3D WAVE FIELD EXTRAPOLATION
IN SEISMIC DEPTH MIGRATION

&
<
]
5
2
®

Z

T
Prometteiepigin 1
207 O ~
DELFT Y
Y,

PROEFSCHRIFT
ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus,
prof.drs. P.A. Schenck,
in het openbaar te verdedigen
ten overstaan van een commissie
aangewezen door het College van Dekanen
op dinsdag 26 september 1989 te 16.00 uur door

GERRIT BLACQUIERE

geboren te Zwijndrecht,
natuurkundig ingenieur.

Gebotekst Zoetermeer / 1989

TR diss
1753



Dit broefschdft is goédgekeurd door de promofor

prof.dr.ir. A.J. Berkhout

Copyright © 1989, by Delft University of Technology, Delft, The Netherlands.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
written permission of the author, G. Blacquitre, Delft University of Technology, Fac. of Applied Physics, P.O.
Box 5046, 2600 GA Delft, The Netherlands.

CIP-DATA KONINKLIKE BIBLIOTHEEK, DEN HAAG

Blacquiére, Gerrit

3D Wave field extrapolation in seismic depth migration / Gerrit Blacquidre
[S.L : s.n.] (Zoetermeer : Gebotekst). — I11.

Thesis Delft. ~ With ref. — With summary in Dutch

ISBN 90-9002928-1

SISO 562 UDC 550.344 (043.3)

Subject headings: seismology / wave field extrapolation.

printed in The Netherlands by: N.K.B. Offset bv, Bleiswijk




ACKNOWLEDGMENTS

The research reported about in this thesis was carried out as a part of the following
international consortium projects at the Delft University of Technology: TRITON (3D target
oriented processing) and DELPHI (Delft philosophy on inversion). I would like to
acknowledge the participating companies for their sponsoring.

I thank my promotor, professor Berkhout, for his ever stimulating support.
I also thank Kees Wapenaar. His suggestions and advices were always worth taking into

account.

As a member of a research group I thank my colleagues. They all contributed to the special
atmosphere that made my stay in the group a pleasant one. Especially I want to mention
Niels Kinneging, Henk Cox, Philippe Herrmann, Eric Verschuur and Harry Debeye. The
many discussions we had and their original ideas helped me in solving a lot of problems.

Finally, I would like to thank my family and my friends. Probably they did not realize it,
but in the sympathetic way they supported me they made a considerable contribution to this
thesis.



CONTENTS

CHAPTER 1 INTRODUCTION
1.1 Introduction . . . . . . . L L oL L L0 0o e e e 1
1.2 Geometrical explanation of zero-offset migration . . . . . . . . R
1.3 Poststack versusprestack . . . . . . . 0L oL 0oL L L L, 9
1.4 Poststack migration: a historicoverview . . . . . . . . . . . . . . . 13
1.5 Triton philosophy on 3D processing . . . . . . . . . . . . . .. . 20
1.6 2Dversus3D . . L L L Lo Lo . 24
1.7 Outline . . . . . . . .. e e e e e e e 26
CHAPTER 2 AN INVENTORY OF WAVE FIELD EXTRAPOLATION
TECHNIQUES IN MIGRATION
2.1 Introduction . . . . . . . e e e e e e s 27
2.2 Recursive depth extrapolation in the k,, k,, @domain . . . . . . . . . 45
23 Recursive depth extrapolation in the X, y, wdomain . . . . . . . . . . 48
2.4 Requirements for migration . . . . . . . . . . . . . . ... .. 52
CHAPTER 3 DESIGN OF ACCURATE EFFICIENT RECURSIVE
KIRCHHOFF EXTRAPOLATION OPERATORS

3.1 Introduction . . . . . . . . oL Lo o0 . 55
3.2 Computation of wave field extrapolation operators via the

wavenumber domain . . . . . . . . . . . L L. 0L L L0 . 57
33 Smoothed extrapolation operator . . . . . . . . . . . . ... . 69
3.4 Optimized extrapolation operator . . . . . . . . . . . . B
3.5 Operatortable . . . . . . . . . . . . .. e e e . 85




i pem — -

CONTENTS

CHAPTER 4 APPLICATION OF RECURSIVE KIRCHHOFF
EXTRAPOLATION OPERATORS IN MIGRATION
4.1 Introduction . . . . . . ... 0L 0L o oo 89
4.2 Prestack migration . . . . . . . . . . ... ... L. 90
4.3 Common-offset migration . . . . . . . . . . . . ... ... .. 95
4.4 Zero-offsetmigration . . . . . . . . . . ., . . .. ... ... 98
CHAPTER 5 COMPUTATIONAL ASPECTS OF FULL 3D ZERO-
OFFSET MIGRATION
5.1 Introducdon . . . . . . . .. oL L0000 oL 101
5.2 Structure of the 3D table-driven zero-offset migration algorithm . . . . 101
53 Floating point operationcount . . . . . . . . . . . .. .. .. 106
5.4 Efficient implementation of the extrapolation . . . . . . . . . . . . 109
5.5 Cost comparison with reverse-time migration . . . . . . . . . . . . 115
5.6 Benchmarks . . . . . . . . . .. o000 116
CHAPTER 6 EXAMPLES / RESULTS
6.1 Introduction . . . . . . L L L L L0000 e e 123
6.2 2Dexamples . . . . ... Lo oo e e e e 123
6.3 3Dexamples . . . . . 0 L. 0 e e e e e e e e e e e e e 133
APPENDIX NUMERICAL MODELING OF SEISMIC DATA . . 147
REFERENCES . . . . . . . . . . .. ... B &3
SUMMARY . . . . . . . . o oo 163
SAMENVATTING . . . . . . . . . . . o v i v v v 165



source detectors

Figure 1.1.1 A seismic experiment. Elastic waves are produced by a source and the reflections are
registered by the detectors as a function of time. The result of a seismic experiment is a shot record. In a
seismic survey many shot records are acquired.




CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

An image of the Earth’s subsurface can be acquired by carrying out a seismic survey. In
seismic exploration elastic waves are generated by a source at the surface. For acquisition
on land the usual source is dynamite or a seismic vibrator. For a marine survey airguns are
most commonly used. The waves are radiated into the subsurface. However, whenever
changes in the medium parameters occur, part of the wave field reflects and propagates
upwards to the surface. Here it is detected with a number of receivers which are either
geophones in case of a land acquisition or hydrophones in case of a marine acquisition.
Such a seismic experiment is illustrated in Fig.1.1.1. In order to get a good quality image
the experiment is repeated many times with the shot and the detectors located at different
surface positions, such that an inhomogeneity is ‘illuminated’ from different directions.
The result of each seismic experiment is a shot record. It consists of the registration of the
reflected wave fields at each detector. The reflected signal is registered as a function of
travel time and it contains both propagation (down- and upward) and reflection effects of
the subsurface. However, the aim is a structural image of the subsurface from which the
propagation effects have been removed. This means that the reflection amplitudes should be
presented as a function of lateral position and depth. The method that removes the
propagation effects and transforms a time registration (x,y,t domain) into a depth image
(x,y,z domain) is called seismic migration. The resolution of a migrated result is always
limited, due to the finite bandwidth of the registered signals. Therefore the outcome of a
migration process is a bandlimited estimation of the reflectivity properties of the
subsurface.

The amount of data of a 3D seismic survey is generally very large. In order to reduce the
amount of data and at the same time improve the signal to noise (S/N) ratio, stacking
techniques have been developed. In this chapter the concept of stacking is discussed and
the (dis)advantages of seismic processing in the prestack vs. the poststack domain are
mentioned. Also a historic overview of migration is given in which the emphasis is on the
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1.2 GEOMETRICAL EXPLANATION OF ZERO-OFFSET MIGRATION 3

different methods that have been developed over the past. An overview of the TRITON*)
philosophy on 3D processing is given next. Furthermore some practical aspects of 3D
processing are discussed and finally an outline of this thesis is given. However, as a start,
a simple geometrical explanation of zero-offset migration is presented.

1.2 GEOMETRICAL EXPLANATION OF ZERO-OFFSET MIGRATION

The distance between the source and a detector in a seismic experiment is called the offset.
Hence, in a zero-offset configuration the source and detector(s) coincide. This situation can
never be realized in a practical seismic survey due to the nature of the source. However,
there are techniques that can be used to produce more or less accurate zero-offset data from
nonzero-offset data. Such techniques are common midpoint (CMP) stacking, common
reflection point (CRP) stacking and common depth point (CDP) stacking (see sections 1.3
and 1.4).

The concept of zero-offset migration is now explained with some examples.

Example 1: the migration impulse response. Consider the following situation. Zero-offset
data are collected along a line at the surface (2D experiment). The recording shows that
only at one surface location a reflected signal is measured; the zero-offset data set is shown
in Fig.1.2.1. Note that the data is a function of the lateral coordinate x and time t. A
geologist can do little with the information the way it is presented here: it is not clear from
which direction(s) the reflected energy has arrived at the detector nor is it obvious at what
depth the reflectivity is located. If the velocity of wave propagation is known to be a certain
constant, a migration of the zero-offset section would result in the depth section shown in
Fig.1.2.2. Zero-offset migration actually maps a pulse into a semi-circle (also called
‘migration smile’). From Fig.1.2.3 it should be clear that indeed a structure with a semi-
circular shape causes the zero-offset response of Fig.1.2.1. Note that the migrated section
of Fig.1.2.2 is the 2D impulse response of the migration algorithm.

*  TRITON represents an intemational consortium on migration research, carried out at the Laboratory of
Seismics and Acoustics at the Delft University of Technology.
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1.2 GEOMETRICAL EXPLANATION OF ZERO-OFFSET MIGRATION 5

Example 2: the diffraction hyperbola. It is also interesting to investigate the situation of a
single point diffractorin a homogeneous medium. The zero-offset experiment is illustrated
in Fig.1.2.4 and the zero-offset data can be seen in Fig.1.2.5. The hyperbolic shape of the
response is typical for diffractions. Migration should result in a reflectivity map of the
subsurface. The result can be seen in Fig.1.2.6. Indeed one can recognize the point
diffractor: the diffracted energy has focussed well. From this example it follows that
migration can be considered as the method that collapses the energy along a diffraction
hyperbola to its apex.

Fig.1.2.7 shows that the effects of the migration in both examples are actually the same:
the image of the point diffractor is the sum of a number of semi-circles.

Example 3: from diffractors to reflectors. One can think of an arbitrary medium to consist
of point diffractors. The zero-offset response of a reflector can be modeled by summing the
zero-offset responses of a sufficient number of point diffractors distributed along the
reflector. In Fig.1.2.8 a model that contains a reflector is shown and in Fig. 1.2.9 modeled
zero-offset data sections are shown for an increasing number of point diffractors. Note that
in Fig.1.2.9d the individual contribution of each point diffractor can no longer be
observed: the response can be considered as the reflector response. A migration procedure
results in the corresponding depth sections of Fig.1.2.10. The result of the migration of
the reflector response in Fig.1.2.10d is clear: the diffracted energy caused by the edges of
the reflector has focused. Also the position of the reflector is corrected for. It is important
to notice that the angle of the reflector is steeper in the migrated section than in the zero-
offset section. Actually it is this effect that gave seismic migration its name: migration is
the technique that ‘migrates’ reflectors to their correct position in depth.

Some remarks about the examples:

—In the examples the temporal and spatial sampling intervals were chosen sufficiently small
such that no aliasing effects occur. In practice the spatial sampling interval may be too
large. In Fig.1.2.11 the effects of spatial aliasing are shown; these results should be
compared with the non-aliased result shown in Fig.1.2.10d. In Fig.1.2.11a the spatial
sampling interval is 2Ax (Ax being the interval in the zero-offset data shown in
Fig.1.2.9d). The dipping reflector can still be recognized. This is hardly the case in
Fig.1.2.11b where the spatial sampling interval is enlarged to 4Ax. In such cases an anti-
aliasing filter is required.
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8 1 INTRODUCTION

Figure 1.2.11 Aliased migrated results corresponding to the dipping reflector of Fig.1.2.9. The spatial

sampling interval in a. and b. are 2Ax and 4 Ax respectively. Notice the distortion due to spatial aliasing.

— The experiments were all carried out in 2D. For the 3D case, where the data are acquired
along an area at the surface, one can state that for a homogeneous medium the impulse
response of a migration algorithm is a hemi-sphere and also that migration collapses the
energy along a hyperboloid to its apex.

—In the examples a medium with a constant propagation velocity was assumed. In practice
the velocity will change both in the lateral directions and in the vertical direction. In that
case the impulse response of the migration algorithm will deviate from a hemi-sphere and
the zero-offset response of the point diffractor will deviate from a hyperboloid. A good
knowledge of the subsurface velocity in the form of a propagation model, the so-called
macro model, is essential for a good migration result.

 — offset —/

source detector

Figure 1.2.12The impulse response of a common-offset migration algorithm is a semi-ellipse. The
source and detector are located on the foci of the ellipse.
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— The zero-offset configuration is actually a special case of the more general common-offset
configuration, where there is a constant distance between the source and the detector. In
Fig.1.2.12 it can be seen that for a homogeneous medium the impulse response of a
common-offset migration algorithm is a semi-ellipse (or a semi-ellipsoid in the 3D case) of
which the source and detector positions are the focus points.

— The modeling and migration of zero-offset responses are generally based on the ‘half
velocity substitution’ or ‘exploding reflector model’ (Loewenthal et al., 1976). According
to the exploding reflector model diffractors and reflectors are considered as buried sources
that start to transmit waves (‘explode’) at zero travel time. Furthermore the propagation
velocity of the medium is considered as half the true propagation velocity. Note that the
one-way travel times in the exploding reflector configuration (from the buried sources up to
the receivers) are now equal to the two-way travel times in reality (from the sources at the
surface down to the diffractors/reflectors and up to the receivers at the surface). The
exploding reflector model is based on the assumption that the source waves and the
reflected waves travel along a common path in the subsurface. Apart from rare situations,
the data modeled according to the exploding reflector concept have a good similarity with
true zero-offset data as far as traveltimes are concerned. Also the results of migration based
on the exploding reflector model are generally satisfactory. However, it can be shown that
the amplitudes are not correct when the exploding reflector concept is used (Berkhout,
1985).

1.3 POSTSTACK VERSUS PRESTACK

In a seismic experiment the reflections of each shot are registered by a number of detectors
(typically 96 per 2D shot record and 240 per 3D shot record). Stacking techniques have
been developed in order to improve the S/N ratio and to reduce the amount of data. The so-
called poststack data that result from these techniques are considered as zero-offset data.
Hence, zero-offset techniques can be used for the migration of stacked data.

Data reduction by conventional stacking techniques also means loss of information, e.g. the
resolution is not optimum, from poststack data it is impossible to recover the angle
dependent reflectivity etc. Contractors in the seismic industry therefore also offer prestack
- processing. In practice, prestack processing is limited to the 2D case. The amount of data
acquired in a 3D survey — where not only the number of detectors per shot but also the
number of shots is much larger than in a 2D survey — is in the order of Gbytes. Such a
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offset
I near offsets far offsets

=1 |

Figure 1.3.1 A CMP gather can be acquired Figure 1.3.2 In this CMP gather the
by reorganizing shot records in such a way that responses of two reflectors can be seen.
traces with a common source-detector midpoint In practice the near offset traces are

and different offsets are grouped together. missing.

huge amount of data can not be processed within reasonable time on present (super)-
computers and therefore data reduction techniques are still essential. In this section the
concepts of CMP stacking, CRP stacking and CDP stacking are briefly discussed.

CMP stacking

Before a data set can be CMP stacked, the shot records must be reorganized into CMP
gathers. In Fig.1.3.1 the CMP configuration is given. In Fig.1.3.2 a CMP gather is
shown for a subsurface in which two horizontal reflectors are present. The arrival time
difference between an event in the zero-offset trace and the same event in another trace is
called normal moveout (NMO). Often, the NMO’s can be (approximately) described by a
hyperbolic relationship. The asymptotes of this hyperbola define the so-called stacking
velocity. A stacking velocity must be determined for the major events in a CMP gather (in
this example the responses of the two reflectors). After this velocity analysis, an NMO
correction with respect to the zero-offset traveltime is applied which results in an alignment

===~ DJ3SUW



1.3 POSTSTACK VERSUS PRESTACK 11

of the events in the CMP gather. The traces of the NMO corrected gather are then stacked,

which yields one poststack trace with an improved S/N ratio. This trace is considered as a

zero-offset trace at the position of the surface midpoint.

In practice four problems occur:

1. One stacked event may represent information from different reflection points.

Although for a dipping reflector the shape of the moveout curve may still be (approxi-
mately) hyperbolic, the information in the CMP gather and therefore also in the CMP
stacked trace actually comes from different reflection points, see Fig.1.3.3. For this
situation the term ‘reflection point smear’ is in use. It is clear that if the stacked trace is
considered as a zero-offset trace, errors are introduced that increase with increasing dip.
Diffraction energy can not be treated correctly: because there is no reflection point
smear possible, the moveout of a diffractor response is not hyperbolic.

2. Different structural dips require different stacking velocities.

This problem, which is known as the ‘conflicting dip problem’, can be explained with
the subsurface configuration in Fig.1.3.4. The CMP gather contains information from
two reflectors. However, it is not possible to stack both events using one stacking
velocity.

3. Due to acquisition methods/limitations, the members of a CMP gather may have
different individual midpoints and therefore a ‘common midpoint’ actually may not exist
and a binning process is required. Especially in 3D data processing the so-called
binning problem (sorting the data according to the midpoint) is notorious.

midpoint
|

CMP gather

\

reflection point
smear

Figure 1.3.3 In case of a dipping reflector a CMP gather contains information of different reflection
points. This is called ‘reflection point smear’.
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1—-» offset

midpoint

Figure 1.3.4 Reflectors with the same
zero-offset travel time but different moveout

curves, require different stacking velocities.

This is the so-called ‘conflicting dip problem’ .

In a. the configuration is shown, in b.

the CMP gather. b.

4. In situations with a very complex geology, reflection times in a CMP gather may not be
described by a hyperbolic relationship and in that case the concept of ‘stacking velocity’
does not exist. However, in situations with a moderately complex geology the
‘hyperbolic assumption’ holds surprisingly well, especially in the near-offset part of the
CMP gather.

CRP stacking

An improved stack in which diffraction energy and different dips are preserved can be
achieved by applying dip moveout (DMO) processing, also known as prestack partial
migration (Yilmaz and Claerbout, 1980). In DMO processing the reflection point smear is
replaced by a midpoint smear, see Fig.1.3.5. The quality of a DMO stack in case of
complicated structures is not optimum. Improvement can be achieved with CRP stacking
(Berkhout, 1985; French, 1986 and Van der Schoot, 1989). However, CRP stacking still
requires the concept of hyperbolic moveout to be applicable.
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midpoint smear

CMP gather

reflection points

Figure 1.3.5 In DMO processing the ‘reflection point smear’ is replaced by ‘midpoint smear'.

CDP stacking

The best poststack data are acquired by CDP stacking. In the CDP method the midpoint at
the surface is replaced by a grid point below the surface: the common depth point. This
method is the most general one: there are no special assumptions for the shape of moveout
curves (or subsurface complexity), shooting geometries, dip-angles of reflectors etc. CDP
stacking is part of the TRITON processing scheme, see section 1.5. Good references are
Berkhout (1984), Wapenaar (1986) and Kinneging (1989).

1.4 POSTSTACK MIGRATION: A HISTORIC OVERVIEW

During the last decades new poststack migration techniques have been developed and
existing techniques have been improved upon. At the basis of all these methods is the half
velocity substitution or exploding reflector model. Although an approximation, the model is
such a powerful tool that it is always used in poststack migration methods. In this section a
historic overview of these methods will be given.

The first computer migration, which took over from manual migration techniques in the late
1960s, was an implementétion in 2D of the so-called diffraction summation method for
zero-offset data (Hagedoorn, 1954). In this method every grid point in the x-z domain is
considered as an exploding point diffractor. The reflectivity of such a grid point (which
should be determined by migration) is found by a summation of zero-offset trace
amplitudes along the corresponding hyperbolic trajectories in the x-t domain, see also
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section 1.2 example 2. Obviously the method is based on the assumption that the zero-
offset response of a point-diffractor is a hyperbola. However, this is true for a constant
velocity medium only and approximately true for a horizontally layered medium in which
case the rms velocity is used. In the presence of strong lateral velocity variations the
hyperbolic assumption is no longer justified and the hyperbolic diffraction summation
method will fail to produce correct results. It is interesting to mention that the method is
purely based on geometrical arguments (ray theory) and not on wave theory. Properties that
follow from wave theory and that are not taken into account by diffraction summation are:
the spherical spreading in wave propagation, the directivity factor and the time
differentiation factor, see also section 2.3. The low frequency appearance of early
migration results can be explained by the neglection of the time differentiation factor.
Improvements can be reached with the ‘wave equation’ migrations that have been
developed later and that will be discussed next.

The majority of those migration methods is based on the one-way acoustic wave equation.
According to the one-way approximation up- and downgoing wave fields can be treated
independently. Because the exploding reflector model is assumed for zero-offset data,
upgoing waves need to be considered only. Acoustic means that compressional waves are
taken into account only and that shear waves are neglected. Most of the wave equation
migration methods consist of the repeated application of two steps: wave field extrapolation
and imaging.

Wave field extrapolation techniques are used to downward continue data from one depth
level, e.g. the surface, to a deeper level. Hence, wave field extrapolation makes it possible
to transform surface data into data as they would have been recorded at an arbitrary depth
level below the surface. In one-way extrapolation techniques a distinction is made between
forward extrapolation and inverse extrapolation. In forward extrapolation the direction of
wave propagation and the direction of extrapolation are the same; in inverse extrapolation
the direction of wave propagation is opposite to the direction of extrapolation. In zero-
offset migration the wave field extrapolation is of the inverse type: the extrapolation
direction is downward whereas the waves propagate upwards. Wave field extrapolation
techniques are either non-recursive or recursive. According to non-recursive extrapolation
methods the wave fields at depth levels z;, for i=1 to N are all computed from the wave
field at level z;; in recursive extrapolation the wave field at level z; is computed from the
field at level z,_, fori=1 to N, see Fig.1.4.1. Recursive extrapolation is sensitive to the
accumulation of (small) errors that are involved in each extrapolation step. Therefore
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PPN

recursive extrapolation non-recursive extrapolation

Figure 1.4.1 Recursive and non-recursive wave field extrapolation.

special care must be taken to prevent problems with instability. The advantage of recursive
extrapolation is that variations in the medium can be taken into account in a relatively easy
way.

The imaging principle states that the reflectivity information at a certain depth level can be
extracted from the extrapolated data in the time domain at zero travel time.
The migrated result can be acquired by performing extrapolation and imaging in a recursive
way for all depth levels of interest. The procedure is shown in Fig.1.4.2.

In the early 1970s Claerbout (1970, 1976) published a finite-difference time migration
method, based on recursive wave field extrapolation and imaging. In his approach the
spatial derivatives that occur in the wave equation are replaced by finite-difference
approximations to get an expression for wave field extrapolation. Both his 15° algorithm
(suitable for migration of reflectors with dip angles up to 15 degrees) and the 45° algorithm
have become standard migration tools in the seismic industry. Finite-difference migration is
usually implemented as a so-called time migration algorithm. In time migration the
extrapolation is performed along the ‘vertical time’ coordinate, i.e., the size of the extra-
polation steps is equal to the product of the velocity and a constant time interval. As a
consequence the outcome of time migration is presented as a function of the lateral
coordinate(s) and ‘vertical time’, as opposed to depth migration where the result is given as
a function of the lateral coordinate(s) and depth.
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Time migration is always implemented in such a way that it performs best in case of a
laterally homogeneous medium. In section 2.1 extrapolation along the ‘vertical time’
coordinate is discussed in more detail.

Finite-difference migration is based on recursive extrapolation. This means that the errors
involved in each extrapolation step will increase with depth. The errors due to the finite-
difference approximation are frequency dependent which causes dispersion effects.
Extension of the finite-difference method from 2D to 3D is not straightforward.

