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Figure 1.1.1 A seismic experiment. Elastic waves are produced by a source and the reflections are 
registered by the detectors as a function of time. The result of a seismic experiment is a shot record. In a 
seismic survey many shot records are acquired. 



CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

An image of the Earth's subsurface can be acquired by carrying out a seismic survey. In 
seismic exploration elastic waves are generated by a source at the surface. For acquisition 
on land the usual source is dynamite or a seismic vibrator. For a marine survey airguns are 
most commonly used. The waves are radiated into the subsurface. However, whenever 
changes in the medium parameters occur, part of the wave field reflects and propagates 
upwards to the surface. Here it is detected with a number of receivers which are either 
geophones in case of a land acquisition or hydrophones in case of a marine acquisition. 
Such a seismic experiment is illustrated in Fig. 1.1.1. In order to get a good quality image 
the experiment is repeated many times with the shot and the detectors located at different 
surface positions, such that an inhomogeneity is 'illuminated' from different directions. 
The result of each seismic experiment is a shot record. It consists of the registration of the 
reflected wave fields at each detector. The reflected signal is registered as a function of 
travel time and it contains both propagation (down- and upward) and reflection effects of 
the subsurface. However, the aim is a structural image of the subsurface from which the 
propagation effects have been removed. This means that the reflection amplitudes should be 
presented as a function of lateral position and depth. The method that removes the 
propagation effects and transforms a time registration (x,y,t domain) into a depth image 
(x,y,z domain) is called seismic migration. The resolution of a migrated result is always 
limited, due to the finite bandwidth of the registered signals. Therefore the outcome of a 
migration process is a bandlimited estimation of the reflectivity properties of the 
subsurface. 

The amount of data of a 3D seismic survey is generally very large. In order to reduce the 
amount of data and at the same time improve the signal to noise (S/N) ratio, stacking 
techniques have been developed. In this chapter the concept of stacking is discussed and 
the (dis)advantages of seismic processing in the prestack vs. the poststack domain are 
mentioned. Also a historic overview of migration is given in which the emphasis is on the 
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Figure 1.2.1 Zero-offset data set. In zero-offset data the source and detector(s) coincide. Only at one 
position along the surface a reflection is registered. 

Figure 1.22 Migration maps a pulse into a semi-circle. 

source/detector source/detector source/detector 

Figure 1.2.3 This figure shows that in case of a semi-circular structure there is only one location 
along the surface where the reflections can be registered by a detector at the same position as the source. 
This is the explanation of the zero-offset data of Fig. 12.1. 
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different methods that have been developed over the past. An overview of the TRITON*) 
philosophy on 3D processing is given next. Furthermore some practical aspects of 3D 
processing are discussed and finally an outline of this thesis is given. However, as a start, 
a simple geometrical explanation of zero-offset migration is presented. 

1.2 GEOMETRICAL EXPLANATION OF ZERO-OFFSET MIGRATION 

The distance between the source and a detector in a seismic experiment is called the offset. 
Hence, in a zero-offset configuration the source and detector(s) coincide. This situation can 
never be realized in a practical seismic survey due to the nature of the source. However, 
there are techniques that can be used to produce more or less accurate zero-offset data from 
nonzero-offset data. Such techniques are common midpoint (CMP) stacking, common 
reflection point (CRP) stacking and common depth point (CDP) stacking (see sections 1.3 
and 1.4). 

The concept of zero-offset migration is now explained with some examples. 

Example 1: the migration impulse response. Consider the following situation. Zero-offset 
data are collected along a line at the surface (2D experiment). The recording shows that 
only at one surface location a reflected signal is measured; the zero-offset data set is shown 
in Fig. 1.2.1. Note that the data is a function of the lateral coordinate x and time t. A 
geologist can do little with the information the way it is presented here: it is not clear from 
which direction(s) the reflected energy has arrived at the detector nor is it obvious at what 
depth the reflectivity is located. If the velocity of wave propagation is known to be a certain 
constant, a migration of the zero-offset section would result in the depth section shown in 
Fig. 1.2.2. Zero-offset migration actually maps a pulse into a semi-circle (also called 
'migration smile'). From Fig. 1.2.3 it should be clear that indeed a structure with a semi­
circular shape causes the zero-offset response of Fig. 1.2.1. Note that the migrated section 
of Fig. 1.2.2 is the 2D impulse response of the migration algorithm. 

TRITON represents an international consortium on migration research, carried out at the Laboratory of 
Seismics and Acoustics at the Delft University of Technology. 
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sources/detectors 

point-diffractor 

Figure 1.2.4 Zero-offset experiment. There is only one point diffraclor in a homogeneous medium. 

Figure UJ Zero-offset data. The hyperbolic shape is typical for diffractors. 

Figure 1.2.6 Migrated result. The point diffractor can be recognized. 
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Example 2: the diffraction hyperbola. It is also interesting to investigate the situation of a 
single point diffractor in a homogeneous medium. The zero-offset experiment is illustrated 

t in Fig. 1.2.4 and the zero-offset data can be seen in Fig. 1.2.5. The hyperbolic shape of the 
response is typical for diffractions. Migration should result in a reflectivity map of the 
subsurface. The result can be seen in Fig. 1.2.6. Indeed one can recognize the point 
diffractor: the diffracted energy has focussed well. From this example it follows that 
migration can be considered as the method that collapses the energy along a diffraction 
hyperbola to its apex. 

Fig. 1.2.7 shows that the effects of the migration in both examples are actually the same: 
the image of the point diffractor is the sum of a number of semi-circles. 

Example 3: from diffractors to reflectors. One can think of an arbitrary medium to consist 
of point diffractors. The zero-offset response of a reflector can be modeled by summing the 
zero-offset responses of a sufficient number of point diffractors distributed along the 
reflector. In Fig. 1.2.8 a model that contains a reflector is shown and in Fig. 1.2.9 modeled 
zero-offset data sections are shown for an increasing number of point diffractors. Note that 
in Fig. 1.2.9d the individual contribution of each point diffractor can no longer be 
observed: the response can be considered as the reflector response. A migration procedure 
results in the corresponding depth sections of Fig. 1.2.10. The result of the migration of 
the reflector response in Fig. 1.2.10d is clear: the diffracted energy caused by the edges of 
the reflector has focused. Also the position of the reflector is corrected for. It is important 
to notice that the angle of the reflector is steeper in the migrated section than in the zero-
offset section. Actually it is this effect that gave seismic migration its name: migration is 
the technique that 'migrates' reflectors to their correct position in depth. 

Some remarks about the examples: 
- In the examples the temporal and spatial sampling intervals were chosen sufficiently small 
such that no aliasing effects occur. In practice the spatial sampling interval may be too 
large. In Fig. 1.2.11 the effects of spatial aliasing are shown; these results should be 
compared with the non-aliased result shown in Fig. 1.2.10d. In Fig. 1.2.11a the spatial 
sampling interval is 2Ax (Ax being the interval in the zero-offset data shown in 
Fig. 1.2.9d). The dipping reflector can still be recognized. This is hardly the case in 
Fig. 1.2.11b where the spatial sampling interval is enlarged to 4Ax. In such cases an anti­
aliasing filter is required. 
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zero-offset (x,t) data migrated (x,z) results 

Figure 1.2.7 Migration: 
- maps a point in the x-t domain into a semi-circle in the x-z domain and 
- collapses a hyperbola in the x-t domain into a point in the x-z domain. 
The relation between these two-view points is shown here. 
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Figure 1.2.8 The zero-offset response of a reflector can be modeled by summing the responses of a 
sufficient number of point diffractors distributed along the reflector. 

Figure 1.2.9 The zero-offset response of a part of a dipping reflector was modeled by summing the 
responses of 2, 5, 11 and 40 point diffractors respectively. Note that in d. the individual diffractor 
responses can no longer be distinguished: the result can be considered as the zero-offset response of a 
reflector. 

_ ^ v a b c d 

\ 

Figure 1.2.10 Migrated results corresponding to the zero-offset data sections of Fig. 1.2.9. The result in 
d. is considered as the migrated reflector response. Notice that the dip of the reflector is steeper in the 
migrated result (and in reality) than in the zero-offset data in Fig. 1.2.9.d: the reflector has 'migrated' to its 
correct position. 
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Figure 1.2.11 Aliased migrated results corresponding to the dipping reflector of Fig.1.2.9. The spatial 
sampling interval in a. and b. are 2Ax and 4 Ax respectively. Notice the distortion due to spatial aliasing. 

- The experiments were all carried out in 2D. For the 3D case, where the data are acquired 
along an area at the surface, one can state that for a homogeneous medium the impulse 
response of a migration algorithm is a hemi-sphere and also that migration collapses the 
energy along a hyperboloid to its apex. 
- In the examples a medium with a constant propagation velocity was assumed. In practice 
the velocity will change both in the lateral directions and in the vertical direction. In that 
case the impulse response of the migration algorithm will deviate from a hemi-sphere and 
the zero-offset response of the point diffractor will deviate from a hyperboloid. A good 
knowledge of the subsurface velocity in the form of a propagation model, the so-called 
macro model, is essential for a good migration result. 

I offset 1 

source detector 

Figure 1.2.12 The impulse response of a common-offset migration algorithm is a semi-ellipse. The 
source and detector are located on the foci of the ellipse. 
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- The zero-offset configuration is actually a special case of the more general common-offset 
configuration, where there is a constant distance between the source and the detector. In 
Fig. 1.2.12 it can be seen that for a homogeneous medium the impulse response of a 
common-offset migration algorithm is a semi-ellipse (or a semi-ellipsoid in the 3D case) of 
which the source and detector positions are the focus points. 
- The modeling and migration of zero-offset responses are generally based on the 'half 
velocity substitution' or 'exploding reflector model' (Loewenthal et al., 1976). According 
to the exploding reflector model diffractors and reflectors are considered as buried sources 
that start to transmit waves ('explode') at zero travel time. Furthermore the propagation 
velocity of the medium is considered as half the true propagation velocity. Note that the 
one-way travel times in the exploding reflector configuration (from the buried sources up to 
the receivers) are now equal to the two-way travel times in reality (from the sources at the 
surface down to the diffractors/reflectors and up to the receivers at the surface). The 
exploding reflector model is based on the assumption that the source waves and the 
reflected waves travel along a common path in the subsurface. Apart from rare situations, 
the data modeled according to the exploding reflector concept have a good similarity with 
true zero-offset data as far as traveltimes are concerned. Also the results of migration based 
on the exploding reflector model are generally satisfactory. However, it can be shown that 
the amplitudes are not correct when the exploding reflector concept is used (Berkhout, 
1985). 

1.3 POSTSTACK VERSUS PRESTACK 

In a seismic experiment the reflections of each shot are registered by a number of detectors 
(typically 96 per 2D shot record and 240 per 3D shot record). Stacking techniques have 
been developed in order to improve the S/N ratio and to reduce the amount of data. The so-
called poststack data that result from these techniques are considered as zero-offset data. 
Hence, zero-offset techniques can be used for the migration of stacked data. 
Data reduction by conventional stacking techniques also means loss of information, e.g. the 
resolution is not optimum, from poststack data it is impossible to recover the angle 
dependent reflectivity etc. Contractors in the seismic industry therefore also offer prestack 
processing. In practice, prestack processing is limited to the 2D case. The amount of data 
acquired in a 3D survey - where not only the number of detectors per shot but also the 
number of shots is much larger than in a 2D survey - is in the order of Gbytes. Such a 
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■*- offset 

near offsets far offsets 

Figure 1.3.1 A CMP gather can be acquired Figure 1.3.2 In this CMP gather the 
by reorganizing shot records in such a way that responses of two reflectors can be seen. 
traces with a common source-detector midpoint In practice the near offset traces are 
and different offsets are grouped together. missing. 

huge amount of data can not be processed within reasonable time on present (super­
computers and therefore data reduction techniques are still essential. In this section the 
concepts of CMP stacking, CRP stacking and CDP stacking are briefly discussed. 

CMP stacking 
Before a data set can be CMP stacked, the shot records must be reorganized into CMP 
gathers. In Fig. 1.3.1 the CMP configuration is given. In Fig. 1.3.2 a CMP gather is 
shown for a subsurface in which two horizontal reflectors are present. The arrival time 
difference between an event in the zero-offset trace and the same event in another trace is 
called normal moveout (NMO). Often, the NMO's can be (approximately) described by a 
hyperbolic relationship. The asymptotes of this hyperbola define the so-called stacking 
velocity. A stacking velocity must be determined for the major events in a CMP gather (in 
this example the responses of the two reflectors). After this velocity analysis, an NMO 
correction with respect to the zero-offset traveltime is applied which results in an alignment 
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of the events in the CMP gather. The traces of the NMO corrected gather are then stacked, 
which yields one poststack trace with an improved S/N ratio. This trace is considered as a 
zero-offset trace at the position of the surface midpoint. 
In practice four problems occur: 
1. One stacked event may represent information from different reflection points. 

Although for a dipping reflector the shape of the moveout curve may still be (approxi­
mately) hyperbolic, the information in the CMP gather and therefore also in the CMP 
stacked trace actually comes from different reflection points, see Fig. 1.3.3. For this 
situation the term 'reflection point smear' is in use. It is clear that if the stacked trace is 
considered as a zero-offset trace, errors are introduced that increase with increasing dip. 
Diffraction energy can not be treated correctly: because there is no reflection point 
smear possible, the moveout of a diffractor response is not hyperbolic. 

2. Different structural dips require different stacking velocities. 
This problem, which is known as the 'conflicting dip problem', can be explained with 
the subsurface configuration in Fig. 1.3.4. The CMP gather contains information from 
two reflectors. However, it is not possible to stack both events using one stacking 
velocity. 

3. Due to acquisition methods/limitations, the members of a CMP gather may have 
different individual midpoints and therefore a 'common midpoint' actually may not exist 
and a binning process is required. Especially in 3D data processing the so-called 
binning problem (sorting the data according to the midpoint) is notorious. 

midpoint 

Figure 1.3.3 In case of a dipping reflector a CMP gather contains information of different reflection 
points. This is called 'reflectionpoint smear'. 
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- offset 

midpoint 

Figure 1.3.4 Reflectors with the same 
zero-offset travel time but different moveout 
curves, require different stacking velocities. 
This is the so-called 'conflicting dip problem'. 
In a. the configuration is shown, in b. 
the CMP gather. 

4. In situations with a very complex geology, reflection times in a CMP gather may not be 
described by a hyperbolic relationship and in that case the concept of 'stacking velocity' 
does not exist. However, in situations with a moderately complex geology the 
'hyperbolic assumption' holds surprisingly well, especially in the near-offset part of the 
CMP gather. 

CRP stacking 
An improved stack in which diffraction energy and different dips are preserved can be 
achieved by applying dip moveout (DMO) processing, also known as prestack partial 
migration (Yilmaz and Claerbout, 1980). In DMO processing the reflection point smear is 
replaced by a midpoint smear, see Fig. 1.3.5. The quality of a DMO stack in case of 
complicated structures is not optimum. Improvement can be achieved with CRP stacking 
(Berkhout, 1985; French, 1986 and Van der Schoot, 1989). However, CRP stacking still 
requires the concept of hyperbolic moveout to be applicable. 



1.4 POSTSTACK MIGRATION: A HISTORIC OVERVIEW 13 

midpoint smear 

CMP gather 

reflection points 

Figure 1.3.5 In DMO processing the 'reflection point smear' is replaced by 'midpoint smear'. 

CDP stacking 
The best poststack data are acquired by CDP stacking. In the CDP method the midpoint at 
the surface is replaced by a grid point below the surface: the common depth point. This 
method is the most general one: there are no special assumptions for the shape of moveout 
curves (or subsurface complexity), shooting geometries, dip-angles of reflectors etc. CDP 
stacking is part of the TRITON processing scheme, see section 1.5. Good references are 
Berkhout (1984), Wapenaar (1986) and Kinneging (1989). 

1.4 POSTSTACK MIGRATION: A HISTORIC OVERVIEW 

During the last decades new poststack migration techniques have been developed and 
existing techniques have been improved upon. At the basis of all these methods is the half 
velocity substitution or exploding reflector model. Although an approximation, the model is 
such a powerful tool that it is always used in poststack migration methods. In this section a 
historic overview of these methods will be given. 
The first computer migration, which took over from manual migration techniques in the late 
1960s, was an implementation in 2D of the so-called diffraction summation method for 
zero-offset data (Hagedoorn, 1954). In this method every grid point in the x-z domain is 
considered as an exploding point diffractor. The reflectivity of such a grid point (which 
should be determined by migration) is found by a summation of zero-offset trace 
amplitudes along the corresponding hyperbolic trajectories in the x-t domain, see also 
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section 1.2 example 2. Obviously the method is based on the assumption that the zero-
offset response of a point-diffractor is a hyperbola. However, this is true for a constant 
velocity medium only and approximately true for a horizontally layered medium in which 
case the rms velocity is used. In the presence of strong lateral velocity variations the 
hyperbolic assumption is no longer justified and the hyperbolic diffraction summation 
method will fail to produce correct results. It is interesting to mention that the method is 
purely based on geometrical arguments (ray theory) and not on wave theory. Properties that 
follow from wave theory and that are not taken into account by diffraction summation are: 
the spherical spreading in wave propagation, the directivity factor and the time 
differentiation factor, see also section 2.3. The low frequency appearance of early 
migration results can be explained by the neglection of the time differentiation factor. 
Improvements can be reached with the 'wave equation' migrations that have been 
developed later and that will be discussed next. 

The majority of those migration methods is based on the one-way acoustic wave equation. 
According to the one-way approximation up- and downgoing wave fields can be treated 
independently. Because the exploding reflector model is assumed for zero-offset data, 
upgoing waves need to be considered only. Acoustic means that compressional waves are 
taken into account only and that shear waves are neglected. Most of the wave equation 
migration methods consist of the repeated application of two steps: wave field extrapolation 
and imaging. 
Wave field extrapolation techniques are used to downward continue data from one depth 
level, e.g. the surface, to a deeper level. Hence, wave field extrapolation makes it possible 
to transform surface data into data as they would have been recorded at an arbitrary depth 
level below the surface. In one-way extrapolation techniques a distinction is made between 
forward extrapolation and inverse extrapolation. In forward extrapolation the direction of 
wave propagation and the direction of extrapolation are the same; in inverse extrapolation 
the direction of wave propagation is opposite to the direction of extrapolation. In zero-
offset migration the wave field extrapolation is of the inverse type: the extrapolation 
direction is downward whereas the waves propagate upwards. Wave field extrapolation 
techniques are either non-recursive or recursive. According to non-recursive extrapolation 
methods the wave fields at depth levels Z;, for i = 1 to N are all computed from the wave 
field at level ZQ', in recursive extrapolation the wave field at level z; is computed from the 
field at level Z;_i for i = 1 to N, see Fig. 1.4.1. Recursive extrapolation is sensitive to the 
accumulation of (small) errors that are involved in each extrapolation step. Therefore 
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c c c c_ 
c 

recursive extrapolation non-recursive extrapolation 

Figure 1.4.1 Recursive and non-recursive wave field extrapolation. 

special care must be taken to prevent problems with instability. The advantage of recursive 
extrapolation is that variations in the medium can be taken into account in a relatively easy 
way. 

The imaging principle states that the reflectivity information at a certain depth level can be 
extracted from the extrapolated data in the time domain at zero travel time. 
The migrated result can be acquired by performing extrapolation and imaging in a recursive 
way for all depth levels of interest. The procedure is shown in Fig. 1.4.2. 

In the early 1970s Claerbout (1970, 1976) published & finite-difference time migration 
method, based on recursive wave field extrapolation and imaging. In his approach the 
spatial derivatives that occur in the wave equation are replaced by finite-difference 
approximations to get an expression for wave field extrapolation. Both his 15° algorithm 
(suitable for migration of reflectors with dip angles up to 15 degrees) and the 45° algorithm 
have become standard migration tools in the seismic industry. Finite-difference migration is 
usually implemented as a so-called time migration algorithm. In time migration the 
extrapolation is performed along the 'vertical time' coordinate, i.e., the size of the extra­
polation steps is equal to the product of the velocity and a constant time interval. As a 
consequence the outcome of time migration is presented as a function of the lateral 
coordinate(s) and 'vertical time', as opposed to depth migration where the result is given as 
a function of the lateral coordinate(s) and depth. 
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Figure 1.4.2 Recursive wave field extrapolation and imaging. According to the imaging principle the 
migrated result at a certain depth level is equal to the zero time component of the extrapolated wave field at 
that level. In a. tof. extrapolated wave fields are shown for increasing depths. In g. to I. the corresponding 
migrated results are shown. 
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Time migration is always implemented in such a way that it performs best in case of a 
laterally homogeneous medium. In section 2.1 extrapolation along the 'vertical time' 
coordinate is discussed in more detail. 

Finite-difference migration is based on recursive extrapolation. This means that the errors 
involved in each extrapolation step will increase with depth. The errors due to the finite-
difference approximation are frequency dependent which causes dispersion effects. 
Extension of the finite-difference method from 2D to 3D is not straightforward. 

At the end of the 1970s a non-recursive migration method called Kirchhoff summation 
migration was presented by French (1975) and Schneider (1978). In this method, which is 
in principle suited for both 2D and 3D, extrapolation is based on the integral formulation of 
the solution of the scalar wave equation. Kirchhoff summation operators are hyperbolic. 
However, in Kirchhoff summation migration the spherical spreading, the directivity factor 
and the time differentiation factor are incorporated. This is the difference with diffraction 
summation. Berkhout and Van Wulfften Palthe (1979) introduced recursive Kirchhoff 
summation migration, in which vertical and lateral velocity variations can be handled in an 
efficient way because local velocities can be used. They also show that Kirchhoff 
summation operators can be seriously distorted by spatial operator aliasing, especially in 
case of the small extrapolation steps that occur in the recursive application. They explain 
that if the extrapolation step goes to zero (limit case), the Kirchhoff operator becomes a 
delta pulse and so, due to the infinite spatial bandwidth, this operator is seriously aliased. 
In chapter 3 of this thesis much attention is paid to the design of recursive Kirchhoff 
operators that are properly band-limited such that spatial operator aliasing is precluded. 

The migration methods that have been mentioned so far are all implemented in the space-
time domain. Another class is formed by the wavenumber-frequency domain migration 
techniques. Fourier transformation from the space-time to the wavenumber-frequency 
domain is a way to decompose an arbitrary wave field into monochromatic plane waves, 
each of which propagates in a unique direction. The extrapolation of a monochromatic 
plane wave is very simple: only a phase shift needs to be applied. This property was used 
by Gazdag (1978) for the design of a very efficient depth migration algorithm, called 
phase shift migration, based on recursive wave field extrapolation and imaging. There are 
in principle no errors involved in the extrapolation itself which means that the method is 
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stable. Because of the recursive character of the migration, vertical velocity variations in die 
medium can be handled. However, lateral velocity variations can only be taken into account 
approximately if an extension of this method is used called phase shift plus interpolation 
(PSPI) (Gazdag and Squazzero, 1984). In this extension each recursive extrapolation step 
in which the wave field is downward continued from one depth level to the next is not 
performed once but several times with different constant velocities. This yields a number of 
extrapolated reference wave fields. The imaged result is then computed from the reference 
wave fields by interpolation in the space domain. Although depending on the complexity of 
the macro model, the number of reference wave fields to be computed is generally about 
five. This means that the PSPI method is also about five times less efficient than a simple 
phase shift migration. By far the fastest migration algorithm of today is the so-called Stolt 
f-k migration, (Stolt, 1978). The basis of this method is a procedure which maps the data 
from x,t to x,z in the double Fourier domain. The speed of the method is reached at the cost 
of the possibility of handling velocity variations correctly. To overcome this problem, Stolt 
suggested a time stretching procedure. Prior to migration the data are transformed such that 
they approximate the data that would have been recorded in case of a constant velocity 
subsurface. 
All migration methods in the wavenumber-frequency domain can be easily extended from 
2D to 3D. 

The best properties of migration methods in the space-time domain on the one hand and 
methods in the wavenumber-frequency domain on the other hand are combined in space 
frequency (x,co) migration as introduced by Berkhout (1980). Application of this method 
in three dimensions will be extensively discussed in this thesis. 

A depth migration method that is not based on the principle of recursive extrapolation along 
the depth axis (or 'vertical time' axis in the case of time migration) is the so-called reverse-
time migration (McMechan, 1983 and Baysal et al., 1983). In reverse-time migration the 
recursive extrapolation is performed backwards in time. Starting at the maximum 
registration time, the extrapolation is continued until time zero. During this process the 
zero-offset data are considered as boundary conditions at the surface. The extrapolation 
result at time zero is considered as the migrated section: all depths are then imaged 
simultaneously. The method is implemented in the space-time domain as a finite-difference 
solution of the two-way acoustic wave equation. The results are good; especially the high 
dip performance of the reverse-time migration is excellent. However, due to the finite-
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difference approximation of both the spatial and temporal derivatives, the method is very 
computationally intensive, which is a disadvantage for application in 3D (Chang and 
McMechan, 1989). In addition, the fact that all depth levels are imaged simultaneously at 
the last recursive step (zero time) is considered as a major drawback. 
3D Processing has entered the seismic industry in the early 1980s. However, as is 
discussed in section 1.6, in many cases the existing 2D techniques are used in a 2 times 2D 
way to approximate full 3D processing. This is not correct for inhomogeneous media. 

