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Abstract

A new method is presented which combines a for-
ward and an image operator (resolution function) to
construct a simulated migrated seismic section from
a geological depth model. To efficiently use this tool
during seismic interpretation, a fast implementation is
necessary. This is achieved by improving the perfor-
mance of the serial algorithm.

1 Introduction

The seismic experiment is an important tool for
“understanding” the subsurface geology. A prereg-
uisite for such an understanding is a clear relation be-
tween the seismic image and the complex Geological
Depth Model. Let the collection of seismograms in
general be given by the following representation:

Data(xR,xS5 t)=
Forward Operator {Geological Depth Model(x)},

where Data denotes the recording of the (real or
simulated) seismic experiment in time ¢, measured at
position xR due to a seismic source at location x5,
The Forward Operator symbolizes either the seismic
experiment in the field itself or stands for a computa-
tional procedure. To capture the geology from seismic
measurements an Image Operator has to be applied

Depth Image(x)= Image Operator {Data(xR x5,t)}.

The Depth Image should be representative for the
Geological Depth Model. In the synthesis stage the
geologist is concerned with the question how and to
what extent geological details are visible in the seis-
mic image. The following relation will be investi-
gated

Depth Image(x)= Image Operator { Forward
Operator {Geological Depth Model (x) } },

which is the compound operation of the aforemen-
tioned processes. Commonly, the 1D convolution
method ([1], [2] and [3]) is used to create synthetic
seismics. However, the 1D (convolution) method only
expresses the vertical resolution, while the combined
operator also expresses the horizontal resolution of
primary waves. Compared to other forward and mi-
gration schemes (e.g. based on finite differences, [4]
and [5]) the compound operator considerably saves
on computational time and storage, because we do
not have to output the full intermediate 3D recordings
(Data(xR x5,t)). Together with geological modeling
software this new method will provide the interpreter
with a new powerful tool that helps to understand mi-
gration effects on a geological model. More specifi-
cally, due to its low computational costs, different ge-
ological models can be rapidly evaluated.
The objective of this paper is to carefully investigate
the computational aspects of a serial implementation
of the proposed method, in order to maximally aid
the seismic interpreter. The paper is divided into two
parts. The first part presents the new method, to-
gether with an example. The second part focuses on
reducing the computational costs of the serial algo-
rithm. Note that we will not deal with the question
on how the actual comparison between the simulated
migrated and real migrated seismics is performed.

2 Framework for combined operator

Figure 1 shows the framework to simulate a mi-
grated seismic section. Input is a 3D (shared earth)
geological depth model containing gridded wave ve-
locities and rock density data. The framework can be
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Figure 1: Framework to obtain a simulated migrated
seismic section. Summarized by convolving the res-
olution function (upper flow) with a reflectivity trace
(lower flow), followed by superposition of all convo-
lution products for all reflectivity traces.

summarized by convolving the 3D resolution function
(upper flow) with a 1D reflectivity trace (lower flow),
followed by superposition of all convolution products
for all reflectivity traces. The resolution function is
the result of the combined operators and will be con-
sidered in more detail in the next section. In the con-
volution step the resolution function is assumed to be
constant over a specific vertical range. The Zoep-
pritz equations are used to calculate the 1D reflectivity
trace. If we restrict ourself to normal incidence waves
(zero offset) the Zoeppritz equations reduce to

p(zi)e(zi) — p(zi—1)c(zi1)

Reflectivity(z;) = p(z)e(z:) + p(zio1)c(zi1)

1)
where p is the mass density and c is the wavefield
velocity.

3 Resolution function

The resolution function is acquired in two steps.
First, the response of a scatterer is derived using a
forward operator and the exploding reflector analogy
(see Figure 2). Second, an image operator is applied,
which results in a so-called resolution function or "fo-
cusing cross” ([6]). This section will concentrate on
the mathematical aspects of both operators and show
an example.

