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Summary The square-root operator

The usual assumption in one-way propagation is that the propaThe kernel of the square-root operator
gation velocity may be kept constant within the lateral supy ortB . . _ :

of the operator. For rapidly varying medium parameters this ap-BY 1€tting the operatci, (z, ), (1=1,2) act on an arbitrary tes
proach leads to inaccurate and sometimes even unstable resulfsiNCtionF (. ) (with “sufficient decay” at infinity), we introduce
In this paper we propose one-way operators (based on modaj ddS kemelH,(z, = X), according to

composition) that properly account for the lateral variationg of

the medium parameters and that are unconditionally stable{ We X o R ,
illustrate with some examples that these operators are accprate Hn(z, 2)F(x,2) = [_w Hy(z, 2 2)F (2, 2)de’. 3)
for all propagation angles between -90 and +90 degrees.
For n = 2 we have

2

Introduction Hyle z’):(L) Br ) ol -2, (4)
In the past twelve years much research has been done on the{ opti- o(=2)

mization of one-way operators for recursive wave field extrapdla-, . ..

tion. For 2-D extrapolation we mention Berkhout (1982), van der

Schoot et al. (1984and Holberg (1988); for 3-D extrapolation J N 8%z~ ) 5
some representative references are Blacquiere et al. (1989) and 2o —af) = Fr )

Hale (1991). Thorbecke and Berkhout (1994) give an extensiverys yogyit is easily verified by substitution in equation (3) ¢

overview. In all the references mentioned above it is assumed thfﬂsing the sift property of the delta function. For a further disc
the medium parameters are constant within the support of the| op '

o . . Sion of the delta function and its derivatives, see Bleistein (19
erator. Lateral variations are taken into account by selecting fofjia thatzr (=, 2 X i symmetric and real-valued, accordin
each gridpoint an operator related to kbeal medium parameters| A5 % y ' g
(generally only the propagation velocity) at that gridpoint. In this
paper we will call this the “standard method”. When the mediyim Hy{z, 2 X') = Ha(2', 2, X) = H3 (2, 2, X) (6)
parameters vary smoothly (in comparison with the wavelength), T v aTman

this standard method yields reasonably accurate results. Whewhere * denotes complex conjugation. In analogy with equal
the parameters vary significantly within the support of the opera-(2), the kernels c#, and#, are related, according to

tor, the standard method becomes inaccurate. For very rapid yari- -

ations (in comparison with the wavelength) the standard method Hy(z, % X) = Hy (X, z;2")Hy (X7, 2 X)dX". (7)
may become unstable, even when the used operators would give J-eo
stable results in a homogeneous medium (Etgen, 1994). In thi
paper we show how to account properly for the lateral variatipns
of the medium parameters in one-way wave field extrapolation.
Essentially this comes to solving the (flux normalized) one-way
primary propagatonv;t from the one-way wave equation

Rence, resolving the square-root operd, {z, ) from equation
(2) is equivalent to resolving the ken#j (x, z; =) from equation
(7). This is extensively discussed by Grimbergen (1995). Here]
proceed directly with a numerical procedure. To this end we
briefly review Berkhout's matrix notation.

awiFE P . .
5, = THWS (1) | The square-root operator in matrix form

We introduce anatrix H,, () that contains the discretized versid

where thesquare-root operato#; is implicitly defined by of the kemexr (=, = X) at depth levet, according to

W&
HH =M=t 55 2 Hp(zy, 2 01) - Hp{z, 2 o)
; - H,(z) = Az : : ,
(Throughout this paper the h{*sdenoteoperatorscontaining Ho(onr. 2 2) Ho(oor, 7 o) (8)
n\d M. < <1 e n [Reg]

the lateral differentiation operato/ox; for convenience we con
sider the 2-D situation). This approach is strictly valid only for where Ax is the horizontal discretization interval. In particul
media in which the density is constant. For the extension to varifor . = 2 we obtain from equations (4) and (8)

able density media, see ouelBHI consortium publications.
In this paper we apply modal decomposition to the ope# dor H,(z) = C(2) + Dy, (9)
laterally varying media and we derive, subsequently, the sqyare- ) ] ) o ) )

root operato&; and the primary propagatw;*. The theory is wherec(z) is a diagonal matrix containing the discretized vers
illustrated with numerical examples. of {w/e(x, 2)}? at depth level, according to
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(e(i‘f,z))z o 0
C(z) = 0 (C(I‘:.Z)) 0
: : (10)
2
0 0 ()

and whereD, contains the “discretized version of the second or
differentiation filterd, (=) . For “sufficiently small’az this matrix
may be written as

