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Summary

When performing land seismic experiments, the data is
often polluted with surface related phenomena, such as
Ra yleigh and Love w aves. They often make up for most
of the energy in a seismogram, and are hardly separable
from re
ection data by con ventional tec hniques.

This research is focused on developing a technique, useful
for elimination of surface related phenomena from seis-
mic data. This technique will be similar to that of van
Borselen et al. (1996), who used acoustic reciprocity for
the removal of multiples from marine seismic data. In our
case, elastic reciprocity will be used. The focus will be on
the removal of Lo ve-w aves in SH-wave data.

In troduction

The data obtained in a seismic experiment can be di-
vided into tw o parts: the desired data, and noise. The
noise itself can be divided also into tw oparts: random
(stochastic) noise and shot generated noise. An example
of shot generated noise is the occurrence of surface
w aves like Ra yleigh and Lo ve w aves. Surface w aves
are considered noise because they bear no information
about the subsurface. Also, since they propagate along
the surface, they atten uate slowly , thus obscuring the
w eak er subsurface re
ection data.An extra problem with
Ra yleigh and Love w aves is that their velocity is almost
the same as the shear wave velocity. This problem makes
it di�cult to separate dispersiv esurface w aveswith for
example f-k analysis. For a discussion on the behavior of
Ra yleigh and Love w aves, w e refer to Aki and Richards
(1980).

Not many techniques have been developed to �lter surface
w aves from seismic data, and they often do not produce
satisfactory results. We presen t a technique that aims to
remove all surface e�ects from seismic data.

Theory

In this section w e will deriv e the reciprocit y integrals,
and from there we will derive a set of in tegral equations
of the second kind, with which we can calculate the wave
�eld as if there is no surface presen t. But �rst w ewill
giv e some basic theory about the Laplace transform.

The Laplace transform

Our equations are time invarian t and causal.The causal-
ity condition can most easily be met by using a Laplace
transformation. The Laplace transform of a causal

function is de�ned as:

û (x; s) =

Z
1

0

e
�st

u (x; t) dt: (1)

Here, Re(s) > 0. We arriv e at the F ourier transform to
the angular frequency domain if w e tak e s = j!. But
for our theoretical analysis we use the Laplace transform.
The Laplace transform has the following propert ywith
regard to di�erentiation to time: @tu(x; t)! sû(x; s).

The Betti-Rayleigh integral

What we do with reciprocity is comparing tw o di�erent
states with each other in a convenient w ay.The �rst state
is denoted as state A. We write for the elastodynamic
equations in the Laplace domain:
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And for state B w e write:
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In these equations, �̂i;j is the elastic stress tensor, v̂i is
the particle velocity vector, � is the volume densit y of
mass of the material, Sp;q;i;j is the compliance tensor

(the in verse is kno wn as the sti�ness tensorCi;j;p;q), f̂i is
the v olume source density of external forces, and �nally,

ĥp;q is the v olume source density of deformation. For the
deriv ation of these equations we refer to de Hoop (1995).
These states are summarized in Table 1. Next, we con-
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Table 1: States in the elastodynamic reciprocity theorem

sider the follo wing scalar interaction quantity bet ween the
tw o states: @j(�̂
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k ). We substitute the con-
stitutiv e relations, in tegrate o ver a volume, called domain
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D , and apply Gauss' theorem. Analogous to the acoustic
case (F okk ema and van den Berg, 1993), we obtain:
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This is the global form of the Betti-Rayleigh reciprocity
theorem. The media are assumed to be reciprocal.
The reciprocity condition implies the symmetry relation:
Sj;k;p;q = Sp;q;j;k.

The removal procedure

The t w o states we wan t to compare, are the actual state,
where there is a stress free surface causing m ultiples,
Ra yleigh w avesand Lo ve w aves and the like, and a
desired state, where there is no surface, and therefore no
surface e�ects. Figure 1 shows a graphical representation
of the t w o states.

In the actual state, w e tak e a poin t source of force,

f̂
a

k (s)�(x�x
S), at the source position, and in the desired

state, w e take a point source of force, f̂dk (s)�(x�x
R), at

the receiv er position. The resulting wave �elds are sum-
marized in Table 2. We substitute this into eq. (6), and
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Table 2: States for the procedure for removing surface e�ects

integrate o ver the lo w er half space.The integral at in�n-
ity becomes zero (O(��1) as � ! 1), due to causality
(Fokk ema and van den Berg, 1993), and we are left only
with an integral over the surface. Realizing that in the
actual state the surface is stress free, we obtain:
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In the next sections w e will modify this integral, and
obtain a set of coupled integral equations of the second

kind, that together will eliminate surface e�ects from land
seismic data. Whilst the above equation assume buried
sources and receivers, w ewill deriv e a similar equation
where the sources and receivers are located on the sur-
face.

The actual state

We review the situation as is shown in Figure 1a. The do-
main of integration is the low er halfspaceD [ D

0 = fx 2
R
3 j � 1 < x1; x2 < 1; 0 < x3 < 1g (The x3 axis is

poin ting do wn w ard).This halfspace consists of a homo-
geneous layer D , no matter how thin, and further earth
layers D 0 , whic h can be homogeneous or inhomogeneous.
The boundary between the tw o domains is denoted as
@D

0 .

