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Abstract
A boundary integral representation of the dffirence of time-lapse acoustic wave fields is investi-
gated. Recursive computation of the boundary integral eliminates the action of temporal contrast
sources above the boundary at which the integral is evaluated. This method is a basis for prestack
temporal contrast imaging and inversion schemes, analogous to implementations of the Kirchhoff
integral in inverse scattering theory.
Boundary integral
We consider two sets of time-lapse acoustic wave fields, denoted by reference wave fields and
monitor wave fields, associated with seismic experiments. We assume that the duration of the
reference and monitor seismic experiments is much smaller than the time-lapse interval between
the two experiments, such that during either seismic experiment the medium parameters, may be
approximated by constant functions of time. Reference and monitor wave field quantities, pressure
p and particle velocity u7r, density p and compressibility rc, and sources q and Í*, are denoted by
the superscripts .(r) and .(2), respectively. Consider the Fourier domain (signified by^) acoustic
reference and monitor wave field equations,
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with r : (nr,rr) € R3, in which fta -- (rt,rz) denotes the transverse coordinate, and:r3 de-
notes the longitudinal coordinate, oriented in the main wave field direction. The Fourier transform
parameter c"' is the radial frequency. The space N is divided by the planar surface,
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Figure 1: TimeJapse configuration with source positions in upper half-space Du.

0D : {(*r, rs)lnr € lM, rs : rf }, into an upper half-space Du and a lower half-space D 1nig.
1). We consider inside Du the reference and monitor source distribution s at rt : íeR and r' : aeS ,
respectively. We define, omitting the c,.'-dependency, the following interaction integral,
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n-s, tt a depth rï. In Wapenaar (2000) applications of a similar boundary integral in terms of
one-way wave fields are presented. In the following section the boundery integral of Eq. (3) is
evaluated numerically.
Numerical example
We consider the two-dimensional model shown in Fig. 2(a), with coordinate vector n : (r1, 13),
in which 11 denotes the lateral position in terms of source-receiver offset, and 13 denotes depth (no
r'2 dependency). The wave fields are calculated and displayed in the time domain. The reference
and monitor velocities and densities are given in Table 1. The reference and monitor sources are
placed at the top of the model at 0 m depth, at 0 m offset. The receivers for both experiments are
placed at 0 m depth, at offsets covering the entire model. Fig. 2(b) shows a difference gather ob-
tained by subtracting a single reference shot-gather from a single monitor shot-gather. We proceed
by computing the interaction integral of Eq. (3) at r! : 650 m, i.e. between the diamond-shaped
object and the lower layer, for (r!,"5) : (0,0)m, and rf ranging over the entire model and
rl : 0 m. The result is shown in Fig. 2(c), for a selected range of rf values. Next, the monitor
model is changed such that it equals the reference model for 13 < 650 m, thereby eliminating the
temporal contrast in the diamond-shaped object and retaining the temporal contrasts in the lower
layer. The resulting difference gather, using the same source/receiver parameters with which Fig.
2(b) is obtained, is shown in Fig. 2(d). The difference reflections associated with the temporal
contrast in the diamond-shaped object, visible in Fig. 2(b) have disappeared in Fig. 2(d). Note the
similarity of Fig. 2(d) with Fig. 2(c), thereby indicating that the interaction integral is equivalent
to a difference wave field which shows no temporal contrast above the interaction depth. In the
remaining sections the boundary integral is investigated analytically.
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Figure 2: (a) Model containing a diamond-shaped object, embedded in abackground medium, and alower
layer Temporal contrast in diamond-shaped object and lower layer. (b) Difference wave field evaluated at
lr3 : 0 m depth for a range of offsets covering the model. (c) Interaction integral of Eq. (3) at rll : 650 m.
(d) Difference wave field at ns : 0 m, no temporal contasts for 13 < 650 m.

t) 
[t<g/m3] .(z) [m/s] o{z) [t<g/m3]

1800 1500 1800 1500
2700 2200
2900 2400

Table I: Reference and monitor velocities and densities, c(r) ,00) , r(z) 2n6 oQ) .

