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Summary

The sparse, efficient and stable representation of the primary prop-
agator is an important aspect of current prestack depth migration
techniques. The primary propagator accounts for one-way wave
propagation (downward or upward) from one depth level to the
next depth level. It does not account for scattering at boundaries.
This paper aims at giving a representation of the primary propaga-
tor in the wavelet transform domain and at giving a representation
of the seismic data in the wavelet domain. An efficient full prestack
migration scheme which uses advantageously the structure of the
non-standard wavelet transform, will be derived from these repre-
sentations. Furthermore, it is shown that the wavelet transform
enables the user to choose between resolution and efficiency.

Introduction

The Fourier transform reveals the spectrum of a function. Due to
the uncertainty relation it is not possible to relate a certain fre-
quency to a certain location of the original function. The wavelet
transform is a space-scale analysis tool. It makes it feasible to get
an intermediate representation of a function, in which both spec-
tral and spatial information are available. The analysis is done
with dilated and translated versions of a basis function   :

(1)

The translation is covered by the parameter  and the dilation by
the parameter a.For small values of CL, i.e.   1 the wavelet

 is a highly shrunken version of the function  which
means that it analyzes high frequency aspects around a certain
location b. For large values of a, i.e.   1, the function  is
very much spread out, which means that it analyzes low frequency
aspects around a location b. The dilation parameter a allows to
zoom in on local high frequency aspects. In the course of this paper
the wavelet transform will be explained further. For an extensive
introduction into wavelets the reader is referred to Koornwinder
[1993].
Our migration scheme is based upon a data representation derived
from the wave equation, which reads for acoustic primary waves
in the frequency domain (after decomposition and surface related
multiple elimination)

(4 )

P-(x)  (2)

where’  is the flux normalized primary upgoing response
of an inhomogeneous half space,  is the flux normalized
source function for downgoing waves,   describes down-
ward propagation of the primary wave from  to x’, the operator

 describes reflection at x’ and, finally,  (x, x’) describes
primary upward propagation from x’ to x. Discretization of equa-
tion (2) with respect to the horizontal space coordinates leads to
the one-way representation for acoustic wavefields introduced by

‘Note that the following position vectors are used: x =   x’ 
    =   

Berkhout [1982]. This discrete representation will be used to de-
rive an explicit expression for the (angle-dependent) reflectivity
matrix  at all depth levels.
In this paper the spatial wavelet transform is applied to the explicit
expression of the reflectivity matrix. It will be shown that the
wavelet transform is an efficient tool to weigh up accuracy and
efficiency in prestack recursive depth migration.

Migration in the space domain

Migration techniques consist of two major steps: firstly, the in-
verse wavefield extrapolation of the upgoing receiver wavefields
and the forward extrapolation of the downgoing source wavefields,
correcting for the propagation through the overburden above a
certain depth level Secondly, the imaging step, relating the
source and receiver wavefields at a certain depth level  for all
frequencies. These two steps can be made manifest upon rewriting
equation (2)in its discretized form (for one depth level), yielding

 =   (3)

where we have used the kernel representation of the reflection oper-
ator  and where we have assumed a number of general source dis-
tributions: each column of  represents one source distribu-
tion; each column of  represents the corresponding receiver
wavefield. The result after application of the aforementioned two
steps is [Wapenaar and Berkhout, 

describing the full migration process in its basic form. In the
derivation the modified matched filter approach has been used
as an approximation for the inverse of the primary propagators.
Moreover, it is assumed that the source matrix  is a scaled
unity matrix (with scaling factor  The reader has to notice
that equation (4) is an explicit expression for the full angle de-
pendent reflectivity. In a lot of applications the diagonal of  is
used only, which represents the zero-offset reflectivity.

The wavelet transform

The continuous wavelet transform is defined by

 =   (5)

 is the inner product of f(x) and the (real) function 
defined in equation (1). Discretization with respect to the param-
eters a, b such that a =  and  =  is particularly interesting.
Each step in m corresponds to a bisection of the frequency content.
The wavelet transform then elegantly fits into the theory of mul-
tiresolution analysis [Mallat, 1989]. The idea of mult iresolut ion
analysis is to write a function f(x) as a limit of successive approx-
imations each of which is a smoothed version of f(x), by using
more and more concentrated smoothing functions. The successive
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Figure 1: The discrete implementation of the wavelet transform

approximations thus use a different resolution, whence the name
mult iresolut ionanalysis. The difference between two successive
approximations is the detail at a certain resolution. This detail is
exactly a wavelet transform for a certain value of m. The theory
of multiresolution analysis and the discovery of orthogonal com-
pactly supported wavelets [Daubechies, 19881 made it possible to
implement the wavelet transform as an O(N)-algorithm. In its
discrete implementation the wavelet transform can be interpreted
as the successive splitting of an approximation into a detail part
and a coarser approximation according to Figure 1.
The approximation matrix which operates as a low pass filter,
and the detail matrix which operates as a band pass filter,
divide the original signal (consisting of N points) in an approxi-
mation  and a detail  (both consisting of N/2 points). This
step can be repeated upto the coarsest scale, where we are left with
the coarsest approximation of the original signal, i.e. with a  and
with the coarsest detail, i.e. with  (both consisting of 1 point).
Note that the actual wavelet transform consists of a number of
details   . . . ,  and the coarsest available approximation

 The total amount of samples does not change and an exact
reconstruction of the original data is feasible. It is not necessary to
apply the wavelet transform all the way down to the coarsest de-
tail  and approximation  the user can decide at any moment
to stop the calculations to end with a certain “coarsest” detail 
and a certain “coarsest” approximation  for any j = 1,. . . , J.

