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Chapter 1

Introduction

The central theme in this thesis is the characterization of porous media by combining
information of full acoustic waveforms as observed in different components (e.g.,
particle motion and fluid pressure). We focus on the mathematical description of
interface wavemodes, their experimental detection and the estimation of medium
parameters using either interface or reflected body wavemodes. In this chapter we
first give some background information to motivate the work presented in this thesis.
Then, we define the specific research goal, and elaborate how the different chapters
are linked to this goal and how they contribute to the main line of story.

1.1 Background and motivation

A well-known theory for wave propagation in fluid-saturated porous materials has
been developed by Biot (1956a,b). It models the constituents of the porous medium
as two immiscible interacting phases, i.e., the solid (porous frame) and the saturating
fluid. The most striking feature of this theory is that it predicts the existence of
a second compressional wave in addition to the conventional compressional and
shear waves that are known in non-porous elastic solids (Achenbach, 1973). This
is the result of taking into account the inertia of the fluid phase, which gives the
medium an additional degree of freedom next to the motion of the solid. The second
compressional wave is usually called the slow compressional (P2) wave as its velocity
is smaller than that of the conventional compressional wave, which, therefore, is
addressed as the fast compressional (P1) wave. The P1- and shear (S) waves induce
a motion of the fluid which is practically in-phase with the motion of the solid.
The P2-mode, however, induces an out-of-phase motion of the fluid and solid, which
leads to its strong attenuation by the viscous damping mechanism associated with
the relative fluid-solid motion; the P1- and S-waves have relatively small attenuation.
At low frequencies, the P2-mode shows diffusive behavior and at high frequencies it
is propagatory. One of the strong features of Biot’s theory is that it can be derived
from combining well-defined physical laws and mechanisms without having to resort
to empirical relationships, i.e., conservation of momentum, conservation of mass,
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2 1. Introduction

theory of elasticity for the elastic behavior of the solid and the fluid, and Darcy’s
law for the relative fluid-solid motion. Hence, the model parameters have a clear
physical meaning and can be determined in the laboratory.

Biot’s theory is applied in several fields and on different scales. Among others,
there are applications in ultrasonic testing of materials and structures (e.g., Sayers
& Dahlin, 1993), wave propagation through cancellous bones (e.g., Cowin, 1999)
and medical inverse problems (e.g., Sebaa et al., 2008), noise control and absorption
in building and environmental acoustics (e.g., Allard, 1993), borehole logging in
geotechnical engineering and reservoir engineering (e.g., Burns, 1990), and reflection
seismics in geophysics and seismology (e.g., Carcione, 2007). Generally speaking,
for the following three aspects research in the field of wave propagation in porous
media has been and is still challenging:

1. the physics of wave propagation,

2. computational physics (simulation of forward wave propagation),

3. material characterization (inverse problems).

Concerning the physics of wave propagation, the existence of the P2-mode has
been experimentally confirmed by Plona (1980). The existence of an additional
interface wave at the interface of a fluid and a fluid-saturated porous medium as
predicted by Feng & Johnson (1983a,b), i.e., the “true” interface wave, has been
experimentally validated by Mayes et al. (1986). This wave can exist next to the
pseudo-Rayleigh and pseudo-Stoneley waves that are the counterparts of the con-
ventional pseudo-Rayleigh and Stoneley waves at the fluid/elastic-solid interface. A
true interface wave propagates only along the interface and decays exponentially
with distance normal to the interface. A “pseudo” interface wave, however, is not
trapped at the interface as it continuously leaks energy into slower body wavemo-
des that are radiating away from the interface. Berryman (1980) has found that
the predicted body-wave velocities are in very good agreement with the experimen-
tally observed values for all three body wavemodes. For the frequency-dependent
attenuation of the P2-mode Johnson et al. (1994) have found excellent agreement
between theory and experiment. In addition, for the reflection coefficients as pre-
dicted by Biot’s theory they have observed reasonably good agreement between the
predicted and measured frequency-dependent coefficients at ultrasonic frequencies,
for all three body wavemodes. Regarding the P1- and S-waves, it is well-known that
Biot’s wavelength-scale attenuation mechanism significantly underestimates their
field-observed levels of attenuation in the seismic frequency band (e.g., Pride et al.,
2004). Up to this moment, considerable effort is made particularly to model the in-
trinsic attenuation of the P1-wave (Müller et al., 2010). Recent studies have shown
that the major cause of the enlarged attenuation in porous media can be a wave-
induced local fluid flow due to the presence of mesoscopic (sub-wavelength scale)
heterogeneities causing fluid-pressure gradients (Pride et al., 2004), i.e., pockets of
weakly cemented grains or gas pockets larger than the grain size. It implies that the
P1-wave is attenuated by local conversions into the P2-mode at the heterogeneities.
The proposed models to incorporate this effect illustrate another strong feature of
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Biot’s theory: it provides a general framework for wave propagation in porous me-
dia, which can be modified or extended with additional mechanisms whenever the
physical situation requires this. For example, Biot’s equations can be coupled with
Maxwell’s equations for electromagnetics to describe the electrokinetic phenomenon
(Pride, 1994), and non-linear wave propagation can be analyzed by modifications
or extensions of Biot’s equations (e.g., Straughan, 2008). Next to the field of wave
attenuation, in the latter two fields still many advances can be made.

In the area of poroelasticity, computational physics has become an essential re-
search and interpretation tool. Particularly in reservoir geophysics, ultrasonic and
seismic modeling in porous media is used to study the properties of rocks and to
simulate the seismic responses of geologic formations. An overview of the most
common direct numerical methods used to solve the (Biot’s or extended) partial
differential equations is given by Carcione et al. (2010a). They discuss the finite-
difference, pseudo-spectral and finite-element methods. One of the difficulties is
the coexistence of waves and diffusion modes. Next to the direct methods, integral
equation and ray tracing methods can be distinguished. In addition, there are the
semi-analytical methods that make use of Fourier and Laplace transforms to find
analytical solutions in the transformed domains, and apply numerical integration
to find the transient responses. Among them are the matrix propagator method
(Jocker et al., 2004) and the transmission and reflection matrices method (Lu &
Hanyga, 2005) for layered structures, where the latter avoids the stability problems
of the former. In the semi-analytical methods questions arise regarding the physical
interpretation of individual contributions in the inverse Fourier transform over the
wavenumber. Using the contour integration method, Allard et al. (2004) have found
that loop integrals around branch cuts can contribute to the waveform of a pseudo
interface wave, while an interface wave is often considered to originate from a pole
residue contribution only (Achenbach, 1973; Feng & Johnson, 1983a).

While there are many publications on the forward problem in poroelasticity, the
inverse problem is rarely addressed in the literature, even though information of
the porosity, permeability and fluid saturation distributions is very important for
geotechnical and reservoir engineers. Some authors employ elastic wave theory com-
bined with rock-physics modeling for the estimation of parameters (e.g., Bachrach,
2006). However, the use of the full poroelastic theory is preferred to directly relate
wave characteristics to the poroelastic parameters and to use information that can-
not be described by viscoelasticity or elasticity with the Gassmann (1951) formula
(De Barros et al., 2010). Chotiros (2002) inverts for poroelastic parameters using
the extended Biot theory as formulated by Stoll, using the P1- and S-wave speeds
and attenuations and the reflection loss of the P1-wave for the inversion. To our
knowledge, De Barros et al. (2010) are the first to present a full-waveform inversion
scheme of the seismic reflection response of a plane-layered fluid-saturated porous
medium, thus making more extensive use of the information present in the reflected
wave field. However, still only the information present in a single component obser-
vation is exploited, i.e., the vertical particle motion. The authors have found that
the best results are obtained for the parameters to which the reflection response is
most sensitive, namely porosity, consolidation parameter, solid density and shear
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modulus. Fluid density, fluid bulk modulus and grain bulk modulus are more diffi-
cult to estimate reliably, and permeability, as the most important parameter in the
oil industry (Pride et al., 2003), appears to be the most poorly estimated parameter
for fully-saturated media. However, close to an interface the permeability can be
estimated using the pseudo-Stoneley wave by employing either its attenuation or its
full waveform present in a single-component observation, as shown by Tang & Cheng
(2004).

1.2 Research objective and outline

From the above outline of research achievements and challenges it is clear that up to
now limited use is made of full-waveform information in the area of porous-medium
characterization, and that multi-component information is not employed. Hence, in
this thesis we aim to investigate the feasibility of exploiting full-waveform informa-
tion as present in multi-component observations for the estimation of poroelastic
parameters, particularly for that of the permeability. Multi-component observati-
ons are expected to be sensitive to the poroelastic parameters as they combine the
waveforms in both the fluid and solid phases.

In the beginning of the thesis there are two introductory chapters (2 and 3). In
Chapter 2 we give the theoretical framework for the wave propagation in a fluid-
saturated porous medium. We show the derivation of the governing equations, and
discuss the physical mechanisms and involved acoustic parameters. Subsequently,
in Chapter 3 we derive the associated infinite-space Green’s tensors in order to il-
lustrate the frequency-dependent coupling between the waveforms of a particular
body wavemode in solid particle motion and fluid pressure. This coupling is descri-
bed by the “coupling impedance”, which interrelates the waveforms in the different
components and can, therefore, be addressed as a “multi-component full-waveform
attribute”.

For the medium characterization, we focus on using the interface waves at the
interface between a fluid and a fluid-saturated porous medium for two reasons. In
the first place, for seismic frequencies poroelastic effects are known to be more pro-
nounced at interfaces than inside a medium (Gurevich, 1996) and, as a result, the
interface waves can be particularly sensitive to the permeability (Rosenbaum, 1974;
Winkler et al., 1989). Secondly, the experimental validation of the use of multi-
component full waveforms is relatively simple for interface waves in the ultrasonic
regime for which a non-contact detection method using laser ultrasonics is available
(Allard et al., 2002, 2003, 2004).

As the above-mentioned true interface wave has rather limited range of existence,
we will only consider the pseudo interface waves. In order to use their waveforms for
characterization purposes, we first need to determine if and how the pseudo interface
wave can be attributed to an individual contribution of the inverse Fourier integral
over wavenumber (or slowness). In Chapter 4 we introduce this problem and confirm
the observation of Allard et al. (2004) that the waveform is not necessarily captured
by a pole residue contribution only. In Chapter 5 we proceed with the analysis
and determine under which conditions the waveform of a pseudo interface wave is
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entirely captured by a pole residue.
Next, we investigate how the multi-component full-waveform information of the

interface waves can be exploited and what parameters can be estimated. To intro-
duce our approach, in Chapter 6 we start with the interface waves in the fluid/elastic-
solid configuration. Using the findings in Chapter 5, we can readily define the
interface-wave impedance and ellipticity, which are both attributes that interrelate
the full waveforms observed in different components. We investigate the sensitivities
of these attributes to the medium parameters and, based on that, a way is presented
to uniquely estimate Young’s modulus and Poisson’s ratio. The main principle is
that we optimally use the sensitivities of the multi-component full-waveform attribu-
tes by exploiting them simultaneously for the estimation of the parameters. Further,
in a laboratory validation experiment we examine the feasibility of the extraction of
the interface-wave impedances from a simultaneous particle displacement and fluid
pressure measurement using laser ultrasonics and a needle hydrophone; the feasibi-
lity of extracting the ellipticity using laser ultrasonics has already been reported by
Blum et al. (2010).

In Chapter 7, we investigate the use of multi-component full-waveform infor-
mation employing the fluid/porous-medium interface waves. By applying the same
principle we analyze the feasibility of the estimation of the Young’s modulus and
Poisson’s ratio (similar as in Chapter 6), being purely elastic parameters, and of
the permeability and porosity, which are poroelastic parameters governing the at-
tenuation mechanism related to the relative fluid-solid motion. We incorporate the
porosity next to the permeability because often many combinations of permeability
and porosity can explain the observed value of a wave attribute, and our approach of
combining wave attributes provides a way to cope with this non-uniqueness problem.
Next to the combination of the interface-wave impedance and ellipticity, we analyze
the combination of impedance and attenuation because the latter can be particu-
larly sensitive to the permeability (Rosenbaum, 1974; Winkler et al., 1989). Further,
like in Chapter 6, we include a laboratory validation experiment to investigate the
feasibility of the extraction of the interface-wave impedances.

Finally, a synthetic application of multi-component full-waveform information
for the estimation of permeability and porosity using a reflected seismic wavefield is
illustrated in Chapter 8. We include a mesoscopic-flow mechanism to get realistic
seismic attenuation. As a result, the P1-wave is sensitive to permeability at seis-
mic frequencies. For the parameter estimation, we apply a similar principle as for
the interface waves. However, now we combine the frequency- and angle-dependent
(layer/layer-interface) reflection coefficients of different wavemodes rather than dif-
ferent attributes of a single wavemode. Multi-component information is required to
extract the reflection coefficients from the observed reflection response; we assume
this step done and address the parameter estimation only. The use of the reflec-
tion coefficients implies that full-waveform information is exploited as a reflection
coefficient describes the reflection response from a layer interface.

In Chapter 9 we summarize the main conclusions from all chapters.
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Chapter 2

Governing equations for wave
propagation in a fluid-saturated
porous medium

2.1 Introduction

In this thesis we study the wave propagation in fluid-saturated porous media. We
investigate how various wavemodes can be described mathematically and detected
experimentally (especially the interface wavemodes), and how the various waves can
be used to characterize acoustic parameters of a porous medium. Therefore, in this
chapter we give the theoretical framework for the description of the wave propagation
in a fluid-saturated porous medium. Originally, this theory was developed by Biot
(1956a). Here, we show the derivation of the governing equations and discuss the
physical mechanisms and involved acoustic parameters.

First, we give the definitions of integral transforms and some notation conventions
that we use in this chapter and throughout the thesis (Section 2.2). Then, we
show that a fluid-saturated porous medium can be considered as a continuum and
discuss the underlying assumptions (Section 2.3). In Section 2.4 we derive stress-
strain relations associated with Biot’s theory from straightforward constitutive and
continuity equations following Kelder (1998) and Wisse (1999). This shows that the
involved elastic constants are clearly related to physical quantities. Subsequently, we
combine the stress-strain relations with the momentum equations to finally obtain
the equations of motions (Section 2.5). We present the equations of motion in two
different formulations that are known in the literature.

7



8 2. Governing equations

2.2 Definitions

First, we define the integral transforms that is used in this thesis. For frequency-
domain analysis we use the Fourier transform over time t defined as

û(x, ω) =

ˆ ∞

−∞

u(x, t) exp(−iωt) dt, (2.1)

where ω denotes angular frequency, i is the imaginary unit and u is a displacement
vector, but the Fourier transform can be applied to any other relevant field quantity.
The vector x = (x1, x2, x3)

T contains the spatial coordinates, where x1 and x2 are
horizontal coordinates and x3 is the vertical coordinate being positive in downward
direction; the superscript T denotes the transpose. Because the time-domain signal
u is real-valued it holds that û(−ω) = û∗(ω), where the asterisk denotes complex
conjugation. Hence it is sufficient to consider ω ≥ 0 only.

The Fourier transform over all spatial coordinates is defined as

˘̄u(k, ω) =

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

û(x, ω) exp(ik · x) dx1dx2dx3, (2.2)

where k = (k1, k2, k3)
T is the wavenumber vector. Throughout the thesis we often

use slowness p which is related to the wavenumber according to k = ωp (Aki &
Richards, 1980). The hat (û) refers to the (x, ω)-domain and the combined bar/breve
(˘̄u) to the (k, ω)-domain. We use a single breve (ŭ) to indicate the (p, ω)-domain.

Alternatively, when dealing with media that have discontinuities in x3-direction
(interfaces between layers), we apply the Fourier transform over horizontal coordi-
nates only according to

˜̄u(kr, x3, ω) =

ˆ ∞

−∞

ˆ ∞

−∞

û(x, ω) exp (ikr · r) dx1dx2, (2.3)

where kr = (k1, k2)
T is the horizontal wavenumber vector and r = (x1, x2)

T is the
horizontal space vector. In the case we work with the slowness rather than the
wavenumber we apply kr = ωpr (see above). The combined bar/tilde (˜̄u) refers to
the (kr, x3, ω)-domain, and a single tilde (ũ) refers to the (pr, x3, ω)-domain.

When using index notation we invoke the Einstein’s summation convention for
repeated indices. However, the summation convention does not apply to Greek
symbols (e.g., α, β) because we use these to indicate different wavemodes. Further,
the Kronecker delta is denoted δij and is defined as

δij =

{

1, i = j,
0, i 6= j.

(2.4)

2.3 Continuum description of a porous medium

As a basis for the derivation of the stress-strain relations associated with the theory
for wave propagation in a fluid-saturated porous medium, in this section we give the
underlying assumptions and we define stresses and strains.
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The Biot theory describes porous materials as a medium consisting of two inter-
penetrating phases: the solid phase (porous frame) and the fluid phase (Biot, 1956a).
The original theory has been developed using a semi-phenomenological macroscopic
approach, based on a set of physically realistic assumptions. This approach means
that the microscopic dimensions of the individual constituents of the saturated po-
rous medium are not considered, i.e., the medium is considered as a continuum. The
following assumptions were made:

1. The fluid-saturated porous material is constituted in such a way that the fluid
phase is fully interconnected. Any sealed void space is considered as a part of
the solid.

2. A so-called representative elementary volume element is defined, which is small
compared to the relevant wavelength but large compared to the individual
grains and pores of the system. Each volume element is described by its
averaged displacement of the solid parts u(x, t) and of the fluid parts U(x, t).

3. The deformation of the elementary volume element is assumed to be linearly
elastic and reversible. This implies that displacements for both fluid and so-
lid phases are small. The governing equations can be represented in their
linearized form.

4. The solid is considered to have compressibility and shear rigidity, while the
fluid only has compressibility as it is assumed to be a Newtonian fluid: the
fluid does not sustain any shear force for static displacements.

5. The solid and fluid are assumed homogeneous and isotropic, and all possible
dissipation mechanisms related to the solid itself are not taken into account.
Only dissipation due to viscous relative fluid-solid motion is incorporated.

6. Thermoelastic and chemical reaction effects are assumed to be absent and the
system behaves adiabatically.

Following these assumptions, we can now define porosity, stresses and strains
unambiguously. Considering a fluid-filled elastic porous matrix with a statistical
distribution of interconnected pores, the porosity is usually defined by

φ =
Vf

Vb

, (2.5)

where Vf is the volume of the pores contained in a sample of bulk volume Vb, and
the term “porosity” refers to the effective porosity (see assumption 1 above).

Within the restrictions of the linearized theory the (macroscopic) deformation
of solid and fluid are described by the small-strain tensors, eij and εij , respectively,
according to

eij = 1
2 (∂iuj + ∂jui), (2.6)

εij = 1
2 (∂iUj + ∂jUi). (2.7)
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where ∂j = ∂/∂xj . It is evident that eij = eji and εij = εji.
If we consider a cube of unit size of the bulk material (solid and fluid), the total

stress tensor can be defined as

τb,ij =





τ11 + τ τ12 τ13

τ21 τ22 + τ τ23

τ31 τ32 τ33 + τ



 , (2.8)

where τ represents the total normal tension force per unit bulk area Ab applied
to the fluid part of the faces of the cube. The total stress tensor is symmetric,
i.e., τb,ij = τb,ji, which can be shown using the balance of angular momentum
(Achenbach, 1973). Denoting the pressure of the fluid in the pores by pf we can
write

τ = −φpf , (2.9)

where pf is defined positive in compression. The remaining components τij of the
total stress tensor are the forces per unit bulk area applied to that portion of the
cube faces occupied by the solid. They are a result of both the fluid pressure pf and
the additional intergranular stresses σij ,

τij = −σij − (1 − φ)pfδij , (2.10)

where the Kronecker delta reflects the assumption that the pore fluid cannot sustain
any shear forces. The intergranular stresses are also defined positive in compression,
and are called “additional” because they add up to the stresses in the solid induced
by the fluid pressure.