-2 1 0 0 0 0
1 1 -2 1 0 ¢ 0
D, = — : . . . . . 11
=2 Al’z . h : : 4 ( )
0] 0 0 1 -2 1
0 0 0 o 1 =2

However, in practice we use a higher order approximation. In
matrix notation, the symmetry property (6) reads

H,(z) = H] (2) = Hj/ (2), (12)
where" denotes tnsposition and wher2 denotes transposition
and complex conjugation. Finally, equation (7) reads in the mg
notation

Hy (=) = Hy(2)H, (2).

(13)

Hence, resolving the square-root operif(z, =) from equation
(2), or resolving the kern; (=, z; =) from equation (7), is equiv-
alent to resolving the matri, (x) from equation (13). .

Determining the square-root operator

As we will see below, modal decomposition can be accomplis
by applying eigenvalue decomposition to the mekL,(z):

Hy(2) = L(=)A(=)L 7' (=), (14)

where

A2) = diag()\l(z) .

Am(2) - (15)

)\M(z))
The eigenvalues X,(x) are real valued as aresult of symm
property (12). Using a proper scaling of the eigenvecL='(z)
is related td@(=}, according to

L) =L7(2). (16)
Now for H, (=) we may write
H,(z) = L)AL (= (17

which is easily verified by substitution in equation (13) and co|
paring the result with equation (14). From equation (15) we ob

A2(2) = diag (0P 2) - ML) N ). (18)

The sign ol\{?(z) is chosen such that when X,(x) is positiy
then

RN} >0, (19)
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thisFigure 1: The location of the eigenvaluxy/” of the square-root
operator in the complex plane. (a) Homogeneous medium. (b)
erally variant medium. (c) Eigenvalues for homogeneous medi
(d) Eigenvalues for laterally variant medium.

trixand when X (x> is negative, then

S{A2 ()} <0 (20}
In Figure 1 we have, for two media, depicted the location of
eigenvalues/?
this section, the temporal frequerv=200rad/s and the spatial
sampling intervalaz=10 m.
In the homogeneous case (Figuia,c), the eigenvalues &, are
densely distributed along parts of the real and imaginary a
In principle, any point in between the indicated eigenvalues
hedongs to the admissible values »'/2. Because of the finite exten
of the matrixtL,, the “branches” on the axes are not contin
ous. The maximum eigenvalue on the real axis correspong
A2 = wic = 0.08, which represents a plane waves{genmode),
propagating vertically downwards. The other eigenvalues on
real axis correspond to obliquely propagating plane W{eigen-
modes), with vertical phase veloc,, = w2 The eigenval-
ues on the imaginary axis correspond to evanescent waves.
etrfninimum eigenvalue on the imaginary axis has no physical me
ing. It is the result of the discretization of the mal,,:
For laterally varying media (Figurab,d), the eigenvalues o
the real axis correspond to propagating eigenmodes, the \
cal phase velocity again being givend:, = w2 An in-
velocity-dip. Eigenvalues up A'/2 = w/cmin , Wheree,,, is the
minimum velocity in the medium, become admissible. The @
responding eigenmodes are vanishing outside this low-velocity
m- gion and are therefore “trapped” in the disturbance. We call th
ainguided modes.Figureid shows that for this medium configura
t ion, the eigenvalue-spect rum contains, besides the “continu
branches, a finite number of discrete eigenvalues which belon
these guided modes.
e, For the homogeneous as well as for the laterally variant situaj
the eigenmodes are contained in the columns of the nL.tHig-
ure 2 shows the structure of all the matrices involved in equg

(17)
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Figure 2: Schematical representation of the eigenvalue decon
sition of the square-root operator for the homogeneous situa
(top) and for tte laterally variant situation [bottom).

The primary propagator

Kernel and matrix form

The primary propagatcw;* satisfies the following equation (conr

form equation 1)
3VVPi {z,z;2',2")
dz
vyhergW,,i(x, z= z.'; #', 2"y = §(z — ='). Replacing the operato
H, by its kernel, yields

=:Fjﬁ1(xv z)Wpi(a:,z;m',z'), (21)

aVV:Di (1" z;z’,z’) == /oo H (l’, z;w”) W "
dz S P

(22)

(2", z; ', 2)dzx

We define amatrix W (z, 2') that contains the discretized versiq
of the propagatcw (=, z; 2/, =), according to

Wiz, 2 2,2 - Wiz, o om, 7)
V_V},,i (2,2)= Az :

Wiz, 2571, 7) Wiz, 2 2m,2")
In this matrix notation, equation (22) transforms to

W5 (2, 2)

- +
9z =F7 I:.Il(z)Wp (z’ Z’)a

(23)

wherew#(z =2/, ) = I. Hence, resolving the primary propag
tor Wi (z, z; 2/, 2') from equation (21) is equivalent to resolvir
the matrixw#(z,z") from equation (23).

