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Causality aspects of the elastodynamic Marchenko method

Kees Wapenaar and Evert Slob

Summary

With the acoustic single-sided Marchenko method it is possible to retrieve the Green’s function of a
virtual source in the subsurface from the single-sided reflection response of the medium and an estimate
of the first arrival of the Green’s function. Important ingredients of the Marchenko method are the so-
called focusing functions. One of the underlying ideas of the acoustic Marchenko method is that the
Green’s functions and focusing functions reside in different time intervals in the time domain. We call
this the causality condition. The only overlap of the Green’s functions and focusing functions occurs at
one time instant, namely at the time of the direct arrival of the Green’s function.

In this paper we analyze the causality condition for the elastodynamic extension of the single-sided
Marchenko method. It appears that the overlap of the elastodynamic Green’s functions and focusing
functions occurs in an extended time interval. The parts of the focusing functions that overlap with
the Green’s functions cannot be retrieved with the Marchenko method, and must therefore be specified
separately. It appears that these overlapping parts are defined as the inverse of the forward-scattered part
of the transmission response of the medium.
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Introduction

For a brief historic overview and an explanation of single-sided Marchenko Imaging, please refer to the
paper by Roel Snieder at this workshop (Snieder, 2015). Current research on the Marchenko method
concerns the extension to the elastodynamic situation (da Costa et al., 2014a,b; Wapenaar and Slob,
2014; Wapenaar, 2014). The extension of the Marchenko method from the acoustic to the elastodynamic
situation is hampered by the fact that simple causality arguments, underlying the acoustic method, do
not hold for the elastodynamic method. The aim of this paper is to emphasize the role of causality in the
theory of the Marchenko method and to discuss how this plays a role in the elastodynamic extension.

Review of the causality aspects of the 1D acoustic Marchenko scheme
The causality aspects are best illustrated at the hand of the 1D version of the acoustic Marchenko scheme.
Consider the following 1D Green’s function representations (Wapenaar et al., 2014; Slob et al., 2014)

t
Gi’+(Z07Zi7t)+f;(Z0aZi7t) - / R(Z()vt_t,)f;r(z(hziatl)dt/a (1)

!
Gi’i(z(bziat)+f1+(Z07Zi7_t) = / R(Z07t_t,)ff(207zi7_t/)dtla (2)

respectively. Here R(zo,t) is the 1D single-sided reflection response of a horizontally layered medium
below a homogeneous half-space, observed at the surface z = zg (in practice this is the response obtained
after surface-related multiple elimination and deconvolution for the source wavelet). G~ " (z9,z;,¢) and
G (z0,zi,t) are the decomposed Green’s functions for a receiver at zyp and a source at z;. The su-
perscripts refer, in the same order, to the propagation direction at these depth levels. The focusing
functions f,"(z0,z;,¢) and f] (z0,z,) are defined in a reference medium, which is identical to the ac-
tual medium above z; and homogeneous below this depth level. The focusing function ff’ (z0,zi,t) is
a downgoing wave field at z, shaped such that it focuses at z;, i.e., f;" (zi,z;,7) = 8(¢). The focusing
function f; (z0,z:,¢) is the reflection response of f;" (z0,z;,¢) in the reference medium, observed at the
surface zg. Note that in these representations, z; denotes the focal point of the focusing functions and the
(virtual) source point of the Green’s functions. A second set of focusing functions exists, f2+ (ziy20,1)
and f, (zi,20,t), where f, (zi,20,t) is an upgoing wave field at z;, shaped such that it focuses at zo, and
15 (zi,20,1) is its reflection response, observed at z;. The mutual relations between the focusing functions
are

A @ozit) = £ @z0t), 3)
_fli(z()vzh_t) = fer(Zi)ZO)t)‘ (4)

Equations (1) and (2) form a set of two equations with four unknowns, namely G, G, f1+ and f.
To solve this set of equations, we consider causality arguments to separate the Green’s functions G~
and G~ from the focusing functions ff’ and f, . Let the travel time of the direct arrival between zo and
z; be defined as r4. Then, assuming z; does not correspond with an interface, we have

G (z0,2i,t) =0, for <19, (5)
G (z0,2i,1) =0, for <1l (6)