For later use, we also define the forces per unit solid area As applied to that
portion of the cube faces occupied by the solid

τijAb/As = −σij/(1 − φ) − pfδij . (2.11)

Obviously, the total normal tension force per unit fluid area Af applied to the fluid
part of the faces of the cube can be written as

τAb/Af = −pf , (2.12)

where Af/Ab = Vf/Vb and Eq. (2.5) have been used.
Using now Eqs. (2.9) and (2.10) the total stress tensor (Eq. (2.8)) in the bulk

material can be written as

τb,ij =





−σ11 − pf −σ12 −σ13

−σ21 −σ22 − pf −σ23

−σ31 −σ32 −σ33 − pf



 , (2.13)

where σij = σji (see Eq. (2.8)). This expression for the total stress tensor is also
given by Verruijt (1982), where it must be noted that he has denoted the total stress
tensor as σij and the intergranular stress as σ̄ij .
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2.4 Stress-strain relations

We now derive the stress-strain relations for a fluid-saturated porous medium and
relate the elastic coefficients of the model to physical quantities.

Following the assumptions and definitions as mentioned in the previous section,
and by a generalization of the procedure followed in the classical theory of elasticity
(Love, 1944), the elastic potential energy density Ep for a fluid-saturated porous
medium can be written as (Biot, 1955)

Ep = 1
2 (τ11e11 + τ22e22 + τ33e33 + 2τ12e12 + 2τ13e13 + 2τ23e23 + τε), (2.14)

where ε = εkk. In Eq. (2.14) the symmetry property of the stresses and strains has
been used, τij = τji and eij = eji, respectively. Following the generalized Hooke’s
law, here the number of independent elastic coefficients is twenty eight, which is
known as general anisotropic poroelasticity. When the material is isotropic, i.e.,
when there are no preferred directions in the material which also means that the
principal stress and strain directions coincide, this is reduced to four distinct elastic
coefficients. Introducing the elastic constants A, Q, R and G, the stress-strain
relations for an isotropic porous medium can be written as (Biot, 1956a)

τij = 2Geij + Aekkδij + Qεδij , (2.15)

τ = Qekk + Rε. (2.16)

The elastic constants A, Q, R are generalized elastic coefficients that can be rela-
ted to physical quantities such as porosity φ, the fluid bulk modulus Kf , the bulk
modulus of the grains Ks, the bulk of the drained matrix Kb, and the (drained)
composite shear modulus G.

The elastic coefficients were related to physical quantities by Gassmann (1951),
Biot & Willis (1957), Geertsema & Smit (1961), Stoll (1974), Brown & Korringa
(1975) and Berryman (1981), using so-called static “Gedanken” experiments on jac-
keted and unjacketed porous samples. Here, we discuss these tests following Kelder
(1998), who derived the stress-strain relations from straightforward continuity and
constitutive relations. In the gedanken experiments the volume effects caused by the
stresses in the porous medium are investigated. As these stresses can be expressed
in terms of fluid pressure and intergranular stresses (see Eqs. (2.9) and (2.10)),
we discuss two experiments in which the influences of the two stresses are studied
separately. By superposition of the results, and in combination with continuity equa-
tions, we arrive at stress-strain relations in the form equivalent to Eqs. (2.15) and
(2.16).

2.4.1 Effect of fluid pressure (unjacketed test)

The first experiment is the so-called unjacketed test in which the influence of the
fluid pressure is studied. When a porous sample is fully submerged in a watertank
(pressure change dpe) and the sample is assumed to be fully water-saturated, it
is immediately clear that the fluid pressure must be continuous over the interface



12 2. Governing equations

(Deresiewicz & Skalak, 1963),

dpf = dpe. (2.17)

For the intergranular stresses at the interface we can write

dσ11 = dσ22 = dσ33 = 0. (2.18)

As there are no changes in the intergranular stresses, the unjacketed test is used to
study the volume effects caused by the pore pressure changes. Defining the bulk
modulus Ka, the bulk volume change dVb is measured in this test,

dVb = − Vb

Ka

dpf . (2.19)

In the case of homogeneous media, either isotropic or not, the application of an
incremental pressure dpe means applying this increment both to the outer and inner
pore surface, which leads to a linear mapping and does not change the porosity φ
(dφ = 0). Therefore we may write for the volume change of the matrix grains

dVs = (1 − φ)dVb = − 1

Ka

Vsdpf . (2.20)

This means that for homogeneous media Ka can also be interpreted as the bulk
modulus of the individual grains, which we denote by Ks. Hence, in Eqs. (2.19) and
(2.20) Ka can be replaced by Ks.

2.4.2 Effect of intergranular stresses (jacketed test)

The second experiment is the so-called jacketed test in which the influence of in-
tergranular stresses is studied. In this case, a porous sample is jacketed and fully
submerged in a watertank (pressure change dpe) and the inside of the jacket is made
to communicate with the atmosphere through a tube to ensure constant internal
fluid pressure. Now we can write (Deresiewicz & Skalak, 1963)

dpe = dσ11 = dσ22 = dσ33, (2.21)

see also Eq. (2.13) and dpf = 0. As there are no pore pressure changes, the jacketed
test is used to study the volume effects caused by intergranular stresses. Defining
the matrix bulk modulus Kb, the bulk volume change dVb,

dVb = − Vb

Kb

dσ. (2.22)

is measured in this test, where σ is the isotropic component of the intergranular
stress (σ = 1

3σkk). In the literature, it is often assumed that a dry specimen exhibits
the same properties as a fully saturated one and therefore the conventional jacketed
test is usually performed on a dry specimen. Assuming that the response of the
solid particles to a unit increase of the average stress induced by the intergranular
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forces equals the response to a unit increase of the uniform stress induced in these
particles by the fluid pressure, we can write for the volume change of the particles
(see Eqs. (2.11) and (2.20))

dVs = − 1

(1 − φ)

1

Ks

Vsdσ. (2.23)

The associated change in porosity dφ can be found using the relation dVs = d[(1 −
φ)Vb)] (cf. Eq. (2.20))

dφ = −
(

1 − φ

Kb

− 1

Ks

)

dσ. (2.24)

It can be argued that a small increase of the intergranular stress must result in
a decrease of the porosity, so ∂φ/∂σ < 0. From Eq. (2.24), we then find that
(1 − φ)Ks > Kb, which was also previously stated by Verruijt (1982).

2.4.3 Combination of effects

Now, the bulk volume change dVb can be described as a function of both the pore
pressure change and the change of the intergranular stresses, and thus as a summa-
tion of the effects discussed in both experiments (see Eqs. (2.19) and (2.22))

dVb

Vb

= − 1

Kb

dσ − 1

Ks

dpf . (2.25)

Introducing de = dekk = dVb/Vb, integrating Eq. (2.25) and ignoring the integration
constants, which is allowed because we only consider varying (dynamic) quantities,
we obtain

−σ = Kbe +
Kb

Ks

pf . (2.26)

Next, we want to include the effect of shear strain. When we measure the shear
modulus of a dry sample, i.e., pf = 0, the shear modulus G of the matrix can be
incorporated following Hooke’s law for an isotropic solid. As only the intergranular
stress σij can produce shear strain, it can be seen from Eq. (2.26) that the stress-
strain relation for the bulk can be written as

−σij =

(

Kb −
2

3
G

)

eδij + 2Geij +
Kb

Ks

pfδij . (2.27)

This relation does not yet have the final form of Eqs. (2.10) and (2.15). Therefore,
we proceed with the derivation below. In the literature, the effective stress σ′

ij is
often introduced in such a way that the deformation of the matrix is fully determined
by that stress (Verruijt, 1982)

−σ′
ij = −σij −

Kb

Ks

pfδij =

(

Kb −
2

3
G

)

eδij + 2Geij . (2.28)
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2.4.4 Relation of Biot’s elastic constants to physical
quantities

We continue with the derivation of stress-strain relations for a fluid-saturated porous
medium by combining the constitutive equations with continuity equations. The
constitutive equation for the solid is found by combination of Eqs. (2.20) and (2.23),
and using dVs/Vs = −dρs/ρs. For the fluid, the bulk modulus Kf is introduced.
The constitutive equations read

1

ρs

∂tρs =
1

Ks

∂tpf +
1

(1 − φ)

1

Ks

∂tσ, (2.29)

1

ρf

∂tρf =
1

Kf

∂tpf . (2.30)

The linearized continuity equations read (Smeulders, 1992)

(1 − φ)∂tρs − ρs∂tφ + (1 − φ)ρs∇ · v = 0, (2.31)

φ∂tρf + ρf∂tφ + φρf∇ · V = φ∂tθm, (2.32)

where v = ∂tu and V = ∂tU are the averaged velocities of the solid and fluid,
respectively. For later use we include a source term in the equation for the fluid;
θm denotes the volume density of (fluid) mass injection having dimensions [kgm−3]
(Wapenaar & Berkhout, 1989). We do not include a similar source term for the solid
because it is found in the literature only for the fluid (Bonnet, 1987). As the physical
meaning of this (fluid) source may not be immediately clear we further discuss its
nature in Chapter 3.

As we are dealing with a linearized theory, in Eqs. (2.31) and (2.32) and all sub-
sequent equations the products of quantities (e.g., φ∂tρf ) are understood as follows:
the quantity preceding the derivative (φ) denotes the unperturbed (background)
value, and the quantity to which the derivative is applied (∂tρf ) denotes the wave-
induced variation of that quantity.

By combining the solid relations, Eqs. (2.29) and (2.31), and the fluid equations,
Eqs. (2.30) and (2.32), respectively, we eliminate the factors ∂ρs and ∂ρf and obtain

1 − φ

Ks

∂tpf +
1

Ks

∂tσ − ∂tφ + (1 − φ)∇ · v = 0, (2.33)

φ

Kf

∂tpf + ∂tφ + φ∇ · V =
φ

ρf

∂tθm. (2.34)

Elimination of the porosity term (∂φ) by adding the equations yields

(

1 − φ

Ks

+
φ

Kf

)

∂tpf +
1

Ks

∂tσ + (1 − φ)∇ · v + φ∇ · V =
φ

ρf

∂tθm, (2.35)

which is usually called the “storage equation”; it forms a basic relationship in con-
solidation problems (Verruijt, 1982).
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Now we eliminate either σ or pf from the combination of Eqs. (2.26) and (2.35).
Using the identity ∂te = ∇ · v this yields

φ′∂tσ + φKb∇ · v − φKf

Kb

Ks

∇ · V = φKf∂tθm, (2.36)

φ′∂tpf + Kf

(

1 − φ − Kb

Ks

)

∇ · v + φKf∇ · V = −φKf

Kb

Ks

∂tθm, (2.37)

where we have introduced

φ′ = φ +
Kf

Ks

(

1 − φ − Kb

Ks

)

. (2.38)

Then, by combining Eqs. (2.27) and (2.37), and Eqs. (2.26) and (2.36), respectively,
we obtain the following set of stress-strain relations for a fluid-saturated porous
medium in a form similar to Eqs. (2.10) and (2.15), and (2.9) and (2.16) (except for
the volume injection source), respectively,

−σij − (1 − φ)pfδij = G(∂iuj + ∂jui) + A∂kukδij + Q(∂kUk − θ)δij , (2.39)

−φpf = Q∂kuk + R(∂kUk − θ). (2.40)

Here, we note that φ is the unperturbed value of the porosity; cf. Eqs. (2.31) and
(2.32). Further, we have used ρ−1

f ∂tθm = ∂t(ρ
−1
f θm) = ∂tθ, which is possible because

ρf denotes the unperturbed fluid density; θ denotes the volume density of volume
injection (Wapenaar & Berkhout, 1989), which is a dimensionless quantity. Indefinite
integration over time has been applied to obtain Eqs. (2.39) and (2.40), where
the integration constants are ignored because we only consider varying (dynamic)
quantities. In the above derivation of Eqs. (2.39) and (2.40) the generalized elastic
constants A, Q and R (cf. Eqs. (2.15) and (2.16)) are found to be related to the
physical quantities φ, Kb, Kf , Ks and G according to

A = Kb −
2

3
G +

Kf (1 − φ − Kb

Ks
)2

φ′
, (2.41)

Q =
φKf (1 − φ − Kb

Ks
)

φ′
, (2.42)

R =
φ2Kf

φ′
. (2.43)

In the limit case in which the porous matrix and the fluid are much more compressible
than the grains themselves (i.e., Kb/Ks,Kf/Ks → 0), the expressions reduce to

A = Kb −
2

3
G +

Kf (1 − φ)2

φ
, (2.44)

Q = Kf (1 − φ), (2.45)

R = φKf . (2.46)
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From Eqs. (2.41)-(2.43) it can be derived that

Kb = A − Q2

R
+

2

3
G, (2.47)

which shows a similarity with the elastic case, where the well-known Lamé constants
λ and G are related to the bulk modulus according to (Achenbach, 1973)

Kb = λ +
2

3
G. (2.48)

Obviously, the Lamé constant λ of a porous material, under condition of constant
fluid pressure (see Section 2.4.2), is found as

λ = A − Q2/R. (2.49)

2.5 Equations of motion

Next, we derive the equations of motion by combination of the stress-strain relations
with momentum equations. We derive two different formulations of the equations of
motion and we show that a viscous mechanism can be incorporated, describing the
frequency-dependent interaction between fluid and solid.

The momentum equations for a porous medium have been derived by Biot
(1956a) using Lagrange’s equations. Starting from the linearized Navier-Stokes equa-
tions and the linearized equations of elasticity, Burridge & Keller (1981) arrived at
the same result using a two-space method of homogenization for the case that the
viscosity of the saturating fluid is relatively small. In this section we summarize the
derivation by Biot.

For both the solid and the fluid phase, Lagrange’s equation including dissipation
can be formulated as (Achenbach, 1973; Graff, 1975; Davis, 1988; Allard, 1993;
Pierce, 2007)

∂t

(

∂Ek

∂vi

)

+
∂Ed

∂vi

= Ts,i + Fs,i, (2.50)

∂t

(

∂Ek

∂Vi

)

+
∂Ed

∂Vi

= Tf,i + Ff,i, (2.51)

where Ek is the kinetic energy density of the porous medium, Ed denotes the dissi-
pation function, Ts,i is the elastic force (due to stresses) acting on the solid per unit
volume, Tf,i is the elastic force acting on the fluid per unit volume, and Fs,i and
Ff,i are the external volume forces acting on the solid and fluid phase, respectively.
The expression for the kinetic energy density reads (Biot, 1956a)

Ek = 1
2 (ρ11vivi + ρ22ViVi + 2ρ12viVi). (2.52)

The density terms ρ11, ρ22 and ρ12 are related to the density of the solid ρs and that
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of the fluid ρf according to

ρ11 = (1 − φ)ρs − ρ12, (2.53)

ρ22 = φρf − ρ12, (2.54)

ρ12 = −(α∞ − 1)φρf . (2.55)

The latter density term represents a mass coupling parameter between the solid and
the fluid, which exists due to the (infinite-frequency) tortuosity α∞ of the porous
network: α∞ ≥ 0, and hence ρ12 ≤ 0. We discuss α∞ more extensively in Section
2.5.1.

Dissipation depends only on the relative motion of the fluid and the solid phases.
Like Eq. (2.52), the dissipation function can be expressed in terms of six velocity
components. For the isotropic case it reads (Biot, 1956a)

Ed = 1
2b0(vi − Vi)(vi − Vi), (2.56)

where the coefficient b0 is related to the Darcy flow permeability k0 and the dynamic
viscosity η of the saturating fluid as

b0 =
ηφ2

k0
. (2.57)

The nature of the dissipation mechanism is discussed in more detail in Section 2.5.1.
The forces Ts,i and Tf,i are related to spatial derivatives of the stresses. Using

Eqs. (2.39) and (2.40) the expressions read

Ts,i = ∂jσij − (1 − φ)∂ipf

= G∂i∂juj + G∂2
j ui + A∂i∂juj + Q(∂i∂jUj − ∂iθ), (2.58)

Tf,i = −φ∂ipf

= Q∂i∂juj + R(∂i∂jUj − ∂iθ). (2.59)

Now, by combining Eqs. (2.50), (2.52), (2.56) and (2.58), and by combining Eqs.
(2.51), (2.52), (2.56) and (2.59), we obtain the following equations of motion

ρ11∂
2
t u + ρ12∂

2
t U + b0∂t(u − U) = P∇∇ · u − G∇×∇× u

+ Q∇∇ · U + f , (2.60)

ρ12∂
2
t u + ρ22∂

2
t U − b0∂t(u − U) = Q∇∇ · u + R∇∇ · U + F, (2.61)

where P = A+2G and we have used the vector identity ∇2u = ∇∇·u−∇×∇×u
to separate dilatation and rotation terms. The source terms are defined as

f = Fs − Q∇θ, (2.62)

F = Ff − R∇θ. (2.63)

Eqs. (2.60) and (2.61) are the equations of motion for wave propagation in a fluid-
saturated porous medium, as originally derived by (Biot, 1956a) (without source
terms). The incorporated dissipation mechanism being frequency-independent, howe-
ver, simplifies reality too much. Therefore, in the next section we modify the asso-
ciated terms in Eqs. (2.60) and (2.61).
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2.5.1 Incorporation of frequency-dependent permeability or
tortuosity

In this section we discuss the behavior of the dissipation mechanism which describes
the frequency-dependent interaction between the solid and the fluid. Starting from
the low- and high frequency limits, the behavior in the intermediate frequency band
is obtained for the rigid frame limit (u = 0). We clarify the relation between
frequency-dependent permeability and tortuosity, illustrate their behavior using a
numerical example, and finally we show how the frequency-dependent dissipation
mechanism can be included in the general equations of motion Eqs. (2.60) and
(2.61).

In the rigid-frame limit, after application of the Fourier transform over time (Eq.
(2.1)), the equation of motion for the fluid reduces to

−∇p̂f =

(

−ω2α∞ρf + iω
ηφ

k0

)

Û, (2.64)

which is obtained from Eq. (2.61) by expressing ∇∇ · U in terms of pf using Eq.
(2.40).

