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by migration for variable midpoint and zero offset (poststack mi- 
gration). This artificial operator separation is actually only al- 
lowed for horizontally stratified media (k!J” = 0), as can be eas- 
ily seen from relation (7). When the data contain dip information, 
an alternative procedure must be followed. It was shown in the 
previous section from a wave theoretical point of view that an 
exact wave field extrapolation operator separation is not possible 
for the midpoint-offset space. However, in the literature several 
interesting procedures in the midpoint-offset space have been 
proposed which are based on geometrical considerations. 

We mention offset continuation (Bolondi et ai., 1984) and dip 
moveout (Hale, 1984). In both techniques the data are dip cor- 
rected for constant offset and variable midpoint, followed by 
stacking for constant midpoint and variable offset and post-stack 
migration. Particularly the dip moveout technique can be applied 
very efficiently by Fourier transforms. Several aspects will be 
illustrated with synthetic examples during the presentation. 

Conclusions 

Using a matrix expression for multishot prestack data, we dis- 
cussed a full prestack migration scheme. This full prestack mi- 
gration scheme operates in the field-coordinate system (x,, _Q). It 
was emphasized that an important advantage of migration in the 
field coordinate system is that complicated subsurface models can 
be handled. Furthermore, we discussed an alternative formulation 
of the full prestack migration algorithm in the midpoint-offset 
coordinate system. It was shown that in this coordinate system 
midpoint and offset are coupled, so inverse wave field extrapo- 
lation involves approximations when carried out as independent 
deconvolutions in the midpoint-offset space. Finally we gave an 
overview of prestack partial migration algorithms in the mid- 
point-offset space. Though prestack partial migration schemes 
only allow one-dimensional velocity distributions they turn out to 
be very attractive from a point of view of efficiency. 
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Principle of Prestack Migration Based on 
the Full Elastic Two-Way Wave Equation 
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Technology, Netherlands 

S2.4 

This paper starts with a brief comparison of the one-way and 
the two-way modeling and migration approaches. Next, a full 
elastic two-way wave field extrapolation operator is discussed, 
which is accurate up to 90 degrees. This operator is used in a 
full elastic prestack migration scheme for 2-D inhomogeneous 
media. In this scheme multiple reflected and converted waves are 
properly taken into account. Finally, the algorithm is illustrated 
in synthetic examples for 1 -D inhomogeneous media. It is shown 
that with the aid of the full elastic two-way wave equation mi- 
gration scheme, the angle-dependent P-P and P-SV reflectivities 
can be recovered independently. 

Introduction 

It has been shown by Be&out (1982) that a seismic experi- 
ment can be elegantly described by a sequence of independent 
one-way processes, which is schematically represented by 

S-+W++R-tW---+D+P. (1) 

A wave field, generated by sources S at the surface, propagates 
downward into the earth, which is described by one-way wave 
field extrapolation operator W+. In the subsurface this wave field 
is reflected, described by R, and propagates upward to the surface 
again, described by one-way operator W-. At the surface the 
wave field is registered by detectors D, resulting in a seismic 
registration P. Based on this model, Berkhout discusses prestack 
modeling as well as prestack migration schemes for subcritical 
primary data in inhomogeneous fluids. Optionally multiple reflec- 
tions can be included in modeling as well as in migration 
schemes by applying a feed-back system at each major reflecting 
boundary. An alternative approach to prestack modeling and 
prestack migration is discussed by Wapenaar and Berkhout 
(1984). They propose methods which are based on two-way wave 
field extrapolation, which is schematically represented by 

Here [P, -jwVzlr describes the total wave field in terms of pres- 
sure P and particle velocity V, (o denotes circular frequency), 
while ?y describes the two-way wave propagation effects (down- 
going and upgoing reflected waves) between two depth levels. 
Relation (2) holds for primary as well as multiple reflected lon- 
gitudinal P-waves in inhomogeneous fluids. In this paper the 
two-way extrapolation algorithm, which is accurate up to 90 de- 
grees, will be generalized for full elastic media, according to 

I- 1 

jw V, jwv, 

Z. -+w+ Z, II [. zr - z, z (3) 

joV, :, &V, L2 

where uw V,, Z,, Z,, jw VxIT describes the total wave field in 
terms of stress vector [Z,, Z,]’ and particle velocity vector 
[V,, VT]‘, while W describes the full elastic two-way propagation 
effects between two depth levels. Relation (3) holds for primary 
as well as multiple reflected longitudinal P-waves and transversal 
SV-waves in inhomogeneous solids. This two-way extrapolation 
algorithm, which is accurate up to 90 degrees, provides the basis 
for prestack full elastic two-way migration schemes, as presented 
in this paper. 