(6)

(8)

(9)

(10)

(11)Of special interest is the application of the wavelet transform to
2D-functions. The application to the two axes can be done ei-
ther independently or dependently. The former case is generally
called the standard form, the latter generally the non-standard
form [Beylkin et al., 1991]. In Figure 2 the differences between
the two forms are illustrated for a general matrix  In our ap-
plication the non-standard form will be used.

Migration in the wavelet domain

It has been shown [Dessing and Wapenaar, 1994] that wavefield
extrapolation can be carried out in the wavelet transform domain.
Coarse approxations of the extrapolation operators already reveal
structural information. This knowledge is used in the derivation
of a migration scheme in the wavelet transform domain.
The point of departure for the migration in the wavelet trans-
form domain is equation (4). Application of one step of the non-

Figure 2: The structure of the standard wavelet transform (top)
and the non-standard wavelet transform (bottom) of a matrix.
Note that the first step of the standard and non-standard wavelet
transform are equal.

standard wavelet transform yields

where the different submatrices for an arbitrary matrix  of size
N x N are defined by

(7)

An efficient scheme results either if the extrapolation matrices
in the wavelet transform domain in equation (6) are sparser or
if is possible at the expense of some accuracy to neglect parts
of the extrapolation operator in the wavelet transform domain.
The former is unfortunately not true. The latter is possible (see
Figure 3). The neglect of the off-diagonal submatrices  and

 yields

Upon applying the inverse wavelet transform the submatrices 
  and  can be combined to yield the original reflectivity

matrix  A simple operation count illustrates the usefullness
of the replacement of equation (4) by equations (8)-( 11). The
amount of computations involved in equation (4) are related to
two times  x N)-matrix multiplications, which correspond
to  operations. The amount of computations involved in
equations (8)-(11)is eight times  x N/2)-matrix multipli-
cations, which correspond to  operations. The latter is half
the amount of operations compared with the former. Note that the
matrices both in the space domain and in the wavelet transform
domain are assumed to be full, which is not completely true. More-
over, the amount of computations related to the wavelet  transform
are neglected.
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The replacement of the computation of  by the computation of
the submatrices of equations  (11) can be repeated for  The
computation of can be replaced by the computation of four
submatrices on again a coarser scale. These steps can be repeated
up to the coarsest scale where we are left with four scalar equations.
The actual migration in the wavelet transform domain starts at
the coarsest scale. By adding the results of the migration at finer
scales the resolution can be improved without doing any redundant
computations. The amount of work related to the migration in the
wavelet transform domain is less than half of the amount of work in
the space domain (with the aforementioned restrict ions in mind).

Example

Figure 4 illustrates the quality of the proposed method for a rela-
tively simple macro model (Figure 4a). A full recursive prestack
depth migration has been carried out in the space domain ac-
cording to equation (4)(F gi ure 4b). A recursive prestack depth
migration has been carried out in the wavelet transform domain
according to equations (8)-( 11) (Figure 4c-f). The combination of
these four results (via the inverse wavelet transform) shows the
capacity of the proposed method (Figure 4g). For this example
the replacement of equation (4) by the more efficient equations
(8)-(11) is fully justified.
Moreover, it is observed that the result of the prestack migration
according to equation (8) in Figure 4c is almost equivalent with the
result of full prestack migration in the space domain (Figure 4).
Hence, for this example, only equation (8) can be used to obtain
the full prestack migrated result, which corresponds to an effi-
ciency gain of a factor eight (again with the previously mentioned
restrictions in mind). The splitting as proposed in the previous
section would improve the efficiency even further.

Conclusions

The non-standard form of the 2D wavelet transform is used to
do the migration process in the wavelet transform domain in an
efficient way. The wavelet transform enables a stepwise solution of
the reflectivity. The process is started with a coarse approximation
of the reflectivity. By adding the detail wavefields the resolution
of the reflectivity can be improved. The total amount of work in
the wavelet transform domain is less than half the amount of work
for migration in the space domain.
The stepwise approach gives the user a handle to choose between
resolution and efficiency, which feature is directly related to the
choice of the non-standard wavelet transform. Depending on the
desired resolution the efficiency gain can be large.
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Figure 4: (a) Acoustical model with velocities ranging from 1500 m/s to 3400 m/s. (b) Result of prestack migration in the space domain
according to equation (4). (c) Prestack migration according to equation (8). (d) Prestack migration according to equation (9) shown on the same
scale as (c). (e) Prestack migration according to equation (10) shown on the same scale as (c). (f) Prestack migration according to equation (11)
shown on the same scale as (c).(g) Sum of the prestack migrated results of (c)-(f).
Note that the prestack migrated result of(g) and (b) are almost equal which was to be expected. Moreover, note that the prestack migrated result
of(c) obtained with the smooth parts of the extrapolation operators only, already resembles the results of(b) and (g) very well.

1243