In the low-frequency limit the acceleration term tends to zero and the viscous
forces are dominant. Hence, Eq. (2.64) reduces to

lim
ω→0

(−∇p̂f ) = iω
ηφ

k0
Û, (2.65)

which is the well-known Darcy’s law for flow through porous media. In the high-
frequency limit the acceleration term dominates the viscous forces, and we obtain

lim
ω→∞

(−∇p̂f ) = −ω2α∞ρfÛ. (2.66)

In this equation the tortuosity α∞ appears as a modification of the acceleration term
of the fluid. To understand this, it is important to realize that we are dealing with
a macroscopic (continuum) theory. The macroscopic length scale is related to the
wavelength L at which measurable, continuous and differentiable quantities can be
identified. The microstructure of a random porous medium is generally characterized
by a length scale proportional to the pore size (Smeulders et al., 1992). The direction
of the acceleration on the microscale may very well differ from the macroscopic
acceleration direction. For instance, when the macroscopic flow is one-dimensional,
the microscopic flow is at least two-dimensional. Smeulders et al. (1992) relate the
microscopic flow field to the macroscopic flow field using an averaging technique of
homogenization. In the high-frequency limit they obtain

α∞ =
〈|vp|2〉
|v0|2

, (2.67)

where 〈〉 denotes the averaging operator, vp is the microscopic potential flow solution
and v0 is the macroscopic velocity of the fluid. In this way, one can imagine that
the local variations of the flow contribute to the inertia term on the macroscopic
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level. In a cylindrical duct the averaged microscopic velocity equals the macroscopic
velocity and, consequently, α∞ = 1.

Considering now Eq. (2.64), we observe that the momentum equation of the fluid
is constituted by superposition of the low- and high-frequency limits described above.
This simple superposition is, however, too simplified a description of the frequency-
dependent dissipation process. A more realistic description has been proposed by
Biot (1956b) and by Johnson et al. (1987). Here, we follow the latter model where

either the concept of dynamic permeability k̂(ω) is introduced, or the concept of
dynamic tortuosity α̂(ω), by reformulations of Eq. (2.64) according to

−∇p̂f = iω
ηφ

k̂(ω)
Û, (2.68)

−∇p̂f = −ω2α̂(ω)ρfÛ. (2.69)

Obviously, Eqs. (2.68) and (2.69) are alternative descriptions of the same physical

reality and therefore, k̂(ω) and α̂(ω) are related as

α̂(ω) = − iηφ

ωρf k̂(ω)
. (2.70)

In the low-frequency limit, the dynamic permeability approaches the stationary value
(see Eq. (2.65))

lim
ω→0

k̂(ω) = k0, (2.71)

and, consequently, using Eq. (2.70) for the dynamic tortuosity it follows that

lim
ω→0

α̂(ω) = − iηφ

ωρfk0
. (2.72)

In this limit the fluid follows a Stokes flow pattern on the pore scale (i.e., the flow
is described by the linearized Navier-Stokes equation with intertia terms neglected).
In the high-frequency limit the fluid obeys a potential flow pattern (i.e., the flow
described by the linearized Navier-Stokes equation with viscosity terms neglected)
on the pore scale, except for a very thin boundary layer δ =

√

2η/(ωρf ) at the pore
walls; hence, tortuosity and permeability are given as

lim
ω→∞

α̂(ω) = α∞, (2.73)

lim
ω→∞

k̂(ω) = − iηφ

ωρfα∞

, (2.74)

where we have again used Eq. (2.70). For the intermediate frequency range Johnson
et al. (1987) postulated a branching function connecting the two limiting situations
based on the ratio of the viscous skin depth δ and the characteristic length scale of
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Table 2.1: Material parameters as used for water-saturated Sand of Mol (Degrande et al., 1998).
We assume that M = 1 (see Eq. (2.77)).

Solid (frame) density ρs [kgm−3] 2650
Fluid density ρf [kgm−3] 1000
Tortuosity α∞ 1.789
Porosity φ 0.388
Permeability k0 [µm2] 10.214
Dynamic fluid viscosity η [Pa·s] 0.001
Shear modulus G [GPa] 111.86
Frame bulk modulus Kb [MPa] 298.3
Grain bulk modulus Ks [GPa] 36.5
Fluid bulk modulus Kf [GPa] 2.22

the pores Λ according to

k̂(ω) = k0

[

(

1 + i
M

2

ω

ωc

)
1

2

+ i
ω

ωc

]−1

, (2.75)

α̂(ω) = α∞

[

1 − i
ωc

ω

(

1 + i
M

2

ω

ωc

)
1

2

]

, (2.76)

where Re(k̂) ≥ 0 and Re(α̂) ≥ 0 for ω ≥ 0, and

ωc =
ηφ

k0ρfα∞

, M =
8α∞k0

φΛ2
. (2.77)

The rollover frequency ωc denotes the frequency where the inertia effects and the
viscous effects are of the same order of magnitude. The pore-shape factor M is often
close to 1 (Johnson et al., 1987; Smeulders et al., 1992).

Before incorporating the dissipation mechanism in the equations of motion, we
visualize the frequency-dependent behavior of k̂(ω) and α̂(ω). For material proper-
ties related to Sand of Mol (Degrande et al., 1998) (the parameter values are given in
Table 2.1), which is representative of a water-saturated shallow subsurface situation
of loosely packed sand, we show the behavior in Figure 2.1. We observe that the
magnitude of the dynamic permeability |k̂| reduces to the Darcy permeability k0 in
the low-frequency limit, which agrees with Eq. (2.65). In the low-frequency limit, |α̂|
tends to infinity as ω−1 (see Eq. (2.72)), which can be understood from Eq. (2.69).
In the high-frequency limit, the magnitude of the dynamic tortuosity |α̂| goes to α∞,

which agrees with Eq. (2.66). The value of |k̂| tends to zero (see Eq. (2.74)), which
is because the pressure variation is too fast for the fluid to react (cf. Eq. (2.68)).
For the intermediate frequency range, the behavior is described by the branching
functions of Johnson et al. (1987) (Eqs. (2.75) and (2.76)), showing a point of inflec-
tion at approximately the rollover frequency fc = ωc/(2π) = 3387 Hz. The phases

∠k̂ and ∠α̂ (Figure 2.1) are also consistent with the low- and high-frequency limits
(see Eqs. (2.71)-(2.74)).
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Figure 2.1: Frequency-dependent permeability and tortuosity according to the viscous attenuation
mechanism of Johnson et al. (1987) (Eqs. (2.75) and (2.76)). Both magnitudes and phases are
shown.

The expression for dynamic permeability (Eq. (2.75)) can be substituted in Eq.
(2.68), and that of the dynamic tortuosity (Eq. (2.76)) in Eq. (2.69). One of these
should be used to incorporate the frequency-dependent dissipation mechanism in
the equations of motion for deformable (non-rigid) porous media (Eqs. (2.60) and
(2.61)). In this thesis we choose to work with dynamic permeability. By rewriting
of the expression Eq. (2.68) to a form comparable with Eq. (2.64), we find that the

effect can be incorporated by simply replacing b0 by b̂(ω) according to

b̂(ω) = b0 (1 + iωτc)
1

2 , (2.78)

where τc = M/(2ωc) and Re(b̂) ≥ 0 for ω ≥ 0. Then, the (x, ω)-domain representa-
tion of the equations of motion (Eqs. (2.60) and (2.61)) can be written as

−ω2ρ̂11û − ω2ρ̂12Û = P∇∇ · û − G∇×∇× û + Q∇∇ · Û + f̂ , (2.79)

−ω2ρ̂12û − ω2ρ̂22Û = Q∇∇ · û + R∇∇ · Û + F̂, (2.80)

where b̂(ω) shows up in the frequency-dependent density terms that read

ρ̂11 = ρ11 − ib̂/ω, (2.81)

ρ̂22 = ρ22 − ib̂/ω, (2.82)

ρ̂12 = ρ12 + ib̂/ω. (2.83)

The (x, t)-domain equivalents of these terms are time-dependent convolution ope-
rators. Their expressions can be found using a standard inverse Laplace transform
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(Prudnikov et al., 1992) and read

ρ11(t) = ρ11δ(t) + b0̺(t), (2.84)

ρ22(t) = ρ22δ(t) + b0̺(t), (2.85)

ρ12(t) = ρ12δ(t) − b0̺(t), (2.86)

where δ(...) denotes the Dirac delta function (Abramowitz & Stegun, 1972) and

̺(t) =

(

exp(−t/τc)
√

πt/τc

+ erf
(

√

t/τc

)

)

H(t). (2.87)

Here, H(t) denotes the Heaviside step function, i.e., H(t) = {0, 1
2 , 1} for {t < 0, t =

0, t > 0}, and erf(...) denotes the error function (Abramowitz & Stegun, 1972).
Now we have arrived at the general form of the equations of motion that incorpo-

rate the frequency-dependent dissipation mechanism, and which we will often use in
this thesis. We refer to it as the (u,U)-formulation because the equations of motion
are expressed in the field quantities u and U. For completeness, a less well-known
but more compact representation of Biot’s equations of motion is given in the next
section.

2.5.2 Alternative formulation of the equations of motion

An alternative to the (u,U)-formulation of the equations of motion is the so-called
(u, pf )–formulation in which the equations of motion are expressed in terms of û
and p̂f (Bonnet, 1987; Wiebe & Antes, 1991; van Dalen et al., 2008; Schanz, 2009).
The equations are obtained by rewriting of Eqs. (2.79) and (2.80), and using Eqs.
(2.58) and (2.59) to eliminate U. The result is

ω2ρ̂eqû + (λ + 2G)∇∇ · û − G∇×∇× û =
φHS

R
∇p̂f − (f̂ + βSF̂), (2.88)

ω2ρ̂22p̂f + R∇2p̂f = −ω2ρ̂22
HS

φ
∇ · û +

R

φ
∇ · F̂. (2.89)

The Lamé parameter λ has already been defined in Eq. (2.49). Further, the following
definitions hold

ρ̂eq = d0/ρ̂22, (2.90)

d0 = ρ̂11ρ̂22 − ρ̂2
12, (2.91)

HS = Q + RβS , (2.92)

βS = −ρ̂12/ρ̂22, (2.93)

where ρ̂eq reduces to ρ11 + ρ22 + 2ρ12 = ρ (bulk density) for ω → 0; the physical
meaning of βS is given later (below Eq. (3.23)).

The similarity of the equations of motion Eqs. (2.88) and (2.89) with those of
an elastic solid and an acoustic medium, respectively, is obvious (Achenbach, 1973;
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de Hoop, 1995). The difference lies in the definition of the specific density and
elastic constants, and in the coupling terms of the equations that can be interpreted
as source terms.

Bonnet (1987) showed that only four out of the seven field variables (u,U,pf )
are independent. Therefore, the (u, pf )-formulation provides a set of independent
equations governing wave propagation in a fluid-saturated porous medium. The
(u,U)-formulation, which is the original form of Biot’s equations (Biot, 1956a), is
used more often but only four of the six equations are independent.

In wave propagation problems either the (u,U)-formulation or the (u, pf )–for–
mulation can be used. In Chapter 3 we derive Green’s tensors for both sets of
equations to illustrate the basic properties of the wave propagation process in a
porous medium.

2.6 Conclusions

In this chapter we derived the equations of motion for wave propagation in a fluid-
saturated porous medium. First, we illustrated that the stress-strain relations asso-
ciated with Biot’s theory can be obtained from constitutive and continuity equations,
by considering the porous medium as a two-phase continuum. This shows that the
involved elastic constants are clearly related to physical quantities, i.e., the bulk
moduli of the grains, the porous solid and the fluid, to the shear modulus and to the
porosity. By combination of the stress-strain relations with Lagrange’s momentum
equations for the solid and fluid, the equations of motion were found. We presen-
ted the equations of motion in two different formulations that are known in the
literature, i.e., the (u,U)-formulation (solid and fluid particle displacements) and
the (u, pf )-formulation (solid particle displacement and fluid pressure). The latter
formulation shows that an arbitrary wave field in a fluid-saturated porous medium
has only four independent field quantities.
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Chapter 3

Green’s tensors for wave
propagation in a fluid-saturated
porous medium

3.1 Introduction

The wave propagation process in a fluid-saturated porous medium is described by
the infinite-space Green’s tensors which are the fundamental solutions (impulse res-
ponses) of the equations of motion. The goal of this chapter is to derive these Green’s
tensors in order to illustrate the frequency-dependent attributes (e.g., velocity) and
waveforms of the existing wavemodes.

The Green’s tensors have already been derived by several authors using either
Helmholtz decomposition or the so-called Kupradze’s method (Burridge & Vargas,
1979; Norris, 1985; Bonnet, 1987; Manolis & Beskos, 1989; Philippacopoulos, 1998;
Sahay, 2001), and considering different sources. In the paper by Burridge & Vargas
(1979) only a force applied to the total medium (fluid and solid) is included, i.e., a
vector containing three sources (components). Other authors considered only a force
applied to the solid of the porous medium (Norris, 1985; Philippacopoulos, 1998),
which implies also three sources, while Manolis & Beskos (1989) included forces
applied to both the solid and fluid, i.e., six sources. Sahay (2001) also included six
sources but with a different physical meaning, i.e., one force associated with the in-
phase fluid-solid motion (applied to the center of mass of the porous medium), and
one with the relative motion of the fluid and solid. Bonnet (1987) introduced four
sources corresponding with the four independent field variables u and pf ((u, pf )-
formulation; see Chapter 2), i.e., a force applied to the solid and a supplementary
scalar source related to the fluid. The physical meaning of the scalar source was,
however, not given because Bonnet simply used the analogy with thermoelasticity
to include separate sources.

In this chapter we derive the Green’s tensors for a fluid-saturated porous medium
in a way similar to that used by de Hoop (1995) for an elastic solid, by straightfor-

25
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ward application of the Fourier transform. In doing so, we find the Green’s tensors in
the (p, ω)-domain and obtain the (x, ω)-domain expressions using the inverse trans-
form. We show the Green’s tensors for both the (u,U)- and the (u, pf )-formulations
of the equations of motion incorporating a force applied to the solid and a force ap-
plied to the fluid, and a scalar source. Our scalar source shows two physical realiza-
tions of Bonnet’s scalar source, i.e., the divergence of the force applied to the fluid or
the Laplacian (∇2) and the fluid volume injection source (see Chapter 2: divergence
of Eq. (2.63)). Further, we derive the impedances of the wavemodes that exist in
a porous medium, i.e., the fast and slow compressional waves and the shear wave.
We address particularly the “coupling impedances” of the compressional waves. The
coupling impedance is defined as the spectral ratio of the pressure in the fluid, indu-
ced by a particular wavemode, and the associated radial component of the particle
velocity in the solid. It thus interrelates the waveforms present in all independent
field variables in one quantity and can be addressed as a “multi-component full-
waveform attribute”. Finally, we use low-and high-frequency approximations and
numerical examples to illustrate the frequency-dependence of the attributes of the
possible wavemodes, of the corresponding transient waveforms as excited by point
sources, and of the differences between the waveforms in velocity and fluid pressure
as described by the coupling impedances.

The derivation of the Green’s tensors for the (u,U)- and (u, pf )-formulations,
and how they are related, is shown in Section 3.2. In Sections 3.2.2 and 3.2.3,
respectively, we present low- and high-frequency approximations of the solutions
of the (u,U)-formulation, which reveal some fundamental properties of the wave
propagation process. Subsequently, the derivation of the impedances is given in
Section 3.3. The numerical examples are shown in Section 3.4 and a discussion is
given in Section 3.5.

3.2 Green’s tensors for infinite space

In this section we derive the Green’s tensors for a fluid-saturated porous medium
for both the (u,U)- and the (u, pf )-formulations of the equations of motion. In
addition, we give low- and high-frequency approximations of the tensors related to
the (u,U)-formulation.

For arbitrary loading (f̆ , F̆), the response (ŭ, Ŭ) in the (p, ω)-domain is obtained
using the spatial Fourier transform with respect to all (spatial) coordinates (Eq.
(2.2)). Applying this transform to the equations of motion of the (u,U)-formulation
(Eqs. (2.79) and (2.80)), we obtain

(−ρ̂11 + Gpjpj) ŭi − ρ̂12Ŭi + (P − G) pipj ŭj + QpipjŬj = ω−2f̆i, (3.1)

−ρ̂12ŭi − ρ̂22Ŭi + Qpipj ŭj + RpipjŬj = ω−2F̆i. (3.2)
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We multiply (dot product) the equations by pi and obtain the following identities

piŭi =
pj

ω2d2∆P

(

+(−ρ̂22 + Rp2)f̆j − (−ρ̂12 + Qp2)F̆j

)

, (3.3)

piŬi =
pj

ω2d2∆P

(

−(−ρ̂12 + Qp2)f̆j + (−ρ̂11 + Pp2)F̆j

)

, (3.4)

where p2 = pmpm and

∆P = p4 +
d1

d2
p2 +

d0

d2
. (3.5)

Here, the factors d0, d1 and d2 are defined as

d0 = ρ̂11ρ̂22 − ρ̂2
12, (3.6)

d1 = −(Rρ̂11 + P ρ̂22 − 2Qρ̂12), (3.7)

d2 = PR − Q2. (3.8)

Substituting Eqs. (3.3) and (3.4) into the left-hand side (third and fourth terms) of
Eqs. (3.1) and (3.2), the solution to the set of algebraic Eqs. (3.1) and (3.2) can be
written as

[

ŭi

Ŭi

]

=

[

ğij q̆ij

q̆ij Ğij

] [

f̆j

F̆j

]

. (3.9)

Here, the right-hand side contains products of (p, ω)-domain functions. The matrix
contains the Green’s tensors that read

ğij = − 1

G

(−δijp
2 + pipj)

ω2p2

1

∆S

+
(−ρ̂22 + Rp2)

d2

pipj

ω2p2

1

∆P

, (3.10)

q̆ij =
1

G

ρ̂12

ρ̂22

(−δijp
2 + pipj)

ω2p2

1

∆S

− (−ρ̂12 + Qp2)

d2

pipj

ω2p2

1

∆P

, (3.11)

Ğij =
1

G

(−ρ̂11 + Gp2)

ρ̂22

(−δijp
2 + pipj)

ω2p2

1

∆S

+
(−ρ̂11 + Pp2)

d2

pipj

ω2p2

1

∆P

. (3.12)

The quantities ∆P and ∆S represent the “denominators” of the compressional and
shear waves, respectively, and can be written as

∆P = ∆P1∆P2 = (p2 − s2
P1)(p

2 − s2
P2), (3.13)

∆S = p2 − d0

Gρ̂22
= p2 − s2

S . (3.14)

The body-wave slownesses of the fast and slow compressional wave are denoted sP1

and sP2, respectively, and sS is that of the shear wave. They are defined as

s2
P1,P2 =

1

2d2

(

−d1 ∓ (d2
1 − 4d0d2)

1

2

)

, (3.15)

s2
S =

d0

Gρ̂22
. (3.16)
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Here we choose Im(sα) ≤ 0 for ω ≥ 0, where α = {P1, P2, S}. When set to zero, Eqs.
(3.13) and (3.14) represent the dispersion equations for P - and S-waves, respectively,
with solutions p = ±sP1,P2 and p = ±sS . Now, we split the compressional wave
term into two separate parts

1

∆P

=
1

∆P1 − ∆P2

(

1

∆P2
− 1

∆P1

)

=
1

s2
P2 − s2

P1

(

1

∆P2
− 1

∆P1

)

. (3.17)

We define the (p, ω)-domain scalar Green’s functions as

Ğα =
1

ω2∆α

, (3.18)

which are (p, ω)-domain solutions of the corresponding Helmholtz equations with
point-source excitation (see Section 3.2.1). In the (x, ω)-domain these functions can
be written as

Ĝα =
exp (−iωsα|x|)

4π|x| , (3.19)

which is shown in Section 3.2.1. Then, by using the identity iωpi ↔ −∂i (and
thus ω2pipj ↔ −∂i∂j ; see Eq. (2.2)), applying ∇2Ĝα = −ω2s2

αĜα (for x 6= 0),
where we recall that the summation convention does not apply for Greek subscripts
(Section 2.2), and rearranging of terms we find the (x, ω)-domain representations of
the Green’s tensors (Eqs. (3.10)-(3.12)),





ĝij

q̂ij

Ĝij



 = ω−2





G−1(ω2δij + s−2
S ∂i∂j) −aP1∂i∂j aP2∂i∂j

G−1βS(ω2δij + s−2
S ∂i∂j) −aP1βP1∂i∂j aP2βP2∂i∂j

G−1β2
S(ω2δij + s−2

S ∂i∂j) −aP1β
2
P1∂i∂j aP2β

2
P2∂i∂j





×
[

ĜS ĜP1 ĜP2

]T
. (3.20)

Here, the complex-valued factors aP1,P2 read

aP1,P2 =
1

d2s2
P1,P2

ρ̂22 − Rs2
P1,P2

s2
P2 − s2

P1

, (3.21)

and the complex-valued βα are (the expression of βS is repeated - see Eq. (2.93))

βP1,P2 = −
ρ̂11 − Ps2

P1,P2

ρ̂12 − Qs2
P1,P2

= −
ρ̂12 − Qs2

P1,P2

ρ̂22 − Rs2
P1,P2

, (3.22)

βS = − ρ̂12

ρ̂22
. (3.23)

Remarkably, in Eq. (3.20) the terms related to individual wavemodes differ only in
the presence of the factors βα and β2

α. Hence, these factors can be interpreted as
the fluid-solid “amplitude ratios” (Allard, 1993).
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From Eq. (3.9) it is obvious that the physical responses in the (x, ω)-domain are
found according to

[

ûi

Ûi

]

=

[

ĝij q̂ij

q̂ij Ĝij

]

∗
[

f̂j

F̂j

]

, (3.24)

where the asterisk denotes convolution over all spatial coordinates. We note that the
Green’s tensors (Eq. (3.20)) are symmetric, i.e., ĝij = ĝji, q̂ij = q̂ji, and Ĝij = Ĝji.
The Green’s matrix in Eq. (3.24) is symmetric too, which can be expected from
the structure of the equations of motion in the (u,U)-formulation (Eqs. (2.79) and
(2.80)).

