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Abstract

In a previous paper [3] relatively simple closed-form expressions are obtained for the
reflection and transmission coefficients belonging to a fluid/porous-medium interface
with open-pore boundary conditions. In this paper a similar derivation is given for the
case that this permeable interface is replaced by an impermeable one. The resulting
expressions for the reflection and transmission coefficients for this sealed-pore case
appear to be simpler than the ones belonging to the open-pore case. For both cases the
obtained expressions find their application in forward and inverse surface wave analysis.

1 Waves at a fluid/porous-medium interface

In a well-known paper of Biot on waves in porous media [1] it is shown that three different
waves may propagate in a porous material: a fast P-wave, a slow P-wave, and a S-wave.
Consequently, at an fluid/porous-medium interface an incident P-wave in the fluid is
converted simultaneously into (i) a reflected P-wave, (ii) a transmitted fast P-wave, (iii) a
transmitted slow P-wave, and (iv) a transmitted S-wave. (see Fig. 1).

The fluid displacements in the z-z plane belonging to the incident and reflected P-wave
are in the space-frequency domain given by
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where w is the angular frequency, p the horizontal slowness, g the vertical slowness with a
positive real part and a negative imaginary part, and A' and A® the wave-amplitudes. The
slownesses p and ¢ are related to the propagation velocity c as
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where p is the fluid density and K the fluid bulk modulus. Furthermore, by combining
the deformation equation P=—KV-(U'+U"®) with Egs. (1)—(3) one finds that the fluid

pressure P is given by

@) P(e,2,0) = jwp [A'exp[—jw(pe + g2)] + A" exp [—jw(pe — ¢2)]]
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Fig. 1. Wave conversion at a fluid/porous-medium interface (an incoming P-wave with

incident angle 0). The fluid displacements belonging to the incident and reflected P-wave are denoted
by U' and UR, respectively. The fluid displacements belonging to the fast P-wave, slow P-wave, and
S-wave are denoted by UT*, UF2, and US, respectively, while the corresponding solid displacements

P2

are denoted by u*', u®?, and u®, respectively.

The displacements of the solid skeleton in the z-z plane belonging to the fast P-wave,
slow P-wave, and S-wave are given by

(5) u™ = (“’Eiﬁﬁ’z’”)) = ( P ) A exp [ jw(pe + gm2)],
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where AP, AP?, and A® are the wave-amplitudes. The vertical slownesses gp:, gps, and gs
(all with a positive real part and a negative imaginary part) are related to the horizontal
slowness p and the propagation velocities cp,, cps, and cg as
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According to Biot’s theory [1, 5] the propagation velocities cp,, ¢p,, and cs are given by
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with
(10) co = pr1pa2r — sz, ¢ = Rpyy + (A + 2G)paz — 2Qp1a, c; = R(A+2G) - Q2,

where G is the shear modulus of the porous material. The generalized elastic coefficients
A, @, and R are related to measurable quantities by the following expressions [2, 5]

(1 - ¢)*KsKp — (1 — ¢)KpKs + KKy, 2
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where K is the skeletal grain bulk modulus, Ky the pore fluid bulk modulus, Kj, the
“jacketed” bulk modulus of the porous material, and ¢ the porosity (pore fluid volume
divided by bulk volume).

The density terms py;, ps2, and py, in Egs. (9) and (10) are defined as

(14) P11 = (1 - d’)/’s — P12, P22 = OPs — P12, P12 = —(a - 1)¢Pfa

where ps and pr are the densities of the solid skeleton and the pore fluid, respectively.
According to Johnson et al. [7] the drag coefficient o belonging to a fluid-saturated porous
material can be defined as

We M
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(15) o= 0y (1 —7J
where M =1 is the so-called similarity parameter, ay, the inertial drag at infinite frequency
(or tortuosity), n the pore fluid viscosity, k, the permeability of the porous material, and
the critical frequency w. is the frequency at which the inertial and viscous drag are of
comparable magnitude.

According to Biot’s theory the pore fluid displacements UF', UF? and U® are related
to the solid skeleton displacements u®*, u?, and u® as

Q— c%,lpu _ A+2G — 01231)011

(16) Upl = Gplupl With Gpl =

‘312:1/)22 -R C%qpu -Q
—c2 A+2G —
(17) UP? = Gp,u®™ with Gp, = Qz cpzp‘lé _ +2 Cgpu,
CpaP22 — CpaP12 —
— -1
(18) US=Geu®  with Gg=_P2_2"°
Pa22 (64

The pore fluid stress 7¢ and solid skeleton stress 75 are defined as
(19) Tt = —¢P6 = Q(V-u)d + R(V-U)4,

(20) Ts=-0—(1—¢)Pd = G[Vu+ (Vu)']+ A(V-u)d + Q(V-U)d
with u=u"'+u"*+u® and U=U""4+U"?4+U®, and where P; is the pore fluid pressure, d a

unit tensor, and o the intergranular stress tensor.

