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Under conditional circumstances, the correlation of noise at two receivers is approximately pro-
portional to the Green’s function between these receivers. Hence, the correlation process turns
one of the receivers into a virtual source, of which the response is observed by the other receiver.
This principle, also known as ambient-noise interferometry, is used by researchers in geophysics,
ultrasonics and underwater acoustics to infer information about an unknown object from passive
noise measurements. In geophysics, ambient-noise interferometry is used for tomographic veloc-
ity inversion when surface waves are dominant, or for high-resolution reflection imaging when a
significant amount of body waves is present in the noise field.

The virtual-source response obtained with geophysical noise interferometry is accurate when
the medium is lossless and the noise field is equipartitioned. In practice these assumptions are
often violated: the medium of interest is often illuminated from one side only, the sources may
be irregularly distributed and losses may be significant. For those cases, it is as if the virtual
source is viewed in a broken (time-reversal) mirror, which causes blurring of the source. This
blurring is quantified by the so-called point-spread function, which, like the correlation function,
can be derived from the observed data (that is, without the need to know the actual sources and
the medium). The broken mirror can be repaired by deconvolving the correlation function for the
point-spread function. As a result, the virtual source is refocused and hence the virtual-source
response becomes more reliable.

1. Introduction

In recent years, the methodology of Green’s function retrieval by crosscorrelation has led to many
applications in seismology (exploration, regional and global), underwater acoustics and ultrasonics.
In seismology this methodology is also called “seismic interferometry”. One of the explanations
for the broad interest lies in the fact that new responses can be obtained from measured data in a
very simple way. In passive-data applications, a straightforward crosscorrelation of responses at two
receivers approximates the impulse response (Green’s function) at one receiver of a virtual source at
the position of the other [, [§]. In controlled-source applications the procedure is similar, except that
it involves in addition a summation over the sources [6].
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Figure 1: (a) Configuration for the correlation-type Green’s function representation (Eq. [I). The
medium in 'V is assumed lossless. The rays represent full responses, including primary and multiple
scattering due to inhomogeneities inside as well as outside S. (b) Configuration for the convolution-
type Green’s function representation (Eq. [2). Here the medium does not need to be lossless.

It has also been recognized that the simple crosscorrelation approach has its limitations. From the
various theoretical models it follows that there is a number of underlying assumptions for retrieving
the Green’s function by crosscorrelation. The most important assumptions are that the medium is
lossless and that the waves are equipartitioned. In heuristic terms, the latter condition means that the
receivers are illuminated isotropically from all directions, which is for example achieved when the
sources are regularly distributed along a closed surface, the sources are mutually uncorrelated (in case
of simultaneous recordings) and their power spectra are identical. Despite the fact that in practical
situations these conditions are at most only partly fulfilled, the results of seismic interferometry are
generally quite robust, but the retrieved amplitudes are unreliable and the results are often blurred by
artifacts.

In this tutorial paper, which summarizes earlier work [15], we show how these shortcomings can
be overcome by a multidimensional deconvolution process.

2. Green’s function representations for seismic interferometry

We briefly review two Green’s function representations for seismic interferometry. Consider a vol-
ume V enclosed by a surface S, with outward pointing normal vector n = (n1,n2, n3). In V we have
an arbitrary inhomogeneous medium with acoustic propagation velocity ¢(x) and mass density p(x)
(where x = (1, 9, x3) is the Cartesian coordinate vector). We consider two points in V, denoted by
coordinate vectors x4 and xp, see Fig. ma We define the Fourier transform of a time-dependent func-
tion u(t) as a(w) = [ exp(—jwt)u(t)dt, with j the imaginary unit and w the angular frequency.
Assuming the medium in V is lossless, the correlation-type representation for the acoustic Green’s
function between x4 and xp in V reads [14]

