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INVERSE WAVE FIELD EXTRAPOLATION OF 

SUMMARY PRIMARY WAVES 

Generally, the seismic industry has been interested more in 

correct p&e (traveltimes) than in correct amulitude bchaviour. 

For example, in seismic migration techniques one is already 

satisfied when the events in the data are correctly migrated to 

their proper Positions. Gradually more effort is spent on inverse 

wave field extrapolation in which also the amplitude is correctly 

treated. Amplitude errors can be considerable in the presence of 

large contrasts in the subsurface (salt layers, seabottom etc.). 

These errors are in the order of neglecting (multiply) reflected 

waves (-R2, with R the reflection coefficient of the relevant 
reflector). 

In this paper we propose an iterative scheme for generating 

true amplitude wave field extrapolation operators taking into 

account also reflected waves. Any operator, either generated 

with Finite Differences, Raytracing, Wavenumber modeling or 
Gaussian beams can be iterated to preserve the amplitude as 

accurate as is required in the wave field extrapolation process. 

The iterative approach proves to be convergent and stable. An 

additional advantage is that at each iteration step a new order of 

internal multiples can beeliminated. The&of true amplitudes 

in exploration geophysics is clear: correct angle dependent 

amplitude information after migration enables us to determine 

detailed density and velocity in the subsurface. 

The wave field extrapolation technique is based on the 

Kirchhoff integral, which states that the wave field at any point 

inside a volume can be computed provided the wave field is 

known on a surface enclosing this volume. For the seismic 

situation we consider the configuration of Figure 1 with volume 
V enclosed by plane acquisition surface S,, plane surface St and 

cylindrical surface S, with radius r. The wave field is assumed 

to be radiated by secondary sources in the subsurface below St. 
In the inverse wave field extrapolation process we want to 

reconstruct the wave field in subsurface point A. The 

contribution from surface S2 vanishes when radius r goes to 
infinity. 

According to Wapenaar et al. (1989), in A the upeoing 

pressure P-(r,,w) can be written as (w is the radial frequency, 

r is a short-hand notation for the Cartesian coordinates x,y,z): 

P-(r(TA,cu) = P$r*,w) + AP7rA,cn), (la) 

where P&r,,@ is the contibution from the wave field recorded 

at the surface Se. given by 

P&r*,@ = 2 JJ ( -& 3cm(~~A’w) jP-(r,@ ]Qxdy, 
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INTRODUCTION 

Wave field extrapolation plays an important role in migration 

(Berkhout, 198S), inverse scattering (Bleistein, 1984) and 

redatuming (Berryhill, 1984). We can either simulate (forward 

extrapolation) or backward-propagate (inverse extrapolation) 

wave fields at locations where no measurements are available. 

For the wave field extrapolation we have to apply wave field 

(lb) 

and BP-(rA,w) is the contribution from the scattered wave field 

(denoted by subscript s) at surface St, given by 

AP-(rA,cn) = - 2 
II ( =-& 

aG’~A’cn) i P: (r,w) ],tdxdy. 
-m 

extrapolation operators which describe the medium in terms of (lc) 
macro structures. These so-called Green’s functions represent 

spatial impulse responses of the medium. 
Here p(r) represents the mass density and the asterisk (*) 

Wapenaar et al. (1989) have shown that only in case of 
denotes the backward-propagating character of the Green’s 

moderate contrasts the Kirchhoff integral with backward- functions. Equations (lb) and (Ic) are one-way Rayleigh-type 

propagating Green’s functions describes ‘true amplitude’ inverse 
integrals for inverse extrapolation through inhomogeneous 

extrapolation of primary waves. The amplitude errors which are media, assuming that the total wave field at zn and zi may be 

made in the primary waves are of the same order as the split in upgoing (-) and downgoing (+) waves (see Figure 2). 

negligence of multiply reflected waves. We propose a stable and The problem in practice is that measurements of P: at 

iterative method of generating m amplitude wave field surface S, cannot be acquired; only registrations at Sc are 

extrapolation operators for media with l&contrasts. available. Note, however, that AP-(r!,w) in (lc) is proportional 
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2 True amplitude inverse wave-field extrapolation 

to the product of the scattered wave field Pi at z1 and the 

scattered back-propagating Green’s function (Ci:)* at zt. Hence, 

the magnitude of AP-(r,,w) is proportional to multiply reflected 

waves, so it is two orders lower than the amplitude of the total 

upgoing wave field in A. In case of moderate contrasts 
AP-(r,,w) can thus be neglected. 

Since we are always dealing with discrete versions of the 

wave field in practice, Rayleigh II integral (lb) should be 

rewritten as a matrix equation: 

p-(z,) = gz,+J p-(zo)’ (24 

with ~~(zl,zO) given by 

aG-(z=zo,Z1) * 
qz,+J = g [ - aZ 1 . t2b) 

In matrix $(z=zO,zl) each row contains G-(x,z~;x~,z~;co~) for 

One XA on ZI. Vector P-(z,) contains P-(X,Z,,Wi) and vector 

P-(2,) contains P-(X,Zo,Wi). 