Note the subtle difference of the intervals where these functions are zero. For G~ this excludes the
point ¢ = t9 (because G~ contains the direct arrival), whereas G~ equals zero also at t = ¢ (assuming
the source at z; does not lie on an interface). The focusing function fﬁ (z0,zi,t), which focuses at z;, is
by definition the inverse of the transmission response 7 (z;,zo,?) of the medium between zo and z;. For
the transmission response we have T (z;,20,¢) = 0 for ¢ < 9. The coda of the transmission response is
causal and minimum-phase (Anstey and O’Doherty, 1971). The inverse of a minimum-phase signal is
causal and minimum-phase as well (Robinson, 1954). Hence, for fl+ (z0,zi,t), which is the inverse of
T (zi,z0,1), the time-reversed direct arrival at —14 is followed by a causal coda, hence ffL (z0,zi,¢) = 0 for
t < —t4. The left-hand side of equation (2) contains the time-reversal of ffr , for which we thus have

fit (zo,zi,—1) =0, for >4, (7
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cp =2000m/s cs = 1000m/s
---------------------------------- zo=0m
cp =2000m/s cs = 1000m/s
z =400m
cp =4500m/s cs = 3500m/s
z =3800m
---------------------------------- z; = 1000 m
cp =2500m/s cs = 1500m/s
z =1400m
cp =4000m/s cs = 2500m/s

Figure 1 Horizontally layered medium. The indicated shear-wave velocities only apply to the elastody-
namic example. The mass density is 2000 kg/m> in all layers.
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Figure 2 Green’s functions (green) and focusing functions (blue) for the 1D acoustic case.

Since f; is the reflection response of f;", we have f (z0,z;,¢) = 0 for t < —t4. Similarly, since 15 s
the reflection response of f;, we have f5' (z;,z0,1) = 0 for r < —t4, Combining this with equation (4)
we find

fi (z0,zi,t) =0, for > (8)

Equations (6) and (8) show that the functions at the left-hand side of equation (1) are completely sepa-
rated in time. This is illustrated in Figure 2a for the horizontally layered medium of Figure 1. Equations
(5) and (7) show that the functions at the left-hand side of equation (2) overlap only at ¢t = t9, which
is illustrated in Figure 2b. Note that in these figures the Green’s functions and focusing functions have
been convolved with a wavelet, and 19€ = 14 — ¢ is defined as the onset of the direct arrival. Using these
properties, we deduce from equations (1) and (2)

t

11 (zo,zi,t) = / R(zo,t —1') fi (z0,21,¢")dt’,  for ¢ <19, )
t

fi (zo,zi,—t) = / R(z0,t — 1) f (z0,2:,—1")dt’, for t <19 (10)

Note that equation (9) covers the entire function f (zo,z:,?), whereas equation (10) covers the function
ffr (z0,zi,—t), except its arrival at t = 19, Equations (9) and (10) form a set of two equations with two
unknowns, f;" and f; . Assuming the reflection response R(zo,¢) and the arrival att = —t9 of f," (z0,,t)
are known, these equations can be solved via an iterative Marchenko scheme (Slob et al., 2014).

Note that this causality discussion holds perfectly for the 1D acoustic situation. For the 3D acoustic
situation it holds only in an approximate sense (Wapenaar et al., 2014). For the elastodynamic situation
it needs to be reconsidered, which we will do in the next section for a 1D medium.

Causality aspects of the 1D elastodynamic Marchenko scheme
We consider oblique plane waves in a horizontally layered medium. The propagation angle is rep-
resented via the ray parameter p. Consider the following 1D Green’s function representations in the
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Figure 3 Elastodynamic Green’s functions (green) and focusing functions (blue) for oblique incidence.

rayparameter intercept time (p, T) domain (Wapenaar, 2014)