(1) é(XBaanw) +é*(XBva7w) =

1 IS A N A
—fém(aiG(XB,x,w)G (x4,%x,w) — G(xp,X,w)0;,G* (x4, X, w))nl dx

(Einstein’s summation convention applies to repeated lower case Latin subscripts). This representa-
tion is a basic expression for seismic interferometry (or Green’s function retrieval) by crosscorrelation
in open systems. The superscript asterisk * denotes complex conjugation, hence, the products on the
right-hand side correspond to crosscorrelations in the time domain of observations at two receivers at

x4 and xg. The notation G is introduced to denote a reference state with possibly different boundary
conditions at S and/or different medium parameters outside S (but in V the medium parameters for
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G are the same as those for ). The bar is usually omitted because G and G are usually defined
in the same medium throughout space. The Green’s functions on the left-hand side are the Fourier
transforms of the response of a source at x4 observed at x and its time-reversed version. The repre-
sentation formulated by Eq. @) is exact, hence, it accounts not only for the direct wave, but also for
primary and multiply scattered waves.

Next, we consider a convolution-type representation for the Green’s function. We slightly modify
the configuration by taking x4 outside S and renaming it xg, see Fig. [Ib. For this configuration the
convolution-type representation is given by

R 1
2 G(xp,xs,w) = —j{

g j—wp(x) (&'G(XB,X, w)G(x,x5,w) — G(xp,x,w)0;G(x, Xs,W))ni dx.

Due to the absence of complex-conjugation signs, the products on the right-hand side correspond to
crossconvolutions in the time domain. An important difference with the correlation-type represen-

tation is that this representation remains valid in media with losses. Again, the bar in G refers to a
reference state with possibly different boundary conditions at S and/or different medium parameters
outside S. We will use Eq. as the starting point for interferometry by deconvolution in open sys-

tems. By considering G(xp,X,w) under the integral as the unknown quantity, Eq. needs to be
resolved by multidimensional deconvolution (MDD).

3. Basic aspects of interferometry by multidimensional deconvolution

3.1 Simplification of the integral

The right-hand side of Eq. (2)) contains a combination of two convolution products. Here we will

combine these two terms into a single term. The Green’s function G'(x 3, X, w) under the integral is the
unknown that we want to resolve by MDD. The Green’s function G (X, X, w) on the left-hand side
and G(x, Xg,w) under the integral are related to the observations. Hence, G is defined in the actual

medium inside as well as outside S, but for G we are free to choose convenient boundary conditions
at S. In the following we let S be an absorbing boundary for G(xp,x,w), so that its reciprocal
G(x,xp,w) is outward propagating at S. Furthermore, we write G(x,Xg,w) as the superposition

of an inward- and outward-propagating part at x on S, according to G (x,x5,w) = éi“(x, Xg,w) +
G°"(x,xg,w). Using high-frequency approximations for the derivatives, it follows that Eq. H

simplifies to [[14]

~

3) G(xp,Xs,w) :j{ éd(xB,x,w)Gin(x,xs,w) dx,
Srec

with the dipole Green’s function éd defined as

4) Ga(xp,x,w) = ._2(ni8ié(XBaX>w))'
Jwp

We added a subscript ‘rec’ in S, in Eq. to denote that the integration surface contains the
receivers of the Green’s function G®. In most practical situations, receivers are not available on a
closed boundary, so the integration in Eq. (3)) is necessarily restricted to an open receiver boundary
Siec. As long as the source position xg is located at the appropriate side of S,.. (i.e., outside V), it
suffices to take the integral over an open receiver boundary. Hence, in the following we replace the
closed boundary integral by an open boundary integral. In the time domain, Eq. (3) thus becomes

(5) G(XBaX37t) = / Gd(XBaxa t) * Gin(xa XSat) dX7

rec
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Figure 2: (a) lllustration of the convolutional model (Eq. [8), underlying interferometry by MDD. The
inward-propagating field u™(x,t) is convolved with G4(xp,X,t) and the results for all receivers x
are integrated along the receiver boundary S, giving the response u(xg,t). (b) lllustration of the
point-spread function I'(x,x4,t) (Eq. , defined as the crosscorrelation of the inward-propagating
fields at x and X 4 on S,ec. In the ideal case, it is proportional to a band-limited delta function on S,..,
but in practice there are many factors that make it different from a delta function.

where the in-line asterisk * denotes temporal convolution. Unlike the correlation-type representation
(Eq. [I), which holds under the condition that S is a closed surface, the convolution-type representation
of Eq. @) holds as long as the open surface S, is sufficiently smooth and x5 and xg lie on opposite
sides of S,... Moreover, whereas Eq. only holds for lossless media, Eq. also holds in media
with losses. Equation is an implicit representation of the convolution type for G4(xp,x,t). If
it were a single equation, the inverse problem would be ill-posed. However, Eq. (5)) holds for each

source position xg (outside V), which we will denote from hereon by xg), where ¢ denotes the source

number. Solving the ensemble of equations (for many xg)) for G4(xp,x,t) involves MDD.