At the end of the 1970s a non-recursive migration method called Kirchhoff summation
migration was presented by French (1975) and Schneider (1978). In this method, which is
in principle suited for both 2D and 3D, extrapolation is based on the integral formulation of
the solution of the scalar wave equation. Kirchhoff summation operators are hyperbolic.
However, in Kirchhoff summation migration the spherical spreading, the directivity factor
and the time differentiation factor are incorporated. This is the difference with diffraction
summation. Berkhout and Van Wulfften Palthe (1979) introduced recursive Kirchhoff
summation migration, in which vertical and lateral velocify variations can be handled in an
efficient way because local velocities can be used. They also show that Kirchhoff
summation operators can be seriously distorted by spatial operator aliasing, especially in
case of the small extrapolation steps that occur in the recursive application. They explain
that if the extrapolation step goes to zero (limit case), the Kirchhoff operator becomes a
delta pulse and so, due to the infinite spatial bandwidth, this operator is seriously aliased.
In chapter 3 of this thesis much attention is paid to the design of recursive Kirchhoff
operators that are properly band-limited such that spatial operator aliasing is precluded.

The migration methods that have been mentioned so far are all implemented in the space-
time domain. Another class is formed by the wavenumber-frequency domain migration
techniques. Fourier transformation from the space-time to the wavenumber-frequency
domain is a way to decompose an arbitrary wave field into monochromatic plane waves,
each of which propagates in a unique direction. The extrapolation of a monochromatic
plane wave is very simple: only a phase shift needs to be applied. This property was used
by Gazdag (1978) for the design of a very efficient depth migration algorithm, called
phase shift migration, based on recursive wave field extrapolation and imaging. There are
in principle no errors involved in the extrapolation itself which means that the method is
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stable. Because of the recursive character of the migration, vertical velocity variations in the
medium can be handled. However, lateral velocity variations can only be taken into account
approximately if an extension of this method is used called phase shift plus interpolatibn
(PSPI) (Gazdag and Squazzero, 1984). In this extension each recursive extrapolation step
in which the wave field is downward continued from one depth level to the next is not
performed once but several times with different constant velocities. This yields a number of
extrapolated reference wave fields. The imaged result is then computed from the reference
wave fields by interpolation in the space domain. Although depending on the complexity of
the macro model, the number of reference wave fields to be computed is generally about
five. This means that the PSPI method is also about five times less efficient than a simple
phase shift migration. By far the fastest migration algorithm of today is the so-called Stolt
J-k migration, (Stolt, 1978). The basis of this method is a procedure which maps the data
from x,t to x,z in the double Fourier domain. The speed of the method is reached at the cost
of the possibility of handling velocity variations correctly. To overcome this problem, Stolt
suggested a time stretching procedure. Prior to migration the data are transformed such that
they approximate the data that would have been recorded in case of a constant velocity
subsurface.

All migration methods in the wavenumber-frequency domain can be easily extended from
2D to 3D.

The best properties of migration methods in the space-time domain on the one hand and
methods in the wavenumber-frequency domain on the other hand are combined in space
frequency (x,w) migration as introduced by Berkhout (1980). Application of this method
in three dimensions will be extensively discussed in this thesis.

A depth migration method that is not based on the principle of recursive extrapolation along
the depth axis (or ‘vertical time’ axis in the case of time migration) is the so-called reverse-
time migration (McMechan, 1983 and Baysal et al., 1983). In reverse-time migration the
recursive extrapolation is performed backwards in time. Starting at the maximum
registration time, the extrapolation is continued until time zero. During this process the
zero-offset data are considered as boundary conditions at the surface. The extrapolation
result at time zero is considered as the migrated section: all depths are then imaged
simultaneously. The method is implemented in the space-time domain as a finite-difference
solution of the two-way acoustic wave equation. The results are good; especially the high
dip performance of the reverse-time migration is excellent. However, due to the finite-
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difference approximation of both the spatial and temporal derivatives, the method is very
computationally intensive, which is a disadvantage for application in 3D (Chang and
McMechan, 1989). In addition, the fact that all depth levels are imaged simultaneously at
the last recursive step (zero time) is considered as a major drawback.

3D Processing has entered the seismic industry in the early 1980s. However, as is
discussed in section 1.6, in many cases the existing 2D techniques are used in a 2 times 2D
way to approximate full 3D processing. This is not correct for inhomogeneous media.

1.5 TRITON PHILOSOPHY ON 3D PROCESSING

According to the TRITON migration scheme (Berkhout et al., 1985) the 3D processing
consists of the following steps: surface related pre-processing, prestack redatuming to the
upper boundary of a target zone followed by CDP stacking and zero-offset migration
within the target zone. The consecutive steps are now discussed.

surface related pre-processing

The data as they are recorded can not be used for extrapolation. Some pre-processing steps
have to be performed first, after which the surface may be considered as being
homogeneous and reflection free. One effect of the pre-processing is that the surface related
multiples are removed from the data (Verschuur et al., 1988). The reflection coefficient of
the surface is normally very large (close to —1). This means that all upward traveling waves
that reach the surface are not only detected at the surface: they are also reflected, travel
downwards, reflect at structures in the subsurface and are detected again at the surface etc.
etc. Of course, waves can also reflect multiple times between structures within the
subsurface. In that case they are called internal multiples. However, due to the large
reflection coefficient of the surface, the surface related multiples are always dominant. In
Fig.1.5.1 a schematic example of internal multiples and surface related multiples is given.
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surface related muitiples
\ . :

internal multiples

Figure 1.5.1 Internal multiples and surface related multiples.

macro model versus detail

Wave field extrapolation methods play a dominant role in the TRITON 3D processing
scheme. They are used to compensate for the propagation effects of the medium. To do this
properly a model containing the propagation properties of the medium is required. It turns
out that wave propagation is determined by the macro parameters of the medium which
represent the trend information of each major geological layer. The reflection of waves is
determined by the ‘micro’ parameters of the medium which describe the fast changes in
the medium: the deviations from the macro parameters, see Fig.1.5.2. It seems
contradictory that a macro model containing information about the medium is necessary
prior to migration which has the purpose to collect this information. However, the required
macro model only needs to contain the trend information in each macro layer, which is
defined by the travel times. The detailed reflectivity information can then be found from the
amplitudes by applying migration techniques.

redatuming to the upper boundary of the target zone

Usually seismic interpreters are especially interested in a detailed map of the part of the
subsurface where a reservoir might be present: the target zone. Hence, it is not necessary to
do expensive processing on all the data in order to get a detailed map of the whole of the
subsurface. An accurately detailed image of the target zone will be sufficient. The most
important processing step in TRITON is redatuming. Shot records are extrapolated with a
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Trend <—> Propagation
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Figure 1.5.2 The propagation of waves is determined by the macro properties of the medium (trend
information), whereas the reflection of waves is determined by the ‘micro properties’ (detailed information).
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non-recursive generalized Kirchhoff technique from the acquisition surface to a new datum
somewhere in the subsurface. This new datum can be the upper boundary of the target
zone. After redatuming the shot records can be considered as if they had been acquired at
the upper boundary of the target zone. The propagation properties of the overburden have
been removed from the data by wave field extrapolation (redatuming), the propagation
properties of the target zone are still in the data together with the reflectivity information.
For a further discussion the reader is referred to Peels (1988) and Kinneging (1989).

construction of zero-offset data at the target boundary, CDP stack
Redatuming also offers the possibility to construct other offsets at the upper boundary of
the target than the offsets in the original shot records. This means that zero-offset data can
be constructed. Unlike methods as CMP stacking or CRP stacking, which are based on
hyperbolically shaped moveout curves, there are no such limitations when constructing
zero-offset data after redatuming. Therefore this way of zero-offset data generation can be
considered as a true CDP stacking method. The quality of the zero-offset data is generally
excellent because high dip information is conserved as well as diffraction energy.

macro-model estimation/verification

A good macro model is essential for the success of wave field extrapolation techniques
such as redatuming and migration. An initial estimate of a macro model can be obtained
from stacking velocities and picked travel times (Van der Made, 1988). In this case travel
times in CMP gathers are used. However, due to the shortcomings of the CMP concept,
see section 1.3, the estimated macro model may deviate from the true model, especially
when the medium is complex.

A better macro-model estimation technique is based on the examination of the consistency
in CDP gathers. If the coherency in the CDP gathers is not optimum, this information is
used to determine how the model should be changed in order to get an improved update.
This process can be repeated iteratively which will converge to the desired result: an
accurate macro model. In the TRITON project macro-model estimation is based on
redatuming (Cox et al., 1988).

zero-offset migration within the target zone

After redatufning with a good macro model, a high quality zero-offset data set is available at
the upper boundary of the target zone. The size of this zero-offset data set is considerably
smaller than the size of the prestack data before redatuming, which makes further full 3D
processing feasible. As stated before, the redatuming has removed the propagation effects
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of the overburden. However, the propagation properties of the target zone are still included
in the zero-offset data together with the reflectivity properties. To produce a good
reflectivity map of the target zone from which the propagation effects have been removed,
zero-offset migration can be applied. This zero-offset migration should be able to deal with
complex macro models. Also it should not be limited in its ability to handle steeply dipping
events. Such a 3D zero-offset migration is proposed in chapter 4.

1.6 2D VERSUS 3D

The use of 2D data acquisition and processing techniques is justified in areas where the
medium parameters are a function of depth and one lateral direction only. Unfortunately

2D extrapolation 2D extrapolation 3D extrapolation
x-direction x-direction x- and y-direction
[ imaging J 2D extrapolation Iimaging I
y-direction
2D.extr{apolation 3D extrapolation
x-direction rimaging 1 x- and y-direction
l imaging J 2D extrapolation [ imaging j
x-direction
etc. etc.
2D extrapolation
2D extrapolation y-direction
y-direction
imaging
l imaging J r
etc.
2D extrapolation
y-direction
I imaging J
etc.

Figure 1.6.1 I Two-step or iwo-pass migration.
II  One-step or single-pass migration in combination with operator
splitting.
Il One-step or single-pass migration in full 3D.
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such areas are not often found in practice. Since long it has been recognized that in case of
a complex subsurface structure a ‘hi-fi’ image can only be achieved by using 3D techniques
(French,1975).

If the velocity variations in the medium are very small, such that a homogeneous macro
model is a sufficient description of the propagation properties of the medium, 3D zero-
offset migration can be carried out as a sequence of 2D zero-offset migrations (Gibson,
Larner and Levin, 1983; and Jakubowicz and Levin, 1983). First, all 2D cross sections of
the 3D zero-offset data in the x-direction are processed. Next, all 2D cross sections in the
perpendicular y-direction are treated, see Fig.1.6.1. This way of processing is called ‘two-
step’ or ‘two-pass’ 3D migration. Its advantage is that all standard 2D migration algorithms
can be used and that the method has in principle no dip limitations.

However, usually it is impossible to describe the propagation properties of the subsurface
satisfactorily with a homogeneous macro model. Hence, two-step methods are not allowed
in seismic exploration and ‘one-step’ or ‘one-pass’ 3D migration methods should be used
instead. These are either approximately 3D, in case of operator splitting, or full 3D. Both
types are now discussed.

If the reflected energy is not steeply dipping, a migration method can be used which is
based on the concept of operator splitting. The principle of the method is recursive
extrapolation and imaging. Each extrapolation step is performed as follows: first all 2D
cross sections of the data in the x-direction are extrapolated using 2D operators; next all the
2D cross section in the y-direction of the result are extrapolated again with 2D operators,
see Fig. 1.6.1. The problem is how to split a full 3D operator which depends on both x and
y into independent 2D operators which depend on either x or y. It turns out that this
operator splitting can only be done accurately in the small dip angle approximation (Ristow,
1980; Brown, 1983).

Full 3D migration should be used in case of complex media where steeply dipping
reflectors are present. This method is also based on recursive extrapolation and imaging.
However, each extrapolation step is performed in a full 3D way, see Fig.1.6.1.

The properties of the different 3D migration methods are summarized in Table1.1.
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Table 1.1 The properties of different 3D migration methods.

steep dips velocity variations
two-step yes no
one-step
operator splitting no yes
one-step
full 3D yes yes

1.7 OUTLINE

Migration methods are based on wave field extrapolation. In chapter 2 of this thesis an
inventory of wave field extrapolation techniques is presented. A choice is made for one-
way acoustic wave field extrapolation in the space frequency domain with recursive
Kirchhoff operators. The design of these operators in which both their accuracy and their
efficiency are central, is discussed in chapter 3. The application of the recursive Kirchhoff
extrapolation operators in migration is the subject of chapter 4. One of these migration
techniques, full 3D zero-offset migration, was implemented. The details of this
implementation are given in chapter 5 and in chapter 6 examples and results of the 3D zero-
offset migration algorithm are shown. Finally, in the appendix, the application of the
recursive Kirchhoff operators in 3D zero-offset modeling is discussed.
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CHAPTER 2

AN INVENTORY OF WAVE FIELD
EXTRAPOLATION TECHNIQUES IN
MIGRATION

2.1 INTRODUCTION

Wave field extrapolation is the key part of all migration techniques that are based on the
wave equation. Most of the present techniques are based on the acoustic wave equation,
i.e., compressional waves are taken into account only and shear waves are neglected. In
this thesis we restrict ourselves to the acoustic case. A full elastic seismic processing
scheme is developed in the DELPHI®) project (Berkhout and Wapenaar, 1988). In the
introduction of this chapter we start with expressions for the one-way and two-way
acoustic wave equation. The role of the Taylor series expansion in wave field extrapolation
is shown. The Taylor series expansion is also used in the derivation of finite-difference
expressions. This is illustrated with some examples.

Next, the properties of a number of 3D acoustic wave field extrapolation methods are
discussed. The are classified according to the coordinate along which the extrapolation is
performed:

— time,

—depth, or

— ‘vertical time’.

Furthermore, the methods can be characterized by the domain in which the extrapolation is
performed:

— space-time domain,

- space-frethncy domain, or

— wavenumber-frequency domain

and by the numerical technique that is used:

— recursive explicit, '

— recursive implicit,

*  DELPHI represents an international research consortium at the Laboratory of Seismics and Acoustics at
the Delft University of Technology.
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wave field extrapolation

¢ =c(x,y,2) dorlnlam c=c(2)
space-time space-frequency wavenumber-frequency

extrapolation coordinate

used in depth migration | | used in time migration

time depth ‘vertical time'
technique
recurlsive non-recursive
explicit implicit hyperbolic non-hyperbolic

Figure 2.1.1 Classification of extrapolation techniques. Conventional finite-difference extrapolation:
implicit, recursive extrapolation along the ‘vertical time’ coordinate, performed in the space-time domain.
Conventional Kirchhoff summation: hyperbolic, non-recursive extrapolation along the ‘vertical time'
coordinate, performed in the space-time domain. Redatuming (generalized Kirchhoff summation): non-
hyperbolic, non-recursive extrapolation along the depth coordinate, performed in the space-frequency
domain. Reverse-time extrapolation: recursive extrapolation along the time coordinate, performed in the
space-time domain. Phase-shift extrapolation: explicit, recursive extrapolation along the depth or ‘vertical
time' coordinate, performed in the wavenumber-frequency domain. In this thesis we choose for: explicit,
recursive extrapolation along the depth coordinate, performed in the space-frequency domain.
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— non-recursive hyperbolic, or

— non-recursive non-hyperbolic.

This classification is also shown in Fig.2.1.1.

For migration, a choice is made for recursive explicit depth extrapolation. In the next
sections the focus is on extrapolation methods of this type. Aspects that are included
concern the flexibility of the method with respect to velocity variations in the medium, its
robustness, the domain in which the extrapolation is performed, the implementation etc.

Acoustic wave equation

The extrapolation techniques discussed in this chapter have in common that they are based
on the acoustic wave equation. For an inhomogeneous fluid without losses and without
sources, the linearized equation of motion and the linearized equation of continuity are

given by

lyp=_2

5 Vp 3 @.n
and

dp
Vv=-= .

KV.v o (2.2)

respectively.

Here p =p(x,y,zt) represents the acoustic pressure,
v = v(x,y,z,t) represents the particle velocity, -
p = p(x,y,z) represents the mass density,
K = K(x,y,z) represents the adiabatic compression modulus,
Xx,yand z represent the Cartesian coordinates (positive z-values correspond to
the downward direction) and
t represents time.

Elimination of the particle velocity by substitution of eq.(2.2) in eq.(2.1), yields an
expression for the two-way wave equation for acoustic pressure

1 10% .
V.(-Vp) = ——. 2.3)
p PEx ot?
If the gradient of p may be neglected, eq. (2.3) can be written as
2 1%
Vp==—, 2.4)
c? a2

where ¢ = c(x,y,2) = VK/p represents the wave propagation velocity. Note that the
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influence of the density has not disappeared from wave equation (2.4) altogether: the
contribution of the density is still included in the propagation velocity.

The equations given so far are formulated in the space-time domain. With Fourier
techniques it is possible to perform transformations from the time domain to the frequency
domain and/or from the space domain to the wavenumber domain and vice versa. In this
thesis, the following definitions apply to the Fourier transformations:

— The forward temporal Fourier transform of a real function g(x,y,z,t) from the time
domain to the frequency domain is defined as

G(x,y,z,w) =f g(x,y,z,t) eIt dt, 2.5

Note that G(x,y,z,~®) = G*(x,y,z,m) because g(x,y,z,t) is real. This property is used in
the definition of the inverse transformation.
— The inverse temporal Fourier transformation is defined as

g(x,y,zt) = %Rcal f() G(x,y,z,w) et do| . (2.6)

Here w represents the circular frequency. Note that only positive frequencies appear in
eq.(2.6). The temporal Fourier transform of a function is indicated with a capital.

—The double forward spatial Fourier transformation from the space domain to the
wavenumber domain is defined as

a(kx,ky,z,m) = ff G(x,y,2,0) etikex g tikyy dxdy. (2.7)

— The double inverse spatial Fourier transformation is defined as

G(x,y,z,0) = (i)2 f f - G(kx,ky,z,0) eF5x e=iksy dk,dk,. (2.8)
2n —o0

The spatial Fourier transform of a function is indicated by the symbol ™.
If G satisfies the wave equation, k, and k, represent the x- and y-component of the wave
vector K. A Fourier transformation from the space-time domain to the wavenumber-
frequency domain of the wave field registered at the surface is a way to decompose the
wave field into monochromatic plane waves, each of which travels in the direction defined
by wave vector k.
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An additional Fourier transformation with respect to z can be defined in a similar way.
~ The forward spatial Fourier transformation with respect to z is given by

é(k)(vk}”klsm) =f a(kmk)”z'm) e+jk’z dZ . (2-9)

— The inverse spatial Fourier transformation with respect to z is given by

B (K Ky 2,0) = f & (ke Ky k@) €% dk, . 2.10)
21 J—oo

Here k, represents the z-component of the wave vector k. The triple spatial Fourier
transform is indicated by the symbol =.

From the Fourier integrals the following properties with respect to differentiation can be
derived.
— Differentiation with respect to time, d/dt, is equivalent to multiplication by +j in the
frequency domain
0/ot & +j . : (2.11a)
- Similarly: differentiation with respect to the spatial coordinates, d/dx, d/dy and 9/dz, is
equivalent to multiplication by —jk,, —jk, and —jk, respectively in the wavenumber domain
0/ox & —jk, ,
0/dy > —jky | . (2.11b)
9/0z & —ik, .

Eq.(2.4) can be rewritten as-

2 2
dy” dz" cat (2.12a)
The equivalent expression in the space-frequency domain is

%+ﬁ+§+k2? =0,
ox° dy” oz (2.12b)
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where k = k(x,y,z) = w/c(x,y,2), and in the wavenumber-frequency domain

kka(-ki)F:o. 2.12¢)

Here k = k(z) = w/c(z). ) _ )
The well known dispersion relation can be found by performing a spatial Fourier
transformation with respect to z as well

K2 -k - K-k =0. . (2.12d)
In this equation k = w/c, with ¢ constant.
The expressions (2. 12) are the basis of various wave field extrapolation techniques.
Taylor series expansion

The well known Taylor formula for series expansion can be used to derive an expression
for wave field extrapolation. E.g., extrapolation along the time coordinate can be written as

() 9p . (-2 a%p . (-t)° Qp
-—1! —a-a + o1 ? + —'——3! ? + ... (2.13)

n

p(t) =p(tn) +

This equation states that the pressure field at any time t can be computed from the pressure
field and its derivatives towards t at time t,. The Taylor series expansion of the exponential
function

- X 4 x2 . x3
expx)=1 + i + T +3! + ... (2.14)

can be used to rewrite eq.(2.13) in a symbolic notation as
0
p(t) =exp [(t—tn}at— Ipt) . (2.15)
n

Substitution of t = t,+At, with At some positive time interval, yields
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P(EAD) = exp(HA ) D1 2.16)

The derivatives that occur in eq. (2.16) can be computed from the wave equation, e.g., for
0%p/ot this is simple: the expression follows directly from eq. (2.12a).

The accuracy of the extrapolation depends on the number of terms that is included in the
Taylor series, the extrapolation step size and the accuracy with which the derivatives are
known,

An expression similar to (2.15) can be derived for extrapolation along the depth coordinate,
e.g.,

p(z) = exp [(Z—Zi)%] p(z) . (2.17)

According to eq. (2.17) the pressure field at any depth z can be computed from the pressure
field and its derivatives towards z at depth level z;.

The Taylor series approximation can also be used to derive finite-difference expressions for
differentials. From the first order Taylor series expansion

P(taAt) = p(ty) + At-gtﬂ. ' (2.18)

the following much used finite-difference expressions for the first derivative can be
derived:

QU
=l

9 .1 —pft—

ot At[p(tn) p(ta—An)] (2.192)
and

op 1 _

i Ax[p(trﬁ'At) p(ty)] . (2.19b)

Addition of eq.(2.19a) and (2.19b) yields the following centered finite-difference
expression for the first derivative

9 _ 1 ot
o, g [p(tn+At) Pty At)] . (2.20)
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The well known approximation for the second derivative

% = 225 [p(ta+At) — 2p(ty) + p(t—At)] (2.21)

can be found by substituting expression (2.19b) into the second order Taylor series
expansion

2

Dlta-At) = pte) — AtSR + AP (2.22)
oty 2 52

n

Finite-difference expressions similar to (2.19), (2.20) and (2.21) can be derived for d/0x,
02/0x2, 9/dy, 0%/dy?, 0/dz and 0%/dz2.

Extrapolation along the time coordinate
The expression for time extrapolation that is commonly used is formulated in the space-time
domain, It is based on the second order Taylor series expansion

op At29
p(X,y,Z,tiEAt) = p(X,y,z,ty) At i +5 a—ztg . (2.23)

Substitution of finite-difference expression (2.19) for dp/dt, and using two-way wave
equation (2.12a) for 3%p/dt’ yields

2A12
P(X,Y,Z,tni'At) = 2P(X,Y,Z:tn) - P(X,y;zytn'_’:At) + C_AL[

2 [9x2 9y? 0z2

7 %, 9-22] . (2.24)
tn

Replacing the second derivatives towards x, y and z by finite-difterence expressions as in
eq. (2.21) yields the following discretized expression for reverse-time extrapolation (Chang
and McMechan, 1989, and McMechan, 1983)

PrLm(tatAt) = 2(1-3a2) pxim(tn) — Prtm(taFAY + 2.25)

+ a2 (Pk+1,,m(tn) + Pk-1,1,m(tn) + Pi1+1,m{tn) + Pk-1.m(ta) + Pr.Lm+1(tn) + Prlm-1(tn)) -
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Here pxm(ta) is a shorthand notation for p(kAx,1Ay,mAz,nAt), Ax = Ay = Az = h is the
grid spacing and a = a(x,y,z) = cAt/h. (The same expression can also be found in a direct
way by replacing the differentials in eq.(2.12a) by finite-difference approximations as in
eq.(2.21)).

Expression (2.25) states that in forward time extrapolation the wave field at time t+At is
computed explicitly from the wave fields at times t and t—At. Similarly, in reverse time
extrapolation the field at time t-At is computed from the fields at times t and t+At.
Extrapolation along the time coordinate can be used in modeling (forward) as well as in
migration (reverse).