Wave field decomposition
In lR3 the background medium parameters , {pb , nb}, are defined with respect to the actual medium
parameters, {p, o}, through the perturbation, {Ap. Arc}, according to

{p,o}:  {po,oo},  in D, {p,o}:  {po,oo} + {Ap,Arc} in C, @)

(Fig.  l ) .  InsideD: {(cr , r : ) lcr  € W,max(r , f , "3)  < rr  < r l } theactualwavef ie ld,  {p,Ar}
also denoted as the total wave field, is decomposed into a down-going wave field, {pd, 0f }, and an
up-going wave field, {p",0i}, as
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p : pd + p" and 0r : 0f + 0Ë, with t! : iopo and óï : -yop". (5)



The operators tlb are Dirichlet-to-Neumann operators which map a pressure function to the
longitudinal component of a particle velocity function. The wave field decomposition of Eq. (5)
follows from a particular normalisation of the incident and scattered wave fields associated with
the perturbation of Eq. (4). One can show that (Dillen 2000b)

/o : (ir)-' and io : (So)' , (6)

in which t signifies the transpose operation. The symmetric single-layer potential operator.Sb is
given by
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with / € ,2(W), and Gs'b being the Green's functions with respect to the background medium.
The integral symbol in this last definition signifies a Cauchy principal value integral.
Interaction operator
Substituting Eq. (5) into the interaction quantity iconv ol Eq. (3) yields
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with the interaction maffix Vb given by
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In this last equation we used the symmetry of the pertaining D-t-N operators (Eq. (6)). Observe
that Vb is a symplectic operator, i.e.

(10)

in which J is the standard alternating matrix, O is the null matrix operator, and O andZ are the
scalar null and identity operators, respectively. Suppose that there are no temporal contrasts above
the interaction depth r$, i.e. inside the upper half-space D' (Fig. l). Then, the interaction matrix
becomes skew-symmetric, according to
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Also, one can show that for a f source,
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Hence, if there are no temporal contrasts in the density and the compressibility above the inter-
action depth r$, Vo becomes a skew-symmetric matrix, associated with a difference wave field
evaluated at the recording depth. The appearance of /conv in Fig. 2(c), as compared to the differ-
ence wave field in Fig. 2(d), suggests that YD of Eq. (9), for nonvanishing temporal contrasts in
the upper half-space D', can be expressed in skew-ymmetric form using a symplectic eigenvalue
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decomposition. Exploiting the weak property of Eq. (11), that a sufflcient condition for Yb to be-
come skew-symmetric is the equality of the reference and monitor D-t-N operators, one obtains a
symplectic eigenvalue decomposition of Yb. Implementing this decomposition one can show that
(Dillen 2000b)
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in which the primed wave constituents are given with respect to the symplectic basis, and in which
the skew-symmetric matrix of symplectic eigenvalue operators is given by

(r4)

On this new basis we have the following wave field decomposition,
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Discussion
The association of skew-symmetry of the interaction matrix (see Eq. (11)) with a difference wave
field (see Eq. (12)), is extended to the case where temporal contrasts are present above the in-
teraction depth r$, using a symplectic eigenvalue decomposition of the interaction matrix of Eq.
(9). On the new basis the reference and monitor D-t-N operators, and consequently the wave field
decomposition operations, are equal, and given by Eqs. (14) and (15), although the background
reference and monitor densities and compressibilities, and velocities, may be unequal. In Dillen
(2000a) it is shown that the boundary integral of Eq. (3) represents a difference wave field, orig-
inating from temporal contrast sources below the boundary, at which this integral is evaluated,
in the sÍrme way as the Kirchhoff integral represents a scattered wave field from spatial contrast
sources below the evaluation depth. Recursive computation of the boundary integral, as shown by
Fig. 3, eliminates difference reflections above the interaction depth, giving a basis for prestack
temporal contrast imaging and inversion schemes, analogous to implementations of the Kirchhoff
integral in inverse scattering theory.
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Figure 3: (a) Layered model with time-Iapse differences in first, third and fifth layer, (b) interaction integral
of Eq. (3) at r! : 764m, and at (c) ri : 404m.
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