Full elastic two-way wave field extrapolation 

In this section we briefly review the matrix formulation of the 
full elastic two-way wave equation and its solution. Details are 
given by Wapenaar and Berkhout (1985). We consider the fol- 
lowing first-order differential equation in the space-frequency do- 
main (Ursin, 1983, discusses an equivalent equation in the wave- 
number-frequency domain): 

where 

l4b.c) 

LjwV*J 
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with A = Lame constant, k = Lame constant (shear modulus), 
and p = mass density. The symbol * refers to a spatial convo- 
lution along the x coordinate. The operators d,(x) represent nth 
order band-limited spatial differentiation operators to x. Notice 
that operator A can be applied exactly within the seismic band- 
width because the square operator is avoided. The solution of 
(4a) is given by the following Taylor series summation 

Q(z) = 5 (z--o)~ 
m=O m! _ ’ 

‘0 

(54 

where 

#“Q/al” = a”- ‘(AQ)/~z”~ I, for rn? I. 

(5b) 

Based on relation (.5), a fast converging extrapolation operator 
has been derived which is accurate up to 90 degrees. In the fol- 
lowing, expression (5a) is abbreviated to 

Q(z) = \?TG, zo) QGoh PC) 

where matrix W represents the extrapolation operator for the total 
wave field Q. A further discussion of operator W is beyond the 
scope of this paper. For the computationally convenient subsur- 
face model of Figure 1, recursive full elastic two-way wave field 
extrapolation can simply be described by 

Q(Z)) = ~CZ,, z/-Or 1 \I~(z,, i,-1). , Y(Z), ~0) Q(z~), 
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FIG. 1. 

because the full elastic wave field Q is continuous for all depths. 
Multiple reflections and wave conversion are automatically incor- 
porated. 

Prestack migration scheme based on full elastic two-way 
wave field extrapolation 

Berkhout (1982, 1984) discusses prestack migration by single 
shot record inversion (SSRI), based on the acoustic one-way 
model as described by relation (1). In this section this approach 
is generalized, based on the full elastic two-way model as de- 
scribed by relation (3). The scheme is based on recursive appli- 
cation of the following three steps for each single shot record. 

Downward extrapolation. Given the total field Q(zj- ,), then 
downward extrapolation can be applied according to 

Q(zt) = W(Z,, Zt- I) Q(zi- 11. (7) 

Decomposition. The total wave field can be decomposed into 
downgoing and upgoing waves according to 

P(r,) = L-‘(G) Q(zi). (84 

with (8b) 

P = bb+.$+,-6-.+-lT, 

where I#’ and +’ represent downgoing P and SV-waves, respec- 
tively. Similarly, $- and IJ- represent upgoing P and SV-waves, 
respectively. A discussion of decomposition operator 4-l is be- 
yond the scope of this paper. The longitudinal component (P- 
wave) of the downgoing source wave can be retrieved from the 
downgoing wave $‘(zi) by means of a “first arrival time win- 
dow,” yielding $&(zi). This actually means that multiple re- 
flected waves are excluded from the imaging procedure. 

Imaging. Zero-offset (20) imaging can be applied by inte- 
grating the ZO impulse response Y over all frequencies, in order 
to resolve the ZO reflectivity at the current level (downgoing and 
upgoing waves are time-coincident), according to 

< R,, ,7(x. z,)> = I Y,. P(X, z,,o) dw, @a) w 

< R,,., ,,(I, I,)> = I Ys:,,, & rir o)da, (9b) w 

where 

Y,, &x, zi, 0) = O.-(x, 5, u#I%%, Zir o), (9c) 

Y.,,. &x, r;, w) = t/-(x, Zir tG+,:,.(x, zi, w), (9d) 

in some stable sense. Stabilization is assured when relations (9c) 
and (9d) are replaced by 

Y,,. &3 r,. w) = Jrl&x, z,, w)l*o-(x, z,, o), (9e) 

Y,,.. &, z,, 0) = J+,:,(x, zi, 4l**-k z,, WI7 (90 

where the symbol * denotes complex conjugation. The above 
three steps (downward extrapolation, decomposition, and imag- 
ing) should be applied recursively, thus yielding one migrated 
shot. The procedure starts at the stress free surface z. where the 
initial condition Q(zo) follows from 

QM = liovz, Zx, xc, Z, srccI b&J;. (101 

Here Z,,(z,) = ~Z,,,,(zo),Z,~~,(zo)J’ represents the stress source 
and V(z,,) = [V,(z,), V,(zo)J represents the detected particle ve- 
locity. When all shots have been migrated, then the individual 
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migration results can be summed. By this summation procedure 
true common-depth-point (CDP) stacking is accomplished. 

