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Abstract—Two wavefields can be retrieved from the measured
reflection response at the surface. One is the Green’s function at
a chosen virtual receiver depth level in a layered model generated
by a source at the surface. The other wavefield consists of the
upgoing and downgoing parts of a wavefield that focuses at
the virtual receiver depth level. From the upgoing part of the
focusing wavefield an image can be computed at one-way vertical
travel time and with correct amplitudes of the local reflection
coefficients as a function of incidence angle. These reflection
coefficient values can be used to invert for electric permittivity
and magnetic permeability. From these values and the known
image times the layer thickness values can be obtained for each
layer. This method renders the full waveform inversion problem
for horizontally layered media a linear problem.

Index Terms—antenna, propagation, measurement.

I. INTRODUCTION

Normally one solves the inverse problem using a data-misfit
criterion, which is an iterative forward modeling approach to
inversion. This approach does not directly retrieve information
from the data, but uses the data to fit the modeled data to. This
is a model driven approach to solving the inverse problem.
Retrieving information directly from the measured data will
constitute a data-driven approach to solving the inverse prob-
lem. It can be called a full waveform data inversion method if
the electric and magnetic parameters are obtained as a function
of subsurface position. In this paper we investigate a new
method to obtain the electric and magnetic medium properties
of a horizontally layered medium from the measured data.

From seismic interferometry we know that virtual sources
(or receivers) can be created at physical receivers (or sources)
[1], [2], [3]. If these are in the subsurface the reflection
response of the medium below the receiver (or source) level
can be obtained through multidimensional deconvolution of
the upgoing wavefield by the downgoing wavefield at this
level [4], [5]. To obtain information below this level, model
driven methods are being used to first create reflection images
and then medium parameters are estimated from the reflection
coefficients.

In a new approach, surface reflection data is computed from
the measured data. In this step sources are redatumed to the
receiver level. The reflection data is used to create a virtual
Vertical Radar Profile (VRP) by creating a virtual receiver
in the subsurface using physical receivers at the surface. The
sources remain at their redatumed positions. Hence, virtual re-

ceivers are created in the subsurface without needing physical
sources or receivers in the subsurface. This approach retrieves
the up- and downgoing wavefields at the virtual receiver depth
level separately and finds the true amplitude image directly
from the upgoing wavefield. Amplitude versus angle analysis
in the tau-p domain will give the medium parameters.

Here we show how the method exploits internal multiples
in the reflection response of a layered earth to obtain correct
amplitudes of the primary reflections and avoids creating
ghosts images from the internal multiple reflections at the same
time. This can be done using the recently developed theory [6],
which is an acoustic theory inspired by 1D focusing theory
[7], but valid in 3D heterogeneous media. The scheme is non-
recursive in depth and hence the method does not suffer from
error propagation.

The full waveform inversion problem is cast as a three-
step linear problem. First an image is obtained by filtering
the measured reflection response. Then the image amplitudes
as a function of incidence angle are used to compute the
electric permittivity and magnetic permeability inside each
layer. Finally the medium parameters in each layer are used
to convert image times to image depth values and hence layer
thickness values are obtained. We show each of these three
steps and illustrate the method with a numerical example using
the TE-mode reflection response.

II. OBTAINING THE REFLECTION RESPONSE FROM THE
MEASURED DATA

We use the vector x = (x, y, z) to denote the coordinate
vector of a point in three-dimensional space, with the vertical
axis pointing downward, and we work in the frequency domain
assuming exp(iωt) time dependence, with i the imaginary
unit, ω = 2πf radial frequency, f is natural frequency,
and t denotes time. For a horizontally layered medium with
interfaces at depth levels zi, i = 0, 1, 2, · · · , the sources are
assumed to be located at depth level zs < 0 and the receivers
at depth level zr < 0 but such that zr > zs. It is well-known
that in a homogeneous subdomain the electromagnetic field
can be decomposed in upgoing and downgoing waves and in
TE- and TM-modes [8], [9]. This decomposition is most easily
carried out in the horizontal wavenumber domain because then
it can be carried out for each wavenumber separately. We
apply a two-dimensional spatial Fourier transformation with



exp(ikT · xT ) as Fourier kernel; kT = (kx, ky, 0) and a
similar definition holds for xT . Quantities in the horizontal
Fourier transformed-frequency domain are denoted with a
diacritical tilde, e.g., the electric field vector is denoted Ẽ.
Here we use the procedure of [5] and store the measured
horizontal components of the electric, Ẽ, and the magnetic,
H̃, field vectors in the field vector F̃ as F̃ = (F̃ 1, F̃ 2),
with F̃ 1 = (Ẽx, Ẽy) and F̃ 2 = (−H̃y, H̃x). The decom-
posed TM-mode and TE-mode wavefields are connected to
the measurements through composition matrices L̃1,2. The
decomposed down- and upgoing TM- and TE-modes are stored
in the vector P̃ = (p̃+, p̃−), and p̃± = (p̃±TM , p̃

