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S u m m a r y The square- roo t  opera tor

The usual assumption in one-way propagation is that the propa-
gation velocity may be kept constant within the lateral support
of the operator. For rapidly varying medium parameters this ap-
proach leads to inaccurate and sometimes even unstable results.
In this paper we propose one-way operators (based on modal de-
composition) that properly account for the lateral variations of
the medium parameters and that are unconditionally stable. We
illustrate with some examples that these operators are accurate
for all propagation angles between -90 and +90 degrees.

I n t r oduc t i on

In the past twelve years much research has been done on the opti-
mization of one-way operators for recursive wave field extrapola-
tion. For 2-D extrapolation we mention Berkhout (1982), van der
Schoot et al. (1984)and Holberg (1988); for 3-D extrapolation
some representative references are Blacquiere et al. (1989) and
Hale (1991). Thorbecke and Berkhout (1994) give an extensive
overview. In all the references mentioned above it is assumed that
the medium parameters are constant within the support of the op-
erator. Lateral variations are taken into account by selecting for
each gridpoint an operator related to the local medium parameters
(generally only the propagation velocity) at that gridpoint. In this
paper we will call this the “standard method”. When the medium
parameters vary smoothly (in comparison with the wavelength),
this standard method yields reasonably accurate results. When
the parameters vary significantly within the support of the opera-
tor, the standard method becomes inaccurate. For very rapid vari-
ations (in comparison with the wavelength) the standard method
may become unstable, even when the used operators would give
stable results in a homogeneous medium (Etgen, 1994). In this
paper we show how to account properly for the lateral variations
of the medium parameters in one-way wave field extrapolation.
Essentially this comes to solving the (flux normalized) one-way
primary propagator  from the one-way wave equation

(1)

where the square-root operator  is implicitly defined by
, .2 a2 W

 =  =  +  (2)

(Throughout this paper the hats  denote operators containing
the lateral differentiation operator  for convenience we con-
sider the 2-D situation). This approach is strictly valid only for
media in which the density is constant. For the extension to vari-
able density media, see our DELPHI consortium publications.
In this paper we apply modal decomposition to the operator  for
laterally varying media and we derive, subsequently, the square-
root operator  and the primary propagator  The theory is
illustrated with numerical examples.

The kernel of the square-root operator

By letting the operator   (n =  act on an arbitrary test
function   (with “sufficient decay” at infinity), we introduce
its kernel   x’), according to

This result is easily verified by substitution in equation (3) and
using the sift property of the delta function. For a further discus-
sion of the delta function and its derivatives, see Bleistein (1984).
Note that   x’) is symmetric and real-valued, according to

 x’) =  x) =  x), (6)

where * denotes complex conjugation. In analogy with equation
(2), the kernels of  and  are related, according to

 x’) =
J

 (x,   (x”,  x’)dx”. (7)

Hence, resolving the square-root operator   from equation
(2) is equivalent to resolving the kernel  (x,   from equation
(7). This is extensively discussed by Grimbergen (1995). Here we
proceed directly with a numerical procedure. To this end we first
briefly review Berkhout’s matrix notation.

The square-root operator in matrix form

We introduce a matrix   that contains the discretized version
of the kernel   x’) at depth level  according to

where Ax is the horizontal discretization interval. In particular,
for  = 2 we obtain from equations (4) and (8)

 =  + (9)

where  is a diagonal matrix containing the discretized version
of  at depth level z, according to
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2 One-way operators

and where  contains the discretized version of the second order
differentiation filter   . For “sufficiently small”  this matrix
may be written as

However, in practice we use a higher order approximation. In this
matrix notation, the symmetry property (6) reads

whereT denotes transposition and where H denotes transposition
and complex conjugation. Finally, equation (7) reads in the matrix
notation

Hence, resolving the square-root operator   from equation
 or resolving the kernel     from equation (7), is equiv-

.alent to resolving the matrix  (x) from equation (13).

Determining the square-root operator

As we will see below, modal decomposition can be accomplished
by applying eigenvalue decomposition to the matrix 

where

The eigenvalues X,(x) are real valued as a result of symmetry
property (12). Using a proper scaling of the eigenvectors, 
is related to  according to

 = 

Now for   we may write

 = 

(16)

which is easily verified by substitution in equation (13) and com-
paring the result with equation (14). From equation (15) we obtain

 = (18)

The sign of (z) is chosen such that when X,(x) is positive,
then

 1: The location of the eigenvalues  of the square-root
operator in the complex plane. (a) Homogeneous medium. (b) Lat-
erally variant medium. (c) Eigenvalues for homogeneous medium.
(d) Eigenvalues for laterally variant medium.

and when X,(x> is negative, then

In Figure 1 we have, for two media, depicted the location of the
eigenvalues of  in the complex plane. For both examples in
this section, the temporal frequency   and the spatial
sampling interval  m.
In the homogeneous case (Figures  the eigenvalues of  are
densely distributed along parts of the real and imaginary axes.
In principle, any point in between the indicated eigenvalues be-
longs to the admissible values of  Because of the finite extent
of the matrix the “branches” on the axes are not continu-
ous. The maximum eigenvalue on the real axis corresponds to