Discussion 

In comparison with conventional acoustic one-way migration 
schemes, the full elastic prestack two-way migration scheme, as 
introduced in this paper, has the following advantages: use of the 
square root operator is avoided, true CDP-stacking is accom- 
plished, multiple reflected waves are properly handled, and wave 
conversion is properly handled. For a proper handling of multiple 
reflections and wave conversion, accurate knowledge of the sub- 
surface model is required. Therefore the scheme should prefera- 
bly be applied iteratively. We implemented a full elastic two-way 
wave equation migration scheme for 1-D inhomogeneous media, 
using an imaging principle in the ray parameter domain. It will 
be shown with the aid of numerical examples that the angle de- 
pendent P-P and P-SV reflectivities can be recovered indepen- 
dently. 
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This paper starts with a review of the principle of prestack 
migration by single shot record inversion (SSRI). Prestack migra- 
tion by SSRI is very laborious when applied in three dimensions. 
Therefore, an alternative procedure is discussed which can be 
implemented very efficiently on vector computers, particularly 
when use is made of a fast mixed-domain operator, as introduced 
in this paper. Some preliminary results will be shown and a 
benchmark on a Cray vector computer will be discussed. 

Introduction 

In areas with complicated structures, 2-D as well as 3-D post- 
stack migration techniques give a poor image of the subsurface 
because diffraction energy and conflicting dips are not treated 
correctly by common-midpoint (CMP) stacking. Therefore, in the 
past few years much research has been done to the development 
of prestack migration techniques. Because of the enormous 
amount of data to be processed in full 3-D prestack migration, 
serious attention has been paid so far only to 2-D prestack migra- 
tion. Various techniques have been developed which are satisfac- 

tory when a 2-D subsurface may be assumed. However, for com- 
plicated 3-D inhomogeneous structures, 3-D prestack migration 
becomes necessary. Even with the new generation of fast vector 
computers full 3-D prestack migration is still unthinkable, so 
compromises need be made. An interesting solution appears to 
be the 3-D version of the dip moveout technique. Although simple 
velocity models must be assumed, this solution should certainly 
be explored because of its efficiency, particularly when applied 
in the Fourier domain (Hale, 1984). In this paper a more general 
and rigorous approach to 3-D prestack migration will be pre- 
sented, namely the 3-D version of the single shot record inver- 
sion (SSRI) technique. In principle this method can handle any 
3-D inhomogeneous velocity model. It will be shown step by 
step how the efficiency can be improved such that the procedure 
is computationally manageable with vector computers. 

Principle of the SSRI technique 

In this section we briefly review the principle of prestack mi- 
gration by SSRI, as proposed by Berkhout (1984). For each sin- 
gle shot record, this migration procedure basically consists of the 
following two steps in the frequency domain: 

(1) Downward extrapolation by means of forward extrapolation 
of the downgoing source wave, yielding S+(x, y, Zi, o) and 
inverse extrapolation of the upgoing detected wave, yielding 
P-(x, y, zir 0). These extrapolation steps can be carried out in- 
dependently, using the one-way wave equations for downgoing 
and upgoing waves (De Graaff, 1984). Alternatively, S+ and P- 
can be downward extrapolated simultaneously, using the two- 
way wave equation for the total wave field, thus properly ban- 
dling primary as well as multiple reflected energy (Wapenaar and 
Berkhout, 1984). 

(2) Imaging by means of integration of the zero offset (ZO) 
impulse response Y over all frequencies o, in order to resolve the 
ZO reflectivity R at the current level zi (downgoing and upgoing 
waves are time-coincident), according to 

where 

Y(J* Y, zit @I = p-(xv Y, Zir O)/s+(x, Y, Zip @I, (W 

in some stable sense. Stabilization is assured when relation (1 b) 
is replaced by 

Y(X, y, zi. 0) = [s+(x, y, zi, o)l* P--(x, Y. Zir 0). (lc) 

where the symbol * denotes complex conjugation. Notice that 
relation (lc) is the frequency-domain representation for the cor- 
relation of the downgoing source wave S+ and the upgoing re- 
flected waves P- . 

The above two steps are repeated (recursively or nonrecur- 
sively) for all depths zip thus yielding one migrated shot in terms 
of the ZO reflectivity R. When all shots have been migrated, then 
the individual migration results can be summed. Optionally a re- 
sidual NMO-correction can be applied if the input velocity model 
is in error. By the summation procedure, true common-depth- 
point (CDP) stacking is accomplished. The whole procedure can 
be applied in two or three dimensions. For the 2-D case the pro- 
cessing sequence is visualized in Figure 1. 

Generation of multifold zero-offset data by SSRI 

Prestack migration by SSRI, as described in the previous sec- 
tion, is very laborious when applied in three dimensions. Here 