When used in zero-offset migration, the data provide the surface boundary conditions for
the extrapolation: py ;o (t,_;). The reverse extrapolation is performed recursively from the
final registration time T to zero time. The wave fields at times T+At and T+2At (which are
necessary to initialize the extrapolation) are taken zero. The extrapolated wave field at zero
time is the migrated result: all depths are imaged simultaneously at the final extrapolation
step. Note that this property makes reverse-time extrapolation unsuitable for redatuming.

To keep the grid dispersion, which is inherent in the finite-difference approximation, to an
acceptable level, the number of grid points per dominant wave length Ay, inan, should be
about 10 to 20

h< A dominant

20 (2.26)
The maximum finite-difference time step is limited by the stability condition
h
At —.
o3 @.27)

As long as these conditions are satisfied the results of reverse-time extrapolation are good.
Especially the high dip performance is excellent. However, the large number of grid points
and the large number of time steps that are necessary cause the reverse-time extrapolation -
process in migration to be computationally intensive. Also the required computer memory
is large: preferably the entire data volumes at two consecutive times should be stored in
core memory.

Reverse-time extrapolation according to eq. (2.25) is based on the rtwo-way acoustic wave
equation. This means that both up- and downgoing waves are extrapolated simultaneously.
So, apart from primary waves also multiply reflected waves and transmission effects are
taken into account. This property is an advantage if the extrapolation is used for modeling.
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However, when used in migration two-way extrapolation may cause problems that are
related to multiply reflected waves. This can be explained as follows. A two-way
extrapolation generates ‘artificial’ multiples at acoustic impedance contrasts in the macro
model. These multiples should interfere destructively with the ‘real’ multiples in the data.
However, in general the macro model is not perfectly known. The result of this is not only
that the ‘real’ multiple energy is not suppressed, but also that spurious multiple energy is
introduced which distorts the result. This will also be the case if two-way extrapolation is
applied to data from which the multiples have already been removed by some multiple
elimination technique. The generation of unwanted energy can partly be suppressed by
using a smoothed macro model (Loewenthal et al., 1987). Actually, the introduction of
smooth boundaries in the macro model has the effect that the two-way method is used in a
kind of one-way mode.

Furthermore, we mention a problem of reversé-time extrapolation in migration that occurs
even if the macro model is accurately known. It is explained with the aid of the example in
Fig.2.1.2. In Fig.2.1.2a the mode! is shown. It consists of one horizontal interface. At
the surface the seismic experiment is carried out. The arrows indicate the direction of the
waves: nr.1 represents the source field, nr.2 the reflected field and nr.3 the transmitted

registration at surface

N N A

\3n

Vw""‘w‘\.«
spurious image not registered
a. seismic experiment b. reverse-time extrapolation :
in migration

Figure 2.1.2a Seismic experiment. The arrows represent the source wave field (1), the reflected wave
field (2) and the transmitted wave field (3). Data are only acquired along the surface. This means that the
transmitted wave field is not registered.

Figure 2.1.2b Reverse-time extrapolation in migration. The registered data are put into the
extrapolation scheme as boundary condition at the surface. The transmitted wave field is not registered and
is not put into the scheme. The consequence is that a spurious image is proddced by the reverse-time
extrapolation.
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field. Notice that only at the surface detectors have been placed. Hence, the transmitted
field is not registered. However, it is required for a correct reconstruction. Thérefore,
reverse-time migration will not be able to give optimum results. Instead, it produces
spurious images.

This is illustrated in Fig.2.1.2b where the spurious field is indicated by arrow nr.4. In
order to get a perfect image of a certain area, the reflected and transmitted wave ﬁeld should
be known at a closed surface surrounding this area.

In an extrapolation scheme based on the one-way wave equation all reflections are
considered as upgoing primary waves. This means that multiples and transmission effects
are not handled correctly. However, no spurious energy is generated if an incorrect macro
model is used. Because of this robustness we prefer one-way techniques in migration. The
influence of multiples on the data should be reduced in advance, see section 1.5.

A reverse-time extrapolation technique based on the one-way wave equation was developed

by Baysal et al. (1983) for the 2D case. To show the principle, we start with dispersion
relation (2.12d):

2
0= :tckz/\/(ll((" +lf(—y 4, (2.28)
-z Z

or, with +j® < d/ot

= 2 2 ~
Iplokyknt) 4o, (‘—‘&, +(51) +1 Blkokykat) - 2.29)
at Tk,

The plus sign represents downgoing waves, whereas the minus sign corresponds to
upgoing waves. This can be understood as follows. For clarity we consider waves that
travel in the vertical direction only, i.e., kx=ky=0. So, according to eq.(2.29) these
waves are described by

ap%@:t ick, Slat) s (2.30)

or, with —jk, <> 9/0z
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ap(z,t) _ — 9p(zt)
=T o (2.31)

Downgoing waves can be described by p*(ct—z): as time increases, depth increases as well,
whereas upgoing waves are characterized by p~(ct+z): as time increases, depth decreases.
From this it follows that downgoing waves satisfy

opt(z.t) _ _ 9p*(h)
= (2.32a)

and upgoing waves:

dp=(z,t) _ ., dp(zY) ,
P =+ 3 (2.32b)

Note that the downward propagation in eq.(2.32a) corresponds to a plus sign in
€q. (2.30). Equivalently, the upward propagation in eq.(2.32b) corresponds to a minus
sign in eq. (2.30).

We may extend this result to the more general case where the wave propagation has
components in the x- and y-direction as well and we conclude that the plus sign in
€q.(2.29) corresponds to downgoing waves whereas the minus sign in eq.(2.29)
corresponds to upgoing waves.

In reverse time zero-offset migration the extrapolation of upgoing waves plays an important
role. Hence, we choose the minus sign in eq. (2.29):

~_ 5 5 o
P okykyt) el - joicy/ (K] +(EY-) AT kgt (2.33)
2 Z

The square root operator can not be expressed explicitly in the space domain and therefore
it is computed in the wavenumber domain using forward and inverse triple spatial Fourier
transformations (F and F—l), (Gazdag, 1981). The expression for the one-way
extrapolation is obtained from the centered finite-difference approximation of the time
derivative, eq.(2.20)

p;(‘]'m(tn)

)
Prtm(tnAD = Py (G A £ 5 2At, (2.34)
. n
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or, with (2.33)

(2.35)
V)
P 1 m(tntAD = Py (6 FA) F 24t cF-1 [j k, (%"-)2 + (1%) +1 F[p'(tn)]]

z k,l,m

Apart from the fact that it is a one-way technique that can handle steep dips, reverse-time
extrapolation according to eq.(2.35) has the advantage that numerical dispersion due to a
finite-difference approximation of the spatial derivatives does not occur because these are
computed in the wavenumber domain. However, the triple spatial Fourier transformations
that are necessary in the 3D case at each extrapolation step, the large number of steps (small
At) and the large memory requirements, cause this method to be unattractive from a
computational point of view.

Extrapolation along the depth coordinate
In recursive extrapolation along the depth coordinate, the extrapolation is performed with
constant depth steps Az. According to eq.(2.17) depth extrapolation can be written as

p(x.y.zt) = exp [(Z—Za)ga;] P(X,y,Zist) .

Substitution of —jk, for d/dz; (see (2.11)) yields the following expression in the
wavenumber-frequency domain

Plkxkyz,0) = exp [jke(z-2) ] Plky ky,2;,0) , (2.36)
where, according to wave equation (2.12d), k, is defined as

kp=+VK2 K3 -k} for k2 + k2 S K2
and 2.37)

=2V + K3 - K2 fork3 + k3> k2.

Here k = w/c, with ¢ constant.
Note that nor the direction of the extrapolation, forward or inverse, nor the mode of
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extrapolation, down- or upward, has yet been defined. E.g., in the next section we derive
the following recursive expression for the inverse extrapolation of waves that prdpagate
upwards:
Bk, ky,2is1,0) = F(kyky,Az,0) Plky,ky,2i0) ,
with (2.38)
F(ky,ky,Az,0) = exp (v k*~k3-k Az) , for k3+k2 < k? .

Here Az=2z;,,~2;, z;,, > 2;.

Vertical velocity variations can be handled by adjusting the velocity at each extrapolation
step. In section 2.2 wave field extrapolation in the wavenumber-frequency domain is
treated in detail. It is argued that an implementation in this domain results in a very efficient
scheme that has no dip limitation. However, in the wavenumber domain it is difficult to
deal with lateral variations. If the extrapolation is performed in the space domain, the lateral
variations can be handled. Recursive extrapolation along the depth coordinate in the space-
frequency domain is discussed in section 2.3.

Wave field extrapolation according to eq. (2.38) is of the explicit type. An example of an
implicit expression for extrapolation formulated in the wavenumber-frequency domain is

L VAN v AZ o~
exp (k. —2—) P(kx,ky,Zi+1,0) = exp (+jk; —2—) P(ky,ky,z;,0) , 2.39)
or,
. Az
~ exp (+jk; 5 )
P(ky,ky,Zi+1,0) = —————=— P(ky ky,z;,0) . (2.40)
exp (ks 5 )

The advantage of an implicit formulation is that stable finite-difference schemes can be
derived from it. Even if an approximation of the operator is used, its amplitude can always
be defined such that it equals unity. This is because the numerator and the denominator of
the operator in eq. (2.40) are complex conjugates. Of course, phase errors will be present
in the approximation. Furthermore, implicit finite-difference schemes for the 3D case are
complicated unless operator splitting techniques are used (Ristow,1980). Because we reject
operator splitting in favor of full 3D operators, we prefer the explicit formulation. As we
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shall see in the next chapter, stable 3D wave field extrapolation operators can be designed

for use in explicit schemes.

Non-recursive extrapolation along the depth coordinate can be performed either with
hyperbolic operators or with non-hyperbolic operators, see Fig.2.1.1.

If hyperbolic operators are used (Kirchhoff summation) lateral velocity variations can not
be handled correctly. Therefore a hyperbolic technique is rejected.

Non-recursive depth extrapolation with non-hyperbolic operators (generalized Kirchhoff
summation) would be the alternative. Note that such a method requires different
extrapolation operators for every lateral position at each depth level. This is considered as a
major disadvantage for application in migration where the extrapolation result at all depth
levels is required (especially because a recursive extrapolation technique produces
extrapolation results at all depth levels by necessity). However, for redatuming, where the
extrapolation result is required at one depth level only, non-recursive non-hyperbolic depth
extrapolation is pre-eminently suited. Therefore it is used in the TRITON scheme
(Kinneging, 1989), see also section 1.5.

Extrapolation along the ‘vertical time’ coordinate T
In recursive extrapolation along the ‘vertical time’ coordinate the extrapolation is performed
with steps cAT, AT being constant. To arrive at an expression for extrapolation along the

time coordinate we start with operator F as given in eq.(2.38):
Flkeky,Az,0) = eVk>- K& K Az 2.41)

This expression can be rewritten as

Fky ky,Az,m) = ejkAz e] (Vie-1& 4G -k) az, (2.42)
or .
Flkoky,Az,0) = ekAz ejkzAz | (2.43)

In migration schemes k; is usually approximated by some series expansion (Taylor,

continued fraction, etc.). It turns out that the expansion of k; converges better than the
square root term in eq.(2.41). As mentioned, the steps in extrapolation along the time
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coordinate have the size cAT. This yields

Fkyky,AT,0) = eJk(CAT) gjk(cAT), (2.44)
or :

Flkyky, AT, 00) = eJ0AT ejkz(cAT), _ (2.45)

Notice that the first term in this equation is a simple time shift.
We will now discuss three situations:

1. ¢ =constant,

2. c=c(z)and

3. ¢ =c(x,y,2).

1. In case of a constant velocity medium, there is no difference between extrapolation
along the depth coordinate and extrapolation along the ‘vertical time’ coordinate. This is
because the step size in ‘vertical time’ extrapolation, cAt, is constant, like Az is constant in
depth extrapolation.

2. If the velocity is a function of depth, c=c(z), the step size in ‘vertical time’
extrapolation is no longer constant. Therefore, in this case the time migrated result is a
stretched version of the depth migrated result (or the other way around). Hence, use of time
migration means that the vertical time to depth conversion is not carried out.

3. Problems arise if the velocity is a function of the spatial coordinates, ¢ = ¢(x,y,z). In
that case the step size in ‘vertical time’ extrapolation also varies with x, y and z. The effect
is that the data are extrapolated to a dipping or even curved interface. The extrapolation
method that is used however, is derived for extrapolation from a flat surface to some
arbitrarily shaped surface. Therefore this method is only correct for non-recursive
applications, starting at a flat datum. Hence, in a recursive application of extrapolation
along the ‘vertical time’ coordinate, errors are involved if the velocity varies laterally. The
situation is shown in Fig.2.1.3.

Those errors can be avoided by introducing a reference medium. In this medium the
velocity is defined as some average of the true velocity such that it is a function of depth
only: T =¢(2), the overbar denotes the reference medium. The size of the extrapolation
steps is defined as cAt. Hence, the following extrapolation operator is used (see also
eq.(2.45)):
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flat datum
Az = CAt

curved datum

Figure 2.1.3 Extrapolation along the vertical time coordinate does not yield correct results in case of
lateral velocity variations. The reason is that in the derivation of the method horizontal extrapolation levels
have been assumed. Here the levels are arbitrarily shaped (Az = ¢(x,y,z)AT). Only the first (non-recursive)
step is performed accurately.

Fli ky,AT,0) = eJ0AT ejkz(€AT). (2.46)

The error that is introduced by using eq. (2.46) can be found as follows. We start with
eq.(2.43)

Bk ky,Az,00) = ejkAz ej‘k.zAZ .
Introduction of the reference medium (k = @/C) yields

Bk, ky,Az,0) = ejEAz eikzAz ej(k-k)Az (2.47)
or, substituting Az =CAt,

Flkyky,Az,0) = eOAT ejlaCAD ej(k-K)EAD (2.48)
By comparing eq. (2.48) with eq.(2.46) we see that the application of (2.46) means that a
static correction (thin lens term) is deleted. We conclude that the method is only applicable

in case of small lateral changes (small dips) in which case this correction may be neglected,
see Fig.2.1.4.
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nAT.

\\/ ‘ Az = CAt
(n+1)AT :\Q‘Jf I

oo

—y

(N+2)AT

L g \jf

Figure 2.1.4 .If a reference medium is introduced, the ‘vertical time’ extrapolation is performed from
one horizontal level to the next (Az = ¢(z)AT). By doing this a static correction is deleted. Therefore, the
method can only be used in case of small lateral variations (small dips).

Hence, in either case extrapolation along the ‘vertical time’ coordinate breaks down in the
presence of lateral variations.

The theory and the usual implementation of time migration in the space domain which
yields the well known 15° and 45° algorithms will not be discussed in more detail. The
reader is referred to the work of Claerbout (1976, 1985).

Summarizing we state that finite-difference time migration can only be applied successfully
if the lateral variations in the medium are small and if there are no steeply dipping events.
The success of time migration in the seismic industry can be explained by the fact that it
was the first wave equation based computer implementation. Another reason is that the
velocity model required for time migration is not very critical: although the results may be
erroneous, they nevertheless ‘look good’. And, last but not least, time migration takes
relatively little computer time.

1t is only of the last years that depth migration in combination with an accurate macro-
model determination technique is recognized as the way to go in case of complex media. In
the next sections the emphasis is therefore on extrapolation along the depth coordinate.
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2.2 RECURSIVE DEPTH EXTRAPOLATION IN THE k,, ky, ® DOMAIN
The solution of wave equation (2.12c) is

Blkykyz,0) = etVKEAG 12z Bl kyz,0) for A2 <K, (2.49)
and

Blkpkyz,m) = VI k2 lziz| Bk kyzm) for KHE>K2.  (2.49b)

This well known result can be easily verified by substitution. The expressions for the
forward extrapolation of upward traveling waves (z<z;) are found by choosing the minus
sign in eq. (2.49)

Bk ky,2,0) = e IVKKEK] (2-2) B(ky ky,2,0) for k2+kE<K2,  (2.50a)
and

B (keky,z,0) = eVKiHK) k2 @i2) B(k, k,,2,0) for kK2+k3 >K2.  (2.50b)

The superscript — denotes upward traveling waves.

The part of the wave field for k% + K> k? is generally referred to as the evanescent field.
The minus sign in eq.(2.50b) is chosen on physical grounds: the evanescent waves
decrease exponentially. Because of this property, the régistration at the surface of reflected
evanescent waves is below the noise level and therefore these waves can not be used.

Eq.(2.50) states that the upward traveling wave field at any depth in the subsurface above

level z; can be computed from the field at level z;. Hence, recursive extrapolation can be

expressed as
P (k. y,zi1,0) = Wiky,ky,A2,0) P (kx,ky,Z;,0), (2.51)
where Az = z; - z;_{, z; > z;_;, and

Wk ky,Az,0) = eFVK*—Gk] Az for 12413 < K2, (2.52a)
and
Wknky,Az,0) = e VKRHG-K? Az for 12442 > K2 (2.52b)
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In recursive wave field extrapolation vertical velocity variations can be taken into account,
because at each extrapolation step a new velocity can be assumed. However, because of the
double spatial Fourier transformation, lateral velocity variations can not be handled by
extrapolation according to eq.(2.51). This however can be accomplished in the space
domain, see the next section.

The inverse wave field extrapolation operator F is defined such that
i;-(kx:ky,zivm) =’F(kX1ky’AZ)m) F_(kx,ky,zi—l,m) . (253)
Substitution of eq.(2.51) into eq. (2.53) yields

F(ky,ky,Az,0) Wikeky,Az0) =1, (2.54)

or,

~ ~=1
FlkyokypAz,0) =W (kk,Az,0) . 2.55)

Using eq. (2.52) F can be expressed as follows

FlkokyAz,0) = eVK*—KG Az for 12442 < &2, (2.56a)
and
Flknky,Az,0) = eV KAHKIK? A2 for 124k3 > k2 . (2.56b)

The practical application of eq.(2.56b) in the inverse wave field extrapolation of
evanescent waves would cause stability problems. As mentioned, the S/N ratio in the
registration of those waves is very small. Hence, the extrapolation would cause an
exponential increase of the noise. Therefore, instead of eq.(2.55), the matched filter
approach is often followed in practice

~ ~‘ '
Fk,.k,Az,0) =W (k,,k,,Az,00) , .57

or, with eq. (2.52)
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Flkoky,Az,0) = eHVK*KE-K] Az for 124k < K2, (2.582)
and
Flkoky,Az,0) = e VIGHKGK? AZ for 12442 > &2, (2.58b)

Note that for the propagating waves, kx2+ky23k2, eq.(2.58a) equals eq.(2.56a), but
according to eq.(2.58b) the evanescent waves are suppressed during the extrapolation,
thus avoiding instability. However, the suppression of the evanescent waves also effects in
a reduction of the spatial resolution. The amplitudé and phase behavior of the inverse wave
field operator F are shown in Fig.2.2.1.

The extrapolation of monochromatic plane waves in the wavenumber domain for
kx2+ ky"’sk2 is easy: the amplitudes of the propagating waves are not affected, only a
phase shift is applied. Inverse wave field operator F is therefore also called the ‘phase shift

? amplitude
1
—k 0 k —
kx
? phase
kaz
—k 0 k ————
kx

Figure 2.2.1 Amplitude and phase of an inverse wave field operator (2D).
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operator’. The extrapolation is accomplished by a multiplication of complex numbers. The
suppression of the evanescent part of the wave field, kx2+ ky2>k2, is even more simple:
in that case the operator is a real number smaller than one.

An implementation in the frequency domain has a couple of advantages. It is a way of data
reduction because only the data in the frequency band of interest need to be treated. E.g.,
the usual temporal sampling interval is 4 ms, which is sufficient for frequencies ranging
from O Hz to 125 Hz. However, the useful frequencies in seismics are typically in the band
from 10 Hz to 70 Hz. Hence, by working in the frequency domain a data reduction factor
of about two can be reached. Another advantage is that the frequency components can be
treated independently. A temporal Fourier transforma(ibn can be considered as a natural
way of dividing a problem into separate parts, which enables an implementation on a
parallel computer with a high degree of concurrency.

Together those properties cause the implementation of depth extrapolation in the
wavenumber frequency domain to be very efficient.

2.3 RECURSIVE DEPTH EXTRAPOLATION IN THE x, y, ® DOMAIN

The expression for forward extrapolation in the X,y, domain can be obtained by applying
a double inverse spatial Fourier transformation to eq. (2.51)

P (x,y,z;-1,0) = f j W(x-x',y-y'Az,0) P7(xy',z;,0) dx'dy’, (2.59)

—o0

which is abbreviated to
P (x,y,2i-1,0) = W(x,y,Az,®) * P7(X,y,z;,®) . (2.60)

The symbol * denotes a double spatial convolution along the x and y direction.
Similarly an expression for W can be found by Fourier transforming eq. (2.52)

Az 1+jkr emike

W(XsyaAz)m) = E 3 ’ (2.61)

T

where r = (x2+y2+Az2)12, The configuration is shown in Fig.2.3.1.
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R

Figure 2.3.1 Configuration of extrapolation in the x,y, domain (2D).

This equation can be rewritten as

W(x,y,Az,0) = :2_11.; cosd ff;;—kr + ﬁ cosd) J%Q:;E . (2.62)

where cosd = Az/p.,

The first term is called the near field term because it is proportional to 1/¢2. In the far field
approximation it is neglected, which leaves the second term. In this term the factor 1/r is the
spherical spreading factor, cos¢ is the directivity factor and jw is the time differentiation
factor.

Operator W is called the Rayleigh IT operator. It can also be derived directly in the space
domain. For an extensive discussion the reader is referred to Schneider (1978) and
Berkhout and Van Wulfften Palthe (1979). -

Using the matched filter approach, the inverse wave field extrapolation operator F can be
expressed as follows

F(x,y,Az,0) = W*(—x,—y,Az,m) , (2.63)

or,
Az ke 2.64
F(x,y,Az,<n))-21t 3 e, (2.64)

The expression for inverse extrapolation is
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P~ (x,y,Zi,®) =ff F(x—x',y-y'.Az,0) P~(x"y',zi-1,0) dx'dy' , (2.65)

—oo

or, in the abbreviated notation

P=(x,y,2;,0) = F(x,y,Az,@) * P(x,y,z;-1,0) . (2.66)
?amplitude
Az >> Mg
« 0 K
Ky
Tamplitude
’/ Az =MN4
- 0 k —
kx
?amplitude
4——”/
Az << N4
—* 0 k e
kx

Figure 2.3.2 Amplitude of inverse wave field operators for decreasing values of extrapolation step Az.
Note that the spatial bandwidth increases (2D).
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From eq. (2.58) it follows that

lim <=
a2 0 FhkpkoAz@)=1, (2.67)
or
lim
Az o0 F(XY,A2,0) = 8()XY) . (2.68)

See also Fig.2.3.2 where the amplitude of F is shown for different values of Az. For
decreasing values of Az the spatial bandwidth of F increases. This means that a discretized
version of F, with spatial sampling intervals Ax and Ay, will be increasingly distorted for
decreasing Az due to the spatial aliasing, see Fig.2.3.3. Especially in recursive

tamplitude

~KxNyq X 0 ko k

x,Nyq

i

ky

Figure 2.3.3 In case of discretization operator aliasing may be inevitable, despite of a small spatial
sampling interval. The*only solution is spatial band-limitation.
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extrapolation where the steps are usually small this so-called spatial operator aliasing may
cause serious problems. The only way to prevent this is to take care that the operator is
spatially band-limited. Note that spatial operator aliasing has no direct relation with the
occurrence of spatial aliasing in the data: for certain intervals of Ax and Ay the data can be
sufficiently sampled while the operator may suffer from aliasing.

The easiest way to compute numerically a spatially band-limited operator with no aliasing is
the following:

— Compute the operator in the k,k,,0 domain. This way the spatial Nyquist frequencies
1k, Nyq=1M/Ax and tky Ny
— Perform an inverse double Fourier transformation to the x,y,0 domain.

=1n/Ay are never exceeded.
Operators computed according to this recipe are extensively discussed in the next chapter.

