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Summary 
PA=- [P$VG-G$VP].t?dS, 

4 
The conventional Kirchhoff integral is based on the two-way S 

wave equation. It formulates how the acoustic pressure in a 

point A inside a closed surface S can be calculated when the 
acoustic wave field is known on S. In this paper we decompose 

the two-why wave field on S into one-way wave fields. Next, 

by applying the one-way wave equations on S, the conventional 
Kirchhoff integral is considerably simplified. The resulting. 

expressions describe forward extrapolation of primary waves 
through arbitrarily inhomogeneous fluids. The theory is also 

extended for the full elastic case, yielding expressions for 
forward extrapolation of primary P- and S-waves through 
arbitrarily inhomogeneous, anisotropic solids. Surprisingly, 

these full elastic one-way Kirchhoff integrals have the same 
simple form as the acoustic one-way Kirchhoff integral. For 

sampled wave fields, the one-way Kirchhoff integrals ( acoustic 

and full elastic ) can be represented as a matrix operator acting 
on a data vector. This matrix operator and its inverse play an 
important role in a new full elastic seismic processing scheme as 
proposed by Berkhout and Wapenaar (1988b). 

where the Green’s function G represents a two-way wave field 
related to a source at A. For the seismic situation this closed 
surface integral is often replaced by an integral over a flat surface 
S, at depth z,, In that case the inhomogeneous acoustic 
volume V covers the entire lower half-space z 2 zO. To 

simplify the Kirchhoff integral the two-way Green’s functions 

are generally chosen such that either &/&or G vanishes at 
zO. This can be accomplished by choosing for the Green’s 
function a rigid or a free surface at z,. This approach has 
practical value only for media with small contrasts so that the 

two-way Green’s functions do not contain significant multiple 
reflections. Here we follow an entirely different approach. We 
assume that at zO the acoustic wave field may be written as the 

sum of downgoing and upgoing waves, according to 

P=P++P- at zO, 

where P+ represents the incident wave field (including higher 

order terms), related to sources above z,, and where P - 
represents the scattered wave field (including higher order 
terms), related to inhomogeneities below z,, see also Figure 2a. 

Similarly, for the Green’s function we assume 
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Introduction 

In the seismic practice, migration and inversion are largely 
carried out by one-way algorithms. Two main reasons can be 
mentioned: 1) In one-way algorithms source strength and source 
Signature need lent to be known, 2) in one-way algorithms the 
Green’s function is relatively simple as primary energy is 
considered only. As a consequence, one-way algorithms are 
robust and economically attractive. In this paper the theoretical 

basis of one-way algorithms, the one-way version of the 
Kirchhoff integral, is considered for acoustic and elastic data. 

G = G+ + G at z,, (2b) 

where G -represents the incident Green’s wave field (including 

higher order terms), related to a Green’s source at A below z, , 

and where G+ represents the scattered Green’s wave field, 

(including higher order terms) related to inhomogeneities above 
z,, see also Figure 2b. 

Acoustic Kircbhoff integral for two-way wave field 
extrapolation 

With these assumptions, the Kirchhoff integral may be 

written as 

P++P-@(G++G-) 

-(G++G -)#P++P -)-jzoh.fY . (3) 

Consider the configuration in Figure 1, which represents an 
PA=/& par 

arbitrarily inhomogeneous acoustic volume V, enclosed by a 
surface S with an outward pointing normal vector n’. Assuming 

that the somzes for the acoustic wave field P are outside s, 
then the two-~cay wave field at A inside S can be obtained 

from the two-way wave field on S by means of the Kirchhoff 

integral: 

In this paper we derive simple expressions for Drimarv wave 
field extrapolation through inhomogeneous acoustic media, 

using equation (3), with the one-way Green’s functions, as a 

starting pint. 
Following a similar approach, we also derive simple 
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2 One-way Kirchhoff integrals 

expressions for extrapolation of primary P- and S-waves 

through inhomogeneous, anisotropic elastic media. 

Acoustic Kirchhoff integrals for primary wave field 

extrapolation. 