±
TE), where

+ denotes a downgoing wave and − an upgoing wave. The
fields are composed of the down- and upgoing wavefields
as F̃ 1 = L̃1(p̃+ + p̃−) and F̃ 2 = L̃2(p̃+ − p̃−). The
down- and upgoing modes are obtained form the measured
data by p̃± = −(L̃

t

2F̃ 1 ± L̃
t

1F̃ 2) where the superscript t

denotes matrix transposition. Expressions for the composition
matrices can be found in [5]. This choice of L̃1,2 is known
as flux-normalization and has the advantage that upgoing and
downgoing transmission responses are equal [9]. The two
modes are independent from each other and, e.g., the TE-
mode impulse reflection response of the layered medium at
the receiver level is given by R̃TE0 = p̃−TE/p̃

+
TE and can be

written as

R̃TE0 =
Γ(ikyẼx − ikxẼy)− ζ(ikxH̃x + ikyH̃y)

Γ(ikyẼx − ikxẼy) + ζ(ikxH̃x + ikyH̃y)
, (1)

where the vertical wavenumber is denoted Γ and is given by
Γ =

√
κ2 + ηζ and κ2 = k2x + k2y is the radial wavenumber,

and η = iωε, ζ = iωµ. The electric permittivity is denoted ε
and magnetic permeability is indicated by µ, which together
determine the propagation velocity c = 1/

√
εµ.

Two important observations can be made. The impulse
reflection response of either mode only depends on the radial
wavenumber κ and when we scale the radial wavenumber as
κ = ωp, with p being radial slowness, the local reflection co-
efficients are independent of frequency under our assumption
of a lossless layered medium. The TE-mode local reflection
coefficient of a reflector at depth level zn is given by

rTEn =
µn+1

√
1/c2n − p2 − µn

√
1/c2n+1 − p2

µn+1

√
1/c2n − p2 + µn

√
1/c2n+1 − p2

. (2)

Now that we have the impulse reflection response from the
measured data we investigate how this can be used to focus
the wavefield in a point in the subsurface. This can be done
for each mode separately and we treat the general case.

III. DIRECTIONAL GREEN’S FUNCTION REPRESENTATIONS
FOR A BURIED VIRTUAL RECEIVER

In this section we give two Green’s function representations
for a buried virtual receiver in terms of down- and upgoing
parts, f̃±, of a focusing wavefield f̃ and the impulse reflection

response R0, where from here onward we omit the explicit in-
dication of the mode. Green’s function representations are ob-
tained using the reciprocity theorems of the time-convolution
and time-correlation types [10]. Here we just give the results
similar as those obtained in [11], where the virtual receiver is
located at the focusing depth level zi zi > zr,

G̃−(p, zi, z
r, ω) + f̃−(p, zr, zi, ω)

= f̃+(p, zr, zi, ω)R̃0(p, zr, ω), (3)

−G̃+(p, zi, z
r, ω) + [f̃+(p, zr, zi, ω)∗

= [f̃−(p, zr, zi, ω)]∗R̃0(p, zr, ω), (4)

where ∗ denotes complex conjugation. These two relations
can be understood as follows. The functions f̃± are the up-
and downgoing parts of a focusing wavefield that obeys the
homogeneous wave equation in a medium that is the same
as the actual layered medium between the receiver level zr

and the focusing depth level zi and homogeneous below
zi. The focusing wavefield focuses at depth level zi, hence
f̃+(p, zi, zi, ω) = 1 and f̃−(p, zi, zi, ω) = 0. At the receiver
level they are related to each other through the impulse reflec-
tion response of the medium that is layered up to zi, as de-
picted in Figure 1. The up- and downgoing Green’s functions
are the VRP Green’s functions for an upgoing and downgoing
field at the depth level zi and generated by a downgoing source
wavefield at the receiver level zr, see Figure 2. Notice that for
the Green’s function zi is the receiver depth level and zr is
the source depth level. Now we can interpret equations (3)
and (4). Equation (3) says that if we convolve in the time
domain the downgoing part of the focusing wavefield with the
layered earth reflection response, we obtain the upgoing part of
focusing wavefield and the Green’s function that corresponds
to the upgoing wavefield measured at zi that is generated by a
source wavefield at zr. Equation (4) says that if we correlate
in the time domain the upgoing part of the focusing wavefield
with the layered earth reflection response, we obtain the time-
reverse of the downgoing part of focusing wavefield minus the
Green’s function that corresponds to the downgoing wavefield
measured at zi that is generated by a source wavefield at zr.
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Fig. 1. The focusing wavefield f̃± at the surface zr and focus level zi.
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Fig. 2. The unit function as incident wavefield and the impulse reflection
response at the surface zr and the corresponding up- and downgoing Green’s
functions at the focusing depth level zi.

