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Berkhout [1982]. This discrete representation will be used to

The sparse, efficient and stable representation of the primary ropmlgtr&nREXglgﬁ ;égtrﬁﬁzl\?&;_or the: (angle-dependent) reflect

agator is an important aspect of current prestack depth migratiofy, ihis paper the spatial wavelet transform is applied to the ex
techniques. The primary propagator accounts for one-way Walve gynression of the reflectivity matrix. It will be shown that t

propagation (downward or upward) from one depth level to the ayelet transform is an efficient tool to weigh up accuracy
next depth level. It does not account for scattering at bounda ieSefficiency in prestack recursive depth migration

This paper aims at giving a representation of the primary propaga- '
tor in the wavelet transform domain and at giving a represent ior]vI

of the seismic data in the wavelet domain. An efficient full prestack igration in the space domain

migration scheme which uses advantageously the structure o
non-standard wavelet transform, will be derived from these re

enables the user to choose between resolution and efficiency.

Introduction

The Fourier transform reveals the spectrum of a function. Du
the uncertainty relation it is not possible to relate a certain

with dilated and translated versions of a basis fune(z) :
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1
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The translation is covered by the param&tend the dilation by
the parameter aFor small values dfL, i.e.|a| <« 1 the wavelet
Yas(z) iS @ highly shrunken version of the functiy(z), which
means that it analyzes high frequency aspects around a ¢
location b. For large values of a, ja}3>> 1, the functiorsp,,(«) is
very much spread out, which means that it analyzes low frequ
aspects around a locatibnThe dilation parameter a allows t

"l‘)ab(l) ( )

a

the wavelet transform will be explained further. For an exten

[1993].

in the frequency domain (after decomposition and surface rel
multiple elimination)

P-(x) = / W (x, )BT (X)W (¢, x5) 573 (x)dx, ()

of an inhomogeneous half spas; (xs) is the flux normalized
source function for downgoing wavey;F(x', xs) describes down-
ward propagation of the primary wave freea to X', the operator
R*(x') describes reflection at X" and, final#, (x, X’) describes
primary upward propagation from x' to x. Discretization of eq

the one-way representation for acoustic wavefields introduce
‘Note that the foIIowing position vectors are used: (z,y, z)7, X' =

(=, ¢, )7, xs = {&s,ys, 25)

theligration techniques consist of two major steps: firstly, the

in-

sentations. Furthermore, it is shown that the wavelet transf

quency to a certain location of the original function. The wave
transform is a space-scale analysis tool. It makes it feasible tq
an intermediate representation of a function, in which both s
tral and spatial information are available. The analysis is d

zoom in on local high frequency aspects. In the course of this p
introduction into wavelets the reader is referred to Koornwin

Our migration scheme is based upon a data representation d¢
from the wave equation, which reads for acoustic primary wg

where’ P~ (x) is the flux normalized primary upgoing respon

tion (2) with respect to the horizontal space coordinates lead

breverse wavefield extrapolation of the upgoing receiver wavefiglds

prnand the forward extrapolation of the downgoing source wavefields,
correcting for the propagation through the overburden ab(;l/e a
certain depth leve’,,. Secondly, the imaging step, relating the
source and receiver wavefields at a certain depth Yydor all

\ tfrequencies. These two steps can be made manifest upon re
0equation (2)in its discretized form (for one depth level), yieldiry

fre-
(3)

let

get

ecwhere we have used the kernel representation of the reflection
onetor R, and where we have assumed a number of general sourc{
tributions: each column S*(zs) represents one source distrib
tion; each column oP~(z) represents the corresponding receiyer
wavefield. The result after application of the aforementioned two
steps is [Wapenaar and Berkhci989]

. riting
¢
P7(2) = W, (3 20 )B Y (2:m) W (2m; 25)87 (25),

per-
dis-

(4)

eriaddscribing the full migration process in its basic form. In
derivation the modified matched filter approach has been
PNCYs an approximation for the inverse of the primary propagaf
P Moreover, it is assumed that the source m&+*(zs) is a scaled
AP]inity matrix (with scaling factcs(w)). The reader has to notic
IVethat equation (4) is an explicit expression for the full angle
Olerpendent reflectivity. In a lot of applications the diagonagtfis
i éjged only, which represents the zero-offset reflectivity.
Vethe wavelet transform
ate

