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Summary 

A prestack, wave equation based method is introduced for 
eliminating all surface related multiples. For this method the data 
itself is used as the multiple prediction operator. 
The main advantage of this method is the fact that no knowledge 
about the subsurface is needed, even not about the first reflector 
in the subsurface (the sea bottom in marine data). On the other 
hand the reflectivity properties of the pressure free surface and 
the source wave field characteristics must be known. This last 
feature may seem a drawback, especially the knowledge about 
the source wave field including the scale factor in the data, 
because they will not be known in general. 
But the whole procedure can be reformulated in such a way that 
the multiple elimination becomes an adaptive scheme with the 
source wave field as the unknown variable. By minimizing the 
total energy in the data after multiple elimination, the source 
wavelet can be estimated together with the multiple elimination. 
It appears that especially the phase spectrum of the wavelet can 
be well estimated by this method. 
In principle this multiple elimination and wavelet estimation 
procedure can be applied for acoustic data and as well as multi- 
component data. However, the restriction to acoustic data will be 
made in this paper. 

Introduction 

Multiple elimination, especially in laterally inhomogeneous 
media, is still a significant problem in seismics. Most multiple 
elimination procedures fail if an inhomogeneous subsurface is 
present. The nice feature of the proposed method is the fact that 
no information about the subsurface is needed, which makes it 

also suitable for complicated geologic subsurfaces. The multiple 
elimination can be regarded as a processing step in advance to all 
other inversion and migration procedures. 
The multiple elimination method was originally described by 
Berkhout (1982, chapter 7). 

Theory of multiple elimination 

Following the matrix notation for seismic data of Berkhout 
(1982, chapter 6), the full prestack monochromatic seismic data 
without any surface related multiples (in the two dimensional 
case given by a matrix in the x-w domain) can be represented by: 

P&z& = Q+(z,,)S+@J, (1) 

in which P,-(z,) represents the monochromatic upgoing wave 

field at the surface (z=zO), S+(zO) represents the downgoing 

source wave field and Q+(Q) the spatial impulse response of the 

- 
subsurface without the surface related multiples. In the data 

matrix PO-(zo) the columns contain the monochromatic shot 
records and the diagonal elements the zero offset data. The 

Q+(zn) matrix can bc considered to be the overall reflection 
matrix of the subsurface. Figure la shows equation (1) in a 
block diagram representation. 
In reality the free surface reflects all upgoing energy, which 
causes a new illuminating downgoing wave field, giving rise to 
multiple events. This property gives an implicit expression for 

the total upgoing wave field P-(z& at the surface containing all 
multiples: 

P-(zO) = Q+(z,$ I S+$J + R-$,)P-$,) I. (2) 

with R-(z,) being the reflectivity matrix of the free surface for 
upgoing waves. Figure lb shows how the block diagram of 
figure la changes when a reflecting surface is taken into 
account. Equation (2) can be rewritten to get an explicit 

expression for the total upgoing wave field P-(q): 

Pm(z,) = I I - Q’(z,jR-(z,)l~‘Q’(z,)S’(z,). 
(3) 

The fit term at the right hand side of equation (3) generates all 
surface related multiples. So equation (3) gives us the forward 
model of acoustic data with all multiples included. Note the fact 

that Q+(z,,) contains & upgoing events that are reflected in the 

subsurface and not at the free surface. In fact this Q+(z,,) is the 
data we are interested in for further seismic processing. 
This means that for eliminating the surface related multiples, 

equation (3) has to bc rewritten to get an expression for Q+(Q): 

Q+(z,) = P%,) [ S+(zo) + R-b,) P-&J l-l, (4) 

or 

Q+(z,,) = P-(z,,)S+(z$[ I t R-(zo)P-(z,)S+(z$]-t, (5) 

in which P-(z&S+(z,$t represents the data deconvolved for the 
source wave field. If we define 

X’(z,) = P-(z,)s+(zn)-t, (6) 

equation (5) transforms into 

Q+(z,,) = X+(z,)[ I + R-(zJX+(z$‘. 
(7) 

X+(Q) can be considered as the spatial impulse response matrix 
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of the subsurface with the free surface included. 
Equation (7) defines the multiple elimination procedure that is 
investigated in this paper. But applying equation (7) will give 
serious problems on inverting the term on the right hand side. 
To show this, the inversion term of equation (7) is expanded 
into a Taylor series giving: 

Q+(zJ = X+(z,)[ I - R-(z,,)X+(z,) + (R-(z~)X+(Z~))~ - 

U-(z,,)X+(z,) I3 + . . . 1 (8) 

Each term in this Taylor series eliminates one higher order of 
surface related multiples. For strong multiples this series will not 
converge rapidly and the inversion in equation (7) is not very 
stable stable. Stabilization of this inversion will have a negative 
influence on the result. Therefore equation (8) is taken as the 
multiple elimination procedure because it is always stable as only 
a restricted number of terms is taken into account. 
Note the fact that apart from the source wave field and the 
reflection characteristics of the free surface no other external 
information is used in this elimination procedure. Furthermore, 
in the acoustic case the free surface will be totally reflecting for 
all angles of incidence, which means that the reflectivity matrix 

R-(zc) can be replaced by a single reflection coefficient rc=-1, 
yielding: 

Q'(z,) = X’(z,) - rnX+(zJ* t $X+(zJ3 - . . (9) 

The procedure mainly consists of matrix multiplications in the 
X-CU domain which makes the algorithm very suitable for vector 
machines. 