In the derivation of the expressions for wave field extrapolation, €q.(2.60) and eq.(2.66),
via the wavenumber domain, we assumed a laterally constant velocity. However, the actual
extrapolation is performed in the x,y,w domain, which allows for lateral velocity variations
to be taken into account. Therefore, we apply the extrapolation operators in a space-variant
manner, i.e., each output point of the extrapolated data is computed using an operator
based on the local value of the wavenumber k(x,y,z,w), being the ratio w/c(x,y,z) of the
currently treated frequency  and the local propagation velocity c(x,y,z). To emphasize
this, in our notation we consider the operators to be a function of k instead of , e.g.,
F(x,y,z,0) = F(x,y,z,k).

2.4 REQUIREMENTS FOR MIGRATION

Migration transforms seismic time measurements into a depth image with the aid of a macro
velocity model. Therefore it is imperative that both lateral and vertical velocity variations
can be handled by the migration extrapolation process. This leaves depth migration
methods that are applied in the space domain. For the same reason, in the 3D case two-
step migration is rejected in favor of full 3D migration.

Because of the complicated structures to be imaged, the migration method itself should not
be severely dip limited. For the 3D case this means that a fu/l 3D extrapolation method is
preferred to a method based on operator splitting.
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For reasons of efficiency the migration should is implemented as a poststack or zero-offset
method. Also for reasons of efficiency migration in the frequency domain is chosen and
not reverse-time migration. '
Because of its robustness a one-way extrapolation technique is considered best.
Summarizing, above arguments lead to the following choice: 3D zero-offset depth
migration based on recursive wave field extrapolation. The extrapolation should be one-
way and full 3D; the implementation should be in the x,y,® domain.

Because of the recursive character of the extrapolation process the errors made in each
extrapolation step should be made sufficiently small. This especially concerns the amplitude
errors that may cause instability. To prevent operator aliasing, which is likely to occur in
case of the small extrapolation steps, the extrapolation operators should be spatially band-
limited.

In the next chapters attention is paid to the design of efficient, accurate extrapolation
operators and to migration based on extrapolation with those operators.
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Fig. 3.1.1 Example of operator aliasing. The pictures at the left show the hyperbolic zero-offset responses of
a point diffractor, the pictures at the right show the extrapolation results. In Fig. 3.1.1a, b and c the spatial
sampling interval is 2.5 m, 5 m and 10 m respectively. Aliasing in the data was suppressed by summing
adjacent traces . Hence the artefacts in the results, most clearly visible in Fig. 3.1.1c, are mainly due to operator
aliasing.
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CHAPTER 3

DESIGN OF ACCURATE EFFICIENT
RECURSIVE KIRCHHOFF EXTRAPOLATION
OPERATORS

3.1 INTRODUCTION

In this chapter the design of recursive wave field extrapolation operators for application in
the space-frequency domain is discussed. A high accuracy is very important: even small
errors in the operators, €.g. in the order of one percent, will cause unacceptably large errors
in the final result. This is because the errors accumulate due to the recursive application of
the operators. One important source of errors, the use of operators that are spatially aliased,
see Fig. 3.1.1, can be eliminated by computing the operators in the k, k, domain. If the
operators are truncated in this domain such that the spatial Nyquist frequencies are not
exceeded, an inverse spatial Fourier transformation to the x,y domain yields the desired
non-aliased extrapolation operators.

However, operators computed according to this recipe are not the most efficient, i.e., their
application in the x,y domain is computationally intensive. Truncation of the operators in
this domain (or, equivalently, reduction of the number of points) increases the efficiency.
Unfortunately, truncation decreases the accuracy. This is because the shape of the operator
in the ky,k, domain and the shape of the operator in the x,y domain are coupled. The larger

the derivatives with respect to k, or k, of operator Fin the ky,k, domain, the larger the size
of the equivalent operator F in the x,y domain domain should be. This property is
demonstrated. Special attention is paid to small-sized operators that nevertheless have a
good accuracy and stability: ‘smoothed’ operators and ‘optimized’ operators. The
‘smoothed’ operators are designed analytically in the k,.k, domain such that large
derivatives are avoided. The ‘optimized’ operators are computed numerically by
minimization of errors. Because an ‘optimized’ operator has the smallest possible size for a
given accuracy, it can be considered as an optimally truncated one. Criteria are derived in
the ky,k, domain for the maximum phase and amplitude errors that can be allowed.

Furthermore, to increase the efficiency of the extrapolation process itself, the symmetry
properties of the operators are used. By computing the operators in advance and storing
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them in a table, multiple computation of the same operator is prevented. Aspects concerning
the operator table are discussed in the final section of this chapter.

y

*arg?
kaz
) '/_\ ) _
—k 0 k

Figure 3.2.1 Inverse extrapolation operator F in the wavenumber-frequency domain. The dark shaded
area, k2 + k% < K2, represents propagating waves, the light shaded area, K2 + kg, > k2, represents

evanescent waves.
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3.2 COMPUTATION OF WAVE FIELD EXTRAPOLATION
OPERATORS VIA THE WAVENUMBER DOMAIN

According to eq. (2.58) the matched inverse wave field extrapolation operator F is given by

Flk,ky,Azk) = exp(iVk? — K2 - k2 Az) for k2 + k2 < k2,
~ (3.1)
Flkxky,Az,k) = exp(-VkE + k3 k2 Az) for k2 + k2 > k2.

See Fig.3.2.1.

In practice a discrete version of the operator will be used in the space domain, with spatial
sampling intervals Ax and Ay in the x- and y-direction respectively. As a consequence, in
the wavenumber domain the operator is periodic and aliasing effects will occur if the spatial
Nyquist frequencies ky Nyq and/or ky Nyq are exceeded. The spatial Nyquist frequencies are
related to the spatial sampling intervals according to

kx.Nyq = [/Ax
and (3.2)
ky Nyq = T/Ay.

In order to preclude spatial operator aliasing, we generally demand that

| kx | < kxNyq ,
and ‘ (3.3)

| ky I < Ky Nyq-

Hence, equation (3.1) becomes

F(knky,Azk) = exp(vk? — K2 - k2 A2)
for k2 + k2 < k2 and| ky | < kyNyq and | ky |  kynyq,
(3.4)
F(ky,ky,Azk) = exp(-V K + K} - k2 Az)
for k2 + k} > k? and | ky | < kx,Nyq and | ky | < Ky Nyq-
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==
yNya Ay

Figure 3.2.2 On principle, the spatial Nyquist frequencies kx,Nyq = m/Ax and ky Nyq = 7/ Ay should
not be exceeded in order to avoid spatial operator aliasing. Note that their value fully depends on the

acquisition parameters Ax and Ay. If ky Nyq < k andlor ky Nygq < k this causes a dip-angle limitation,
seebandc.



3.2 COMPUTATION OF OPERATORS VIA WAVENUMBER DOMAIN 59

In Fig. 3.2.2 the situation in the wavenumber domain is shown for
— kxNyq > kand kynyq >k ina,

— kxNyq >k and kyNyq <k in band

— kxNyq <k and ky Nyq <k inc.

The tilt angle of a propagating monochromatic plane wave (represented by one sample in
the wavenumber-frequency domain) is given by

2 2
sinZo = k":—zky for k2 + K3 < k2. (3.5)

See also Fig.3.2.3. From this equation it becomes clear that the spatial band-limitation
according to eq.(3.3) causes a dip-angle limitation in the extrapolated result if Ky Nyq <k
and/or ky Nyq <k; see also Fig.3.2.2b and c. Preferably, the spatial Nyquist frequencies
should therefore be larger than k. Unfortunately, as they are fully determined by the
sampling intervals Ax and Ay (eq. (3.2)), they are fixed values after data acquisition.

Figure 3.2.3 Monockromatic plane waves propagating at a tilt angle o are represented by a circle in
the kx,ky domain. The smaller the radius, the smaller the tilt angle.
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In practice a discretized expression is used in the wavenumber domain as well. The discrete

version of F is given by

F(m,Aky,myAky,Azk) = exp(V k2 — (meAky)? — (myAky P Az)
for (myAky)? + (myAky)? < k?,
(3.6)

F(m,Aky,myAky,Az,k) = exp(-V (mAky)? + (myAk, )2 — k2 A2)
for (myAky)? + (myAk,)? > k2, '

m, =-numx, —numx+1, . . ., numx-1, numx,
m, = -numy, —-numy+1; . . ., numy-1, numy.

Here, 2numx+1 and 2numy+1 denote the number of samples in the x- and y-direction
respectively. (The operator is shown in Fig.(3.4.3a)).

In eg. (3.6) the sampling intervals in the wavenumber domain are given by

2n
Al = (2 numx) Ax
and
(3.7)
2n
Aky = (2 numy) Ay

in the k,- and k-direction respectively.

Note that for the range of m, and m, values as given in eq.(3.6) the spatial Nyquist
frequencies are not exceeded.

Because the domain of application is the space-frequency domain, a double inverse spatial
Fourier transformation must be performed. The discretized version of this transformation

(see eq.(2.8)) is given by

F(n,Ax,nyAy,Azk) = (3.8)
numx numy . .
LYY Fmak,myAky,Azk) eimsiknadx e-imyakynyAy Ak, Ak,

4% m=-numx m,=—numy
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ny = —numx,-numx+1, . . ., numx-1, numx,
ny = —numy,-numy+1, . . ., numy—1, numy.

In this thesis the following simplified notation is adopted:

G(m,Aky,m,Aky) — G(m,,my)
G(nyxAx,nyAy) — G(ny,ny)

for an arbitrary discrete function G.
The extrapolation can be written as a discretized convolution:

P(annysZH'lr(o) = (3.9)
numx numy
2 F[ny,ny,Az,k(ny,ny,z;,®)] P{(nx—ny),(ny-ny),z;,m)] AxAy .

Ny=-NUMX Ny=—numy

Because numx and numy are large, the application of F is not very efficient; the
computation of a single extrapolated output point requires (2numx+1)(2numy+1) complex
additions and multiplications.

A simple way to increase the efficiency would be to reduce the operator size by truncation:

P(ny,ny,z;,41,0) = (3.10)

Nl NY
2 2 F[n'x,n'y,AZ,k(nx,ﬂy,Zi_,w)] P[(nx—n'xL(ny—n'y)'wa)] AXAY )

n,=Nx n;,.—._Ny

where N, <numx and N, < numy.

The disadvantage of this ‘brute’ way of operator size reduction — it can be considered as the
application of a rectangular window — is that large errors are involved. (The truncated
operator is shown in Fig.(3.4.3b)). This can be understood by studying the relation
between the shape of the '6pcrator in the wavenumber domain and its size in the space
domain. This relation will now be derived. To keep the expressions simple, operator F is
considered as a function of spatial coordinate x only. The result however is applicable for
the y-direction as well.

Following Berkhout (1984) we take the relative second order moment L2asa measure for
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the operator length. It is defined as:

[ < liFe 112 ox
L=
[ o1z ax

(3.11)

From eq. (3.11) it follows that L2 is small if the energy of F is concentrated around x=0,

which is the case for small sized operators. Furthermore, for an increasing operator length,

the value of L2 will increase as well, because of the weighting factor x2.

Using

dF(ky) _

3 F +Hkex
dk, ] Jx xF(x)e dx

(see eq. (2.7)) and Parceval’s theorem

fllF(x)|l2dx=f || o |? d,
X kx

we can rewrite (3.11) as
dF(ks)

[
L=
[ Feol |

2
dky

Substitution of

F(ky) = Alky) ei®),

in which amplitude A and phase @ of F are defined as

Ak =) Feo |}
and

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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D(k,) = arg[F(ky)] (3.17)

respectively, yields

[ {dA(kx)) K (dm(kx)) } o
2 _ 7k

= (3.18)
[ Fco g
or
<2 [[a AP d6(kx)\2]
2 LA(kx>[ A+ |40 g,
L2= (.19)

L Ky i

From eq. (3.19) it follows that large amplitude derivatives in the wavenumber domain as
well as large phase derivatives give rise to large operator lengths. Operator size reduction is
therefore equivalent to the introduction of errors. As mentioned before, because of the
recursive application of the operators, even small errors may cause unacceptably distorted
results. Therefore the use of truncated operators is not recommended. From expression
(3.19) it follows that smaller operators would be possible if large derivatives could be
avoided. This principle in combination with the introduction of a maximum angle of
extrapolation is used for the design of the ‘smoothed’ operator, discussed in section 3.3.
The operators with the smallest size are obtained with the least squares optimization
technique discussed in section 3.4. However, in all cases the efficiency can be improved by
using the symmetry properties of the operators. Therefore these are discussed first.

Symmetry properties of operator F.
From eq. (3.6) the following symmetry properties of Fcanbe easily derived

F(my,my) = F(-m,,m,) = F(my,-m,) . (3.20)

Using this, Fourier transformation formula (3.8) can be rewritten as



64 3. DESIGN OF ACCURATE EFFICIENT EXTRAPOLATION OPERATORS

F(n,.ny,Azk) = (3.21)
npumx numy . -

LYY as(mymy)F(mymy,Az,k)cos(meAksnyAx)cos(myAkyny Ay)AkyAky .

47't2mx=0 my=0

Here s(m,my)=1form,21andm, 21,
s(mx,my) = 1/2 for (m, =0 and m, 2 1)or (m, 21 and my = 0) and (3.22)
s(m,,m,) = 1/4 for m, =0 and m, = 0.

From eq. (3.21) the following symmetry properties of operator F in the space domain can
be deriyed

F(ny,ny) = F(-n,,n,) = F(n,,—n,). (3.23)

If these symmetry properties are used, the extrapolation, eq. (3.9), can be written as

.numx numy
P(nx,ny,Zi+1,m) = z 2 4 S(nX,ny) F[nx’nyyAka(nmny,Zi,w)] (3*24)
n,=0 ny=0
{ Pl(nx—ny),(ny—ny),z;,0] +
P[(nx-ny),(ny+ny),z;,0] +
P[(nx'*'n;(),(ny_n'y),zi»m] +

P[(nx'*'n;(),(ny"‘n'y),zi»m] }AXAY'

The number of complex additions required to compute a single output point is
approximately equal to the number of eq. (3.9). The number of complex multiplications
however, has reduced by a factor of almost four to (numx+1)(numy+1). It is important to

notice that the use of the symmetry properties of F and F does not have any degrading
effect on the accuracy of the extrapolation: eq. (3.24) is equivalent to eq.(3.9).

Maximum dip angle in wave field extrapolation.
According to eq.(3.5) the angle o with respect to the vertical at which a monochromatic
plane wave propagates, is given by
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k2 2
sinZo = —"121‘1 for k2 + k2 < k2 (3.25)
k .
or
KK
k%sin%0.  kZsinZq,

=1foro#0and ki + kI <k?. (3.26)

Note that all waves with the same angle can be found on a circle, see Fig.3.2.3. Waves
propagating at smaller angles are represented in the area within this circle, and waves
propagating at larger angles as well as evanescent waves correspond to the outside area.

As mentioned, the introduction of a maximum angle of extrapolation enables us to design
more efficient wave field extrapolation operators. The maximum extrapolation angle o,
(0° < Olpay £90°) is defined as

K2 + k2
$in20tmax (kx, ky) = —— (3.27a)
K2
where k, and k, are on the ellipse
2 2
LS S S (3.27b)

k%sin20ty max  k2sinZ0ly,max

Here 0y max (0° <0y 1,5 £90°) is the maximum angle of extrapolation in the x-direction
and Oty may (0° <0ty ey £90°) is the maximum angle of extrapolation in the y-direction.
According to eq.(3.27b) the waves with extrapolation angle o,,, can be found on an
ellipse in the wavenumber-frequency domain. Hence, this maximum angle is not a
constant: it is a function of k, and k,, see Fig.3.2.4. The reason for defining different
maximum angles of extrapolation for the x- and y-direction is that the spatial sampling
intervals Ax and Ay and so the spatial Nyquist frequencies are usually different as well.

By defining operators that approximate F very well in the area within the ellipse as defined
in eq.(3.27), but that are allowed to deviate from F in the area outside this ellipse, an
increased efficiency can be reached. This is the topic of the next sections. However, first an
error criterion is derived. This will be used to determine the maximum amplitude and phase
errors of an approximated operator that are allowed such that the extrapolation results are
still acceptable and stable.
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Figure 3.2.4 The monochromatic plane waves that propagate at the maximum extrapolation angle
Oy can be found on an ellipse in the wavenumber-frequency domain. Note that Oy, is not a constant:
it is a function of ky and ky ’

Criterion for the maximum amplitude and phase error.
An expression for the amplitude and phase errors of an approximated operator is derived in

the wavenumber domain. An approximation of operator F is denoted by <F>. The
amplitude error €, is defined as

ealkky) =|| Flkoky)> || || Fkoky) || » (3.28)

or, using the fact that the amplitude of the exact operator F equals unity for propagating
waves, see eq.(3.1),

ealkoky) =|| <Flkpky)>||-1 for K2+ 12 <k?, (3.29)
where
|| <Fcxky)> || = VRe2<E Ky ky)> + Im2<F(k,ky)> - (3.30)
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The phase error £ is defined as

Eolkxky) = arg <F(kyky)> — arg F(ky,ky) . (3.3i)
From eq.(3.1) it follows that

arg F(kyky) = VK2 — k2~ k2 Az for k3 + k2 < k2 . (3.32)
Substitution in eq.(3.31) yields

ealkxky) = arg <F(keky)> - VK2 — k2 — k3 Az for k% + k} < k2, (3.33)
where

(3.34)

arg Flkoky)> = arctan [Im_fsw_] .

Re <’?(kx,ky)>

If the approximated operator <F> is used, the total amplitude error after N extrapolation
steps is

[1+ eatkokp)N = (11N (3.35)

If the amplitude error is small: €5(ky.ky) << 1, the total amplitude error after N
extrapolation steps can be expressed as

[1+ Neak.ky)] = [1]
or
Nea(ky,ky) - (3.36)

Because the phase errors simply add up each extrapolation step, the total phase error after
N extrapolation steps is

Neg(kyky) - (3.37)

Hence, the total error after N extrapolation steps equals the sum of the errors made in each
extrapolation step. According to equations (3.36) and (3.37) this holds for the amplitude
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error as well as for the phase error. Note that these expressions were obtained by assuming
that the errors are equal at each extrapolation step. This is a ‘worst case’ assumption: in
practice the errors vary which means that the accumulation of errors may be less severe.

In case of a maximum angle of extrapolation 0, the errors are only defined for angles
smaller than O, (the area in the wavenumber domain within the ellipse as defined by
eq. (3.27)).

If one accepts a total maximum amplitude error E, in the extrapolated result at the
maximum extrapolation depth NAz, this yields

2 2
| Nea(knky) | SEa for—Ka 4 & o (3.37)

k2sin%q k?sinZa,

X,max y,max
or
2 ’ 2
ealkyky) S—EA for ki + ky < 1. (3.38)
y N

k%sinZoi max  Ksin0ly max

For the total maximum phase error at the maximum extrapolation depth the value Eg is
accepted. This leads to

2
K5 + ky

< 1. (3.39)
K2sinZ0i max  k?sin20ty, max

|eaonky) | <58 for

For the part of the waves that propagate at angles larger than o, and the evanescent field
there are no special requirements as far as the phase errors are concerned. However,
instability should always be precluded and therefore we demand that

ealknky) < %’i for all ky and ky . (3.40)
Furthermore, optionally, the amplitude of the part of the wave field for a2, and the
evanescent field can be suppressed. We introduce the window error function gy; according
to

eulknky) =|| Flkky)> || - Ulkxky) (3.41)

where Uis a user-specified amplitude window, e.g., a cosine window. It satisfies
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0<Ulkeky) < 1. (3.42)
Our requirement for suppression is

kg i
k2sinZ0 max  k2sin?0ly,max

ulkyk,) S 34 for > 1. , (3.43)

Note that the stability requirement, eq. (3.40) is automatically included in .eq.(3.38) and
eq.(3.43). . .
Berkhout (1985) proposes a value of /10 for the maximum amplitude error E as well as
for the maximum phase error Eg. In case of 50 extrapolation steps the thresholds in
eq.(3.39) and (3.40) both amount to 0.006.

3.3 SMOOTHED EXTRAPOLATION OPERATOR

In the previous section we have already mentioned that operator F has large derivatives

with respect to k, and k. According to the relation between the shape of an operator Fin
the wavenumber domain and the size of its equivalent F in the space domain, eq.(3.19),

large derivatives that occur in F correspond to a large-sized operator F. This is unattractive
for a practical application. If smaller operators in the space domain are desired, because
they can be applied more efficiently, their equivalent in the wavenumber domain should not
have large derivatives. In this chapter two solutions are discussed. We start with the
‘smoothed’ operator that is designed according to the above mentioned requirement. In the
next section we discuss the ‘optimized’ operator.

The ‘smoothed’ operator is defined as:

Fo(kykyAzk) = exp(vk? - 1§ - 1 Az)
2

k2
X
2.2 2 2y < 1and| kx| € kxnyq and [ ky | S KyNyq »
k*sin“Oly max  k“Sin“0ly max

for

(3.449)
Foknoky,Azk) = Ag(ksky,k) exp[j@sky,ky,Az,k)]
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k2 2

for ——= + > 1 and | ky | S kxNyq and | ky | < ky,Nyq -
k*sin“Otx max  K“Sin“Oly,max

In this equation KS, the optional user-specified amplitude window, and phase @ are
smooth functions that are defined such that F; as well as its first derivatives with respect to
k, and k, are continuous at

Kk, K

) ) =1atlkx’-"-:kx'Nyqandatlkyl=ky.Nyq .
k*sin“Gix max  k“sin“Oly max

The index s refers to the smooth character of the operator which is therefore called
‘smoothed operator’. .

For waves that propagate at angles smaller than o, operator F; is exact, (compare with
eq. (3.1)). For waves that propagate at larger angles and evanescent waves, the phase of F,

is incorrect. However, optionally this part of the wave field can be suppressed with the

amplitude window 7\'5.
In practice we use the following simplified version of eq. (3.44)

Fy(kyky,Az,K) = exp(ivk? — kZ Az)
for Ky < ksinOtmax and | ky | € kx,Nyq and | ky | < ky,Nyq »
(3.45)
Bk ky,Az,k) = Ag(kyoky,k) exp[jds(ky,ky,Az,k)]
for k; > ksinOtmax and | ky | < ke,Nyq and | ky | < ky Nyq -

Here k, =Vk + & .

The amplitude window Ks in eq. (3.45) is given by a cosine function:

x K= ksinfxmax )+ L]
Kr,Nyq — kSinQnax] 2
for k; > ksinOuyax and ke <k Nyq

Rglkyky k) = a1 + (1-a1) [%cos

(3.46)
Ak ky k) = 21
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for k; > keNyq and | kx| € kxNyq and | ky | < ky Nyq.
Here k; nyq is defined as

Kr Nyq = min(ky Nyq» KyNyg) (3.47)
and coefficient a; must satisfy: 0 <a; < 1.
In eq. (3.45) phase function 55 is given by

B(kyrky,AZK) = a(AzZ,K)K? + B(AZKIK? + c(Az )k, + d(AzK)
for k; > ksinotmax and k; < ky,Nyq,

(3.48)
By(knky,AzK) = 0
for kr > k; Nyq and ky < ky Nyq and ky £ ky Nyq.
The value of o, is chosen such that it always satisfies
ksinOmayx < 0.85 kyNyq - (3.49)

The spline coefficients a, b, ¢ and d in eq.(3.48) are defined by the following four
boundary conditions: &;s and its first derivative with respect to k, are continuous at
k;=ksinoty,x and zero at ky =k, nyq.
Note that eq.(3.45) is somewhat less general than eq.(3.44) because we introduced
circular symmetry by defining F; to be a function of k; instead of k, and k. This implies
that Sinoty gy = SN0y ray =SiN0,,,. The advantage of these assumptions is that relatively

simple expressions for As and 65 can be formulated. The smooth operator is shown in
Fig.3.3.1, (see also Fig.(3.4.3c)).

