
pative media and for all propagating and evanescent waves (in
our previous derivation we assumed the medium is lossless and
we ignored evanescent waves in the upper half-space; evanes-
cent waves in high velocity layers in the subsurface were al-
ready included (Wapenaar and de Ridder, 2022)).

Recently, Dukalski et al. (2022a) discussed a similar relation
between the transfer matrix and the Marchenko focusing func-
tion. Following their definition, a transfer matrix “transfers” a
decomposed wave field (downgoing and upgoing constituents)
from one depth level to another through a multilayered medium
(Born and Wolf, 1965; Katsidis and Siapkas, 2002). The rela-
tion is extended for elastodynamic waves in horizontally lay-
ered media in a companion paper (Dukalski et al., 2022b). In

the current paper we also address the transfer matrix, but we
follow a different approach. First, we express the transfer ma-
trix in terms of the propagator matrix for an arbitrary inhomo-
geneous dissipative acoustic medium. Next, we use the rela-
tion between the propagator matrix and the Marchenko focus-
ing function to obtain a relation between the transfer matrix
and the focusing function. We discuss how this relates to the
results of Dukalski et al. (2022b).

The propagator matrix for a dissipative medium
Our starting point is the following matrix-vector wave equation
in the space-frequency (x, @) domain

Aq=Aq+d, 1)

where q(x,®) is a wave-field vector, A(x, @) an operator ma-
trix and d(x, @) a source vector. They are defined as
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(Corones, 1975; Kosloff and Baysal, 1983; Fishman and Mc-
Coy, 1984; Wapenaar and Berkhout, 1986). Here p(x, ®) is the
acoustic pressure, v3(X, @) the vertical component of the par-
ticle velocity, k(x, ®) and p(x, @) are the compressibility and
mass density of the medium, ¢(x, ®) is the volume injection-
rate density and f3(x, @) is the vertical component of exter-
nal force density. Since we consider a dissipative medium,
the compressibilty and mass density are complex-valued and
frequency-dependent, with Sx(x,®) > 0 and Sp(x,®) > 0,
where 3 denotes the imaginary part. We introduce the propa-
gator matrix W(x,Xg, ®) via

W(x,xg, ®)q(Xg, ®)dxg, 3)
I

q(X, (1)) =

where dD, is a horizontal boundary at depth level x3 g (Gilbert
and Backus, 1966; Kennett, 1972; Woodhouse, 1974). Substi-
tution of equation 3 into equation 1, assuming the source vec-
tor d is zero between dDg and depth level x3, yields

W = AW. “

Choosing x3 = x3 g in equation 3, we obtain the boundary con-
dition

W(X,Xg, ©) | x;=x; . = I0(XH — XHr), )

with horizontal coordinate vectors xg = (x1,x2) and Xy g =
(x1 R, X2,8). W is a 2 x 2-matrix, which can be written as fol-
lows

wpp

wprY
W(vaRv (D) = (Wv,p

Wv,v) (X,XR,CO), (6)

We introduce an adjoint medium, with parameters k*(x, @)
and p*(x, @), where the asterisk denotes complex conjugation.
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Figure 1: Eigenvalue spectra of operators .7 and .74 in the
complex plane for a dissipative medium (a) and its adjoint (b)
and for a lossless medium (c,d).

Waves propagating through the adjoint medium gain energy.
We define an operator matrix A for the adjoint medium, which
is defined like A in equation 2, but with x(x,®) and p(x, ®)
replaced by k(x, ) = «*(x,®) and p(x,0) = p*(x,®), re-
spectively. Similarly, we denote solutions of the wave equation
for the adjoint medium with a bar above their symbols, hence,
W(x,Xg, @) is the propagator matrix for the adjoint medium.
This matrix is related to the propagator matrix of the original
(dissipative) medium as follows (Wapenaar, 2022)

wpp WPy wppP  —wPv\"*
WvP o WY (X7XR7w): WP WYy (X7XR7w)‘

@)