 = w/c = 0.08, which represents a plane wave (or eigenmode),
propagating vertically downwards. The other eigenvalues on the
real axis correspond to obliquely propagating plane waves 
modes), with vertical phase velocity  =  The eigenval-
ues on the imaginary axis correspond to evanescent waves. The
minimum eigenvalue on the imaginary axis has no physical mean-
ing. It is the result of the discretization of the matrix 
For laterally varying media (Figures  the eigenvalues on
the real axis correspond to propagating eigenmodes, the verti-
cal phase velocity again being given by  =  An in-
teresting situation occurs here, since the medium shows locally a
velocity-dip. Eigenvalues up to  =  , where  is the
minimum velocity in the medium, become admissible. The cor-
responding eigenmodes are vanishing outside this low-velocity re-
gion and are therefore “trapped” in the disturbance. We call these
guided modes.Figure  shows that for this medium configura-
t ion, the eigenvalue-spect rum contains, besides the “continuous”
branches, a finite number of discrete eigenvalues which belong to
these guided modes.
For the homogeneous as well as for the laterally variant situation,
the eigenmodes are contained in the columns of the matrix  Fig-
ure 2 shows the structure of all the matrices involved in equation
(17) .
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One-way operators 3

Figure 2: Schematical representation of the eigenvalue decompo-
sition of the square-root operator for the homogeneous situation
(top) and for the  laterally  variant situation [bottom).

T h e  p r i m a r y  p r o p a g a t o r

Kernel and matrix form

The primary propagator satisfies the following equation (con-
form equation 1)

   
     (21)

where           Replacing the operator
 by its kernel, yields

    
        

We define a matrix   that contains the discretized version
of the propagator      according to

    
   = . . .. . .. . .

       

In this matrix notation, equation (22) transforms to

where   =  =  Hence, resolving the primary propaga-
tor      from equation (21) is equivalent to resolving
the matrix   from equation (23).

Determining the primary propagator

From here onwards we will assume for convenience that the medium
parameters do not vary in the depth direction between  and 
This is a reasonable assumption when      is “sufficiently small”.
(For the more general situation, see Wapenaar and Berkhout,
1989, Chapter 3). Using a Taylor series expansion, we may write

or, symbolically,

  =   (25)

Figure 3: Absolute value of the eigenvalues (in descending or-
der) of the primary propagator, calculated by modal decomposition
(solid) and by the “standard method” (dashed). The extrapolation
distance   

From equations (16) and (17), we obtain

 = (26)

Substitution in equation (24) gives

  = 
1 (27)

or, using (16)

  =  (28)

where, symbolically,

    (29)

Using equation (18) we obtain

 = (30)
 l  0
. . .. . . .. . .
0 . . .  

From equations (19), (20)and (30) we find that the eigenval-
ues of   all have absolute values smaller than or equal to
unity. This property guarantees the stability of this propagator
when applied recursively, because no wave mode can erroneously
be amplified. For the laterally variant medium of Figure lb we
have depicted in Figure 3 the eigenvalues of the primary propaga-
tor    For comparison, the eigenvalues of the propagator
matrix obtained according to the “standard method” (see the in-
troduction) are also shown (dashed). It is clear from this figure
that for the standard method there are certain eigenvalues having
absolute values considerably larger than unity. It turns out that
the corresponding eigenmodes are guided eigenmodes. We may
expect that in recursive applications these eigenmodes are erro-
neously amplified, as was demonstrated by Etgen (1994). Finally,
note that (also for the standard method) the eigenvalues beyond
nr. 60 decay rapidly, meaning that (in this specific example) prop-
agation angles beyond 50 degrees are erroneously suppressed.

Numerical examples of the primary propagator

The performance of the proposed primary propagator is now com-
pared to the standard method and to finite difference modeling.
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4 One-way operators

Figure 4: Medium in which modeling takes place. The lateral ex-
tent of the disturbance is approximately equal to the wavelength.

For this purpose we consider a medium in which the velocity de-
pends only on the lateral coordinate  (Figure 4). The lateral
extent of the disturbance in the medium is approximately equal
to the central wavelength of the modeled wave field. The source
function contains frequencies up to 60Hz. For the spatial sam-
pling interval again  is taken. Finite difference modeling
needed a three times finer sampling for the stability criteria to be
met. At a specific depth level a vertically downward propagating
plane wave is excited. Recording takes place at a 1000m lower
depth level. The results are shown in Figure 5. It is clear that
the standard method (Figure 5b) suffers from the erroneous am-
plification of the wave field in the low-velocity region. The strong
anticausal effects are the result of time wrap-around. The modal
decomposition (Figure 5c) produces plane wave responses in ac-
cordance with finite difference modeling (apart from some finite
aperture artefacts). The result remains fully stable and shows ex-
cellent handling of high angle wave field constituents. Of course
one must be cautious using the results of finite difference mod-
eling as a reference.The large velocity disturbance is sampled
with a relatively small number of samples which can cause finite
difference results to become unreliable.

Conc lus ions

Modal decomposition of acoustic wave fields is a method that ac-
counts correctly for lateral gradients in one-way operators, for
example in the square-root operator  (z) and in the primary
propagator     . Mat hematically, the modal decomposition
of the wave field is equivalent to the eigenvalue decomposition of

  The eigenvectors physically represent wave constituents
having a vertical phase velocity  =  where  is the
corresponding eigenvalue.
The application of this method currently requires more compu-
tation time than the “standard method”. However, when lateral
variations cannot be ignored on a wavelength scale, the “standard
method” breaks down. The results become erroneous and in cer-
tain medium configurations the standard primary propagator even
turns out to be unstable. In this case the modal decomposition of
the wave field can become cost-effective. The results of the modal
decomposition method in laterally variant media show that the op-
erators are unconditionally stable and very accurate. In principle
angles up to 90 degrees and a considerable part of the evanescent
field are handled correctly.
With respect to this high performance the question arises whether
we can exchange unnecessary accuracy for computational efficiency.
This is the subject of current investigations in our DELPHI con-
sortium project.

Figure 5: Results of 1000m extrapolation: finite difference (top),
standard method (middle) and modal decomposition (bottom).
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