The Green’s tensors for the (u, pf )-formulation (Eqs. (2.88) and (2.89)) can be
derived in a similar way. The result is

[

ûi

−φp̂f

]

=

[

ĝij q̂ij

ĥj k̂j

]

∗
[

f̂j

F̂j

]

, (3.25)

where
[

ĥj

k̂j

]

=

[

aP1s
2
P1HP1∂j −aP2s

2
P2HP2∂j

aP1s
2
P1HP1βP1∂j −aP2s

2
P2HP2βP2∂j

] [

ĜP1

ĜP2

]

. (3.26)

Here, the stiffness terms HP1,P2 are defined as

HP1,P2 = Q + RβP1,P2. (3.27)

Obviously, the first line in Eq. (3.25) is the same as in the (u,U)-formulation

(see Eq. (3.24)). The second line (tensors ĥj and k̂j) can be obtained from the
(u,U)-formulation using the stress-strain relation of the fluid phase (Eq. (2.16)),

and applying the convolution property ∂i(ĝij ∗ f̂j) = ∂iĝij ∗ f̂j (Bracewell, 1986).
The spatial derivatives in Eqs. (3.20) and (3.26) can be expressed in terms of

the scalar Green’s functions. When |x| 6= 0 it holds

∂j Ĝα (x, ω) =

(

− nj

|x| − iωsαnj

)

Ĝα (x, ω) , (3.28)

∂i∂j Ĝα(x, ω) =

(

1

|x|2 (3ninj − δij) +
iωsα

|x| (3ninj − δij) − ω2s2
αninj

)

× Ĝα(x, ω), (3.29)

where ni = xi/|x| denotes the normalized direction vector.
Now, we have derived the Green’s tensors for both the (u,U)- and the (u, pf )-

formulations of the equations of motion. What remains is the inverse Fourier trans-
form of the scalar Green’s function Ğα (see Eq. (3.18)); we show this below.

3.2.1 Inverse transform of scalar Green’s functions

We now show how the (x, ω)-domain representation of the scalar Green’s functions
Ĝα as introduced in the previous section (Eq. (3.18)), can be obtained using the
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contour integration method (Fuchs et al., 1964). The functions are solutions of the
corresponding Helmholtz equation with point-source excitation

(∇2 + ω2s2
α)Ĝα = −δ(x). (3.30)

We start from Eq. (3.18) and apply the inverse spatial Fourier transform (Eq.
(2.2))

Ĝα(x, ω) =
ω

(2π)3

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

1

∆α

exp(−iωp · x) dp1dp2dp3, (3.31)

where ω ≥ 0. Introducing spherical coordinates according to de Hoop (1995) (Eqs.
(13.3-4)-(13.3-6)), this integral expression can be written as

Ĝα(x, ω) =
ω

(2π)3

ˆ ∞

0

ˆ π

0

ˆ 2π

0

p2

∆α

sin(ϑ) exp (−iωp|x| cos(ϑ)) dϕdϑdp, (3.32)

where p = |p|. The integration over ϕ implies just multiplication by 2π. The
integration over ϑ can be carried out using the elementary integral (Gradshteyn &
Ryzhik, 1980)

ˆ π

0

sin(z) exp (−ia cos(z)) dz =
2 sin(a)

a
. (3.33)

Then, we can write Eq. (3.32) as

Ĝα(x, ω) =
1

2π2|x|

ˆ ∞

0

p

∆α

sin(ωp|x|) dp

= − 1

4iπ2|x|

ˆ ∞

−∞

p

∆α

exp(−iωp|x|) dp. (3.34)

We use the latter integral as a starting point for the contour integration in the
complex p-plane (Fuchs et al., 1964). The integral can be evaluated by considering
p as a complex variable and closing the original integration path in the complex p-
plane. Closing the integration contour by a semicircle located in the lower half-plane
(see Figure 3.1) ensures the vanishing of the response for |x| → ∞. Application of
Cauchy’s theorem then gives

Ĝα(x, ω) = −2πi · Resp→sα

(

− 1

4iπ2|x|
p

(p − sα)(p + sα)
exp(−iωp|x|)

)

=
exp(−iωsα|x|)

4π|x| , (3.35)

because p = sα is the only pole of the integrand inside the integration contour (recall
that Im(sα) ≤ 0; see Section 3.2) as the poles are lying symmetrically with respect to
the origin, and the contribution along the semicircle vanishes on account of Jordan’s
lemma (Achenbach, 1973; de Hoop, 1995). The functions ĜP1 and ĜS are equivalent
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Re p

Im p

1Ps−Ss−
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Figure 3.1: Complex p-plane with closed integration contour (Cauchy’s theorem) and poles for

the evaluation of the scalar Green’s function Ĝα, α = {P1, P2, S}. The direction of integration is
indicated.

to the corresponding Green’s functions known in elasticity (de Hoop, 1995). For a
porous medium, however, the wave slownesses are generally complex-valued as there
is attenuation due to viscous relative fluid-solid motion. Therefore, in general, the
time-domain representation Gα cannot be evaluated in closed form. In the case of
zero viscosity, the closed form solution reads

Gα(x, t) =
δ(t − sα|x|)

4π|x| , (3.36)

which can be shown using the integral representation of the Dirac delta function
2πδ(a) =

´∞

−∞
exp(∓iaωt) dω. In case of non-zero viscosity, Gα is not an infinitely

short pulse but a broader one due to attenuation and dispersion effects (see Section
3.4).

3.2.2 Low-frequency approximation

In the low- and high-frequency regimes the wave propagation process through a po-
rous medium behaves quite differently. In this and the following sections we show the
low- and high-frequency approximations of the previously derived Green’s tensors to
elucidate the differences in physical behavior of the separate body wavemodes de-
pending on frequency. We start with the low-frequency approximations and restrict
ourselves to the (u,U)-solution Eq. (3.20).

For frequencies much smaller than the rollover frequency, i.e., ω ≪ ωc (see Eq.
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Table 3.1: Low-frequency approximation (ω ≪ ωc) of all terms in the matrix of the (u,U)-solution Eq. (3.20). We have omitted the factors
(1 + O(ω/ωc)) in the P2-mode terms because they are of minor importance.

S-terms (·δij) S-terms (·∂i∂j)

ĝij

1

G

1

ω2ρ

(

1 + i
ω

ωc

ρ22 + ρ12

α∞ρ

)

q̂ij

1

G

(

1 − i
ω

ωc

1

α∞

)

1

ω2ρ

(

1 − i
ω

ωc

ρ11 + ρ12

α∞ρ

)

Ĝij

1

G

(

1 − i
ω

ωc

2

α∞

)

1

ω2ρ

(

1 − i
ω

ωc

2(ρ11 + ρ12) + ρ22 + ρ12

α∞ρ

)

P1-terms (·∂i∂j) P2-terms (·∂i∂j)

− 1

ω2ρ

(

1 + i
ω

ωc

H2(ρ22 + ρ12)
2 − ρ2(R + Q)2

ρ22ρH2

)

+
1

iωωc

(R + Q)2

ρ22H2

− 1

ω2ρ

(

1 − i
ω

ωc

H2(ρ11 + ρ12)(ρ22 + ρ12) − ρ2(P + Q)(R + Q)

ρ22ρH2

)

− 1

iωωc

(P + Q)(R + Q)

ρ22H2

− 1

ω2ρ

(

1 + i
ω

ωc

H2(ρ11 + ρ12)
2 − ρ2(P + Q)2

ρ22ρH2

)

+
1

iωωc

(P + Q)2

ρ22H2

Table 3.2: High-frequency approximation (ω ≫ ωc) of all terms in the matrix of the (u,U)-solution Eq. (3.20). We have omitted the factors

(1 + O(ωc/ω)
1

2 ) in all terms because they are of minor importance.

S-terms (·δij) S-terms (·∂i∂j) P1-terms (·∂i∂j) P2-terms (·∂i∂j)

ĝij +
1

G
+

ρ22

ω2d̄0
− 1

ω2d2s2
P1,∞

ρ22 − Rs2
P1,∞

s2
P2,∞ − s2

P1,∞

+
1

ω2d2s2
P2,∞

ρ22 − Rs2
P2,∞

s2
P2,∞ − s2

P1,∞

q̂ij − 1

G

ρ12

ρ22
− ρ12

ω2d̄0
+

1

ω2d2s2
P1,∞

ρ12 − Qs2
P1,∞

s2
P2,∞ − s2

P1,∞

− 1

ω2d2s2
P2,∞

ρ12 − Qs2
P2,∞

s2
P2,∞ − s2

P1,∞

Ĝij +
1

G

ρ2
12

ρ2
22

+
1

ω2d̄0

ρ2
12

ρ22
− 1

ω2d2s2
P1,∞

ρ11 − Ps2
P1,∞

s2
P2,∞ − s2

P1,∞

+
1

ω2d2s2
P2,∞

ρ11 − Ps2
P2,∞

s2
P2,∞ − s2

P1,∞
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(2.77)), we find for the body-wave slownesses (Eqs. (3.15) and (3.16))

sP1
∼= sP1,0

(

1 − i
ω

ωc

D2

2ρ22ρH2

)

, (3.37)

sP2
∼= exp

(

−i
π

4

)

(

ρ22H

d2

)
1

2 (ωc

ω

)
1

2

(

1 + O
(

ω

ωc

))

, (3.38)

sS
∼= sS,0

(

1 − i
ω

ωc

φρf

2α∞ρ

)

, (3.39)

where we have designated the second term of sP2 as O(ω/ωc) because it is of minor
importance here. Further, we have used the following auxiliary terms - following
Pierce (2007)

sP1,0 = (ρ/H)
1

2 ,

sS,0 = (ρ/G)
1

2 ,

H = P + R + 2Q,

D = (ρ11 + ρ12)(R + Q) − (ρ22 + ρ12)(P + Q),

ρ = ρ11 + ρ22 + 2ρ12, (3.40)

where ρ is the bulk material density, and sP1,0 and sS,0 are the real-valued slow-
nesses in the low-frequency limit ω → 0. The physical meaning of H, which is the
well-known “Gassmann modulus”, and of D is explained later. The low-frequency
approximations of the slownesses (Eqs. (3.37)-(3.39)) were also found by Norris
(1985). The low-frequency approximations of the terms in the Green’s tensors (Eq.
(3.20)) are given in Table (3.1). From the involved terms we observe that there
is no relative fluid-solid motion induced by the P1- and S-waves for ω → 0 (i.e.,
ĝij;P1,S = q̂ij;P1,S = Ĝij;P1,S), and that there is relative fluid-solid motion associ-

ated with the P2-mode (ĝij,P2 6= q̂ij,P2 6= Ĝij,P2). This also follows from the am-
plitude ratios (Eqs. (3.22) and (3.23)), for which the low-frequency approximations
read (ω ≪ ωc):

βP1
∼= 1 + i

ω

ωc

D

ρ22H
, (3.41)

βP2
∼= −P + Q

R + Q

(

1 + O
(

ω

ωc

))

, (3.42)

βS
∼= 1 − i

ω

ωc

1

α∞

. (3.43)

These expressions were also found by Pierce (2007). As a consequence of the va-
nishing relative motion for ω → 0, the P1- and S-waves propagate unattenuated
through the porous medium which behaves as an ordinary elastic solid (Eqs. (3.37)
and (3.39)). The behavior of the P2-mode is entirely different. The slowness lies at
−π/4 rad in the complex ω-plane showing that it is a diffusive mode (Eqs. (3.38)),
which is strongly attenuated. The involved motions of solid and fluid are out-of-
phase, as expressed by Eq. (3.42).
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We note that the low-frequency terms of q̂ij in Table 3.1 can also be found by
multiplication of the low-frequency terms of ĝij and the corresponding low-frequency
fluid-solid amplitude ratios (Eqs. (3.41)-(3.43)), and neglecting the O(ω/ωc)

2-term.
Obviously, this general property (cf. Eq. (3.20)) remains valid in the low-frequency
regime.

The unattenuated and diffusive behaviors in the low-frequency limit, respectively,
can also be directly obtained from the governing equations Eqs. (2.88) and (2.89)

(or from Eqs. (2.79) and (2.80)). First, inserting û = Û in the stress-strain relation
of the fluid (Eq. (2.40)) and taking θ = 0 (source term) for simplicity, we have

−φp̂f = (Q + R)∇ · û. (3.44)

Then, substituting this equality into Eq. (2.88), we find the ordinary elastic wave

equation governing the P1- and S-wave propagation (omitting F̂ because it is of
minor importance now)

ω2ρû + H∇∇ · û − G∇×∇× û = −f̂ , (3.45)

where the density is ρ and the constrained modulus (plane-wave modulus) for a fluid-
saturated medium is denoted H (Eq. (3.40)), which is the “Gassmann modulus” as
derived by Gassmann (1951) for the low-frequency limit. Its value is greater than
that of the constrained modulus λ + 2G (cf. Eq. (2.49)) for dry/drained materials
(or equivalent elastic solids) because H also includes the stiffness of the undrained
fluid (the fluid does not move relative to the solid, as explained above). The Green’s
tensor of Eq. (3.45) is (de Hoop, 1995)

ĝij =
1

ω2G

(

ω2δij +
1

s2
S,0

∂i∂j

)

ĜS − 1

ω2ρ
∂i∂j ĜP1, ω → 0, (3.46)

which corresponds to the P1- and S-wave terms in Table 3.1 for ω → 0. The involved
wave slownesses in the solution Eq. (3.46) are exactly sP1,0 and sS,0, respectively
(see Eq. (3.40)), which indicates the unattenuated character of the P1- and S-waves.

To obtain the diffusive behavior of the P2-mode directly from the governing
equations, we insert û = βP2,0Û, where βP2,0 = −(P +Q)/(R+Q) (see Eq. (3.42)),
into the stress-strain relation of the fluid Eq. (2.40), and we again take θ = 0 (source
term). Then, we have

−φp̂f = − d2

R + Q
∇ · û, (3.47)

where d2 has already been specified in Eq. (3.8). Now, substituting this equality
into Eq. (2.80), we find that the P2-mode behavior is described by the following
equation,

−iωκP2û + ∇∇ · û = −R + Q

d2
∇ · F̂, (3.48)

which reduces to a diffusion equation when ∇∇ · û = ∇2û (which can be applied
since the compressional mode is irrotational: ∇ × û = 0); κP2 = b0H/d2 denotes
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the slow-wave diffusivity (Pierce, 2007). The corresponding Green’s tensor of Eq.
(3.48) reads

q̂ij = − 1

iωωc

R + Q

ρ22H

(

δ(x)δij + ∂i∂j ĜP2

)

, ω → 0. (3.49)

The expression of ĜP2 is still as in Eq. (3.19), but the involved slowness is exactly the
low-frequency limit slowness in Eq. (3.38) (first term), which indicates the diffusive
nature of the P2-mode. The solution Eq. (3.49) shows similarity with the P2-mode
term of the low-frequency limit approximation of q̂ij (see Table 3.1), but it differs
by a factor (P + Q)/H and there is an additional non-propagating or non-diffusing
term δ(x) = δ(x1)δ(x2)δ(x3).

The equalities Eqs. (3.44) and (3.47), which are based on the result that û = Û

for the P1- and S-waves and û = βP2,0Û for the P2-mode (see Table 3.1), show that
p̂f is (solely) dependent on û in the low-frequency limit. Therefore, the number
of independent field variables reduces from four to three (see Section 2.5.2). The
equations of motion (Eqs. (2.88) and (2.89)) become dependent and can be solved
separately (decoupled equations), giving the same information. For (slightly) higher
frequencies, however, there is relative fluid-solid motion which is different for all
wavemodes (cf. Eqs. (3.41)-(3.43)). Then, Eqs. (2.88) and (2.89) are independent
and need to be solved simultaneously, giving the Green’s tensors in Eq. (3.25).

The relative fluid-solid motion is expressed by the amplitude ratios not being
equal to 1; see Eqs. (3.41)-(3.43). The parameter D (see Eqs. (3.40)) and (3.41))
characterizes the mismatch between the material properties of the fluid and the solid
for the P1-wave, allowing for relative motion (Pierce, 2007). This, in turn, gives rise
to attenuation, which is expressed by the complex-valued wave slownesses. If one
is only interested in the motion of the solid due to the P1- and S-waves, one could
describe the behavior of the system for ω ≪ ωc by an equivalent viscoelastic wave
equation (Norris, 1985)

ω2ρû + Ĥ∇∇ · û − Ĝ∇×∇× û = −f̂ , (3.50)

with real-valued density ρ and complex-valued frequency-dependent Gassmann and
shear moduli according to

Ĥ = H

(

1 + i
ω

ωc

D2

ρ22ρH2

)

, (3.51)

Ĝ = G

(

1 + i
ω

ωc

φρf

α∞ρ

)

. (3.52)

The Green’s tensor of Eq. (3.50) is (de Hoop, 1995)

ĝij =
1

ω2Ĝ

(

ω2δij +
1

s2
S

∂i∂j

)

ĜS − 1

ω2ρ
∂i∂j ĜP1, ω ≪ ωc, (3.53)

which corresponds to the P1- and S-wave terms in Table 3.1, except for the first
term (1/G) of ĝij . The involved complex-valued wave slownesses sP1 = (ρ/Ĥ)

1

2 and
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sS = (ρ/Ĝ)
1

2 in Eq. (3.53) can be written in terms of those in Eqs. (3.37) and
(3.39), respectively, by applying a simple Taylor expansion, and correspond to the
ones given by Pierce (2007) for ω ≪ ωc.