1.5 TRITON PHILOSOPHY ON 3D PROCESSING 

According to the TRITON migration scheme (Berkhout et al., 1985) the 3D processing 
consists of the following steps: surface related pre-processing, prestack redatuming to the 
upper boundary of a target zone followed by CDP stacking and zero-offset migration 
within the target zone. The consecutive steps are now discussed. 

surface related pre-processing 
The data as they are recorded can not be used for extrapolation. Some pre-processing steps 
have to be performed first, after which the surface may be considered as being 
homogeneous and reflection free. One effect of the pre-processing is that the surface related 
multiples are removed from the data (Verschuur et al., 1988). The reflection coefficient of 
the surface is normally very large (close to -1). This means that all upward traveling waves 
that reach the surface are not only detected at the surface: they are also reflected, travel 
downwards, reflect at structures in the subsurface and are detected again at the surface etc. 
etc. Of course, waves can also reflect multiple times between structures within the 
subsurface. In that case they are called internal multiples. However, due to the large 
reflection coefficient of the surface, the surface related multiples are always dominant. In 
Fig. 1.5.1 a schematic example of internal multiples and surface related multiples is given. 
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surface related multiples 

internal multiples 

Figure 1.5.1 Internal multiples and surface related multiples. 

macro model versus detail 
Wave field extrapolation methods play a dominant role in the TRITON 3D processing 
scheme. They are used to compensate for the propagation effects of the medium. To do this 
properly a model containing the propagation properties of the medium is required. It turns 
out that wave propagation is determined by the macro parameters of the medium which 
represent the trend information of each major geological layer. The reflection of waves is 
determined by the 'micro' parameters of the medium which describe the fast changes in 
the medium: the deviations from the macro parameters, see Fig. 1.5.2. It seems 
contradictory that a macro model containing information about the medium is necessary 
prior to migration which has the purpose to collect this information. However, the required 
macro model only needs to contain the trend information in each macro layer, which is 
defined by the travel times. The detailed reflectivity information can then be found from the 
amplitudes by applying migration techniques. 

redatuming to the upper boundary of the target zone 
Usually seismic interpreters are especially interested in a detailed map of the part of the 
subsurface where a reservoir might be present: the target zone. Hence, it is not necessary to 
do expensive processing on all the data in order to get a detailed map of the whole of the 
subsurface. An accurately detailed image of the target zone will be sufficient. The most 
important processing step in TRITON is redatuming. Shot records are extrapolated with a 
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Figure 1.5.2 The propagation of waves is determined by the macro properties of the medium (trend 
information), whereas the reflection of waves is determined by the 'micro properties' (detailed information). 
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non-recursive generalized Kirchhoff technique from the acquisition surface to a new datum 
somewhere in the subsurface. This new datum can be the upper boundary of the target 
zone. After redatuming the shot records can be considered as if they had been acquired at 
the upper boundary of the target zone. The propagation properties of the overburden have 
been removed from the data by wave field extrapolation (redatuming), the propagation 
properties of the target zone are still in the data together with the reflectivity information. 
For a further discussion the reader is referred to Peels (1988) and Kinneging (1989). 

construction of zero-offset data at the target boundary, CDP stack 
Redatuming also offers the possibility to construct other offsets at the upper boundary of 
the target than the offsets in the original shot records. This means that zero-offset data can 
be constructed. Unlike methods as CMP stacking or CRP stacking, which are based on 
hyperbolically shaped moveout curves, there are no such limitations when constructing 
zero-offset data after redatuming. Therefore this way of zero-offset data generation can be 
considered as a true CDP stacking method. The quality of the zero-offset data is generally 
excellent because high dip information is conserved as well as diffraction energy. 

macro-model estimation/verification 
A good macro model is essential for the success of wave field extrapolation techniques 
such as redatuming and migration. An initial estimate of a macro model can be obtained 
from stacking velocities and picked travel times (Van der Made, 1988). In this case travel 
times in CMP gathers are used. However, due to the shortcomings of the CMP concept, 
see section 1.3, the estimated macro model may deviate from the true model, especially 
when the medium is complex. 
A better macro-model estimation technique is based on the examination of the consistency 
in CDP gathers. If the coherency in the CDP gathers is not optimum, this information is 
used to determine how the model should be changed in order to get an improved update. 
This process can be repeated iteratively which will converge to the desired result: an 
accurate macro model. In the TRITON project macro-model estimation is based on 
redatuming (Cox et al., 1988). 

zero-offset migration within the target zone 
After redatuming with a good macro model, a high quality zero-offset data set is available at 
the upper boundary of the target zone. The size of this zero-offset data set is considerably 
smaller than the size of the prestack data before redatuming, which makes further full 3D 
processing feasible. As stated before, the redatuming has removed the propagation effects 
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of the overburden. However, the propagation properties of the target zone are still included 
in the zero-offset data together with the reflectivity properties. To produce a good 
reflectivity map of the target zone from which the propagation effects have been removed, 
zero-offset migration can be applied. This zero-offset migration should be able to deal with 
complex macro models. Also it should not be limited in its ability to handle steeply dipping 
events. Such a 3D zero-offset migration is proposed in chapter 4. 

1.6 2D VERSUS 3D 

The use of 2D data acquisition and processing techniques is justified in areas where the 
medium parameters are a function of depth and one lateral direction only. Unfortunately 

2D extrapolation 
x-direction 

imaging 

2D extrapolation 
x-direction 

imaging 

etc. 

2D extrapolation 
^-direction 

imaging 

2D extrapolation 
y-direction 

3D extrapolation 
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x- and y-direction 

imaging 

etc. 
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etc. 

Figure 1.6.1 1 Two-step or two-pass migration. 
U One-step or single-pass migration in combination with operator 

splitting. 
Ill One-step or single-pass migration in full 3D. 
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such areas are not often found in practice. Since long it has been recognized that in case of 
a complex subsurface structure a 'hi-fi' image can only be achieved by using 3D techniques 
(French, 1975). 

If the velocity variations in the medium are very small, such that a homogeneous macro 
model is a sufficient description of the propagation properties of the medium, 3D zero-
offset migration can be carried out as a sequence of 2D zero-offset migrations (Gibson, 
Larner and Levin, 1983; and Jakubowicz and Levin, 1983). First, all 2D cross sections of 
the 3D zero-offset data in the x-direction are processed. Next, all 2D cross sections in the 
perpendicular y-direction are treated, see Fig. 1.6.1. This way of processing is called 'two-
step' or 'two-pass' 3D migration. Its advantage is that all standard 2D migration algorithms 
can be used and that the method has in principle no dip limitations. 

However, usually it is impossible to describe the propagation properties of the subsurface 
satisfactorily with a homogeneous macro model. Hence, two-step methods are not allowed 
in seismic exploration and 'one-step' or 'one-pass' 3D migration methods should be used 
instead. These are either approximately 3D, in case of operator splitting, or full 3D. Both 
types are now discussed. 

If the reflected energy is not steeply dipping, a migration method can be used which is 
based on the concept of operator splitting. The principle of the method is recursive 
extrapolation and imaging. Each extrapolation step is performed as follows: first all 2D 
cross sections of the data in the x-direction are extrapolated using 2D operators; next all the 
2D cross section in the y-direction of the result are extrapolated again with 2D operators, 
see Fig. 1.6.1. The problem is how to split a full 3D operator which depends on both x and 
y into independent 2D operators which depend on either x or y. It turns out that this 
operator splitting can only be done accurately in the small dip angle approximation (Ristow, 
1980; Brown, 1983). 
Full 3D migration should be used in case of complex media where steeply dipping 
reflectors are present. This method is also based on recursive extrapolation and imaging. 
However, each extrapolation step is performed in a full 3D way, see Fig. 1.6.1. 

The properties of the different 3D migration methods are summarized in Table 1.1. 
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Table 1.1 The properties of different 3D migration methods. 

two-step 

one-step 
operator splitting 

one-step 
full 3D 

steep dips 

yes 

no 

yes 

velocity variations 

no 

yes 

yes 

1.7 OUTLINE 

Migration methods are based on wave field extrapolation. In chapter 2 of this thesis an 
inventory of wave field extrapolation techniques is presented. A choice is made for one­
way acoustic wave field extrapolation in the space frequency domain with recursive 
Kirchhoff operators. The design of these operators in which both their accuracy and their 
efficiency are central, is discussed in chapter 3. The application of the recursive Kirchhoff 
extrapolation operators in migration is the subject of chapter 4. One of these migration 
techniques, full 3D zero-offset migration, was implemented. The details of this 
implementation are given in chapter 5 and in chapter 6 examples and results of the 3D zero-
offset migration algorithm are shown. Finally, in the appendix, the application of the 
recursive Kirchhoff operators in 3D zero-offset modeling is discussed. 
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CHAPTER 2 

AN INVENTORY OF WAVE FIELD 
EXTRAPOLATION TECHNIQUES IN 

MIGRATION 

2.1 INTRODUCTION 

Wave field extrapolation is the key part of all migration techniques that are based on the 
wave equation. Most of the present techniques are based on the acoustic wave equation, 
i.e., compressional waves are taken into account only and shear waves are neglected. In 
this thesis we restrict ourselves to the acoustic case. A full elastic seismic processing 
scheme is developed in the DELPHI*) project (Berkhout and Wapenaar, 1988). In the 
introduction of this chapter we start with expressions for the one-way and two-way 
acoustic wave equation. The role of the Taylor series expansion in wave field extrapolation 
is shown. The Taylor series expansion is also used in the derivation of finite-difference 
expressions. This is illustrated with some examples. 
Next, the properties of a number of 3D acoustic wave field extrapolation methods are 
discussed. The are classified according to the coordinate along which the extrapolation is 
performed: 
- time, 
- depth, or 
- 'vertical time'. 
Furthermore, the methods can be characterized by the domain in which the extrapolation is 
performed: 
- space-time domain, 
- space-frequency domain, or 
- wavenumber-frequency domain 
and by the numerical technique that is used: 
- recursive explicit, 
- recursive implicit, 

* DELPHI represents an international research consortium at the Laboratory of Seismics and Acoustics at 
the Delft University of Technology. 
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wave field extrapolation 

c = c(x,y>z) d 0 r ™ n c = c(z) 

f —) 
space-time space-frequency wavenumber-freqüêncy 

extrapolation coordinate 
used in depth migration 

f 
used in time migration 

time depth 'vertical time' 

technique 

\ 
recursive non-recursive 

explicit implicit hyperbolic non-hyperbolic 

Figure 2.1.1 Classification of extrapolation techniques. Conventional finite-difference extrapolation: 
implicit, recursive extrapolation along the 'vertical time' coordinate, performed in the space-time domain. 
Conventional Kirchhoff summation: hyperbolic, non-recursive extrapolation along the 'vertical time' 
coordinate, performed in the space-time domain. Redatuming (generalized Kirchhoff summation): non-
hyperbolic, non-recursive extrapolation along the depth coordinate, performed in the space-frequency 
domain. Reverse-time extrapolation: recursive extrapolation along the time coordinate, performed in the 
space-time domain. Phase-shift extrapolation: explicit, recursive extrapolation along the depth or 'vertical 
time' coordinate, performed in the wavenumber-frequency domain. In this thesis we choose for: explicit, 
recursive extrapolation along the depth coordinate, performed in the space-frequency domain. 
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- non-recursive hyperbolic, or 
- non-recursive non-hyperbolic. 
This classification is also shown in Fig. 2.1.1. 
For migration, a choice is made for recursive explicit depth extrapolation. In the next 
sections the focus is on extrapolation methods of this type. Aspects that are included 
concern the flexibility of the method with respect to velocity variations in the medium, its 
robustness, the domain in which the extrapolation is performed, the implementation etc. 

Acoustic wave equation 
The extrapolation techniques discussed in this chapter have in common that they are based 
on the acoustic wave equation. For an inhomogeneous fluid without losses and without 
sources, the linearized equation of motion and the linearized equation of continuity are 
given by 

and 
r ? — a r (2-i} 

KV.v = - | (2.2) 

respectively. 
Here p = p(x,y,z,t) represents the acoustic pressure, 

v = v(x,y,z,t) represents the particle velocity, 
p = p(x,y,z) represents the mass density, 
K = K(x,y,z) represents the adiabatic compression modulus, 
x, y and z represent the Cartesian coordinates (positive z-values correspond to 

the downward direction) and 
t represents time. 

Elimination of the particle velocity by substitution of eq. (2.2) in eq.(2.1), yields an 
expression for the two-way wave equation for acoustic pressure 

V.( i V P ) = l f E - . (2.3) 
p K dt2 

If the gradient of p may be neglected, eq. (2.3) can be written as 

V 2 P = ^ , (2.4) 
c2 3t2 

where c = c(x,y,z) = VK/p represents the wave propagation velocity. Note that the 
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influence of the density has not disappeared from wave equation (2.4) altogether: the 
contribution of the density is still included in the propagation velocity. 

The equations given so far are formulated in the space-time domain. With Fourier 
techniques it is possible to perform transformations from the time domain to the frequency 
domain and/or from the space domain to the wavenumber domain and vice versa. In this 
thesis, the following definitions apply to the Fourier transformations: 
- The forward temporal Fourier transform of a real function g(x,y,z,t) from the time 
domain to the frequency domain is defined as 

G(x,y,z,co) = f g(x,y,z,t) e ^ ' dt. (2.5) 
J—oo 

Note that G(x,y,z,-co) = G*(x,y,z,co) because g(x,y,z,t) is real. This property is used in 
the definition of the inverse transformation. 
- The inverse temporal Fourier transformation is defined as 

g(x,y,z,t) = ^ Real r 
Jo 

G(x,y,z,co) e+J™ da> (2.6) 

Here co represents the circular frequency. Note that only positive frequencies appear in 
eq. (2.6). The temporal Fourier transform of a function is indicated with a capital. 
-The double forward spatial Fourier transformation from the space domain to the 
wavenumber domain is defined as 

G(kx,ky,z,co)= j j G(x,y,z,co)e+Jk'xe+Jk'>'dxdy. (2.7) 

- The double inverse spatial Fourier transformation is defined as 

G(x,y,z,Cö)=j—j \\ G(kx,ky,z,co) e-Jk"x e-Jkxy dkxdky. (2.8) 

The spatial Fourier transform of a function is indicated by the symbol ~. 
If G satisfies the wave equation, kx and ky represent the x- and y-component of the wave 
vector k. A Fourier transformation from the space-time domain to the wavenumber-
frequency domain of the wave field registered at the surface is a way to decompose the 
wave field into monochromatic plane waves, each of which travels in the direction defined 
by wave vector k. 
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An additional Fourier transformation with respect to z can be defined in a similar way. 
- The forward spatial Fourier transformation with respect to z is given by 

G(kx,ky>kz,(ö) = I G(kx,ky,z,co) e+i** dz . (2.9) 
J-oo 

- The inverse spatial Fourier transformation with respect to z is given by 

G(kx,ky,z,co) = — f Ö(kx,ky,kz,co) e"** dkz . (2.10) 
27t/-~ 

Here kz represents the z-component of the wave vector k. The triple spatial Fourier 
transform is indicated by the symbol ~. 

From the Fourier integrals the following properties with respect to differentiation can be 
derived. 
- Differentiation with respect to time, d/dt, is equivalent to multiplication by +jco in the 
frequency domain 

3/3t<->+jo>. (2.11a) 
- Similarly: differentiation with respect to the spatial coordinates, 3/3x, d/dy and d/dz, is 
equivalent to multiplication by -jkx, -jky and -jkz respectively in the wavenumber domain 

3/3x <-» -jkx, 
a/3y<->-jkyi (2.11b) 
d/dz <-> -fa. 

Eq. (2.4) can be rewritten as 

d P -, d P , d P i a P = 0 
, 2 - . 2 - . 2 2 2 
3x dy dz c 3t (2.12a) 

The equivalent expression in the space-frequency domain is 

dx dy ^ (2.12b) 
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where k = k(x,y,z) = co/c(x,y,z), and in the wavenumber-frequency domain 

0- + (k*-l4-kj)p = O. (2.12c) 

Here k = k(z) = co/c(z). 
The well known dispersion relation can be found by performing a spatial Fourier 
transformation with respect to z as well 

k 2 - k * - k j - k * = 0. (2.12d) 

In this equation k = co/c, with c constant. 

The expressions (2.12) are the basis of various wave field extrapolation techniques. 

Taylor series expansion 
The well known Taylor formula for series expansion can be used to derive an expression 
for wave field extrapolation. E.g., extrapolation along the time coordinate can be written as 

p(t)=p(t„) + — ^ + ^ r ^ r + ~^r^ + ■■■ ( 2-1 3 ) 

This equation states that the pressure field at any time t can be computed from the pressure 
field and its derivatives towards t at time t„. The Taylor series expansion of the exponential 
function 

exp(x) = l + f r + 2 7 + ^ 7 + ■•• <2-14) 

can be used to rewrite eq. (2.13) in a symbolic notation as 

p(t)=exp[(t-tn)^-]p(tn). (2.15) 
Otn 

Substitution of t = tn+At, with At some positive time interval, yields 
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p(tn±At) = exp(±At J - ) p(tn). (2.16) 

The derivatives that occur in eq. (2.16) can be computed from the wave equation, e.g., for 
3^/310^15 is simple: the expression follows directly from eq. (2.12a). 
The accuracy of the extrapolation depends on the number of terms that is included in the 
Taylor series, the extrapolation step size and the accuracy with which the derivatives are 
known. 
An expression similar to (2.15) can be derived for extrapolation along the depth coordinate, 
e.g., 

p(z) = exp[(z-z i)^-]p(Zi). (2.17) 

According to eq. (2.17) the pressure field at any depth z can be computed from the pressure 
field and its derivatives towards z at depth level Zj. 

The Taylor series approximation can also be used to derive finite-difference expressions for 
differentials. From the first order Taylor series expansion 

pdn+AO-pdn) ± A t § - . (2.18) 
otn 

the following much used finite-difference expressions for the first derivative can be 
derived: 

|f- = ̂ [p(tn)-p(t„-At)] (2.19a) 

and 

|^~^[P( tn+At)-p( t n ) ] , (2.19b) 

Addition of eq. (2.19a) and (2.19b) yields the following centered finite-difference 
expression for the first derivative 

I t 1 " 2At [ p ( t n + A t ) ~ P ( t"-A t ) ] • (2-20) 
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The well known approximation for the second derivative 

3t2 At2 [p(tn+At)-2p(tn) + p(tn-At)] (2.21) 

can be found by substituting expression (2.19b) into the second order Taylor series 
expansion 

p(t, :n-At) = p ( t n ) - A t è U ^ . 
dtn 2 at? 

(2.22) 

Finite-difference expressions similar to (2.19), (2.20) and (2.21) can be derived for d/dx, 
32/3x2, d/dy, 32/3y2, 3/3z and 32/3z2. 

Extrapolation along the time coordinate 
The expression for time extrapolation that is commonly used is formulated in the space-time 
domain. It is based on the second order Taylor series expansion 

p(x,y,z,tn±At) = p(x,y,z,tn) ± At ^ + -^- -f . . 
otji -i 9t2 

(2.23) 

Substitution of finite-difference expression (2.19) for 3p/3t„ and using two-way wave 
equation (2.12a) for 3 ^ / 3 ^ yields 

_ c2At2 
p(x,y,z,tn±At) = 2p(x,y,z,t„) - p(x,y,z,tn+At) + —=— 

3x2 3y2 3z2J ( 
(2.24) 

Replacing the second derivatives towards x, y and z by finite-difference expressions as in 
eq. (2.21) yields the following discretized expression for reverse-time extrapolation (Chang 
and McMechan, 1989, andMcMechan, 1983) 

Pk.l,m(tn±At) = 2 ( l -3a 2 ) Pk,l,m(tn) - Pk,l,m(tn+At) + (2.25) 

+ a 2 (pk+l,l,m(tn) + Pk-Um(tn) + Pk,l+l,m(tn) + Pk,l-l,m(tn) + Pk.l,m+l(tn) + Pk,l,m-l(tn)) • 
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Here pk,i,m(tn) is a shorthand notation for p(kAx,lAy,mAz,nAt), Ax = Ay = Az = h is the 
grid spacing and a = a(x,y,z) = cAt/h. (The same expression can also be found in a direct 
way by replacing the differentials in eq. (2.12a) by finite-difference approximations as in 
eq.(2.21)). 
Expression (2.25) states that in forward time extrapolation the wave field at time t+At is 
computed explicitly from the wave fields at times t and t-At. Similarly, in reverse time 
extrapolation the field at time t-At is computed from the fields at times t and t+At. 
Extrapolation along the time coordinate can be used in modeling (forward) as well as in 
migration (reverse). 
When used in zero-offset migration, the data provide the surface boundary conditions for 
the extrapolation: pk ] 0 (t^j). The reverse extrapolation is performed recursively from the 
final registration time T to zero time. The wave fields at times T+At and T+2At (which are 
necessary to initialize the extrapolation) are taken zero. The extrapolated wave field at zero 
time is the migrated result: all depths are imaged simultaneously at the final extrapolation 
step. Note that this property makes reverse-time extrapolation unsuitable for redatuming. 

To keep the grid dispersion, which is inherent in the finite-difference approximation, to an 
acceptable level, the number of grid points per dominant wave length -̂dominant should be 
about 10 to 20 

A. 
, ^ dominant 

20 ' (2.26) 
The maximum finite-difference time step is limited by the stability condition 

c*3 (2.27) 
As long as these conditions are satisfied the results of reverse-time extrapolation are good. 
Especially the high dip performance is excellent. However, the large number of grid points 
and the large number of time steps that are necessary cause the reverse-time extrapolation 
process in migration to be computationally intensive. Also the required computer memory 
is large: preferably the entire data volumes at two consecutive times should be stored in 
core memory. 

Reverse-time extrapolation according to eq. (2.25) is based on the two-way acoustic wave 
equation. This means that both up- and downgoing waves are extrapolated simultaneously. 
So, apart from primary waves also multiply reflected waves and transmission effects are 
taken into account. This property is an advantage if the extrapolation is used for modeling. 
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However, when used in migration two-way extrapolation may cause problems that are 
related to multiply reflected waves. This can be explained as follows. A two-way 
extrapolation generates 'artificial' multiples at acoustic impedance contrasts in the macro 
model. These multiples should interfere destructively with the 'real' multiples in the data. 
However, in general the macro model is not perfectly known. The result of this is not only 
that the 'real' multiple energy is not suppressed, but also that spurious multiple energy is 
introduced which distorts the result. This will also be the case if two-way extrapolation is 
applied to data from which the multiples have already been removed by some multiple 
elimination technique. The generation of unwanted energy can partly be suppressed by 
using a smoothed macro model (Loewenthal et al., 1987). Actually, the introduction of 
smooth boundaries in the macro model has the effect that the two-way method is used in a 
kind of one-way mode. 
Furthermore, we mention a problem of reversé-time extrapolation in migration that occurs 
even if the macro model is accurately known. It is explained with the aid of the example in 
Fig. 2.1.2. In Fig. 2.1.2a the model is shown. It consists of one horizontal interface. At 
the surface the seismic experiment is carried out. The arrows indicate the direction of the 
waves: nr.1 represents the source field, nr.2 the reflected field and nr.3 the transmitted 

registration at surface 

a. seismic experiment 

not registered 

b. reverse-time extrapolation 
in migration 

Figure 2.1.2a Seismic experiment. The arrows represent the source wave field (1). the reflected wave 
field (2) and the transmitted wave field (3). Data are only acquired along the surface. This means that the 
transmitted wave field is not registered. 
Figure 2.1.2b Reverse-time extrapolation in migration. The registered data are put into the 
extrapolation scheme as boundary condition at the surface. The transmitted wave field is not registered and 
is not put into the scheme. The consequence is that a spurious image is produced by the reverse-time 
extrapolation. 
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field. Notice that only at the surface detectors have been placed. Hence, the transmitted 
field is not registered. However, it is required for a correct reconstruction. Therefore, 
reverse-time migration will not be able to give optimum results. Instead, it produces 
spurious images. 
This is illustrated in Fig. 2.1.2b where the spurious field is indicated by arrow nr.4. In 
order to get a perfect image of a certain area, the reflected and transmitted wave field should 
be known at a closed surface surrounding this area. 

In an extrapolation scheme based on the one-way wave equation all reflections are 
considered as upgoing primary waves. This means that multiples and transmission effects 
are not handled correctly. However, no spurious energy is generated if an incorrect macro 
model is used. Because of this robustness we prefer one-way techniques in migration. The 
influence of multiples on the data should be reduced in advance, see section 1.5. 