IV. THE CHARACTER OF THE FOCUSING WAVEFIELD

Let us take a closer look at the focusing wavefield first.
The medium for which the focusing wavefield is defined is
layered between the depth levels zr and zi and is homoge-
neous outside this region. If the downgoing wavefield just
above zr would be a downward propagating unit amplitude
plane wave the upgoing wavefield would be the reflection
response corresponding to that medium. This reflection re-
sponse is denoted R̃i0(p, zr, ω), where the superscript i is
introduced to denote that the reflection response belongs to
the medium that is homogeneous below zi. The downgoing
wavefield below the depth level zi would be the transmis-
sion response of that medium, which we could write it as
T i0(p, zi, z

r, ω). Because the focusing wavefield is defined as
the wavefield that has unit amplitude at depth level zi, we find
f̃+(p, zr, zi, ω) = [T̃ i0(p, zi, z

r, ω)]−1 and f̃−(p, zr, zi, ω) =
R̃i0(p, zr, ω)/T̃ i0(p, zi, z

r, ω). Hence, f̃+(p, zi, zi, ω) = 1 and
we have obtained our desired focusing wavefield. For simplic-
ity we take the simplest example possible, that of a medium
with two reflectors, at z0 and z1 and the source and receiver
just above z0. If we emit a single pulse at t = 0 at z = z0
the downgoing and upgoing wavefields just above z0 and just
below z1 are given by

p̃+(z0, t) = δ(t), (5)

p̃−(z0, t) = r0δ(t) + τ20 r1

∞∑
m=0

(−r0r1)mδ(t− 2(m+ 1)t1),

(6)

p̃+(z1, t) = τ0τ1

∞∑
m=0

(−r0r1)mδ(t− (2m+ 1)t1), (7)

where the explicit dependence on the radial slowness is omit-
ted for brevity. The local reflection coefficient of the reflector
at zi is denoted ri and the local transmission coefficient is
denoted τi. The travel time from depth level z0 to z1 is given
by t1 = (z1 − z0)

√
1− c21p2/c1. The downgoing part of the

focusing wavefield is the inverse of the downgoing impulse

transmission response and we can find this as

f̃+(p, z0, z1, t) =
δ(t+ t1) + r0r1δ(t− t1)

τ0τ1
. (8)

We can find f̃+(z1, z1, t) by convolving f̃+(p, z0, z1, t) with
p̃+(p, z1, t) to find f̃+(p, z1, z1, t) = δ(t). We can also find
f̃−(p, z0, z1, t) by convolving f̃+(p, z0, z1, t) with p̃−(p, z0, t)
to find

f̃−(p, z0, z1, t) =
r0δ(t+ t1) + r1δ(t− t1)

τ0τ1
. (9)

We observe that at the receiver level z0 both up- and downgo-
ing parts of the focusing wavefield have two terms that arrive
within the time window |t| ≤ t1. Apart from the scaling factor
(τ0τ1)−1 the upgoing part contains the correct local reflection
coefficient r1 at t = t1. This result can be generalized to
any number of layers as was already shown before [12]. The
downgoing part of the focusing wavefield is the inverse of the
impulse transmission response and for a layered medium with
reflectors from z0 to zi it will have 2i number of events in
the time window −td(p, zi, z0) ≤ t ≤ td(p, zi, z0), where td
denotes the direct arrival from the source at z0 to the receiver
at zi. The upgoing part of the focusing wavefield has the same
number of events in the same time window.