3.2 Modifying the representation for noise sources

Suppose that the sources at xg) are noise sources, with noise functions N (¢). When the noise

sources act simultaneously, the responses at x and xp can be written as
(6) u™(x,t) = Z G™(x, xg), t)* NO(¢),
(7) u(xp,t) = ZGXB,XS,t )« NO(t).
Combining these expressions with Eq. (5]), we obtain

(8) u(xp,t) = /S Ga(xp, x,t) * u™(x,t) dx.

This expression is illustrated in Fig. [2a. Next, we crosscorrelate both sides of this equation with
u'™ (x4, t), which is defined by Eq. @) with x replaced by x 4 (also situated on S,.). Correlation with
u'(x 4, t) will be denoted as convolution with u™(x 4, —t). This gives

(9) C(X37XA7 / Gd X37X t) * F(X XA, ) dx )
with

(10) C(xp,xa,t) = (u(xp,t)*u™(x4, —1)),
(11) D(x,xa,t) = (W™(x,1) % u™(xa, —t)),
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where (-) denotes averaging. Here C(xp,x4,t) is the correlation function, as commonly used in
ambient-noise interferometry (except for the superscript ‘in’ in Eq. (I0)), and which under certain
conditions converges to the Green’s function. Equation (9) formulates more precisely the relation
between the correlation function and the Green’s function. It shows that the correlation function
C(xp,xa,1) is proportional to the sought Green’s function G4(xg, X, t), with its source smeared in
space and time by I'(x,x4,t). We call I'(x, x4, t) therefore the interferometric point-spread function
(or plainly the point-spread function). I'(x,x4,t), as defined in Eq. , is the crosscorrelation of
the inward-propagating noise fields at x and x4 [L1]], see Fig. [2b.

If the medium between the source and receiver boundaries were homogeneous and lossless and
if the sources would be regularly distributed, mutually uncorrelated noise sources with equal auto-
correlation functions S(t) along a large planar boundary (in other words, if we would have a perfect
time-reversal mirror), the point-spread function would approach a temporally and spatially band-
limited delta function. Hence, for this situation Eq. (9) merely states that the correlation function
C(xp,Xa,t) is proportional to the response of a temporally and spatially band-limited source. In
practice, there are many factors that make the point-spread function I'(x, x4, t) deviate from a band-
limited delta function. Among these factors are medium inhomogeneities, multiple reflections in the
illuminating wavefield, intrinsic losses, irregularity of the source distribution, mutual correlation be-
tween the different sources, etc. (in other words, the time-reversal mirror is broken). For all those
cases, Eq. (9) shows that the point-spread function blurs the source of the Green’s function in the
spatial directions and generates ghosts in the temporal direction. MDD involves inverting Eq. (9),
see section Ideally, this removes the distorting effects of the point-spread function I'(x, x4, t)
from the correlation function C'(xp,x4,t) and yields an improved estimate of the Green’s function
Gd(x B, X, t) (in other words, this repairs the broken time-reversal mirror).

3.3 Repairing the broken time-reversal mirror

Interferometry by MDD (i.e., repairing the broken mirror) essentially involves inversion of Eq.
(9). In general, the existence of the inverse of the point-spread function is not guaranteed. Recall
from Eq. (TI) that the point-spread function implicitly involves a summation over source positions.
To evaluate this function, the source positions do not need to be known, the source distribution does
not need to be regular, and the sources do not need to be completely uncorrelated, but clearly the
well-posedness of its inverse depends on the number of available sources, the total source aperture
and the source bandwidth. In practical situations, a spectral analysis of the point-spread function
helps to assess for which spatial and temporal frequencies the inversion can be carried out [[12]].