THE ITERATIVE APPROACH 

Ideally, inverse extrapolation through an inhomogeneous 
medium should be performed with equation (la), with PO and 

Pi given by relations (lb) and (lc) respectively. In matrix 

notation this equation is transformed into 

p-(q = gzl$J p-(z”) + $z,,z,) q+(z,)’ (34 

with ~J-(-(z~,z,,) given by equation (2b) and with 

t3b) 

In matrix $I(z=z,,z~) each row contains the scattered Green’s 

wave field G~(x,z~;x~,z~;o$ at z1 for one Green’s source at xA 

on zl. The (Gr)*operator describes backward-propagation from 

zt to the interface, reflection and backward-propagation from 

this interface to zl. As already mentioned, the problem is that P: 

in equation (3a) cannot be measured! The idea to solve this 

problem is as follows: 

Model wave field Pzo by means of the inverse 

ertrapolared wave field PO ; then inverse extrapolate 

PI D lo update the inverse extrapolated Pi .With rhis 

newly computed inverse extrapolated wave field Pi, we 

again model scattered wave field P,‘, , and so on 

In this approach the zero* order approximation is given by 

P&J = gz,,z,) P-(z()) (4) 

Note that this equation is equal to equation (2). Simulating the 

reflected (scattered) wave field Pi0 with the zeroLh order result 

is described by 

P&) = $(Zl’Z,) P&,) , 04 

y:(y,) = - $ [ 
qcz=z, J, 1 

aZ 1 (5b) 

Here forward operator F$z,,zt) contains both propagation and 

reflection! The first order approximation (denoted by the 

subscript) is given by 

qq = qz,7q p-@J + gz],z,) q+o(z,L (64 

or, subsequently substituting equation (4) in (5a) and the result 

in (6a), yields 

P;(zJ = [I+,F:(z*,z,) ys+(z,>z,) 1 gzl’Z”) Q$. 

(6b) 
and this is equal to 

As _F:(zl,zt) and y:(zl,zl) are complex conjugates their 

product is real, positive and in the order of R*. Hence, the first 
order approximation involves an amplitude increase with respect 

to the zero* order approximation. In analogy with equation (6a) 
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the second order approximation is given by 

(W 

The first order approximation which we obtained is now used 

for the second order approximation. 
Summarizing, the iterative approach of obtaining the primary 

upgoing wave by taking also into account the scattered energy 

can for the n* iteration be. written as 

F- _TRuE(zI,zO) = [ 2 (@,.z,) $(zl,z*) >” 1 ‘Cz&. 
n=O 

@b) 

This operator preserves m amplitude information, even in the 

presence of large contrasts (evanescent energy excluded). The 

iterations are based on a series expansion of the inverse wave 

field extrapolation operator. It is very important to realize that in 

equation (8) the operator is iteratively obtained, m the 

extrapolation step itself! 

The amplitude of the upgoing wave field in the nLh iteration 

is related to the exact amplitude at depth zl, according to 

iP,(z$ = (1 - R2”+*) IP-@,)I. (9) 

In case 1 RI <<l one can still put up with the expression as in 

equation (2). But, in case there are strong contrasts (I RI > l/4) 

like when encountering salt layers, seabottoms and limestone 

layers, this iterative approach gets very important. With this 

iterative scheme also internal multiples can be iteratively 

eliminated (provided that the macro model is correct!). 

EXAMPLE 

The validity of the iterative approach is demonstrated with a 

simple example. A two-layer medium was modeled with very 

strong contrasts including internal multiples (Figure 3). Figure 

4a shows the upgoing wave field at z. to be inverse extrapolated 

back to zl. The inverse extrapolated result at z1 without applying 

iterations is depicted in Figure 4b; applying 5 iterations gives the 

result of Figure 4c. In Figure 5a-d the amplitude cross sections 

are depicted, showing the amplitude of the inverse extrapolated 

upgoing wave field (dotted line) and the amplitude of the exact 

upgoing wave field (solid line) at z,, as a function of the trace 

number. In case we do not carry out any iterations, the 

discrepancy in the amplitude is considerable. With 5 iterations a 

true amplitude for the inversely extrapolated result has been 

achieved. 

CONCLUSIONS 

We have shown that it is possible to perform true amplitude 

inverse wave field extrapolation by modeling the extrapolation 
operators iteratively. The iterative procedure is stable and 

convergent. It has also been demonstrated that internal multiples 

can be optionally eliminated with each iteration step. Due to the 

one-way character of the wave field extrapolation process, the 
method is perfectly suited for inverse wave field extrapolation 

through high contrast media in practical situations. 
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FIG. 1. Geometry for Kirchhoff int- 
egral in seismic situation; pressure 
in A is computed from measure- 
ments on surface of volume V. 

FIG. 2. Since scattered wave-field 
P:cannot be measured in practice, 
it is always neglected, thereby 
introducing second-order ampli- 
tude errors. 

FIG. 3. Example shows principle of 
iterative approach; acoustic sub- 
surface model containing two 
reflectors with strong velocity con- 
trasts (density constant). _ 

FIG. 4. (a) Wave field at z,, to be inverse extrapolated; (b) 
inverse extrapolated wave field at z1 applying 0 iterations; 
and (c) inverse extrapolated wave field at z1 applying 5 
iterations. 

FIG. 5. Amplitude cross-sections as a function of trace 
number for inverse extrapolated result (dotted line) and the 
exact result (solid line). (a) With 0 iterations, amplitude 
shows a considerable discrepancy (30%); (b) with 1 itera- 
tion, discrepancy has largely been reduced; (c)with 2 itera- 
tions, amplitude has improved again; and (d) with 5 itera- 
tions, there is almost a perfect match. Discrepancy at large 
offsets is due to negligence of evanescent waves. 
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