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Reciprocity theorem for one-way electromagnetic and
acoustic wave fields in inhomogeneous media with losses
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Abstract

A system of coupled one-way wave equations for oppositely propagating electro-
magnetic or acoustic waves in inhomogeneous lossy media is derived. It is shown that
the square-root operator appearing in these equations is symmetric. Based on this
symmetry a general reciprocity theorem for one-way wave fields is derived.

1 Introduction

In many wave propagation problems one can define a “preferred direction of propagation”.
Electromagnetic and acoustic waveguides are obvious examples, but also in laterally
unbounded media it is often advantageous to define a preferred propagation direction.
In all those situations it is useful to decompose the wave equation into a system of coupled
“one-way wave equations” for oppositely propagating waves [1],[3],[6] (or “bidirectional
beams” [4],[5]). In this paper we derive a reciprocity theorem for one-way electromagnetic
and acoustic wave fields in inhomogeneous lossy media.

2 Wave equation in matrix-vector form

For simplicity we consider a 2-D configuration, that is, we assume that the wave fields,
material parameters and source distributions are functions of two coordinates (x = (21, z3))
only. For transverse electric waves (TE), transverse magnetic waves (TM), compressional
waves in fluids (P) and horizontally polarized shear waves in solids (SH), the general form
of the coupled system of basic equations reads in the space-frequency (x,w) domain

(1) JwaP + Q1+ 0:Q3 =B, joBQi+ 0P =Cr, juBQs+ 03P = Cy,

where P(x,w), @Q1(x,w) and @Q3(x,w) represent the wave fields, a(x,w) and §(x,w) denote
the material parameters (with negative imaginary parts for lossy media) and B(x,w),
Cy(x,w) and C5(x,w) are the source distributions. These functions are further specified in
Table 1 for the four wave types discussed above. From here onward we assume that the
preferred direction of propagation is along the z3-axis, see Figure 1. Hence, z; and z3 will
be referred to as the lateral and axial coordinates, respectively. In the lateral direction
the medium may be bounded or unbounded. In the former case homogeneous Dirichlet or
Neumann boundary conditions will be imposed at #; = 21, and 2; = x;; in the latter
case the wave fields are assumed to have “sufficient decay” for 2, , =+ —oc and z; , — +o0.

We reorganize the general wave equation into a form that acknowledges the direction of
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TaBLE 1

Overview of electromagnetic and acoustic field quantities, material parameters and source
functions. Electromagnetic waves: Field quantities: F; (electric field strength) and H; (magnetic
field strength); material parameters: € (permittivity), pn (permeability) and o (conductivity); source
functions: J{ (electric current density) and J (magnetic current density). Acoustic waves:
Field quantities: V; (particle velocity), P (acoustic pressure) and T;; (stress); material parameters:
k (compressibility), pn (shear modulus) and ¢ (mass density); source functions: F; (force density)
and D;; (deformation rate density).
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Fic. 1. Configuration for which we will derive a reciprocity theorem for one-way wave fields.

The direction of preference is chosen along the xz3-azis. The coupled one-way wave fields PT and

P~ will be defined in a later section.

preference. By eliminating ); from the coupled system of equations (1) we obtain

(2) 9:Q=AQ+D,

where .

@ a=(g,) P=(s_ropa) A= o)
with ) 1 1

(4) A=a+ Fal (581 )

The circumflex denotes an operator containing the lateral differentiation operator 9;. We
introduce an operator Hy via

(5)

or, using equation (4),

iy = w262 (AB7 1),

w

(6) o= (7

)2 + (912, where (%)2

Note that #, represents the Helmholtz operator, with ¢(x,w) being the (complex valued)
propagation velocity. We introduce the transposed Helmholtz operator H} via

(7) <f7 7‘239% = <7:l2fag>ba
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where the bilinear form (-, ), is defined according to
Z1b

(8) (fy 9 =/ f(z1)g(zq)day.
T1,a

Using integration by parts and employing the above mentioned boundary conditions at z; ,
and z; 3 we find that #; is a symmetric operator, according to

3 Diagonalization of the operator matrix

We diagonalize the operator matrix A, according to

(10) H=L""AL,

with - 0
a_ ( —J )
(1) H= ( 0 jH1>’

where the pseudo-differential operator H; is the square-root of the Helmholtz operator,
N . . L1
such that #1H, = H,, or Hy = H; . Furthermore,

o (b D A-1_1<érl Ly )
(12) L_<L2 —L2>’ L7 =3 Lyt =Lyt )’
with
. wiB\: A1 1._ AL 1
(13) Ly = (9)27‘[127 §L11: (7‘[12 (2wB)™2 )v
" 1L 1A_ AL w/@ 1
(14) Ly = (2wB) 2 W2, 5L21: (7_[12(7)2 )

