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FIG. 4. Images obtained by applying the 2-D analog of equation (11) to synthetic data representing coincident source/receiver 
experiments in the geometry of Figure 2 for objects Consisting of a family of point scatterers and of a homogeneous square block. 

accurately recovered by this first term are the (locations ofJ 
discontinuities in the function f, in other words, the part of 
the velocity field normally associated with the reflectivity 
function that is estimated by migration methods. 

For a general inhomogenous reference velocity Q(X), the 
weight function W can be determined by ray tracing; howev- 
er, for constant co, W can be determined analytically. In 
addition, the above analysis can easily be extended to zero- 
offset or constant-offset seismic experiments. For example, 
with zero-offset surface experiments, i.e., with s = r = (r,, 
r2, r3 = 0), and with constant background velocity equation 
(9) becomes 

(f(x)) = s 
i 

d2r (x “_’ r) - u,,(r, t = 2/x - rl/co), (11) 
r,=O 

which resembles the classical formula for Kirchhoff migra- 
tion (Schneider, 1978; see also Norton and Linzer, 1981). 

Synthetic examples 

Figures 2 and 3 show a synthetic example of the migration 
algorithm described above, specialized to a two-dimensional 
geometry. The model consists of a fixed source and point 
scatterers separated by roughly one wavelength at the cen- 
tral frequency of the source and distributed to form the lettei 
S. Receivers were located both on the Earth’s surface and in 
two wells flanking the scatterers (Figure 2). The images in 
Figure 3 illustrate the resolution obtained by using different 
subsets of the data. Figure 4 shows reconstructions of the 
letter S and a homogeneous block, based on a synthetic zero- 
offset experiment using all the receiver positions in Figure 2. 
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Principle of Prestack Migration Based on s19.7 
the Two-Way Wave Equation 

C. P. A. Wapenaar and A. J. Berkhout, De& Univ. of 
Technology, Netherlands 

In this paper a brief review of prestack wave field extrapo- 
lation based on the two-way wave equation is presented. 
Based on extrapolation operators for the total wave field, a 
modeling scheme for one-dimensional media is reviewed. In 
this modeling scheme, critical angle effects, multiple reflec- 
tions, and transmission effects are incorporated. Next a 
prestack migration scheme based on the two-way wave 
equation for arbitrary inhomogeneous media is introduced. 
It is concluded that this scheme represents a potential 
alternative to existing (finite difference) migration schemes, 
as the square root operator is avoided, while critical angle 
effects, multiple reflections, transmission effects, and wave 
conversion may be properly incorporated. 

Introduction 

Many seismic modeling as well as migration schemes are 
based on forward and inverse extrapolation of the acoustic 
wave field (Claerbout, 1976; Berkhout, 1982). Generally the 
acoustic wave equation is split into approximate one-way 
wave equations which govern independent propagating 
downgoing and upgoing waves, respectively. Solutions of 
these one-way wave equations can be described in terms of 
wave field extrapolation operators (phase shift operator, 
Kirchhoff summation operator, dip-limited finite difference 
operator, etc.), while the boundary conditions are given by a 
downgoing or upgoing wave field at a specific depth level. 
The interaction between downgoing and upgoing waves need 
be specified explicitly in terms of reflection operators which 
are input to modeling schemes, and output of (ideal) migra- 
tion schemes. 

With respect to modeling and migration schemes based on 
the one way wave equations, the following should be noted: 
(1) Critical angle effects cannot be handled; whenever verti- 
cal velocity variations are present, the assumption that the 
total wave field may be split into independent downgoing 
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and upgoing waves breaks down for waves with a propaga- 
tion direction which is ‘nearly horizontal. (2) The implicit 
square root operator in the one-way wave equations is 
responsible for the slow convergence of finite difference 
schemes. (3) Additional effort is required for the incorpo- 
ration of multiple reflections, transmission effects, and wave 
conversion. 

In seismic literature, several alternative modeling ap- 
proaches have been proposed, based on the WKBJ-tech- 
nique, which properly include critical angle events (e.g., 
Kennett and Illingworth, 1981). Wapenaar and Berkhout 
(1984) introduced one-way wave field extrapolation opera- 
tors based on the WKBJ-technique, which can be applied in 
modeling as well as in migration schemes for critical angle 
data. Kosloff and Baysal (1983) introduced the application of 
the two-way wave equation in poststack migration. In their 
approach a one-way propagation problem (exploding reflec- 
tor assumption) is handled with the two-way wave equation, 
so use of the square root operator is evaded. In this paper we 
review the application of the two-way wave equation in 
prestack modeling and introduce its application in prestack 
migration. The method is based on extrapolation operators 
for the total wave field. It will be shown that critical angle 
effects can be handled, application of the implicit square root 
operator is evaded, and multiple reflections, transmission 
effects, and wave conversion are properly incorporated. 

