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Summary

The matched filter approach to inverse wavefield extrapolat
ignores the amplitude and phase distortions due to fine-layer
In this paper we introduce a modified matched filter that propg
accounts for these effects. The correction term by which

matched filter is modified can be derived directly from the da

result in a non-dispersed image with correct AVA behaviour.

Theory

The underlying assumption of any migration scheme is thg
macro model of the subsurface accurately accounts for the pr|
gation effects from the acquisition surface to the target and
versa. A macro model consists of a number of geologically
ented macro layers, separated by macro boundaries. In gen
the velocity and density in each macro layer are chosen to be
ple functions of position (for instance linear functions of dep
accounting for the depth dependent compaction properti
Recent studies on wave propagation through finely layered m
have shown that internal multiple scattering effectively resultg
an angle-dependent dispersion of the wave field [Burridge
Chang, 1989]. In the following we refer to this dispersed wg
field as the generalized primary’ Figure 1 (a) shows an examp
of a homogeneous macro model and the construction of the
ward extrapolation operat(W'; (z] zy) , where p denotegri-
mary. Figure 1 (b) shows a 1-D example of a model with firj

tor W;' (2| zy) , where g denotes generalized primaBurrent

quently, this effect is also ignored in migration, which may reg
in dispersed images and erroneous amplitude versus angle (A
effects. In Delft we are investigating how to parametrize
effects of fine layering in aextendedmacro model [Herrmann
and Wapenaar, 1992]. Now the question arises, what are
implications of the fine layering effects for migration? General
the inverse wave field extrapolation operators required for mig
tion are approximated by the matched filter approach:

H
F; (zo|®) = w; (@ zy) @)

(Berkhout, 1982; H stands for complex conjugate transpose
can be shown that this approach yields accurate results bot
homogeneous as well as inhomogeneous macro models

vided the one-way wave fields are properly scaled). Does
approach also hold for the generalized primary extrapola

Using this modified matched filter in prestack migration will

layering and the construction of the forward extrapolation opégra

macro models do not account for this dispersion effect. Cons

operator, defined in an extended macro model? Unfortunately
onanswer is negative: the dispersion effects in the generalized
ngnary wave are accompanied with an amplitude loss which is
rlycompensated for by the matched filter. Hence, just as is the
thewith anelastic losses, the matched filter fails to account for log
ta.due to fine layering. There is an important difference, howey
between anelastic losses and losses due to fine layering. Wh
anelastic losses represent a conversion of seismic energyj
heat, the losses related to fine layering represent a conversi
forward propagating seismic energy’ into back scattered sei
t @nic energy, see Figure 1 (b). The forward propagating seisn
PP@nergy’ at depth level z can be quantified by the multi-dime
iC&jonal autocorrelation of the downgoing generalized primar
Dri-j e, W; (2] zg) ng (2| zp) . Similarly, the backscattered seismi
erghergy’ at the acquisition surfaczy can be quantified by the
SiMnulti-dimensional autocorrelation of the upgoing wave fields
N, 2, i.e. X{P (29| 29) HXg? (2] 2) » whereX{? (zy| z;) contains
ESkhe (deconvolved) reflection measurements at the surface

inwave fields [Wapenaar, 1993] it can be shown that the follow

ANGelation holds
ve

le

for\7vhich can be interpreted as: hormalized incident energy’ min

hormalized backscattered energy’ equals hormalized forwa
€ propagating energy: We use the quotes because energy is 3
lar quantity wheras the quantities in equation (2) are all matri
eEquation (2) can be rewritten as

1 - X§? (2] 29) BX(? (2| 29) = Wy (21 2) FW; (2l 29)»  (2)

=

ult
VA)
hewith

F; (29| 2) W; (zlzg) =1 ®)

H -1 H
thEy (29D = [1-X{2 (2|2 X2 (2] 29)] Wi (2129 @)
Y,

ra_In the following we caIF; ( Zo| z) themodified matched filter for

inverse wave field extrapolation of the downgoing generalized

mary. It contains the matched fiItW'g" (zlzp) H for the general-

ized primaries defined in an extended macro model, ar

correction term that can be derived entirely from the reflec
. Imeasurements (see Fig. 1 (b)). In practice, the matrix inversi
h fqd) is replaced by a Neumann series expansion. Note that
preequation holds for 3-D inhomogeneous (anisotropic) acoust
thiselastic media. Using reciprocity, the modified matched filter
ionthe upgoing generalized primary follows immediately:

3diﬁig. 1 (b). By using the power reciprocity theorem for one-w
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layered media

- T
F (2zy) = F; (zg|2) . ®

The underlying assumption for this approach is that the propd

tion losses may be entirely ascribed to the fine layering (scattefi

losses only). In the presentation it will be indicated how t
approach can be generalized when anelastic losses play a rg
well.

Example
To illustrate the limitations of the matched filter and the potent

of the modified matched filter we consider a simple example. kig

2 shows a 1-D acoustic medium consisting of 15,000 layers
a thickness of 10 cm each. The statistics of the fine-layering
described by fractal Brownian motion. The average velccsit
equals 2500 m/s. We modelled the upgoing plane waves, prpp
gating from the bottom to the top of the configuration. The raypa
rameter p ranges from 0.00.9/c, hence, the propagation ang|

ranges from Dto 64°. The lower frame in Fig. 2 shows the mod-
elling input at the bottom of the configuration. It will serve ag a
reference for the inverse extrapolation output. The upper frame

Fig. 2 shows the modelling output at the top of the configurati
Note the angle dependent amplitude and phase distortions.
result will serve as the input for the inverse extrapolation exp
ments. Fig. 3 shows the results of four different inverse extrap
tions from the top to the bottom of the configuration in Fig.

Fig. 3 (a) was obtained by applying the matched filter, as definecBerkhout, A.J., 1982, Seismic migration: Elsevier, second ed

in equation (I), using a homogeneous macro model cvith2500

m/s. The only effect is a time shift per plane wave experime

hence, the angle dependent amplitude and phase distortion]
not accounted for. Fig. 3 (b) was obtained with a matched fi
defined in the true model. The results are zero-phase, but the

behaviour is worse than in Fig. 3 (a), because the amplit
decay occurred twice (during modelling and during inve

extrapolation). Next we consider the modified matched filter
defined in equations (4) and (5), with the matrix invers
\98replaced by a truncated Neumann expansion. Fig. 3 (c) and H
NGd) show the results of taking, respectively, one and five term
ESEPSe Neumann series into account. Particularly the last result
3 (d)) shows a very good amplitude recovery up to very h
propagation angles (compare with the lower frame of Fig. 2).
" Conclusions
We have discussed an inverse extrapolation operator
itﬁalccounts for the scattering losses of a ‘generalized primary’ p
alrggating through a finely layered medium. This operator is gi
f by the matched filter (defined in an extended macro model),
bp a{nulnplled by a correction term that can be entirely derived fr
_the reflection measurements. We have illustrated with a sir
example that this modified matched filter properly accounts
the angle dependent amplitude and phase distortions relat
the scattering losses. By integrating the proposed operat
L irprestack migration, one may expect to obtain a non-dispg
image with correct AVA behaviour.
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Migration in finely layered media
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Fig 1. Construction of the forward operators in a homogeneous model (a) and in a model with fine layering (b).
The subscripts p and g denote primageyid generalized primary ; respectively.
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Fig. 2 Plane wave transmission response of a 1 - D acoustic
medium (the time axes in both frames are different)
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ig. 3 Inverse extrapolation results, usmg

a) matched filter in
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and (d) modifieed matched filter with five correction term
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