A reverse-time extrapolation technique based on the one-way wave equation was developed 
by Baysal et al. (1983) for the 2D case. To show the principle, we start with dispersion 
relation (2.12d): 

w = W f e ) 2 + f e ) 2 + i • (2-28) 
or, with +jco <-» d/dt 

The plus sign represents downgoing waves, whereas the minus sign corresponds to 
upgoing waves. This can be understood as follows. For clarity we consider waves that 
travel in the vertical direction only, i.e., kx = ky = 0. So, according to eq. (2.29) these 
waves are described by 

^ ^ = ±jckzP(k2,t), (2.30) 

or, with -jkz <-> d/dz 
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op(z,t) op(z,t) 
at + c 9z • (2-31) 

Downgoing waves can be described by p+(ct-z): as time increases, depth increases as well, 
whereas upgoing waves are characterized by p~(ct+z): as time increases, depth decreases. 
From this it follows that downgoing waves satisfy 

3 P ^ = _ C Ö P ^ 0 ( 2 3 2 
at dz 

and upgoing waves: 

9j^!0= + c3pJz I0 ( 2 3 2 b ) 
dt dz 

Note that the downward propagation in eq. (2.32a) corresponds to a plus sign in 
eq. (2.30). Equivalently, the upward propagation in eq. (2.32b) corresponds to a minus 
sign in eq.(2.30). 
We may extend this result to the more general case where the wave propagation has 
components in the x- and y-direction as well and we conclude that the plus sign in 
eq. (2.29) corresponds to downgoing waves whereas the minus sign in eq. (2.29) 
corresponds to upgoing waves. 
In reverse time zero-offset migration the extrapolation of upgoing waves plays an important 
role. Hence, we choose the minus sign in eq. (2.29): 

a p - W z , t ) = _ j c k ^ | ^ 2 + | | 2 + i r ( k x k y k z t ) ( 2 3 3 ) 

The square root operator can not be expressed explicitly in the space domain and therefore 
it is computed in the wavenumber domain using forward and inverse triple spatial Fourier 
transformations (F and F~ ), (Gazdag, 1981). The expression for the one-way 
extrapolation is obtained from the centered finite-difference approximation of the time 
derivative, eq. (2.20) 

Pw.m(tn±At) = p-k,,,m(t„-At) ± ̂ ^ - 2At, (2.34) 
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or, with (2.33) 

(2.35) 

P"k.1,m(tn±At) = p-kil,m(tnTAt) + 2At cF-» [j k - V f e ) 2 + (fef+1 F [ p _ ( t n ) ] | k.,,m • 

Apart from the fact that it is a one-way technique that can handle steep dips, reverse-time 
extrapolation according to eq. (2.35) has the advantage that numerical dispersion due to a 
finite-difference approximation of the spatial derivatives does not occur because these are 
computed in the wavenumber domain. However, the triple spatial Fourier transformations 
that are necessary in the 3D case at each extrapolation step, the large number of steps (small 
At) and the large memory requirements, cause this method to be unattractive from a 
computational point of view. 

Extrapolation along the depth coordinate 
In recursive extrapolation along the depth coordinate, the extrapolation is performed with 
constant depth steps Az. According to eq. (2.17) depth extrapolation can be written as 

p(x,y,z,t) = exp [(z-zik— ] p(x,y,Zi,t) . 

Substitution of -jkz for 3/3z; (see (2.11)) yields the following expression in the 
wavenumber-frequency domain 

P(kx,ky,z,CD) = exp [-jkz(z-zO ] P(kx,ky,Zi,co) , (2.36) 

where, according to wave equation (2.12d), kz is defined as 

kz = ±Vk2-ki-k£ for k2 + k2. S k2 

and (2.37) 
kz = ±jVk2 + k 2 - k 2 fork2 + k2 > k2 . 

Here k = co/c, with c constant. 
Note that nor the direction of the extrapolation, forward or inverse, nor the mode of 
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extrapolation, down- or upward, has yet been defined. E.g., in the next section we derive 
the following recursive expression for the inverse extrapolation of waves that propagate 
upwards: 

P(kx,ky,zi+1,co) = F(kx,ky,Az,co) P(kx,ky,Zi,co) , 
with (2.38) 

F(kx,ky,Az,co) = exp (jVk2-k?-k^ Az), for kĵ +ky- < k2 . 

Here Az = z i + 1-z i , zi+1>Zi. 
Vertical velocity variations can be handled by adjusting the velocity at each extrapolation 
step. In section 2.2 wave field extrapolation in the wavenumber-frequency domain is 
treated in detail. It is argued that an implementation in this domain results in a very efficient 
scheme that has no dip limitation. However, in the wavenumber domain it is difficult to 
deal with lateral variations. If the extrapolation is performed in the space domain, the lateral 
variations can be handled. Recursive extrapolation along the depth coordinate in the space-
frequency domain is discussed in section 2.3. 

Wave field extrapolation according to eq. (2.38) is of the explicit type. An example of an 
implicit expression for extrapolation formulated in the wavenumber-frequency domain is 

exp (-jkz — ) P(kx,ky,zi+1,co) = exp (+jkz — ) P(kx,ky,Zi,co) , (2.39) 

or, 

exp(+jkz — ) _ 
P(kx,ky,Zi+i,co) = -2— P(kx,ky,zi,co) . (2.40) 

e x p ( - j k 2 y ) 

The advantage of an implicit formulation is that stable finite-difference schemes can be 
derived from it. Even if an approximation of the operator is used, its amplitude can always 
be defined such that it equals unity. This is because the numerator and the denominator of 
the operator in eq. (2.40) are complex conjugates. Of course, phase errors will be present 
in the approximation. Furthermore, implicit finite-difference schemes for the 3D case are 
complicated unless operator splitting techniques are used (Ristow,1980). Because we reject 
operator splitting in favor of full 3D operators, we prefer the explicit formulation. As we 



2.1 INTRODUCTION 41 

shall see in the next chapter, stable 3D wave field extrapolation operators can be designed 
for use in explicit schemes. 

Non-recursive extrapolation along the depth coordinate can be performed either with 
hyperbolic operators or with non-hyperbolic operators, see Fig. 2.1.1. 
If hyperbolic operators are used (Kirchhoff summation) lateral velocity variations can not 
be handled correctly. Therefore a hyperbolic technique is rejected. 
Non-recursive depth extrapolation with non-hyperbolic operators (generalized Kirchhoff 
summation) would be the alternative. Note that such a method requires different 
extrapolation operators for every lateral position at each depth level. This is considered as a 
major disadvantage for application in migration where the extrapolation result at all depth 
levels is required (especially because a recursive extrapolation technique produces 
extrapolation results at all depth levels by necessity). However, for redatuming, where the 
extrapolation result is required at one depth level only, non-recursive non-hyperbolic depth 
extrapolation is pre-eminently suited. Therefore it is used in the TRITON scheme 
(Kinneging, 1989), see also section 1.5. 

Extrapolation along the 'vertical time' coordinate T 
In recursive extrapolation along the 'vertical time' coordinate the extrapolation is performed 
with steps cAT, AT being constant. To arrive at an expression for extrapolation along the 
time coordinate we start with operator F as given in eq. (2.38): 

F(kX)ky,Az,co) = eJ^k2- k* -ky Az . (2.41) 

This expression can be rewritten as 

F(kx,ky,Az,co) = eJkAz d (V^-k^-k2 . - k) Az t (2.42) 
or 

F(kx>ky,Az,cu) = ejkAz eJkzAz . (2.43) 

In migration schemes k̂  is usually approximated by some series expansion (Taylor, 
continued fraction, etc.). It turns out that the expansion of ki converges better than the 
square root term in eq.(2.41). As mentioned, the steps in extrapolation along the time 
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coordinate have the size cAT. This yields 

F(kx,ky,AT,co) = eJk(cAT) eJk'z(cAT), 
or 

F(kx,ky,AT,co) = eJöAT ejkz(cAT). 

Notice that the first term in this equation is a simple time shift. 
We will now discuss three situations: 
1. c = constant, 
2. c = c(z)and 
3. c = c(x,y,z). 

1. In case of a constant velocity medium, there is no difference between extrapolation 
along the depth coordinate and extrapolation along the 'vertical time' coordinate. This is 
because the step size in 'vertical time' extrapolation, cAt, is constant, like Az is constant in 
depth extrapolation. 
2. If the velocity is a function of depth, c = c(z), the step size in 'vertical time' 
extrapolation is no longer constant.Therefore, in this case the time migrated result is a 
stretched version of the depth migrated result (or the other way around). Hence, use of time 
migration means that the vertical time to depth conversion is not carried out. 
3. Problems arise if the velocity is a function of the spatial coordinates, c = c(x,y,z). In 
that case the step size in 'vertical time' extrapolation also varies with x, y and z. The effect 
is that the data are extrapolated to a dipping or even curved interface. The extrapolation 
method that is used however, is derived for extrapolation from a flat surface to some 
arbitrarily shaped surface. Therefore this method is only correct for non-recursive 
applications, starting at a flat datum. Hence, in a recursive application of extrapolation 
along the 'vertical time' coordinate, errors are involved if the velocity varies laterally. The 
situation is shown in Fig. 2.1.3. 
Those errors can be avoided by introducing a reference medium. In this medium the 
velocity is defined as some average of the true velocity such that it is a function of depth 
only: c = c(z), the overbar denotes the reference medium. The size of the extrapolation 
steps is defined as cAt. Hence, the following extrapolation operator is used (see also 
eq.(2.45)): 

(2.44) 

(2.45) 
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nAT. - flat datum 

etc. 

Figure 2.1.3 Extrapolation along the vertical time coordinate does not yield correct results in case of 
lateral velocity variations. The reason is that in the derivation of the method horizontal extrapolation levels 
have been assumed. Here the levels are arbitrarily shaped (Az = c(x,y,z)AT). Only the first (non-recursive) 
step is performed accurately. 

F(kx,ky,AT,co) = eJWAT eJki(cAT). (2.46) 

The error that is introduced by using eq. (2.46) can be found as follows. We start with 
eq. (2.43) 

F(kx,ky,Az,co) = ejkAz ejk'zAz . 

Introduction of the reference medium (k = co/c) yields 

F(kx,ky,Az,co) = eJkAzeJk'zAzej(k-k)Az 

or, substituting Az = cAt, 

F(kx,ky)Az,a)) = eJwAT ejkz(cAt) e)(k-k)(cAt) . 

(2.47) 

(2.48) 

By comparing eq. (2.48) with eq. (2.46) we see that the application of (2.46) means that a 
static correction (thin lens term) is deleted. We conclude that the method is only applicable 
in case of small lateral changes (small dips) in which case this correction may be neglected, 
see Fig. 2.1.4. 
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n A T -

(n+1)AT 

(n+2)AT 

Figure 2.1.4 If a reference medium is introduced, the 'vertical time' extrapolation is performed from 
one horizontal level to the next (Az = c(z)AT). By doing this a static correction is deleted. Therefore, the 
method can only be used in case of small lateral variations (small dips). 

Hence, in either case extrapolation along the 'vertical time' coordinate breaks down in the 
presence of lateral variations. 
The theory and the usual implementation of time migration in the space domain which 
yields the well known 15° and 45° algorithms will not be discussed in more detail. The 
reader is referred to the work of Claerbout (1976,1985). 

Summarizing we state that finite-difference time migration can only be applied successfully 
if the lateral variations in the medium are small and if there are no steeply dipping events. 
The success of time migration in the seismic industry can be explained by the fact that it 
was the first wave equation based computer implementation. Another reason is that the 
velocity model required for time migration is not very critical: although the results may be 
erroneous, they nevertheless 'look good'. And, last but not least, time migration takes 
relatively little computer time. 
It is only of the last years that depth migration in combination with an accurate macro-
model determination technique is recognized as the way to go in case of complex media. In 
the next sections the emphasis is therefore on extrapolation along the depth coordinate. 

Az = cAt 
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2.2 RECURSIVE DEPTH EXTRAPOLATION IN THE kx, ky, co DOMAIN 

The solution of wave equation (2.12c) is 

P(kx,ky,z,co) = e±jVk2-kx-k3 | z;-z | p(kx,ky,Zi,co) for k2+k2 < k2 , (2.49a) 
and 

P(kx,ky,z,co) = e±Vkl+k2-k2 | z;-z | P(kx,ky,Zi,co) for k^+k2 > k2 . (2.49b) 

This well known result can be easily verified by substitution. The expressions for the 
forward extrapolation of upward traveling waves (z<z,) are found by choosing the minus 
sign in eq.(2.49) 

P"(kX)ky>z,co) = e-jVk2-k2-k2 (z;-z) p-(kX)ky,Zj,co) for k2+k2 < k2 , (2.50a) 
and 

P"(kx,ky,z,co) = e-Vki+k?-k2(zi-z) p-(kX)ky,Zj,cü) for k2+k2 > k2 . (2.50b) 

The superscript_ denotes upward traveling waves. 
The part of the wave field for k2 + ky > k2 is generally referred to as the evanescent field. 
The minus sign in eq. (2.50b) is chosen on physical grounds: the evanescent waves 
decrease exponentially. Because of this property, the registration at the surface of reflected 
evanescent waves is below the noise level and therefore these waves can not be used. 

Eq. (2.50) states that the upward traveling wave field at any depth in the subsurface above 
level z; can be computed from the field at level z;. Hence, recursive extrapolation can be 
expressed as 

p-^.ky.Zj.Lü)) = W(kx,ky>Az,co) p-(kx,ky>Zi,co), (2.51) 

where Az = Z; - Zj_j, zj > zj_i, and 

W(kX)ky,Az,co) = e-jVk2-k2-k^ Az f o r k2+k2 ^ k2 > (2.52a) 
and 

W(kx,ky,Az,co) = e-Vki+k^k2 Az f o r k2+k2 > k2 (2.52b) 
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In recursive wave field extrapolation vertical velocity variations can be taken into account, 
because at each extrapolation step a new velocity can be assumed. However, because of the 
double spatial Fourier transformation, lateral velocity variations can not be handled by 
extrapolation according to eq. (2.51). This however can be accomplished in the space 
domain, see the next section. 

The inverse wave field extrapolation operator F is defined such that 

P'(kx,ky,Zi,co) = F(kx,ky,Az,co) P-(kJ(,ky,Zi_1,co). (2.53) 

Substitution of eq. (2.51) into eq. (2.53) yields 

F(kx,ky,Az,co) W(kx,ky,Az,co) = 1 , (2.54) 
or, 

F(kx,ky,Az,co) = W (kx,ky)Az,o)). (2.55) 

Using eq. (2.52) F can be expressed as follows 

F(kx,ky,Az,co) = e+jVk2-k2-ky Az f o r k2+k2 < k2 ; (2.56a) 
and 

F(kx,ky,Az,(ü) = e-^ i+ky-k 2 ** for kx+k2 > k2 . (2.56b) 

The practical application of eq. (2.56b) in the inverse wave field extrapolation of 
evanescent waves would cause stability problems. As mentioned, the S/N ratio in the 
registration of those waves is very small. Hence, the extrapolation would cause an 
exponential increase of the noise. Therefore, instead of eq. (2.55), the matched filter 
approach is often followed in practice 

* 
F(kx,ky,Az,co) = W (kx,ky,Az,co), (2.57) 

or, with eq. (2.52) 
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F(kx,ky,Az,co) = e+jVk2-k2-k2 Az f o r k |+ k2 < k2 > 

and 

F(k ,ky,Az,co) = e-Vkl+ky-k2 Az f o r k2+k2 > k2 
x>*-y 

(2.58a) 

(2.58b) 

Note that for the propagating waves, kx
2+ky

2<k2, eq.(2.58a) equals eq. (2.56a), but 
according to eq. (2.58b) the evanescent waves are suppressed during the extrapolation, 
thus avoiding instability. However, the suppression of the evanescent waves also effects in 
a reduction of the spatial resolution. The amplitude and phase behavior of the inverse wave 
field operator F are shown in Fig. 2.2.1. 

The extrapolation of monochromatic plane waves in the wavenumber domain for 
kx

2+ky
2<k2 is easy: the amplitudes of the propagating waves are not affected, only a 

phase shift is applied. Inverse wave field operator F is therefore also called the 'phase shift 

amplitude 

1 

kx 

Figure 2.2.1 Amplitude and phase of an inverse wave field operator (2D). 
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operator'. The extrapolation is accomplished by a multiplication of complex numbers. The 
suppression of the evanescent part of the wave field, kx

2+ky
2>k2, is even more simple: 

in that case the operator is a real number smaller than one. 
An implementation in the frequency domain has a couple of advantages. It is a way of data 
reduction because only the data in the frequency band of interest need to be treated. E.g., 
the usual temporal sampling interval is 4 ms, which is sufficient for frequencies ranging 
from 0 Hz to 125 Hz. However, the useful frequencies in seismics are typically in the band 
from 10 Hz to 70 Hz. Hence, by working in the frequency domain a data reduction factor 
of about two can be reached. Another advantage is that the frequency components can be 
treated independently. A temporal Fourier transformation can be considered as a natural 
way of dividing a problem into separate parts, which enables an implementation on a 
parallel computer with a high degree of concurrency. 
Together those properties cause the implementation of depth extrapolation in the 
wavenumber frequency domain to be very efficient. 

2.3 RECURSIVE DEPTH EXTRAPOLATION IN THE x, y, co DOMAIN 

The expression for forward extrapolation in the x,y,co domain can be obtained by applying 
a double inverse spatial Fourier transformation to eq. (2.51) 

(x,y,zi_i,co) = I I P-(x,y,zi_i,co) = I | W(x-x',y-y',Az,u)) p-(x',y',Zi,co) dx'dy' , (2.59) 

which is abbreviated to 

P-Xx.y.ZM.co) = W(x,y,Az,co) * P-(x,y,Zi,co) . (2.60) 

The symbol * denotes a double spatial convolution along the x and y direction. 
Similarly an expression for W can be found by Fourier transforming eq. (2.52) 

W(x,y,Az,co) = ^ . 1 ^ - e-J^ , (2.61) 
Z7t j-3 

where r = (x2+y2+Az2)1/2. The configuration is shown in Fig. 2.3.1. 
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Figure 23.1 Configuration of extrapolation in the x.y.co domain (2D). 

This equation can be rewritten as 

W(x,y)AZ>co) = - L cos* S-ÊL + X cos*&■ ̂ ±L , (2.62) 
Z7t r2 271 C r 

where cos* = Az/r. 
The first term is called the near field term because it is proportional to 1/r2. In the far field 
approximation it is neglected, which leaves the second term. In this term the factor 1/r is the 
spherical spreading factor, cos* is the directivity factor and jco is the time differentiation 
factor. 
Operator W is called the Rayleigh n operator. It can also be derived directly in the space 
domain. For an extensive discussion the reader is referred to Schneider (1978) and 
Berkhout and Van Wulfften Palthe (1979). 

Using the matched filter approach, the inverse wave field extrapolation operator F can be 
expressed as follows 

F(x,y,Az,co) = W*(-x,-y,Az,co) , (2.63) 
or, 

F(x,y,Az,co) = ̂  i ^ . e+J* . (2.64) 
271 j3 

The expression for inverse extrapolation is 
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(x.y.zi.co) = I I p-(x,y,Zi,co) = | | FU-x'.y-y'.Az.co) P-(x\y',Zi_i,co) dx'dy', (2.65) 

or, in the abbreviated notation 

p-(x,y,Zi,co) = F(x,y,Az,co) * P-(x,y,Zi_i,co) (2.66) 

| amplitude 

Az » ^/4 

I amplitude 

Az = V4 

[ amplitude 

Az « V4 

Figure 2.3.2 Amplitude of inverse wave field operators for decreasing values of extrapolation step Az. 
Note that the spatial bandwidth increases (2D). 
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From eq. (2.58) it follows that 

£™Q F(k„kx.Az,(D)=l. 

or 
lim 

Az-»0 F(x,y,Az,co) = 8(x)8(y). 

(2.67) 

(2.68) 

See also Fig. 2.3.2 where the amplitude of F is shown for different values of Az. For 
decreasing values of Az the spatial bandwidth of F increases. This means that a discretized 
version of F, with spatial sampling intervals Ax and Ay, will be increasingly distorted for 
decreasing Az due to the spatial aliasing, see Fig. 2.3.3. Especially in recursive 

amplitude 

Az»>/4 

1 x.Nyq - k k k x.Nyq 

I amplitude 

Az = V4 

' ^x.Nyq ~^ k k x.Nyq 

[amplitude 

:Z_^J -
A z « V 4 

'x.Nyq k k x.Nyq 

Figure 2.3.3 In case of discretization operator aliasing may be inevitable, despite of a small spatial 
sampling interval. The*only solution is spatial band-limitation. 
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extrapolation where the steps are usually small this so-called spatial operator aliasing may 
cause serious problems. The only way to prevent this is to take care that the operator is 
spatially band-limited. Note that spatial operator aliasing has no direct relation with the 
occurrence of spatial aliasing in the data: for certain intervals of Ax and Ay the data can be 
sufficiently sampled while the operator may suffer from aliasing. 

The easiest way to compute numerically a spatially band-limited operator with no aliasing is 
the following: 
- Compute the operator in the kx,ky)co domain. This way the spatial Nyquist frequencies 
±kxNyq=±rc/Ax and ±kyNyq=±7i/Ay are never exceeded. 
- Perform an inverse double Fourier transformation to die x,y,co domain. 
Operators computed according to this recipe are extensively discussed in the next chapter. 

In the derivation of the expressions for wave field extrapolation, eq.(2.60) and eq.(2.66), 
via the wavenumber domain, we assumed a laterally constant velocity. However, the actual 
extrapolation is performed in the x,y,co domain, which allows for lateral velocity variations 
to be taken into account. Therefore, we apply the extrapolation operators in a space-variant 
manner, i.e., each output point of the extrapolated data is computed using an operator 
based on the local value of the wavenumber k(x,y,z,co), being the ratio co/c(x,y,z) of the 
currently treated frequency co and the local propagation velocity c(x,y,z). To emphasize 
this, in our notation we consider the operators to be a function of k instead of co, e.g., 
F(x,y,z,to) -» F(x,y,z,k). 

2.4 REQUIREMENTS FOR MIGRATION 

Migration transforms seismic time measurements into a depth image with the aid of a macro 
velocity model. Therefore it is imperative that both lateral and vertical velocity variations 
can be handled by the migration extrapolation process. This leaves depth migration 
methods that are applied in the space domain. For the same reason, in the 3D case two-
step migration is rejected in favor of full 3D migration. 
Because of the complicated structures to be imaged, the migration method itself should not 
be severely dip limited. For the 3D case this means that a full 3D extrapolation method is 
preferred to a method based on operator splitting. 
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For reasons of efficiency the migration should is implemented as a poststack or zero-offset 
method. Also for reasons of efficiency migration in the frequency domain is chosen and 
not reverse-time migration. 
Because of its robustness a one-way extrapolation technique is considered best. 
Summarizing, above arguments lead to the following choice: 3D zero-offset depth 
migration based on recursive wave field extrapolation. The extrapolation should be one­
way and full 3D; the implementation should be in the x,y,co domain. 

Because of the recursive character of the extrapolation process the errors made in each 
extrapolation step should be made sufficiently small. This especially concerns the amplitude 
errors that may cause instability. To prevent operator aliasing, which is likely to occur in 
case of the small extrapolation steps, the extrapolation operators should be spatially band-
limited. 

In the next chapters attention is paid to the design of efficient, accurate extrapolation 
operators and to migration based on extrapolation with those operators. 
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a. Ax = 25 m 
no operator aliasing 

b. Ax = 5 m 
small distortions 
due to operator 
aliasing 

c. Ax = 10 m 
serious artefacts 
due to operator 

- aliasing 

Fig. 3.1.1 Example of operator aliasing. The pictures at the left show the hyperbolic zero-offset responses of 
a point diffractor, the pictures at the right show the extrapolation results. In Fig. 3.1.1a, b and c the spatial 
sampling interval is 2.5 m, 5 m and 10 m respectively. Aliasing in the data was suppressed by summing 
adjacent traces . Hence the artefacts in the results, most clearly visible in Fig. 3.1.1c, are mainly due to operator 
aliasing. 
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CHAPTER 3 

DESIGN OF ACCURATE EFFICIENT 
RECURSIVE KIRCHHOFF EXTRAPOLATION 

OPERATORS 

3.1 INTRODUCTION 

In this chapter the design of recursive wave field extrapolation operators for application in 
the space-frequency domain is discussed. A high accuracy is very important: even small 
errors in the operators, e.g. in the order of one percent, will cause unacceptably large errors 
in the final result. This is because the errors accumulate due to the recursive application of 
the operators. One important source of errors, the use of operators that are spatially aliased, 
see Fig. 3.1.1, can be eliminated by computing the operators in the kx,k domain. If the 
operators are truncated in this domain such that the spatial Nyquist frequencies are not 
exceeded, an inverse spatial Fourier transformation to the x,y domain yields the desired 
non-aliased extrapolation operators. 
However, operators computed according to this recipe are not the most efficient, i.e., their 
application in the x,y domain is computationally intensive. Truncation of the operators in 
this domain (or, equivalently, reduction of the number of points) increases the efficiency. 
Unfortunately, truncation decreases the accuracy. This is because the shape of the operator 
in the kx,ky domain and the shape of the operator in the x,y domain are coupled. The larger 

the derivatives with respect to kx or ky of operator F in the kx,ky domain, the larger the size 
of the equivalent operator F in the x,y domain domain should be. This property is 
demonstrated. Special attention is paid to small-sized operators that nevertheless have a 
good accuracy and stability: 'smoothed' operators and 'optimized' operators. The 
'smoothed' operators are designed analytically in the kx,ky domain such that large 
derivatives are avoided. The 'optimized' operators are computed numerically by 
minimization of errors. Because an 'optimized' operator has the smallest possible size for a 
given accuracy, it can be considered as an optimally truncated one. Criteria are derived in 
the kx,ky domain for the maximum phase and amplitude errors that can be allowed. 
Furthermore, to increase the efficiency of the extrapolation process itself, the symmetry 
properties of the operators are used. By computing the operators in advance and storing 
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them in a table, multiple computation of the same operator is prevented. Aspects concerning 
the operator table are discussed in the final section of this chapter. 