The discrete expression for '155 can be found from egs.(3.45) to (3.48) by substituting
m, Ak, for k, and myAk, for k,, where m, ranges from -numx to numx and m, ranges
from —numy to numy. '



72 3. DESIGN OF ACCURATE EFFICIENT EXTRAPOLATION OPERATORS

kx,Nyq
——
k
X
AlF]
1
e
—rt —t —>
0 "Cmax kr,Nyq kxANyq kx
Aargr'-:
kAz
T T : t 4 ! t>k
0 "Omax kr,Nyq kX.Nyq X

Figure 3.3.1 The smoothed operator ’IES is designed such that it approximates the exact operator very
well for propagating waves with tilt angles up to O,y (compare with Fig.3.2.1). For waves with larger
angles and evanescent waves the phase and amplitude are shaped smoothly, such that large first derivatives
with respect to ky and ky are avoided. Note that the incorrect phase behaviour for @ > Gy, is suppressed
(optionally) by the amplitude window.
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Finally, for an efficient application in the space domain a truncated operator is used:

<Fs(ny,ny,Az,k)> =
numx npumy -
1y Y Fi(mymy,Azke-imakndxe-imAkndy Ak Ak,  (3.50)

4n2 5, ——qumx my=-numy

n, = -N,,—-N,+1, ..., N,~1, N,, with N, < numx,
n, = -—Ny,—Ny+1, . Ny-l, Ny, with Ny < numy.

specify:

- accuracy

- dip-angle

- window character ' input

1 —

design smoothed operator
in the wavenumber domain

1

performan FFT to operator
the space domain computation

Y
test the operator of size
(2Nx + 1) by (2Ny + 1)

Y

are the accuracy and n increase the values
stability criteria satisfied? of Nx and Ny

yY

n
decrease the values has a smaller operator
of Nx and Ny been tested already?

y

\i

smoothed operator iterative
ready to be used truncation

Figure 3.3.2 The appropriate size of the smoothed operator depends a.o. on the accuracy and stability
requirements. It can be determined by an iterative truncation procedure in the space domain. However, note
that the operator only needs to be computed once.
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Because of the smooth shape of operator F; in the wavenumber domain, we expect that the
negative effects of the use of a truncated operator <Fg> in the space frequency domain
remain limited, see also eq.(3.19). (This in contrast with the use of a truncated operator
according to eq. (3.10)). Nevertheless, errors are also introduced. For the high-angle part
of the wave field, with a>o,,,, and the evanescent part this is no problem as long as the
requirements concerning stability (eq. (3.40)) or suppression (eq. (3.43)) are satisfied. For
the part of the wave field with a <o, it might be necessary to increase the operator size,
i.e., to increase the values of N, and Ny. On the other hand, if the accuracy turns out to be
better than the pre-specified value, the operator size may be reduced. The procedure is
visualized in Fig.3.3.2. Note that the operator is computed once. Thereafter, only the
number of operator points is varied. This causes the computation of the operators to be
very fast: a table containing the operators (see section 3.5) can be easily generated at the
beginning of the application program. We have already mentioned a second operator type:
the ‘optimized’ operator. It turns out that ‘optimized’ operators are even more efficient than
‘smoothed’ operators. Unfortunately, the computation of the ‘optimized’ operators is in
itself such a time consuming process that it is not feasible to generate them at the beginning
of the program. Instead, prior to application one should have available operator sets for the
most common acquisition parameters. The ‘optimized’ extrapolation operator will be
discussed next.

3.4 OPTIMIZED EXTRAPOLATION OPERATOR

Although the extrapolation results with the smoothed operator are fully satisfactory, the

efficiency in not yet optimum. Only by computing the operator coefficients such that the

errors are minimized, one can be sure that the smallest possible operator has been found,

given a pre-defined accuracy.

The operator optimization method, introduced by Holberg (1988) for the 2D case, has

some properties that make it very suitable for our purpose:

— the operator size (the number of operator points) and the maximum dip-angle are user-
specified input parameters,

— optionally the operator can be designed such that it acts as a high dip-angle or
evanescent field suppression filter, and

— the most accurate operator possible under the above mentioned conditions is found.
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Hence, with the optimization method it is possible to find the operator that is the most
accurate given the operator size, the maximum dip-angle and, optionally, a filter
characteristic. However, one must keep in mind that our aim is to find the smallest
operator given a criterion on the required accuracy, and again the maximum dip-angle and
filter characteristic. This can be accomplished by iteratively applying the optimization
method in a similar way as was described for the smoothed operator in the previous

section, see Fig.3.4.1. However, this time a new operator must be computed at every

specify:

- accuracy
-dip-angle

— window character

input

|

—ll

Y

initial estimate
size (2Nx+1) by (2Ny+1)

Y

apply the optimization
method

\

test the operator

are the accuracy and n
stability criteria satisfied?

increase the values
of Nx and Ny

y

decrease the values
of Nx and Ny

| " ('has a smaller operator
been designed already?

Figure 3.4.1 The appropriate size of the optimized operator depends a.o. on the accuracy and stability
requirements. It can be determined by an iterative trial-and-error procedure in the space domain. Note that a

M

optimized operator
ready to be used

new operator must be computed at every iterative step.

iterative
operator
computation

PRI S
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iterative step. This makes the computation of a set of operators quite time consuming.
Therefore it-is not recommended to compute a table of optimized operators at the beginning
of each application program (like we suggested for the smoothed operator). Instead a
library of tables containing optimized operators for the most common acquisition
parameters should be available. ) .

A description of the optimization method, which-we extended to the 3D case, is given next.

The basic principle of the operator optimization is to minimize in a least-squares sense the
phase and amplitude errors as defined in section 3.2. The option to make the operator also
act as a high dip-angle and evanescent field suppressor can be realized by including the
amplitude window function in a so-called constraint function.

The procedure is as follows. First the requirements concerning the accuracy of the
operator, its dip-angle performance and the window characteristics are formulated. An
arbitrary initial estimate of the optimized operator (e.g., a smoothed operator) is Fourier
transformed from the space domain to the wavenumber domain according to

Nx NY
<Folmemy)>= Y, Y, <Fo(ng,ny)> eimdkndreimakndy AxAy, (3.51)

ne=—Ny ny=-Ny

m, = —numx, —numx+1, . . ., numx-1, numx,

m, = —numy, —humy+1, . . ., numy-1, numy.

The index o refers to ‘optimized’ operator. Note that the size of the operator, determined by
N, and N,, is still arbitrary.

Next, the amplitude and phase errors in the wavenumber domain are computed according to
(3.29) and (3.33). Here we give the discrete versions. The amplitude error is:

ea(my,m,) = VRe2<Fo(my,m,)> + Im2<Fo(my,my)> — 1
for (3.52)
(myAk,)? . (myAky)? <1
k%sin%(Cx,max)  k2sin®(Ctymax) - ’

with
m, =-numx, —-numx+1, . . ., numx-1, numx,

m, = —numy, —numy+1, . . ., numy-1, numy.

y
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The phase error is evaluated according to

Im<?o(mx,my)>

€p(my,my) = arctan [ } ~ VK2 - (m,Aky)? — (myAky)? Az

Re<f50(mx,my)>
for (3.53)

(mydky)? |, (myAky)? <1,
szinz(ax,max) szinz(U«y,mnx)

with
m, = —numx, -numx+1, .. ., numx—1, numx,
my = ~numy, -numy+1, . . ., numy-1, numy.

Furthermore, the window error function ¢y (eq. 3.41) is evaluated:

gu(my,my) =4/Rez<ﬁ,(mx,my)> + hnz<ﬁ,(m_\,my)> — Utimy.my)
for (3.54)
(meAk)? (myAky)?
kZSinz(ax.max) szinz(ay.max)

>1

with
my = —numx, —numx+1, . . ., numx—1, numx,

m, = —numy, —-numy+1, . . ., numy-1, numy.

y

The optimization problem can be summarized as follows. Find the operator coefficients

<F,(ny,ny)> such that the following requirements are met:

1. in the dark shaded area as depicted in Fig. 3.4.2 the phase and amplitude errors are as
small as possible,

2. in the light shaded area of Fig.3.4.2 the operator satisfies the requirements concerning
suppression (sU(kx,ky) <E,/N) or stability (€ A(kx,ky) <SEA/N).

In the implementation of the optimization method two functions are important: the
objective function O, which handles requirement 1 and the constraint function C, which
takes care of requirement 2. These functions are now discussed.

The error function that is minimized, requirement 1, is called the objective function and is
given by
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1
] : : T >k
Y 'amaxl kx,Nyq X
‘ arg E
kAz
' + 4 4 -
0 k

"Omax’ kx,Nyq X

Figure 3.4.2 The least-squares optimized operator approximates the phase shift operator very well for
propagating waves up to Ouyqy. For waves with larger tilt angles as well as for evanescent waves, the

shape of the phase is arbitrary. However, optionally this part of the wave field can be suppressed. In that
case the amplitude should be smaller than unity.
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numx numy

O [<Fongny)>] = Y, Y [€ei(mymy) +pei(mmy) ], (3.55)

My=-numx m,=—numy
with
n, = -N,, -N,+1, .. ., N,-1,N,,
ny =Ny, -Ny+1, . . ., Ny~1LN,.

In this equation, the summation is carried out over all k, k, samples that are within the area
as defined by

(InxAkx)2 + (m)’Ak)’)2
kzsinz((xx_max) szinz(ay,max)

<1and|ke| Skynyqand|ky| S kynyqs  (3.56)

see the dark shaded area in Fig.3.4.2. The optional weighting factor { can be used to
control the emphasis put on the amplitude errors relative to the phase errors. In practice we
use u=1.

Requirement 2, concerning stability or suppression of the larger wavenumbers, is
formulated in a constraint function. Although the actual requirement is simply
ey(ky.ky) SEA/N, for minimization software the following function need be implemented:

numx numy

) 2
Cierma)= S T fmlvmam)-B901 [ <0, 07

Mx=—NUMX My=-numy
with
ny = ~N,, -N,+1, .., N,.-1LN,,
ny = ~-Ny, -Ny+1, .., N-LN,.

Here, the summation is carried out over the k, k, samples that are within the area as
defined by

(mAk)? | (myAky)
szinz(ax.max) kZSinz(ay,max)

> 1 and| k| S kyNyq and| ky| S kyNyq,  (3.58)

see the light shaded area in Fig.3.4.2.
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We have now formulated our problem as a minimization problem which can be solved with
standard minimization software. We used a sequential quadratic programming algorithm
which requires as input: the objective function O, the constraint function C and their first
derivatives with respect to the operator 'coéfﬁc,ierits. A discussion of the algorithm is
beyond the scope of this thesis. The reader is referred to Gill et al. (1981).

An optimized operator is shown in Fig.3.4.2, (see also Fig.(3.4.3)).

As mentioned, this procedure should be repeated until the smallest possible operator with
errors below the user specified level (Eg/N for the phase errors and E/N for the amplitude
errors) is found, see Fig.3.4.1. After this, the optimum operator is ready to be applied.

We have now discussed three ways to design efficient operators:

1. truncation of the ‘exact’ phase shift operator in the space frequency domain,

2. truncation of the smoothed operator in the space frequency domain and

3. ‘optimum truncation’ by least squares optimization.

Figures 3.4.3b, ¢ and d show the results of these methods in the wavenumber frequency
domain. The operators are comparable because they have the same size. Furthermore, the
phase shift operator is shown as a reference in Fig.3.4.3a. For every operator type the
amplitude, phase and phase errors are shown respectively. As expected, the optimized
operator has the smallest phase errors for a given operator size. This is also the case for the
amplitude errors (which are not shown).

In practice the first method is rejected which leaves two types of operators: ‘smoothed’
operators and ‘optimized’ operators. The optimization procedure is computationally very
intensive. This means that in practice it is not possible to generate a set of ‘optimized’

Figure 3.4.3 The amplitude, phase and phase errors in the wavenumber-frequency domain are shown
for four operator types in a, b, c and d respectively:

~ the phase-shift operator,

— the truncated phase-shift operator,

— the truncated smoothed operator and

~ the least-squares optimized operator.

The phase-shift operator is shown for reference. The other operators all have a size of 25 by 25 points in
the x- and y-direction respectively. The maximum angle of extrapolation is 45°. Obviously the truncated
Pphase-shift operator has errors that are too large. As expected, the optimized operator has the smallest
errors for the tilt-angles up to 45°. Notice that the amplitude of the optimized operator is smaller than
unity for the angles larger than 45° and the evanescent waves. Hence, this part of the wave field is
suppressed.
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operators during application. We suggest that one should have available a number of
operator tables (see the next section) for ;hé most common acquisition parameters. This
enables the user to take advantage of the superior efficiency of the ‘optimized’ opefators in
regular cases. In other cases (no ‘optimized’ operatoré available, specific acquisitioh
parameters) ‘smoothed’ operators can be used. The results are equivalcrit to those obtained
with ‘optimized’ operators, but the extrapolation is less efficient.

Because the number of variables is large: Ax, Ay, Az, 0 naxs Oy,maxs K U, E4, Ey and
Eg, it is difficult to give ivalues for the size of the operator, (2Nx+1)(2Ny+1'). As arule of
thumb we use: :

N, 2 10, ax (expressed in degrees) and

Ny 2 10ty ax (expressed in degrees)
for the ‘smoothed’ operator, and

Ny 2 1/40t, oy (expressed in degrees) and

Ny 2 1/40t, max (expressed in degrees) ’
for the ‘optimized’ operator. ,
For an extensive study on this subject, we refer to Debeye (1988).

3.5 OPERATOR TABLE

The methods of operator generation as described in the previous sections are rather
computationally intensive, especially the operator optimization method. Computation of the
operators during the extrapolation would slow down the speed of the algorithm.
Furthermore, a specific operator is likely to be required more than once. This can be
explained as follows. A unique operator is necessary for every unique value of the
wavenumber, k=w/c(x,y,z). However, a certain value for k is likely to occur many times
within one extrapolation process. This is because a certain frequency component will be
treated many times (because of the recursive character of the extrapolation) and a certain
velocity will occur more than once (in practice, a macro model contains large constant
velocity areas). Another possibility is that both the value of the frequency and that of the
velocity change such that their ratio k remains unaltered. Also in this case the same operator
can be used. For these reasons, the operators are computed separately in advance and
stored in a table. This way the same operators can be used efficiently for a range of
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extrapolation steps as well as for a range of frequencies. Finally, we remark that it is
possible to use a set of operators in a future processing job.

During the extrapolation, the local value of the wavenumber k is determined after which the
appropriate operator is selected from the table and applied to the data. This procedure
however, might lead to a very large operator table. The reason is that the maximum number
of different k-values is large: it equals the number of subsurface grid points times the
number of frequency components (this maximum might occur in the case that the velocity
changes from point to point in the subsurface, e.g. if the macro model has velocity
gradients). We therefore decided not to keep an operator in the table for every k-value that
occurs, but to define a wavenumber sampling interval Ak and to store operators in the table
for the following regular range of k-values only:

Koins Kmin + AK, -« ., Koy — AK Koy, (3.59)

in which k. = 0;:/Criax and Koy = 000/Conine

Note that the number of operators in the table is inversely proportional to Ak. The
advantage of such a table is its limited size. The disadvantage is that an actually required
operator is not likely to be present. There are several ways to solve this problem.

The easiest way to ‘compute’ an operator for a k-value that is not present in the table is to
select the operator with a k-value nearest to the required one. The disadvantage of the
method is that the phase and amplitude errors due to the rounding off may accumulate
systematically each extrapolation step which causes dispersion effects. The more
homogeneous a macro model is, the more serious the dispersion effects are. Therefore the
interval Ak should be very small. As a consequence the number of operators might become
so large that storage of the operator table in core memory would be impossible. Hence, the
rounding method is not recommended.

Systematic accumulation of errors does not occur when ‘statistical rounding’ is used. The
method can be explained most easily with an example. Suppose that in the table operators
are present for k=1 and for k=2 and suppose that an operator is required for k=1.4. In
this case either the operator for k=1 is selected with a probability of 0.6 or the operator for
k=2 is selected with a probability of 0.4. It is clear that here also rounding errors occur;
however, they do not accumulate. Experiments indicate that ‘statistical rounding’ allows the
table size to be reduced by a factor of seven compared with ‘rounding’. Notice that
‘statistical rounding’ is almost as simple as ‘rounding’: it only requires a random generator.
Nevertheless a much smaller operator table is sufficient.
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If a better accuracy is demanded, or if even more memory must be saved, it is worthwhile
to compute a required operator by means of interpolation. We found that in general linear
interpolation of real and imaginary parts gives good results if AK is in the order of
A®/2c,,. This interval is about thirty times as large as the interval required by ‘rounding’.
Unlike ‘rounding’ and ‘statistical rounding’, ‘linear operator interpolation’ increases the
computational cost. However, in practical situations, where the macro model contains large
homogeneous areas, this extra effort can be neglected if it is compared with the actual
extrapolation. In our extrapolation schemes we therefore use ‘linear operator interpolation’.
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CHAPTER 4

APPLICATION OF RECURSIVE KIRCHHOFF
EXTRAPOLATION OPERATORS IN MIGRATION

4.1 INTRODUCTION

The recursive Kirchhoff extrapolation operators as discussed in the previous chapter, the
smooth operator and the optimum operator, can be used for a wide variety of applications.
E.g., they can be applied in all prestack and poststack migration methods that are based on
the principle of recursive wave field extrapolation and imaging.

Another possibility is the use of the operators for redatuming. A redatuming algorithm can
be obtained from a migration algorithm simply by omitting the imaging step. However, a
redatuming scheme based on recursive extrapolation is not preferred: one is not interested
in the intermediate extrapolation results (which are required in migration for the imaging
step). Because of the computational cost of recursive extrapolation, a non-recursive
technique is recommended for redatuming (Peels, 1988, Kinneging, 1989), see also
section 1.5.

We also mention the application of the recursive Kirchhoff extrapolation operators in the
modeling of seismic data. In the appendix the modelingA of 3D zero-offset data is discussed.
In this chapter the emphasis is on seismic migration. Three techniques are considered:
prestack migration, common-offset migration and zero-offset migration.

The best results are obtained with prestack migration. However, full 3D prestack migration
is not yet feasible on present computers. Although we will discuss the 3D prestack case,
we implemented prestack migration for the 2D case.

In order to make 3D migration feasible the amount of data that is involved should be
reduced. E.g., instead of incorporating all offsets of each shot in the migration, one could
use one specific offset per shot only. This type of migration is called common-offset
migration. A special case of common-offset mi gration is the popular zero-offset migration.
In this chapter we discuss how the recursive Kirchhoff extrapolation operators can be used
in the migration of multi-offset, common-offset and zero-offset data respectively. First
however, for each of the acquisition configurations corresponding to these data types the
‘forward model’ (macro model, source and reflectivity known, registrations at the surface
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unknown) is discussed briefly. This yields a mathematical description of the seismic
experiment. Based on this the expressions for the migration techniques, which are
considered as ‘inverse problems’ (macro model, source and registrations at the surface
knpwn, subsurf;ace reflectivity unknown), are given.

Whenever the inverse wave field extrapolation operator F occurs in the expressions, it can
be replaced by the smooth operator <Fg> or the optimum operator <F,>. Using the
matched filter approach '

FewW+ ' (4.1)

the forward wave field extrapolation operator W can be computed. Of course the accuracy
of the results will depend on the accuracy of the smooth or optimum operators that are
used.

4.2 PRESTACK MIGRATION

In a seismic experiment the following physical processes can be distinguished: downward
propagation of the source wave field, reflection and upward propagation of the reflected
wave field. Let us first consider the situation with one reflector in the subsurface at depth
level z;,. In Fig.4.2.1 the situation is shown. For this case, a description of a seismic
experiment can be formulated as follows (Berkhout, 1985).

,———detectors

LN
5

w'

\ i‘z"w 7
\\\.\‘\0. ’/ '//

WL

Z;

Figure 4.2.1 Configuration of a seismic experiment in a medium that contains one reflector.
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1" Forward extrapolation of the downgoing source wave field S* from the surface z; to
depth level z;:

$*(x,y.z;,m) = WH(X,y,Az,k) * §*(x,y,zp,0) , ' (4.2)

with Az;=z;—z;, z;>2z;, Remember that the symbol * denotes a two-dimensional, space
dependent, spatial convolution along the x- and y-coordinate.
2. Reflection at depth level z; which causes an upgoing reflected wave field:

P—(xvy9ziyw) = R(X’Y7zivm) * S+(X7Yazi»w) ’ (4.33)

where R is a reflection function which describes the angle-dependent reflectivity. In the
special case that the incident wave field S* is locally plane, reflection function R reduces to
a reflection coefficient and hence the space dependent spatial convolution in eq. (4.3a) may
be replaced by a multiplication:

Pi(x,y,2;,0) = Rj(x,y,zi,(n)Sj+(x,y,zi,(o) . (4.3b)

The subscript j is related to the shot position at the surface. Note that it indicates the
orientation of the locally plane source field.

3. Forward extrapolation of the upgoing reflected wave field from depth level z; to the
surface zy:

Pi(x,y,zp,0) = W(x,y,Az;,k) * Pi(x,y,z;,0). . 4.4)

In practice there is reflectivity at all depth levels in the subsurface. Therefore these three
steps should be repeated for all depth levels in the subsurface up to the maximum depth of
interest. B_ecause a seismic experiment is band-limited, the true broad-band reflectivity of
the ‘real world’ can never be recovered. For our computations we therefore may replace it
by a discrete, band-limited feﬂectivity. In that case the interval Az between depth levels z;
and z;_; should satisfy: Az<A/2. Note that this limits the number of depth levels to be
taken into account.

In the formulation of a seismic experiment according to eqs.(4.2) to (4.4), it is assumed
that the acquisition limitations related to source and detectors have been corrected for.
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The equatjons can be combined in the following recursive modeling scheme in which the
reflectivity of all depth levels is taken into account:

Pj'(x,y,zi,u)) = R(x,y,z;,®) * Sj+(x,y,zi,co) +WT(x,y,Az,k) * Pj‘(«x,y,zi+1,0)),
fori=M-1,M-2,...,2,1,0, (4.5a)

with AZ=Zi+1—Zi, Zi+1>zi‘ ey )
In case of a locally plane incident field this equation can be written as

Pj_(x,y,zi,m) = Rj(x,y,zi,m) Sj+(x,y,zi,co) +W7(x,y,Az,k) * Pj_(x,y,zi+1,u)),
fori=M-1,M-2,...,,2,1,0. (4.5b)

Note that the computations-start at the deepest depth level of interest z); and proceed in the
upward direction to the surface z;. In this expression the upgoing pressure field at depth
level zy; is given by

Py (x,y,2m,0) = R(X,y,2),k) * Sj+(x,y,zM,(x)). (4.6)

The source wave field is defined recursively according to

S;"(%,y,2;,0) = W¥(x,y,Az,k) * $;7(x,y,2;_1,0) (4.7)
fori=1,2,.... M.

Now that we have briefly discussed the forward problem, we continue with the inverse
problem: the seismic migration.

Each seismic experiment can be migrated individually (Berkhout, 1985 and Wapenaar,
1986). Such a migration basically consists of the following steps.

1. Forward extrapolation of the downgoing source wave field from depth level z;_; to z;
according to eq. (4.7)

§;7(x,y,2;,0) = W(x,y,Az2,k) * §;"(x,y,2,_;,00) . (4.8)

2. Inverse extrapolation of the upgoing reflected wave field from depth level z;_; to 2;:
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Pj_(x’y’zi’w) = F_(XviAZ!k) * Pj_(xryrzi_lim) . ! - ' (4'9)

Compare with eq.(4.4). After these two steps, the source wave field as well as the
reflected wave field at depth level z; are known. The relation between these wave fields
which is the reflectivity can now be recovered. Usually, in seismic interpretation one is
only interested in the average zero-offset reflectivity. This is determined by the following
steps. ‘

3. Correlation of the downgoing source wave field and the upgoing reflected wave field,
which yields the zero-offset impulse response <X;> at depth level z;:

<X;(x,y,z;,0)> = —12— Pi(x,y,2;,00) [S;(x,y,zi,m)]*, (4.10)
s-
)

where
s? = [[87(x,y,20) [$](x,y,2:,0)]" dxdy @.11)

corrects for the transmission losses.