3.1 Gazdag phase shift operators

Let us consider the two dimensional version of the
homogeneous acoustic wave equation

2, L%
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where p=pressure, c=wavefield velocity and V2 is
the Laplace operator. Fourier transformation of (2)
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Figure 2: Recording data. (a) Seismic experiment
which is performed in the field. (b) The exploding
reflector analogy. The source is now placed at the re-
flector and half the velocity is taken to resemble the
field experiment. ¢ denotes wavefield velocity, S is a
source and R is a receiver.

with respect to z, y and ¢ yields the Helmholtz equa-
tion

2P+ (k> — k2 —k2)P =0 A3)

with & = . In the exploding reflector model we

take k = 6‘7—2 The solution to the Helmholtz equation
(3) is well known

P(kw,z,w) = P(kz;zm;w) exp(iij‘Zm—Z\) ()

with k, = ,/k? — k2 — k2. On physical grounds

the minus sign is chosen for forward wave propaga-
tion. The plus sign is for backward or inverse prop-
agation, an image operation. The forward operator
shows that wave field propagation in a homogeneous
layer can be described by a phase shift operator in the
double Fourier domain or &, k,, w domain ([7]). The
wave field extrapolation operator was introduced by
Gazdag [8]. Since then, this method has been named
the "Gazdag phase shift method”.

The Gazdag phase shift is used in combination
with the exploding reflector analogy (see Figure 2).

P_(zm—l) = W_(zm—lazm)P_(zm) ®)




with W™ (21, 2m) = exp{—Ikzlzm-1-2m])

The inverse wave field extrapolator (£~ =
1/W~) forms the basis for Gazdag phase shift mi-
gration. To obtain a stable inverse wavefield extrapo-
lator, the complex conjugate of the forward operator
is taken < F~ >= (W~)*. Physically, this means
that only the propagating wave region is used. Hence,

P~ (zm) =< F~ (zm, 2m—-1) > P"(zm—-1) (6)

With < F~ (2m, 2Zm_1) >= exp(tik:lem—zm-1l),

The final migrated image in the exploding reflec-
tor analogy is obtained when the wavefield is eval-
uated at ¢ = 0. In the double Fourier domain this
is a summation of all the frequencies components
for each (k;,ky,z). Finally, the image is inverse
Fourier transformed from the wavenumber domain to
the space domain

Tmage(z,,2) = (FFT) 2| 5 P (ks by 2,00

Wi
()
For more extensive details we refer to Berkhout [9]
and Wapenaar [10].

3.2 Acquisition parameters

Figure 3 illustrates an acquisition setup. As an il-
lustration for two different acquisition setups the in-
fluence on the representation of the resolution func-
tion will be considered for a 2D medium. In the
model three equal-strength point scatterers are located
at 500, 1500 and 2500 meters in a homogeneous
medium with P-wave velocity of 2000 m/s. In the
modeling, dz=2 and dx=5 meters. The source sig-
nature (Ricker wavelet) has a center frequency of 40
Hz. First we consider the acquisition setup with an
“infinitely” large aperture and maximum propagation
angle (amaqz) 0f 90°. Figure 4 (a) shows that the res-
olution functions are nearly one-dimensional and can
be interpreted as point scatterers convolved with the
used wavelet. It is important to notice that the 1D
convolution model would have given almost the same
result. In the second more common acquisition setup,
Qmae = 60° and the aperture width is limited to 3000
meters (see Figure 4 (b)). The 2D resolution func-
tions are now ”smeared” out compared to the first ac-
quisition setup and vary with depth. This has two rea-
sons: first, less angle information is available due to
the maximum angle of propagation. Second, the lim-
ited aperture width makes the effective receiver array
become smaller with increasing depth. As a conse-
guence the deeper point scatterers have less angle in-
formation available and thus less spatial resolution.
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Figure 3: Acquisition setup with a limited aperture
and selection of the maximum angle of propagation
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Figure 4: Resolution functions. Note that for display
purposes the z-axis is reduced. (a) Recording "infi-
nite” aperture and all propagation angles. Note that
almost the same result would be obtained with the 1D
convolution model. (b) a4, = 60 ° together with
an aperture width of 3000 meters. The 2D resolution
function is "smeared” out and varies in depth.