V. OBTAINING THE FOCUSING WAVEFIELD FROM THE
IMPULSE REFLECTION RESPONSE

In the time-domain the upgoing and downgoing parts of
the Green’s function in the time-domain equivalents of equa-
tions (3) and (4) are causal functions of time and therefore
they are zero before the direct arrival from the level zr to the
level zi. Let us assume for simplicity that the receiver level
is just above z0 then G̃±(p, zi, z0, t) = 0 for t ≤ td(p, zi, z0).
Hence for t < td(p, zi, z0) in the time-domain equivalents
of equations (3) and (4) can be written without the Green’s
functions, because they are still zero. The time-instant t = ±td
is part of the equations, but the equations are not valid
without the Green’s functions for this time-instant. Therefore,
f̃+(p, z0, zi,−td) is needed and we must find an estimate of
the first event of the focusing wavefield, f̃+(p, z0, zi,−td). We
have seen in the example of the focusing wavefield that the
first event at the receiver level z0 is a time-advanced impulse
scaled by the product of local transmission coefficients. We
have also seen that not using this scaling factor will result
in the correct local reflection amplitude at the arrival time
corresponding to that reflector. We can therefore ignore the
scaling factor and emit a unit amplitude impulse, but still
we need to find the one-way travel time td from the source
level to the receiver level. In the slowness-time domain, the
recording time is the apparent travel-time or intercept time.
This is twice the vertical travel time from the source level to
the reflector level. Hence, for every recording time instant, the
focus time td is half the recording time. We will create focus
times and retrieve the local reflection coefficients from the
upgoing focusing wavefield at t = td. We split the downgoing



focusing wavefield up in a direct part and a coda as

f̃+(p, z0, zi, t) =
δ(t+ td) +M+(p, z0, zi, t)

τ0τ1τ2 · · · τi
, (10)

where the coda is denoted M+(p, z0, zi, t) and also scaled
by the product of local transmission coefficients, and
M+(p, z0, zi, t) = 0 for t ≤ −td. Since f̃−(p, z0, zi, t)
is the reflection response to f̃+(p, z0, zi, t) we can take
f̃−(p, z0, zi, t) = 0 for t = td. We use the same scaling factor
in the upgoing focusing wavefield as

f̃−(p, z0, zi, t) =
M−(p, z0, zi, t)

τ0τ1τ2 · · · τi
. (11)

Substitutions of these choices in the time-domain equivalents
of equations (3) and (4) yields the final equations

M−(p, z0, zi, t) = R̃0(p, z0, t+ td)

+

∫ t

−td
M+(p, z0, zi, t

′)R̃0(p, z0, t− t′)dt′, (12)

M+(p, z0, zi, t) =

∫ td

−t
M−(p, z0, zi, t

′)R̃0(p, z0, t
′ − t)dt′,

(13)

valid for −td < t < td and that can be solved numerically for
M±. Equations (12) and (13) are related to the Marchenko
equation in [6] for which reason we call these equations
coupled Marchenko-type equations.

VI. OBTAINING ESTIMATES OF THE MEDIUM PARAMETERS

Once equations (12) and (13) are solved for one particular
focus time td and one particular radial slowness value p
the local reflection coefficient corresponding to that time is
retrieved from the upgoing part of the focusing wavefield

ri(p) =

∫ td

td−ε
M−(p, z0, zi, t)dt, (14)

where ε is an infinitesimal number. This is then done for all
values of p available in the data and for all focus times.

To arrive at this result we had to extract the reflection
response from the measured electric and magnetic fields. This
was done by decomposing the measured electric and magnetic
fields into up- and downgoing TE- and TM-modes, and
obtaining the reflection responses, as shown in equation (1) for
the TE-mode. To do that we needed the medium parameters
of the layer in which the actual receivers are located. After
that step no other model information was used. Imaging in
this way is a data-driven imaging method, because we first
retrieve the focusing wavefield from the measured reflection
response and then extract the image from the upgoing part of
the focusing wavefield. We call this Marchenko imaging.

We now continue to use the image to extract the medium
parameters and finally to convert image times to image depths.
The local reflection coefficient for depth level zi in the TE-
mode is given by equation (2). From the image containing all
local reflection coefficients at apparent one-way vertical travel
time we can start at the first reflector and obtain a least-squares
solution for the electric permittivity and magnetic permeability

below the reflector from the general expression, which can be
made explicit for discrete values of p as pn = n∆p, n =
0, 1, 2, · · · , N, in a matrix equation for εi+1 and µi+1 as

Au = b, (15)

with

A =


1 0
1 (p1c0)2

1 (p2c0)2

...
...

1 (pNc0)2

 ,u =

(
εr;i+1

µr;i+1

µ−2r;i+1

)
(16)

where εr;i+1, µr;i+1 are the relative medium parameters of
layer i + 1, e.g., εi+1 = ε0εr;i+1 and a similar definition
is used for µ. Each element bm, m = 0, 1, 2, · · · , N, of the
vector b is given by

bm =

(
1− rTEi (pm)

1 + rTEi (pm)

)2
εr;iµr;i − (pmc0)2

µ2
r:i

. (17)

The least squares solution is obtained as u = Kq with K =
(AtA)−1 and q = Atb. This is a simple 2×2 matrix problem
for which the solution can be written down directly

µr;i+1 = 1/
√
K(2, 1)q(1) +K(2, 2)q(2), (18)

εr;i+1 = µr;i+1(K(1, 1)q(1) +K(1, 2)q(2)). (19)

We start in the air with i = 0 where the receivers are present
and work our way down into the layered medium. Starting by
assuming we know the medium parameters in air, εr;0 = 1,
and µr;0 = 1, we find the least squares solution recursively
for the layer below an interface. Once we have the electric
and magnetic parameters, we know the propagation velocities
inside each layer and can transform the one-way vertical travel
time for p = 0 to depth. With this last step the full waveform
inversion is complete.