Apart from the information about the reflectivity of the current depth level z;, the zero-offset
impulse response also contains the influence of all other depth levels, see eq. (4.5b). This
is eliminated in the imaging step. .

4. Imaging, or, equivalently, selecting the zero time component by summing all frequency
components: :

<Rj(x,y,z)> = %t“—’ Re Y <X;(x,y,z,0)> . : @.12)
(0]

The four steps should be applied recursively for all depth levels of interest. The result is a
band-limited estimate of the zero-offset reflectivity. Note that this estimate is the result of
the migration of a single-shot record. It is therefore called a ‘single-fold’ zero-offset
reflectivity function.

5. The single-fold migration results of all shot records can be summed. This yields the
final migration result: a ‘multi-fold’ band-limited estimate of the zero-offset reflectivity:

<R(x,y,2)> = 3, <Rj(x,y,z))> . : (4.13)
j
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The procedure is shown in Fig.4.2.2.

Prestack data set
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Correlation next
frequency
Y
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Migrated data set

Figure 4.2.2 Prestack migration scheme based on the single-shot record processing.
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Optionally, the results after the 3rd step, the single-fold zero-offset impulse responses, can
be stacked (thus deleting the imaging step). This yields the multi-fold zero-offset impulse
response at depth level z;:

<Xa(x,y,2,0)> = Y, <Xj(X,y,2,0)> . 4.19)

J

The result of this true CDP stack (notice the index st) represents the zero-offset data as they
would have been acquired at depth level z;.

In the introduction it has already been mentioned that full 3D prestack migration is not yet

feasible in today’s practice of seismic processing. Two alternatives, common-offset
migration and zero-offset migration, are discussed in the remainder of this chapter.

4.3 COMMON-OFFSET MIGRATION

In Fig.4.3.1 the configuration of one experiment is shown. The coordinates of the source
position are (xa-hy,y o—hy,zg) and those of the detector position: (xo+hy,ya+hy,z0); hy and
h, are the x and y component of the half offset respectively.

(XA' YA)

L

th:hy(xA’ YA, Ziu(D )

Figure 4.3.1 Acquisition geometry of one seismic experiment (common-offset data acquisition).
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Before we give an expression for common-offset migration we first consxder the forward
case. Like in the prev1ous secnon we distinguish three phases in the seismic expenmem
downward propagation, reflection and upward propagation. The common-offset
experiment can be described as follows. For notational simplicity we consider a laterally
invariant medium.

1. The downward extrapolation of the downgoing source wave field from the surface z, to
depth level z; can be formulated as

S$*(x,y,2;,0) = W¥(x,y,Az;,0) * S*(x,y;zo,w) , 3 (4.15)

with AZi =Z;-2p, ;> Zp.
Using T ' o

$*(%,y,20,0) = $*(29,w) 8[(xa-hy)-x,(ya-hy)-y] (4.16)
eq.(4.15) can be written as
S+(X,Y,Zi,(1)) = S+(zosw)w+[(XA-hx)_x’(yA—hy)_y7 AZi,O.)]. ‘ (4'17)

2. The upward extrapolation of the upgoing reflected wave field from depth level z; to the
detector at surface position (x5 +h,,y s +hy,2p) is described by

P-(xa+hy,ya+hy,20,0) = [[W-{(xa+h)-x,(ya+hy)-y,A2,,0] P-(x,y,2,0) dxdy.
(4.18)

In this equation the upgoing reflected wave field at depth level z; is defined as
P7(x,,2;,0) = Ry hy(X,Y,Z;,0) S*(x,y,z;,0). 4.19)

Note that we assumed that the reflectivity can be represented by a distribution of reflection
coefficients Ry, ny, see also eq. (4.3b).

With eq. (4.17) and (4.19), eq. (4.18) can be rewritten as
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P(xa+hx,ya+hy,zo,0) = $*(20,0) ” Wh, n, (XA—X,YA-Y,A2Z;,0) Ry, b, (X,y,2i,0) dxdy ,
: (4.20)
where

Wh,h,(XaA—X,y A-Y,A%Z;,0) = (4.21)
W-{(xa+h)—x,(ya+hy)-y,Az;,0] WH[(xa-h)-x,(ya-hy)-y,Az;,0] .

In practice, the reflections occur at all depth levels, hence, common offset data can be
described by

P;x,hy(x,y,zo,co) = $%(z,®) 2 Whyhy(X,¥,AZ;,0) * Rp, hy(X,y,2;,0), 4.22)
i
fori= 1,2,~ . ~1M’

with

Whihy(X,¥,42;,0) = W™ (x+hy,y+hy,Az;,0) W*(x-h,,y-hy,Az;,0) 4.23)
and

P;x_hy(x’y’z()’m) = P_(x+hx,y*‘hy,20,0)) . (424)

Based on the forward expressions the following migration scheme is proposed.

1. Compute the inverse wave field operator Fy, 1, for the current depth level. Following
the same procedure as in prestack migration, we take the matched filter approach according
to '

Fihy = Whap, » (4.25)
where Wh, i, is given by eq.(4.23).

2. Apply the operator to the common-offset data for all frequency components of interest
and image for the current depth level:

A
Rig, (%,3,20)> = Z2Re 3, Py, (X,,82,0) % Py, (,Y,20,0) (4.26)
(]
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These two steps should be repeated for all depth levels.

For a practical application, common-offset migration is not recommended. This is because
the operator th,hy, being the product of two operators, is not a solution of the wave
equation. As a consequence the extrapolation can not be formulated recursively. This
means that for each depth level new operators must be computed. Hence, the computational
cost will be considerable.

As we will see in the next section, zero-offset migration (a special case of common-offset
migration) does not have this disadvantage if the half-velocity substitution is used.

4.4 ZERO-OFFSET MIGRATION

The zero-offset configuration can be considered as a common-offset configuration where
the half offsets h, and hy are taken zero: Fi,n, = Fgg. According to egs.(4.23) and
(4.25) the inverse extrapolation operator to be used in the migration is given by

Fo,0(%,y,A2,00) = Wy o(x,y,42;,0) = [W2(x,y,Az;,0)]" . 4.27)

This operator has the same disadvantage as the general common-offset operator
(eq.(4.23)): it is not a solution of the wave equation because it is a product of two
operators. Therefore, in practice it is approximated by

Fo,0(x,y,A2;,0) = Fpo(x,y,42;,0) = W¥(x,y,A%;,20) . (4.28)

Notice the index zo (zero-offset). It indicates the half-velocity (or double-frequency)
substitution that is always used in zero-offset migration (see also section 1.2, the
‘exploding reflector’ model). The use of F,, instead of Fy o causes the incorrect amplitude
handling that has already been mentioned in section 1.2. However, the traveltimes are taken
into account correctly. A correct treatment of the traveltimes is important for a good
recovery of the structural information,

Because F,, is a solution of the wave equation, it can be applied in a recursive way. Hence,
vertical as well as lateral velocity variations can be easily handled. The 3D zero-offset
migration scheme consists of the following steps.
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1. Inverse extrapolation of the upgoing reflected wave field according to
P7o(%,y,2i0) = Fpo(x,y,Az k) * P7o(X,y,zi-1,@), (4.29)

where Az = z; - 7, 3, Z; > 7, ;.
2. Imaging according to

A _
<Rao(y,z)> = 2 Re 3, Pro(x,y,2,0) (4.30)
W . .

Zero-offset data set

-

FFT t-o o
Macro model Y
» Extrapolation next LA
Operator table frequency
A\
l Imaging next depth
level
A
Migrated data set

Figure 4.4.1 Zero-offset migration: recursive extrapolation along the z-coordinate and imaging.

The recursive steps must be repeated for all depth levels of interest. The scheme is shown
in Fig.4.4.1. A detailed description of the implementation of full 3D zero-offset migration
according to eqs.(4.29) and (4.30) is given in the next chapter.
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CHAPTER 5

COMPUTATIONAL "ASPECTS OF FULL 3D
ZERO-OFFSET MIGRATION

5.1 INTRODUCTION :%..

The smooth operator and the optimum operatbr that h,gi've been discussed in chapter 3 can be
used in various seismic processing techniques that are based on wave field extrapolation. In
chapter 4 the emphasis was on migratig)n techniques. Aspects concerning the actual
implementation of a full 3D, table driven,‘zero-offset migration algorithm are discussed in
this chapter.

First, a detailed scheme of the structure of this algorithm is given. It is used to explain the
data organization, the requirements with respect to the capacity of disk and core memory of
the computer, the I/O, etc. Next, the implementation of the extrapolation is discussed. The
extrapolation is the most important part of the migration scheme. This holds for the
accuracy as well as for the efficiency of the algofithm. Furthermore, we give an expression
for the number of floating point (fp-) operations of our migration scheme and compare this
with the number of fp-operations of the reverse-time migration scheme as discussed by
Chang and McMechan (1989). A cost comparison between these methods is also made for
the core memory requirements. Finally, we discuss the results of some benchmarks. We
run several tests on the following vector computers: Convex C1 and C2, Cray X-MP and
Alliant 4CE. The latter one also has the possibility for paréllel processing.

5.2 STRUCTURE OF THE 3D TABLE-DRIVEN ZERO-OFFSET
MIGRATION ALGORITHM

A flow-chart of the 3D table-driven zero-offset migration algorithm is given in Fig.4.4.1.
The formulas for the recursive extrapolation and imaging, eq. (4.28) and eq.(4.29) are
repeated. The downward inverse extrapolation of the upgoing reflected waves is given by

Pyo(X,¥,2;,0) = Fzo(x,y,A2.K) * Pyo(x,y,2i-1,®) (5.1)
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DISK CORE MEMORY PROCESS
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oparator LINEAR OPERATOR
*1 INTERPOLATION
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file
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\
zero-offset data EXTRAPOLATION
data, 0= o ™ z; »z+ Az
input file z=z , (2-D convolution)
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data
W = mJ
Z2=2Z; +Az —>|'PARTIAL‘ IMAGING
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ﬁ y Vz
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migrated ‘partially’ migrated resultat z=2z;+ Az
data a summation of the frequency components
output file 01 to ]

(only the ‘completely' migrated result
is written back to disk).

Figure 5.2.1 Structure of the table-driven full 3D zero-offset migration algorithm.
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and the imaging step by
Aw '
<Ryo(x,y,20)> ==~ Re 3, Pro(x,y,2,0) | (5:2)
(1}

These steps are repeated recursively for all depth levels.

A detailed picture that shows the structure of the algorithm is shown in Fig.5.2.1. The
three ‘columns’ of the figure represent the disk memory space, the core memory space and
the processing steps that are performed by the algorithm respectively. A description is
given now. ‘

Data flow
We start with a Fourier transformed zero-offset data set (x,y, domain), stored in a file on
disk. A table containing a set of ‘smoothed’ or ‘optimized’ wave field extrapolation
operators must be available in core memory. A file containing the macro model velocity
information must be present on disk. It is possible to use this file also as output file for the
migrated result. This means a reduction of the required disk space. However, in that case
the original velocity information will get lost.
Depth loop
— A 2D x,y panel, depth level z=z, containing the macro model velocity information,
c(x,y,z;), of the current depth level z; is read from the macro model file on disk
and stored in core memory.
The extrapolation from the current depth level to the next, z; — z;+Az, can now be
performed.
Frequency loop
— A monochromatic 2D x,y data panel, depth level z=z; and frequency component
W=, is read from the zero-offset data file on disk and stored in core memory.
XY loop

— The local wavenumber value at position (x,y,z;) is determined:
k= u)j/c(x,y,zi).

— Only if this value differs from the previous one, a new operator for this
wavenumber value is computed by means of linear interpolation between two
operators from the table.

— The operator is applied to the data (see section 5.4).

End of X.Y loop
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Once all points have been extrapolated, the result is a monochromatic 2D x,y data
panel at depth level z=2z;+Az for frequency component ®=0;.

— This panel is written to the zero-offset data file on disk, where it replaces the
monochromatic 2D x,y data panel at depth level 2=z for frequency component
O = ;.

— Furthermore, this panel is used to carry out a part of the imaging step. One does
not need to wait until all frequency components have been treated to do the
summation. Instead one can simply add the real parts of the extrapolated results.
for the current frequency component, =, to the ‘partially’ imaged result of
the previously treated frequency components @, to ; ;. This yields a partially
imaged 2D x,y panel at z=z+Az which is the result of a summation of the
frequency components @ to ;. It is called partial as long as not all frequency
components have contributed to the result.

End of frequency loop
Once all frequency components have been treated, the output is:
1. the migrated (‘fully’ imaged) 2D x,y panel at depth level z=z;+Az,
— this panel is written to the output file on disk,
2. a 3D zero-offset data set in the x,y,» domain at depth level z=z;+Az stored in
the data file on disk. It will be used as input for the extrapolation to the next depth
level.
End of depth loop
Once this procedure has been repeated for all depth levels, the result is the migrated data set
in the the x,y,z domain.

Some remarks about the algorithm:

— According to our experience the speed of the algorithm is never bounded by the I/O from
disk to core memory and vice versa. The wave field extrapolation almost completely
determines the computation time.

— During the migration process we have the extrapolated zero-offset data in the x,y,®
domain available as an intermediate result at every depth level. Examination of those
‘redatumed’ results, after an inverse Fourier transformation to the x,y,t domain, may
contribute to a better understanding of the migrated result.

— The fact that the migrated result is built up gradually, depth level after depth level, offers
the possibility of quality control during the process. E.g., a few ‘bad’ samples in the zero-
offset data may ruin the migration result: if they have a large amplitude they cause the so-
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called migration smiles. Such problems can be detected in an early stage. Furthermore, the
effects of an incorrect macro velocity model like overmigration or undermigration may
already become clear during the migration process.

— The migration can be easily implemented in a parallel way because the extrapolation is
performed per frequency component. Working per frequency component is a natural way
of dividing a problem into independent parts, each of which can be treated by a separate
Processor. :

required core memory space
According to Fig.5.2.1 the next amounts of data are kept in core memory:
a 2D x,y panel, z constant, containing macro model velocity information, size:

(numx)(numy) real numbers.
—~ a2D x,y panel, @ constant, containing monochromatic zero-offset data at depth level
z=1z;, size:
(numx)(numy) complex numbers, or
2(numx)(numy) real numbers.
— a2Dx,y panel, @ constant, containing monochromatic zero-offset data at depth level
z=z+Az, size:
(numx)(numy) complex numbers, or
2(numx)(numy) real numbers.
— a2Dx,y panel, z constant, containing (partially) iméged data, size:
(numx)(numy) real numbers.
— atable containing the extrapolation operators, size:
(numop)(Nx+1)(Ny+1) complex numbers, or
2(numop)(Nx+1)(Ny+1) real numbers,
numop represents the number of operators in the table.
Hence, the core memory must be large enough for the storage of

6(numx)(numy) + 2(numop)(Nx+1)(Ny+l) real numbers. (5.3)

Example. With the next parameters: numx =500, numy=100, N, =12, Ny= 12, a table
containing 400 operators and 4 bytes per real number, we find that a core memory of
1.7 Mbyte is sufficient. Note that this number is modest: the computers that are used in the
seismic industry at present usually have much more memory.
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5.3 FLOATING POINT OPERATION COUNT

The 3D table-driven zero-offset migration algorithm can be divided into three modules:

— generation of a table of wave field extrapolation operators,

— Fourier transformation of the data from the x,y,t domain to the x,y,® domain, and

— the actual migration: linear interpolation of the operators, recursive extrapolation and
imaging.

Although the generation of a table with ‘optimized’ operators is computationally intensive,
we do not include it in the fp-operation count because a table can be used more than once.
In the ideal situation one has a number of tables available for the most common acquisition
parameters. ’

The computational cost of the Fourier transformation can be neglected with respect to the
cost of the actual migration.

Therefore, we concentrate on the fp-operation count of the migration and pay attention to
the operator interpolation, the extrapolation and the imaging step respectively.

Jp-operation count of the linear interpolation of operators
The linear operator interpolation is formulated as:

FZO(n)bnyaAzrk) =

(—'H‘iQTAki) Fao(nxny,AZ,nAk) + (5.4)

(k-g;“) Fao(toy Az (nicH1)AK),
forn,=0,1,2,..,N,, andny=0, 1,2,.. .,Ny.

Here, n, is defined as the integer part of the ratio k/Ak.
The number of fp-operations of the operator interpolation is

2(N,+1)(N,+1) multiplications of a complex number by a real number and
(Nx+1)(Ny+l) complex additions, or
6(Nx+1)(Ny+1) fp-operations.

(A multiplication of a complex number by a real number is equivalent to two real
multiplications, one complex addition is equivalent to two real additions).




5.3 FLOATING POINT OPERATION COUNT 107

In the migration algorithm, the number of fp-operations for the operator interpolation is not
a fixed number. It depends on the structure of the macro model. For one monochromatic
extrapolation step it is somewhere in between

no fp operations, for a homogeneous macro model and (5.5)
6(numx)(numy)(Nx+1)(Ny+1) fp-operations for a fully inhomogeneous model.

In a practical macro subsurface model there will be large homogeneous areas. We therefore
neglect the contribution of the operator interpolation to the computational cost of the
algorithm.,

Jfp-operation count for the extrapolation
One monochromatic extrapolation step can be formulated as (see also eq. (3.24)):

Nx NY
Poolfixony,Zis1, @) = Y, 3. 4 s(ny,ny) Fpolny,ny,Az,k(ny,ny,z;,0)] (5.6)
n,=0 ny=0
{ Ppol(nx—ny),(ny—ny),z;,0] +
on[(nx—n;()s(ny"'n‘y):zi,w] +
on[(“x"’";()s(ny—‘n'y)vzivm] +
P.o[(nx+ny),(ny+ny),z;,0] }AxAy.
forn, = 1,2, ..., numx, and n, = 1,2,..., numy.

In this expression the symmetry properties of the operator (see eq.(3.23)) have already
been included. Application of eq. (5.6) involves

4(numx)(numy)(Nx+l)(Ny+1) complex additions and
(numx)(numy)(Nx+1)(Ny+1) complex multiplications, or,
14(numx)(numy)(Nx+1)(Ny+1) fp-operations. (5.7

(One complex multiplication is equivalent to four real multiplications and two real
additions).

We remark that a result like this should be interpreted with care, because it does not take
into account the computer architecture (scalar versus vector, add multiply overlap, parallel
processing, etc.). However, the fp-operation count is considered as a satisfactory tool to

compare algorithms.
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The number of fp-operations in expression (5.7) can be reduced by splitting eq. (5.6) into
two parts as follows:

N. N
Pao(fx,y,Zie1,0) = 2, Y, 4 s(i,ny) Faolny,ny,Azk(ng,ny,2,0)] (5.8)

nx=0 ny=0 .
{ on[(nx“n;()y(ny—n'y),zi»m] +
Pz'0[(“x—n'x):(ny+n'y);zi:m] }AXAYv

forn,=1,2,..., numx, and n, = 1,’2; . . ., numy.

In this equation Py, is defined as

Pyol(nx—ny).ly, 2,01 = Paol(nx—n,) ly,2,0] + Prol(nxtn,) Iy, zi,0], (5.9)

for ls, =1,2,...,numy,andnx =0, 1,.. ., N,.
First the summation according to eq.(5.9) is carried out. This yields

(numy)(N,&- 1) complex additions.

This number can be neglected with respect to the number of fp-operations in the application

of eq.(5.8). This is given by

2(numx)(numy)(Nx+1)(Ny+1) complex additions and
(numx)(numy)(NxH)(NyH) complex multiplications, or, together

10(numx)(numy)(N,+1)(N,+1) fp-operations. (5.10)

Compared with the number in expression (5.7) the number of fp-operations in (5.10) is

reduced by about 30%.
fp-operation count for the imaging step
The number of fp-operations of a ‘partial’ imaging step amounts to

(numx)(numy) real additions or fp-operations. (5.11)
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Note that this number is very small, usually smaller than 0.1% of the number in expression
(5.10). The contribution of the imaging step to the fp-operation count is therefore
neglected.

Thus, a global estimate of the total number of fp-operations of the migration scheme can be
obtained by multiplying the number of fp-operations in expression (5.10) by the number of
frequency components, numf, and the number of extrapolation steps, numz:

10(numf)(numz)(numx)(numy)(N,+1)(N,+1) fp-operations, (5.12)

The number according to (5.12) is used in the presentation of the benchmark results that are
presented in section 5.6. Furthermore, it is used for comparison with a reverse-time
migration algorithm, see section 5.5.

5.4 EFFICIENT IMPLEMENTATION OF THE EXTRAPOLATION

The number of fp-operations as given in the previous section is independent of the
computer architecture. Only with additional information as: what is the degree of
vectorization, is the algorithm suitable for parallel processing etc., one can estimate the
efficiency of an algorithm for specific hardware. In this section we pay attention to the
efficiency aspects of the 3D table-driven zero-offset migration algorithm.

vectorization

In general one can state: the longer a certain ‘do-loop’, the more efficient it is executed on a
vector computer (see also section 5.6 on benchmarks). In a regular implementation of the
2-D convolution along x and y, according to eq. (5.8) and (5.9), a compiler will vectorize
either the loop in the x-direction or the loop in the y-direction. The reason is that for
vectorization, the stride (the increment between the array elements to be processed) must be
constant (or sometimes even preferably one). The elements of the operator are indeed
sequentially stored in memory. Unfortunately, for the data this is not the case, as can be
seen in Fig.5.4.1.

Another problem arises when the symmetry properties of the operator are incorporated. In
that case four quadrants of data must be summed before the operator can be applied, and
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2-D data array 2-D auxiliary array

Figure 5.4.1 Inthis picture all samples of the 2-D data array that are sequentially stored in memory
are connected with a line. The samples of the 2-D data array (containing monochromatic zero-offset data)
that are involved in the extrapolation of one row (dark-shaded samples) are not sequentially (or with
constant increment) stored in memory. This is why the implementation of the extrapolation is not
optimally vectorized. Therefore an auxiliary array is extracted from the data. In this array all required data
are stored sequentially. (For simplicity in the picture N, is 1, normally it is larger, e.g., from 5 to 20;
(2N, +1 )(2N,,+I ) is the operator size).

this again does not vectorize without special modifications.
Our implementation of a monochromatic extrapolation step, which is almost completely
vectorized, is described in the following.

For the moment we consider a homogeneous medium (one operator required) and we do
not use the symmetry properties of the operator. From the 2-D data array (a
monochromatic x,y panel) we extract an auxiliary 2-D array, dimensions (2N,+1) and
(numy) in the x- and y-direction respectively, see Figure 5.4.1. This data transport action
can be vectorized either in the x- or y-direction. We chose for the y-direction because of the
larger number of points in this direction. The auxiliary array contains data for x-coordinates
n,—N,,...,n,,...,n,+N, and for all y-coordinates: 1, 2,...,numy. Its samples are
organized sequentially (stride one) such that the operator can be applied, ‘shifted’ one
sample in the y-direction, and applied again etc., see Fig.5.4.2. The application of the
operator is fully vectorized both in the x- and in the y-direction, because it is implemented
as a single loop.

The result is a row of monochromatic extrapolated data for a fixed x-coordinate n, and for
all y-coordinates. To go over to the next x-coordinate, n,+1, the auxiliary array must be
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1 numy
“Q@O 00000000

one row of output data

1 numy
"800 00000
one row of output data

1 numy
SN N-N-N NoNeNeoNeNe)
one row of output data

2-D auxiliary array

@ data

@ operator

| © extrapolated data

l @ new extrapolated
output point

Figure 5.4.2 The application of the operator. The samples of the operator are multiplied with the
samples of the data (auxiliary array) and the results are summed. Both actions are fully vectorized. This
yields one monochromatic extrapolated output point. The operator is shifted one sample to the right
(positive y-direction) and it can be applied again. In this way one row of output data is acquired. (For
simplicity in the picture both N, and Ny are 1, normally they are larger, e.g., from 5 to 20;
(2N, +1 )(2N’+I ) is the operator ;ize).

updated. Its upper row is now superfluous while a new bottom row should be added. It
turns out that the samples of the required new bottom row can change places with the
samples of the superfluous row in memory. The way this is done is explained in
Fig.5.4.3. The updating is fully vectorized. The operator can now be applied, ‘shifted’
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0O

&

2-D data array

© superfluous row

required rows
@ new required row 1 ‘ numy

adjusted 2-D auxiliary array

Figure 5.4.3 Update of the auxiliary array. In order to go over to the next row (one step in the
positive x-direction) the auxiliary array must be updated. Its upper row is superfluous while a new bottom
row should be added. It is not necessary to replace all data of the array. It is possible to replace the contents
of the superfluous upper row with the required new data. The first sample of the auxiliary array is not used
anymore. The second sample is considered as the first, the third sample as the second etc. One new sample
is added to the auxiliary array. (For simplicity in the picture Ny is 1, normally it is larger, e.g., from 5 to
20; (2N,+1 )(2Ny+1 ) is the operator size).

one step in the y-direction, applied again etc., result: extrapolated data for x = (n,+1)Ax
and for all y coordinates.