Determining the primary propagator

From here onwards we will assume for convenience that the mq
parameters do not vary in the depth direction betw'z@mnd.
This is a reasonable assumption whsa 2’| is “sufficiently small”.
(For the more general situation, see Wapenaar and Berk
1989, Chapter 3). Using a Taylor series expansion, we may \

X (z— 2k
Wi =Yy C ek, e
k=0 )
or, symbolically,
Wiz, 2) = exp{Fj(z — 2| H(£)}. (25)

h
9

]po(solid) and by th “standard method” (dashed). The extrapolatio
iondistancez— 2| =50m.

diuabsolute values considerably larger than unity. It turns out

nouteously amplified, as was demonstrated by Etgen (1994). Fin
ritenote that (also for the standard method) the eigenvalues be

leigenvaluel
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Figure 3: Absolute value of the eigenvalues (in descending
der) of the primary propagator, calculated by modal decomposit

From equations (16) and (17), we obtain
HA(Y) = L(z")A*/*(Z)L71(2). (26)
Substitution in equation (24) gives
+ "= ' m(z_zf)k NIVTLTN —1¢0
Wile2) = L) 3~ F) ™) L),
£=0 : 1 (27)
or, using (16)
Wis ) = LW, (3, )17 (), (28)
where, symbolically,
Wi (z,#) = exp{Fi(z — 2)8V2(=). (29)
Using equation (18) we obtain
W, (z2) = (30)

exp{Fi(z — 22} |- 0

6 exp{Fi(z - 2P ()}

From equations (19), (20&nd (30) we find that the eigenva
ues of W5 (z, 2) all have absolute values smaller than or equal
unity. This property guarantees the stability of this propagd
when applied recursively, because no wave mode can errone
be amplified. For the laterally variant medium of Figure Ib
have depicted in Figure 3 the eigenvalues of the primary prop
tor Wi (2, 2'). For comparison, the eigenvalues of the propags
matrix obtained according to the “standard method” (see the
troduction) are also shown (dashed). It is clear from this fig
that for the standard method there are certain eigenvalues h

the corresponding eigenmodes are guided eigenmodes. We
expect that in recursive applications these eigenmodes are
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nr. 60 decay rapidly, meaning that (in this specific example) priop-

agation angles beyond 50 degrees are erroneously suppresse

Numerical examples of the primary propagator

The performance of the proposed primary propagator is now g
pared to the standard method and to finite difference mode
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Figure 4: Medium in which modeling takes place. The lateral ¢
tent of the disturbance is approximately equal to the wavelength.

For this purpose we consider a medium in which the velocity
pends only on the lateral coordinat¢Figure 4). The lateral .
extent of the disturbance in the medium is approximately equa$
to the central wavelength of the modeled wave field. The sodrce® :
function contains frequencies up to 60Hz. For the spatial sam- -
pling interval agairAz=10m is taken. Finite difference modeling M

24

0.4+

fecet
needed a three times finer sampling for the stability criteria to be =|! I K
met. At a specific depth level a vertically downward propagating itera istance ()
plane wave is excited. Recording takes place at a 1000m Iqwer °© - ill ‘
depth level. The results are shown in Figure 5. It is clear that
the standard method (Figure 5b) suffers from the erroneous [am-
plification of the wave field in the low-velocity region. The strorjg oz
anticausal effects are the result of time wrap-around. The mpdag
decomposition (Figure 5c) produces plane wave responses in ac-
cordance with finite difference modeling (apart from some finjte .
aperture artefacts). The result remains fully stable and shows| ex-
cellent handling of high angle wave field constituents. Of course
one must be cautious using the results of finite difference njod
eling as a referenceThe large velocity disturbance is sampled
with a relatively small number of samples which can cause finite
difference results to become unreliable.

= A
- —
A i
§

{

Figure 5: Results ofLl000mextrapolation: finite difference (top),
standard method (middle) and modal decomposition (bottom).
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