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Summary

In this paper we present a generalized notion for the reflection opera-
tor for a curved interface in an inhomogeneous background configu-
ration. We show how the acquisition-independent properties are
obtained. Examples for the reflection operator for a horizontal inter-
face are presented. :

Introduction

It is normal practice to decompose the actual wavefield into an inci-
dent and a scarttered wavefield. The incident wavefield has the same
source distribution as the actual, but is measured in a background
medium, where the scattering domain is absent. The scartered wave-
field finds its origin in a source distribution that is related to the dis-
crepancy in material parameters between the actual and the
background medium. The object of medium reconstruction encom-
passes the process of finding the material parameters of the scattering
domain. The determination of the functional behaviour between the
scattered and the incident wavefield can be considered as a first step.
This behaviour is usually denoted as the reflection operator. In order
to be able to represent the intrinsic dynamic properties of the
medium, the reflection operator must be independent of the acquisi-
tion parameters (Berkhout, 1982). In general the reflection operator is
dependent on space and time. In the imaging process the reflection
operator is mapped in space, such that at each location in space its
time behaviour is frozen at the very time instant of first causal occur-
rence. In the inversion process the total time behaviour of the reflec-
tion operator at each space location is taken into account to find the
material parameters. So far, an explicit exact expression for the
reflection operator has only been derived for a horizontal interface
between two homogeneous half $paces. The aim of this paper is'to
generalize the notion of the reflectivity operator to a curved interface.
To this end we apply the reciprocity relations of the wave field quan-
tities (Fokkema and van den Berg,1993).
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Fig. 1 The scauering inhomogeneous configuration with
a curved interfuce.

The boundary-integral represeniation of the
scattered field

We investigate the direct or forward scattering of acoustic waves by a
contrasting domain Dg, present in an embedding or background
medium Dj. The media D and Dy are separated by a curved inter-
face ¥ (see Figure 1). The background medium Dy is characterized
by the inhomogeneous mass density p = p(x) and the compressibil-
ity k =k(z). The contrasting domain Dy is characterized by the
inhomogeneous mass density p= p{x) and the compressibility
x=rKlx)-

The total acoustic wavefield in the configuration P is decomposed
into the incident wavefield P and the scattered wavefield P*.
The incident wavefield is the wavefield that would be present in the
entire configuration if the domain Dy showed no contrast with the
embedding.

The total wavefield is generated by a monopole source that is located
in D7 outside the scattering domain. Since the source remains present
even if the scattering domain is thought to be absent, it also serves as
the source for the incident field.

We start our analysis in the frequency domain and omit the explicit
functional dependence on the frequency parameter @ The scattered
wavefield is the difference between the total wavefield and the inci-
dent wavefield. Hence,

Psc‘ = hs Pinc_ (1}
Through a particular reasoning we want to express that the scattered
wavefield originates from the contrast in acoustic properties that the
scattering domain shows with respect to the embedding. The total
wavefield P = P(x | x°)satisfies the following set of wave equa-
tions
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where g, denotes the spatial derivative with respect to x, and S
denotes the source spectrum of the monopole source.

Secondly, the incident wavefield has no sources in Dy, while the
material parameters in Dg have the same values as for the embedding
(p and &) and can be chosen as a suitable extension of Dy in Ds.
The governing wave equations for the incident wavefield
Pina = Pirm(x | x%) are givep by
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Then substracting equations (4) and (5) from equations (2) and (3)
and using equation (1), we arrive at the wave equation for the scat-
tered wavefield P™ = P* (x| x%)

G =P iR =1, xeD,. (5)
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The associated Green’s functions of the different wavefields are
obtained through the following operation:

Glxlx*)=Plx|x°)/8S, (8)
Bl 1= PGS o
and
G (x| x*)= P (x1x°)/S. (10

Further all wavefields satisfy the reciprocity relation in which the
source and receiver position are interchanged. In particular for the
scattered wavefield we have

P (x| x*)= P™(x° | x) . 1n
The following boundary-integral representation for the scattered
wavefield can be derived

x'el
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where d, denotes the spatial derivative with respect to xpand y(x)
denotes the characteristic function of D,

2(@)P (x| x%) =
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In the further analysis we do not use the integral representation in Dy,

Whenx ¢ Y the Cauchy principal value of the boundary integral is
used, denoted by the symbol

The reflection operator in inhomogeneous media

In order to arrive at an expression for the reflection operator we use
the reciprocity relation of the type of equation (11) in the scattered
wavefield representation of equarion (12). Using the definitions of the
Green's functions as given in equations (8),(9) and (10), the resulting
expression becomes
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Next we introduce the reflection operator F as

14

Rixlx')= [n, (x')9,G* (x| x') -

(15)
G (x| 2y (x)3], 2’ X,

which allows us to rewrite equation (14) compactly as

ik i ' '
H@P™ (x12%) = = jR(x | )P (x'| x*)dA(x').  (16)
x'el
From equation (16) it is clear that in operator terminology R is in inh-
omogeneous media the integral-differential operator that connects the

“incident wavefield with the scattered wavefield: Thus we-are justified—{——

to name it the reflection operator, Moreover from equation (15) it fol-
lows that it is an intrinsic dynamic property of the contrasting
medium, which is. independent of the source spectrum and the source
and receiver position. It appears that the refiection operator is related
to the Green’s function of the scattered wavefield, whereby its source
point x' is essentially located at the interface. For the plane interface
in the homogeneous case, this will be illustrated in the next section.
Note that R is not only defined for x on X , but also in D;. Finally
we substitute equation (16) into equation (12) and we use equation
(9). We thus obtain
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Equation (17) represents the “downward” extrapolation, reflection
and “upward” extrapolation operator formalism in inhomogeneous
media with curved interfaces (generalized WRW model). In the next
section we investigate this formalism in homogeneous media.