♦ llF 

iarg F 

Figure 3.2.1 Inverse extrapolation operator F in the wavenumber-frequency domain. The dark shaded 
area, k2 + k2 < k2, represents propagating waves, the light shaded area, k 2 + k 2 > k2, represents 
evanescent waves. 
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3.2 COMPUTATION OF WAVE FIELD EXTRAPOLATION 
OPERATORS VIA THE WAVENUMBER DOMAIN 

According to eq. (2.58) the matched inverse wave field extrapolation operator F is given by 

F(kx,ky,Az,k) = exp(jVk2-k2-k2 Az) for k2 + tf <, k2 , 
(3.1) 

F(kx,ky,Az,k) = exp(-Vk2 + k 2 - k 2 Az) for kjj + k2. > k2 . 

See Fig. 3.2.1. 

In practice a discrete version of the operator will be used in the space domain, with spatial 
sampling intervals Ax and Ay in the x- and y-direction respectively. As a consequence, in 
the wavenumber domain the operator is periodic and aliasing effects will occur if the spatial 
Nyquist frequencies kXfNyq and/or ky>Nyq are exceeded. The spatial Nyquist frequencies are 
related to the spatial sampling intervals according to 

kx,Nyq = ItMx 
and (3.2) 

ky,Nyq = I /Ay. 

In order to preclude spatial operator aliasing, we generally demand that 

| Kx | S KXiNyq 

and (3.3) 
| ky I S ky_Nyq. 

Hence, equation (3.1) becomes 

F(kx,ky,Az,k) = expOVV-ki-k2 , Az) 
for k2 + k2 < k2 and | kx | <, kXjNyq and | ky | < kyiNyq, 

(3.4) 
F(kx,ky,Az,k) = exp(-Vk? + k^-k 2 Az) 
for k£ + k̂  > k2 and | kx | S kXtNyq and | ky | < kyiNyq. 
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x.Nyq AX 

k = — 
y.Nyq Ay 

_x,Nyq AX 

\>1 ^ 

C. 

Figure 3.2.2 On principle, the spatial Nyquist frequencies kx^yq = nlAx and ky^yq = nlAy should 
not be exceeded in order to avoid spatial operator aliasing. Note that their value fully depends on the 
acquisition parameters Ax and Ay. If kx^yq < k and/or ky^yq < k this causes a dip-angle limitation, 
see b and c. 
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In Fig. 3.2.2 the situation in the wavenumber domain is shown for 
- kx,Nyq > k and ky,Nyq > k in a, 
- kXiNyq > k and kyjNyq < k in b and 
- kXiNyq < k and ky,Nyq < k in c. 

The tilt angle of a propagating monochromatic plane wave (represented by one sample in 
the wavenumber-frequency domain) is given by 

sin2a = ^ ± M f o r k 2 + k 2 < k 2 . 
k 2 y 

(3.5) 

See also Fig. 3.2.3. From this equation it becomes clear that the spatial band-limitation 
according to eq.(3.3) causes a dip-angle limitation in the extrapolated result if kx N y q<k 
and/or ky Nyq<k; see also Fig.3.2.2b and c. Preferably, the spatial Nyquist frequencies 
should therefore be larger than k. Unfortunately, as they are fully determined by the 
sampling intervals Ax and Ay (eq. (3.2)), they are fixed values after data acquisition. 

k̂  + k̂  = k2sin2a 

► k 

Figure 3.2.3 Monochromatic plane waves propagating at a tilt angle a are represented by a circle in 
the kx,ky domain. The smaller the radius, the smaller the tilt angle. 
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In practice a discretized expression is used in the wavenumber domain as well. The discrete 

version of F is given by 

F(mxAkx,myAky,Az,k) = exp(jVk2 - (mxAkx)2 - (iriyAky)2 Az) 
for (mxAkx)2 + (myAky)2 < k2 , 

(3.6) 
F(mxAkx,myAky,Az,k) = exp(-V(n^Ak,)2 + (myAky)2 - k2 Az) 
for (mxAkx)2 + (myAky)2 > k2 , 

mx = -numx, -numx+1, . . ., numx-1, numx, 
my = -numy, -numy+1;. . ., numy-1, numy. 

Here, 2numx+l and 2numy+l denote the number of samples in the x- and y-direction 
respectively. (The operator is shown in Fig. (3.4.3a)). 
In eq. (3.6) the sampling intervals in the wavenumber domain are given by 

., 27t 
Akx=-(2 numx) Ax 

and 
(3.7) 

Ak - 2 * 
y (2 numy) Ay 

in the kx- and ky-direction respectively. 

Note that for the range of mx and my values as given in eq. (3.6) the spatial Nyquist 
frequencies are not exceeded. 

Because the domain of application is the space-frequency domain, a double inverse spatial 
Fourier transformation must be performed. The discretized version of this transformation 
(see eq. (2.8)) is given by 

F(nxAx,nyAy,Az,k) = (3.8) 
numx n u m y _ 

- J - £ £ F(mxAkx,myAky,Az,k) e-J1"»^"»^ e-Jn>yAkynyAy AkxAky , 
4 1 m«=-numx my=-numy 
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nx = -numx,-numx+l,. . ., numx-1, numx, 
ny = -numy,-numy+l,.. ., numy-1, numy. 

In this thesis the following simplified notation is adopted: 

G(mxAkx,myAky) —»G(mx,my) 
G(nxAx,nyAy) -» G(nx,ny) 

for an arbitrary discrete function G. 
The extrapolation can be written as a discretized convolution: 

P(nx,ny,zi+1,co) = (3.9) 
numx n u m y 
X X F[nx,ny,Az,k(nx,ny,Zi,co)] PfCnx-n^.Cny-n^.Zi.co)] AxAy . 

n»=-numx nj=-numy 

Because numx and numy are large, the application of F is not very efficient; the 
computation of a single extrapolated output point requires (2numx+l)(2numy+l) complex 
additions and multiplications. 

A simple way to increase the efficiency would be to reduce the operator size by truncation: 

P(nx,ny>zi+1)co) = (3.10) 
N, Ny 

X X F[n'x,ny,Az,k(nx,ny,Zi,co)] P[(nx-n'x),(ny-ny),Zi,a>)] AxAy , 

where Nx < numx and Ny < numy. 
The disadvantage of this 'brute' way of operator size reduction - it can be considered as the 
application of a rectangular window - is that large errors are involved. (The truncated 
operator is shown in Fig. (3.4.3b)). This can be understood by studying the relation 
between the shape of the operator in the wavenumber domain and its size in the space 
domain. This relation will now be derived. To keep the expressions simple, operator F is 
considered as a function of spatial coordinate x only. The result however is applicable for 
the y-direction as well. 
Following Berkhout (1984) we take the relative second order moment L | as a measure for 
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the operator length. It is defined as: 

£x2 | |F(x)| |2dx 
a=- Jj|F(x)||2dx 

(3.11) 

From eq. (3.11) it follows that L2 is small if the energy of F is concentrated around x=0, 
which is the case for small sized operators. Furthermore, for an increasing operator length, 
the value of L| will increase as well, because of the weighting factor x2. 
Using 

dF(kx) 
dkx HI- F(x) e+Jk»x dx 

(see eq. (2.7)) and Parceval's theorem 

f | |F(x) | | 2dx = j iF(kx)irdkx 

we can rewrite (3.11) as 

L2 = 1. dF(kx) 
dkx 

dkx 

f llFOOH3 dk„ 

Substitution of 

(3.12) 

(3.13) 

(3.14) 

F(kx) = A(kx)eJ*(H (3.15) 

in which amplitude A and phase O of F are defined as 

A(kx)=||F(kx)| 
and 

(3.16) 
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<D(kx) = arg[F(kx)] (3.17) 

respectively, yields 

I (dA(kx)f + X2 ( k x ) (dO(k^ 2 

dkx 

U = - —r— — (3.18) 
f A2(k: x)dkx 

or 

i M^hi^l dkx 

L£ = - ^ - . (3.19) 
A2(kx)dkx 

From eq. (3.19) it follows that large amplitude derivatives in the wavenumber domain as 
well as large phase derivatives give rise to large operator lengths. Operator size reduction is 
therefore equivalent to the introduction of errors. As mentioned before, because of the 
recursive application of the operators, even small errors may cause unacceptably distorted 
results. Therefore the use of truncated operators is not recommended. From expression 
(3.19) it follows that smaller operators would be possible if large derivatives could be 
avoided. This principle in combination with the introduction of a maximum angle of 
extrapolation is used for the design of the 'smoothed' operator, discussed in section 3.3. 
The operators with the smallest size are obtained with the least squares optimization 
technique discussed in section 3.4. However, in all cases the efficiency can be improved by 
using the symmetry properties of the operators. Therefore these are discussed first. 

Symmetry properties of operator F. 

From eq. (3.6) the following symmetry properties of F can be easily derived 

F(mx,my) = F(-mx,my) = F(mx,-my). (3.20) 

Using this, Fourier transformation formula (3.8) can be rewritten as 
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F(nx,ny>Az,k) = (3.21) 
numx numy __ 

—1— 2I1 X 4s(mx,my)F(mx>my,Az,k)cos(mxAkxnxAx)cos(myAkynyAy)AkxAky . 
4n m,=o m,=o 

Here s(mx,my) = 1 for mx >. 1 and my £ 1, 
s(mx,rriy) = 1/2 for (mx = 0 and my > 1) or (mx > 1 and my = 0) and (3.22) 
s(mx,my) = 1/4 for mx = 0 and my = 0. 

From eq. (3.21) the following symmetry properties of operator F in the space domain can 
be derived 

F(nx,ny) = F(-nx,ny) = F(nx,-ny). (3.23) 

If these symmetry properties are used, the extrapolation, eq. (3.9), can be written as 

numx n u m y 
P(nx,ny,zi+i,co) = £ X 4 s(n'x,ny) F[n'x,ny,Az,k(nX)ny,Zi,(ö)] (3.24) 

{ P[(nx-nx),(ny-ny),Zi,co] + 

P[(nx-nx),(ny+ny),Zi,co] + 

P[(nx+nx),(ny-ny),zi,ü)] + 

P[(nx+nx),(ny+ny),Zi,co] }AxAy. 

The number of complex additions required to compute a single output point is 
approximately equal to the number of eq. (3.9). The number of complex multiplications 
however, has reduced by a factor of almost four to (numx+l)(numy+l). It is important to 

notice that the use of the symmetry properties of F and F does not have any degrading 
effect on the accuracy of the extrapolation: eq. (3.24) is equivalent to eq. (3.9). 

Maximum dip angle in wave field extrapolation. 
According to eq. (3.5) the angle a with respect to the vertical at which a monochromatic 
plane wave propagates, is given by 
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k|+_k? 
k2 sin 2cc = x_n

 y for k\ + k2 < k2 (3.25) 

or 
k* + — ^ — = l f o r a * 0 a n d k 2 + k 2 < k 2 . 

k2sin2a k2sin2a 
(3.26) 

Note that all waves with the same angle can be found on a circle, see Fig. 3.2.3. Waves 
propagating at smaller angles are represented in the area within this circle, and waves 
propagating at larger angles as well as evanescent waves correspond to the outside area. 

As mentioned, the introduction of a maximum angle of extrapolation enables us to design 
more efficient wave field extrapolation operators. The maximum extrapolation angle o ^ ^ 
(0°<amax<90°) is defined as 

k2 +k2 

sin2ccmax(kx,ky) = x y (3.27 a) 
kz 

where kx and ky are on the ellipse 

k?. 
■ = 1. (3.27b) 

k2. . Ü 
k Sin Ctx,max k Sin CCy>max 

Here ax max (0°<ax max<90°) is the maximum angle of extrapolation in the x-direction 
and ocy max (00<OCymax<900) is the maximum angle of extrapolation in the y-direction. 
According to eq. (3.27b) the waves with extrapolation angle ocmax can be found on an 
ellipse in the wavenumber-frequency domain. Hence, this maximum angle is not a 
constant: it is a function of kx and ky, see Fig. 3.2.4. The reason for defining different 
maximum angles of extrapolation for the x- and y-direction is that the spatial sampling 
intervals Ax and Ay and so the spatial Nyquist frequencies are usually different as well. 
By defining operators that approximate F very well in the area within the ellipse as defined 
in eq. (3.27), but that are allowed to deviate from F in the area outside this ellipse, an 
increased efficiency can be reached. This is the topic of the next sections. However, first an 
error criterion is derived. This will be used to determine the maximum amplitude and phase 
errors of an approximated operator that are allowed such that the extrapolation results are 
still acceptable and stable. 
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Figure 3.2.4 The monochromatic plane waves that propagate at the maximum extrapolation angle 
amax can be found on an ellipse in the wavenumber-frequency domain. Note that ccmax is not a constant: 
it is a function of kx and ky. 

Criterion for the maximum amplitude and phase error. 
An expression for the amplitude and phase errors of an approximated operator is derived in 
the wavenumber domain. An approximation of operator F is denoted by <F>. The 
amplitude error eA is defined as 

eA(kx,ky) = 11 <F(kX)ky)> 11-| | F(kx,ky) 11, (3.28) 

or, using the fact that the amplitude of the exact operator F equals unity for propagating 
waves, see eq. (3.1), 

eA(kx,ky) = 11 <F(kx,ky)> 11 - 1 for k2 + k2 <> k2 , 
where 

11 <F(kx,ky)> 11 = VRe2<F(kx,ky)> + Im2<F(kx,ky)> . 

(3.29) 

(3.30) 
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The phase error e<& is defined as 

e<t,(kx,ky) = arg <F(kx,ky)> - arg F(kx,ky). 

From eq. (3.1) it follows that 

F(kx,ky) = V k 2 - k l - t ó Az for k2 + k2 < k2 . arg 

Substitution in eq.(3.31) yields 

e<t,(kx.ky) = arg <F(kx>ky)> - V k 2 - k 2 - k 2 Az for k2 + k2. < k2 , 
where 

arg <F(kx,ky)> = arctan Im <F(kx,ky)> 
Re <F(kx,ky)> 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

If the approximated operator <F> is used, the total amplitude error after N extrapolation 
steps is 

[ l+eA(k x ,k y)]N-[ l ]N . (3.35) 

If the amplitude error is small: EA(kx,ky) « 1, the total amplitude error after N 
extrapolation steps can be expressed as 

or 

[l+NeA(kx ,ky)]-[l] 

NeA(kx,ky). (3.36) 

Because the phase errors simply add up each extrapolation step, the total phase error after 
N extrapolation steps is 

Ne4)(kx,ky) (3.37) 

Hence, the total error after N extrapolation steps equals the sum of the errors made in each 
extrapolation step. According to equations (3.36) and (3.37) this holds for the amplitude 
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error as well as for the phase error. Note that these expressions were obtained by assuming 
that the errors are equal at each extrapolation step. This is a 'worst case' assumption: in 
practice the errors vary which means that the accumulation of errors may be less severe. 

In case of a maximum angle of extrapolation cc,^, the errors are only defined for angles 
smaller than amax (the area in the wavenumber domain within the ellipse as defined by 
eq.(3.27)). 
If one accepts a total maximum amplitude error EA in the extrapolated result at the 
maximum extrapolation depth NAz, this yields 

| NeA(kx,ky) | < EA for — — ^ + — — ^ ^ 1 (3.37) 
kzSinzCCx,max k^Sin^OCy.max 

or 

|eA(kX )ky) | ,fA f o r ^ _ + s ^ - , i. (3.38) 
K sin «x.max K *'" uy,max 

For the total maximum phase error at the maximum extrapolation depth the value E^ is 
accepted. This leads to 

| e<t>(kx,ky) | £ 5 * for —f + -—f £ 1. (3.39) 
1N kzsin2ax.max k /sin /av.max 

For the part of the waves that propagate at angles larger than a^m and the evanescent field 
there are no special requirements as far as the phase errors are concerned. However, 
instability should always be precluded and therefore we demand that 

eA(kx,kv) < | f for all kx and k„ . (3.40) 
' N 

Furthermore, optionally, the amplitude of the part of the wave field for cc£amax and the 
evanescent field can be suppressed. We introduce the window error function Eu according 
to 

eu(kx,ky) = 11 <F(kx,ky)> 11 - U(kx,ky), (3.41) 

where U is a user-specified amplitude window, e.g., a cosine window. It satisfies 
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0 < Ü(kx,ky) < 1 . (3.42) 

Our requirement for suppression is 

e u ( k x > k y ) < E A f o r ^ + - — ^ > 1. , (3.43) 
N k-̂ sin âx.max k':sinzay,max 

Note that the stability requirement, eq. (3.40) is automatically included in eq. (3.38) and 
eq.(3.43). 
Berkhout (1985) proposes a value of rc/10 for the maximum amplitude error EA as well as 
for the maximum phase error E^. In case of 50 extrapolation steps the thresholds in 
eq. (3.39) and (3.40) both amount to 0.006. 

3.3 SMOOTHED EXTRAPOLATION OPERATOR 

In the previous section we have already mentioned that operator F has large derivatives 
with respect to kx and ky. According to the relation between the shape of an operator F in 
the wavenumber domain and the size of its equivalent F in the space domain, eq.(3.19), 

large derivatives that occur in F correspond to a large-sized operator F. This is unattractive 
for a practical application. If smaller operators in the space domain are desired, because 
they can be applied more efficiently, their equivalent in the wavenumber domain should not 
have large derivatives. In this chapter two solutions are discussed. We start with the 
'smoothed' operator that is designed according to the above mentioned requirement. In the 
next section we discuss the 'optimized' operator. 
The 'smoothed' operator is defined as: 

Fs(kx,ky,Az,k) = exp(jVk2-kx-kyAz) 
kx k* for ——-^ + ——-^ < 1 and | kx | £ kx,Nyq and | ky | < ky,Nyq , 

k^sin^ax.max k^sm^ay.max 
(3.44) 

Fs(kx,ky,Az,k) = As(kx,ky,k) exp[jOs(kx,ky,Az,k)] 
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k2 k2 

for ——-^ + ——-Z > 1 and|kx |<kX i N y qand|ky |£ky ,N y q . 
k^sin^ax.max kzsinzay,max 

In this equation As, the optional user-specified amplitude window, and phase <I>S are 
smooth functions that are defined such that Fs as well as its first derivatives with respect to 
kx and ky are continuous at 

kl . Ü 
k2sin2ax,max k2sin2ay,max 

= 1 at | kx | = kXiNyq and at | ky | = kyiNyq . 

The index s refers to the smooth character of the operator which is therefore called 
'smoothed operator'. 
For waves that propagate at angles smaller than o^^ operator Fs is exact, (compare with 
eq. (3.1)). For waves that propagate at larger angles and evanescent waves, the phase of Fs 

is incorrect. However, optionally this part of the wave field can be suppressed with the 
amplitude window As. 

In practice we use the following simplified version of eq. (3.44) 

Fs(kx,ky,Az,k) = exp(jVk2 - kr
2 Az) 

for kr £ ksinoCmax and | kx | S kXiNyq and | ky | < kyiNyq , 

Fs(kx,ky,Az,k) = As(kx,ky,k) exp[j<I)s(kx,ky,Az,k)] 
for kr > ksinoCmax and | kx | < kXiNyq and | ky | < ky,Nyq . 

(3.45) 

Here kr = Vk2 + k2 . 

The amplitude window As in eq. (3.45) is given by a cosine function: 

As(kx,ky,k) = ai + (l-aO 1 / k ^ c s i n o , ^ ! + t 
2 \ kr.Nyq-ksinCtmax/ 2 

for kr > ksinocmax and kr < kr>Nyq , 

As(kx,ky,k) = a! 

(3.46) 
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for kr > krj>fyq and | kx | < kx>Nyq and | ky | < ky,Nyq. 

Here k, Nyq is defined as 

kr,Nyq = min(kx,Nyq> ky,Nyq> (3.47) 

and coefficient aj must satisfy: 0 £ aj < 1. 

In eq. (3.45) phase function 4>s is given by 

0>s(kx>ky,Az,k) = a(Az,k)k? + b(Az,k)k? + c(Az,k)kr + d(Az,k) 
for kr > ksinctmax and kr < kriNyq, 

(3.48) 
<Ds(kx,ky,Az,k) = 0 
for kr > krtNyq and kx < kXjNyq and ky < kyiNyq. 

The value of a , ^ is chosen such that it always satisfies 

ksinamax < 0.85 kr,Nyq . (3.49) 

The spline coefficients a, b, c and d in eq. (3.48) are defined by the following four 
boundary conditions: G>s and its first derivative with respect to kr are continuous at 
kr=ksinamax and zero at 1 ^ = ^ ^ . 

Note that eq. (3.45) is somewhat less general than eq. (3.44) because we introduced 
circular symmetry by defining Fs to be a function of kj instead of kx and ky. This implies 
that sinaxmax = sinOL,imax = sinamax. The advantage of these assumptions is that relatively 
simple expressions for As and Os can be formulated. The smooth operator is shown in 
Fig. 3.3.1, (see also Fig.(3.4.3c)). 

The discrete expression for Fs can be found from eqs.(3.45) to (3.48) by substituting 
mxAkx for kx and myAky for ky, where mx ranges from -numx to numx and my ranges 
from -numy to numy. 
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x.Nyq 

M F 

-I h 
0 'amax' *V,Nyq k x N y q x 

^r.Nyq ^x,Nyq 

Figure 3.3.1 The smoothed operator F s is designed such that it approximates the exact operator very 
well for propagating waves with tilt angles up to c^a* (compare with Fig. 3.2.1). For waves with larger 
angles and evanescent waves the phase and amplitude are shaped smoothly, such that large first derivatives 
with respect to kx and ky are avoided. Note that the incorrect phase behaviour for a > a^^ is suppressed 
(optionally) by the amplitude window. 
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Finally, for an efficient application in the space domain a truncated operator is used: 

<Fs(nx,ny,Az,k)> = 
numx numy ____ 

- ^ I X Fs(mx>my,Az,k)e-Jm»Ak«n'Axe-JmyAk»nyAyAkxAky, (3.50) 
4ft m»=-numx m,=-numy 

nx = -N x , -N x+1 N x - 1 , Nx , with Nx < numx, 
ny = -N y , -N y +1 , . . ., N y - 1 , Ny , with N y < numy. 

specify. 
- accuracy 
-dip-angle 
- window character input 

design smoothed operator 
in the wavenumber domain 

perform an FFT to 
the space domain 

test the operator of size 
(2Nx+1)by(2Ny + 1) 

e are the accuracy and ^ n 

stability criteria satisfied? 

decrease the values 
of Nx and Ny R has a smaller operatoi 

been tested already rj 
smoothed operator 
ready to be used 

operator 
computation 

increase the values 
of Nx and Ny 

iterative 
truncation 

Figure 3.3.2 The appropriate size of the smoothed operator depends a.o. on the accuracy and stability 
requirements, ft can be determined by an iterative truncation procedure in the space domain. However, note 
that the operator only needs to be computed once. 
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Because of the smooth shape of operator Fs in the wavenumber domain, we expect that the 
negative effects of the use of a truncated operator <FS> in the space frequency domain 
remain limited, see also eq.(3.19). (This in contrast with the use of a truncated operator 
according to eq. (3.10)). Nevertheless, errors are also introduced. For the high-angle part 
of the wave field, with a xXmj,, and the evanescent part this is no problem as long as the 
requirements concerning stability (eq. (3.40)) or suppression (eq. (3.43)) are satisfied. For 
the part of the wave field with aScc,,^ it might be necessary to increase the operator size, 
i.e., to increase the values of Nx and Ny. On the other hand, if the accuracy turns out to be 
better than the pre-specified value, the operator size may be reduced. The procedure is 
visualized in Fig. 3.3.2. Note that the operator is computed once. Thereafter, only the 
number of operator points is varied. This causes the computation of the operators to be 
very fast: a table containing the operators (see section 3.5) can be easily generated at the 
beginning of the application program. We have already mentioned a second operator type: 
the 'optimized' operator. It turns out that 'optimized' operators are even more efficient than 
'smoothed' operators. Unfortunately, the computation of the 'optimized' operators is in 
itself such a time consuming process that it is not feasible to generate them at the beginning 
of the program. Instead, prior to application one should have available operator sets for the 
most common acquisition parameters. The 'optimized' extrapolation operator will be 
discussed next. 