This procedure is repeated for all x-coordinates. (Problems at the boundaries were avoided
by surrounding the original monochromatic 2-D data panel with enough zeros).

In this way the whole monochromatic data panel is extrapolated.
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If we make use of the symmetry properties of the operator (see eq.(3.23)),
F(nx,ny)=F(—n’x,ny)=F(nx,—ny), the implementation becomes a bit more complicated
because four quadrants of data must be summed before the operator can be applied. For the

2-D data array

© points involved in
extrapolation of row n,

@ points involved in
extrapolation of output
point (ny.ny)

@ operator points

@ extrapolated output
point (n,, ny)

2-D array 4

®Q YY)
LX) + ee| =

4 quadrants of data

@ 1 extrapolated
operator monochromatic

@ @ outputpoint

Figure 5.4.4 If use is made of the symmetry properties of the operator, four auxiliary arrays are used.
This makes it possible to vectorize the summation of four quadrants of data, which is necessary before the
operator can be applied. (For simplicity in the picture both N, and Ny are 1, normally they are larger, e.g.,
from 5 t0 20; (2N, +1 )(2Ny+l ) is the operator size).
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interested reader the procedure is described next. The implementation is visualized in
Figure 5.4.4. First two auxiliary 2-D arrays, called 1 and 2, are extracted from the 2-D
data array (monochromatic x,y panel), with sizes (N,+1) and (numy) in the x- and y-
direction respectively. These data transport actions are vectorized in the y-direction.

Array 1 contains data for n,,n,+1,...,n,+N, and for all y: 1,2,...,numy. Notation
for array 1: (Tn,,Ty,;). Note that the arrows indicate the order of the elements. Array 2
contains data for ny,n,—1,..., n,—N, and for all y: 1,2,...,numy: (n,{,Ty.y). The
sum of array 1 and array 2 (see eq. (5.9)) is stored in array 3: (Tn,l,Ty,y;). The summation
is fully vectorized. A fourth array is constructed, containing the contents of array 3 in a
reorganized way, the y-coordinate is in the reversed order: numy,numy-1,...,1.
Notation for array 4: (Tn,{,y.ul). This data transport action is vectorized in the x-direction.
Now the preparations are ready and the extrapolation can start. The part with
n

y-Ry+l,..., ny+Ny of array 3 and the part with ny,n,~1,..., n,—N, of array 4 are

summed: (Tn,l, Tny)+ (T, d,nyd)=(Tn,l, Tnyd). This syummation is fully vectorized
The result contains four summed quadrants of data. Then the operator is applied which
yields one extrapolated output point. The extrapolation is fully vectorized. Next we ‘shift’
one sample in the y-direction, sum the involved parts of array 3 and 4: (Tn,{, Tny+14) and
apply the operator again, etc. The result is a row of extrapolated data for a fixed x-
coordinate n, and for all y coordinates. To go over to the next x-coordinate, n,+1, auxiliary
arrays 1 and 2 are updated (fully vectorized) in the same way as was visualized in Figure
5.4.3, and summed (fully vectorized), yielding array 3: (Tn,+1.,Ty,). Array 4, the
reorganized version of array 3 is constructed (vectorized in 1 direction): (Tn,+11,y51d).
Now the row with x = (n,+1)Ax can be done etc.

In this way the whole monochromatic data panel is extrapolated.

If lateral velocity variations are present, an operator must be computed from table operators
by linear interpolation. This means that two operators must be multiplied by a scalar and
subsequently summed (eq. (5.4)). Both processes fully vectorize.

parallel processing .
The wave field extrapolation process is performed per frequency component. As mentioned
before, working per frequency component offers a natural way of dividing a problem into
independent parts, which can be processed separately. Therefore our migration scheme is

very well suited for parallel processing.
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5.5 COST COMPARISON WITH REVERSE-TIME MIGRATION

We compare our migration algorithm with the acoustic full 3-D reverse time migration
algorithm as discussed by Chang and McMechan (1989). This is done for the number of
fp-operations as well as for the required core memory space. As mentioned in section 2.1,
the recursive extrapolation in reverse-time migration is performed backwards in time
without dip limitations. At each extrapolation step the zero-offset data provide the boundary
conditions at the surface. Starting at the maximum registration time, the extrapolation is
continued recursively to zero time. The extrapolated section at zero time is the migrated
result: all depths are imaged simultaneously. The expression for reverse-time migration,
€q.(2.25), is repeated here: .

Prtm(t—At) = 2(1-382) i1 mts) - Pitm(tatAL) + (5.13)
+a? (pk+1,l,m(tn) + Pr-1.L,m(tn) + P1+1,m(tn) + Pr1-1,m(tn) + Pk1m+1(ta) + Pi.l,m-1 (tn)) -

where pg 1.m(t,) is the notation for p, (kAx,, 1Ay, ,mAz,nAt), Ax,=Ay, =Az,=h is the
grid spacing, the index rt refers to reverse-time and a = a(x,y,z) = ¢|p(X,y,2)At/h.

Jp-operation count

From eq. (5.13) it follows that the computation of one extrapolated output point requires 9
fp-operations. The total number of fp-operations is found by multiplying this with the
number of grid points and the number of time steps numt,,:

9(numx_)(numy,)(numz,,)(numt ). | (5.19)

To be able to compare this result with the one in expression (5.12), one should keep in
mind that the spatial and temporal intervals in reverse-time migration are small in order to
preclude instability and/or grid dispersion:

numx,, = 5 numx,

numy,, = 5 numy, (5.15)
numz, = 5 numz,

numt, = 5 numt = 20 numf.
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Using this we find for the total number of fp-operations in reverse-time migratioh
22,500 (numx)(numy)(numz)(numf) . (5.16)

This is in the order of ten times larger than the number of fp-operations in table-driven
migration (expression (5.12)).

required core memory space
Preferably the total data volumes at three consecutive times, t,_;, t, and t,,; should be kept
in core memory. However, it is possible to replace the data at time t,,; with the reverse-
time extrapolated data at time t,_;. Furthermore, the macro model velocity information
should be present. Hence, the required core memory space for reverse-time migration is:
—a 3D x,y,z volume containing macro model velocity information, size:
(numx_)(numy,,)(numz,) real numbers and
— two 3D x,y,z volumes containing data at two times, size;
2(numx,)(numy,)(numz,) real numbers.

Hence, unless an huge amount of 1/O is accepted, the core memory space must be large
enough for

3(numx,)(numy,¥(numz,) real numbers, or
375(numx)(numy)(numz) real numbers. (5.17)

Example. With the next parameters: numx = 500, numy = 100, numz = 150 and 4 bytes
per real number, we find that the reverse-time migration requires a core memory of more
than 10 Gbyte. This number should be compared with the 1.7 Mbyte that is required by
table-driven migration (see section 5.4). Note that 10 Gbyte is too much for an
implementation on present computers.

5.6 BENCHMARKS

The table-driven migration algorithm was tested on several computers: a Convex C1, a
Convex C2, a Cray X-MP and and an Alliant 4CE. All computers are vector computers.
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The Convex and CRAY computers have a single CPU, the Alliant has four CPU’s and
offers the possibility of parallel processing. The Fortran code was.optimized for the
Convex Cl1, i.e., some modifications were made to increase the performance. E.g., real
and imaginary parts of complex number were treated separately. The Fortran code was the
same for all computers and the executable code was generated with the standard compiler
programs, using the highest level of automatic code-optimization that was available. The
algorithm was tested for a number of operator sizes.

The other parameters were:

numx = 32,
numy = 32,
numf = 17 and
numz = 75.

In order to compute the number of fp-operations involved, we used formula (5.12). In this
number, the FFT, the (‘smoothed’ or ‘optimized’) operator computation and interpolation,
the imaging step nor the extra overhead of auxiliary arrays (see section 5.4) are
incorporated. This means that the actual performance of the computers is even somewhat
better. The results are presented in Tables 5.1 and 5.2 and in Fig. 5.6.1.

10
erformance 9
enchmark 1

(Mflop) 8]
7]

6

5 + Convex C1

4 o Alliant 4CE

34
24

v T v T v T
0 200 400 600 800 1000 1200 1400
nr. of operator points

Figure 5.6.1 Benchmark results for 3D table-driven migration. The performance of the Convex C1 and
the Alliant 4CE is presented as a function of the operator size. Notice that both computers perform about
equally well. Furthermore it is demonstrated that the efficiency of the computers increases for an increasing
operator size.
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Some remarks about these benchmark results.

— The maximum performance of about 8.5 Mflop that is reached on the Convex Cl is a
good result. For comparison the performance for a Fortran coded single-precision dot-
product, as published by Convex, is shown in Fig.5.6.2. The top performance of this
simple piece of code is about equal, but it is reached for a smaller number of points.

10
performance
dot-product 9 4
(Mflop)

p

7]
6 4
5
4] Convex C1
3
2]
14

0

0 200 400 600 800 1000 1200 1400
nr. of operator points

Figure 5.6.2 Benchmark result for a dot product. Compare with Fig. 5.6.1. The top performance for
the simple dot product and the much more complicated table-driven migration is the same. This
demonstrates the efficiency of the implementation of the table-driven migration.

— The improvement in the performance of the Convex C2 for this benchmark is a factor
2.2

— The CRAY uses 64 bits per real number, while the other computers use 32 bits. The
result of the CRAY benchmark was corrected for this: the actual execution time was 30.7 s.
— For 3D applications the number of operator points is in the order of a few hundred. In
this case our algorithm performs well on the considered computers. In case of 2D
applications, the number of operator points is much smaller: less than one hundred. From
the benchmark results it follows that our migration algorithm is not optimum in that case:
the inner loop is too small and the vector computers do not reach their top performance. A
suggestion is to interchange loops. E.g., in the 2D case the number of frequency
components is generally larger than the required number of operator points. Therefore,
vectorization along the frequency coordinate might be more efficient.
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Because the Alliant offers the possibility of parallel processing, some extra tests were
carried out. This time the number of operator points was kept constant at 841 while the
number of CPU’s was varied. The results are given in Table 5.3 and Fig.5.6.3 for 1, 2
and 4 CPU’s respectively. By extrapolation we obtained an estimate for the configuration
with 8§ CPU’s.

10

speed-up 9
g] @ idealspeed-up
+ actually reached
7 speed-up

6
5
4]

. 3]

J .

1]

0

T T T T T T T

1 2 3 4 5 6 7 8 9 10
nr. of CPU's

Figure 5.6.3 A specific benchmark was performed on the Alliant with 1, 2, 4 and 8 CPU's
respectively. Notice that the actually reached speed-up is not equal to the ideal speed-up. The reason is that
the compiler did not parallelize the code in an optimum way.

Notice that the ultimate speed-up equals the number of CPU’s. From Table 5.3 it is clear
that the actually reached speed-up was less. This is because the Alliant Fortran compiler did
not parallelize the frequency loop: instead parallelism was introduced at a deeper level in the
code. We did not alter the Fortran code to make it more suitable for the Alliant; however,
we expect that the machine can come much closer to the ultimate speed-up.

Multi processor vector machines approximate the ideal hardware for our migration
algorithm. In the ideal situation the number of CPU’s equals the number of frequency
components. Of course such dedicated hardware would only make sense if the frequency
components are indeed processed in a parallel way.
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Tables

Table 5.1 Comparison between Convex C1, Alliant 4CE and
CRAY X-MP, execution time of benchmark

number of Nx=Ny number of Convex C1  Alliant4CE CRAY

operator fp-operations  execution execution  execution
points x 108 time () time (s) time(s)
25 2 1.18 98.1 108.9
81 4 3.26 113.3 123.4
169 6 6.40 137.3 144.4
289 8 10.6 167.5 174.9 15.4
441 10 15.8 204.3 212.0
625 12 22.1 278.0 270.0
841 14 29.4 331.4 319.7
Table 5.2 Comparison between Convex C1, Alliant 4CE

and CRAY X-MP, performance for benchmark

number of Nx=Ny Convex Cl Alliant 4CE =~ CRAY

operator performance performance performance
points Mflop Mflop Mflop
25 2 1.20 1.08
81 4 2.88 2.64
169 6 4.65 4.43
289 8 6.33 6.06 68.8
441 10 7.73 7.45
625 12 7.95 8.19

841 14 8.87 9.20
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Table 5.3 Test on concurrency, Alliant with 1, 2, 4 and 8
' CPU’s, benchmark for 841 operator points

number of execution time  performance speedup efficiency”

CPU’s (s) (Mflop) (%)
1 683.1 4.30 1 100
2 530.0 5.55 1.29 64.4
4 319.7 9.20 2.14 53.2

@® (220) (13.4) (3.11) (38.8)  estimated results
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CHAPTER 6
EXAMPLES / RESULTS

6.1 INTRODUCTION

In this chapter examples of table-driven zero-offset migration will be given. For the 2D
case we used finite-difference modeled zero-offset data as well as ‘real’ stacked sections.
We show examples of poststack as well as prestack migration.

For the 3D case we used table-driven modeled zero-offset data (see the appendix).

All examples demonstrate the high quality of the migration process: the events are well
focussed and positioned correctly. For comparison we also included an example of 2 times
2D (or two pass) migration. This method is often used in the seismic industry instead of
full 3D migration. The results of 2 times 2D migration do not have the quality of full 3D
migration, especially in case of strong lateral velocity variations.

6.2 2D EXAMPLES

2D Example 1, Fig. 6.2.1.

The subsurface model is shown in Fig. 6.2.1a. It consists of a reflector below a pinch-out
structure. Significant lateral and vertical velocity variations are present. The zero-offset
response of only the ‘exploding reflector’ was modeled, see Fig. 6.2.1b. The shape of the
reflector is distorted by the propagation effects.

The migrated result can be seen in Fig, 6.2.1c and the amplitude cross section of the
migrated result in Fig. 6.2.1d. Notice the good positioning and focussing of the reflector.
Furthermore, the amplitude variations along the reflector are small.

Processing parameters: temporal sampling interval At=4ms; trace length numt=256; frequency contents
fin=10Hz, £, =70Hz; number of frequency components numf=62; minimum velocity ¢, =2400m/s;
maximum velocity ¢, =3400 m/s; grid size 128*256 (numx, numz); horizontal spatial sampling interval
Ax=8m; extrapolation siep size Az=4m; number of operator points 19 (N, =9); maximum angle of
extrapolation used in the operator design o, ... =45°; number of smooth operators numop= 185 in the
range from K, =0.0036m™" to k,,,,=0.368 m™'.



Figure 6.2.2a

Stacked section (Unocal
Nederland). The arrow
indicates the position of a
bow-tie. A bow-tie is the
zero-offset response of a
synclinal structure; the
syncline can be seen in the
migration result, Fig. 6.2.2c.
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Figure 6.2.2b Macro velocity model.
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Figure 6.2.2d The zero-offset ray paths in the StackMap model can be used to determine the data
coverage of the subsurface. Notice that the fault in the middle of the section is not well covered by the
data, which is likely to be a cause of the unclear image in the migration result around the fault, see
Fig. 6.2.2c.
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2D Example 2, Fig. 6.2.2

This is a field data example. A stacked section (courtesy of Unocal Nederland) is shown in
Fig. 6.2.2a. The macro model was obtained with the use of StackMap® (a software
product of Jason Geosystems, which uses stacking information to produce a data-
consistent interval-velocity/depth model (Van der Made, 1988)). The model is shown in
Fig.6.2.2b. The migration result is shown in Fig. 6.2.2c. The major reflector boundaries
in the migration result coincide with the velocity changes in the macro model. This
demonstrates the good quality of the model. Clearly it can be seen that the reflectors in the
migration result have moved in the up-dip direction; this property gave migration its name.
Furthermore, a bow-tie can be seen in the stacked section (arrow). A bow-tie is the zero-
offset response of a synclinal structure as can indeed be seen in the migration result. Notice
that the fault in the middle of the migrated section remains rather vague. This can be
explained by the fact that this area is not very well covered by the data. The StackMap ray-
coverage plot in Fig.6.2.2d may be used to identify these areas.

2D Example 3, Fig.6.2.3.

A stacked section (courtesy of Nederlandse Aardolie Maatschappij) is shown in
Fig. 6.2.3a. The macro model (obtained from Delft Geophysical) is shown in Fig.6.2.3b
and the migration result in Fig.6.2.3c. Especially the fault (arrow) is much clearer
determined in the migration result than in the stacked section. Furthermore, a number of
small faults can be seen in the low horizontal reflector. If one compares the stack with the
migration result, one can see the influence of the macro model on the position of the
reflectors.

The above mentioned phenomena can even be better observed in the prestack migrated
result (obtained from Delft.Geophysical), see Fig.6.2.3d. This is in agreement with the
fact that the CMP stacking process yields a low quality ‘zero-offset’ data. Hence, the
prestack migration result will be better than the poststack migration result (see section 1.3).
Processing parameters: temporal sampling interval At=4 ms; trace length numt = 1024; frequency
contents fo;n = 10 Hz, {5, = 100 Hz; number of frequency components numf =93; minimum velocity
Cmin = 1810 m/s; maximum velocity ¢,y = S000 m/s; grid size 472 * 1000 (numx, numz); horizontal
spatial sampling interval Ax = 15 m; extrapolation step size Az =4 m; number of operator points 75
(N, =38); maximum angle of propagation used in the operator design 0t max = 40°; number of smooth
operators numop = 3641 in the range from kp,;, = 0.0251 m 1o Kpax = 0.695 mL

StackMap® is a registered trademark of Jason Geosystems bv.
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Figure 6.2.3b Macro velocity model.
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Figure 6.2.3d Prestack migration result (Delft Geophysical). The quality of a prestack migration result
is better than the quality of a poststack migration result. Especially the small faults in the low horizontal
reflector can be better observed in the prestack result.



EEEEEEEEEEEEEEEEE

00000

aiﬁ
i M"

L

llllillll
]\Wllﬂl

1‘l‘1| i

M ! o INIIW .

ll! Jﬂ
\I 11

\uMJuHII

7 JJL ,,,,,

mﬂJ
m Jlll nw
o '; i I
Lt llwl i

T L

l“\l

llli

|

i

L Ill ll

|

bl

I\Hl

'ulli‘l

[~ E
o
o1
Y



6.3 3D EXAMPLES 133

Figure 6.2.4c Prestack migration result,

2D Example 4, Fig.6.2 4.

Full prestack migration is not yet feasible on present computers for the 3D case. Therefore,
we show an example of 2D prestack migration (see also section 4.1). The subsurface
model is shown in Fig.6.2.4a. We used finite-difference modeling for the generation of a
number of shot records. Some of those are shown in Fig.6.2.4b. The prestack migration
result is presented in Fig. 6.2.4c. As expected, the result clearly shows the structure of the
subsurface.

6.3 3D EXAMPLES

3D Example 1, Fig.6.3.1.

A basic test of a migration algorithm is to determine its impulse response. We started with a
3D ‘zero-offset’ data set of which all traces were empty except for the middle one at
(x,¥)=(0,0) m which contained a temporal band-limited pulse. In Fig. 6.3.1a a vertical 2D
X,z cross-section of the data is shown. The macro model was a constant velocity model.
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Figure 6.3.1c Adepth slice at z = 230 m. The fact that the depth slice is perfectly circular proves that

sl

the accuracy of the migration is good in all directions and not only in the in-line or cross-line direction.

The impulse response - the migrated result - can be seen in Fig.6.3.1b and ¢ where a
vertical x,z-panel at y = 0 m and a depth slice at z = 230 m are shown respectively. As
expected the pulse is transformed into a hemisphere. Notice the fact that the depth slice is
perfectly circular. This proves that the accuracy is good in all directions, not only in the in-
line or cross-line direction. Also it can be seen that the maximum dip angle used in the
extrapolation is 50°. The higher angles are suppressed.

Processing parameters: temporal sampling interval At=4ms; trace length numt=128; frequency contents
f ., =20Hz, £, =80Hz; number of frequen.cy components numf=32; velocity ¢=2000m/s; grid size
90*90* 128 (numx, numy, numz); horizontal spatial sampling intervals Ax=6m and Ay=6m;
extrapolation step size Az=6.25m; number of operator points 21*21 (N, =10, N, =10); maximum angles
=50°, o =50°; number of smooth operators

X, max ’ Xx,max

of propagation used in the operator design o
numop = 32 in the range from kp,;, = 0.126 m~1 10 Kmax = 0.503 m-1

velocity 2400 m/s
é)’

Figure 6.3.2a The responseofa

300 m - horizontal square reflector situated below a

350 m — 3D synclinal structure was modeled (with 3D
table-driven modeling).

1
velocity 3600 m/s 624 m
400 m

336 m 580 m



6. EXAMPLES/RESULTS




6.3 3D EXAMPLES
—_

om 1024 m

N




138 6. EXAMPLES/RESULTS

3D Example 2, Fig.6.3.2.

The impulse response in the previous example was made for a homogeneous medium. To
examine the performance of the migration also for a 3D inhomogeneous medium, the
following example was made. We modeled the response of a horizontal square reflector
situated below a 3D synclinal structure, see Fig.6.3.2a. At the boundary of the syncline,
the velocity changes from 2400my/s in the upper part to 3600 m/s in the lower part. In
Figs. 6.3.2b, c and d a time slice at t=0.28s, a vertical x,t cross-section at y=455m and
a vertical y,t cross-section at x=520m are shown respectively. The synclinal structure has
a strong focussing effect on the reflected energy. In order to see also diffraction energy, the
pictures of the zero-offset data have been clipped 15 dB. The migrated results can be seen
in Figs.6.3.2¢, f and g where a depth slice at z=350m, a vertical x,z cross-section at
y=455m and a vertical y,z cross-section at x =520 m are shown respectively.

The depth slice shows the correct square shape of the reflector whereas the vertical cross-
sections confirm that the reflector is horizontal. Amplitude cross-sections of Figs. 6.3.2f
and g are shown in Figs. 6.3.2h and i. Notice the constant amplitude along the reflector.
Processing parameters: temporal sampling interval At=4ms; trace length numt=128; frequency contents

fin =20Hz, £, =70Hz; number of frequency components numf=28; minimum velocity c_;, =2400m/s;

? “max
maximum velocity c_,,=3600m/s; grid size 128* 128* 100 (numx, numy, numz); horizontal spatial
sampling intervals Ax=8m and Ay=7m; extrapolation step size Az=5m; number of operator points
=50°
X,max M

O . - . . - - -1
Oy max =350°; number of smooth operators numop=191 ranging from k ;. =0.069m™' to k_,, =0.366m™.

23*27 (N, =11, N, = 13); maximum angles of propagation used in the operator design o

— X dB —_—y
0
-10
-20
-30
-40
-50
Om ) 1024 m Om 896 m
Figure 6.3.2h The amplitude cross-section Figure 6.3.2iThe amplitude cross-section
of Fig. 6.3.2f. Notice the constant amplitude of Fig.6.3.2g.

along the reflector.