VII. NUMERICAL RESULTS

We give an example of the scheme and use a nine-layer
model, with eight reflecting interfaces, and properties given
in Table I. The first height is the source and receiver height
above the first reflector. For the data modeling we use a 250
MHz center frequency Ricker wavelet. We use offsets such that
plane waves traveling at 35 degrees from the vertical axis can

TABLE I
MODEL PARAMETERS FOR THE FORWARD MODEL.

layer # εr (-) µr(-) h (m)
1 1.00 1.00 1.75
2 3.90 1.00 1.57
3 2.40 1.00 0.71
4 4.20 1.00 1.70
5 9.10 1.40 1.21
6 16.1 1.50 1.10
7 12.3 1.39 1.23
8 9.10 1.25 1.51
9 13.3 1.31 ∞



be retrieved in the plane wave reflection response after decom-
position and transforming the data to the tau-p domain. The
angles of incidence used in the figures are related to the angles
in the air and hence angle, α, and ray-parameter p are related
through p = sin(α)/c0. The modeled data is used to find the
up- and downgoing focusing wavefields M±(p, z0, zi, t) from
equations (12) and (13). From M−(p, z0, zi, t) we find the
local reflection coefficient using equation (14). Notice that we
find the image as a time image because the one-way vertical
arrival time for each plane wave is half the intercept time in
the data. This result is shown in Figure 3 where the retrieved
image is shown in red dashed-dotted lines overlaying the black
solid lines that correspond to the model values computed using
the medium parameters given in Table I. No visible differences
occur in the image result, demonstrating that the Marchenko
imaging procedure accurately retrieves the correct amplitudes
at the correct image times.
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Fig. 3. The image as a function of incidence angle and one-way intercept,
or image, time, black solid lines indicate the exact result and the red dashed-
dotted lines indicate the numerical result.

We identify the eight reflectors in the image and pick the
image times that correspond to the extrema as a function
of angle of incidence for each reflection event. We then use
the inversion method described by equations (18) and (19) to
compute εr and µr from the reflection coefficient values. It is
a recursive scheme, so we start at the first reflector and work
our way down into the layered medium. The results of the
medium parameters and associated errors are shown in Table II
where the inversion results are shown. The errors shown in the
table are computed according to following general formula
err = 100(|fmod − f inv|)/fmod, where f can be εr, µr, or
h, and err is given in %. From the table it can be seen that
the largest errors occur in the medium parameters of layer
6 where ε is underestimated by 3.3% and µ by 4.2%. Once
the electromagnetic parameters are obtained in each layer, the
image times can be converted to image depths and the results
are also give in Table II together with the errors. Again the
largest error occurs in the thickness estimate of layer six and
its thickness is overestimated by 3.9%.

TABLE II
VALUES FOR INVERTED MODEL PARAMETERS AND THEIR ERRORS.

layer # εr (-) err (%) µr(-) err (%) h (m) err (%)
1 1.00 0.0 1.00 0.0 1.75 0.0
2 3.89 0.2 1.00 0.3 1.57 0.2
3 2.37 1.3 1.00 1.1 0.72 1.2
4 4.19 0.2 1.00 0.5 1.71 0.4
5 8.99 1.3 1.38 1.8 1.23 1.5
6 15.6 3.3 1.44 4.2 1.14 3.9
7 12.0 2.1 1.35 2.8 1.26 2.5
8 8.99 1.2 1.23 1.6 1.53 1.4
9 13.0 2.1 1.27 3.2 − −

VIII. CONCLUSION

From the results we can conclude that the coupled
Marchenko equations lead to accurate image times and am-
plitudes that can be further used in an inversion step. The
accuracy of both image times and amplitudes lead to very
accurate estimates of the electric permittivity and magnetic
permeability. These estimates are used to convert image times
to accurate layer thickness estimates. The largest error in the
estimates was around 4%. Of course these results are obtained
using noise free data, but the example shows that in principle
the method works well for finite frequency bandwidth data.
How the method will perform on noisy data remains to be
investigated.
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