The continuous wavelet transform is defined by

R (am) = [W; (51 zmn’f%_(f{;ilwwzm; s,

he
sed
ors.

a)

de-

fw= [ fE@Walzdz a0, (5)
fu(z) is the inner product of f(x) and the (real) functy,(z)
defined in equation (1). Discretization with respect to the par
eters ap such that a 2™ ands = 2™ is particularly interesting.
Each step inm corresponds to a bisection of the frequency contgnt.

a- The wavelet transform then elegantly fits into the theory of mul-

s thresolution analysis [Mallat, 1989]. The idea of mult iresolut ipn

bgnalysis is to write a function f(x) as a limit of successive appfox-

imations each of which is a smoothed version of f(x), by uging
more and more concentrated smoothing functions. The successive
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Figure 2: The structure of the standard wavelet transform (top)
and the non-standard wavelet transform (bottom) of a matfix.

Figure 1: The discrete implementation of the wavelet transformi  Note that the first step of the standard and non-standard wayelet
transform are equal.

approximations thus use a different resolution, whence the name

mult iresolut ionanalysis. The difference between two successive standard wavelet transform yields
approximations is the detail at a certain resolution. This detail|is
exactly a wavelet transform for a certain valuenoThe theory RY RY\_ 1 (W; W # P: P3\ [WE Wi

of multiresolution analysis and the discovery of orthogonal com- \RF RY/ ~ S} \W, W, ) \B; PL}\Wi W, ©6)
pactly supported wavelets [Daubechies, 19881 made it possibl¢ to

implement the wavelet transform as an O(N)-algorithm. In ifS where the different submatrices for an arbitrary mayiof size
discrete implementation the wavelet transform can be interprefedy x N are defined by -
as the successive splitting of an approximation into a detail pprt

and a coarser approximation according to Figure 1. M- M L

The approximatigﬁ matriiL,,, which opegrates a?s a low pass filter (M: Mi) = (ﬁ’l) M (LT HT)- (7)
and the detail matritf;, which operates as a band pass filtef, T i
divide the original signal (consisting of N points) in an approx}-  An efficient scheme results either if the extrapolation matrices
mationa; and a detaid, (both consisting of N/2 points). This| in the wavelet transform domain in equation (6) are sparser or
step can be repeated upto the coarsest scale, where we are leff wiilfi is possible at the expense of some accuracy to neglect jparts
the coarsest approximation of the original signal, i.e. withaad of the extrapolation operator in the wavelet transform domain.
with the coarsest detail, i.e. wid; (both consisting of 1 point). | The former is unfortunately not true. The latter is possible {see
Note that the actual wavelet transform consists of a numbef ofFigure 3). The neglect of the off-diagonal submatrwisand
details(d,,ds, . . ., ds)and the coarsest available approximatign wyields

(ay). The total amount of samples does not change and an exact

reconstruction of the original data is feasible. It is not necessary to Rt = ..I_[W;_]Hp;_[w;’t]fl ®)
apply the wavelet transform all the way down to the coarsest de- i S(IW) T

tail d; and approximatior, the user can decide at any moment Rt — WolEP= W

to stop the calculations to end with a certain “coarsest” cd fail B = 5wl EelWa ©

H “ " H H | H = 1 _ _

and a certain “coarsest” approximatigfor any j=1,. .., J. R = S_(;)[WA]HEC Wi (10)
Of special interest is the application of the wavelet transforn) to R = L rwolHp-rwHA (11)
2D-functions. The application to the two axes can be done gi- AT g(w)[ USRI bl

ther independently or dependently. The former case is genefally . )
called the standard form, the latter generally the non-standardJpon applying the inverse wavelet transform the submatR?,s
form [Beylkin et al., 1991]. In Figure 2 the differences between Rf, RE andRY can be combined to yield the original reflectivity

the two forms are illustrated for a general maMxin our ap- matrixR*. A simple operation count illustrates the usefullngss

plication the non-standard form will be used. of the replacement of equation (4) by equations (8)-( 11). [The
amount of computations involved in equation (4) are related to

