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S u m m a r y

The matched filter approach to inverse wavefield extrapolation

ignores the amplitude and phase distortions due to fine-layering.
In this paper we introduce a modified matched filter that properly

accounts for these effects. The correction term by which the
matched filter is modified can be derived directly from the data.

Using this modified matched filter in prestack migration will

result in a non-dispersed image with correct AVA behaviour.

T h e o r y

The underlying assumption of any migration scheme is that a
macro model of the subsurface accurately accounts for the propa-

gation effects from the acquisition surface to the target and vice

versa. A macro model consists of a number of geologically ori-
ented macro layers, separated by macro boundaries. In general,
the velocity and density in each macro layer are chosen to be sim-

ple functions of position (for instance linear functions of depth,

accounting for the depth dependent compaction properties).
Recent studies on wave propagation through finely layered media

have shown that internal multiple scattering effectively results in

an angle-dependent dispersion of the wave field [Burridge and
Chang, 1989]. In the following we refer to this dispersed wave

field as the ‘generalized primary’. Figure 1 (a) shows an example

of a homogeneous macro model and the construction of the for-
ward extrapolation operator    , where p denotes ‘pri-

mary’. Figure 1 (b) shows a 1-D example of a model with fine
layering and the construction of the forward extrapolation opera-

tor    , where g denotes ‘generalized primary’. Current
macro models do not account for this dispersion effect. Conse-
quently, this effect is also ignored in migration, which may result

in dispersed images and erroneous amplitude versus angle (AVA)

effects. In Delft we are investigating how to parametrize the

effects of fine layering in an extended macro model [Herrmann

and Wapenaar, 1992]. Now the question arises, what are the

implications of the fine layering effects for migration? Generally,

the inverse wave field extrapolation operators required for migra-

tion are approximated by the matched filter approach:

      (1)

(Berkhout, 1982; H stands for complex conjugate transpose). It

can be shown that this approach yields accurate results both for

homogeneous as well as inhomogeneous macro models (pro-

vided the one-way wave fields are properly scaled). Does this

approach also hold for the generalized primary extrapolation

operator, defined in an extended macro model? Unfortunately the

answer is negative: the dispersion effects in the generalized pri-

mary wave are accompanied with an amplitude loss which is not
compensated for by the matched filter. Hence, just as is the case
with anelastic losses, the matched filter fails to account for losses

due to fine layering. There is an important difference, however,

between anelastic losses and losses due to fine layering. Whereas
anelastic losses represent a conversion of seismic energy into

heat, the losses related to fine layering represent a conversion of
‘forward propagating seismic energy’ into ‘back scattered seis-
mic energy’, see Figure 1 (b). The ‘forward propagating seismic

energy’ at depth level z can be quantified by the multi-dimen-

sional autocorrelation of the downgoing generalized primaries,
i.e.        . Similarly, the ‘backscattered seismic

energy’ at the acquisition surface  can be quantified by the
multi-dimensional autocorrelation of the upgoing wave fields at

 i.e.         where    contains

the (deconvolved) reflection measurements at the surface, see
Fig. 1 (b). By using the power reciprocity theorem for one-way

wave fields [Wapenaar, 1993] it can be shown that the following

relation holds

               (2)

which can be interpreted as: ‘normalized incident energy’ minus

‘normalized backscattered energy’ equals ‘normalized forward
propagating energy’. We use the quotes because energy is a sca-

lar quantity wheras the quantities in equation (2) are all matrices.

Equation (2) can be rewritten as

       (3)

with

     
    

In the following we call     the modified matched filter for

inverse wave field extrapolation of the downgoing generalized pri-

mary. It contains the matched filter     for the general-

ized primaries defined in an extended macro model, and a

correction term that can be derived entirely from the reflection

measurements (see Fig. 1 (b)). In practice, the matrix inversion in

(4) is replaced by a Neumann series expansion. Note that this

equation holds for 3-D inhomogeneous (anisotropic) acoustic or

elastic media. Using reciprocity, the modified matched filter for

the upgoing generalized primary follows immediately:
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2 Migration in finely layered media

The underlying assumption for this approach is that the propaga-
tion losses may be entirely ascribed to the fine layering (scattering
losses only). In the presentation it will be indicated how this
approach can be generalized when anelastic losses play a role as
well.

Example

To illustrate the limitations of the matched filter and the potential

of the modified matched filter we consider a simple example. Fig.

2 shows a 1-D acoustic medium consisting of 15,000 layers with

a thickness of 10 cm each. The statistics of the fine-layering are

described by fractal Brownian motion. The average velocity 

equals 2500 m/s. We modelled the upgoing plane waves, propa-

gating from the bottom to the top of the configuration. The raypa-

rameter p ranges from 0.0 to  hence, the propagation angle

ranges from 00 to  The lower frame in Fig. 2 shows the mod-

elling input at the bottom of the configuration. It will serve as a

reference for the inverse extrapolation output. The upper frame in

Fig. 2 shows the modelling output at the top of the configuration.

Note the angle dependent amplitude and phase distortions. This

result will serve as the input for the inverse extrapolation experi-

ments. Fig. 3 shows the results of four different inverse extrapola-

tions from the top to the bottom of the configuration in Fig. 2.

Fig. 3 (a) was obtained by applying the matched filter, as defined

in equation (l), using a homogeneous macro model with  = 2500

m/s. The only effect is a time shift per plane wave experiment,

hence, the angle dependent amplitude and phase distortions are

not accounted for. Fig. 3 (b) was obtained with a matched filter

defined in the true model. The results are zero-phase, but the AVA

behaviour is worse than in Fig. 3 (a), because the amplitude

decay occurred twice (during modelling and during inverse

extrapolation). Next we consider the modified matched filter, as

defined in equations (4) and (5), with the matrix inversion

replaced by a truncated Neumann expansion. Fig. 3 (c) and Fig. 3

(d) show the results of taking, respectively, one and five terms of

the Neumann series into account. Particularly the last result (Fig.

3 (d)) shows a very good amplitude recovery up to very high

propagation angles (compare with the lower frame of Fig. 2).

Conclusions

We have discussed an inverse extrapolation operator that

accounts for the scattering losses of a ‘generalized primary’ prop-

agating through a finely layered medium. This operator is given

by the matched filter (defined in an extended macro model), pre-

multiplied by a correction term that can be entirely derived from

the reflection measurements. We have illustrated with a simple

example that this modified matched filter properly accounts for

the angle dependent amplitude and phase distortions related to

the scattering losses. By integrating the proposed operator in

prestack migration, one may expect to obtain a non-dispersed

image with correct AVA behaviour.
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Migration in finely layered media 3

Fig 1. Construction of the forward operators in a homogeneous model (a) and in a model with fine layering (b).
The subscripts p and g denote ‘primary’ and ‘generalized primary ‘, respectively.
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4 Migration in finely layered media

Fig. 3 Inverse extrapolation results, using (a) matched filter in 
homogeneous macro model, (b) matched filter in true
model, (c) modified matched fllter with one correction term
and (d) modifieed matched filter with five correction terms.
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