3.2.3 High-frequency approximation

Next, we show the high-frequency approximations (ω ≫ ωc) of the (u,U)-solution
Eq. (3.20) in Table 3.2. For the corresponding wave slownesses we find

sP1
∼= sP1,∞

(

1 − (1 − i)
(ωc

ω

)
1

2 M
1

2 ρ22H

4d2(s2
P2,∞ − s2

P1,∞)

(

1 −
s2

P1,0

s2
P1,∞

))

, (3.54)

sP2
∼= sP2,∞

(

1 + (1 − i)
(ωc

ω

)
1

2 M
1

2 ρ22H

4d2(s2
P2,∞ − s2

P1,∞)

(

1 −
s2

P1,0

s2
P2,∞

))

, (3.55)

sS
∼= sS,∞

(

1 − (1 − i)
(ωc

ω

)
1

2 M
1

2

4

(

1 −
s2

S,0

s2
S,∞

))

. (3.56)

Here, the high-frequency limit (ω → ∞) slownesses sP1,P2;∞ and sS,∞ are defined
as

sP1,P2;∞ =

(

1

2d2

(

d̄1 ∓ (d̄2
1 − 4d̄0d2)

1

2

)

)
1

2

,

sS,∞ =

(

d̄0

Gρ22

)
1

2

, (3.57)

being real-valued and in which the auxilary quantities are defined as

d̄0 = ρ11ρ22 − ρ2
12 > 0,

d̄1 = ρ11R + ρ22P − 2ρ12Q > 0. (3.58)

From Table 3.2 we observe that there is relative fluid-solid motion associated with
all body wavemodes in the high-frequency limit (ĝij,α 6= q̂ij,α 6= Ĝij,α), which is,
generally, different for the three wavemodes α = {P1, P2, S}. This is confirmed by
the expressions for the amplitude ratios that are given as

βP1,∞
∼= −

ρ11 − Ps2
P1,∞

ρ12 − Qs2
P1,∞

= −
ρ12 − Qs2

P1,∞

ρ22 − Rs2
P1,∞

, (3.59)

βP2,∞
∼= −

ρ11 − Ps2
P2,∞

ρ12 − Qs2
P2,∞

= −
ρ12 − Qs2

P2,∞

ρ22 − Rs2
P2,∞

, (3.60)

βS,∞
∼= −ρ12

ρ22
. (3.61)

Although there is relative fluid-solid motion in the high-frequency limit, its at-
tenuative effect is negligible. The body-wave slownesses are real-valued (Eq. (3.57)),
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which shows that all wavemodes are indeed propagatory (also the P2-mode). For
lower frequencies (still ω ≫ ωc), there is non-zero attenuation as expressed by the
complex-valued body-wave slownesses (Eqs. (3.54)-(3.56)).

In both cases ω ≫ ωc and ω → ∞ the quantities p̂f and û are independent,
which implies that the system of coupled equations (Eqs. (2.88) and (2.89)) should
be solved simultaneously.

3.3 Impedances of the wavemodes

Now, we derive the impedances Is
α and If

α associated with the wavemodes that exist
in a porous medium. For each of the wavemodes, the impedance is defined as the
spectral ratio of the far-field stress or pressure, and a corresponding component of
the particle velocity, in either the solid or the fluid phase according to (see de Hoop
(1995): Eqs. (13.7-31)-(13.7-34))

−τ̂ij,αni = iωûj,αIs
α, (3.62)

p̂α = iωÛi,αniI
f
α. (3.63)

Here, τ̂ij,α denotes the total stress tensor in the solid induced by the particular
wavemode α (Eq. (2.15)), and its multiplication with the direction vector ni (cf.
Eq. (3.28)) implies taking the traction vector t̂j,α. The multiplication of the fluid

particle displacement Ûi,α with ni in Eq. (3.63) implies that we take the radial
component of the particle displacement (which is the resulting particle displacement
in the far field). From the definitions it is clear that the impedance expresses the
resistance of the particular phase to the motion induced by the wavemode in that
phase.

Making use of the derived Green’s tensors (Eq. (3.26)), applying the derivatives
according to Eqs. (3.28) and (3.29) and taking the far-field terms only (in both
cases: the last term in the brackets), we obtain

Is
P1,P2 = sP1,P2(P + QβP1,P2), (3.64)

If
P1,P2 = sP1,P2

HP1,P2

φβP1,P2
, (3.65)

Is
S = sSG. (3.66)

The shear-wave impedance in the fluid If
S it not defined as both the left- and right-

hand sides of Eq. (3.63) vanish (for α = S): the S-wave does not contribute to the
fluid pressure as its motion equivoluminal (Achenbach, 1973; de Hoop, 1995), and
the corresponding particle motion Ûi,S is perpendicular to the direction of propa-
gation ni. Allard (1993) derived identical expressions for the compressional-wave
impedances in each of the phases.

In addition, we derive the impedances of the wavemodes that express the coupling
between the solid and the fluid phase. For each of the compressional wavemodes, we
define this “coupling impedance” as the spectral ratio of the associated fluid pressure
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Figure 3.2: Frequency-dependent properties for the existing body wavemodes (α = {P1, P2, S}):
phase velocities cα, inverse quality factors Q−1

α (from Eqs. (3.15) and (3.16)), and magnitudes and
phases of the amplitude ratios βα (Eqs. (3.22) and (3.23)).

and the radial component of the particle velocity according to (shear-wave coupling
impedance is not defined)

p̂P1,P2 = iωûi;P1,P2niIP1,P2. (3.67)

It represents the resistance of the fluid phase to the motion induced by the particular
wavemode in the solid phase. Again using Eqs. (3.26), (3.28) and (3.29), we find

IP1,P2 = sP1,P2
HP1,P2

φ
. (3.68)

The derived quantities Eqs. (3.64)-(3.66) and (3.68) can be addressed as the far-
field impedances or as the impedances associated with plane waves. The impedances
are independent of the properties of the source and only incorporate the properties of
the medium. The dimensions correspond with the well-known plane-wave impedance
sfKf = (ρfKf )

1

2 of an acoustic wave in an unbounded fluid (Allard, 1993; de Hoop,

1995); here the slowness of the acoustic wave is denoted as sf = (ρf/Kf )
1

2 .
The definition of the coupling impedance shows that it combines the information

present in all independent field variables in one frequency-dependent complex-valued
quantity for each of the compressional wavemodes (see Section 3.2). Like the other
impedances, they can be addressed as “multi-component full-waveform attributes”
as they interrelate the waveforms (responses) observed in different components. In
Section 3.4 we discuss the behavior of the coupling impedances in more detail and
illustrate their relation with the time-domain waveforms in v and pf . To facilitate
this, here we give the low- and high-frequency limit approximations of the coupling
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Figure 3.3: Configurations with point force f3(x, t) (a) and volume injection source θ(x, t) (b) to
excite various wavemodes in a fluid-saturated porous medium. In all computed responses x3/x1 = 2
and x2 = 0. Other parameter values are listed in Table 3.3.

impedances. For ω → 0, the expressions read

IP1,0 = sP1,0
R + Q

φ
, (3.69)

IP2,0 = exp

(

i
3

4
π

)

(ρ22Hd2)
1

2

φ(R + Q)

(ωc

ω

)
1

2

. (3.70)

The fast-wave impedance IP1,0 is real-valued and positive, which expresses that
the fluid pressure is in-phase with the (radial) particle velocity. The slow-wave
impedance IP2,0 is frequency-dependent and complex-valued due to the diffusive
nature of the P2-mode and the associated out-of-phase motion. In the high-frequency
limit ω → ∞ the expressions of the impedances read

IP1,P2;∞ = sP1,P2;∞
Q + RβP1,P2;∞

φ
, (3.71)

which are both real-valued.

3.4 Numerical examples

To highlight the characteristic features of the wave propagation process, in this
section we illustrate the frequency-dependence of the attributes (e.g., velocity) of the
existing body wavemodes, and of their waveforms that are excited by point sources.
We look at the waveforms in different components of the transient responses, i.e.,
particle velocity and fluid pressure, to verify the nature of the coupling between
these components as predicted by the coupling impedances.

As in Chapter 2, we take material properties of Sand of Mol (Degrande et al.,
1998), being representative of a water-saturated shallow subsurface situation of loo-
sely packed sand. The parameter values are specified in Table 2.1. Given these
values, the generalized elastic constants (Eqs. (2.41)-(2.43)) are determined and
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Table 3.3: Three different configurations to illustrate the wave propagation process in a fluid-
saturated porous medium. In all cases, x3/x1 = 2 and x2 = 0. Smax-values are either in [N] or in
[m3/m3], depending on the source type. See Figures 3.3a and 3.3b for schematic drawings of the
configurations.

f0 [Hz] ts [s] x3 [m] Source Smax

1 500 1.5 · 10−2 414 f3 1 · 104

2 3500 1.5 · 10−2 15.08 f3 10
3 500 · 103 1 · 10−5 0.108 f3; θ 2.5 · 10−7; 3 · 10−20

using those we have calculated the phase velocities cα = 1/Re(sα) (Eqs. (3.15)
and (3.16)),i the inverse quality factors Q−1

α = 2 · |Im(sα)/Re(sα)| and the ampli-
tude ratios βα (Eqs. (3.22) and (3.23)) of the three different body wavemodes, i.e.,
α = {P1, P2, S}. The results are shown in Figure 3.2 as a function of frequency f .
We observe that the P1- and S-waves have only slight dispersion. Their low- and
high-frequency limits agree with the expressions in Eqs. (3.40) and (3.57), respecti-
vely. The P2-wave velocity shows strong variation from the low-frequency diffusive
behavior to the high-frequency propagational behavior; see Eqs. (3.38) and (3.55).
We observe that cP2 can be larger than cS , depending on frequency and the material
properties.

The inverse quality factors, which represent the intrinsic attenuation per cycle
of the wavemodes (Aki & Richards, 1980), show that the P2-mode is much stronger
attenuated than the P1- and S-waves. In the low-frequency limit Q−1

P1 and Q−1
S tend

to zero, while Q−1
P2 tends to a constant value, which confirms Eqs. (3.37)-(3.39)

for ω → 0. In the high-frequency limit all Q−1
α tend to zero due to the viscous

mechanism becoming less important, confirming Eqs. (3.54)-(3.56).
The amplitude ratios βα show that the fluid and solid phase move in-phase (same

amplitude and phase) for the P1- and S-waves in the low-frequency limit, which
confirms Eqs. (3.41) and (3.43). The amplitude ratio of the P2-wave (βP2) shows
a complete out-of-phase motion of fluid and solid (confirming Eq. (3.42)), which,
obviously, explains the strong attenuation of this mode. At higher frequencies also
the P1- and S-waves have a relative fluid-solid motion, but the behavior is essentially
still in-phase. The P2-wave has an out-of-phase motion for the entire frequency band.

In fact, we can consider the P2-mode as a generalization to the full frequency
range of a stationary flow through rigid porous frame (Darcy’s law, Eq. (2.65); low-
frequency limit), or of the compressional wave propagating through a lossless fluid
inside a rigid porous frame (Eq. (2.66); high-frequency limit). The generalization
also implies that the motion of the porous frame is not blocked but considered as a
separate degree of freedom. This, in turn, guarantees the existence of two additional

iThe harmonic body waves that exist in an isotropic fluid-saturated porous (dispersive) medium
are so-called homogeneous plane waves for which the phase velocity is equal to the energy propa-
gation velocity (Carcione, 2007). Therefore, in this thesis we address the phase velocity simply as
“wave velocity” or “(propagation) velocity”. In the case of a propagating pulse, being a superpo-
sition of many plane waves, various definitions of the propagation velocity are possible, e.g., the
“centrovelocity” being the velocity of the centroid of the pulse in time or space (Carcione et al.,
2010b). In this thesis, we only consider phase velocities.
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Figure 3.4: Response in v3 and pf for ω0 ≪ ωc (configuration 1, Table 3.3). The S-wave
contribution is absent in pf , and the P2-wave contribution is vanishingly small in v3 and pf ;
therefore, the corresponding time windows are not shown.

wavemodes: the P1- and S-waves.
Next, we illustrate the wave propagation in the (x, t)-domain using the responses

excited by a point source in an infinite porous space. We either use a point force
excitation in the x3-direction applied to the solid (f3), or a volume injection in the
fluid (θ), according to

{f3(x, t), θ(x, t)} = S(t)δ(x1)δ(x2)δ(x3), (3.72)

S(t) = Smax

(

1
2ω2

0 t̄2 − 1
)

exp
(

− 1
4ω2

0 t̄2
)

, (3.73)

where S(t) denotes the Ricker signature (Ricker, 1953), and where t̄ = t− ts (t > 0);
ts > 0 denotes the time shift, ω0 = 2πf0 and f0 is the center frequency. Smax

represents the magnitude of the point force [N] or the magnitude of the (volume
density of) volume injection [m3/m3]. We have calculated the Green’s tensors (Eqs.
(3.20) and (3.26)) for these excitations assuming three different center frequencies
to illustrate the frequency dependence of the waveforms: ω0 ≪ ωc, ω0

∼= ωc and
ω0 ≫ ωc. In all cases the distances have been chosen such that ω0sP1(ω0)|x| = 220,
x3/x1 = 2 and x2 = 0; see Table 3.3 for the specific values of Smax, ω0, ts and
x. We only show the time-domain responses in the vertical component of particle
velocity v3 and the fluid pressure pf . They are obtained using a standard fast-Fourier
transform algorithm applied to the (x, ω)-domain responses (Eqs. (3.24) and (3.25)).
The responses due to the point force are shown in Figures 3.4-3.6. For the volume
injection, we only show the response for configuration 3 (Figure 3.7) because this is
sufficient to illustrate the differences from the point force excitation, i.e., the excited
wavemodes and their mutual strength.

For ω0 ≪ ωc and ω0
∼= ωc (Figures 3.4 and 3.5, respectively) only the P1- and
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Figure 3.5: Response in v3 and pf for ω0
∼= ωc (configuration 2, Table 3.3). The S-wave

contribution is absent in pf , and the P2-wave contribution is vanishingly small in v3 and pf ;
therefore, the corresponding time windows are not shown.

S-waves can be detected. The P2-mode is too much attenuated to be observed. For
ω0 ≫ ωc the P2-mode is a propagating wave, but still its amplitude is orders of
magnitude smaller than that of the P1- and S-waves (Figure 3.5). When we excite
the fluid instead of the solid by means of the fluid volume injection source, the
difference in strength is approximately the same (Figure 3.7), and hence, it cannot be
attributed to the type of excitation; the difference in strength is, however, not always
so big. The strength of the P2-mode highly depends on the material parameters of
the specific material. Remarkably, the P1- and S-waveforms are different for the
various excitation frequencies. This illustrates the frequency-dependent nature of
the response as a result of the dispersion, which is an important difference compared
with the response in an elastic solid (de Hoop, 1995); there, the waveforms are very
similar for the different excitation frequencies.

For the S-wave, it can be verified that it does not contribute to the fluid pres-
sure in all responses (cf. Figures 3.4-3.7). This is due to the absence of an S-wave
contribution in the Green’s tensors for the fluid pressure (Eqs. (3.25) and (3.26)),
which is reasonable since only the solid and fluid dilatations contribute to the fluid
pressure; see the stress-strain relation Eq. (2.40). The shear-wave exhibits a rotati-
onal motion which is equivoluminal. We note, however, that the S-wave does induce
a motion of the fluid (cf. Eqs. (3.20) and (3.24)) which is, generally, not equal to
that of the solid (as expressed by βS being not equal to one).

In all configurations the waveform of the P1-wave in pf looks very much the
same as that in v3 (see Figures 3.4-3.7). For the P2-wave, the phase in the two
components is opposite, but the waveforms are also quite similar. To verify the
nature of the coupling between the particle velocity of the solid and the pressure
of the fluid, we consider the coupling impedances IP1 and IP2 (Eq. (3.68)). These
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quantities also include v1 and v2, but their far-field waveforms of the P1-waves are
only scaled versions of that in v3 (factor n1/n3 and n2/n3, respectively; see Eq.
(3.29)). They do not contain additional information about the medium but only
about the direction of propagation. For configuration 2, we show the magnitudes
and phases of IP1 and IP2, respectively, and the magnitude and phase of IP1 as
retrieved from the separate P1-wave in the full responses in Figure 3.8. For the
P1-wave, we observe that there is variation over frequency especially for frequencies
around ωc, indicating that the coupling between pf and v is frequency-dependent.
However, the variations are small, which explains that this frequency-dependence
is difficult to be observed in the time domain. At ω0 ≪ ωc and ω0 ≫ ωc the
coupling is practically frequency-independent, and the phase ∠IP1 is close to zero,
which confirms the in-phase character of the waveforms in pf and v (cf. Eqs. (3.69)
and (3.71)). Concerning the retrieved |IP1| and ∠IP1, we observe that especially
the latter deviates from the exact value at low frequencies because the far-field
assumption does not hold there, which has been used to derive the exact result
(Eq. (3.68)). The P2-wave coupling between pf and v exhibits stronger frequency
dependence: for different frequencies the magnitude of the pressure compared to
the magnitude of the particle velocity can be quite different, which is related to the
stronger dispersion of the P2-mode due to the more significant interaction between
fluid and solid. The phase ∠IP2 goes to 3π/4 in the low-frequency limit, which
confirms Eq. (3.70), and to π in the high-frequency limit (Eq. (3.71)), confirming
the out-of-phase character of the waveforms in pf and v (Figures 3.6 and 3.7). The
P2-waveforms in pf and v can be quite different depending on frequency due to the
variations in ∠IP2.

By definition, the coupling impedance of a compressional wavemode interrelates
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the waveforms in all independent field variables in one frequency-dependent complex-
valued quantity; see Eq. (3.68). Consequently, the coupling impedance contains all
the information about the medium that is carried by the corresponding wavemode,
which makes it useful to be employed for determining local in-situ medium proper-
ties. This can be advantageous in decomposition algorithms of seismic data, where
one needs to know the medium properties at the level of the receivers (e.g., Wape-
naar & Berkhout, 1989). The quantities can also be used to verify the nature of the
coupling between the medium and a geophone or a hydrophone (e.g., Drijkoningen
et al., 2006).

