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SUMMARY 

Angle dependent reflectivity can be obtained in the pre-stack 

migration process based on shot record inversion. Therefore a 

new imaging technique has been developed which recovers the 

complete reflectivity matrix from downward extrapolated shot 

records. The reflectivity matrix is an operator which transforms 

the incident wave field into a reflected wave field, taking into 

account angle dependency. 

All present-day seismic migration schemes determine only 

the diagonal of the reflectivity matrix, each diagonal element 

representing the zero-offset reflectivity at one lateral position on 

a reflector. In this simple diagonal form, however, angle 

dependent reflectivity is not accounted for. By considering the 

rows of this matrix the angle dependent reflection coefficient can 

be retrieved. The fist tests with this shot record based imaging 

technique show good results upto high angles, both in the 

acoustic and in the elastic case. With angle dependent reflectivity 

results it becomes feasible to obtain density and velocity 

information. 

ODUCl’ION. 

The physical model for one-way wave propagation can 

simply be represented in terms of matrix multiplications: by a 

downward propagation matrix, a reflection matrix and an 

upward propagation matrix. The reflectivity properties of a 

reflector are described by reflectivity matrix R. In seismic 

migration it is common practice to represent reflectivity by a 

* reflection coefficient. In this case the reflectivity matrix is 

a diagonal matrix, each element representing the reflection 

coefficient at a lateral position at a constant depth level: R(x,zJ 

in the 2-D case. As a consequence only information about the 

m can be retrieved. 

It is shown in this paper that more information can be 

extracted from the reflectivity matrix. This information is in the 

form of space-variant, angle dependent reflectivity information 

R(x,z,;a). With this additional information the medium 

~afameter~ (p,cp,cs) can bc determined. The retrieval of angle 

dependent reflectivity from seismic data is based on shot record 

migration as proposed by Berkhout (1982). Therefore, in 

contrast with amplitude versus offset techniques, complicated 

subsurfaces can be handled. 

REFLECTIVITY IN THE FORWARD MODEL 

Following Berkhout (1982), the two-dimensional model of 

seismic shot records, which describes the monochromatic 

primary response of one CSP-record, can be written as follows 

(in matrix notation): 

i;csp(z,,) = D(zd [c W(zo,zi) R(zJ W(zi,zO)] i+(z,), (1) 
i 

see also Figure 1. Here S ++ (~0) describes the downgoing source 

wave field at za. Vector Fcsp(ze) represents the total pressure of 

all reflected wave fields, arriving back at the surface zc. Detector 

matrix D(ze) defines the field patterns. Matrices W(q,ze) and 

W(zo,z$ describe the propagation of the source and the reflected 

wave field, respectively. 

Reflectivity matrix R(q) defines the relationship between the 

downward and upward travelling pressure fields at zi: 

i;-(zi) = R(zJ $+(zi) (2) 

The determination of matrix R is generally complicated for a 

given subsurface model. Therefore, often R is taken as a 

diagonal matrix. The’inhomogeneities at zi are considered 

‘locally reacting’, i.e. one point of the incident wave field 

contributes to one point of the reflected wave field at the same 

lateral position. Therefore we call this diagonal matrix the zero- 

offset (ZO) reflectivity matrix. In this case the rows of R(zi) 

consist of only one non-zero sample. 

Ideally, m point of the reflected wave field P-(Xj,Z,,W) at 

the reflector is computed from a spatially-weighted average of 

the a incident wave field S’(X,Zi,W) at the reflector (Figure 

2). We call this spatially-weighted average at Xj the reflecrivity 

convolution operator Rj(X,Zi,O). For a laterally invariant 

reflector, equation (2) can also be written by means of a spatial 

convolution: 

P-(x,z;,w) = R(x,z;,w) * S+(X,Z;,W), (3) 

where the asterisk denotes convolution along the x-axis. A 

reflectivity convolution operator defines angle dependent 
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2 Angle-dependent reflectivity 

reflection. If we spatially Fourier transform relation (3) to the 

k,-o domain (S, is the horizontal wavenumber) we obtain 

; -(kx,z,w) = R(k,.z+c) s +(kx+,w). (4) 

E(k x,z,,~ IS named the (angle dependent) reflectionfunction at ) 

level z; and is given by 

@k z o )  _  P2JkX - plJGk: 
x’ i’ p2Jk?-kl+p,m @) 

with pt and p2 the densities of the upper and lower layer. By 

substituting k,=w/c,, k2=o/c2 and kx=klsina the well-known 

angle dependent reflection coefficient R(a) is obtained (cr and c2 
are the velocities in the upper and lower layer). 

So, if a reflector is locally reacting then R is a diagonal 

matrix, hence R(x,z$I) = R&X), ~(kx,ZirO) = Rt,, so the 
reflection function does not vary with the angle of incidence 
(Figure 3a). Unfortunately, the locally reacting assumption is 
not valid in many practical situations, hence reflectivity matrix R 

will have a band-structure and the reflection function will show 
angle dependence as can be seen in Figure 3b. Hence, if we are 
interested in finding the angle dependent reflection by seismic 
migration, we should not only compute the diagonal elements 
but the full reflectivity matrix R. 