3.4 OPTIMIZED EXTRAPOLATION OPERATOR 

Although the extrapolation results with the smoothed operator are fully satisfactory, the 
efficiency in not yet optimum. Only by computing the operator coefficients such that the 
errors are minimized, one can be sure that the smallest possible operator has been found, 
given a pre-defined accuracy. 
The operator optimization method, introduced by Holberg (1988) for the 2D case, has 
some properties that make it very suitable for our purpose: 
- the operator size (the number of operator points) and the maximum dip-angle are user-

specified input parameters, 
- optionally the operator can be designed such that it acts as a high dip-angle or 

evanescent field suppression filter, and 
- the most accurate operator possible under the above mentioned conditions is found. 
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Hence, with the optimization method it is possible to find the operator that is the most 
accurate given the operator size, the maximum dip-angle and, optionally, a filter 
characteristic. However, one must keep in mind that our aim is to find the smallest 
operator given a criterion on the required accuracy, and again the maximum dip-angle and 
filter characteristic. This can be accomplished by iteratively applying the optimization 
method in a similar way as was described for the smoothed operator in the previous 
section, see Fig. 3.4.1. However, this time a new operator must be computed at every 

specify: 
- accuracy 
- dip-angle 
- window character 

input 

initial estimate 
size(2Nx+1)by(2Ny+1) 

apply the optimization 
method 

test the operator 

d are the accuracy and 
stability criteria satisfied?, 

decrease the values 
of Nx and Ny vu* 

increase the values 
of Nx and Ny 

has a smaller operator 
been designed already? D 
optimized operator 
ready to be used 

iterative 
operator 
computation 

Figure 3.4.1 The appropriate size of the optimized operator depends a.o. on the accuracy and stability 
requirements. It can be determined by an iterative trial-and-error procedure in the space domain. Note that a 
new operator must be computed at every iterative step. 



76 3. DESIGN OF ACCURATE EFFICIENT EXTRAPOLATION OPERATORS 

iterative step. This makes the computation of a set of operators quite time consuming. 
Therefore it is not recommended to compute a table of optimized operators at the beginning 
of each application program (like we suggested for the smoothed operator). Instead a 
library of tables containing optimized operators for the most common acquisition 
parameters should be available. 
A description of the optimization method, which we extended to the 3D case, is given next. 

The basic principle of the operator optimization is to minimize in a least-squares sense the 
phase and amplitude errors as defined in section 3.2. The option to make the operator also 
act as a high dip-angle and evanescent field suppressor can be realized by including the 
amplitude window function in a so-called constraint function. 
The procedure is as follows. First the requirements concerning the accuracy of the 
operator, its dip-angle performance and the window characteristics are formulated. An 
arbitrary initial estimate of the optimized operator (e.g., a smoothed operator) is Fourier 
transformed from the space domain to the wavenumber domain according to 

N, Ny 

< F 0 ( m x , m y ) > = ] £ £ < F 0 ( n x , n y ) > ejmxAk,n,AxejmyAkynyAy A x A y ( ( 3 . 5 1 ) 

n„=-Nx n^-Ny 

mx = -numx, -numx+1,. . ., numx-1, numx, 
my = -numy, -numy+1,. . ., numy-1, numy. 

The index o refers to 'optimized' operator. Note that the size of the operator, determined by 
Nx and N , is still arbitrary. 
Next, the amplitude and phase errors in the wavenumber domain are computed according to 
(3.29) and (3.33). Here we give the discrete versions. The amplitude error is: 

eA(mx,my) = VRe2<F0(mx,my)> + Im2<F0(mx,my)> - 1 
for (3.52) 

(mxAkx)2
 t (myAky)2 

k2sin2(ocx,max) k2sin2(ay,max) 
with 

mx = -numx, -numx+1, . . ., numx-1, numx, 
my = -numy, -numy+1,. . ., numy-1, numy. 
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The phase error is evaluated according to 

Im<F0(mx>my)> 
ed>(mx,my) = arctan - Vk2 - (mxAkx)2 - (myAky)2 Az 

Re<F0(mx,my)> 
for (3.53) 

(mxAkx)2 ^ (rriyAky)2 
■+ -~y—y < i , 

k2sin2(ax,max) k2sin2(ay,max) 
with 

mx = -numx, -numx+1, . . ., numx—1, numx, 
my = -numy, -niimy+1, . . ., nuiny-1, numy. 

Furthermore, the window error function tu (eq. 3.41) is evaluated: 

Eu(mx,niy) = VRe2<F()(mx,iny)> + Im2<F0(mx,my)> — U(mx,niy) 
for (3.54) 

(mxAkx)2
 t (myAky)2 

-> 1 
k2sin2(ax,max) k2sin2(ay,max) 

with 
mx = -numx, -numx+1, . . ., numx-1, numx, 
my = -numy, -numy+1, . . ., numy-1, numy. 

The optimization problem can be summarized as follows. Find the operator coefficients 
<F0(nx,ny)> such that the following requirements are met: 
1. in the dark shaded area as depicted in Fig. 3.4.2 the phase and amplitude errors are as 

small as possible, 
2. in the light shaded area of Fig. 3.4.2 the operator satisfies the requirements concerning 

suppression (eu(kx,ky)SEA/N) or stability (eA(kx,ky)<EA/N). 

In the implementation of the optimization method two functions are important: the 
objective function O, which handles requirement 1 and the constraint function C, which 
takes care of requirement 2. These functions are now discussed. 

The error function that is minimized, requirement 1, is called the objective function and is 
given by 



78 3. DESIGN OF ACCURATE EFFICIENT EXTRAPOLATION OPERATORS 

amax k
x,Nyq 

max x.Nyq 

Figure 3.4.2 The least-squares optimized operator approximates the phase shift operator very well for 
propagating waves up to amax. For waves with larger tilt angles as well as for evanescent waves, the 
shape of the phase is arbitrary. However, optionally this part of the wave field can be suppressed. In that 
case the amplitude should be smaller than unity. 



3.4 OPTIMIZED EXTRAPOLATION OPERATOR 79 

numx numy 
O [<F0(nx,ny)>] = £ X [ 4(mx ,my) + ^e£(mx,my) ] , (3.55) 

m,=-numx my=-numy 
with 

nx = - N x , - N x + l , . . . , N x - l , N x , 
ny = -Ny, -Ny+1, . . ., Ny-l,Ny. 

In this equation, the summation is carried out over all kjjcy samples that are within the area 
as defined by 

^ A k ^ + ^ ^ _ < i a n d | k x | < k x N y q a n d | k y | S k y N y q ) (3.56 ) 

kzsinz(ax,max) k^sin^ocy .max) 

see the dark shaded area in Fig. 3.4.2. The optional weighting factor \i can be used to 
control the emphasis put on the amplitude errors relative to the phase errors. In practice we 
use \L = 1. 

Requirement 2, concerning stability or suppression of the larger wavenumbers, is 
formulated in a constraint function. Although the actual requirement is simply 
eu(kxJcy)SEA/N, for minimization software the following function need be implemented: 

numx numy / \2 
C [<F0(nx,ny)>] = X X max[(eu(mx,my)-^),0] = 0 , (3.57) 

mx=-mimx m,=-numy V / 
with 

nx = -Nx, -Nx+1, . . ., NX-1,NX, 
ny = "Ny, "Ny + 1, . . ., Ny-l,Ny. 

Here, the summation is carried out over the kx,ky samples that are within the area as 
defined by 

, ( m , x M x ) 2 + -r^-m,yAky)2 > 1 and | kx | £ kx,Nyq and | ky | < ky,Nyq , (3.58) 
kzsin/(ax>max) kzsinz(ccy,max) 

see the light shaded area in Fig. 3.4.2. 
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(m-M 
kx(m-M 

Figure 3.4 Ja 
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We have now formulated our problem as a minimization problem which can be solved with 
standard minimization software. We used a sequential quadratic programming algorithm 
which requires as input: the objective function 0, the constraint function C and their first 
derivatives with respect to the operator coefficients. A discussion of the algorithm is 
beyond the scope of this thesis. The reader is referred to Gill et al. (1981). 
An optimized operator is shown in Fig. 3.4.2, (see also Fig. (3.4.3)). 

As mentioned, this procedure should be repeated until the smallest possible operator with 
errors below the user specified level (E^/N for the phase errors and EA/N for the amplitude 
errors) is found, see Fig. 3.4.1. After this, the optimum operator is ready to be applied. 

We have now discussed three ways to design efficient operators: 
1. truncation of the 'exact' phase shift operator in the space frequency domain, 
2. truncation of the smoothed operator in the space frequency domain and 
3. 'optimum truncation' by least squares optimization. 
Figures 3.4.3b, c and d show the results of these methods in the wavenumber frequency 
domain. The operators are comparable because they have the same size. Furthermore, the 
phase shift operator is shown as a reference in Fig. 3.4.3a. For every operator type the 
amplitude, phase and phase errors are shown respectively. As expected, the optimized 
operator has the smallest phase errors for a given operator size. This is also the case for the 
amplitude errors (which are not shown). 
In practice the first method is rejected which leaves two types of operators: 'smoothed' 
operators and 'optimized' operators. The optimization procedure is computationally very 
intensive. This means that in practice it is not possible to generate a set of 'optimized' 

Figure 3.4.3 The amplitude, phase and phase errors in the wavenumber-frequency domain are shown 
for four operator types in a,b,c and d respectively: 
- the phase-shift operator, 
- the truncated phase-shift operator, 
- the truncated smoothed operator and 
- the least-squares optimized operator. 
The phase-shift operator is shown for reference. The other operators all have a size of 25 by 25 points in 
the x- and y-direction respectively. The maximum angle of extrapolation is 45°. Obviously the truncated 
phase-shift operator has errors that are too large. As expected, the optimized operator has the smallest 
errors for the tilt-angles up to 45°. Notice that the amplitude of the optimized operator is smaller than 
unity for the angles larger than 45° and the evanescent waves. Hence, this part of the wave field is 
suppressed. 
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Figure 3.4.3b 
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Figure 3.4.3c 
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Figure 3.4.3d 
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operators during application. We suggest that one should have available a number of 
operator tables (see the next section) for the most common acquisition parameters. This 
enables the user to take advantage of the superior efficiency of the 'optimized' operators in 
regular cases. In other cases (no 'optimized' operators available, specific acquisition 
parameters) 'smoothed' operators can be used. The results are equivalent to those obtained 
with 'optimized' operators, but the extrapolation is less efficient. 

Because the number of variables is large: Ax, Ay, Az, ocxmax, ocymax, k, U, EA, Ey and 
E,j„ it is difficult to give values for the size of the operator, (2Nx+l)(2Ny+l). As a rule of 
thumb we use: 

Nx > 1/20lX)inax (expressed in degrees) and 
Ny £ 1/20tyimax (expressed in degrees) 

for the 'smoothed' operator, and 
Nx> 1/4axmax (expressed in degrees) and 
Ny > 1/4aymax (expressed in degrees) 

for the 'optimized' operator. 
For an extensive study on this subject, we refer to Debeye (1988). 

3.5 OPERATOR TABLE 

The methods of operator generation as described in the previous sections are rather 
computationally intensive, especially the operator optimization method. Computation of the 
operators during the extrapolation would slow down the speed of the algorithm. 
Furthermore, a specific operator is likely to be required more than once. This can be 
explained as follows. A unique operator is necessary for every unique value of the 
wavenumber, k=co/c(x,y,z). However, a certain value for k is likely to occur many times 
within one extrapolation process. This is because a certain frequency component will be 
treated many times (because of the recursive character of the extrapolation) and a certain 
velocity will occur more than once (in practice, a macro model contains large constant 
velocity areas). Another possibility is that both the value of the frequency and that of the 
velocity change such that their ratio k remains unaltered. Also in this case the same operator 
can be used. For these reasons, the operators are computed separately in advance and 
stored in a table. This way the same operators can be used efficiently for a range of 
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extrapolation steps as well as for a range of frequencies. Finally, we remark that it is 
possible to use a set of operators in a future processing job. 
During the extrapolation, the local value of the wavenumber k is determined after which the 
appropriate operator is selected from the table and applied to the data. This procedure 
however, might lead to a very large operator table. The reason is that the maximum number 
of different k-values is large: it equals the number of subsurface grid points times the 
number of frequency components (this maximum might occur in the case that the velocity 
changes from point to point in the subsurface, e.g. if the macro model has velocity 
gradients). We therefore decided not to keep an operator in the table for every k-value that 
occurs, but to define a wavenumber sampling interval Ak and to store operators in the table 
for the following regular range of k-values only: 

kmin. kmin + ^ ^ • • • ' kmax - Ak, k , ^ , (3.59) 

in which kmin=comin/cmax and kmax = comax/cmin. 
Note that the number of operators in the table is inversely proportional to Ak. The 
advantage of such a table is its limited size. The disadvantage is that an actually required 
operator is not likely to be present. There are several ways to solve this problem. 
The easiest way to 'compute' an operator for a k-value that is not present in the table is to 
select the operator with a k-value nearest to the required one. The disadvantage of the 
method is that the phase and amplitude errors due to the rounding off may accumulate 
systematically each extrapolation step which causes dispersion effects. The more 
homogeneous a macro model is, the more serious the dispersion effects are. Therefore the 
interval Ak should be very small. As a consequence the number of operators might become 
so large that storage of the operator table in core memory would be impossible. Hence, the 
rounding method is not recommended. 
Systematic accumulation of errors does not occur when 'statistical rounding' is used. The 
method can be explained most easily with an example. Suppose that in the table operators 
are present for k= 1 and for k = 2 and suppose that an operator is required for k= 1.4. In 
this case either the operator for k= 1 is selected with a probability of 0.6 or the operator for 
k=2 is selected with a probability of 0.4. It is clear that here also rounding errors occur; 
however, they do not accumulate. Experiments indicate that 'statistical rounding' allows the 
table size to be reduced by a factor of seven compared with 'rounding'. Notice that 
'statistical rounding' is almost as simple as 'rounding': it only requires a random generator. 
Nevertheless a much smaller operator table is sufficient. 
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If a better accuracy is demanded, or if even more memory must be saved, it is worthwhile 
to compute a required operator by means of interpolation. We found that in general linear 
interpolation of real and imaginary parts gives good results if Ak is in the order of 
AoV2cmax. This interval is about thirty times as large as the interval required by 'rounding'. 
Unlike 'rounding' and 'statistical rounding', 'linear operator interpolation' increases the 
computational cost. However, in practical situations, where the macro model contains large 
homogeneous areas, this extra effort can be neglected if it is compared with the actual 
extrapolation. In our extrapolation schemes we therefore use 'linear operator interpolation'. 
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CHAPTER 4 

APPLICATION OF RECURSIVE KIRCHHOFF 
EXTRAPOLATION OPERATORS IN MIGRATION 

4.1 INTRODUCTION 

The recursive Kirchhoff extrapolation operators as discussed in the previous chapter, the 
smooth operator and the optimum operator, can be used for a wide variety of applications. 
E.g., they can be applied in all prestack and poststack migration methods that are based on 
the principle of recursive wave field extrapolation and imaging. 
Another possibility is the use of the operators for redatuming. A redatuming algorithm can 
be obtained from a migration algorithm simply by omitting the imaging step. However, a 
redatuming scheme based on recursive extrapolation is not preferred: one is not interested 
in the intermediate extrapolation results (which are required in migration for the imaging 
step). Because of the computational cost of recursive extrapolation, a non-recursive 
technique is recommended for redatuming (Peels, 1988, Kinneging, 1989), see also 
section 1.5. 
We also mention the application of the recursive Kirchhoff extrapolation operators in the 
modeling of seismic data. In the appendix the modeling of 3D zero-offset data is discussed. 
In this chapter the emphasis is on seismic migration. Three techniques are considered: 
prestack migration, common-offset migration and zero-offset migration. 
The best results are obtained with prestack migration. However, full 3D prestack migration 
is not yet feasible on present computers. Although we will discuss the 3D prestack case, 
we implemented prestack migration for the 2D case. 
In order to make 3D migration feasible the amount of data that is involved should be 
reduced. E.g., instead of incorporating all offsets of each shot in the migration, one could 
use one specific offset per shot only. This type of migration is called common-offset 
migration. A special case of common-offset migration is the popular zero-offset migration. 
In this chapter we discuss how the recursive Kirchhoff extrapolation operators can be used 
in the migration of multi-offset, common-offset and zero-offset data respectively. First 
however, for each of the acquisition configurations corresponding to these data types the 
'forward model' (macro model, source and reflectivity known, registrations at the surface 
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unknown) is discussed briefly. This yields a mathematical description of the seismic 
experiment. Based on this the expressions for the migration techniques, which are 
considered as 'inverse problems' (macro model, source and registrations at the surface 
known, subsurface reflectivity unknown), are given. 
Whenever the inverse wave field extrapolation operator F occurs in the expressions, it can 
be replaced by the smooth operator <FS> or the optimum operator <F0>. Using the 
matched filter approach 

F = W* (4.1) 

the forward wave field extrapolation operator W can be computed. Of course the accuracy 
of the results will depend on the accuracy of the smooth or optimum operators that are 
used. 

4.2 PRESTACK MIGRATION 

In a seismic experiment the following physical processes can be distinguished: downward 
propagation of the source wave field, reflection and upward propagation of the reflected 
wave field. Let us first consider the situation with one reflector in the subsurface at depth 
level z;. In Fig. 4.2.1 the situation is shown. For this case, a description of a seismic 
experiment can be formulated as follows (Berkhout, 1985). 

detectors -

Figure 4.2.1 Configuration of a seismic experiment in a medium that contains one reflector. 
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1'. Forward extrapolation of the downgoing source wave field S+ from the surface ZQ to 
depth level Zj: 

S+(x,y,zi>a)) = W+(x,y,Az;,k) * S+(x,y)Zo,co), (4.2) 

with AZJSZJ-ZQ, ZJ>Z0, Remember that the symbol * denotes a two-dimensional, space 
dependent, spatial convolution along the x- and y-coordinate. 
2. Reflection at depth level Zj which causes an upgoing reflected wave field: 

P^x.y.Zi.co) = R(x,y,Zi,co) * S^x.y.Zj.co), (4.3a) 

where R is a reflection function which describes the angle-dependent reflectivity. In the 
special case that the incident wave field S+ is locally plane, reflection function R reduces to 
a reflection coefficient and hence the space dependent spatial convolution in eq. (4.3a) may 
be replaced by a multiplication: 

Pj-(x,y,Zi,co) = Rj(x,y,zi,co)Sj
+(x,y,zi,(o). (4.3b) 

The subscript j is related to the shot position at the surface. Note that it indicates the 
orientation of the locally plane source field. 
3. Forward extrapolation of the upgoing reflected wave field from depth level z; to the 
surface ZQ: 

Pj-(x,y,z0,co) = W-(x,y,AZi,k) * Pjlx.y.Zj.co). (4.4) 

In practice there is reflectivity at all depth levels in the subsurface. Therefore these three 
steps should be repeated for all depth levels in the subsurface up to the maximum depth of 
interest. Because a seismic experiment is band-limited, the true broad-band reflectivity of 
the 'real world' can never be recovered. For our computations we therefore may replace it 
by a discrete, band-limited reflectivity. In that case the interval Az between depth levels z; 

and Zj_! should satisfy: Az< X/2. Note that this limits the number of depth levels to be 
taken into account 
In the formulation of a seismic experiment according to eqs.(4.2) to (4.4), it is assumed 
that the acquisition limitations related to source and detectors have been corrected for. 
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The equations can be combined in the following recursive modeling scheme in which the 
reflectivity of all depth levels is taken into account: 

Pj"(x,y,zi,co)= R(x,y,zi,co)*Sj+(x,y)zi,co) + W_(x,y,Az,k;)*Pj"(x,y)zi+i)0)), 
for i = M-l, M-2, . . ., 2, 1, 0, (4.5a) 

With A z = Z i + 1 - Z ; , Z i + 1 >Z; . ;. ..; .; 

In case of a locally plane incident field this equation can be written as ; 

Pj"(x,y,2j,0)) = RjCx.y.Zj.o)) Sj+(x,y,Zi,o)) + W-(x,y,Az,k) * Pj^x.y.Zj^co), 
for i = M-l, M-2, . . . ,2, 1,0. (4.5b) 

Note that the computations start at the deepest depth level of interest zM and proceed in the 
upward direction to the surface ZQ. In this expression the upgoing pressure field at depth 
level zM is given by 

Pj~"(x,y,zM,co)= R(x,y,zM,k)*Sj+(x,y,zM,C0). (4.6) 

The source wave field is defined recursively according to 

Sj+(x,y,Zi,0)) = W+(x,y ,Az,k) * Sj
+(x,y,zi_1 ,co) (4.7) 

for i = 1, 2, . . ., M. 

Now that we have briefly discussed the forward problem, we continue with the inverse 
problem: the seismic migration. 
Each seismic experiment can be migrated individually (Berkhout, 1985 and Wapenaar, 
1986). Such a migration basically consists of the following steps. 
1. Forward extrapolation of the downgoing source wave field from depth level zt_x to z; 

according to eq. (4.7) 

S/fr.y.Zi,©) = W+(x,y,Az,k) * S / f r ^ z ^ ü ) ) . (4.8) 

2. Inverse extrapolation of the upgoing reflected wave field from depth level z;_j to zf. 
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Pj-(x,y,zi,CO) = F-(x>y,Az,k)*Pj-(x,y,zi_1>co). (4.9) 

Compare with eq. (4.4). After these two steps, the source wave field as well as the 
reflected wave field at depth level Z; are known. The relation between these wave fields 
which is the reflectivity can now be recovered. Usually, in seismic interpretation one is 
only interested in the average zero-offset reflectivity. This is determined by the following 
steps. 
3. Correlation of the downgoing source wave field and the upgoing reflected wave field, 
which yields the zero-offset impulse response <Xj> at depth level z;: 

<Xj(x,y,Zi,co)> = J-P:"(x,y,z;,co)[S|(x,y,z;,a))]*, (4.10) 
SJ 

where 

s? =((s|(x,y,Zi,co) [S^x.y.zi.co)]* dxdy (4.11) 

corrects for the transmission losses. 
Apart from the information about the reflectivity of the current depth level z;, the zero-offset 
impulse response also contains the influence of all other depth levels, see eq. (4.5b). This 
is eliminated in the imaging step. 
4. Imaging, or, equivalently, selecting the zero time component by summing all frequency 
components: 

<Rj(x,y,Zi)> = — Re £ <Xj(x,y,zi,co)> . (4.12) 

The four steps should be applied recursively for all depth levels of interest. The result is a 
band-limited estimate of the zero-offset reflectivity. Note that this estimate is the result of 
the migration of a single-shot record. It is therefore called a 'single-fold' zero-offset 
reflectivity function. 
5. The single-fold migration results of all shot records can be summed. This yields the 
final migration result: a 'multi-fold' band-limited estimate of the zero-offset reflectivity: 

<R(x,y,Zi)> = X <Rj(x,y,Zi)> . (4.13) 
j 
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The procedure is shown in Fig.4.2.2. 
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Figure 422 Prestack migration scheme based on the single-shot record processing. 
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Optionally, the results after the 3rd step, the single-fold zero-offset impulse responses, can 
be stacked (thus deleting the imaging step). This yields the multi-fold zero-offset impulse 
response at depth level z;: 

<Xst(x,y,Zi,co)> = X <Xj(x,y,Zi,(ü) 
j 

>. (4.14) 

The result of this true CDP stack (notice the index st) represents the zero-offset data as they 
would have been acquired at depth level Zj. 

In the introduction it has already been mentioned that full 3D prestack migration is not yet 
feasible in today's practice of seismic processing. Two alternatives, common-offset 
migration and zero-offset migration, are discussed in the remainder of this chapter. 

4.3 COMMON-OFFSET MIGRATION 

In Fig. 4.3.1 the configuration of one experiment is shown. The coordinates of the source 
position are (xA-hx,yA-hy,z0) and those of the detector position: (xA+hx,yA+hy,z0); hx and 
hy are the x and y component of the half offset respectively. 

(xA.yA) 

R h x , h y < x A - y A ' z i ^ 

Figure 4.3.1 Acquisition geometry of one seismic experiment (common-offset data acquisition). 
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Before we give an expression for common-offset migration we first consider the forward 
case. Like in the previous, section we distinguish three phases in the seismic experiment: 
downward propagation, reflection and upward propagation. The common-offset 
experiment can be described as follows. For notational simplicity we consider a laterally 
invariant medium. 
1. The downward extrapolation of the downgoing source wave field from the surface ZQ to 
depth level z; can be formulated as 

S^x.y.zj.co) = W+(x,y,Azi,ü))*S+(x,y,z0,co), (4.15) 

with Az; = Zj-z0, Zj>z0. 
Using • ■ ■ ■ . . ' < 

S+(x,y,z0,(ö) = S+(zo,co) 8[(xA-hx)-x,(yA-hy)-y] (4.16) 

eq. (4.15) can be written as 

S+(x,y,Zi)(0) = S+(z0,co)W+[(xA-hx)-x,(yA-hy)-y, Azj.co]. (4.17) 

2. The upward extrapolation of the upgoing reflected wave field from depth level z( to the 
detector at surface position (xA+hx,yA+hy,z0) is described by 

P-(xA+hx,yA+hy,z0,CO) =}{ W-[(xA+hx)-x,(yA+hy)-y,Azi,co] P-(x,y,Zi,ü>) dxdy. 