The reflection operator in homogeneous media

Planée interface

In this section we first consider the scattering problem of two homo-
geneous media D; and Dy, characterized by the material parameters
{p,k) and {p,x} . respectively, with

a plane interface ¥ (see Figure 2).
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Fig. 2 The scattering homogeneous

configuration with a plane interface.
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In this case equation (16) is evaluated at a plane level. Then using a
suitable plane-wave representation of G and noting that the scat-
tered wavefield is upgoing in Dy, it can be shown that E reduces to
the simple kernel function

Rixla)= %— Hix, -x)3,G% (x1%), x'eX. (8

where H is the Heaviside function.

By the same token equation (17) simplifies in this scattering problem
10

Hix, - x,)P* (x| ) = -% j dA(x")

x'el (19)
-f dAG"|9G (x| R 206 (' 1")S,
x"el

which is the well-known WRW model (Berkhout,1982).

As an illustration of R(xlx') we modeled the two-dimensional
response of a dipole source at &' on a plane interface between two
homogeneous  half  spaces,  with propagation  velocities
¢, = (px) M 2=1500 mys and ¢, = (px)™"*=3000 ms, respec-
tively. A “snapshot” of this response at t=200 ms is shown in Figure
3a; a space-time domain registration by receivers at the interface is
shown in Figure 3b. In both Figures the incident wavefield has been
removed. Hence, by transforming the registration of Figure 3b from
the time domain to the frequency domain we obtain the Green’s func-
tion 5‘QG"”‘ (x| x')as a function of x for fixed x', both at the inter-
face. Subsequently, the reflection operator R(x | x') is obtained by
scaling this response by a factor 2/ p , see equation (18). This exam-
ple clearly illustrates the non-local character of the reflection opera-
tor. due to the waves that propagate along the interface, away from
the excitation point x'. This non-local behaviour of the reflection
operator is essential for obtaining the correct amplitude of P, irre-
spective of the propagation angle of P'"® (equation (16)).

We carried out another experiment for a similar configuration with a

density contrast only (i.e., no propagation velocity contrast). For this

configuration it is known thar the reflection properties are indepen-
dent of the propagation angle of Pi" Indeed we observe in Figure
4b thar the response of the dipole at x' is registered only by a
receiver at x = &' at the interface. Hence, for the reflection operator
we may write for this situation R{(x|x') = Ryd(x, —x,) for x and
x' at the interface. Upon substitution in equation (16) we obtain
P (x| x") = RyP" (x| x*) , which confirms

that the reflection amplitude is independent of the incidence angle.
Summarizing, a non-local reflection operator

(Figure 3) corresponds 1o angle-dependent reflectivity, whereas a
local reflection operator (Figure 4) corresponds to angle-independent
reflectivity.
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Fig.3  The response of a dipole source at an interface between

two half-spaces with different propagation velocities
a. Snapshot at t=200ms

b. Space-time domain registration at the interface

This example illustrates the non-local behaviour of the reflection
operator at an interface with angle dependent reflection properties.
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Fig. 4

dipole

t=0s

As in Figure 3, but only with a density contrast at the

interface. This example illustrazes the local behaviour

of the reflection operator at an interface with angle

independent reflection properties.

Curved interface

Next we consider the curved interface ¥ in the homogeneous situa-
tion (see Figure 3).

Fig.5  The scattering homogeneous configuration with
a curved interface.

Also in this case the scattered wavefield at level xfis upgoing.
However, a reduction of the reflection operator as in equation (18) is
not possible, due to the fact that x;; is functionally dependent on acI
and x, on ¥ inthe plane-wave representation. As an altenative we
could take the level xj as the representation level of the scattered
wavefield. Then again we can write

Rxlx) =S HGp -2,00,6% e, .+ @O

p xg =13
and use equation (19) with x4 = x5 = x4 as a representation of the
scattered wavefield. Note that for this situation R can be interpreted
as the response of the half-space x, 2 x;;‘ . This is equivalent to the
data after redatuming from the acquisition level to the depth level

A

Conclusions

We have shown that starting from the integral representation for the
scattered wavefield and using reciprocity, an expression for the
reflection operator is obtained. Furthermore it has the required prop-
erty of being independent of the acquisition parameters. Finally we
have shown how the expression of the reflection operator leads to a
generalized concept of the WRW model introduced by Berkhout
(1982).
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