Using the one-way wave equations for downgoing and 
upgoing waves, equation (3) can be simplified considerably. A 
general derivation is presented by Berkhout and Wapenaar 

(1988a). Here we make the simplifying assumption that the 

medium parameters p (mass density) and c (propagation 
velocity) do not vary laterally at z,. Consider the 2-D version of 
Parseval’s theorem 

* 

M&Y) B(x,Y) dx dy = 

A7kz,kYJ fl-k&J dR, dk, . (4) 

Applying this theorem to equation (3) and substituting the one- 
way wave equations 

-&(P*+P”-) = -jk,(P”‘-P”-) at z, 

and 

(5a) 

$((?++E-) = -jk,(?-G”-) at z, 

with 

(5b) 

yields 

where the sub-script “D” denotes that k, and k, have been 
replaced by -k, and -kY, respectively. This equation can be 
simplified to 

- P-$ jk,~~],o dk,dS, , 

V-W 

Parseval’s theorem 

Note the interesting property that this simplified Kirchhoff 
integral contains only two of the eight terms of Kirchhoff 

integral (3). The second term in (6~) may be omitted if we 
choose for the Green’s function a reflection free upper half 

space, so that Gt= 0 at z,. This choice is always justified, 
even when the actual upper half space is not reflection free: 
outside volume V (the lower half space) P and G need not 
necessarily satisfy the same wave equations. Finally, when we 

take for G -only the primary arrivals at zO, than (6c) may be 
rewritten as 

p;=+f’+ $$$-]z,dxdy . (7) 

This integral describes forward extrapolation of the primary 

downgoing wave Pt from surface I,, through an arbitrarily 
inhomogeneous medium, to any point A below z, 

Elastic Kirchhoff integrals for primary wave field 

extrapolation 

Consider the elastic Kirchhoff integral for inhomogeneous, 

anisotropic solids 
+w 

(8) 

Here v’ and 4 represent the two-way elastic wave field at z, 
in terms of the displacement and the traction, respectively. The 

sources for 8 and Tz are above z,. G’ and Tz represent the 

two-way Green’s wave field at z, in terms of the Green’s 
displacement and the Green’s traction, respectively. The source 

for G‘ and f, is at point A below z,. In the literature this 

Green’s source represents a unit body force at A, acting in the 

x, y or z direction. Accordingly, R represents the x, y or 
,.A 

z component of the displacement U at A (see for example Aki 

and Richards, 1980). Wapenaar and Haimk (1988) extend this 
concept. They show that when the Green’s source represents a 

P-wave source or an S-wave source at A, then R, 
represents a P-wave potential or an S-wave potential for the 
elastic wave field at A. Let us now, in analogy with (2a) and 
(2b), express the elastic wave field and the Green’s wave field at 
z0 in terms of one-way potentials for downgoing and upgoing 

P- and S-waves, according to 
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One-way Kirchhoff integrals 3 

P- and S-waves, according to 

i-j-=’ 
p w 2  [V($++Q-)+VX(F++@)] atz, (9a) 

Substitution in (8) yields a Kirchhoff integral with thirty-two 

terms. When we follow the same procedure as in the acoustic 

case we find that equation (8) may be rewritten as (in analogy 

with equation (7)): 

Note the interesting property that this Kirchhoff integral contains 

only two of the thirty-two terms of Kirchhoff integral (8). From 

this equation two simplified versions may be derived. When 

both the elastic wave field and the Green’s wave field are 

radiated by P-wave sources, then the second term in (10) may 

be neglected, hence 

UW 

This integral describes forward extrapolation of the primary 

downgoing P-wave potential from surface zO, through an 

arbitrarily inhomogeneous, anisotropic solid, to any point A 

below z,. On the other hand, when both the elastic wave field 

and the Green’s wave field are radiated by, for example, SV- 

wave sources, then the first term in (10a) may be neglected, 

hence 

(lib) 

This integral describes forward extrapolation of the primary 

downgoing S-wave potential from surface zO, through an 

arbitrarily inhomogeneous, anisotropic solid, to any point A 

below z,. Both in (1 la) and (llb), the errors are of the same 

order as the negligence of multiply converted waves. 