For the actual inversion of Eq. (9) we transform this equation to the frequency domain and replace
the integration along the receivers by a summation, according to

~

(12) C(xp, XX), w) = Z éd(xB, X(k), w)f‘(x(k), XX),CU),
k

for all X(/i) on the receiver surface S,... Note that this discretization assumes a regular sampling

of the receiver coordinate x*). This is a less severe restriction than that for discretizing a source
integral (like in correlation interferometry) because the receivers are often well sampled and their
positions are usually known. In case of irregular receiver sampling, a regularization procedure [3]]

A

could be applied prior to inverting Eq. |i Equation |i can be solved for Gy (xp,x", w) for
each frequency component separately. In practice this is done by a stabilized matrix inversion per
frequency component, while taking care of the limitations discussed above. Transforming the end-
result back to the time domain gives a band-limited estimate of G4(xp,x*), ), which completes the
MDD process.

It is beyond the scope of this paper to discuss the numerical aspects of the matrix inversion.
The inversion is similar to that as applied in the context of model-based inverse seismic wavefield
extrapolation [2, [13] or data-driven source imaging by time-reversal and inverse filtering [9].
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Figure 3: Model for passive surface-wave interferometry. (a) Map of USA, with USArray stations
(green triangles), storm-related microseismic sources (blue dots), and a scatterer (black dot). (b)
Rayleigh-wave dispersion curve (fundamental mode), based on the PREM model. (c) Modeled
Rayleigh-wave response along South-North array in central USA.

4. Example: Passive surface-wave interferometry

One of the most widely used applications of geophysical ambient-noise interferometry is the re-
trieval of seismic surface waves between seismometers from ambient noise [[7, 1]]. In agreement with
the current practice of surface-wave interferometry, in the following numerical example we consider
fundamental Rayleigh-wave modes only (but higher order modes can be taken into account as well
[10]). The fundamental modes can be treated as the solution of a scalar 2D wave equation with the
propagation velocity being the dispersive Rayleigh wave velocity of the layered medium. Hence, for
interferometry we can make use of the 2D version of the scalar Green’s function representations, dis-
cussed in the theory sections. The basic configuration is shown in Fig. [2a. For the current purpose this
figure should be seen as a plan view. Consider Fig. [3a, which shows a map of the USA, 38 receiver
stations of the USArray (green triangles) and 242 sources along the East coast (blue dots), for example
representing storm-related microseismic sources. Moreover, the black dot denotes a strong scatterer,
representing the Yellowstone plume. Assuming a layered medium, we compute the dispersion curve
of the fundamental mode of the Rayleigh-wave for the upper 300 km of the so-called PREM model
[4]. The dispersion curve is shown in Fig. 3b. We define the sources as simultaneously acting uncor-
related noise sources, with a central frequency of 0.04 Hz. Using the computed dispersion curve, we
model the surface-wave response of the distribution of noise sources at all indicated receivers. Fig. 3¢
shows 1500 s of the response along the indicated South-North array in central USA (the total duration
of the modeled noise responses is approximately two days).

Our aim is to turn one of the receivers of the South-North array (the one indicated by the red
triangle) into a virtual source and to retrieve the response of this virtual source at the irregular receiver
stations in the Western USA. Following the crosscorrelation method, we take the noise response at the
red receiver and crosscorrelate it with each of the responses at the receivers in the Western USA, i.e.,
we evaluate (u(xp,t) * u(xa, —t)), with x4 fixed at the red receiver and xp variable. The result is
shown in Fig. 4 by the red traces. For comparison, the black traces in this figure represent the directly
modeled surface-wave response of a source at the position of the red receiver, using a source function
S(t) equal to the average autocorrelation of the noise. There is a pronounced mismatch between the
red and black waveforms, as a result of the irregularity of the source distribution (the broken mirror).
Overall, the amplitudes of the direct wave are estimated too high, whereas the amplitudes of the
scattered event are underestimated.