The propagator matrix expressed in focusing functions
From here onward we assume that dDy, is the acquisition bound-
ary. The medium above dDg is assumed to be homogeneous
and dissipative; the medium below dDg is arbitrary inhomo-
geneous, dissipative and source-free. At the boundary dDg we
define q = Lp, with q defined in equation 2 and

v=(gm —am) =) ®
= 1 1 9 pP= _ .
o/ —ap p

Here 77 is the square-root of the Helmholtz operator % =
k3 + 9. 9qr, with k3 = ®? ko po, where Ko (@) and po () are the
complex-valued parameters of the upper half-space. Further-
more, pT(x,®) and p~ (x,®) are pressure-normalized down-
going and upgoing waves, respectively. Figure 1(a) shows the
eigenvalue spectrum &(74]) for a dissipative medium. Fig-
ure 1(b) shows the eigenvalue spectrum o(#4 ) for the adjoint

medium. Note that 6(J7 ) = {c(24)}*. Similar as its spec-
trum, the operator .7 is related to J#] via

= A ©)

Figures 1(c) and 1(d) show the spectra for the limiting case of a
lossless medium. Hence, for this situation the bar only denotes
that the amplitudes of the “evanescent” wave modes increase
exponentially.

Substituting q(xg, ®) = L(x3 g, ®)p(Xg, ®) into equation 3 gives

ao)= [ Yxxeoplw ol (10
JDg
for x3 > x3 g, with Y(X,Xg, ®) = W(x,Xg, ©)L(x3 g, @), or
WP WPy 1 1
Y(x,xg,0) = . ., . (11
( » AR ) (Wv,p Wv,v) (ﬁlwipo _ﬁlwipo) (1)
Here % 1(x3 g, @) acts on the quantity left of it (this follows

from the fact that .77{ is a symmetric operator). From equation
11 it follows that for the elements of Y(x,xg, ®) we may write

Y][(X,XR,CO)ZWp’p+ %Wp’v, (12)
@po
1
Yi2(x,Xg, ) = WPP — —— WP, (13)
®po
1
Y21 (vava) :Wv’p+7¢;ﬁwv.ly7 (14)
@po
1
Y2 (X,Xg, ® :Wv,p_ijﬁwv,v. (15)
( ) op0
From equations 5, 6 and 13 we find
Y12(X,XR, ®) |xy;=x;, = 0(XH —XHR), (16)

hence, Y1»(X,Xg,®) behaves as a focusing function, with its
focal point xg at dDg. We define

Yi2(x,Xg, 0) = F/(X,Xg, @), 17

where F? is the focusing function in terms of acoustic pressure
(it is similar to the focusing function f; defined in our previous
papers in the sense that it focuses at the acquisition boundary,
but it is normalised differently, it holds for dissipative media,
and it accounts for evanescent waves). Furthermore, we define

Y22 (%, xR, @) = F"(X,Xg, @), (18)

where FV is the particle velocity associated to the focusing
function FP? (note that F" is defined differently from that in
Wapenaar (2022)).

Using equations 7 and 9, we find ¥5(x,Xg, ®) = Y} (X,Xg, )
and ¥ (x,Xg, @) = —Y5; (X,Xg, @), or

Y11 (X, Xg, ®) = FP* (X, Xg, ®), (19)
Y21 (X,XR7 (0) =" (X,XR, (!J). (20)

Hence, for matrix Y(x,Xg, ®) we obtain

FP* FP
Y(x,xg, 0) = (7}3‘,* FV) (X,XR, ). 21
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Using this in equation 10, with q and p defined in equations 2
and 8, we obtain for the first element of g

px.0) = / FP* (x,xp, @) p* (3, @) dx
JDg

+ / FP(x,Xg, 0)p~ (Xg, ®)dxg. (22)
I

This expression is almost identical to equation 17 of Wapenaar
and de Ridder (2022), except for the bar on F? in the first inte-
gral, which denotes that the focusing function is defined in the
adjoint medium. Equation 22 is exact and holds for dissipative
media.