(4.18) 

In this equation the upgoing reflected wave field at depth level z; is defined as 

p-(x,y,Zi,co) = Rhxihy(x,y,zi,co) S+(x,y,zi,co). (4.19) 

Note that we assumed that the reflectivity can be represented by a distribution of reflection 
coefficients Rhx,hy. see also eq.(4.3b). 

With eq. (4.17) and (4.19), eq. (4.18) can be rewritten as 
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P-(xA+hx,yA+hy,zo,co) = S+(zo,co) fJwhxihy(xA-x,yA-y,Azi,co) Rhx,hy(x,y,zi,co) dxdy , 
(4.20) 

where 

Whl,hy(xA-x,yA-y,Azi,C0) = (4.21) 
W-[(xA+hx)-x,(yA+hy)-y,Azi,co] W+[(xA-hx)-x,(yA-hy)-y,Azi)(o]. 

In practice, the reflections occur at all depth levels, hence, common offset data can be 
described by 

PhI,h/x'yiZo-c°) = S+(z0,co) YJ Whx,hy(x,y,Azi,co) * Rhx,hy(x,y,Zj,co), (4.22) 
i 

for i = 1, 2 , . . ., M, 

with 

Whx,hy(x,y,Azi,co) = W-(x+hx,y+hy,Azi,CD) W+(x-hx,y-hy,Az;,CD) (4.23) 
and 

Phx,hy(x'v'zo>co) = P"(x+hX)y+hy,z0,Cü). (4.24) 

Based on the forward expressions the following migration scheme is proposed. 
1. Compute the inverse wave field operator FhXihy for the current depth level. Following 
the same procedure as in prestack migration, we take the matched filter approach according 
to 

Fhx.hy = Whx,hy, (4.25) 

where Whx,hy is given by eq. (4.23). 
2. Apply the operator to the common-offset data for all frequency components of interest 
and image for the current depth level: 

<RhI.hy(x,y,zi)> = — Re £ Fhx,hy(x,y,Azi,co) * Phx,hy(x,y,z0,(ü). (4.26) 



98 4. RECURSIVE KIRCHHOFF OPERATORS IN MIGRATION 

These two steps should be repeated for all depth levels. 

For a practical application, common-offset migration is not recommended. This is because 
the operator Fhx,hy, being the product of two operators, is not a solution of the wave 
equation. As a consequence the extrapolation can not be formulated recursively. This 
means that for each depth level new operators must be computed. Hence, the computational 
cost will be considerable. 
As we will see in the next section, zero-offset migration (a special case of common-offset 
migration) does not have this disadvantage if the half-velocity substitution is used. 

4.4 ZERO-OFFSET MIGRATION 

The zero-offset configuration can be considered as a common-offset configuration where 
the half offsets hx and hy are taken zero: F),Xihy -* F0 0- According to eqs.(4.23) and 
(4.25) the inverse extrapolation operator to be used in the migration is given by 

F0,o(x,y,Azi,<o) = w£i0(x,y,Azi,<ö) = [w2(x,y,Azi,co)]* . (4.27) 

This operator has the same disadvantage as the general common-offset operator 
(eq. (4.23)): it is not a solution of the wave equation because it is a product of two 
operators. Therefore, in practice it is approximated by 

Fo,o(x,y,Azi,co) - Fzo(x,y,Azi,co) = W*(x,y,Azi,2co). (4.28) 

Notice the index zo (zero-offset). It indicates the half-velocity (or double-frequency) 
substitution that is always used in zero-offset migration (see also section 1.2, the 
'exploding reflector' model). The use of F^ instead of F0io causes the incorrect amplitude 
handling that has already been mentioned in section 1.2. However, the traveltimes are taken 
into account correctly. A correct treatment of the traveltimes is important for a good 
recovery of the structural information. 

Because F^ is a solution of the wave equation, it can be applied in a recursive way. Hence, 
vertical as well as lateral velocity variations can be easily handled. The 3D zero-offset 
migration scheme consists of the following steps. 
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1. Inverse extrapolation of the upgoing reflected wave field according to 

P^oCx.y'2»03) = Fzo(x,y,Az,k) * PZ0(x,y,Zi_i,a>), (4.29) 

where Az = z; - Z;^, z; > z ^ . 
2. Imaging according to 

<Rzo(x,y,Zi)> = — Re £ Pzo(x,y,zi(ü)) 
7 1 <0 

(4.30) 

Macro model 

Operator table 

Zero-offset data set 

FFT t->co 

Extrapolation next 
frequency 

/ . i , 

Imaging next depth 
level 

Migrated data set 

Figure 4.4.1 Zero-offset migration: recursive extrapolation along the z-coordinate and imaging. 

The recursive steps must be repeated for all depth levels of interest. The scheme is shown 
in Fig. 4.4.1. A detailed description of the implementation of full 3D zero-offset migration 
according to eqs.(4.29) and (4.30) is given in the next chapter. 
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CHAPTER 5 

COMPUTATIONAL ASPECTS OF FULL 3D 
ZERO-OFFSET MIGRATION 

5.1 INTRODUCTION «?■-

The smooth operator and the optimum operator that have been discussed in chapter 3 can be 
used in various seismic processing techniques that are based on wave field extrapolation. In 
chapter 4 the emphasis was on migration techniques. Aspects concerning the actual 
implementation of a full 3D, table driven, zero-offset migration algorithm are discussed in 
this chapter. 
First, a detailed scheme of the structure of this algorithm is given. It is used to explain the 
data organization, the requirements with respect to the capacity of disk and core memory of 
the computer, the I/O, etc. Next, the implementation of the extrapolation is discussed. The 
extrapolation is the most important part of the migration scheme. This holds for the 
accuracy as well as for the efficiency of the algorithm. Furthermore,, we give an expression 
for the number of floating point (fp-) operations of our migration scheme and compare this 
with the number of fp-operations of the reverse-time migration scheme as discussed by 
Chang and McMechan (1989). A cost comparison between these methods is also made for 
the core memory requirements. Finally, we discuss the results of some benchmarks. We 
run several tests on the following vector computers: Convex Cl and C2, Cray X-MP and 
Alliant 4CE. The latter one also has the possibility for parallel processing. 

5.2 STRUCTURE OF THE 3D TABLE-DRIVEN ZERO-OFFSET 
MIGRATION ALGORITHM 

A flow-chart of the 3D table-driven zero-offset migration algorithm is given in Fig. 4.4.1. 
The formulas for the recursive extrapolation and imaging, eq. (4.28) and eq. (4.29) are 
repeated. The downward inverse extrapolation of the upgoing reflected waves is given by 

Pzo(x,y,Zj,co) = FZ0(x,y,Az,k) * Pzo(x,y,zi_1,co) (5.1) 
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Figure 5.2.1 Structure of the table-driven full 3D zero-offset migration algorithm. 
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and the imaging step by 

<Rzo(x,y,zi)> = - ^ Re £ Pz0(x>y>zi,ü)) . (5.2) 

These steps are repeated recursively for all depth levels. 
A detailed picture that shows the structure of the algorithm is shown in Fig. 5.2.1. The 
three 'columns' of the figure represent the disk memory space, the core memory space and 
the processing steps that are performed by the algorithm respectively. A description is 
given now. 

Data flow 
We start with a Fourier transformed zero-offset data set (x,y,co domain), stored in a file on 
disk. A table containing a set of 'smoothed' or 'optimized' wave field extrapolation 
operators must be available in core memory. A file containing the macro model velocity 
information must be present on disk. It is possible to use this file also as output file for the 
migrated result. This means a reduction of the required disk space. However, in that case 
the original velocity information will get lost. 
Depth loop 

- A 2D x,y panel, depth level z=Z;, containing the macro model velocity information, 
c(x,y,Zi), of the current depth level z; is read from the macro model file on disk 
and stored in core memory. 
The extrapolation from the current depth level to the next, Z; -» z;+Az, can now be 
performed. 

Frequency loop 
- A monochromatic 2D x,y data panel, depth level z=z; and frequency component 

C0=C0j, is read from the zero-offset data file on disk and stored in core memory. 
X,Y loop 

- The local wavenumber value at position (x,y,z;) is determined: 
k = (Dj/c(x,y,zi). 

- Only if this value differs from the previous one, a new operator for this 
wavenumber value is computed by means of linear interpolation between two 
operators from the table. 

- The operator is applied to the data (see section 5.4). 
End ofX.Y loop 
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Once all points have been extrapolated, the result is a monochromatic 2D x,y data 
panel at depth level z=z;+Az for frequency component CÜ=CÖJ. 

- This panel is written to the zero-offset data file on disk, where it replaces the 
monochromatic 2D x,y data panel at depth level z = Z; for frequency component 
CU = C0j. 

- Furthermore, this panel is used to carry out a part 'of the imaging step. One does 
not need to wait until all frequency components have been treated to do the 
summation. Instead one can simply add the real parts of the extrapolated results 
for the current frequency component, (0=C0j, to the 'partially' imaged result of 
the previously treated frequency components C0j to (0:V This yields a partially 
imaged 2D x,y panel at z=Z;+Az which is the result of a summation of the 
frequency components Wj to C0j. It is called partial as long as not all frequency 
components have contributed to the result. 

End of frequency loop 
Once all frequency components have been treated, the output is: 
1. the migrated ('fully' imaged) 2D x,y panel at depth level z=z;+Az, 

- this panel is written to the output file on disk, 
2. a 3D zero-offset data set in the x,y,co domain at depth level z=z;+Az stored in 
the data file on disk. It will be used as input for the extrapolation to the next depth 
level. 

End of depth loop 
Once this procedure has been repeated for all depth levels, the result is the migrated data set 
in the the x,y,z domain. 

Some remarks about the algorithm: 
- According to our experience the speed of the algorithm is never bounded by the I/O from 
disk to core memory and vice versa. The wave field extrapolation almost completely 
determines the computation time. 
- During the migration process we have the extrapolated zero-offset data in the x,y,co 
domain available as an intermediate result at every depth level. Examination of those 
'redatumed' results, after an inverse Fourier transformation to the x,y,t domain, may 
contribute to a better understanding of the migrated result 
- The fact that the migrated result is built up gradually, depth level after depth level, offers 
the possibility of quality control during the process. E.g., a few 'bad' samples in the zero-
offset data may ruin the migration result: if they have a large amplitude they cause the so-
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called migration smiles. Such problems can be detected in an early stage. Furthermore, the 
effects of an incorrect macro velocity model like overmigration or undermigration may 
already become clear during the migration process. 
- The migration can be easily implemented in a parallel way because the extrapolation is 
performed per frequency component. Working per frequency component is a natural way 
of dividing a problem into independent parts, each of which can be treated by a separate 
processor. 

required core memory space 
According to Fig. 5.2.1 the next amounts of data are kept in core memory: 
- a 2D x,y panel, z constant, containing macro model velocity information, size: 

(numx)(numy) real numbers. 
- a 2D x,y panel, co constant, containing monochromatic zero-offset data at depth level 

z = z;, size: 
(numx)(numy) complex numbers, or 
2(numx)(numy) real numbers. 

- a 2D x,y panel, (u constant, containing monochromatic zero-offset data at depth level 
z = z;+Az, size: 

(numx)(numy) complex numbers, or 
2(numx)(numy) real numbers. 

- a 2D x,y panel, z constant, containing (partially) imaged data, size: 
(numx)(numy) real numbers. 

- a table containing the extrapolation operators, size: 
(numop)(Nx+l)(Ny+l) complex numbers, or 
2(numop)(Nx+l)(Ny+l) real numbers, 

numop represents the number of operators in the table. 
Hence, the core memory must be large enough for the storage of 

6(numx)(numy) + 2(numop)(Nx+l)(Ny+l) real numbers. (5.3) 

Example. With the next parameters: numx=500, numy= 100, Nx= 12, Ny= 12, a table 
containing 400 operators and 4 bytes per real number, we find that a core memory of 
1.7 Mbyte is sufficient. Note that this number is modest: the computers that are used in the 
seismic industry at present usually have much more memory. 
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5.3 FLOATING POINT OPERATION COUNT 

The 3D table-driven zero-offset migration algorithm can be divided into three modules: 
- generation of a table of wave field extrapolation operators, 
- Fourier transformation of the data from the x.y.t domain to the x.y.co domain, and 
- the actual migration: linear interpolation of the operators, recursive extrapolation and 

imaging. 

Although the generation of a table with 'optimized' operators is computationally intensive, 
we do not include it in the fp-operation count because a table can be used more than once. 
In the ideal situation one has a number of tables available for the most common acquisition 
parameters. 
The computational cost of the Fourier transformation can be neglected with respect to the 
cost of the actual migration. 
Therefore, we concentrate on the fp-operation count of the migration and pay attention to 
the operator interpolation, the extrapolation and the imaging step respectively. 

fp-operation count of the linear interpolation of operators 
The linear operator interpolation is formulated as: 

FM(nx,ny,Az,k) = ( ( " k + ^ k ~ k ) F„(nx,ny,Az,nkAk) + (5.4) 

[ ~ ^ F20(nx,ny,Az,(nk+l)Ak), 

for nx = 0, 1, 2 , . . ., Nx, and ny = 0, 1, 2, . . ., Ny. 

Here, nk is defined as the integer part of the ratio k/Ak. 
The number of fp-operations of the operator interpolation is 

2(NX+1)(N +1) multiplications of a complex number by a real number and 
(Nx+l)(Ny+l) complex additions, or 
6(Nx+l)(Ny+l) fp-operations. 

(A multiplication of a complex number by a real number is equivalent to two real 
multiplications, one complex addition is equivalent to two real additions). 
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In the migration algorithm, the number of fp-operations for the operator interpolation is not 
a fixed number. It depends on the structure of the macro model. For one monochromatic 
extrapolation step it is somewhere in between 

no fp operations, for a homogeneous macro model and (5.5) 
6(numx)(numy)(Nx+l)(Ny+l) fp-operations for a fully inhomogeneous model. 

In a practical macro subsurface model there will be large homogeneous areas. We therefore 
neglect the contribution of the operator interpolation to the computational cost of the 
algorithm. 

fp-operation count for the extrapolation 
One monochromatic extrapolation step can be formulated as (see also eq. (3.24)): 

N, Ny 

Pzo(nx,ny,zi+i,co) = £ X 4 s(nx,ny) Fzotn'x.ny.Az.kfax.ny.zi.co)] (5.6) 
nj=0 n^=0 

{ PZo[(nx-nx),(ny-n'y),Zi,cü] + 

PZo[(nx-nx),(ny+ny),Zi,co] + 

Pzo[(nx+nx),(ny-ny),Zi,0)] + 
PzotOix+nxMny+ny^Zi.cü] }AxAy. 

for nx = 1, 2 , . . ., numx, and ny = 1, 2 , . . ., numy. 

In this expression the symmetry properties of the operator (see eq. (3.23)) have already 
been included. Application of eq. (5.6) involves 

4(numx)(numy)(Nx+l)(Ny+l) complex additions and 
(numx)(numy)(Nx+l)(Ny+l) complex multiplications, or, 
14(numx)(numy)(Nx+l)(Ny+l) fp-operations. (5.7) 

(One complex multiplication is equivalent to four real multiplications and two real 
additions). 

We remark that a result like this should be interpreted with care, because it does not take 
into account the computer architecture (scalar versus vector, add multiply overlap, parallel 
processing, etc.). However, the fp-operation count is considered as a satisfactory tool to 
compare algorithms. 
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The number of fp-operations in expression (5.7) can be reduced by splitting eq. (5.6) into 
two parts as follows: 

N, Ny 

Pio(nx,ny,zi+1)co) = X X 4 s(n'x>ny) Fzo[n'x,ny,Az,k(nx,ny,Zi,to)] (5.8) 

{ Pzo[(nx-n'x),(ny-ny),Zi,ü)] + 

Pz o[(nx-n'x),(ny+ny),Zi,co] }AxAy, 
for nx = 1, 2 , . . ., numx, and ny = 1,2;. . ., numy. 

In this equation Pzo is defined as 

PZ0[(nx-nx),ly,Zi,Cö] = Pzo[(nx-nx),ly,Zi,(ü] + Pzo[(nx+nx),ly,Zj,Cu], (5.9) 

for ly = 1, 2, . .., numy, and n'x = 0, 1, . . ., Nx. 

First the summation according to eq. (5.9) is carried out. This yields 

(numy)(Nx+l) complex additions. 

This number can be neglected with respect to the number of fp-operations in the application 
of eq. (5.8). This is given by 

2(numx)(numy)(Nx+l)(Ny+l) complex additions and 
(numx)(numy)(Nx+l)(Ny+l) complex multiplications, or, together 
10(numx)(numy)(Nx+l)(Ny+l) fp-operations. (5.10) 

Compared with the number in expression (5.7) the number of fp-operations in (5.10) is 
reduced by about 30%. 

fp-operation count for the imaging step 
The number of fp-operations of a 'partial' imaging step amounts to 

(numx)(numy) real additions or fp-operations. (5.11) 
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Note that this number is very small, usually smaller than 0.1% of the number in expression 
(5.10). The contribution of the imaging step to the fp-operation count is therefore 
neglected. 

Thus, a global estimate of the total number of fp-operations of the migration scheme can be 
obtained by multiplying the number of fp-operations in expression (5.10) by the number of 
frequency components, numf, and the number of extrapolation steps, numz: 

10(numf)(numz)(numx)(numy)(Nx+l)(Ny+l) fp-operations, (5.12) 

The number according to (5.12) is used in the presentation of the benchmark results that are 
presented in section 5.6. Furthermore, it is used for comparison with a reverse-time 
migration algorithm, see section 5.5. 

5.4 EFFICIENT IMPLEMENTATION OF THE EXTRAPOLATION 

The number of fp-operations as given in the previous section is independent of the 
computer architecture. Only with additional information as: what is the degree of 
vectorization, is the algorithm suitable for parallel processing etc., one can estimate the 
efficiency of an algorithm for specific hardware. In this section we pay attention to the 
efficiency aspects of the 3D table-driven zero-offset migration algorithm. 

vectorization 
In general one can state: the longer a certain 'do-loop', the more efficient it is executed on a 
vector computer (see also section 5.6 on benchmarks). In a regular implementation of the 
2-D convolution along x and y, according to eq. (5.8) and (5.9), a compiler will vectorize 
either the loop in the x-direction or the loop in the y-direction. The reason is that for 
vectorization, the stride (the increment between the array elements to be processed) must be 
constant (or sometimes even preferably one). The elements of the operator are indeed 
sequentially stored in memory. Unfortunately, for the data this is not the case, as can be 
seen in Fig. 5.4.1. 
Another problem arises when the symmetry properties of the operator are incorporated. In 
that case four quadrants of data must be summed before the operator can be applied, and 
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2-D data array 2-0 auxiliary array 

Figure 5.4.1 In this picture all samples of the 2-D data array that are sequentially stored in memory 
are connected with a line. The samples of the 2-D data array (containing monochromatic zero-offset data) 
that are involved in the extrapolation of one row (dark-shaded samples) are not sequentially (or with 
constant increment) stored in memory. This is why the implementation of the extrapolation is not 
optimally vectorized. Therefore an auxiliary array is extracted from the data. In this array all required data 
are stored sequentially. (For simplicity in the picture Nx is 1, normally it is larger, e.g., from 5 to 20; 
(2Nx+l)(2Ny+l) is the operator size). 

this again does not vectorize without special modifications. 
Our implementation of a monochromatic extrapolation step, which is almost completely 
vectorized, is described in the following. 

For the moment we consider a homogeneous medium (one operator required) and we do 
not use the symmetry properties of the operator. From the 2-D data array (a 
monochromatic x,y panel) we extract an auxiliary 2-D array, dimensions (2NX+1) and 
(numy) in the x- and y-direction respectively, see Figure 5.4.1. This data transport action 
can be vectorized either in the x- or y-direction. We chose for the y-direction because of the 
larger number of points in this direction. The auxiliary array contains data for x-coordinates 
n x -N x , . . . ,n x , . . . ,n x +N x and for all y-coordinates: 1, 2,...,numy. Its samples are 
organized sequentially (stride one) such that the operator can be applied, 'shifted' one 
sample in the y-direction, and applied again etc., see Fig. 5.4.2. The application of the 
operator is fully vectorized both in the x- and in the y-direction, because it is implemented 
as a single loop. 
The result is a row of monochromatic extrapolated data for a fixed x-coordinate nx and for 
all y-coordinates. To go over to the next x-coordinate, nx+l, the auxiliary array must be 
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Figure S.4.2 The application of the operator. The samples of the operator are multiplied with the 
samples of the data (auxiliary array) and the results are summed. Both actions are fully vectorized. This 
yields one monochromatic extrapolated output point. The operator is shifted one sample to the right 
(positive y-direction) and it can be applied again. In this way one row of output data is acquired. (For 
simplicity in the picture both Nx and Ny are 1, normally they are larger, e.g., from 5 to 20; 
(2Nx+l)(2Ny+l) is the operator size). 

updated. Its upper row is now superfluous while a new bottom row should be added. It 
turns out that the samples of the required new bottom row can change places with the 
samples of the superfluous row in memory. The way this is done is explained in 
Fig. 5.4.3. The updating is fully vectorized. The operator can now be applied, 'shifted' 
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© required rows 
# new required row 

adjusted 2-D auxiliary array 

Figure 5.4.3 Update of the auxiliary array. In order to go over to the next row (one step in the 
positive x-direction) the auxiliary array must be updated. Its upper row is superfluous while a new bottom 
row should be added. It is not necessary to replace all data of the array. It is possible to replace the contents 
of the superfluous upper row with the required new data. The first sample of the auxiliary array is not used 
anymore. The second sample is considered as the first, the third sample as the second etc. One new sample 
is added to the auxiliary array. (For simplicity in the picture Nxis 1, normally it is larger, e.g., from 5 to 
20; (2Nx+l)(2Ny+l) is the operator size). 

one step in the y-direction, applied again etc., result: extrapolated data for x = (nx+l)Ax 
and for all y coordinates. 
This procedure is repeated for all x-coordinates. (Problems at the boundaries were avoided 
by surrounding the original monochromatic 2-D data panel with enough zeros). 
In this way the whole monochromatic data panel is extrapolated 
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If we make use of the symmetry properties of the operator (see eq. (3.23)), 
F(nx>ny) = F(-nxlny)=F(nx,-ny), the implementation becomes a bit more complicated 
because four quadrants of data must be summed before the operator can be applied. For the 
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Figure S.4.4 If use is made of the symmetry properties of the operator, four auxiliary arrays are used. 
This makes it possible to vectorize the summation of four quadrants of data, which is necessary before the 
operator can be applied. (For simplicity in the picture both Nx and Ny are I, normally they are larger, e.g., 
from 5 to 20; (2Nx+l)(2Ny+l) is the operator size). 
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interested reader the procedure is described next. The implementation is visualized in 
Figure 5.4.4. First two auxiliary 2-D arrays, called 1 and 2, are extracted from the 2-D 
data array (monochromatic x,y panel), with sizes (Nx+1) and (numy) in the x- and y-
direction respectively. These data transport actions are vectorized in the y-direction. 
Array 1 contains data for nx ,nx+l,.. . ,nx+Nxand for all y: 1,2 numy. Notation 
for array 1: (Tnx.Tyjn). Note that the arrows indicate the order of the elements. Array 2 
contains data for nx ,nx- l nx-Nx and for all y: 1,2,...,numy: (nxi,Tyall). The 
sum of array 1 and array 2 (see eq. (5.9)) is stored in array 3: (Tn .̂Ty,,]!). The summation 
is fully vectorized. A fourth array is constructed, containing the contents of array 3 in a 
reorganized way, the y-coordinate is in the reversed order: numy,numy-l,.. . , 1. 
Notation for array 4: (TnxJ,,yal|.l.). This data transport action is vectorized in the x-direction. 
Now the preparations are ready and the extrapolation can start. The part with 
n y ,n y +l , . . . , ny+Ny of array 3 and the part with n y ,n y - l , . . . , ny-Ny of array 4 are 
summed: (Tnxl,Tny) + (Tnxi,ny.l.) = (Tnx!, tny l) . This summation is fully vectorized 
The result contains four summed quadrants of data. Then the operator is applied which 
yields one extrapolated output point. The extrapolation is fully vectorized. Next we 'shift' 
one sample in the y-direction, sum the involved parts of array 3 and 4: (Tnxi, Tny+U) and 
apply the operator again, etc. The result is a row of extrapolated data for a fixed x-
coordinate nx and for all y coordinates. To go over to the next x-coordinate, nx+l, auxiliary 
arrays 1 and 2 are updated (fully vectorized) in the same way as was visualized in Figure 
5.4.3, and summed (fully vectorized), yielding array 3: (Tnx+li,Tyall). Array 4, the 
reorganized version of array 3 is constructed (vectorized in 1 direction): (Tnx+U,yai1A). 
Now the row with x = (nx+l)Ax can be done etc. 
In this way the whole monochromatic data panel is extrapolated. 