4 Symmetry of square-root operators

We demonstrate the symmetry of square-root operators, using a generic notation. The
approach we follow is modified after [2]. Let U = L?(xl,al) be an arbitrary symmetric
operator (in the sense of equations (7) to (9)) and let ¥V = V(z1,8;) be its square-root:
Y = . In order to derive the symmetry properties of V we construct the following
pseudo-differential equation

(15) d.P = —jVP,

with P = P(zy,z) (note that z is a new variable, which bears no relation with z3). The
square-root of an operator is not unique. We assume that the square-root has been taken
such that

(16) lim P =0,

Z—00
for any P obeying equation (15). This is equivalent with stating that the imaginary part
of the spectrum of V is chosen to be negative. Note that, since V is not a function of z,
equation (15) implies
(17) 0P = —UP.

Let P4 and Pgp be two linearly independent solutions of equation (15). We introduce an
interaction quantity Z, according to

(18) T = (P4,0,PB)y — (0, P4, Pg)s.
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We evaluate the z-derivative of Z, which yields
(19) 0.1 = (P4,02Pp)y — (02Pa, PB)y = (UPa, PB)s — (P4, UPB), =0,

where we used the fact that f is symmetric. From equations (16), (18) and (19) we now
obtain Z = (P4, 0,Pg)y — (0,P4, Pg)y = 0. This implies, together with equation (15),

(20) (P4, Y}PB% = O}PA, Pg)y or Vi=V.

Hence, under the assumptions made above, the square-root of a symmetric operator is
~ 1

symmetric. Using induction, it follows that the operator /2™ is symmetric for any n > 0.

Hence, for any fixed value of z3 we find

etc.

(21) Hi=H, (H)=#
L1
and, using the fact that the inverse of a symmetric operator is symmetic as well, (#, 2)" =
1

7-21_5. Consequently, for the transposed operators lA'/i and i)é we obtain

1 1
(22) L = §L2‘1 and L= §L1‘1.

5 One-way wave equation in matrix-vector form

We define a “one-way wave field vector” P and a “one-way source vector” S, according to

(23) P:(ﬁt) and S:(gt)

We relate these vectors to the wave field and source vectors in equation (2), according to
(24) P=L"'Q and S=L7'D.

Using equations (2) and (10) we obtain after some straightforward manipulations the
following equation for P

(25) 0:P = BP + S,
where the one-way operator matrix B is defined as
(26) B = 4 (0,1

Equation (25) represents a system of coupled equations for the one-way wave fields Pt and
P~, which propagate in the positive and negative z3-direction, respectively, see Figure 1.
In equation (26) H accounts for propagation and (33f4_1)f4 for scattering. In the following
we refer to equation (25) as the “one-way wave equation”. Analogous to equation (7) we
introduce the transposed one-way operator matrix B! via

(27) (f,B'g)y = (Bf,g),

where, analogous to equation (8), the bilinear form for vector functions is defined as
T1.b

(28) €)= [ fa)gla)do.

°1,a

From equations (11), (12), (21), (22) and (26) we thus find for any fixed z3

(29) B'N = —NB, with N:(_O1 é)
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6 Reciprocity theorem for one-way wave fields

We derive a reciprocity theorem that interrelates the one-way wave vectors, operator
matrices and source vectors in two different states. These states will be distinguished
by the subscripts A and B. The domain D for which we derive the reciprocity theorem is
defined as D = {x |21, <21 < z1p A 23, < 23 < 233}, with boundary 0D = 0D, U 0D,
see Figure 1. We define an interaction quantity between oppositely propagating waves in
both states, according to

(30) 0s{P} Pg = Py P} = 05{P,NPp}.

Applying the product rule for differentiation, substituting the one-way wave equation (25)
for states A and B, integrating the result over domain D with boundary 0D, applying the
theorem of Gauss and using equations (27), (28) and (29) yields the following reciprocity
theorem for one-way wave fields

(31) | P4NPpmsda :A)P;NAPBd2x+/D{P;NsB+sf4NPB}d2x,
3

where the contrast operator A is defined as
(32) A—By-B,

and where the component n3 of the outward pointing normal vector on 9D3 is defined as
n3 = —1 for x3 = w3, and n3 = +1 for x3 = 23,.

7 Conclusions

We have derived a reciprocity theorem for electromagnetic or acoustic one-way wave fields
(or bidirectional beams) in inhomogeneous lossy media. The same result was derived before
for lossless acoustic media [6]. Reciprocity theorem (31) honors the natural separation
between propagation and scattering in the one-way wave equations (see equations (25) and
(26)). It forms a suitable starting point for the study of forward and inverse scattering
problems in situations with a preferred direction of propagation.
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