3.3 2D Example

Figure 5 shows the Sigsbee2A synthetic dataset,
which models the geologic setting found on the Sigs-
bee escarpment in the deep-water Gulf of Mexico.
Notice the approximately 1000ft constant water layer
on top of the model. This model is used to create
a simulated migration section (see Figure 8). For
comparison acoustic finite difference modeled shot
records ([4]) are pre-stack depth migrated, Figure 9.
Of importance is to notice that the latter seismic sec-
tion is computed on a single CPU in approximately
1 week and requires approximately 550 Mb to store
the intermediate shot records. On the other hand, the
simulated migrated section is constructed in approxi-
mately 10 seconds (see Table 1 and discussion in next
section) and requires no intermediate disk-space.
Nowadays interpretation of seismic data is performed
in three dimensions, where commonly an interpreter
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Figure 5: Sigsbee numerical dataset, models the geo-
logic setting found on the Sigsbee escarpment in the
deep water Gulf of Mexico.

is helped by a large variety of (3D) attributes to under-
stand the seismic data (see e.g. for a recent case study
Luchford [11]). However, high computational costs
of realistic forward seismic modeling (e.g. includ-
ing migration effects) currently limit an interpreter to
use a geological depth model to understand or justify
seismic data during interpretation. However, using
the proposed method combined with proper geolog-
ical modeling software (e.g. [12]) this could change.
The comparison of the real and simulated data may as
well be extended to include the comparison of equally
derived attributes of the migrated sections. The inter-
preter may use this attribute comparison to further un-
derstand the geology and adjust the model according
to the attribute comparison.

4 Fast serial implementation

From the previous discussion it has become clear
that a fast implementation is beneficial to aid the work
of an interpreter. Due to the zero-offset restriction
the calculation of the reflectivity (equation 1) is rather
straightforward. Therefore, we focus on a fast imple-
mentation to obtain resolution functions from one log
of the geological depth model. The implementation is
done in the double Fourier domain on a RISC archi-
tecture. Note that we assume that we use the fastest
available Fourier transform (FFTW) and that that the
given analysis is presented for two dimensions, how-
ever the method is valid for three dimensions.

4.1 Double Fourier domain

Figure 6 shows the double Fourier or (k,,w) do-
main, where equation 4 is numerically solved. The
horizontal axis displays the wavenumber (k) and the
vertical axis the frequency (w = 2« f). For an ef-
ficient implementation for both the forward and mi-
gration algorithm, consider the following four prop-
erties of equation 4. First, recognize that the Fourier
transform is computed from a real and causal signal.
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Figure 6: Overview of the double Fourier domain. To
reduce computational costs only the filled region is
computed.

This means that only the positive frequencies have to
be calculated, the real Fourier transform takes care of
the negative values. Second, in the Helmholtz equa-
tion, k, is squared. This means that it is symmetric
in k, and therefore only the positive part has to be
calculated, the negative part is an exact copy. Third,
if the square root of the phase shift operator becomes
complex the wave field is evanescent (exponentially
decaying). Therefore, the phase shift operator is only
applied if the wavefield is propagating. And fourth,
the available frequencies, which carry information,
are limited. This means that in the frequency range
up to Nyquist, not all frequencies need to be calcu-
lated. These four properties are shown as the filled
region in Figure 6. Properties one to three are im-
plemented in the "original” algorithm. To benchmark
performance increase, one velocity log of the Sigs-
bee2A model (Figure 5) is taken. Table 1 shows the
runtime of the “original” algorithm. To benchmark
the performance increase for the fourth property the
program is run with a realistic limited frequency range
of 0 up to 60 Hz, instead of up to 100 Hz (Nyquist).
Table 1 shows the performance increase. To further
understand how to reduce the computational costs, the
next subsections examine the individual parts.

4.2 Forward evaluation

Below is the pseudo code of the forward part
(equation 5):

for z=nz to 1
for w=wrin to wrax
for kx=1 up to propagation limt

check if depth point scatterer
cal cul ate phase shift operator

apply phase shift operator
end
end
apply filters
copy symmetric kx part
end



Note that due to the exploding reflector analogue
(see Figure 2) the depth loop is reversed. This straight
forward implementation results in speedup after rec-
ognizing that the phase shift operator is a linear opera-
tion for constant velocity intervals. Constant intervals
exist, for example due to a constant water layer (see
Figure 5) or a constant taken overburden. The com-
putational costs from finding the constant velocity in-
tervals is negligible. Table 1 shows the computational
speedup.

4.2.1 Acquisition

During modeling the characteristics of the acquisition
setup (see Figure 3) are included by applying sym-
metric filters, which are briefly considered. Following
Cerjan [13] the limitation of the aperture is archived
by multiplying one side of the wavefield by a Gaus-
sian shaped spatial function in the w, 2 domain. This
means that before and after applying this filter, a 1D
Fourier transform from k,, to x is applied. To limit the
maximum angle of propagation greater than a.nqz,
(see Figures 6 and 3) a mask is designed to atten-
uate in the £ — w domain. Unfortunately, the dip-
mask must be recalculated at every iteration because
the frequency corresponding to a given dip changes
as k = fe_. A so-called Hann-function, a raised-
cosine, is used as dip filter.