If we take a point source of vertical force at Xg just above
0Dg, then at dDg we have pT (xg, ®) = % (Xp,Rr —XH,s) and
P~ (Xg,0) = %R(XR, xg, ®) (where R is the reflection response),
and for x in the subsurface we have p(x,®) = G”/(x,xg, ®),
which is the Green’s function in terms of pressure at x in re-
sponse to a vertical force source at xg. Substitution into equa-
tion 22 gives

267 (x,x5,0) = / FP (x, %z, ®)R(xg. X5, 0)dxg
BDR

+  FP(x,x5,0). (23)

This representation is consistent with Slob (2016), but has been
derived here without decomposition at X in the subsurface.

In the limiting case of a lossless medium the bar only affects
the behavior of the evanescent waves (as discussed below equa-
tion 9). When evanescent waves at dDg are neglected (and the
medium is lossless), the bar can be omitted and equations 22
and 23 reduce to equations 17 and 27 of Wapenaar and de Rid-
der (2022).

Finally, we express the elements of the propagator matrix in
terms of the focusing functions F(x,xg,®) and F(x,xg, ®).
Using W(x,Xg, ) = Y(x,Xg, @)L~} (x3 g, ®), we obtain

1,
WP (x,xp, @) = 5 (FP" 4+ F) (x,xg, @), (24)
WPV (x,Xg, @) = %%ﬂfl (FP* —FP)(x,xg, @), (25)
WYP (X, Xg, ) = %(fFV* +FV)(x,Xg, 0), (26)

W"(x,Xg, @) = *@ffl_] (F™ +F")(x,xg,@). (27)

We illustrate equation 24 for the horizontally layered lossless

medium of Figure 2(a). We define the spatial Fourier transform
of u(x, ) along the horizontal coordinate Xy as

ﬁ(s,x37w):/ exp{—iws - Xy bu(xg, x3, 0)d>xy, (28)
R2

where s = (s1,s2) is the horizontal slowness vector. Next, the
inverse temporal transform is defined as

u(s,x3,7) = %EK/O i(s,x3,0)exp{—iot}do, (29)

where R denotes the real part (Stoffa, 1989). We apply these
transforms to F”(X,Xg,®), choosing the focal point at xg =
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Figure 2: (a) Horizontally layered medium. (b) Focusing func-
tion FP(s1,x3,x3 g, T) (for fixed s1). (c) Propagator matrix el-
ement WPP(sy,x3,x3 g, 7) (for fixed 51).
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(0,0,x3 g) and setting s, = 0. This yields the transformed fo-
cusing function FP(sy,x3,x3 g, ), which is shown in Figure
2(b) for fixed s; = 1/3500 s/m and convolved with a Ricker
wavelet with a central frequency of 50 Hz. Starting at the bot-
tom, we observe upgoing waves (blue arrows), which are tuned
such that a single wave propagates upward through the upper
layer and focuses at depth level x3 g at T = 0. After that, it con-
tinues as an upgoing wave into the upper half-space. Note that
the focusing function is evanescent in the high velocity layer
between 760 and 800 m, through which it tunnels. Equation
24 transforms to

wpp (‘Yl »X3,X3,R5 T) =
1
E (Fp(sl » X33 X3R5 _T) + FP(SI »X3,X3,R;5 T)) . (30)
This element of the propagator matrix is shown in Figure 2(c).

The transfer matrix for a dissipative medium
Analogous to equation 3, we introduce the transfer matrix
T(x,xg, ®) via

p(x,0) = / T(x,Xg, 0)p(Xg, ®)dxg. (31)

JoDg

Hence, the transfer matrix “transfers” the downgoing and up-
going waves p* and p~ from acquisition boundary 0Dy to an
arbitrary depth level in the subsurface. Usually, this matrix is
analysed for horizontally layered media and it is built up re-
cursively from interface to interface. This is also the approach
followed by Dukalski et al. (2022a,b), who in addition express
the transfer matrix in terms of Marchenko focusing functions.
Here we follow a different approach. Substituting q = Lp into
equation 3 we obtain equation 31, with