Migration in the wavelet domain two timeseo (v x N)-matrix multiplications, which correspond

) _ to20(~N*%) operations. The amount of computations involveq
It has been shown [Dessing and Wapenaar, 1994] that wavefieldequations (8)-(11)s eight timeso(N/2 x N/2)-matrix multipli-
extrapolation can be carried out in the wavelet transform domain. cations, which correspond ©(N?) operations. The latter is hal
Coarse approxations of the extrapolation operators already reveathe amount of operations compared with the former. Note tha} the
structural information. This knowledge is used in the derivatjon matrices both in the space domain and in the wavelet trangform
of a migration scheme in the wavelet transform domain. domain are assumed to be full, which is not completely true. More-

The point of departure for the migration in the wavelet trans- over, the amount of computations related to the wavelet trangform
form domain is equation (4). Application of one step of the ngn- are neglected.

n

—
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The replacement of the computationg* by the computation of
the submatrices of equatio(8)- (11) can be repeated fR;. The

computation oR¥ can be replaced by the computation of foyr
submatrices on again a coarser scale. These steps can be repeate
up to the coarsest scale where we are left with four scalar equatipns,,

The actual migration in the wavelet transform domain start

the coarsest scale. By adding the results of the migration at finere
scales the resolution can be improved without doing any redunglant,
computations. The amount of work related to the migration in the

wavelet transform domain is less than half of the amount of wor

the space domain (with the aforementioned restrict ions in mirjd)

Example

tively simple macro model (Figure 4a). A full recursive prest
depth migration has been carried out in the space domai
cording to equation (4JFigure 4b). A recursive prestack dept

capacity of the proposed method (Figure 4g). For this exal
the replacement of equation (4) by the more efficient equati
(8)-(11) is fully justified.
Moreover, it is observed that the result of the prestack migra
according to equation (8) in Figure 4c is almost equivalent with
result of full prestack migration in the space domain (Figure

the full prestack migrated result, which corresponds to an ¢
ciency gain of a factor eight (again with the previously mentiof]
restrictions in mind). The splitting as proposed in the previg
section would improve the efficiency even further.

Conclusions

The non-standard form of the 2D wavelet transform is usex
do the migration process in the wavelet transform domain i
efficient way. The wavelet transform enables a stepwise solutio

of the reflectivity. By adding the detail wavefields the resoluti
of the reflectivity can be improved. The total amount of work|
the wavelet transform domain is less than half the amount of w
for migration in the space domain.

The stepwise approach gives the user a handle to choose be
resolution and efficiency, which feature is directly related to
choice of the non-standard wavelet transform. Depending on
desired resolution the efficiency gain can be large.
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Figure 3: The non-standard wavelet transform for an extrapg
tion matrix related to a small depth step for a frequency of 30
The absolute values of the matrix and one column out of the
trix are shown. (a) The space domain extrapolation matrix. (
One step of the non-standard wavelet transform. (c) Two ste
the non-standard wavelet transform. (d) Three steps of the

standard wavelet transform. Note that the off-diagonal parts of
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Figure 4. (a) Acoustical model with velocities ranging from 1500 m/s to 3400 m/s. (b) Result of prestack migration in thensgiace
).

according to equation (4). (c) Prestack migration according to equation (8). (d) Prestack migration according to equationr{®rsthe same
scale as (c). (e) Prestack migration according to equation (10) shown on the same scale as (c). (f) Prestack migratiantaceguaition (11)
shown on the same scale as () Sum of the prestack migrated results of (c)-(f).

Note that the prestack migrated result of(g) and (b) are almost equal which was to be expected. Moreover, note thatkhmigratteaesult
of(c) obtained with the smooth parts of the extrapolation operators only, already resembles the results of(b) and (g) very well
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