A matrix notation for sampled wave fields 

In practice we are always dealing with sampled wave fields. 

This means that one-way Kirchhoff integrals (7) for the acoustic 

case as well as (1 la) and (1 lb) for the full elastic case may be 

replaced by summations. 

In the following we consider the 2-D situation and we 

choose for A any point at depth level z, below zO. Then the 

summations can be elegantly represented by the following matrix 

notation: 

F+(z, ) = w + (ZA , z, ) P-iz, ) . Wa) 

The elements of vector %(z,) represent the (monochromatic) 

sampled downgoing wave field P+, $+ or Y,,+ at zO. 

Similarly, the elements of ?+(zA) represent the sampled 

downgoing wave field P+, Qf or Y,,+ at zA. The elements 

of the i’th raw of matrix W+(z,,z,) represent the sampled 

Green’s wave field (2 AX p’)J,G - or 

(2 Ax ~a’Ur2)dZ#o- or 

(2 Ax rr’@-2)Q-o,Y at z,, related to a Green’s source 

at (Xi, IA). 

Hence, the simple matrix product (12a) may represent forward 

extrapolation from depth z0 to depth zA of either 

- the primary downgoing acoustic wave field P+, or 

- the primary downgoing P-wave potential $J’, or 

- the primary downgoing SV-wave potential YY+. 

A similar expression can be found for forward extrapolation 

from zA to z0 of primary upgoing waves P ; @- or YY- : 

d-(Z, )=W -(z 0 1 ZA ) CZA ) . (12b) 

In the same notation, the expressions for a extrapolation 

read 

?+(z,)=F+(z,,zA) F+(z,) 

and 

(13a) 

P(ZA ) = F -(zA , Lo ) F(z, ) , 

where 

(W 

F +@, ,zA ) ’ [ w + (‘A Pz, ) 1-l = [ w -(‘, *‘A ) I’ (I‘$@ 

and 

F -(zA ,z, ) 4 [ W -( z0 ,ZA ) 1-l = [ w + GA 4,) I’ P 
UW 

where * denotes complex conjugation. 

Discussion and conclusions 

By splitting the wave fields at z, into downgoing and 

upgoing waves we have derived one-way versions of the 

Kirchhoff integrals, both for inhomogeneous acoustic media and 

for inhomogeneous, anisotropic elastic media. In the acoustic 
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4 One-way Kirchhoff integrals 

case the one-way Kirchhoff integral describes forward 

extrapolation of the primary acoustic pressure field; in the full 

elastic case the one-way Kirchhoff integrals describe forward 

extrapolation of either the primary P-wave potential or the 

primary S-wave potential. It is interesting to note that the elastic 

one-way Kirchhoff integrals (1 la) and (1 lb) are not more 

complicated than the acoustic one-way Kirchhoff integral (7). Of 

course the Green’s functions are defined differently in (7), (1 la) 

or (11 b). In practice they should be found by means of 

numerical modeling. Examples of acoustic and elastic 

extrapolation of primary waves through inhomogeneous media 

will be discussed during the presentation. 

We discussed an elegant matrix representation for both 

forward and inverse extrapolation of sampled downgoing and 

upgoing waves. The notation holds for inhomogeneous acoustic 

media as well as for inhomogeneous, anisotropic full elastic 

media. These simple matrix equations play a key role in the new 

full elastic seismic processing scheme, as proposed by Berkhout 

and Wapenaar (1988b). 
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FIG. 1. Kirchhoff integral (1) states that the two-way wave 
field at A inside closed surface S can be computed from 
two-way wave field on S, provided volume V enclosed by 
S is source free. 

pt’zo 
V 

szo 
;i 

V 

@I 

FIG. 2. In this paper, we derive one-way versions of Kir- 
chhoff integral. Underlying principle is that we decompose 
two-way wave fields at z, into downgoing and upgoing 
waves. (a) Situation shown for acoustic pressure (sources 
above zO), (b) situation shown for Green’s wave field 
(source at A below z,,). 
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