Wave field extrapolation 

Our starting point will be the matrix representation of the 
two-way wave equation, 

(la) 

where 

with P = P(x,y,z,o) acoustic pressure, p = p(x,y,z,) mass 
density, k = o/c wave number, c = c(x,y,z,) propagation 
velocity, and w/27r = frequency. 

Unlike the implicit square root operator in one-way wave 
equations, explicit operator A can be applied exactly within 
the seismic bandwidth. The solution of (la) is given by the 
following Taylor series summation 

m (&Az)~ PB ’ 
B(zi f AZ) = x 7 F ’ i 1 m=O 2, W 

where 

PBiaz”’ = a”-‘(AB)l&“-‘, for m 3 1. (2b) 

Note that these relations are exact. In the following, expres- 
sion (2a) is abbreviated to 

B(zi i: AZ) = W(Zi * AZ, zJB(ZJ, (26 

where matrix W represents the operator for recursive ex- 
trapolation of the total wave field B. For practical applica- 

tions some assumptions must be made in order to avoid the 
infinite summation (2a). 

Assuming that the medium properties c and p may be 
linearized in depth between zi and zi ? AZ, while the lateral 
derivatives of the medium properties may be neglected, then 
a fast converging finite difference operator W can be found 
from (2a), which properly includes critical angle effects. A 
discussion of this operator is beyond the scope of this paper. 
The operator is discussed by Berkhout (1982) for the case 
that critical angle effects may be neglected. 

Assuming that the medium properties may be linearized in 
depth between zi and zi t AZ, while they are constant in the 
lateral directions, then in the k,, k,,clr-domain a closed 
expression for operator W can be found from (2a), which 
properly includes critical angle effects. A discussion of this 
operator is beyond the scope of this paper. For small AZ the 
operator equals an operator based on Airy functions, as 
discussed by Kennett and Illingworth (1981). 

Assuming a homogeneous layer between zi and zi 2 AZ, 
then in the k,,k,+domain a closed expression for operator 
W is found from (2a), which is a special case of above 
mentioned operator. A discussion of this operator is also 
beyond the scope of this paper. The same operator is derived 
by Ursin (1983), by means of eigenvector decomposition 
applied to operator A. 

Modeling 

Modeling with the two-way wave equation of prestack 
data for media with c = c(z), p = p(z), is based on the 
following recursive algorithm in the k,,k,,wdomain, 

B(z~) = Fk(zo,zl) e a e lV(zi - Az,zi) * * * 9 

NZN-I ,ZNMZd. 04 

The procedure is as follows. (1) Specify the total field %zN). 
For instance, in a homogeneous lower half-space for z 2 ZN, 
only downgoing waves are present. (2) Determine B(zo) by 
means of relation (3a). (3) Apply decomposition into down 
and upgoing waves I” and B- at t = zo (Ursin, 1983). 
Assuming a homogeneous upper half-space for z s ZO, then 

B(zo) = P-(zo)lli+(zo) WI 

defines the reflectivity of the layered medium. (4) A common 
shot gather is now modeled by 

_ _ - 

PCSGkO) = @zO)&I)S(zO), (3c) 

followed by inverse Fourier transforms. Here $ and B define 
the source and detector signature, respectively. Note that 
critical angle effects may be included, and multiple reflec- 
tions and transmission effects are incorporated. 

Migration 

Migration with the two-wave equation of prestack data for 
media with c = c(x,y,z), p = p(x,y,z), is based on the 
following recursive algorithm in the x,y,odomain, 

B(zM) = W(ZM,Z.+I) . . . 