In the actual situation, we ha ve a stress free surface, �̂i;3 =
0 at x3 = 0. We place our sources and receivers at this
surface. Then, instead of taking a point source of force at
the source position, we describe the source as a boundary
condition in the stress �eld. This implies that the surface
is stress free, except at a certain poin t, where w e the
stress is giv en b y:t̂i = t̂
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S
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that we ha ve a w ave �eld �̂i;j and v̂i, caused by a surface
source in the xm direction.

The desired state

In the desired state, the domain of integration is again
the low erhalfspace. Ho w ever,the surface is extended
to x3 ! �1. This means that the plane x3 = 0 is
just an arti�cial boundary. It is clear that no surface
e�ects can take place in this con�guration. Now we tak e
a poin t sourceof force in the point xR, at x3 = 0, i.e.

f̂
d
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R
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0 ). Similar to the former section, this means that

we ha ve a w ave �eld �̂i;j and v̂i, caused by a source in the
xn direction.

The reciprocity integrals

We start o� by summarizing the results achiev ed so far in
T able 3. We apply the reciprocity theorem of eq. (6) to
the domain D [ D

0 , while using the states given in Table
3, following the same procedure as Rademakers (1996).
Note that the surface of the actual state is not completely
stress free in this case. We obtain:Z
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Fig. 1: The tw o states for the reciprocit y theorem.a) with stress-free surface, b) without surface. The dashed line is the path
of integration, which goes to in�nit y.
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Table 3: States for the removal of surface e�ects

where xR and xS are located on the surface (x3 = 0). The
special in tegral sign on the left hand side of this equation
means that we perform a Cauchy principal value in tegral,
as described by Tan (1975). This is an integral where one
integrates over a surface, but excludes a singular poin t,
when necessary . The singular poin t in this integral is
caused by the sources on the surface. Since the poin t

source of force f̂d(s)�i;n�(x�x
R) is located on the surface,

the in tegration o ver it is only o ver \half" a delta-function.
We then obtain:
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As a �nal step, w e separate the desired w ave�eld into
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These equations constitute a set of 9 coupled integral
equations of the second kind. All the known terms are
grouped together in the term Am;n. �̂

inc
i;3;n and v̂

inc
m;n are

analytical expressions, and v̂
a

i;m is measured. The term

�̂
ref
i;3;n on the left hand side of eq. (10) has to be written
in terms of the particle velocity with the help of the elas-
todynamic equation: �̂
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i;3;n = (Ci;3;p;q=s)(@pv̂

ref
q;n). The

kernel of the integral equations is v̂ai;m(xjx
S
; s).

There is one case for whic h the nine equationssimplify
signi�cantly: sources and receivers in the x2 direction,
with x2 invarian tmedia. This con�guration measures
SH-waves. Since SH-waves are decoupled from the other
w avesin x2 invarian tmedia, there is only one integral
equation left, with m = 2 and n = 2.
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Fig. 2: SH-wave data, a) with stress free surface, b) without surface

Example with �nite di�erence modeling

In order to show some results w e hope to accomplish,
w e made an example with �nite di�erence modeling,
dev eloped by Falk (1998) . We computed the wave �eld
resulting from both sources and receivers put in the
x2 direction, so w e computed the SH-wave �eld. The
example w as calculated with and without a stress free
surface. The subsurface model is as follows: First, there
is a small layer with a depth of 1:2 m, having an S-wave
velocity of 200 m/s. Then there is a second layer with a
depth of 22:0m, which has an S-wave velocity of 300 m/s.
Finally, the low erhalfspace underneath has an S-w ave
velocity of 350 m/s. The results of the �nite di�erence
modeling were somewhat \improved" b y using AGC, so
the re
ections would be more clearly visible.

The Figures 2a) and 2b) show the result for the SH-wave
data. In the case when there is a stress free surface, there
is a Lo vew avepresen t, whic hobscures the low er layer
re
ection. This is exactly the problem with shear wave
seismics. There is only a small part of the re
ection visi-
ble, making it di�cult to �nd a rms-velocity, and lea ving
only a low stac k fold.When there is no surface, the Love
w ave has ob viously disappeared, and the low er layer re-

ection is no longer obscured. This can for example lead
to a better v elocity estimation.Unfortunately, the re
ec-
tion of the �rst layer is obscured by the direct wave. The
refraction how ever,does come forward. When applying
the �lter as described in eq. (10), this direct wave will also
be �ltered, and the re
ections will be even more clear.

Conclusions

The procedure presented in this paper for removing sur-
face e�ects from land seismic data is a promising

technique. Further work will concentrate on making this
technique operational. The theory should be expanded
to buried sources and receivers. As in the acoustic case,
the source w avelet is needed to eliminate the surface
e�ects. Hence the next step to be taken is a procedure for
w avelet estimation.After that we can test the tec hnique.
First on arti�cial data, next on real seismic data.
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