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Abstract

Imaging, inversion and property monitoring tech-
niques many times rely on the retrieval of scattered
or perturbed fields. To target the reconstruction of
only the desired scattered fields, here we present a
generalized perturbation-based formulation that re-
trieves the causal scattered fields between two re-
ceivers as if one acts as a pseudo-source in gen-
eral dynamic systems. With this formulation we
show that causal scattered fields can be obtained via
cross-correlations without a requirement for energy
equipartitioning. This has practical implications for
experiments whose objective is precisely the retrieval
of scattered fields.

Introduction

In most prior formulations of Green’s function re-
trieval e.g. [1], [2], [3], [4], one retrieves a superposi-
tion of all fields in both positive and negative times,
as long as the condition for energy equipartitioning
is satisfied [1], [2]. From retrieved full-fields, the
extraction of desired scattered waves is not always
straightforward. Representation theorems for gen-
eral physical systems which give rise to the retrieval
of Green’s functions are provided in [3] and [2]. Based
on these representations, we analyze the special case
of perturbed systems to derive representations that
are tailored specifically for scattering problems.

1 Scattering & Green’s function retrieval

Let the general frequency-domain matrix-vector
differential equation Â (iω + v · ∇) û + B̂û + D̂rû =
ŝ describe physical phenomena such as wave prop-
agation and diffusion/transport. û = û(r, ω) and
ŝ = ŝ(r, ω) are field and source vectors, respec-
tively. The matrices Â and B̂ describe spatially-
varying medium parameters. The operator D̂r con-
tains the spatial differential operators ∂1,2,3; and v is
the spatially-varying velocity of the moving medium.
Examples of the matrices Â, B̂ and D̂r for attenu-
ative acoustic and elastodynamic waves, mass diffu-
sion, electromagnetic and seismo-electric phenomena
are given in e.g. [3]; examples for the Schrödinger

equation and advection are found in [2].
A Green’s matrix correlation-type theorem

(e.g., [3]) that can be derived from perturbed and
unperturbed field states reads

ĜS(rB , rA) =

∮
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†
0
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V
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where Ĝ0 and Ĝ are the frequency-domain Green’s
tensors for the unperturbed and perturbed states,
respectively. ĜS = Ĝ − Ĝ0 is the scattered-
field matrix. M̂P
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0
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0
. where

Nr contains the vector n normal to the integration
surface. The superscript † denotes the adjoint ma-
trix.

1.1 Retrieving scattered fields

In general, equation 1 is not immediately practi-
cal for Green’s function retrieval, because it requires
sources everywhere in the interior of V and complete
knowledge of the medium parameters. Now, let us
consider a special case: that of a non-moving media
(i.e., v = v0 = 0), with rB 6∈ P and M̂P

4
= V̂ =

0 ∀ r 6∈ P (Figure 1a-c). Thus, scattering occurs
only inside P. Also, outside P, the fields behave as
loss-less propagating waves, but the scattered fields
inside P can be lossy and diffusive. In addition, let∮
∂V

=
∫
∂Vb∪∂Vt

(Figure 1). We fix the sets ∂Vt and
P, and have two choices for ∂Vb such that in (b)
P ⊂ V, and in (c) P 6⊂ V. In Figures 1a through 1d,
all physical contributions to scattered waves propa-
gating between rB and rA come from the sources in
the top surface ∂Vt. In Figure 1c, the volume inte-
grals in equation 1 vanish because P 6⊂ V. In that
case, the bottom surface integral also vanishes be-
cause the contributions of monopole sources are can-
celled by those of dipole sources inside the integrand
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Figure 1: Panels (a) - (c) are schematic illustrations of configurations for retrieval of remotely scattered
fields. Panel (d) shows the perturbed acoustic wavespeed (in km/s) model used in a numerical experiment.
The medium perturbations in (d) consist of the scatterers and interfaces located below the depth of 0.3 km.
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Figure 2: Comparisons of true scattered-wave responses with pseudo-source responses obtained by
cross-correlating reference and scattered waves from the model in Figure 1d.

(equation 1). Thus, for Figure 1c, we obtain

ĜS(rB , rA) =

∫
∂Vt

Ĝ
†
0
(rA, r)M̂P

3 ĜS(rB , r) d2r .

(2)
This equation is exact, while an approximation is de-
rived in [4]. Equation 2 is also valid for Figure 1b,
since it is not affected by changes to ∂Vb. In Fig-
ure 1b, sources on ∂Vb result in unphysical scattered-
wave arrivals, but their contributions are canceled
by the volume integrals (equation 1). Equation 2
is suitable for retrieving the scattered-wave Green’s
functions between rB and rA by cross-correlations of
waves excited by sources on the open surface ∂Vt.
Note that the open surface integral in equation 2 im-
plies uneven energy radiation at rB. This demon-
strates that the retrieval of causal scattered waves
does not require energy equipartitioning e.g. [1], [2].

In Figure 2 we show results from reconstructing
scattered Green’s functions from an acoustic exam-
ple in the model in Figure 1d. Simulating an ocean-
bottom seismic experiment, sources are placed in hor-
izontal line at z = 0.1km with 2 m spacing and re-
ceivers are at the ocean bottom (z =0.2 km) at every
2 m. The true scattered-wave responses for a physi-
cal source at (0.3 km, 0.2 km) (triangle in Figure 1d)
are displayed in Figure 2a modeled with a free-surface
(at z = 0km), and in Figure 2b, where it is modeled
without a free-surface. The responses in Figure 2c-d

correspond to scattered-wave responses retrieved via
cross-correlations. The result in Figure 2c is obtained
with equation 2 using combined pressure and particle
velocity measurements; while Figure 2d results from
pressure measurements alone. It is important to note
that the input data to both (c) and (d) were modeled
with a free-surface. While the original input data
contains the effects of the free-surface, proper manip-
ulation of the scattering representation in equation 2
can retrieve scattered with (Figure 2d) or without
(Figure 2c) the influence of the ocean surface.
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