T
G77+(p7Z07Zi77)+F;(p7Z07Zi77) = /_R(p,Z(),T—TI)FT(p,ZO,Zi,T,)dT/, (11)
T
G_7_(p,ZO,Zi,T)+FT(_p,ZO,Zi,_T) = / R(p7ZO7T_T/)Fl_(_paZOaZia_T/)dT/a (12)
7ai 7:i + +
G = (grn o) w = (TR (0 ), 13
Gsp Ggs Isp Jss Rsp Rsgs

with subscripts P and S standing for compressional and shear waves, respectively. We illustrate some
elements of the Green’s functions and focusing functions for the medium of Figure 1 in Figure 3,
choosing p = 0.0002 s/m. Note that Tg;f = rgp — €&, where rgp is the arrival time of the first arrival
of Gy (p,z20,2i,T), etc. (this wave starts as an upgoing P-wave at z; = 1000 m, converts to an S-wave at
z =400 m and hence arrives as an S-wave at zo = 0 m). Figures 3c and 3d clearly show that the overlap
between the functions in the left-hand side of equation (12) is not restricted to the first arrival. In Figures
3a and 3b the functions in the left-hand side of equation (11) are well-separated, but this only holds
when z; is not too close to the interface directly above it. In the following we assume this condition is

fulfilled. We define a time-window matrix W(p, 7), according to

_ (H(zhs —1) H(tps —1)

where H(7) is the Heaviside step function. Note that W(p, t) o G~ (p,z0,2;,T) = O, where O is the
null matrix and o denotes Hadamard matrix multiplication (i.e., element-wise multiplication). Moreover,
with the assumption made above, we have W(p, t) oF| (p,z0,2i,7) = F| (p,20,zi, 7). Hence, applying
W(p, 1) to both sides of equations (11) and (12) we obtain

T
Fl_(P;ZO;Zi,T) = W(P,T)O/i R(paZOaT_T/)FT(p7107ZiaT/)drla (15)
T
W(p)T)OF;L(_p)ZO)Zia_T) = W(Paf)o/ R(p,Z(),T—T/)F;(—p,ZO,Zi,—T/)dTI. (16)

Note that equation (15) covers the entire function F| (p, z0,z;, T), whereas equation (16) covers the func-
tion F{ (—p,z0,z;,—7), except its parts that overlap with G~ (p,z0,z;, 7), as illustrated in Figures 3¢
and 3d. Equations (15) and (16) form a set of two equations with two unknowns, FT and F| . Assuming
the reflection response R(p,zo, 7) and the parts of F{ (—p,z0,z;,—7) not covered by equation (16) are
known, these equations can be solved via an iterative Marchenko scheme.
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Figure 4 Inverse of the forward-scattering transmission response. This equals the parts of the focusing

functions in Figures 3c,d which overlap the Green’s functions.
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Figure 5 Retrieved Green’s functions after four iterations of the Marchenko scheme.

We now discuss how to define the parts of F{ (—p,zo,z;, — ) that overlap the Green’s functions. Similar
as in the acoustic case, the focusing matrix Ffr (p,20,2i,T) is the inverse of the transmission response
matrix T(p,z;,20, ) of the reference medium (which, between zy and z;, is equal to the actual medium).
We write F{ (p,z0,2:,7) = TiV(p, 2,20, T) + M (p, 20,2, T), where Ti™(p, z;,20, 7) is the inverse of the
“forward-scattering” transmission response matrix Ty (p,zi,20,7), i.e., the part of the transmission re-
sponse that includes direct and forward converted waves, but no internal multiples. M*(p,zo,z;,T)
represents the scattering coda (i.e., everything that is not included in T}‘S‘V (p,ziy20,7)). Figure 4 shows
some elements of T (—p, z;,20, —T), which correspond precisely with the overlapping parts in Figures
3c and 3d. Hence, assuming R(p,zo,7) and T{"(p,zi,z0,7) are known, equations (15) and (16) can
be solved for the coda M (of FT) and F; (Wapenaar and Slob, 2014). Once these are found, the

elastodynamic Green’s functions follow from equations (11) and (12), see Figure 5.

Conclusions

We have shown that the simple causality conditions of the acoustic single-sided Marchenko scheme do
not hold for the elastodynamic situation. For the latter situation the focusing functions and Green’s
functions exhibit an overlap in a finite time interval. The part of the focusing functions that overlaps
with the Green’s functions cannot be resolved via the Marchenko method and needs to be specified
separately. It is defined as the inverse of the forward-scattered part of the elastodynamic transmission
response of the medium. Further research is required to investigate which approximations are allowed
in the estimation of the forward-scattered transmission response.
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