For the MDD approach, we need to invert Eq. (9), with the correlation and point-spread func-
tions defined in Eqs. (I0) and (TT])), respectively. These expressions contain the inward propagating
waves at x and x4 on S,.. (Which corresponds with the South-North array). Because we consider
noise responses we cannot separate the inward propagating waves u'™ from the outward propagat-
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Figure 4: Passive surface-wave interferometry. (a) Crosscorrelation result (red) compared with di-
rectly modeled response (black). The virtual source is indicated by the red receiver in Fig. Ba. The
traces correspond to the irregular receiver stations in the Western USA in Fig. Q. (b) Green-shaded
area: approximation of the point-spread function along the South-North array. (c) MDD result (red)
compared with directly modeled response (black).

ing waves u°"* by time-windowing the observed field u. However, time-windowing can be applied
to the correlation function. Recall that Fig. Ela represents the correlation of full wave fields, i.e.,
(u(xp,t) * u(x4,—t)). From this, we extract {(u(xp,t) * u™(x4, —t)) by removing the events in
the gray-shaded area as well as all events at negative time (not shown in Fig. f), which together
represent (u(xp,t) * u”*(x4, —t)). Hence, we retain only the green-shaded area in Fig. 4, repre-
senting C'(xp,x4,1) = (u(xp,t)*u" (x4, —t)). To obtain the point-spread function, we first evaluate
(u(x,t) * u(xa, —t)), with x4 again fixed at the red receiver and x variable along the South-North
array, see Fig. [b. We remove the events in the white area, representing (u°"*(x, ) u™ (x4, —t)), and
those in the gray-shaded area, representing (u™(x, t)*u°**(x 4, —t)). We retain the green-shaded area,
representing (u™(x, t)*u™ (x4, —t)) + (U (x, ) xu"(x 4, —t)). Assuming the outward propagating
field is relatively small, we may thus approximate the events in the green-shaded area in Fig. @b by
[(x,x4,t) = (u™(x,1t) * u'™(x4, —t)). We are now ready to apply MDD (i.e., repairing the broken
mirror), which involves inversion of Eq. (9), i.e., removing the effect of the point-spread function (the
green-shaded area in Fig. b) from the correlation function (the green-shaded area in Fig. ). The
result is shown by the red traces in Fig. Ek, for display purposes convolved with S(¢). Note that the
wave forms of the direct wave as well as those of the scattered wave match the directly modeled wave
forms (the black traces) much better than in Fig. fh.

5. Discussion and conclusions

The methodology of seismic interferometry (or Green’s function retrieval) by crosscorrelation
has a number of attractive properties as well as several limitations. The main attractiveness of the
method is that a deterministic medium response can be obtained from passive noise measurements,
without the need to know the medium parameters nor the positions of the sources. The fact that this
deterministic response is obtained by a straightforward crosscorrelation of two receiver responses
has also contributed to the popularity of the method. The main underlying assumptions are that the
medium is lossless and that the wave field is equipartitioned, meaning that the net power-flux is zero.

For open systems, the method works well when the receivers that are used in the correlation
process are surrounded by a regular distribution of independent transient or uncorrelated noise sources
with equal autocorrelation functions. However, in practical situations the method may suffer from
irregularities in the source distribution, asymmetric illumination, intrinsic losses, etc.

Fig. [2a illustrates a configuration with an irregular source distribution in a finite region, illumi-
nating the medium from one side only. For this configuration, Eq. (9) shows that the crosscorrelation
function C(xp,X4,1) is a distorted version of the sought Green’s function G4(x, x,t). The distor-
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tion is quantified by the interferometric point-spread function I'(x, x4, t), which blurs the source of
the Green’s function in the spatial directions and generates ghosts in the temporal direction [[11]. As
such, this interferometric point-spread function plays a similar role as the point-spread function in
optical, acoustic and seismic imaging systems. When the point-spread function of an imaging system
is known, the resolution of an image can be improved by deconvolving for the point-spread func-
tion. An interesting aspect is that the interferometric point-spread function can be obtained directly
from measured responses, hence, it does not require knowledge of the complex medium nor of the
sources. This means that it automatically accounts for the distorting effects of the irregularity of the
sources (including variations in their autocorrelation functions), and of the medium inhomogeneities,
including multiple scattering.
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