3.5 Discussion

Finally, we address the scalar source as present in Eqs. (2.63) and (2.89). When

∇ · F̂ ∝ ∇2θ̂ (volume injection) it does not excite shear waves, which can be shown
using the derived Green’s functions, i.e., the S-wave part in ûi = q̂j ∗ F̂j vanishes
(Eqs. (3.20) and (3.25)). This is also illustrated in Figure 3.7, where the S-wave
is absent in v3, confirming the statement of Bonnet (1987) that the scalar source
cannot excite shear waves as it is spherically symmetric (see Section 3.1). However,

when ∇ · F̂ = ∇ · F̂f , generally, the scalar source is not spherically symmetric: the
S-wave part does not vanish. This seems to contradict Bonnet’s statement, but we
should realize that the components of the force source are generally independent of
each other, giving more than four independent source terms (even though combined
in the scalar source). This invalidates the underlying assumption of Bonnet’s scalar
source, and thus resolves the apparent contradiction.
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In the previous section we have illustrated the Green’s tensors incorporating only
the macroscopic (wavelength scale) loss mechanism as introduced by Johnson et al.
(1987) (see also Section 2.5.1). However, also other (additional) attenuation mecha-
nisms can be included, depending on the the specific medium of interest. For in-
stance, sub-wavelength scale (mesoscopic) heterogeneities can be present in the soil,
e.g., gas pockets larger than the grain size or pockets of weakly cemented grains, and
can be accounted for using mesoscopic flow mechanisms (Smeulders & van Dongen,
1997; Pride & Berryman, 2003; Pride et al., 2004; Müller & Gurevich, 2005; Vogelaar,
2009). When the structure of the governing macroscopic equations stays the same
(e.g., when an attenuation mechanism is incorporated using frequency-dependent
elastic moduli), the form of the Green’s tensors also stays exactly the same and
hence, the presented Green’s tensors can be applied in more complicated situations.
In the case of the mesoscopic flow mechanisms, the frequency-dependence of IP1 and
IP2 (and also of βα) shown in this section can be quite different, especially for the
lower (seismic) frequencies, which also will induce differences in waveforms between
pf and v.

3.6 Conclusions

In this chapter we derived the Green’s tensors for wave propagation in a fluid-
saturated porous medium. The Green’s tensors are known in the literature, but we
obtained them differently by straightforward application of the Fourier transform
to the governing equations of motion. We showed the Green’s tensors for both the
(u,U)- and the (u, pf )-formulations of the equations of motion incorporating a force
applied to the solid and a force applied to the fluid, and a scalar source related to
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the fluid. Further, for each of the fast (P1) and slow (P2) compressional wavemodes,
we derived the far-field coupling impedance, which is defined as the spectral ratio
of the associated fluid pressure and the radial component of the particle velocity.
The coupling impedance interrelates the waveforms of the specific wavemode in all
independent field variables and hence, it can be referred to as a “multi-component
full-waveform attribute”.

Using limit-case expressions and numerical examples we illustrated the frequency-
dependence of the existing wavemodes, confirming the findings in the literature: the
P1- and S-waves are propagatory over the entire frequency regime, and the associated
fluid and solid motions are in-phase, giving only slight relative fluid-solid motion;
the P2-mode is diffusive in the low-frequency regime and propagatory in the high-
frequency regime, and the motions of fluid and solid are out-of-phase, which implies a
considerable relative fluid-solid motion giving rise to strong attenuation. In addition,
we showed that the waveforms (point-source responses) differ for different excitation
frequencies, which illustrates the frequency-dependent character of the responses as
a result of the dispersion. Further, we illustrated the frequency-dependent coupling
between the fluid pressure and the particle velocity as expressed by the coupling
impedances, which can be significant particularly for the P2-mode. Finally, we
showed that the scalar source in the fluid does not excite shear waves (Bonnet,
1987) in the case that it is a volume injection. However, in the case that the scalar
source consists of the divergence of the fluid force, it does excite shear waves.



Chapter 4

On wavemodes at the interface of a
fluid and a fluid-saturated
poroelastic solidi

Abstract

Pseudo interface waves can exist at the interface of a fluid and a fluid-saturated
poroelastic solid. These waves are typically related to the pseudo-Rayleigh pole and
the pseudo-Stoneley pole in the complex slowness plane. It is found that each of
these two poles can contribute (as a residue) to a full transient wave motion when
the corresponding Fourier integral is computed on the principal Riemann sheet.
This contradicts the generally accepted explanation that a pseudo interface wave
originates from a pole on a non-principal Riemann sheet. It is also shown that part of
the physical properties of a pseudo interface wave can be captured by loop integrals
along the branch cuts in the complex slowness plane. Moreover, it is observed
that the pseudo-Stoneley pole is not always present on the principal Riemann sheet
depending also on frequency rather than on the contrast in material parameters only.
Finally, it is shown that two additional zeroes of the poroelastic Stoneley dispersion
equation, which are comparable with the P̄ -poles known in non-porous elastic solids,
do have physical significance due to their residue contributions to a full point-force
response.

4.1 Introduction

Interface waves such as Rayleigh and Stoneley waves are often used to investigate
materials. One can think of applications in ultrasonic testing of structures, borehole
logging in geotechnical and reservoir engineering, and surface seismics in geophysics;

iThis chapter has been published as a journal paper in J. Acoust. Soc. Am. 127 (4), 2240–
2251 (van Dalen et al., 2010b). Note that minor changes have been introduced to make the text
consistent with the other chapters of this thesis.

47
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see e.g., Ewing et al. (1957); Viktorov (1967); Aki & Richards (1980); Burns (1990).
In the case of porous materials, interface waves carry information on elastic pro-
perties but also on properties like porosity, permeability and fluid mobility (Burns,
1990). Rosenbaum (1974) found that, compared to all other surface and body wave-
modes, the Stoneley-type wave that travels along the open-pore interface of a fluid
and a porous medium, carries the best measure of permeability.

Several theoretical studies were performed on interface waves that propagate
along the boundary of a porous medium. These studies were carried out in the con-
text of Biot’s theory for wave propagation in fluid-saturated poroelastic solids. Dere-
siewicz (1962) showed the existence of a Rayleigh-type wave that propagates along
the free surface of a poroelastic half-space and analyzed the frequency-dependent
phase velocity and attenuation.

For a fluid/poroelastic-medium configuration (Rosenbaum, 1974) predicted the
existence of the pseudo-Rayleigh (pR) and the pseudo-Stoneley (pSt) wave. The
latter was explicitly named as such by Feng & Johnson (1983a,b) since a pseudo
interface wave has part of its energy leaking into slower bulk modes as it propagates
along the interface. Feng & Johnson (1983a) also showed the existence of another
interface wavemode, the non-leaky true interface wave. It was found that the exis-
tence of this wave depends on whether or not the pores are open for pore fluid to
flow across the interface. Feng & Johnson (1983b) derived Green’s functions (im-
pulse responses) for high-frequency Biot theory that confirmed the existence of the
three different waves.

Experimental evidence was found for all three types of interface wavemodes; see
e.g., Mayes et al. (1986); Adler & Nagy (1994); Allard et al. (2004).

Feng & Johnson (1983a) argued that other zeroes of the poroelastic Stoneley
dispersion equation have no physical significance as pseudo interface modes. The
corresponding propagation velocities would be larger than that of the shear wave,
which is not realistic in their opinion.

In order to obtain the characteristics of the interface wavemodes, Feng & Johnson
(1983a) used the zeroes of the non-viscid poroelastic Stoneley dispersion equation in
the complex plane to obtain the propagation velocities and attenuations. Gubaidul-
lin et al. (2004) went a step further and analyzed the frequency dependence of the
interface wavemodes by incorporating the viscous loss mechanism of Johnson et al.
(1987). They also used the zeroes of the dispersion equation to derive the charac-
teristics of the interface waves. The same approach was adopted by Edelman &
Wilmanski (2002), Albers (2006) and Markov (2009). In most of the papers specific
restrictions for the involved square roots (i.e., their Riemann sheets) are given.

The generally accepted explanation for a pseudo interface wave is that it origi-
nates from a zero that forms a pole singularity on another Riemann sheet than the
so-called “principal” sheet. It affects the behavior of the integrand on the principal
Riemann sheet by causing a local maximum in the integrand (van der Hijden, 1984).
In case the pole lies close to the real axis, it might have a contribution to the Green’s
function.

In a series of publications, Allard et al. (2002, 2003, 2004) studied the propaga-
tion of interface waves along the boundaries of poroelastic and non-porous elastic
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media. In the case of an air/air-saturated poroelastic-solid configuration, they found
that taking the residue of the pseudo-Rayleigh pole is sufficient to describe the en-
tire pseudo-Rayleigh waveform (Allard et al., 2003). For the water/water-saturated
poroelastic-solid configuration, they found that the pseudo-Stoneley pole residue de-
scribes the entire waveform of the pseudo-Stoneley wave (Allard et al., 2004). Howe-
ver, for the water/elastic-solid configuration they found that the pseudo-Rayleigh
waveform is strongly affected by the loop integrals along the branch cuts.

In summary, taking just the location of the zeroes of the dispersion equation
rather than computing the full transient response is a very fast way to predict the
kinematic properties of pseudo interface waves, but the question arises whether these
predictions are always complete.ii

Therefore, in this chapter we analyze the three-dimensional transient wave pro-
pagation due to a point force applied at the interface of a fluid and a fluid-saturated
poroelastic solid. The aims are

1. To investigate whether a zero of the poroelastic Stoneley dispersion equation
indeed yields the pertinent physical properties of the corresponding pseudo
interface wavemode. This is done by quantitative comparison between the
residues of specific poles and the full transient response;

2. To verify whether a pseudo interface wave indeed necessarily originates from
a pole on a non-principal Riemann sheet;

3. To verify the physical significance of additional zeroes of the poroelastic Sto-
neley dispersion equation that are not related to pseudo interface waves (Feng
& Johnson, 1983a).

The chapter is organized as follows. In Section 4.2 we present the model to
analyze the fluid/poroelastic-medium configuration. Subsequently, in Section 4.3
the derivation of the Green’s functions is summarized. The implementation of the
numerical integration is discussed in Section 4.4. We discuss the results in Section
4.5. The conclusions are given in Section 4.6.

4.2 Model

To study the transient wave propagation in a fluid/poroelastic-medium configura-
tion, we consider a configuration that consists of a fluid half-space on top of a
fluid-saturated poroelastic half-space. A vertical point force F (t) is applied at the
interface (see Figure 4.1a; Figure 4.1b is referred to later). Both half-spaces are
considered to be homogeneous and isotropic. The configuration is similar to the one
applied by Gubaidullin et al. (2004), but extended to three dimensions.

The behavior in the lower half-space (x3 > 0) is governed by the well-known Biot
equations of motion for a fluid-saturated poroelastic solid that were extensively dis-
cussed in The Journal of the Acoustical Society of America; see e.g., Biot (1956a,b).

iiHere, the question is whether the predictions are complete in the far field (see also Chapter 5).
In the near field various waves interfere; there, a pole never gives a complete description.
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Figure 4.1: a) Point force F (t) applied at the interface of a fluid-saturated poroelastic half-space
and a fluid half-space. Both half-spaces are homogeneous and isotropic. b) Schematic snapshot of
the full response with separate arrivals: fast compressional (P1) wave, slow compressional (P2) wave,
shear (S) wave, fluid (F ) wave, pseudo-Rayleigh (pR) wave and pseudo-Stoneley (pSt) wave. The
double-mode symbols (e.g., SP1) indicate lateral waves. The first symbol denotes the wavemode of
the specific arrival; the second denotes the one from which it is radiated. Here, the F -wave velocity
is assumed higher than the P2-wave velocity. For clarity, we have omitted the following arrivals:
FS, P2P1, P2S, P2pR and P2F .

Following Biot’s theory, we assume that for long wavelength disturbances with res-
pect to the characteristic pore scale, average local displacements can be defined for
the solid (frame) u(x, t) = (u1, u2, u3)

T and the fluid U(x, t) = (U1, U2, U3)
T . Con-

sidering a cube of unit size of bulk material (porosity φ), the forces per unit bulk
area applied to that part of the cube faces occupied by the solid are denoted by
τij . They are constituted by both fluid pressure pf and intergranular stresses σij

according to

τij = −σij − (1 − φ)pfδij , (4.1)

where δij is the Kronecker delta. The total normal tension force per unit bulk area
applied to the fluid faces of the unit cube, denoted by τ , is constituted by pf only

τ = −φpf . (4.2)

Here, σij and pf are defined positive in compression and, consequently, τij and τ
are positive in tension; see also Gubaidullin et al. (2004). In the case of isotropic
materials, the stress-strain relations for the solid and the fluid can be written as

τij = G(∂iuj + ∂jui) + A∂kukδij + Q∂kUkδij , (4.3)

τ = Q∂kuk + R∂kUk, (4.4)

where Einstein’s summation convention for repeated indices is applied, and ∂j =
∂/∂xj . A, Q, and R are generalized elastic constants that can be related via so-
called “Gedanken” experiments to porosity, grain bulk modulus Ks, fluid bulk mo-
dulus Kf , bulk modulus of porous drained frame Kb, and shear modulus G of both
drained frame and total composite (Biot & Willis, 1957; Allard, 1993). The physical
background of Eqs. (4.3) and (4.4) is discussed in more detail in Biot (1956a).
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The equations of motion are found from combination of momentum conservation
and the stress-strain relations, Eqs. (4.3) and (4.4), and can be written (in the case
there are sources present for x3 > 0) as (Biot, 1956a,b)

ρ11∂
2
t u + ρ12∂

2
t U + b(t) ∗ ∂t(u − U) = P∇∇ · u − G∇×∇× u

+ Q∇∇ · U, (4.5)

ρ12∂
2
t u + ρ22∂

2
t U − b(t) ∗ ∂t(u − U) = Q∇∇ · u + R∇∇ · U, (4.6)

where the asterisk denotes convolution, P = A + 2G, and the effective densities are
defined as

ρ11 = (1 − φ)ρs − ρ12,

ρ22 = φρf − ρ12, (4.7)

ρ12 = −(α∞ − 1)φρf ,

where the tortuosity α∞ ≥ 1, and hence ρ12 ≤ 0. Solid and fluid densities are
denoted as ρs and ρf , respectively. The linear time-convolution operator b was
formulated in the frequency domain as the viscous correction factor by Johnson
et al. (1987), according to (cf. Eq. (4.15))

b̂(ω) = b0(1 + 1
2 iMω/ωc)

1

2 , (4.8)

where the viscous damping factor b0 = φ2η/k0 and Re(b̂(ω)) ≥ 0 for ω ≥ 0. Here, the
dynamic fluid viscosity is denoted by η and k0 represents the zero-frequency Darcy
permeability. The shape factor M is usually taken equal to 1 (Smeulders et al.,
1992). The rollover frequency, which represents the transition from low-frequency
viscosity-dominated to high-frequency inertia-dominated behavior, is defined as ωc =
ηφ/(α∞ρfk0).

The behavior of the upper (fluid) half-space (x3 < 0) is governed by the acoustic
wave equation

ρF ∂2
t pF = KF∇2pF , (4.9)

where KF and ρF denote the bulk modulus and density of the fluid, respectively,
and pF denotes the fluid pressure.

We assume that the behavior at the interface is governed by conventional open-
pore conditions, i.e., by continuity of volume flux and fluid pressure, and vanishing
intergranular vertical and shear stresses. The force is applied to the solid. The open-
pore boundary is a realistic choice to model the fluid/poroelastic-medium interface
(Burns, 1990), and a limiting case of the situation where a finite surface flow impe-
dance is considered; see e.g., Deresiewicz & Skalak (1963); Gurevich & Schoenberg
(1999); Gubaidullin et al. (2004). It implies that the true interface wave is absent in
the response (Feng & Johnson, 1983a,b). Hence, in the limit of x3 → 0 the following
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conditions should be satisfied

(1 − φ)u3 + φU3 − UF,3 = 0, (4.10)

pf − pF = 0, (4.11)

σ13 = 0, (4.12)

σ23 = 0, (4.13)

σ33 = F (t)δ(x1)δ(x2), (4.14)

where δ(...) denotes the Dirac delta function, and UF,3 denotes the vertical particle
displacement in the upper half-space. The fact that the intergranular stress σ33 is
zero does not imply that the total solid stress τ33 vanishes; see Eq. (4.1).

The medium is considered to be at rest at t ≤ 0. At infinite distance from the
source the motions are bounded.

4.3 Green’s functions

In this section we summarize the derivation of the Green’s functions (impulse res-
ponses) as described by the solution to the set of governing equations Eqs. (4.5),
(4.6) and (4.9)-(4.14). The main part of the derivation is given in Appendices A and
B and we refer to them where necessary.

In order to analyze the response in the plane-wave domain, the Fourier transform
is applied over time t according to

û(x, ω) =

ˆ ∞

−∞

u(x, t) exp(−iωt) dt, (4.15)

where ω denotes the angular frequency and i the imaginary unit. Because u(x, t) is
real-valued it is sufficient to consider ω ≥ 0 only. Following Aki & Richards (1980),
the Fourier transform over horizontal spatial coordinates can be defined as,

ũ(pr, x3, ω) =

ˆ ∞

−∞

ˆ ∞

−∞

û(x, ω) exp(iωpr · r) dx1dx2, (4.16)

where pr = (p1, p2)
T is the horizontal slowness vector and r = (x1, x2)

T is the
horizontal space vector. The transforms are applied similarly to the other field
quantities. The hat refers to the (x, ω)-domain and the tilde to the (pr, x3, ω)-
domain.

The response in the (pr, x3, ω)-domain is described by the physical quantities ũi

and p̃f in the lower half-space, collected in the vector w̃ = (ũ1, ũ2, ũ3,−φp̃f )T , and
by p̃F in the upper half-space; see Eqs. (4.29), (4.32) and (4.34). The expressions
for the response are obtained using Helmholtz decomposition of the equations of
motion and substitution of the general solutions into the boundary conditions. This
gives a set of equations that is solved analytically (see Appendix A).
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The response can be written in terms of Green’s functions according to

w̃ = g̃+F̂ =
ñ+

∆St

F̂ , (4.17)

p̃F = g̃−F̂ =
ñ−

∆St

F̂ , (4.18)

where g̃+ and g̃− are the Green’s functions in the lower and upper media, respecti-
vely, ñ+ and ñ− are the corresponding numerators, and F̂ is the Fourier transform of
the force signature. From Eqs. (4.29), (4.32) and (4.34) it follows that g̃+ consists of
a superposition of all possible body modes: the fast (P1) and slow (P2) compressio-
nal waves, and the vertically-polarized shear (SV ) wave. The horizontally-polarized
shear (SH) mode is not excited by the vertical force. The Green’s function g̃−

only contains the fluid (F ) compressional mode. Both Green’s functions have the
“Stoneley-wave denominator” ∆St = ∆St(pr, ω) that is associated with interface
waves along the fluid/poroelastic-medium interface, which is very similar to the
“Scholte-wave denominator” for a fluid/elastic-solid interface (de Hoop & van der

Hijden, 1983). Here, pr = (p2
1 + p2

2)
1

2 denotes the magnitude of the horizontal slow-
ness.

The body-wave slownesses sα, α = {P1, P2, F, S}, are defined in Appendix A

(Table 4.3). The corresponding vertical slownesses are defined as qα = (s2
α − p2

r)
1

2 ,
where Im(qα) ≤ 0 for real pr due to Sommerfeld’s radiation condition.