=

633 139
! Figure 6.3.3a Adepthsliceat ey
z = 350 m of the result of 2 times om
2D migration (first pass in the
x-direction). Notice that the
square shape of the reflector has y
not been recovered correctly.
| 896 m

Figure 6.3.3b A vertical x,z om
cross-section at 'y = 455 m of the
result of 2 times 2D migration
(first pass in the x-direction). The z
image of the reflector should be i ety
horizontal. Instead, the 2 times 2D ‘:‘“ :;.\:.\\/. e, ;( («(
et e, IR 00 m




140 6. EXAMPLES/RESULTS

2 Times 2D Example 1, Fig.6.3.3, Fig.6.3.4

In the seismic industry 3D poststack migration is usually carried out as a sequence of 2D
migrations. In 2 times 2D, or two-pass migration, all vertical 2D cross sections in one
lateral direction of a 3D data set are migrated first. Next, all vertical 2D cross sections of the
result are migrated in the perpendicular direction. In case of a homogeneous medium, the
results of two-pass migration and fuil 3D migration are practically equivalent. To examine
the results of two-pass migration in case of lateral velocity variations we did the following
experiment, starting with the same zero-offset data as in the previous example.

The first pass was carried out in the x-direction using 2D time migration, AT being 4 ms.
The second pass Was carried out in the y-direction using 2D depth migration with
Az=5m. In Figs. 6.3.3a, b and ¢ a depth slice at z=350m and vertical x,z and y,z cross-
sections are shown respectively. Amplitude cross section of Figs. 6.3.3b and ¢ are shown
in Figs. 6.3.3 d and e.

aB ———t X dB —_—y
0 0
-10 -10
-20 -20 4
-30 A -30 4
-40 —-40 4
-50 M -50
om 1024 m om 896 m

Figure 6.3.3d The amplitude cross-section of Figure 6.3.3¢ The amplitude cross-section
Fig. 6.3.3b. Notice the irregular amplitude of Fig.6.3.3c.
along the reflector.

The migration result of the x,z cross-section in Fig. 6.3.3b is not correct: the horizontal
reflector is imaged as some anticlinal structure. Also its size is too large, compare with
Fig.6.3.2f. The y,z cross-section is better: it is very similar to the result of full 3D
migration. However, the amplitude cross-section in Fig.6.3.3e is not as regular as the
amplitude cross section of the 3D migration result in Fig.6.3.2i.

The result of two-pass migration is not unique: it depends on the direction in which the first
pass is carried out. To show this, the previous experiment was repeated, this time with the
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Figure 6.3.5d A vertical x,z
cross-section at y = 640 m of the

’? migration result. Notice the .

.§ perfectly horizontal image of the
reflector. Furthermore, the diffraction

L2 energy has been focussed well.

H |

H Figure 6.3.5¢ A depth slice at
z = 600 m. The rectangular shape of

R the reflector has been recovered
8 correctly
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APPENDIX
NUMERICAL MODELING OF SEISMIC DATA

A.1 INTRODUCTION

For the development and testing of software for seismic processing, realistic synthetic data
are required. Data modeled with commercially available ray-tracing software usually do not
have the necessary quality for this purpose. This is because ray-tracing is based on a high-
frequency approximation of the wave equation. The consequences of this approximation
are the inaccurate results in case of caustics, shadow zones, etc. Furthermore, diffraction
energy is often not (correctly) incorporated and the problem of ‘missing rays’ may occur.
Accurate results can be obtained with finite-difference modeling based on recursive forward
extrapolation along the time coordinate. The expression for forward-time extrapolation is
given in eq. (2.25). However, this method is computationally intensive, especially for
application in three dimensions. We used finite-difference modeling for the generation of
2D prestack data as well as 2D zero-offset data.

In this appendix the emphasis will be on modeling of 3D zero-offset data based on table-
driven, recursive forward extrapolation along the depth coordinate. The results of the
method are much more accurate than those of ray-tracing while the method requires less
computational effort (factor 10) and less computer memory (factor 103) than finite-
difference forward-time modeling. Note that equivalent numbers were given in section 5.5
where the cost of reverse-time migration was compared with the cost of table-driven
migration. The explanation is that the migration algorithms have a large similarity with the
modeling algorithms. This holds for reverse-time migration and forward-time modeling on
the one hand and for table-driven migration based on inverse extrapolation and table-driven
modeling based on forward extrapolation on the other hand.

Before we go into more detail, we give a 2D example in which the results of the mentioned
modeling methods are shown, Fig. A.1. Notice the poor quality of ray-tracing and the high
resemblance of the result of table-driven modeling and the result of forward-time modeling,
which is considered as a reference.
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first pass carried out in the y-direction and the second pass in the x-direction. The results
are shown in Fig.6.3.4. Notice the differences between Fig.6.3.3 and Fig.6.3.4. As
expected, this time the x,z cross section of the migrated result is the best, see Fig.6.3.4b.
We also carried out the experiments using time migration with a reference velocity (see
section 2.1) for the first pass. The results were very similar.

These examples confirm the well-known result that in case of strong lateral velocity
variations, 2 times 2D migration does no longer yield acceptable results. In this case full 3D
depth migration is required. (Fig. 6.3.2).

dB —_X de —_—y
0 < 0

-10 | -10 4

-20 A -20

-30 -30 A

~40 | -40 {

-50 -50 .

om 1024 m om 896 m

Figure 6.3.4d The amplitude cross-section Figure 6.3.4e The amplitude cross-section

of Fig. 6.3.4b. Notice the irregular amplitude of Fig.6.3.4c.

along the reflector.

3D Example 3, Fig.6.3.5

In this final migration example the 3D zero-offset response of a horizontal rectangular
reflector was modeled. Fig.6.3.5a shows the position of the reflector below the French
model (French, 1975). Only the reflector response was modeled and the French model was
considered as overburden. In Fig. 6.3.5b a vertical cross-section of the zero-offset data can
be seen. Note the diffraction that is present. In Fig.6.3.5c a time slice at 500 ms can be
seen. All distortion is due to the overburden, the French model. One can clearly recognize
the influence of both of the domes and the dipping slope. The 3D table-driven migrated
result is given in Figs. 6.3.5d and e. The results are good: the rectangular shape of the
reflector is recovered, the image of the reflector is horizontal and all diffraction energy has
been focussed correctly.
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Processing parameters: temporal sampling interval At=4ms; trace length numt=256; frequency contents
fun=10Hz, f_  =80Hz; number of frequency components numf=68;, minimum velocity
Coin = 1880 m/s; maximum velocity c_,,=3800m/s; grid size 192* 128 * 120 (numx, numy, numz);
horizontal spatial sampling intervals Ax=6.5m and Ay=10m; extrapolation step size Az=6.5m;
number of operator points 21*21 (N, = 10, N, = 10); maximum angles of propagation used in the
operator design o =40°, a, ., =40°; number of optimum operators numop =313 ranging from

Kpn=0.032m~! 10k, =0.536 m™.

X,max

top view
>

0m

200m

400 m

| 600 m

vertical cross section

Figure 6.3.5a The zero-offset response of a horizontal rectangular reflector below the French model was
generated. The main features of the French model are the two domes and the dipping slope. (Modeling
method: 3D table-driven modeling). A top view and a vertical cross section are also shown.
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A.2 3D ZERO-OFFSET MODELING BASED ON RECURSIVE
EXTRAPOLATION ALONG THE DEPTH COORDINATE

In chapter 5 we discussed the use of ‘smoothed’ or ‘least-squares optimized’ operators in
3D zero-offset migration. The modeling method treated in this appendix can be considered
as a reverse migration process. Instead of

‘migration: recursive inverse extrapolation along the z-coordinate + extraction of
reflectivity information at each depth level (or, equivalently, imaging)',

we now have

‘modeling : recursive forward extrapolation along the z-coordinate + addition of reflectivity
information at each depth level’.

The modeling scheme can be seen in Fig. A.2.

zero-offset
dataatz=0m

1D FFT @ >t
]

recursive
macro model extrapolation

}

add exploding
reflector data
of current depth

operator table % forward
—l

next frequency
next depth

start at maximum
depth

Figure A.2 Flow-chart of the table-driven 3D zero-offset modeling scheme. The basic steps are:
recursive forward extrapolation along the z-coordinate and addition of reflectivity information at each depth
level.
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In the matched filter approach the operators W that are required for forward extrapolation
are the complex conjugates of the operators F for inverse extrapolation:

W = F*, (A1)

If the operators are designed for migration purposes, the acquisition parameters (Ax, Ay,
frequency contents etc.) play an important role. These parameters determine the maximum
quality that can be reached. E.g., the large values of Ax and Ay that are often used in
practice reduce the angle of propagation of waves that can still be recorded without spatial
aliasing. Of course, in modeling one is free to choose ideal ‘acquisition’ parameters. In this
respect the modeling is not simply equivalent to ‘reversed migration’. For the example
given in Fig. A.1 we chose a small spatial sampling interval for the modeling. This means
that high dip-angles can be incorporated. Furthermore, the maximum amplitude error E 5
and the maximum phase error Eg that are allowed in the operators can be taken extra small.
This way, one can be sure that the synthetic data have a very high quality and that artifacts
in the results after processing these data are due to the processing techniques and not to the
modeling.

Once the ‘smoothed’ or ‘optimized’ operators have been computed, their application in
modeling does not differ from their application in migration. Therefore we refer to section
5.4 in which the details of the implementation of the extrapolation are discussed.
The step in which reflectivity information is put into the modeling scheme. is discussed
next. According to the imaging principle the zero-offset reflectivity at depth level z; is equal
to the zero time component of the extrapolated data at this depth level:

Rzo(%,Y,2i) = Pzo(x,y,1=0,z3) . (A1)
From this equation and the forward Fourier transformation (discrete in t and )

P.o(X,Y,MoA®,Z) = At Y, Po(X,y,nALz;) e-nedondt (A.2)
ne

it follows that the reflectivity information that should be added to frequency component n,,
of the data at depth level z; is given by
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P2o(X,¥:n0A®,2) = At Ryo(X,y,7) . (A3)

Note that all frequency components are just scaled versions of the reflectivity information
(scaling factor At). The reflectivity information should be added to each frequency
component of the data at each depth level.

If one does not have a reflectivity model, it is possible to obtain the reflectivity information
from the (detailed) velocity-density model that is usually available in case of modeling.
E.g., for the configuration shown in Fig. A.3 which contains one interface, the zero-offset
reflection coefficients can be computed using

R12(z12) = gf%% . (A.4)

The position of the interface is denoted by 2; 5 = z; 5(x,y). The index 1 refers to the upper
layer, the index 2 refers to the lower layer.

layer 1

o o wwe wn z;- Az

layer

Figure A3 Situation of a medium with one reflector (layer interface). Note that the reflector, which is
arbitrarily shaped, crosses the horizontal depth levels that are used in the computations. The reflectivity
information to be added 10 the data can be corrected with a small time shift (indicated by arrows).
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Usually a layer interface, which may be arbitrarily shaped, will cross a number of
horizontal depth levels z; as used in the computations, see Fig. A.3. If this is the case, the
- reflectivity information to be added to the data at a specific depth level z; can be computed
by applying a small time shift At according to

DISK CORE MEMORY PROCESS
k
operator i CINEAR
table INTERPOLATION
z y
‘4 y = Va2 \\
NEANN
X
\§\\ X \ \
velocity info velocity info
file Z2=2)
z y
Y ] Yz
ﬂ L J—
X
reflectivity reflectivity
info file info,z=2 ;
~ y
& -

zero-offset zero-offset data, data EXTRAPOLATION
data, temporary 0 =0 zZj 54— Az
output file scratch file z2=7; (2-D convolution)
y
| VzVe :
X

data

0=

Z2=2;-AZ

Figure A4 Structure of the table-driven full 3D zero-offset modeling algorithm. Notice the similarity
with the migration algorithm, see Fig. 52.1.
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Pao(X,Y.npA®.Z) = At Ryo(x,y,z;) = At Ry (2 9) eT0AAT (A.5)
for| 212 — Z; | < Az/2.

The time shift is given by

_212-%
— .

At

In Fig. A.4 a detailed scheme of the implementation of the the modeling program is shown.
Note that this figure is very similar to Fig.5.2.1 that shows the implementation of the

migration.

The table-driven modeling technique discussed in this section was used to generate the
synthetic 3D zero-offset data shown in Fig.6.3.2 and 6.3.5.
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A.3 3D EXAMPLE

In Fig. A.5a the subsurface configuration is shown. It is the French model (French, 1975).
The main features are the two domes and the dipping slopes. A top view and a vertical y,z
cross-section of the model are shown in Fig. A.5b. The corresponding vertical y,t cross-
section of the modeled zero-offset data is shown in Fig. A.5c. Notice the out of plane
energy which is caused by the second dome. For comparison we also performed a 2D
modeling for the same line. The result can be seen in Fig. A.5d. Indeed the out of plane
energy of dome number 2 has disappeared. Furthermore, from this picture it becomes clear
that the zero-offset response of the dipping slopes (number 3 and 4) is also largely out of
plane. In Fig. A.5¢ to A.5j we show some more vertical cross sections of the model and
the corresponding zero-offset data. The data have a realistic appearance, i.e., out of plane
energy is present, the influence of lateral velocity variations can be seen (the bottom of the
model is no longer a horizontal plane) and the data contain diffraction energy.

Processing paramecters: temporal sampling interval At=4ms; trace length numt=256; {requency contents
=1880m/s;
=3800m/s; grid size 192* 128 *128 (numx, numy, numz); horizontal spatial

f in=10Hz, f_  =60Hz; number of frequency components numf=52; minimum velocity ¢

* “max min

maximum velocity ¢,

max
sampling intervals Ax=6.5m and Ay=9.9m; extrapolation step size Az=6.5m; number of operator points

=40°,
=40°; number of smooth operators numop=393 ranging from k_;,=0.032m™! to k,,,=0.412m™,
X

41*41 (N, =20, N, =20); maximum angles of propagation used in the operator design o

X,Max

ay,mn

Figure A.5a French model. Its main features are the domes (1 and 2) and the dipping flanks (3 and 4).
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SUMMARY

Chapter 1. To obtain an image of the subsurface of the Earth, seismic measurements are
carried out. Elastic waves are transmitted into the subsurface and the reflected waves are
detected at the surface and registered as a function of travel time.

However, for a map of the subsurface the results should be presented as a function of
depth instead of travel time. This transformation can be realized with seismic migration. A
migration procedure requires a macro subsurface model to be present. Such a model of the
subsurface defines the propagation properties (trend information on velocity and density).
The determination of such a model is not a topic of this thesis: we consider the macro
model as known. This thesis addresses the migration process itself.

The seismic measurements are repeated at different surface locations and the results can be
combined (‘stacked’). The migration can be performed either before or after stacking.

The results of prestack migration are better than those of poststack migration. However,
prestack migration is not (yet) feasible for application in three dimensions because of the
enormous computational cost. The TRITON™) approach offers a compromise: prestack
‘redatuming’ is carried out first. After this process the data can be considered as having
been acquired at some level deep in the subsurface, €.g., at the upper boundary of the target
zone. Next, common depth point (CDP) stacking is performed followed by full 3D zero-
offset migration. The result is a depth image of the target.

In Chapter 2 an inventory of wave field extrapolation techniques that are used in migration
is given. The methods are classified according to the extrapolation coordinate (depth, time
or vertical time), the application domain (space-time, space-frequency or wavenumber-
frequency), the type of wave equation (one-way or two-way), the type of extrapolation
(recursive or non-recursive) etc. For migration a choice is made for one-way, recursive
extrapolation along the depth coordinate to be carried out in the space-frequency domain.
Extrapolation is performed by using recursive Kirchhoff wave field extrapolation
operators. The design of these operators is discussed in Chapter 3. Special attention is
paid to aspects concerning aliasing, efficiency and accuracy. For use in practice two types
of operators are presented: smooth operators and optimum operators. In the design of the
smooth operator large spectral derivatives are avoided. The optimum operator is computed

* TRITON represents an international consortium on migration research, carried out at the Laboratory of
Seismics and Acoustics at the Delft University of Technology.
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by a least-squares algorithm. Smooth operators can be computed significantly faster than
optimum operators. However, the latter ones can be applied more efficiently because they
have the smallest possible size given a user-specified accuracy and dip range. The optimum
operators are therefore suited for processing jobs with ‘standard’ acquisition parameters.
Special sets of optimum operators could be generated for multiple use in those regular
cases. Otherwise the smooth operators should be used. In either case the operators are
stored in a table. This has the advantage that the operators do not need to be computed
(more than once) during the actual extrapolation.

In Chapter 4 the application of the operators in various migration techniques is discussed:
from multi-offset via common-offset to zero-offset migration. For the 3D case zero-offset
(poststack) depth migration is of most importance.

Therefore, in Chapter 5 a detailed description of 3D table-driven zero-offset migration is
given. Special attention is paid to the efficiency. The use of operators that have been
computed in advance and stored in a table contributes considerably to a high efficiency.
Furthermore, the symmetry properties of the operators are exploited which reduces the
computational costs. We have formulated wave field extrapolation in terms of vector
operations which makes the method very well suited for a vector computer. In addition a
parallel implementation could be realized in a natural way because the frequency
components are treated independently. Working per frequency component also has the
advantage that the requirements concerning the computer memory remain moderate.
Furthermore, in this chapter benchmark results are presented. From a cost comparison with
reverse-time migration it follows that our table-driven migration is more efficient, not only
with respect to the number of floating point operations (factor 10) but especially with
respect to the required computer memory space (factor 103).

In Chapter 6 2D and 3D examples of zero-offset migration are shown. All examples
clearly show the excellent quality of our algorithm. The method can handle complex
subsurface situations with both lateral and vertical velocity variations. Reflectors may be
steeply dipping. After migration all events are positioned well and diffraction energy is
focussed correctly. Furthermore, it is demonstrated that the results of full 3D migration are
superior to those of the so-called 2 times 2D migration.

Finally, in the Appendix the use of smooth operators or optimum operators in the
modeling of 3D zero-offset data is discussed. This way of modeling yields better results
than ray-tracing while it is significantly more efficient than finite-difference modeling.
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Hoofdstuk 1. Om een beeld te verkrijgen van de ondergrond van de aarde worden
seismische metingen verricht. Elastische golven worden opgewekt in de aardbodem en de
gereflecteerde golven worden aan de oppervlakte gedetecteerd en geregistreerd als functie
van de looptijd.

Op een kaart van de ondergrond moet het resultaat echter gepresenteerd worden als functie
van de diepte in plaats van de looptijd. Het proces dat deze transformatie uitvoert heet
seismische migratie. Een migratiemethode vereist dat een macro-model van de ondergrond
aanwezig is. Een dergelijk model bevat de propagatie-eigenschappen (globale informatie
betreffende de snelheid en de dichtheid) van de ondergrond. Het bepalen van het macro-
model valt buiten het onderwerp van dit proefschrift: we beschouwen het macro-model als
zijnde bekend en richten ons op het migratieproces zelf.

De seismische metingen worden op verscheidene plaatsen aan de oppervlakte herhaald en
de resultaten kunnen worden gecombineerd (Eng.: ‘stacked’). De migratie kan zowel voor
als na de stacking worden uitgevoerd.

De resultaten van prestack migratie zijn beter dan die van poststack migratie. Voor
toepassing in het geval van drie dimensionale data is prestack migratie (nog) niet mogelijk
vanwege de enorm lange computer-rekentijden. De TRITON® benadering biedt het
volgende compromis. De eerste stap is prestack ‘redatuming’. De resultaten hiervan kunnen
worden opgevat alsof de seismische metingen vitgevoerd waren op een niveau diep in de
ondergrond, bijvoorbeeld op de toplaag van het interessegebied. Vervolgens wordt een
‘common depth point’ (CDP) stacking'uitgevoerd gevolgd door een volledig drie-
dimensionale zero-offset migratie. Het resultaat is een afbeelding van het interessegebied
als functie van de diepte.

In Hoofdstuk 2 wordt een overzicht gegeven van de technieken voor golfveld-extrapolatie
die gebruikt worden in migratie. De methoden zijn ingedeeld naar de extrapolatie-coordinaat
(diepte, tijd of ‘verticale tijd’), het toepassingsdomein (ruimte-tijd, ruimte-frequentie of
golfgetal-frequentie), het type golfvergelijking (eenweg of tweeweg), het type extrapolatie
(recursief of niet-recursief) enz. De keuze voor migratie is: eenweg recursieve extrapolatie
langs de dieptecoordinaat in het ruimte-frequentie domein.

* TRITON is een intemationaal door de industrie gesponsord project. Het onderzoek is op het gebied van
migratie en wordt uitgevoerd bij de Vakgroep Seismiek en Akoestiek, Technische Universiteit Delft.
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Extrapolatie wordt uitgevoerd met gebruikmaking van recursieve Kirchhoff operatoren
voor golfveld-extrapolatie. Bij het ontwerp van deze operatoren, die besproken worden in
Hoofdstuk 3, wordt speciale aandacht besteed aan aspecten betreffende aliasing, efficiéntie
en nauwkeurigheid. Voor het gebruik in de praktijk worden twee typen operatoren
voorgesteld: geéffende operatoren en optimale operatoren. Bij het berekenen van de
geéffende operator worden grote spectrale afgeleiden vermeden. De optimale operator
wordt bepaald met behulp van een kleinste-kwadraten algoritme. Geéffende operatoren
kunnen beduidend sneller berekend worden dan optimale operatoren. De laatste zijn echter
efficiénter in hun toepassing omdat zij de kleinst mogelijke afmeting hebben, gegeven de
specificaties van de gebruiker omtrent nauwkeurigheid en hoekbereik. Om die reden zijn
optimale operatoren het meest geschikt voor toepassing in gevallen met ‘standaard’
acquisitie parameters. Voor die gevallen zouden speciale sets van optimale operatoren
gemaakt kunnen worden om telkens opnieuw te gebruiken. In de overige situaties kunnen
dan de geéffende operatoren gebruikt worden. Voor beide operatortypen geldt dat de
operatoren voor gebruik worden opgeslagen in een tabel. Dit voorkomt (meervoudige)
berekening van de operatoren tijdens de feitelijke extrapolatie.

In Hoofdstuk 4 wordt de toepassing van de operatoren in diverse migratietechnieken
besproken: van multi-offset via common-offset naar zero-offset migratie. Voor de 3D
situatie is zero-offset (poststack) migratie het meest belangrijk.

Daarom volgt in Hoofdstuk 5 een gedetailleerde beschrijving van 3D tabel-gedreven zero-
offset migratie. Speciale aandacht wordt besteed aan de efficiéntie. Het gebruik van vooraf
berekende operatoren die vervolgens opgeslagen worden in een tabel leidt tot een
aanzienlijke verhoging van de efficiéntie. Ook de symmetrie-eigenschappen van de
operatoren worden benut om de rekentijden te bekorten. We hebben golfveld-extrapolatie
geformuleerd in termen van vectorbewerkingen. Dit maakt de methode bijzonder geschikt
voor vectorcomputers. Bovendien kan een implementatie voor een parallelle machine op
een natuurlijke manier gerealisecerd worden omdat de frequentiecomponenten onafhankelijk
worden verwerkt. Het uitvoeren van de berekeningen per frequentiecomponent heeft verder
het voordeel dat het benodigde computergeheugen bescheiden kan blijven. In dit hoofdstuk
worden de resultaten van een benchmark gepresenteerd. Uit een kostenvergelijking met
‘reverse-time’ migratie blijkt dat onze tabel-gedreven migratie veel efficiénter is. Dit geldt
niet alleen voor het aantal rekenkundige bewerkingen (factor 10) maar speciaal ook voor het
vereiste computergeheugen (factor 103).

In Hoofdstuk 6 worden 2D en 3D voorbeelden van zero-offset migratie getoond. Alle
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voorbeelden laten duidelijk de goede kwaliteit van het algoritme zien. De methode kan
complexe ondergrond-situaties aan waarin zowel laterale als verticale snelheidsvariaties
optreden. Reflectoren mogen steil zijn. In de resultaten van de migratie is de positionering
in orde; ook is diffractie energie goed gefocusseerd. Verder wordt aangetoond dat de
resultaten van 3D migratie beter zijn dan die van de zgn. 2 maal 2D migratie. Tenslotte
wordt in de Appendix de toepassing van geéffende operatoren of optimale operatoren in
het modelleren van 3D zero-offset data besproken. Deze manier van modelleren levert
betere resultaten dan ‘ray-tracing’ terwijl zij beduidend efficiénter is dan ‘finite-difference’
modelleren.
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