2 Reflection and transmission coefficients

The reflection and transmission coefficients R¥, TF*, TF? and T*® are related to the wave-
amplitudes A", AR, AF', AP? and A° as

(21) AR — RFAI, API — TPIAI, APZ — TP2AI, AS — TSAI.

To solve RF, TP T*?, and T® the boundary conditions associated with an impermeable
fluid/porous-medium interface are used, i.e., the sealed-pore boundary conditions [4, 5, 6].
Hence, at the boundary z=0:

(22) u'tut +ul =Us + UR — 04 — P = —P,

(23) ust turt +u, =U+ U+ U Oxz = 0.
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By combining these four boundary conditions with Egs. (1), (2), (4)—(8), and (16)—(20) in
an appropriate way one obtains the following set of linear equations

, (» _QPQ) (» _QWKJ) - N
oy | % P 795G, P 7 %G, Pas ™| |3 |
0 gn(Gri—1)  gr(Gr—1)  p(Gs—1) | |77 0
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where the moduli Kp; and Kp, are defined as
(25) Kp,=A+2G+Q+Gp (Q+R), Kpy = A+2G+Q+Gp (Q+R).

To obtain relatively simple closed-form expressions for RF, TF', T%? and T° it is
assumed that both the porous skeleton and the pore fluid are much more compressible
than the skeletal solid grains themselves. Consequently, the substitution of Kg>> K}, and
K> K¢ in Egs. (11)—(13) leads to

(1-9)° 2
(26) A= TKf +Kp — 3G, Q= (1-9¢)K, R = ¢Kj.
By combining Eq. (26) with Eqgs. (9), (10), (14), (16)—(18), and (25) one obtains
4 Gp, — 1
(27) Kp: :Kb+§G+51pfc§.1, GP1—1 =(1-46,),
S
4 Gpy,— 1
(28) Kpy = K + 3G + S.peC2,, G”_ o= (1—14,),
S
Ky + 2G)K;¢ aG
9 2 2 _ ( 3 2 —_ T
( 9) CPICP2 Gapf cS? 5152 d)pfcg
with the parameters §, and §, given by
ad)pfcl%l - ¢Kf, 0l¢,0f0%2 - ¢Kf

By combining Egs. (24) and (27)—(29) in an appropriate way one finds that the closed-
form expressions for RY, TP, T?, and T® are given by

R, — R 2(]P252 KPl
31 RF _ ¥, TPI — ( 2 _ ) ,
( ) R1 + Rz R1 + R2 P 2GC12;1

2¢p1qp> —2¢p10; ( 2 Kp, )
32 TS = —2=(§, -6 TP = ———— —
(32) R+ R, %) R +R, \P T 262,)
where R, and R, are defined as

2G
(33) R1 = ? (61QP1A2 - 52QP2A1) 3 Rz = q;;i; (51 - 52)a
while A, and A, are given by

K. 2 K. 2
_ 2 2 P1 2 2 P2

(34) A, = p°gsqe + (P - @) ) A, = p°gsqps + (P - @) -

Note that these expressions for RF, TT!, T2, and T® are much simpler than the ones
belonging to a fluid/porous-medium interface with open-pore boundary conditions [3].
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Fia. 2. The reflection coefficient |R¥| as a function of the horizontal slowness p times the

propagation velocity ¢ of the P-wave in the fluid. The solid lines correspond to the case of rigid solid
grains (i.e., Ks/Ky =0); in this case |R¥| is calculated by using Egs. (31) and (33). The dashed
and dotted lines correspond to the cases Ks/ Ky, =5 and K/ Ky =2, respectively; in these two cases
|RT| is obtained by solving the set of linear equations given by Eq. (24) and by using the expressions
for A, Q, and R given by Egs. (11)-(13) instead of the ones given in Eq. (26). Note that these
results can be easily transformed into a figure showing the reflection coefficient |RF| as a function of
the incident angle 6 by using the relation 8 =arcsin(pc) for the region |pc| < 1.

3 Surface waves

The phase velocity of a surface wave traveling along an impermeable fluid /porous-medium
interface can be obtained by finding a horizontal slowness p for which the denominator of
RF is minimum (consequently, |R¥| is very large for this p): the reciprocal of the obtained p
is then the surface wave velocity. For example, in Fig. 2 one observes that | R¥| is very large
for pc~1.3, so for this specific case the surface wave velocity is 0.8 times the propagation
velocity ¢ of the P-wave in the fluid. In general, one might say that the value of the
surface wave velocity is only weakly dependent on the actual value of the skeletal grain
bulk modulus K5, which implies that one may use the expression for R* given by Egs. (31)
and (33) to determine the surface wave velocity. It is clear that the availability of these
simple closed-form expressions will facilitate the research in forward and inverse surface
wave analysis a lot.
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