4.3 Migration

The pseudo-code of the migration part, equations
6 and 7, respectively, is:

for z=1 to nz
for w=wrin to wrax
for kx=0 up to propagation limt

cal cul at e phase shift operator

apply phase shift operator
end
sum over all frequencies
end
copy symmetric kx part
i nverse FFT
end

After carefully inspecting the program code, the
k and w loop were reversed. This was done because
we overlooked the fact that we have defined w as the
fastest dimension. Due to this cache optimization a
17 % performance increase is obtained (see Table 1).

4.4 Profiler

To further increase the computational performance
of the serial algorithm, the GNU profiler (gprof) is
used. The profiler shows that the main loops of the
forward and migration algorithm are the most com-
pute intensive parts of the program. Unfortunately the

Runtime [s]

Original algorithm 197.4
Reducing frequencies 109.1
Using linear operator 12.4
Changing loop order 10.0

Table 1: Summarizing different serial improvements.
C program compiled on Red-Hat 7.0 with Linux Intel
compiler 6.0 and compile option -03.

profiler does not reveal this line by line. However ex-
amining the pseudo codes and equation 4, we have the
following suggestions. First, the square root is present
in both inner loop. And as the ”Square Root page”
[14] discusses, optimized versions of the square root
operation are available. However, a listed optimized
square root code (fsqrt) did not show any significant
performance increase. Second, the exponential func-
tion (implemented as cosine and sine) could by re-
placed by a lookup table, to speed it up. Third, the
division of w and ¢ could be replaced by multiplica-
tion, if first the reciprocal of ¢ is taken. There already
half the input velocity is computed (exploding reflec-
tor analogy), the reciprocal operator can be efficiently
implemented. Finally, by vectorization, one loop is
saved. Notice that we think that parallelization of the
serial code, for example by frequency components,
will not speedup the algorithm due to the paralleliza-
tion overhead.

5 Parallelization

Parallelization of the framework (Figure 1), us-
ing as basis the optimized serial algorithm, is use-
ful if from every log position (x;, y;) different resolu-
tion functions need to be computed or if different off-
sets are selected. For parallelization, the master-slave
topology is adapted, where the master distributes the
grid parameters (MPI_Bcast) to the different slaves.
Each slave then computes a part of the final simu-
lated migrated section, using the improved serial algo-
rithm. In the end, the master collects (MPI_Receive)
and superimposes the final simulated migrated image
from all nodes. Only attention has to be paid that
the slaves send (one operator length) extra informa-
tion from their local convoluted result, because oth-
erwise the "parallel” superposition performed by the
master node is incorrect. Figure 7 shows the obtained
speedup using the complete Sigsbee model. The re-
sult is almost linear. Note that the current implemen-
tation is only efficient for a homogeneous network,
there the input grid is equally divided over the number
of available slaves. It is better to follow the approach
suggested by Dongarra, et al [15], where a random
factor is introduced to determine the computed grid
size for the slaves. When a slave is ready it requests
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Figure 7: Obtaining an almost linear relative speedup
on the DAS-2 cluster.

the next number of logs to be calculated.

6 Discussion

The above discussion provides a fast implementa-
tion for a new seismic simulation method, which in-
cludes migration effects. A fast implementation is
necessary to optimal aid the work of a seismic in-
terpreter. The serial code is optimized by carefully
examining the properties of the double Fourier do-
main, physics and cache optimization. The speedup
after optimization compared to the original algorithm
is huge: 200 %. Note that the computational improve-
ment can decrease if a log lacks constant velocity in-
tervals or if higher frequencies are needed. Use of
the GNU profiler (gprof) unfortunately did not reveal
which lines in the code are a target for computational
improvement. Our guess with an improved version
of the square root, did not show any performance in-
crease. Further targets are the exponential function or
even vectorizing the code. Finally, a parallel imple-
mentation is beneficial if for every log position new
resolution functions are calculated or different offsets
are selected. An almost linear speedup is achieved.
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Figure 8: Migrated result of the Sigsbee data set using the presented method.
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Figure 9: Migrated result of the Sigsbee data set using acoustic finite difference modeling of shot records and
pre-stack depth migration.