T(x,xg, ©) = L' (x, 0)W(x,Xg, ©)L(x3 8, ®), (32)
where

» 11 e (x,0)p(x,0)

L (Xv“’)_z(l _wjﬁl(x,w)p(x,w))' 49

Equation 32 is valid in an arbitrary inhomogeneous dissipa-
tive acoustic medium, assuming the operator L(x, ®) and its
inverse exists inside the medium. This is a more serious as-
sumption than we made in the previous section, where we only
assumed that L(x3 g, ®) and its inverse exists at the boundary
JdDg, where the medium is homogeneous. Despite this addi-
tional restriction, it is worthwhile to analyse the transfer matrix
further and relate it to Marchenko focusing functions.

The transfer matrix expressed in focusing functions
Using Y(x,Xg, ®) = W(X,Xg, ®)L(x3 g, ®), we rewrite equa-
tion 32 as

T(x,x, 0) = L™ (x,0)Y(x, Xz, ©). (34)

First we analyze the right columns of the matrices at both sides
of this equation. Using the definition of L™! in equation 33 and
the right column of Y in equation 21, we obtain, analogous to

L'q=p.
60'%171’) FP — F[H_ (XaXRa (D) (35)
—a)jfflp FY FP~(x,Xg,®) )

1(1
2\1

Here FPT (x,xg, ) and FP~(x,Xxg, ®) are the downgoing and
upgoing parts at x (pressure-normalized) of the focusing func-
tion F”(x,xg, ®). For the left columns of the matrices at both
sides of equation 34 we obtain, using equation 9 and the left
column of Y in equation 21,

(1 e 'p\ (Fr _

2\1 —(Dﬁfﬁilp _Fv: ] T

l 1 _a)jﬁ_lp ' FP *7 Fpi(X7XR7(O) : (36)

2\l w7 'p ) \F') —\FPrf(xxg0))
Combining the obtained columns in one matrix, we obtain

FPH(x,xg, 0)
FP=(x,xg, w)) 37

FP~*(x,xg, ®)
Tis.0)= (e 3

This equation expresses the transfer matrix for an arbitrary in-
homogeneous dissipative acoustic medium in terms of decom-
posed focusing functions of the medium and its adjoint.

For the special case of a horizontally layered medium we apply
the spatial Fourier transform of equation 28, choosing the focal
point at Xg = (0,0,x3 ). This yields

Fp_*(fsvxf*?x&,va) Fp+(S,X3,X3’R,CO)

T(s,x3,03,0) = | = i
( R ) <Fp+*(—S,X3,X3_R,(O) Fpi(s7x37x3,R7w)

This expression is consistent with Dukalski et al. (2022a,b),
when taking into account that their path-reversal operator &
implies (1) taking the adjoint medium (or, in the limiting case
of a lossless medium, taking exponentially increasing “evanes-
cent” wave modes), (2) taking the complex conjugate, and (3)
changing the sign of the horizontal slowness (for the acoustic
case, however, this sign change can be omitted).

Conclusions

We have derived mutual relations between the propagator ma-
trix, the transfer matrix and the Marchenko focusing functions,
for an arbitrary inhomogeneous dissipative acoustic medium.
The relations are exact, meaning that they hold for all propa-
gating and evanescent wave modes. The relations involving the
transfer matrix are restricted by the assumption that up/down
decomposition is possible inside the inhomogeneous medium;
the relation between the propagator matrix and the focusing
function does not rely on this assumption.

The relations support further research on redatuming and imag-
ing methods accounting for internal multiples. On the one
hand, when the medium is accurately known, the propagator
matrix can be numerically modelled in that medium and its
adjoint, from which the focusing functions and transfer ma-
trix can be derived. On the other hand, under specific cir-
cumstances the focusing functions can be derived from the
single-sided reflection response (for lossless media) or from
the double-sided reflection and transmission response (for dis-
sipative media), from which the propagator matrix and transfer
matrix can be derived.
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