If lateral velocity variations are present, an operator must be computed from table operators 
by linear interpolation. This means that two operators must be multiplied by a scalar and 
subsequently summed (eq. (5.4)). Both processes fully vectorize. 

parallel processing 
The wave field extrapolation process is performed per frequency component. As mentioned 
before, working per frequency component offers a natural way of dividing a problem into 
independent parts, which can be processed separately. Therefore our migration scheme is 
very well suited for parallel processing. 



5.5 COMPARISON WITH REVERSE-TIME MIGRATION 115 

5.5 COST COMPARISON WITH REVERSE-TIME MIGRATION 

We compare our migration algorithm with the acoustic full 3-D reverse time migration 
algorithm as discussed by Chang and McMechan (1989). This is done for the number of 
fp-operations as well as for the required core memory space. As mentioned in section 2.1, 
the recursive extrapolation in reverse-time migration is performed backwards in time 
without dip limitations. At each extrapolation step the zero-offset data provide the boundary 
conditions at the surface. Starting at the maximum registration time, the extrapolation is 
continued recursively to zero time. The extrapolated section at zero time is the migrated 
result: all depths are imaged simultaneously. The expression for reverse-time migration, 
eq. (2.25), is repeated here: 

Pk,i.m(tn-At) = 2(l-3a2) pkjl,m(t„) - pk,i,m(t„+At) + (5.13) 

+ a2 (Pk+l.l.mOn) + Pk-l,l,m(tn) + Pk.1+1 ,m(tn) + Pk.l-l.mOn) + Pk,l,m+l(tn) + Pk.l,m-1 (tji)) • 

where Pk,i,m(tn) *s t n e notation for pZ0(kAxrt,lAyrt,mAzrt,nAt), Axrt= A y ^ A z ^ h is the 
grid spacing, the index n refers to reverse-time and a = a(x,y,z) = c1/2(x,y,z)At/h. 

fp-operation count 
From eq. (5.13) it follows that the computation of one extrapolated output point requires 9 
fp-operations. The total number of fp-operations is found by multiplying this with the 
number of grid points and the number of time steps numt,.t: ■< 

9(numxrt)(numyrt)(numzrt)(numtrt). (5.14) 

To be able to compare this result with the one in expression (5.12), one should keep in 
mind that the spatial and temporal intervals in reverse-time migration are small in order to 
preclude instability and/or grid dispersion: 

nurru^ ~ 5 numx, 
numyrt ~ 5 numy, (5.15) 
numz,, = 5 numz, 
numtj, = 5 numt» 20 numf. 
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Using this we find for the total number of fp-operations in reverse-time migration 

22,500 (numx)(numy)(numz)(numf). (5.16) 

This is in the order of ten times larger than the number of fp-operations in table-driven 
migration (expression (5.12)). 

required core memory space 
Preferably the total data volumes at three consecutive times, t„_j, t„ and t„+1 should be kept 
in core memory. However, it is possible to replace the data at time t„+1 with the reverse-
time extrapolated data at time Vi- Furthermore, the macro model velocity information 
should be present. Hence, the required core memory space for reverse-time migration is: 
- a 3D x,y,z volume containing macro model velocity information, size: 

(numxrt)(numyIt)(numzrt) real numbers and 
- two 3D x,y,z volumes containing data at two times, size: 

2(numxIt)(numyrt)(numzrt) real numbers. 

Hence, unless an huge amount of I/O is accepted, the core memory space must be large 
enough for 

3(numxrt)(numyrt)(numzrt) real numbers, or 
375(numx)(numy)(numz) real numbers. (5.17) 

Example. With the next parameters: numx = 500, numy = 100, numz = 150 and 4 bytes 
per real number, we find that the reverse-time migration requires a core memory of more 
than 10 Gbyte. This number should be compared with the 1.7 Mbyte that is required by 
table-driven migration (see section 5.4). Note that 10 Gbyte is too much for an 
implementation on present computers. 

5.6 BENCHMARKS 

The table-driven migration algorithm was tested on several computers: a Convex Cl, a 
Convex C2, a Cray X-MP and and an Alliant 4CE. All computers are vector computers. 
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The Convex and CRAY computers have a single CPU, the Alliant has four CPU's and 
offers the possibility of parallel processing. The Fortran code was optimized for the 
Convex Cl, i.e., some modifications were made to increase the performance. E.g., real 
and imaginary parts of complex number were treated separately. The Fortran code was the 
same for all computers and the executable code was generated with the standard compiler 
programs, using the highest level of automatic code-optimization that was available. The 
algorithm was tested for a number of operator sizes. 
The other parameters were: 

numx = 32, 
numy = 32, 
numf = 17 and 
numz = 75. 

In order to compute the number of fp-operations involved, we used formula (5.12). In this 
number, the FFT, the ('smoothed' or 'optimized') operator computation and interpolation, 
the imaging step nor the extra overhead of auxiliary arrays (see section 5.4) are 
incorporated. This means that the actual performance of the computers is even somewhat 
better. The results are presentedin Tables 5.1 and 5.2 and in Fig.5.6.1. 

1 0 -
performance . 
benchmark ■ 
(Mflop) 8 . 

7. 
6. 
5. 
4̂  
3. 

2 
U 

0 200 400 600 800 1000 1200 1400 
nr. of operator points 

Figure 5.6.1 Benchmark results for 3D table-driven migration. The performance of the Convex Cl and 
the Alliant 4CE is presented as a function of the operator size. Notice that both computers perform about 
equally well. Furthermore it is demonstrated that the efficiency of the computers increases for an increasing 
operator size. 

Convex C1 
Alliant 4CE 
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Some remarks about these benchmark results. 
- The maximum performance of about 8.5 Mflop that is reached on the Convex Cl is a 
good result. For comparison the performance for a Fortran coded single-precision dot-
product, as published by Convex, is shown in Fig. 5.6.2. The top performance of this 
simple piece of code is about equal, but it is reached for a smaller number of points. 

10 
performance . 
dot-product 9-
(Mflop) 8 . 

200 400 600 800 1000 1200 1400 
nr. of operator points 

Figure 5.6.2 Benchmark result for a dot product. Compare with Fig. 5.6.1. The top performance for 
the simple dot product and the much more complicated table-driven migration is the same. This 
demonstrates the efficiency of the implementation of the table-driven migration. 

- The improvement in the performance of the Convex C2 for this benchmark is a factor 
2.2. 
- The CRAY uses 64 bits per real number, while the other computers use 32 bits. The 
result of the CRAY benchmark was corrected for this: the actual execution time was 30.7 s. 
- For 3D applications the number of operator points is in the order of a few hundred. In 
this case our algorithm performs well on the considered computers. In case of 2D 
applications, the number of operator points is much smaller: less than one hundred. From 
the benchmark results it follows that our migration algorithm is not optimum in that case: 
the inner loop is too small and the vector computers do not reach their top performance. A 
suggestion is to interchange loops. E.g., in the 2D case the number of frequency 
components is generally larger than the required number of operator points. Therefore, 
vectorization along the frequency coordinate might be more efficient. 
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Because the Alliant offers the possibility of parallel processing, some extra tests were 
carried out. This time the number of operator points was kept constant at 841 while the 
number of CPU's was varied. The results are given in Table 5.3 and Fig. 5.6.3 for 1, 2 
and 4 CPU's respectively. By extrapolation we obtained an estimate for the configuration 
with 8 CPU's. 
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Figure 5.6.3 A specific benchmark was performed on the Alliant with 1, 2, 4 and 8 CPU's 
respectively. Notice that the actually reached speed-up is not equal to the ideal speed-up. The reason is that 
the compiler did not parallelize the code in an optimum way. 

Notice that the ultimate speed-up equals the number of CPU's. From Table 5.3 it is clear 
that the actually reached speed-up was less. This is because the Alliant Fortran compiler did 
not parallelize the frequency loop: instead parallelism was introduced at a deeper level in the 
code. We did not alter the Fortran code to make it more suitable for the Alliant; however, 
we expect that the machine can come much closer to the ultimate speed-up. 

Multi processor vector machines approximate the ideal hardware for our migration 
algorithm. In the ideal situation the number of CPU's equals the number of frequency 
components. Of course such dedicated hardware would only make sense if the frequency 
components are indeed processed in a parallel way. 
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Tables 

Table 5.1 Comparison between Convex Cl, Alliant 4CE and 
CRAY X-MP, execution time of benchmark 

number of 
operator 
points 

25 
81 

169 
289 
441 
625 
841 

Nx=Ny 

2 
4 
6 
8 

10 
12 
14 

number of 
fp-operations 
x 108 

1.18 
3.26 
6.40 
10.6 
15.8 
22.1 
29.4 

Convex Cl 
execution 
time (s) 

98.1 
113.3 
137.3 
167.5 
204.3 
278.0 
331.4 

Alliant 4CE 
execution 
time (s) 

108.9 
123.4 
144.4 
174.9 
212.0 
270.0 
319.7 

CRAY 
execution 
time(s) 

15.4 

Table 5.2 Comparison between Convex Cl, Alliant 4CE 
and CRAY X-MP, performance for benchmark 

number of 
operator 
points 

25 
81 

169 
289 
441 
625 
841 

Nx=Ny 

2 
4 
6 
8 

10 
12 
14 

Convex Cl 
performance 
Mflop 

1.20 
2.88 
4.65 
6.33 
7.73 
7.95 
8.87 

Alliant 4CE 
performance 
Mflop 

1.08 
2.64 
4.43 
6.06 
7.45 
8.19 
9.20 

CRAY 
performance 
Mflop 

68.8 
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Table 5.3 Test on concurrency, Alliant with 1, 2, 4 and 8 
CPU's, benchmark for 841 operator points 

number of execution time performance speedup efficiency 
CPU's (s) (Mflop) (%) 

1 
2 
4 
(8) 

683.1 
530.0 
319.7 
(220) 

4.30 
5.55 
9.20 
(13.4) 

1 
1.29 
2.14 
(3.11) 

100 
64.4 
53.2 
(38.8) estimated results 
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Figure 6.2.1a Subsurface model. The response Figure 62.1d Amplitude cross section of 
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Figure 6.2.1b Zero-offset response of the Figure 6.2.1c Migration result. Notice 
reflector below the pinch-out structure (obtained the correct position of the reflector. 
with finite-difference modeling). All diffraction energy has beenfocussed. 
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CHAPTER 6 

EXAMPLES / RESULTS 

6.1 INTRODUCTION 

In this chapter examples of table-driven zero-offset migration will be given. For the 2D 
case we used finite-difference modeled zero-offset data as well as 'real' stacked sections. 
We show examples of poststack as well as prestack migration. 
For the 3D case we used table-driven modeled zero-offset data (see the appendix). 
All examples demonstrate the high quality of the migration process: the events are well 
focussed and positioned correctly. For comparison we also included an example of 2 times 
2D (or two pass) migration. This method is often used in the seismic industry instead of 
full 3D migration. The results of 2 times 2D migration do not have the quality of full 3D 
migration, especially in case of strong lateral velocity variations. 

6.2 2D EXAMPLES 

2D Example 1, Fig. 6.2.1. 
The subsurface model is shown in Fig. 6.2.1a. It consists of a reflector below a pinch-out 
structure. Significant lateral and vertical velocity variations are present. The zero-offset 
response of only the 'exploding reflector' was modeled, see Fig. 6.2.1b. The shape of the 
reflector is distorted by the propagation effects. 
The migrated result can be seen in Fig. 6.2.1c and the amplitude cross section of the 
migrated result in Fig. 6.2. Id. Notice the good positioning and focussing of the reflector. 
Furthermore, the amplitude variations along the reflector are small. 
Processing parameters: temporal sampling interval At=4ms; trace length numt=256; frequency contents 
fmin = 10Hz, fma,=70Hz; number of frequency components numf=62; minimum velocity cmin = 2400m/s; 
maximum velocity cmax=3400 m/s; grid size 128*256 (numx, numz); horizontal spatial sampling interval 
Ax = 8m; extrapolation step size Az=4m; number of operator points 19 (1^=9); maximum angle of 
extrapolation used in the operator design axjn„ =45°; number of smooth operators numop= 185 in the 
range from 1 ^ = 0.0036 nr1 to km„=0.368 rrr1. 



Figure 6.2.2a 
Stacked section (Unocal 
Nederland). The arrow 
indicates the position of a 
bow-tie. A bow-tie is the 
zero-offset response of a 
synclinal structure; the 
syncline can be seen in the 
migration result. Fig. 6.2.2c. 
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Figure 6.2.2b Macro velocity model. 
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Figure 6.2.2d The zero-offset ray paths in the StackMap model can be used to determine the data 
coverage of the subsurface. Notice that the fault in the middle of the section is not well covered by the 
data, which is likely to be a cause of the unclear image in the migration result around the fault, see 
Fig. 6.2.2c. 
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2D Example 2, Fig. 6.2.2 
This is a field data example. A stacked section (courtesy of Unocal Nederland) is shown in 
Fig. 6.2.2a. The macro model was obtained with the use of StackMap® (a software 
product of Jason Geosystems, which uses stacking information to produce a data-
consistent interval-velocity/depth model (Van der Made, 1988)). The model is shown in 
Fig. 6.2.2b. The migration result is shown in Fig. 6.2.2c. The major reflector boundaries 
in the migration result coincide with the velocity changes in the macro model. This 
demonstrates the good quality of the model. Clearly it can be seen that the reflectors in the 
migration result have moved in the up-dip direction; this property gave migration its name. 
Furthermore, a bow-tie can be seen in the stacked section (arrow). A bow-tie is the zero-
offset response of a synclinal structure as can indeed be seen in the migration result. Notice 
that the fault in the middle of the migrated section remains rather vague. This can be 
explained by the fact that this area is not very well covered by the data. The StackMap ray-
coverage plot in Fig. 6.2.2d may be used to identify these areas. 

2D Example 3, Fig.6.2.3. 
A stacked section (courtesy of Nederlandse Aardolie Maatschappij) is shown in 
Fig. 6.2.3a. The macro model (obtained from Delft Geophysical) is shown in Fig. 6.2.3b 
and the migration result in Fig. 6.2.3c. Especially the fault (arrow) is much clearer 
determined in the migration result than in the stacked section. Furthermore, a number of 
small faults can be seen in the low horizontal reflector. If one compares the stack with the 
migration result, one can see the influence of the macro model on the position of the 
reflectors. 
The above mentioned phenomena can even be better observed in the prestack migrated 
result (obtained from Delft Geophysical), see Fig. 6.2.3d. This is in agreement with the 
fact that the CMP stacking process yields a low quality 'zero-offset' data. Hence, the 
prestack migration result will be better than the poststack migration result (see section 1.3). 
Processing parameters: temporal sampling interval At = 4 ms; trace length numt= 1024; frequency 

contents fmin = 10 Hz, fmax = 100 Hz; number of frequency components numf =93; minimum velocity 
cmin = 1810 m/s; maximum velocity c m a x = 5000 m/s; grid size 472 * 1000 (numx, numz); horizontal 

spatial sampling interval Ax = 15 m; extrapolation step size Az = 4 m; number of operator points 75 

(Nx = 38); maximum angle of propagation used in the operator design a x m a x = 40°; number of smooth 

operators numop = 3641 in the range from k m i n = 0.0251 m - 1 to k m a x = 0.695 m"1. 

StackMap® is a registered trademark of Jason Geosystems bv. 
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üi 

Figure 6.2.3a Stacked section (Nederlandse Aardolie Maatschappij). 
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Figure 6.2.3c Poststack migration result. The fault is indicated with an arrow. Note that it is much 
better determined in the migration result than in the stacked section. 
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Figure 6.23b Macro velocity model. 
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Figure 6.2.3d Prestack migration result (Delft Geophysical). The quality of a prestack migration result 
is better than the quality of a poststack migration result. Especially the small faults in the low horizontal 
reflector can be better observed in the prestack result. 
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Figure 62.4a Subsurface model. 
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Figure 6.2.4b Some shot records (obtained with finite-difference modeling). 
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Figure 6.2.4c Presiack migration result. 

2D Example 4, Fig. 6.2.4. 
Full prestack migration is not yet feasible on present computers for the 3D case. Therefore, 
we show an example of 2D prestack migration (see also section 4.1). The subsurface 
model is shown in Fig. 6.2.4a. We used finite-difference modeling for the generation of a 
number of shot records. Some of those are shown in Fig. 6.2.4b. The prestack migration 
result is presented in Fig. 6.2.4c. As expected, the result clearly shows the structure of the 
subsurface. 

6.3 3D EXAMPLES 

3D Example 1, Fig.6.3.1. 
A basic test of a migration algorithm is to determine its impulse response. We started with a 
3D 'zero-offset' data set of which all traces were empty except for the middle one at 
(x.y) = (0,0)m which contained a temporal band-limited pulse. In Fig. 6.3.1a a vertical 2D 
x,z cross-section of the data is shown. The macro model was a constant velocity model. 
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Figure 6.3.1 a 2D x,z cross-section of the input zero-offset data. The section contains a temporal band-
limited pulse in the middle trace. This input is used to determine the impulse response of the 3D table-
driven migration algorithm. 

Figure 6.3.1b A vertical x,z-panel at y = 0 m of the migration result is shown. As expected we see a 
semi-circle (being a 2D cross-section of a hemisphere). The maximum angle of extrapolation was 50°. 
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Figure 6.3.1c A depth slice at z = 250 m. The fact that the depth slice is perfectly circular proves that 
the accuracy of the migration is good in all directions and not only in the in-line or cross-line direction. 

The impulse response - the migrated result - can be seen in Fig. 6.3.1b and c where a 
vertical x,z-panel at y = 0 m and a depth slice at z = 230 m are shown respectively. As 
expected the pulse is transformed into a hemisphere. Notice the fact that the depth slice is 
perfectly circular. This proves that the accuracy is good in all directions, not only in the in­
line or cross-line direction. Also it can be seen that the maximum dip angle used in the 
extrapolation is 50°. The higher angles are suppressed. 
Processing parameters: temporal sampling interval At=4ms; trace length numt= 128; frequency contents 
fmin = 20Hz, fma„=80Hz; number of frequency components numf=32; velocity c=2000m/s; grid size 
90*90*128 (numx, numy, numz); horizontal spatial sampling intervals Ax = 6m and Ay=6m; 
extrapolation step size Az=6.25m; number of operator points 21*21 (Nx = 10, Ny=10); maximum angles 
of propagation used in the operator design a x m „ =50°, ax m „ =50°; number of smooth operators 
numop = 32 in the range from kmin = 0.126 m_1 to k,,,^ = 0.503 m""1. 

Figure 6.3.2a The response of a 
horizontal square reflector situated below a 
3D synclinal structure was modeled (with 3D 
table-driven modeling). 

336 m 560 m 
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Figure 6.3.2b A time slice at 
t = 0.28 s of the zero-offset data. 
Due to the focussing effect of the 
syncline, the picture had to clipped 
15 dB in order to see also 
diffraction energy. 

0 m 

896 m 
0 m 1024 m 

Figure 6.3.2c A vertical x,t 
cross-section aty = 455 m of 
the zero-offset data (15 dB clipped). 

0 ms 

512 ms 
0 m 1024 m 

Figure 6.3.2d A vertical y,t 
cross-section alx = 520 m of 
the zero-offset data (15 dB clipped). 
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O m 

896 m 

Figure 6.3.2e A depth slice 
at z = 350 m of the migration result. 
Notice that the square shape of the 
reflector has been recovered correctly. 

O m 1024 m 

0 m 

500 m 

Figure 6.3.2f A vertical x,z 
cross-section aty = 455 m 
of the migration result. One can now 
see that the reflector is horizontal. 

0 m 1024 m 

0 m 

500 m 
0 m 896 m 

Figure 6.3.2g A vertical y,z 
cross-section atx = 520 m of the 
migration result. 
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3D Example 2, Fig.6.3.2. 
The impulse response in the previous example was made for a homogeneous medium. To 
examine the performance of the migration also for a 3D inhomogeneous medium, the 
following example was made. We modeled the response of a horizontal square reflector 
situated below a 3D synclinal structure, see Fig. 6.3.2a. At the boundary of the syncline, 
the velocity changes from 2400 m/s in the upper part to 3600 m/s in the lower part. In 
Figs. 6.3.2b, c and d a time slice at t=0.28 s, a vertical x,t cross-section at y=455m and 
a vertical y,t cross-section at x = 520m are shown respectively. The synclinal structure has 
a strong focussing effect on the reflected energy. In order to see also diffraction energy, the 
pictures of the zero-offset data have been clipped 15 dB. The migrated results can be seen 
in Figs.6.3.2e, f and g where a depth slice at z = 350m, a vertical x,z cross-section at 
y=455 m and a vertical y,z cross-section at x = 520m are shown respectively. 
The depth slice shows the correct square shape of the reflector whereas the vertical cross-
sections confirm that the reflector is horizontal. Amplitude cross-sections of Figs.6.3.2f 
and g are shown in Figs. 6.3.2h and i. Notice the constant amplitude along the reflector. 
Processing parameters: temporal sampling interval At=4ms; trace length numt=128; frequency contents 
fmin^OH2- fmai=70Hz; number of frequency components numf=28; minimum velocity ^ = 2400 m/s; 
maximum velocity cm„ = 3600m/s; grid size 128*128*100 (numx, numy, numz); horizontal spatial 
sampling intervals Ax=8m and Ay=7m; extrapolation step size Az=5m; number of operator points 
23*27 (1^ = 11, Ny = 13); maximum angles of propagation used in the operator design a l i m„ =50°, 
ay,mix = 5 0 ° ; number of smooth operators numop=191 ranging from 1 ^ = 0.069m"1 to km„ = 0.366m"1. 

0 m 1024 m 0 m 896 m 

Figure 6.3.2h The amplitude cross-section 
of Fig. 6.3.2f. Notice the constant amplitude 
along the reflector. 

Figure 6.3.2i The amplitude cross-section 
of Fig. 6.3.2g. 
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Figure 6.3.3a A depth slice at 
z = 350 m of the result of 2 times 
2D migration (first pass in the 
x-direction). Notice that the 
square shape of the reflector has 
not been recovered correctly. 

0 m 

896 m 
0 m 1024 m 

Figure 6.3.3b A vertical x,z 
cross-section aty = 455 m of the 
result of 2 times 2D migration 
(first pass in the x-direction). The 
image of the reflector should be 
horizontal. Instead, the 2 times 2D 
migration results in a kind 
of anticlinal structure. 

0 m 

500 m 
O m 1024 m 

Figure 6.3.3c A vertical y.z 
cross-section atx = 520 m of the 
result of 2 times 2D migration (first 
pass in the x-direction). Notice that 
the 2 times 2D migration result in 
this direction is better than the one 
in the cross-line direction, compare 
with Fig. 6.3.3b. 

0 m 

500 m 

896 m 
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2 Times 2D Example 1, Fig.6.3.3, Fig.6.3.4 
In the seismic industry 3D poststack migration is usually carried out as a sequence of 2D 
migrations. In 2 times 2D, or two-pass migration, all vertical 2D cross sections in one 
lateral direction of a 3D data set are migrated first. Next, all vertical 2D cross sections of the 
result are migrated in the perpendicular direction. In case of a homogeneous medium, the 
results of two-pass migration and full 3D migration are practically equivalent. To examine 
the results of two-pass migration in case of lateral velocity variations we did the following 
experiment, starting with the same zero-offset data as in the previous example. 
The first pass was carried out in the x-direction using 2D time migration, AT being 4 ms. 
The second pass was carried out in the y-direction using 2D depth migration with 
Az = 5m. In Figs. 6.3.3a, b and c a depth slice at z = 350m and vertical x,z and y,z cross-
sections are shown respectively. Amplitude cross section of Figs. 6.3.3b and c are shown 
in Figs. 6.3.3 d and e. 

o m 1024 m 0 m 896 m 

Figure 6.3.3d The amplitude cross-section of Figure 6.3.3e The amplitude cross-section 
Fig. 6.3.3b. Notice the irregular amplitude of Fig. 6.3.3c. 
along the reflector. 

The migration result of the x,z cross-section in Fig. 6.3.3b is not correct: the horizontal 
reflector is imaged as some anticlinal structure. Also its size is too large, compare with 
Fig. 6.3.2f. The y,z cross-section is better: it is very similar to the result of full 3D 
migration. However, the amplitude cross-section in Fig. 6.3.3e is not as regular as the 
amplitude cross section of the 3D migration result in Fig.6.3.2i. 
The result of two-pass migration is not unique: it depends on the direction in which the first 
pass is carried out. To show this, the previous experiment was repeated, this time with the 
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r Figure 6.3.5d A vertical x,z 
cross-section at y = 640 m of the 
migration result. Notice the 
perfectly horizontal image of the 
reflector. Furthermore, the diffraction 
energy has beenfocussed well. 