Estimation of the wavelet by multiple elimination 

As mentioned before, for the proposed procedure we need the 
source wave field, including the directivity of the sources, the 
frequency dependent wavelet and the data scale factor. This last 
requirement comes from the fact that the data itself is used as 
multiple prediction operator, so true amplitudes are needed to get 
a good amplitude match between the predicted multiples and the 
multiples present in the data. All this information will never be 
available in real seismic data. Therefore the whole method will 
only work if it is data m. So the source characteristics 
must be estimated in order to get rid of the multiples completely. 
If we assume that the sources are vibrators (flat k,-spectrum) the 
source wave field matrix can be written as: 

s+(zJ = S(w) I, (10) 

with S(o) the frequency dependent wavelet. Combining 

equation (l), (6), (9) and (10) the result is: 

P&z,,) = P-(z,) - Ra(o)P-(z,)’ t R;(o)P-(z,)’ - 1.. (11) 

with 

R,(o) = r,S.‘(w), (12) 

being a frequency dependent reflection function which scales the 

data P-(zn) in such a way that it can be used as a proper 

prediction operator. By letting R&u) vary in such a way that the 
multiples are eliminated in an optimal way, equation (11) can be 
used to eliminate the surface multiples and estimate the inverse 
source wavelet at the same time
One problem left is how to decide whether the multiples have 
been perfectly eliminated. For this the total energy in the section 

after multiple elimination, Pn-(ze), is used as measure. This can 
be intuitively understood by the fact that the free surface will 
return energy in the subsurface. If the free surface has been 
transformed in a reflection-free surface, all energy will vanish 
after being detected once, and a minimum energy is reached. 
The wavelet is parametrized by a number of complex frequency 
points, through which the wavelet is splined in the frequency 
domain. In general about 5 to 10 definition points, giving twice 
as much variables (real and imaginary parts), is enough. By a 
standard optimization procedure the optimum wavelet can be 
found and the multiples are removed from the data. 
It appears that this method is especially suited for estimating the 
phase of the (inverse) wavelet, because timing errors have a 
larger effect on the multiple residues than amplitude errors. Note 
the fact that the wavelet is necessarily estimated together with the 
scaling factor in the data. 

Examples 

Two synthetic examples will be shown, First consider the single 
reflector subsurface as shown in figure 2a. Data is modeled with 
a wavelet as shown in figure 2b giving the synthetic shot records 
as the one shown in figure 2c. After adaptive prestack multiple 
elimination with 9 definition points between 10 and 50 Hz. the 
estimated wavelet looks as shown in figure 3a with the multiple 
free shot record in figure 3b. The results are very good; note 
especially that the phase spectrum has been well estimated. 
Figure 4a shows a laterally varying subsurface model. Finite 
difference data was simulated on this model with a 0 to 40 Hz 
zero phase square cosine wavelet, which is shown in figure 4b. 
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Figure 4c shows a synthetic shot record, with strong multiples 
hiding primary events. After adaptive multiple elimination with 5 
definition points between 10 and 30 Hz. , the wavelet has been 
very well estimated (figure 5a) and the multiples have been well 
suppressed restoring the primary events (figure 5b). 
More examples will be discussed during the presentation. 

Remarks 

The whole procedure has been derived for the acoustic case. But 
in principle the same procedure can be applied for the full elastic 

case. Then the data matrix Pm(q,) contains the multi-component 
dataset after decomposition into P and S wave responses and the 

reflectivity matrix R-(z,$ should contain the elastic reflectivity 
operators at the free surface. In that case both surface related 
multiples and conversions can be eliminated as was shown by 
Verschuur et al. (1988). 
In the presence of noise the method can never ‘explode’ as the 
minimum energy criterion after multiple elimination will 
guarantee stabilization. 

x(m) r’o 

UN 

FIG. 1. (a) Block diagram 
representation of seismic data 
without surface-related multiples, 
and (b) with all surface-related 
multiples included. 

Conclusions 

A method has been introduced to eliminate all surface related 
multiples without requiring any knowledge about the subsurface 
structure. As the source wavelet is needed, the scheme has been 
transformed into an adaptive one, estimating the wavelet. By 
minimizing the total energy of the upgoing wave field, a 
parametrized version of the wavelet can be found and the 
multiples are eliminated simultaneously. 
The method shows excellent results on realistically simulated 
data.. 
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FIG. 2. (a) Subsurface model for synthetic 
shot record modeling. (b) Wavelet used for 
modeling simulated data. 

FIG. 2c. Simulated shot record. 
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FIG. 3a. Wavelet after estimation pro- 
cedure with 9 definition points. 

FIG. 4a. Subsurface model for finite- 
difference shot record modeling. 

FIG. 3b. Shot record of Figu 
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after adaptive multiple elimination 
procedure. 

FIG. 4b. WaveleG;ed for modeling 
simulated data. 

FIG. 4c. Shot record modeled with a 
finite-differrence modeling program. 

FIG. 5a. Wavelet after estimation pro- 
cedure with 5 definition points. 

FIG. 5b. Shot record of Figure 4c 
after adaptive prestack multiple 
elimination procedure. 
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