ECTMTY IN THE BE-STA-TIOH 

The forward model for one seismic experiment, formulated 

in equation (1). can be rewritten into (we assume detector matrix 

D to be an identity matrix) 

~&) = X(z,) ~‘(z,, (64 

with 

XCZ~ = c.[W(Z~,Z,, R(Zi) WCZi,Ze>]. 
i 

NW 

In the inverse problem we have to determine R, given the 

seismic measurements?-csp(z,-J, the source ?!+(xt,) and a macro 
subsurface model. Compensation for the propagation effects 

between the surface and depth level q can be described by 

s+czi) = W(z,,zJ s+(z,) Va) 

and 

f;-(zi) = F(zi,zo) &(zu). (7b) 

The inverse wave field extrapolation operator is given by 

F(zi,zc) = [W(z,,zi)jt = W’(zi,z,,) (8) 

where * denotes complex conjugation (matched filter approach). 
After this downward extrapolation we thus have at z+: 

i;.(zi) = X(zi) ZC(zJ (9a) 

with 

X(Zi) = R(zi) +C [F(Zi,Zo) W(‘o,Zm) R(z,) W(‘m,‘d ‘(zolai)] 
mi 

WI 

Now we have to retrieve reflectivity information R(q) from 
the extrapolated data. For the moment we consider a one- 
reflector model, hence, 

X(zi) = R(zi). (9c) 

Equation (9) formulates an underdetermined system because the 
number of unknowns is greater than the number of equations. A 
particular solution of (9a) and (9c) reads 

< R(zJ>, = ’ i;-(ZJ (SC(Zi)jr (loa) 
I I z+tzi) I I 2 

where <..>,, denotes that this non-unique solution is obtained 
from shot record n and where T denotes a transposition. By 
&&ng all individual shot record results according to 

R(zi) = 2 ’ R(zi)‘n (lob) 
n-1 

a unique solution for the full reflectivity matrix is obtained 
(Wapenaar and Berkhout, 1987). 

OBTAINING AN&E DEPENDENTR 

Thus far in the practice of seismic migration, only the 

diagonal elements of matrix R(q) used to be selected. As argued 
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in a previous section, in order to obtain angle dependent 
reflectivity information the rows of the R matrix have to be 

computed. In the following we restrict ourselves to interpreting 

just the jth row of the reflectivity matrix R(zJ, as defined by 

(lob). This is the reflectivity convolution operator Rj(X,Z,,W) at 

lateral position x9 If we spatially Fourier transfotm this function 

to the kx-w domain the angle deoendent reflection function 

i)lJ(kx,zi,w) for lateral position xj at the reflector is obtained 

So far ‘we considered the retrieval of angle dependent 
reflectivity for one frequency component only. In the broad- 
band case the imaging step must be taken into account. 
Straightforwardly applying the conventional imaging step 

Rj(x,zi,t = 0) = e x Rj(x,zi,o) (11) 
w 

would result in losing the angle dependent reflectivity 
information, Therefore another imaging operator has to be 

contrived which must be based on the fact that the reflection 
functions must be summed along l&s of co- in the 

k.+ domain, that is, along lines of constant 

kx sine! 1 _=-=_* 
w 5 5 

In seismic literature cx-t is generally referred to as the 
rayparameter p. So, if we replace the wavenumber variable k, 
by the rayparameter p: 

R j(kx.zi,w) -, R j(~,zi,@, (12) 

then imaging should be carried out along lines of constant p: 

ii j(p,zi,z = 0) = & c r?. j(p,z$u), 
w 03 

Wa) 

(N, is a weighting factor equal to the integral of the source 
spectrum.) 

The above described procedure can be repeated for each 
extrapolation depth level. With the imaging technique we are not 
restricted to the ‘one-reflector case’ any more. Hence, if (9b) 

applies instead of (9c), then in equations (10) and (12) R should 
be replaced by X, hence (13a) should be replaced by 

I? j(p,zi,z = 0) = & c x j(p,zi,o). (13b) 
(0 m 

FXAMeLE 

As an example we consider the configuration of Figure 4a 
(see de Bruin, 1988). This full elastic subsurface model consists 
of an overburden and a target zone, consisting of several thin 
layers. The seismic PP-response from one shot record is shown 

in Figure 4b. The results on the elastic angle dependent 
reflection coefficient %p, retrieved from the dataset of Figure 4b 
by means of our shot record based migration algorithm, are 

presented in Figure 5. Upto at least cc=30’, the migration results 
(dashed lines) show a high degree of similarity with the 

theoretical results (solid lines). 

CONCLU- 

We have shown theoretically that it is possible to retrieve 

angle dependent reflectivity R(x,z# by means of shot record 
migration and stacking for w subsurface. Once this function is 
found it is in principle feasible to determine the detailed density 

and P- and S-wave velocities in a medium. In an example we 
have demonstrated the validity of our approach for a 1-D full 
elastic subsurface. More examples will be presented during the 
presentation. 
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4 Angle-dependent reflectivity 

1 FIG. 1. Basic model for the seismic FIG. 2. Each row of the reflectivity matrix 
response from depth level zj (no field R represents a reflectivity convolution 
Datterns). oper&or. 

FIG. 4. (a) Subsurface model of a horizon- 
tally layered full elastic medium. (b) 
Seismic (IT-) response from the elastic 
model. 

FIG. 3. (a) A locally reacting reflectivity 
operator transforms into an angle in- 
dependent reflection function. (b) A non- 
locally reacting reflectivity operator 
transforms into an angle dependent 
reflection function. 

~c”ector depth: z,=l648.5 m 

FIG. 5. Full elastic angle-dependent reflectivity results (dashed lines) 
from the model of Figure 4 together with the theoretically computed 
results (solid lines). 

I 
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