To find the Green’s functions in the (x, ω)-domain, the inverse Fourier transform
is applied according to

ĝ+ =
ω2

(2π)2

ˆ ∞

−∞

ˆ ∞

−∞

ñ+(pr, x3, ω)

∆St

exp(−iωpr · r) dp1dp2, (4.19)

where ω ≥ 0 and where we include the argument of ñ+ in view of the involved deri-
vative operator (see below). We only show the derivation of ĝ+, but the expression
for ĝ− is obtained by simply replacing ñ+ by ñ−. When cylindrical coordinates are
introduced, Eq. (4.19) can be written as

ĝ+ =
ω2

4π

ˆ ∞

−∞

ñ+(pr, ∂h, x3, ω)

∆St

H
(2)
0 (ωprr)pr dpr, (4.20)

where r = (x2
1 + x2

2)
1

2 and in which the horizontal derivatives ∂h, h = {1, 2}, are

applied to the Hankel function H
(2)
0 (...); see Eqs. (4.39) and (4.40) (Appendix B).

Now we change the real-axis integral into a contour integral in the complex pr-
plane. The idea is that by integration in the complex plane, contributions from loop
integrals and from pole residues can be distinguished. We choose branch cuts along
the hyperbolic lines Im(qα) = 0 (Ewing et al., 1957). In this way Im(qα) ≤ 0 ∀ pr,
which ensures the decay of the exponential terms exp(∓iωqαx3) for large |pr| (see
Eqs. (4.29) and (4.32)). The branch cuts depart from the branch points associated
with the body-wave slownesses sα, as shown in Figure 4.2. The qF -branch cut
reduces to the imaginary axis and part of the real axis since the slowness of the fluid
wave (sF ) is real.
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Figure 4.2: Complex pr-plane with (−−) branch cuts, (•) branch points sα, α = {P1, P2, F, S},
and (∗) poles spR (pseudo-Rayleigh), sP̄ a and sP̄ b (additional), for the calculation of the Green’s
functions for Bentheimer/air configuration 2 (see Table 4.1). The branch points are formed by
the body-wave slownesses specified in Appendix A (Table 4.3). The hyperbolic branch cuts are
described by Im(qα) = 0. Poles are zeroes of the poroelastic Stoneley denominator; see Eq. (4.21).
Only part of the closed integration contour (−) is displayed: real axis, arc in lower half-plane and
loop CP2 along the qP2-branch cut. The direction of integration is indicated.

The current branch cuts are referred to as the “fundamental” branch cuts (At-
tenborough et al., 1980). The corresponding Riemann sheet is referred to as the
“principal” Riemann sheet (van der Hijden, 1984), or the “physical” Riemann sheet
(Aki & Richards, 1980).

In Figure 4.2 the closed contour is also displayed. It is formed by the entire real
axis, the loops along the branch cuts and around the branch points, and an arc of
infinite radius in the lower half-plane. For Re(pr) ≤ 0 the horizontal part of the
contour lies just below the axis due to the presence of a branch cut of the Hankel
function at the negative real axis (Abramowitz & Stegun, 1972).

Applying Cauchy’s Residue Theorem (Fuchs et al., 1964), we obtain

ĝ+ =

ˆ ∞

−∞

f̃+ dpr = −2πi
∑

β

Respr=sβ
f̃+ −

∑

α

ˆ

Cα

f̃+ dpr, (4.21)

f̃+ =
ω2

4π

ñ+(pr, ∂h, x3, ω)

∆St

H
(2)
0 (ωprr)pr,

where every sβ denotes a first-order pole of the integrand inside the integration
contour and every Cα denotes a loop along the specific branch cut. In Eq. (4.21),
the contribution of the arc vanishes because of Jordan’s lemma (Achenbach, 1973).
The contributions around the branch points are also zero.

The poles sβ result from zeroes of the poroelastic Stoneley dispersion equation
(∆St = 0) on the principal Riemann sheet. The number of poles N present inside
contour C is determined by applying the Principle of the Argument to the Stoneley
equation (Fuchs et al., 1964)

N =
1

2πi

‰

C

∂pr
∆St

∆St

dpr. (4.22)
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Table 4.1: Various configurations for which the transient response is calculated. The type of
sandstone is Bentheimer. For fused glass beads, the bulk modulus of the drained matrix is chosen
as Kb = 10 GPa and the permeability as k0 = 10−11 m2. The upper half-space is filled with either
water (KF = Kf , ρF = ρf ), or air (KF = 1.42 · 102 kPa, ρF = 1.25 kgm−3) or a light fluid
(KF = Kf /10, ρF = ρf /8). For every configuration the pole(s) present on the principal Riemann
sheet are indicated: pseudo-Stoneley (pSt), pseudo-Rayleigh (pR) and two additional (P̄a, P̄b)
poles.

Porous solid Saturating Upper Pole(s)
fluid half-space

1 Sandstone water water pSt
2 Sandstone water air P̄a, P̄b,

iii pR
3 Sandstone water light fluid pR, pStiii

4 Fused glass beads water water pStiii

The residue of the integrand at a first-order pole is given as

Respr=sβ
f̃+ =

[

ω2

4π

ñ+(pr, ∂h, x3, ω)

∂pr
∆St

H
(2)
0 (ωprr)pr

]

pr=sβ

. (4.23)

4.4 Numerical implementation

To perform the integration along the hyperbolic branch cuts we choose pr,im =
Im(pr) as the variable of integration according to

ˆ

Cα

f̃+ ∂pr

∂pr,im

dpr,im, (4.24)

where

pr =
Re(sα)Im(sα)

pr,im

+ ipr,im,
∂pr

∂pr,im

= −Re(sα)Im(sα)

p2
r,im

+ i. (4.25)

For the qF -branch cut, the integration path is the imaginary axis and part of the
real axis, which follows from Eq. (4.25) for vanishing imaginary part of the slowness
Im(sF ) ↑ 0 (Figure 4.2). Along the cut of qα, at the left side Re(qα) > 0 and at
the right side Re(qα) < 0. At the specific cut Im(qα) = 0 and everywhere else
Im(qα) < 0.

The numerical integration is performed using an adaptive 8-point Legendre-
Gauss algorithm (Abramowitz & Stegun, 1972; Davis & Rabinowitz, 1975), which
can handle integrable singularities such as branch points.

For the numerical implementation of the Principle of the Argument, we apply
Eq. (4.22) separately for the areas between the various parts of the integration
contour (branch cuts, real axis, arc; cf. Figure 4.2) to find out where the poles can
be expected. Subsequently, the pole locations are found numerically by minimizing

iiiIts residue is not shown.
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the left-hand side of equation |∆St|= 0. Since it contains local minima and branch-
cut discontinuities, it is important to choose a proper starting value. This requires
some manual iteration. The accuracy, as expressed by |∆St(pr = sβ)|/|∆St(pr = 0)|,
is typically O(10−10). Here, sβ denotes the numerical value of the pole location.

4.5 Numerical results and discussion

In this section, we investigate the transient responses for four different fluid/poro–
elastic-medium configurations (see Table 4.1). In the first three configurations water-
saturated Bentheimer sandstone (see Table 4.2) is used as porous medium. The
upper half-space is subsequently filled with water, air or a light fluid. In the fourth
configuration, which is the one of Feng & Johnson (1983a,b) the porous medium is
formed by water-saturated fused glass beads while the upper half-space is filled with
water.

For every configuration, we will show the vertical component of particle velocity
v3 and the fluid pressure pf for an observation point at the interface x3 = 0 at offset
r = x1 = 0.1 m. Fluid pressure is related to dilatation only (see Eq. (4.4)) and
hence, v3 and pf contain different information. Also, the comparison between the
full response and a pole residue can be different in v3 and pf , as will be shown.

The point force has Ricker signature (Ricker, 1953).

F (t) = Fmax

(

1
2ω2

0 t̄2 − 1
)

exp
(

− 1
4ω2

0 t̄2
)

, (4.26)

where t̄ = t − ts (t > 0), ω0 = 2πf0 and centre frequency f0 = 500 kHz (see
Figure 4.3). The magnitudeiv Fmax = 2.5 · 10−7 N and time shift ts = 5 µs. We
have performed the integration for the frequency range 0 < f ≤ 2 MHz. The
full responses have been obtained by multiplication of the spectra of the Green’s
functions and the source (see Eqs. (4.17) and (4.18)), and using a standard fast
Fourier-transform algorithm.

4.5.1 Residue contribution vs full response

First, we address the relation between a pole and a pseudo interface wave, as raised in
point (1) in the Introduction (Section 4.1). For configurations 1-3 the full transient
responses and separate pole residues (see Eq. (4.21)) are displayed in Figures 4.3-4.5.
We have identified the different arrivals in the full responses using the propagation
velocities as obtained from the modal slownesses.v Head waves have been identified

ivCorrected for a typo in the value of Fmax given in van Dalen et al. (2010b).
vHere, we have taken a representative frequency to calculate the pertaining velocities. Regarding

a body wavemode, the phase velocity (being the inverse of the real part of the slowness) is a proper
measure for the propagation velocity because the phase velocity and energy velocity coincide;
see Section 3.4. To our knowledge, the problem of energy propagation associated with a pseudo
interface wavemode has not yet been considered in the literature. Hence, in this thesis we also take
the phase velocity as the propagation velocity of a pseudo interface wavemode, where the former
is calculated from the associated pole location. For completeness we note that, in fact, here the
poles as found using vertical branch cuts should be taken (method I: cf. Sections 5.3 and 5.4.3),
which can have slightly different locations compared to the poles found using the current branch
cuts (Section 5.5.1).
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Table 4.2: Material parameters as used for water-saturated Bentheimer sandstone (Wisse, 1999).
The bulk modulus of the matrix Kb is found according to Kb = Kp − 4

3
G.

Solid (frame) density ρs [kgm−3] 2630
Fluid density ρf [kgm−3] 1000
Tortuosity α∞ 2.4
Porosity φ 0.23
Permeability k0 [µm2] 3.7
Dynamic fluid viscosity η [Pa·s] 0.001
Shear modulus G [GPa] 6.8
Constrained modulus Kp [GPa] 14
Grain bulk modulus Ks [GPa] 36.5
Fluid bulk modulus Kf [GPa] 2.22

geometrically using the pertaining modal velocities, and are indicated with double-
mode symbols (e.g., SP1: the shear (S) wave radiated by the fast (P1) compressional
wave). For the sake of clarity, a schematic snapshot of the full response with the
different arrivals is shown in Figure 4.1b.

We first note that the P1-wave is present quite strongly in v3 although this
component is perpendicular to the direction of propagation of this longitudinal wave
(Figures 4.4 and 4.5). This is due to the contraction in vertical direction that can
easily take place at the air/sandstone or light-fluid/sandstone interface. Remarkably,
there is an arrival present in pf at the S-wave arrival time (Figures 4.4 and 4.5).
This is not an S-wavefront but radiated slow compressional (P2) and fluid (F ) head
waves; cf. Figure 4.1b.

Now, we focus on the comparison of interface waves in the full responses and
corresponding pole residues. The pole(s) that are present on the principal Riemann
sheet that contribute a residue are given in Table 4.1, for each configuration separa-
tely. We have found the pseudo-Stoneley (pSt), the pseudo-Rayleigh (pR) and two
additional (P̄a, P̄b) poles. The latter ones are discussed in Section 4.5.3.

For configuration 1 (water as upper fluid), only the pSt-pole is found on the
principal Riemann sheet. From Figure 4.3 we observe that its residue yields the
entire pSt-waveform. For configuration 2 (air as upper fluid), the pR-pole is found
on the principal Riemann sheet. From Figure 4.4 it is observed that its residue
coincides with the pR-waveform in the full response of v3 (actually, the difference is
non-zero but too small to be observed). However, it does not coincide with that in the
full response of pf . Its contribution is opposite, which means that the loop integrals
along the branch cuts also contribute to the pseudo interface waveform. This has
also been found by Allard et al. (2004). It implies that part of the pertinent physical
properties of the pseudo interface wave is captured by the loop integrals. This is
more pronounced for configuration 3 (light upper fluid), as shown in Figure 4.5, in
which both the pR-pole and the pSt-pole are found on the principal Riemann sheet.
In both components (v3 and pf ) the pR-pole residue does not coincide with the
pR-waveform in the full response. The pSt-pole residue is not displayed separately
because the pSt-wave strongly interferes with the F -wave.
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To investigate how the residues and the interface waveforms in the full responses
compare for an observation point that lies off the interface, we have calculated the
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0.10 m for Bentheimer/air configuration 2. The P̄a-pole residue has been scaled down by a factor
200 to make it entirely visible. The pR-pole residue coincides with the pR-waveform in the full
response of v3.
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responses for configurations 1-3 at x3 = 0.01 m and offset r = x1 = 0.1 m. The
corresponding results are displayed in Figures 4.6-4.8. Compared to the previous
responses at x3 = 0, various head waves can now be distinguished as separate arri-
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Figure 4.6: Full response and pSt-pole residue at x2 = 0, x3 = 0.01 m, and offset x1 = 0.10 m
for Bentheimer/water configuration 1. The pSt-pole residue coincides with the pSt- and P2pSt-
waveforms in the full response.
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vals, generated by the body wavefronts that propagate along the interface; cf. Figure
4.1b. From Figures 4.6-4.8 we also observe that the residues now yield two wave-
forms in the full responses. The first one (pR or pSt) is the waveform of the specific
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interface wave itself while the second (P2pR or P2pSt) corresponds to the P2-mode
that is radiated by the propagating pseudo interface wave. For configurations 1 (wa-
ter as upper fluid, Figure 4.6) and 2 (air as upper fluid, Figure 4.7), it is observed
that both waveforms are now captured entirely by the residue of the corresponding
pole. For configuration 3 (light upper fluid, Figure 4.8) this is not the case, as for
x3 = 0.

In addition to the observations on responses with entire waveforms, we give
attention to the characteristics of a pseudo interface wave. With regard to the
propagation velocity, we observe that it is predicted properly by the residue of the
corresponding pole for all presented numerical results. Concerning the attenuation,
it has been proposed by van der Hijden (1984) to quantify the true attenuation of a
pseudo interface wave on the basis of the full transient response. This has been done
by Rosenbaum (1974), but he has only shown the decay of the total waveform, which
would result in one value for the attenuation. This is quite restrictive and therefore
we use the following method to retrieve the frequency-dependent attenuation from
a windowed pseudo interface waveform in the full response. Here, attenuation is
defined by Im(str

β ), where str
β represents the true wave slowness and β = {pR, pSt}.

As a starting point, we consider the pseudo interface wave in the far field where it
does not interfere with other wavemodes, and we assume that it is described by

v̂β,3(r) ∝ r−
1

2 exp(−iωstr
β r), (4.27)

which is found from the asymptotic behavior of the Hankel function (Abramowitz
& Stegun, 1972). The imaginary part of the wave slowness can be retrieved by
comparing the amplitude spectra of the windowed waveform |v̂β,3(r)| at two different
observation points r = ra and r = rb, according to

Im
(

str
β (f)

)

=
1

2πf(rb − ra)
ln

(

r
1

2

b |v̂β,3(rb)|
r

1

2

a |v̂β,3(ra)|

)

. (4.28)

For configurations 1 (water as upper fluid) and 3 (light upper fluid), the attenuations
are displayed in Figures 4.9 and 4.10, respectively, together with the corresponding
predictions obtained from the poles pr = sβ . The limited frequency range is due to
the limited bandwidth of the retrieved spectra. For configuration 1 (water as upper
fluid) we observe that the attenuation is described very well by the pSt-pole, except
for the low frequencies where the far-field approximation of the Hankel function in
Eq. (4.27) is not valid. For configuration 3 (light upper fluid), however, the true
attenuation of the pR-wave is much greater than the value obtained from the pR-
pole residue. Obviously, the loop integrals along the branch cuts can not only affect
the waveform but also the spatial decay of a pseudo interface wave.

Sometimes, a residue of a pole is (implicitly) considered to represent the corres-
ponding interface-wave part of the spectrum of the Green’s function (see e.g., Feng
& Johnson (1983a); Edelman & Wilmanski (2002); Gubaidullin et al. (2004); Albers
(2006); Markov (2009)) while the loop integrals are considered to constitute the part
related to body waves and head waves (if present). This can be true but we emp-
hasize that the choice of branch cuts is not unique. Therefore, the integration can
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Bentheimer/water configuration 1, at x2 = x3 = 0 and from offsets x1 = 0.24 − 0.26 m. The
attenuation Im(spSt) obtained from the corresponding pole residue is also displayed.

be performed on another physically allowed Riemann sheet, i.e., a Riemann sheet
that also meets the requirement of Im(qα) ≤ 0 for real pr (Viktorov, 1967; Aki &
Richards, 1980), which is the original path of integration (see Eq. (4.20)). This has
been done by Tsang (1978) and Allard et al. (2004), and has been clarified by Harris
& Achenbach (2002). Then, the construction of the (x, ω)-domain Green’s function
is different as other poles have to be taken into account and different loop integrals
are to be evaluated. Therefore, it might very well be that (part of) the pertinent
physical properties of a true or pseudo interface wave are captured by the integrals
along the closed contour, rather than by the residue of a specific pole (alone).

From the current observations, we conclude that a residue of a pole on the prin-
cipal Riemann sheet does not necessarily yield all the pertinent physical properties
of the corresponding pseudo interface wave.

4.5.2 Presence of pR-pole and pSt-pole on Riemann sheets

Now we address the issue concerning the origin of a pseudo interface wave, as raised
in point (2) of the Introduction (Section 4.1). In the computations in the previous
subsection, we have already found that a pole related to a pseudo interface wave can
be located on the principal Riemann sheet and, obviously, contribute a residue to
the full response (see Table 4.1). This contradicts the conventional explanation that
a pseudo interface wave originates from a pole on a different Riemann sheet, and is
accounted for only by the loop integrals along branch cuts by causing a local maxi-
mum in the integrand. Allard et al. (2004) have already found this contradiction,
but they have not referred to this as such because their concern was to determine
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Figure 4.10: True attenuation, defined as Im(str
pR), retrieved from windowed pR-waveforms for

Bentheimer/light-fluid configuration 3, at x2 = x3 = 0 and from offsets x1 = 0.24 − 0.26 m. The
attenuation Im(spR) obtained from the corresponding pole is also displayed.

whether or not a pole is related to a separate arrival in the full response.
Surprisingly, in case of fused glass beads saturated with water and covered with

water (configuration 4, Figure 4.11) the pSt-pole is present on the principal Riemann
sheet only for a limited frequency range. In Figure 4.12 the position of the pole in
the complex plane is given, as expressed by Im(spSt). Also the position of the qP2-
branch cut is displayed, as expressed by its imaginary part at Re(pr) = Re(spSt).
As frequency increases, the pSt-pole moves towards the branch cut and as soon as it
reaches the cut, it vanishes from the sheet. The pole is not present on the principal
sheet for 310 kHz ≤ f ≤ 2 MHz. Therefore, the residue of the pSt-pole is not
shown in Figure 4.11. For the material properties used by Gubaidullin et al. (2004),
exactly the same situation occurs, although the transition takes place at a different
frequency. Obviously, the presence of a pole on a certain Riemann sheet is not only
a matter of the contrast in material parameters of the half-spaces (Scholte, 1947),
but can also depend on frequency in case of viscous poroelastic media.