Figure 6.3.5e A depth slice at 
z = 600 m. The rectangular shape of 
the reflector has been recovered 
correctly. 
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APPENDIX 

NUMERICAL MODELING OF SEISMIC DATA 

A.1 INTRODUCTION 

For the development and testing of software for seismic processing, realistic synthetic data 
are required. Data modeled with commercially available ray-tracing software usually do not 
have the necessary quality for this purpose. This is because ray-tracing is based On a high-
frequency approximation of the wave equation. The consequences of this approximation 
are the inaccurate results in case of caustics, shadow zones, etc. Furthermore, diffraction 
energy is often not (correctly) incorporated and the problem of 'missing rays' may occur. 
Accurate results can be obtained with finite-difference modeling based on recursive forward 
extrapolation along the time coordinate. The expression for forward-time extrapolation is 
given in eq. (2.25). However, this method is computationally intensive, especially for 
application in three dimensions. We used finite-difference modeling for the generation of 
2D prestack data as well as 2D zero-offset data. 
In this appendix the emphasis will be on modeling of 3D zero-offset data based on table-
driven, recursive forward extrapolation along the depth coordinate. The results of the 
method are much more accurate than those of ray-tracing while the method requires less 
computational effort (factor 10) and less computer memory (factor 103) than finite-
difference forward-time modeling. Note that equivalent numbers were given in section 5.5 
where the cost of reverse-time migration was compared with the cost of table-driven 
migration. The explanation is that the migration algorithms have a large similarity with the 
modeling algorithms. This holds for reverse-time migration and forward-time modeling on 
the one hand and for table-driven migration based on inverse extrapolation and table-driven 
modeling based on forward extrapolation on the other hand. 

Before we go into more detail, we give a 2D example in which the results of the mentioned 
modeling methods are shown, Fig. A.1. Notice the poor quality of ray-tracing and the high 
resemblance of the result of table-driven modeling and the result of forward-time modeling, 
which is considered as a reference. 
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Figure A.1 The results of three 
modeling methods are compared: 
ray-tracing, finite-difference 
modeling and table-driven 
modeling. Only the response 
of the reflector was modeled. 
Notice the poor quality of the 
ray-tracing result and the 
similarity between the 
table-driven result and the 
finite-difference result, 
which is considered as 
a reference. 
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Figure 6.3.4a A depth slice at 
z = 350 m of the result of 2 times 
2D migration (first pass in the 
y-direction). Notice that the 
square shape of the reflector has 
not been recovered correctly. 

0 m 

896 m 

0 m 1024 m 

Figure 6.3.4b A vertical x,z 
cross-section aty = 455 m of 
the result of 2 times 2D migration 
(first pass in the y-direction). 
Compare with Fig. 6.3.3b: 
the migration result depends 
on the direction in which the 
first pass of the migration is 
carried out. 

0 m 

500 m 
O m 1024 m 

Figure 6.3.4c A vertical y,z 
cross-section atx = 520 m of the 
result of 2 times 2D migration 
(first pass in the y-direction). 
Notice that the 2 times 2D migration 
result in this direction is worse than 
the one in the cross-line direction, 
compare with Fig. 6.3.4b. 

0 m 

500 m 
0 m 896 m 
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first pass carried out in the y-direction and the second pass in the x-direction. The results 
are shown in Fig. 6.3.4. Notice the differences between Fig. 6.3.3 and Fig. 6.3.4. As 
expected, this time the x,z cross section of the migrated result is the best, see Fig. 6.3.4b. 
We also carried out the experiments using time migration with a reference velocity (see 
section 2.1) for the first pass. The results were very similar. 
These examples confirm the well-known result that in case of strong lateral velocity 
variations, 2 times 2D migration does no longer yield acceptable results. In this case full 3D 
depth migration is required. (Fig. 6.3.2). 

0 m 1024 m 0 m 896 m 

Figure 6.3.4d The amplitude cross-section 
of Fig. 6.3.4b. Notice the irregular amplitude 
along the reflector. 

Figure 6.3.4e The amplitude cross-section 
of Fig. 6.3.4c. 

3D Example 3, Fig. 6.3.5 
In this final migration example the 3D zero-offset response of a horizontal rectangular 
reflector was modeled. Fig. 6.3.5a shows the position of the reflector below the French 
model (French, 1975). Only the reflector response was modeled and the French model was 
considered as overburden. In Fig. 6.3.5b a vertical cross-section of the zero-offset data can 
be seen. Note the diffraction that is present. In Fig. 6.3.5c a time slice at 500 ms can be 
seen. All distortion is due to the overburden, the French model. One can clearly recognize 
the influence of both of the domes and the dipping slope. The 3D table-driven migrated 
result is given in Figs. 6.3.5d and e. The results are good: the rectangular shape of the 
reflector is recovered, the image of the reflector is horizontal and all diffraction energy has 
been focussed correctly. 
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Processing parameters: temporal sampling interval At=4 ms; trace length numt = 256; frequency contents 
fmin=10Hz- fmax = 80Hz; number of frequency components numf = 68; minimum velocity 
c ^ s 1880m/s; maximum velocity cmax = 3800m/s; grid size 192* 128* 120 (numx, numy, numz); 
horizontal spatial sampling intervals Ax = 6.5 m and Ay = 10m; extrapolation step size Az = 6.5m; 
number of operator points 21 * 21 (Nx = 10, N = 10); maximum angles of propagation used in the 
operator design et lm„ =40°, « ï f l l l x = 40o; number of optimum operators numop = 313 ranging from 
1 ^ = 0.032 m-1 1 0 ^ = 0.536 m~l. 

Figure 6.3.5a The zero-offset response of a horizontal rectangular reflector below the French model was 
generated. The main features of the French model are the two domes and the dipping slope. (Modeling 
method: 3D table-driven modeling). A top view and a vertical cross section are also shown. 



144 6. EXAMPLES/RESULTS 

Figure 6.3.5b A vertical y,t 
cross-section atx = 624 m of the 
zero-offset data. Notice the 
influence of the dome. 

Figure 6.3.5c A time slice at 
t = 05 s of the zero-offset data. 
The influence of both of the domes 
and the dipping slope can be clearly 
observed. 

r 
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modeling technique based on ray-tracing 
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modeling technique based on recursive wave field extrapolation along the z-coordinate 
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A.2 3D ZERO-OFFSET MODELING BASED ON RECURSIVE 
EXTRAPOLATION ALONG THE DEPTH COORDINATE 

In chapter 5 we discussed the use of 'smoothed' or 'least-squares optimized' operators in 
3D zero-offset migration. The modeling method treated in this appendix can be considered 
as a reverse migration process. Instead of 
'migration: recursive inverse extrapolation along the z-coordinate + extraction of 
reflectivity information at each depth level (or, equivalently, imaging)', 
we now have 
'modeling: recursive forward extrapolation along the z-coordinate + addition of reflectivity 
information at each depth level'. 
The modeling scheme can be seen in Fig. A.2. 

C zero-offset 
data at z=0 m 

operator table 
macro model 

I D F F T w ^ t 

forward 
recursive 

extrapolation 

add exploding 
reflector data 

of current depth 

next frequency 

next depth 

start at maximum 
depth 3 

Figure A.2 Flow-chart of the table-driven 3D zero-offset modeling scheme. The basic steps are: 
recursive forward extrapolation along the z-coordinate and addition of reflectivity information at each depth 
level. 
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In the matched filter approach the operators W that are required for forward extrapolation 
are the complex conjugates of the operators F for inverse extrapolation: 

W = F*. (A.l) 

If the operators are designed for migration purposes, the acquisition parameters (Ax, Ay, 
frequency contents etc.) play an important role. These parameters determine the maximum 
quality that can be reached. E.g., the large values of Ax and Ay that are often used in 
practice reduce the angle of propagation of waves that can still be recorded without spatial 
aliasing. Of course, in modeling one is free to choose ideal 'acquisition' parameters. In this 
respect the modeling is not simply equivalent to 'reversed migration'. For the example 
given in Fig. A.l we chose a small spatial sampling interval for the modeling. This means 
that high dip-angles can be incorporated. Furthermore, the maximum amplitude error EA 

and the maximum phase error E<j, that are allowed in the operators can be taken extra small. 
This way, one can be sure that the synthetic data have a very high quality and that artifacts 
in the results after processing these data are due to the processing techniques and not to the 
modeling. 

Once the 'smoothed' or 'optimized' operators have been computed, their application in 
modeling does not differ from their application in migration. Therefore we refer to section 
5.4 in which the details of the implementation of the extrapolation are discussed. 

The step in which reflectivity information is put into the modeling scheme is discussed 
next. According to the imaging principle the zero-offset reflectivity at depth level Zj is equal 
to the zero time component of the extrapolated data at this depth level: 

Rzo(x,y,z;) = pzo(x,y,t=0,Zi) . (A.l) 

From this equation and the forward Fourier transformation (discrete in t and co) 

Pzo(x,y,na)Aco,Zi) = At £ pZ0(x,y,ntAt,Zi) e-i"-40»'^ (A.2) 
n, 

it follows that the reflectivity information that should be added to frequency component nffl 

of the data at depth level z; is given by 
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Pzo(x>y,no)Aa>,Zi) = At RZ0(x,y,Zi) . (A.3) 

Note that all frequency components are just scaled versions of the reflectivity information 
(scaling factor At). The reflectivity information should be added to each frequency 
component of the data at each depth level. 

If one does not have a reflectivity model, it is possible to obtain the reflectivity information 
from the (detailed) velocity-density model that is usually available in case of modeling. 
E.g., for the configuration shown in Fig. A.3 which contains one interface, the zero-offset 
reflection coefficients can be computed using 

Rl,2(zi ,2) 
_ P2C2 - P1C1 

P2C2 + P1C1 
(A.4) 

The position of the interface is denoted by z12 = Zii2(x,y). The index 1 refers to the upper 
layer, the index 2 refers to the lower layer. 

layer 
interface 

Figure A.3 Situation of a medium with one reflector (layer interface). Note that the reflector, which is 
arbitrarily shaped, crosses the horizontal depth levels that are used in the computations. The reflectivity 
information to be added to the data can be corrected with a small time shift (indicated by arrows). 
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Usually a layer interface, which may be arbitrarily shaped, will cross a number of 
horizontal depth levels z; as used in the computations, see Fig. A.3. If this is the case, the 
reflectivity information to be added to the data at a specific depth level z, can be computed 
by applying a small time shift Ax according to 
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Figure A.4 Structure of the table-driven full 3D zero-offset modeling algorithm. Notice the similarity 

with the migration algorithm, see Fig. 5.2.1. 
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PzoCx.y^Aco.z;) = At RZ0(x,y,Zi) = At Ri,2(zi,2) e^"-*"** , (A.5) 

for | zi,2 — z; | < Az/2. 

The time shift is given by 

A Z l , 2 - Z i 

Ax = — . 
c 

In Fig. A.4 a detailed scheme of the implementation of the the modeling program is shown. 
Note that this figure is very similar to Fig. 5.2.1 that shows the implementation of the 
migration. 

The table-driven modeling technique discussed in this section was used to generate the 
synthetic 3D zero-offset data shown in Fig. 6.3.2 and 6.3.5. 
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A.3 3D EXAMPLE 

In Fig. A.5a the subsurface configuration is shown. It is the French model (French, 1975). 
The main features are the two domes and the dipping slopes. A top view and a vertical y,z 
cross-section of the model are shown in Fig. A.5b. The corresponding vertical y,t cross-
section of the modeled zero-offset data is shown in Fig. A.5c. Notice the out of plane 
energy which is caused by the second dome. For comparison we also performed a 2D 
modeling for the same line. The result can be seen in Fig. A.5d. Indeed the out of plane 
energy of dome number 2 has disappeared. Furthermore, from this picture it becomes clear 
that the zero-offset response of the dipping slopes (number 3 and 4) is also largely out of 
plane. In Fig. A.5e to A.5j we show some more vertical cross sections of the model and 
the corresponding zero-offset data. The data have a realistic appearance, i.e., out of plane 
energy is present, the influence of lateral velocity variations can be seen (the bottom of the 
model is no longer a horizontal plane) and the data contain diffraction energy. 
Processing parameters: temporal sampling interval At=4ms; trace length numt=256; frequency contents 
fmin = 10Hz, fmilK=60Hz; number of frequency components numf=52; minimum velocity cmin = 1880m/s; 
maximum velocity cmai = 3800m/s; grid size 192*128*128 (numx, numy, numz); horizontal spatial 
sampling intervals Ax=6.5m and Ay=9.9m; extrapolation step size Az=6.5m; number of operator points 
41*41 (1^ = 20, Ny = 20); maximum angles of propagation used in the operator design o l m a l =40°, 
ay.max =40°; number of smooth operators numop=393 ranging from kmin = 0.032nT1 to 1^,, = 0.412m"1. 

Figure A.Sa French model. Its main features are the domes (1 and 2) and the dipping flanks (3 and 4). 
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vertical cross section 

Figure A.5b Top view and a 2D 
y,z cross section of the model. 

Figure A.Sc 2D y,t cross section 
of the 3D modeled zero-offset data 
corresponding to the line in 
Fig.A.5b. Notice the out of plane 
energy caused by the second dome 
and dipping slope nr. 4. 

Figure A.5d 2D modeled 
zero-offset data corresponding to the 
line in Fig. A.5b. Compare with 
the same line of the 3D modeled data 
in Fig. A.5c. Indeed the out of 
plane energy has disappeared. 
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vertical cross section 

Figure A.5e Top view and a 2D y,z cross section 
of the model. 
Figure A.5f 2D y,t cross section of the 3D 
modeled zero-offset data corresponding to the line in 
Fig. A.5e. 

vertical cross section 

Figure A.5g Top view and a 2D x,z cross section 
of the model. 
Figure A.Sh 2D x,t cross section of the 3D 
modeled zero-offset data corresponding to the line in 
Fig. A.5g. 
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vertical crass section 

Figure A.5i Top view and a 2D x,z cross section 
of the model. 

Figure A.Sj 2D x,t cross section of the 3D 
modeled zero-offset data corresponding to the line in 
Fig. A.5i. 
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SUMMARY 

Chapter 1. To obtain an image of the subsurface of the Earth, seismic measurements are 
carried out. Elastic waves are transmitted into the subsurface and the reflected waves are 
detected at the surface and registered as a function of travel time. 
However, for a map of the subsurface the results should be presented as a function of 
depth instead of travel time. This transformation can be realized with seismic migration. A 
migration procedure requires a macro subsurface model to be present. Such a model of the 
subsurface defines the propagation properties (trend information on velocity and density). 
The determination of such a model is not a topic of this thesis: we consider the macro 
model as known. This thesis addresses the migration process itself. 
The seismic measurements are repeated at different surface locations and the results can be 
combined ('stacked'). The migration can be performed either before or after stacking. 
The results of prestack migration are better than those of poststack migration. However, 
prestack migration is not (yet) feasible for application in three dimensions because of the 
enormous computational cost. The TRITON*) approach offers a compromise: prestack 
'redatuming' is carried out first. After this process the data can be considered as having 
been acquired at some level deep in the subsurface, e.g., at the upper boundary of the target 
zone. Next, common depth point (CDP) stacking is performed followed by full 3D zero-
offset migration. The result is a depth image of the target. 
In Chapter 2 an inventory of wave field extrapolation techniques that are used in migration 
is given. The methods are classified according to the extrapolation coordinate (depth, time 
or vertical time), the application domain (space-time, space-frequency or wavenumber-
frequency), the type of wave equation (one-way or two-way), the type of extrapolation 
(recursive or non-recursive) etc. For migration a choice is made for one-way, recursive 
extrapolation along the depth coordinate to be carried out in the space-frequency domain. 
Extrapolation is performed by using recursive Kirchhoff wave field extrapolation 
operators. The design of these operators is discussed in Chapter 3. Special attention is 
paid to aspects concerning aliasing, efficiency and accuracy. For use in practice two types 
of operators are presented: smooth operators and optimum operators. In the design of the 
smooth operator large spectral derivatives are avoided. The optimum operator is computed 

TRITON represents an international consortium on migration research, carried out at the Laboratory of 
Seismics and Acoustics at the Delft University of Technology. 
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by a least-squares algorithm. Smooth operators can be computed significantly faster than 
optimum operators. However, the latter ones can be applied more efficiently because they 
have the smallest possible size given a user-specified accuracy and dip range. The optimum 
operators are therefore suited for processing jobs with 'standard' acquisition parameters. 
Special sets of optimum operators could be generated for multiple use in those regular 
cases. Otherwise the smooth operators should be used. In either case the operators are 
stored in a table. This has the advantage that the operators do not need to be computed 
(more than once) during the actual extrapolation. 
In Chapter 4 the application of the operators in various migration techniques is discussed: 
from multi-offset via common-offset to zero-offset migration. For the 3D case zero-offset 
(poststack) depth migration is of most importance. 
Therefore, in Chapter 5 a detailed description of 3D table-driven zero-offset migration is 
given. Special attention is paid to the efficiency. The use of operators that have been 
computed in advance and stored in a table contributes considerably to a high efficiency. 
Furthermore, the symmetry properties of the operators are exploited which reduces the 
computational costs. We have formulated wave field extrapolation in terms of vector 
operations which makes the method very well suited for a vector computer. In addition a 
parallel implementation could be realized in a natural way because the frequency 
components are treated independently. Working per frequency component also has the 
advantage that the requirements concerning the computer memory remain moderate. 
Furthermore, in this chapter benchmark results are presented. From a cost comparison with 
reverse-time migration it follows that our table-driven migration is more efficient, not only 
with respect to the number of floating point operations (factor 10) but especially with 
respect to the required computer memory space (factor 103). 
In Chapter 6 2D and 3D examples of zero-offset migration are shown. All examples 
clearly show the excellent quality of our algorithm. The method can handle complex 
subsurface situations with both lateral and vertical velocity variations. Reflectors may be 
steeply dipping. After migration all events are positioned well and diffraction energy is 
focussed correctly. Furthermore, it is demonstrated that the results of full 3D migration are 
superior to those of the so-called 2 times 2D migration. 
Finally, in the Appendix the use of smooth operators or optimum operators in the 
modeling of 3D zero-offset data is discussed. This way of modeling yields better results 
than ray-tracing while it is significantly more efficient than finite-difference modeling. 
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Hoofdstuk 1. Om een beeld te verkrijgen van de ondergrond van de aarde worden 
seismische metingen verricht. Elastische golven worden opgewekt in de aardbodem en de 
gereflecteerde golven worden aan de oppervlakte gedetecteerd en geregistreerd als functie 
van de looptijd. 
Op een kaart van de ondergrond moet het resultaat echter gepresenteerd worden als functie 
van de diepte in plaats van de looptijd. Het proces dat deze transformatie uitvoert heet 
seismische migratie. Een migratiemethode vereist dat een macro-model van de ondergrond 
aanwezig is. Een dergelijk model bevat de propagatie-eigenschappen (globale informatie 
betreffende de snelheid en de dichtheid) van de ondergrond. Het bepalen van het macro­
model valt buiten het onderwerp van dit proefschrift: we beschouwen het macro-model als 
zijnde bekend en richten ons op het migratieproces zelf. 
De seismische metingen worden op verscheidene plaatsen aan de oppervlakte herhaald en 
de resultaten kunnen worden gecombineerd (Eng.: 'stacked'). De migratie kan zowel voor 
als na de stacking worden uitgevoerd. 
De resultaten van prestack migratie zijn beter dan die van poststack migratie. Voor 
toepassing in het geval van drie dimensionale data is prestack migratie (nog) niet mogelijk 
vanwege de enorm lange computer-rekentijden. De TRITON*) benadering biedt het 
volgende compromis. De eerste stap is prestack 'redatuming'. De resultaten hiervan kunnen 
worden opgevat alsof de seismische metingen uitgevoerd waren op een niveau diep in de 
ondergrond, bijvoorbeeld op de toplaag van het interessegebied. Vervolgens wordt een 
'common depth point' (CDP) stacking uitgevoerd gevolgd door een volledig drie­
dimensionale zero-offset migratie. Het resultaat is een afbeelding van het interessegebied 
als functie van de diepte. 
In Hoofdstuk 2 wordt een overzicht gegeven van de technieken voor golfveld-extrapolatie 
die gebruikt worden in migratie. De methoden zijn ingedeeld naar de extrapolatie-coördinaat 
(diepte, tijd of 'verticale tijd'), het toepassingsdomein (ruimte-tijd, ruimte-frequentie of 
golf getal-frequentie), het type golfvergelijking (eenweg of tweeweg), het type extrapolatie 
(recursief of niet-recursief) enz. De keuze voor migratie is: eenweg recursieve extrapolatie 
langs de dieptecoordinaat in het ruimte-frequentie domein. 

TRITON is een internationaal door de industrie gesponsord project. Het onderzoek is op het gebied van 
migratie en wordt uitgevoerd bij de Vakgroep Seismiek en Akoestiek, Technische Universiteit Delft. 
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Extrapolatie wordt uitgevoerd met gebruikmaking van recursieve Kirchhoff operatoren 
voor golfveld-extrapolatie. Bij het ontwerp van deze operatoren, die besproken worden in 
Hoofdstuk 3, wordt speciale aandacht besteed aan aspecten betreffende aliasing, efficiëntie 
en nauwkeurigheid. Voor het gebruik in de praktijk worden twee typen operatoren 
voorgesteld: geëffende operatoren en optimale operatoren. Bij het berekenen van de 
geëffende operator worden grote spectrale afgeleiden vermeden. De optimale operator 
wordt bepaald met behulp van een kleinste-kwadraten algoritme. Geëffende operatoren 
kunnen beduidend sneller berekend worden dan optimale operatoren. De laatste zijn echter 
efficiënter in hun toepassing omdat zij de kleinst mogelijke afmeting hebben, gegeven de 
specificaties van de gebruiker omtrent nauwkeurigheid en hoekbereik. Om die reden zijn 
optimale operatoren het meest geschikt voor toepassing in gevallen met 'standaard' 
acquisitie parameters. Voor die gevallen zouden speciale sets van optimale operatoren 
gemaakt kunnen worden om telkens opnieuw te gebruiken. In de overige situaties kunnen 
dan de geëffende operatoren gebruikt worden. Voor beide operatortypen geldt dat de 
operatoren voor gebruik worden opgeslagen in een tabel. Dit voorkomt (meervoudige) 
berekening van de operatoren tijdens de feitelijke extrapolatie. 
In Hoofdstuk 4 wordt de toepassing van de operatoren in diverse migratietechnieken 
besproken: van multi-offset via common-offset naar zero-offset migratie. Voor de 3D 
situatie is zero-offset (poststack) migratie het meest belangrijk. 
Daarom volgt in Hoofdstuk 5 een gedetailleerde beschrijving van 3D tabel-gedreven zero­
offset migratie. Speciale aandacht wordt besteed aan de efficiëntie. Het gebruik van vooraf 
berekende operatoren die vervolgens opgeslagen worden in een tabel leidt tot een 
aanzienlijke verhoging van de efficiëntie. Ook de symmetrie-eigenschappen van de 
operatoren worden benut om de rekentijden te bekorten. We hebben golfveld-extrapolatie 
geformuleerd in termen van vectorbewerkingen. Dit maakt de methode bijzonder geschikt 
voor vectorcomputers. Bovendien kan een implementatie voor een parallelle machine op 
een natuurlijke manier gerealiseerd worden omdat de frequentiecomponenten onafhankelijk 
worden verwerkt. Het uitvoeren van de berekeningen per frequentiecomponent heeft verder 
het voordeel dat het benodigde computergeheugen bescheiden kan blijven. In dit hoofdstuk 
worden de resultaten van een benchmark gepresenteerd. Uit een kostenvergelijking met 
'reverse-time' migratie blijkt dat onze tabel-gedreven migratie veel efficiënter is. Dit geldt 
niet alleen voor het aantal rekenkundige bewerkingen (factor 10) maar speciaal ook voor het 
vereiste computergeheugen (factor 103). 
In Hoofdstuk 6 worden 2D en 3D voorbeelden van zero-offset migratie getoond. Alle 
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voorbeelden laten duidelijk de goede kwaliteit van het algoritme zien. De methode kan 
complexe ondergrond-situaties aan waarin zowel laterale als verticale snelheidsvariaties 
optreden. Reflectoren mogen steil zijn. In de resultaten van de migratie is de positionering 
in orde; ook is diffractie energie goed gefocusseerd. Verder wordt aangetoond dat de 
resultaten van 3D migratie beter zijn dan die van de zgn. 2 maal 2D migratie. Tenslotte 
wordt in de Appendix de toepassing van geëffende operatoren of optimale operatoren in 
het modelleren van 3D zero-offset data besproken. Deze manier van modelleren levert 
betere resultaten dan 'ray-tracing' terwijl zij beduidend efficiënter is dan 'finite-difference' 
modelleren. 
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