W(Zi + Az,ti) * . . W(ZI,ZO)B(ZO)* (44 

The procedure for each common shot gather is as follows. 
(1) Specify the total field B(zo). Note that both the source and 
the detector data should be incorporated. (2) Determine the 
downward continued total field B(zM) by means of relation 
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(4a). (3) Apply decomposition into down and upgoing waves 
Pt and P- at z = zM. Note that errors made in this 
decomposition do not contribute to deeper zM”-levels, since 
the total field is downward continued independently in step 
2. (4) Retrieve the direct source wave S from the downgoing 
wave Pt by means of a “first arrival time window”. (5) 
Apply zero-offset imaging (Berkhout, 1982, chapter 7.7; de 
Graaff, 1984) according to 

@(z,)) = & 
i 

S*(z,%,)P-(&)dw. (4b) 
w 

Repeat steps 2-5 for all z~. Repeat the total procedure for all 
common shot gathers and sum the individual migration 
results. Note that the square root operator is avoided, 
critical angle effects may be incorporated, multiple reflec- 
tions do not contribute to the imaged result, and transmis- 
sion effects are included. 

Discussion 

From the foregoing it follows that the two-way wave 
equation migration scheme is more general than the two-way 
wave equation modeling scheme (3-D media versus 1-D 
media). This stems from the fact than the aim of recursive 
migration [reflectivity at zero offset and zero time relation 
(4b)l is less complicated than the aim of recursive modeling 
[reflectivity for all offsets and all times, relation (3b)j. The l- 
D modeling scheme finds its application in linearized multidi- 
mensional inversion techniques for the generation of the 
background medium response. 

Both the modeling and migration schemes can be extended 
for the incorporation of shear waves when equation (1) is 
replaced by the two-way elastic wave equation. In this case 
matrices A and W become 4 x 4-matrices, while B contains 
horizontal and vertipal particle displacements as well as 
normal and shear stresses. Decomposition of B yields down 
and upgoing longitudinal waves as well as down and upgoing 
transversal waves (Ursin, 1983). A further discussion of 
elastic wave modeling and migration is beyond the scope of 
this paper. 

A final remark should be made concerning the migration 
scheme. Like all multiple elimination schemes, accurate 
knowledge of the velocity model is required for an optimum 
performance with respect to the multiples. 

Conclusions 

Application of the two-way wave equation in prestack 
migration allows proper handling of critical angle effects, 
multiple reflections, transmission effects, and wave conver- 
sion. For arbitrary inhomogeneous media, the absence of the 
square root operator is most advantageous with respect to 
the convergence speed of finite difference schemes. The 
principle introduced in this paper represents a potential 
alternative to existing (finite difference) migration schemes. 
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Computational and Asymptotic Aspects 
of Velocity Inversion 

S19.8 

Norman Bleistein, Jack K. Cohen, and Frank G. Hagin, 
Colorado School of Mines 

This talk discusses computational and asymptotic aspects 
of the Born inversion method. We show how asymptotic 
analysis is exploited to reduce the number of integrations in 

a k - f like solution formula for the velocity variation. The 
output of this alternative algorithm produces the reflectivity 
function of the surface. This is an array of singular func- 
tions-Dirac delta functions which peak on the reflecting 
surfaces-each scaled by the normal incidence reflection 
strength at the surface. Thus, imaging of a reflector is 
achieved by construction of its singular function and estima- 
tion of the reflection strength is deduced from the peak value 
of that function. By asymptotic analysis of the application of 
the algorithm to the Kirchhoff representation of the back- 
scattered field, we show that the peak value of the output 
estimates the reflection strength even when the condition of 
small variation in velocity, an assumption of the original 
derivation, is violated. Furthermore, this analysis demon- 
strates that the method provides a migration algorithm when 
the amplitude has not been preserved in the data. The design 
of the computer algorithm is discussed, including such 
aspects as constraints due to causality and spatial aliasing. 
We also provide O-estimates of computer time This algo- 
rithm has been successfully implemented on both synthetic 
data and CMP stacked field data. 

The purpose of this talk is to discuss certain computational 
features and their basis in asymptotic methods of the result 
known as Born inversion (Cohen and Bleistein, 1979a). In 
that paper, a method was proposed for inverting backscat- 
tered (CMP stacked) seismic data for sound speed. This 
inverse problem was modeled by the acoustic wave equation 
with a sound speed which was written as a perturbation from 
a reference or background sound speed. A nonlinear integral 
equation, involving the product of the unknown perturbation 
and the unknown wave field in the earth was derived. The 
known quantities in this equation are the backscattered 
(CMP stacked) observations at the surface. Linearization of 
this integral equation led to a Fredholm integral equation of 
the first kind for the sound speed perturbation. The kernel of 
this integral equation is not square integrable in all of 
variables. Thus, the theory for such bounded (compact) 
kernels (which predicts ill-posedness) does not apply to this 