The behavior of the pSt-pole illustrates both the non-conventional and the con-
ventional explanation about the origin of a pseudo interface wave. The pole does
contribute a residue over a certain frequency range and not outside that specific
range. For the pR-wave present in the full response of configuration 4 (Figure 4.11)
only the conventional explanation holds as the pR-pole is not found on the principal
Riemann sheet and the entire waveform is captured by the loop integrals.
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4.5.3 Physical significance of additional poles

Finally, we give attention to the physical significance of two additional zeroes of
the poroelastic Stoneley dispersion equation (∆St = 0) as raised in point (3) of the
Introduction (Section 4.1). In configuration 2 (air as upper fluid), these zeroes show
up as poles on the principal Riemann sheet at pr = sP̄ a and pr = sP̄ b. They are
located to the left of the fast compressional-wave slowness (Re(sP̄ a,P̄ b) < Re(sP1))
close to the qP1-branch cut (see Figure 4.2; pr = sP̄ a signifies the pole that lies the
closest to pr = sP1). The additional (P̄a, P̄b) poles are comparable with the so-called
“P̄ -poles” that occur in non-porous elastic solids with an interface, as described by
Gilbert & Laster (1962) and Aki & Richards (1980). The scaled real and imaginary
parts of the poles are displayed in Figure 4.13. The P̄b-pole is only present on the
principal Riemann sheet for limited frequency range 818.75 kHz ≤ f ≤ 2 MHz.

Allard et al. (2002) have also found one of the poles and have referred to it as an
improper surface mode. Feng & Johnson (1983a) have stated that poles located to
the left of shear-wave branch point (Re(pr) < Re(sS)) have lost all physical signifi-
cance as pseudo interface modes. In the latter paper, the authors consider pseudo
interface modes in the conventional way. In their configuration, the additional poles
might indeed lie on a different Riemann sheet, but we find that they can also show
up on the principal Riemann sheet. From Figure 4.4 we observe that the P̄a-pole
has a substantial residue contribution to the full response, although it does not cor-
respond to an interface wavemode (P̄b-pole similarly). Any pole that contributes to
the full response should be considered as physically significant.

Gilbert & Laster (1962) and Aki & Richards (1980) have related the P̄ -poles in
elastic solids to a separate arrival. However, van der Hijden (1984) has stated that
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the concept of a separate pulse should be dismissed because it is just a peculiar tail
to the compressional head-wave arrival. Harris & Achenbach (2002) have confirmed
this by stating that the poles yield features of the lateral waves. The observations
in the current computations for poroelastic media also confirm this. From Figure
4.7 we observe that the P̄a-pole contributes to the head waves generated by the P1-
wavefront. It also contributes to the P1-wavefront itself because it yields a strong
pulse that arrives even earlier (Figures 4.4 and 4.7), which is obviously explained
by the pole lying to the left of the compressional-wave slowness. The same is true
for the P̄b-pole. The early-arriving parts are not present in the full responses and
hence, the P1-waveform is constituted by both the residues of the P̄ -poles and the
loop integrals along the branch cuts. The fact that a pole contributes to the P1-
waveform illustrates that it lies in the vicinity of the saddle point of the body wave,
as used in asymptotic ray theory (van der Waerden, 1952; Tsang, 1978).

There is one remarkable difference between the P̄ -poles in elastic and the ones in
poroelastic media. In the former, the poles never show up on the principal Riemann
sheet (Aki & Richards, 1980) while this is possible for the latter. A similarity lies in
the fact that in elastic solids (with rather small values of Poisson’s ratio) the poles
lie also to the left of the compressional-wave slowness (Tsang, 1978).

4.6 Conclusions

In this chapter we analyzed the three-dimensional transient response of a fluid/poro–
elastic-medium configuration that is subjected to a vertical point force at the inter-
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face. For different materials, we quantitatively compared the full transient response
with the residue contributions of pole singularities present on the so-called “prin-
cipal” or “physical” Riemann sheet of integration. The poles are formed by zeroes
of the poroelastic Stoneley dispersion equation, i.e., the pseudo-Rayleigh (pR) pole
and the pseudo-Stoneley (pSt) pole.

We found that the residues of these poles do not necessarily contain all pertinent
physical properties of the corresponding pseudo interface waves. Part of them can
be captured by the loop integrals along the branch cuts. Therefore, it can be erro-
neous to use only the location of a zero of the Stoneley dispersion equation on the
principal Riemann sheet, to predict the entire waveform, the propagation velocity
and attenuation of the corresponding pseudo interface wave.

According to the generally accepted explanation about the origin of a pseudo
interface wave, it originates from a pole that lies on a non-principal Riemann sheet.
The influence of the pole is only indirect in the sense that it causes a local maximum
in the integrand of the Green’s function when its location is close to the real axis.
We found, however, that this conventional explanation is not necessarily confirmed
in the context of Biot’s theory for poroelasticity. The poles can show up on the
principal Riemann sheet. For the pSt-pole, we even showed that its presence on
the principal Riemann sheet is not only determined by the contrast in the material
properties, but also by frequency.

Finally, we found that two additional zeroes of the poroelastic Stoneley dispersion
equation do have physical significance due to their residue contributions to the fast
compressional wavefront, and to the head waves that are radiated by this wavefront.
In the literature the additional poles are, however, referred to as non-physical because
they are not related to pseudo interface waves. The poles are comparable with the



4.7. Appendix A: Transform-domain response 67

Table 4.3: Symbols used in Appendix A. The various indices are defined as: α = {P1, P2, F, S};
χ = {P1, P2, S}; κ = {P1, P2}.

ρ̂11 = ρ11 − ib̂/ω

ρ̂22 = ρ22 − ib̂/ω

ρ̂12 = ρ12 + ib̂/ω
d0 = ρ̂11ρ̂22 − ρ̂2

12

d1 = −(Rρ̂11 + P ρ̂22 − 2Qρ̂12)
d2 = PR − Q2

s2
κ = (−d1 ∓ (d2

1 − 4d0d2)
1

2 )/(2d2), Im(sk) ≤ 0 for ω ≥ 0
s2

S = d0/(Gρ̂22), Im(sS) ≤ 0 for ω ≥ 0
s2

F = ρF /KF

pr = (p2
1 + p2

2)
1

2 ≥ 0

qα = (s2
α − p2

r)
1

2 , Im(qα) ≤ 0 for real pr

βκ = −(ρ̂11 − Ps2
κ)/(ρ̂12 − Qs2

κ)
βS = −ρ̂12/ρ̂22

A′ = A − (1 − φ)Q/φ
Q′ = Q − (1 − φ)R/φ
Hκ = Q + Rβκ

Kκ = A
′

+ Q
′

βκ + 2G
φχ = 1 − φ + φβχ

∆1 = s2
P2HP2 − s2

P1HP1

∆2 = qP1s
2
P2HP2 − qP2s

2
P1HP1

∆3 = −4p4
rφρ̂−1

22 (qP1s
2
P1HP1 − qP2s

2
P2HP2) + 4p2

rqSqP1qP2φρ̂−1
22 ∆1

+2p2
rs

2
S(qP1(φP1 + φd−1

2 HP1KP2) − qP2(φP2 + φd−1
2 HP2KP1))

−s2
SG−1(qP1φP1s

2
P2KP2 − qP2φP2s

2
P1KP1)

“P̄ -poles” known in non-porous elastic solids; see Gilbert & Laster (1962) and Aki
& Richards (1980). Depending on the specific material parameters and frequency,
they can be present on the principal Riemann sheet or on another one.

4.7 Appendix A: Transform-domain response

In this Appendix we derive the (pr, x3, ω)-domain solution to Eqs. (4.5), (4.6) and
(4.9)-(4.14). Many of the involved symbols are explained in Table 4.3.

The general solution to the acoustic wave equation (Eq. (4.9)) in the (pr, x3, ω)-
domain can be readily found by applying the Fourier transform (Eqs. (4.15) and
(4.16)) and solving the obtained ordinary differential equation. The result is

p̃F = iωρF ÃF exp(+iωqF x3), x3 < 0, (4.29)

where ÃF is the complex plane-wave amplitude of the fluid (F ) wave and qF = (s2
F −

p2
r)

1

2 is the vertical slowness. It contains the wave slowness sF and the magnitude
of the horizontal slowness pr that are defined in Table 4.3.
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The general solution to the Biot equations (Eqs. (4.5) and (4.6)) can be deri-
ved by applying Helmholtz decomposition in the (x, ω)-domain to these equations,
according to (Allard, 1993; Gubaidullin et al., 2004)

û = ∇ϕ̂P1 + ∇ϕ̂P2 + ∇× ψ̂, (4.30)

Û = βP1∇ϕ̂P1 + βP2∇ϕ̂P2 + βS∇× ψ̂, (4.31)

where ϕ̂P1 and ϕ̂P2 denote the scalar potentials for the fast (P1) and slow (P2)

compressional waves, respectively, and ψ̂ the shear-wave (S) vector potential. βP1,
βP2 and βS are the well-known fluid-solid amplitude ratios (Allard, 1993) for the
separate body wavemodes (Table 4.3).

Applying the Helmholtz decomposition, the governing equations are decoupled
and once the spatial Fourier transform (Eq. (4.16)) is applied, the decoupled equa-
tions turn into ordinary differential equations for ϕ̃P1 and ϕ̃P2, and ψ̃ that can be
solved separately. The general solution for the displacements is obtained by adding
the separate contributions according to Eqs. (4.30) and (4.31). When the shear-
wave term is split into a vertically-polarized (SV ) and a horizontally-polarized (SH)
part, and the fluid pressure is calculated using Eqs. (4.2) and (4.4), the result for
the wave vector w̃ = (ũ1, ũ2, ũ3,−φp̃f )T can be written as

w̃ =









p1 p1 qS
p1

pr
s2

S
p2

p2
r

p2 p2 qS
p2

pr
−s2

S
p1

p2
r

qP1 qP2 −pr 0
−iωs2

P1HP1 −iωs2
P2HP2 0 0

















ÃP1e
−iωqP1x3

ÃP2e
−iωqP2x3

ÃSV e−iωqSx3

ÃSHe−iωqSx3









, (4.32)

for x3 > 0. Next to the solid displacements ũ, the wave vector w̃ contains the fluid
pressure p̃f rather then the fluid displacements Ũ because the four components of
w̃ describe the wave field totally: there are only four independent variables; see
Bonnet (1987). In Eq. (4.32), ÃP1, ÃP2, ÃSV and ÃSH denote the complex plane-
wave amplitudes of the corresponding body wavemodes. In Table 4.3 the vertical
slownesses qP1, qP2 and qS are defined (together with qF ), as well as the fluid
compressibility terms HP1 and HP2.

The body-wave slownesses have Im(sα) ≤ 0 for ω ≥ 0 and Sommerfeld’s radiation
condition requires that Im(qα) ≤ 0 for real pr for all body modes, α = {P1, P2, F, S}.

The complex plane-wave amplitudes are determined by the boundary conditi-
ons at the interface x3 = 0. Applying the transforms (Eqs. (4.15) and (4.16)) to
the boundary conditions (Eqs. (4.10)-(4.14)) and substituting the wave fields (Eqs.
(4.29) and (4.32)) the following set of equations is obtained













2Gp2
r − s2

P1KP1 2Gp2
r − s2

P2KP2 0 2GprqS 0
s2

P1HP1 s2
P2HP2 −φρF 0 0

qP1φP1 qP2φP2 qF −prφS 0
2prqP1 2prqP2 0 s2

S − 2p2
r + p2

p1pr
qSs2

S

2prqP1 2prqP2 0 s2
S − 2p2

r − p1

p2pr
qSs2

S













×
[

ÃP1 ÃP2 ÃF ÃSV ÃSH

]T
=
[

F̂
iω 0 0 0 0

]T

, (4.33)
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which is similar to that in Gubaidullin et al. (2004), but extended to three dimen-
sions. The constrained moduli KP1 and KP2 are defined in Table 4.3. The solution
is calculated analytically using MAPLE c©

ÃP1 =
−F̂

(

φρF qP2(s
2
SφP2 − 2p2

rφρ̂−1
22 s2

P2HP2) + qF (s2
S − 2p2

r)s
2
P2HP2

)

iωG∆1∆St

,

ÃP2 =
F̂
(

φρF qP1(s
2
SφP1 − 2p2

rφρ̂−1
22 s2

P1HP1) + qF (s2
S − 2p2

r)s
2
P1HP1

)

iωG∆1∆St

,

ÃF =
F̂
(

(qP1φP1s
2
P2HP2 − qP2φP2s

2
P1HP1)(s

2
S − 2p2

r) + 2p2
r∆2φS

)

iωG∆1∆St

,

ÃSV =
2prF̂

(

φ2ρF ρ̂−1
22 qP1qP2∆1 + qF ∆2

)

iωG∆1∆St

, (4.34)

and ÃSH = 0. Here, the “poroelastic Stoneley-wave denominator” (see Section 4.3)
is defined as

∆St = qF ∆R + φρF ∆3/∆1, (4.35)

which is associated with interface waves along the fluid/poroelastic-medium inter-
face. It is very similar to the “Scholte-wave denominator” for a fluid/elastic-solid
interface (de Hoop & van der Hijden, 1983), and equivalent to the one as given by
Denneman et al. (2002). It contains the “poroelastic Rayleigh-wave denominator”
that is associated with interface waves along a vacuum/poroelastic-medium interface

∆R = (s2
S − 2p2

r)
2 + 4p2

rqS∆2/∆1, (4.36)

which is very similar to the one for a vacuum/elastic-solid interface (Achenbach,
1973; Aki & Richards, 1980).

Now the plane-wave amplitudes are known, the (pr, x3, ω)-domain solution to
Eqs. (4.5), (4.6) and (4.9)-(4.14) is determined and given by Eqs. (4.29) and (4.32).

4.8 Appendix B: Inverse Fourier integral

In this Appendix we show how Eq. (4.19) can be written in terms of a single integral
according to Eq. (4.20), following Aki & Richards (1980). Transforming Eq. (4.19)
to cylindrical coordinates according to p1 = pr cos ϕ, p2 = pr sin ϕ, and x1 = r cos ϑ,
x2 = r sinϑ, where r = (x2

1 + x2
2)

1

2 , it can be written as

ĝ+ =
ω2

(2π)2

ˆ ∞

0

ˆ 2π

0

ñ+(pr, ϕ, x3, ω)

∆St

exp (−iωprr cos(ϕ − ϑ)) pr dϕdpr.

(4.37)

The ϕ-dependence of ñ+ can be replaced by (horizontal) partial-derivative operators
∂h, h = {1, 2}, since the factors ph that appear in ñ+ (cf. Eqs. (4.17) and (4.32))
correspond to horizontal derivatives (−iωph ↔ ∂h) in the (x, ω)-domain. Therefore,
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ñ+(pr, ϕ, x3, ω) is defined such that it contains the appropriate derivative operators,
according to

ĝ+ =
ω2

(2π)2

ˆ ∞

0

ñ+(pr, ∂h, x3, ω)

∆St

ˆ 2π

0

exp (−iωprr cos(ϕ − ϑ)) dϕprdpr

=
ω2

2π

ˆ ∞

0

ñ+(pr, ∂h, x3, ω)

∆St

J0(ωprr)pr dpr, (4.38)

where we have used the integral representation of the zeroth-order Bessel function
J0(...); see Gradshteyn & Ryzhik (1980). The Bessel function is replaced by the
sum of two zeroth-order Hankel functions of the first and second kind (Gradshteyn

& Ryzhik, 1980), i.e., J0(z) = 1
2 (H

(1)
0 (z) + H

(2)
0 (z)). Using the equality H

(1)
0 (z) =

−H
(2)
0 (−z) and the evenness of the (pr, x3, ω)-domain Green’s functions in pr, Eq.

(4.38) can be written as

ĝ+ =
ω2

4π

ˆ ∞

−∞

ñ+(pr, ∂h, x3, ω)

∆St

H
(2)
0 (ωprr)pr dpr, (4.39)

where the horizontal derivatives are applied to the Hankel function before the inte-
gration is performed, according to

∂hH
(2)
0 (ωprr) = −ωpr

xh

r
H

(2)
1 (ωprr). (4.40)



Chapter 5

Pseudo interface waves observed at
the fluid/porous-medium interface.
A comparison of two methodsi

Abstract

At the fluid/porous-medium interface the pseudo-Rayleigh (pR) and pseudo-Stoneley
(pSt) waves exist. The relation with the corresponding poles in the slowness plane
is not unambiguous, depending on the choice of branch cuts. For a point-force
excitation, the far-field Green’s functions are computed using vertical branch cuts
(method I) implying that the pR- and pSt-poles obey the radiation condition. Then,
a separate pseudo interface wave is entirely captured by the corresponding pole
residue because the loop integral along a branch cut contributes to a body wave only.
When hyperbolic branch cuts are used (method II) the poles lie on the “principal”
Riemann sheet. Then, also the loop integrals necessarily contribute to the pR-wave
because the pR-pole is different from that in method I. They do not contribute to
the pSt-wave when the pSt-pole lies on the principal Riemann sheet because the
pole is identical to that in method I. When the pSt-pole has migrated to another
Riemann sheet, however, the pSt-wave is fully captured by the loop integrals. In
conclusion, the phase velocity and attenuation of a separate pseudo interface wave
can be computed from the pole location in method I, but should be extracted from
the full response in method II.

5.1 Introduction

Interface waves that travel along the boundary of a porous medium carry information
of the acoustic properties of that medium. They can be utilized to characterize

iThis chapter has been accepted for publication as a journal paper in J. Acoust. Soc. Am. 129

(van Dalen et al., 2011). Note that minor changes have been introduced to make the text consistent
with the other chapters of this thesis.
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several parameters belonging either to the solid frame or to the saturating fluid.
Applications exist in ultrasonic testing of structures, borehole logging in geotechnical
and reservoir engineering, and surface seismics in geophysics.

Several theoretical studies were performed on interface waves propagating along
the boundary of a porous medium. Most of them were carried out in the context of
Biot’s theory for wave propagation in fluid-saturated poroelastic solids and discuss
the fluid/porous-medium configuration (Rosenbaum, 1974; Feng & Johnson, 1983a,b;
Edelman & Wilmanski, 2002; Allard et al., 2003, 2004; Gubaidullin et al., 2004;
Albers, 2006; van Dalen et al., 2010b). In general, three types of interface wavemodes
can exist at such an interface: the pseudo-Rayleigh (pR) wave, the pseudo-Stoneley
(pSt) wave and the true interface wave. The former are called “pseudo” because
part of their energy is leaking into slower body wavemodes as they propagate along
the interface due to their supersonic character. Some conditions for the existence of
the pseudo interface waves have been given by Feng & Johnson (1983a). The “true”
interface wave is called as such since it is slower than all body wavemodes and
therefore non-leaky, and it is comparable to the Stoneley wave at the fluid/elastic-
solid interface. It is only present for the closed-pore boundary, where fluid is not
free to flow across the interface, or in case of a relatively soft porous frame (Feng &
Johnson, 1983a).

For material characterization using the pseudo interface waves it is important to
have predictions of the propagation characteristics of the individual wavemodes, i.e.,
the velocity and attenuation. Feng & Johnson (1983a) computed phase velocities
and attenuations of the pseudo interface waves from the location of the zeroes (pR-
and pSt-poles) of the poroelastic Stoneley dispersion equation in the complex plane.
Physical constraints for the involved square roots were derived using the radiation
condition, defining the Riemann sheets where the zeroes lie on. A similar approach
was adopted by Edelman & Wilmanski (2002) and Gubaidullin et al. (2004).

In other papers the full transient response excited by a source is considered
(Allard et al., 2004; van Dalen et al., 2010b), i.e., the acoustic wave motion including
all excited wavemodes. The pseudo interface waves are then part of the full response
as computed by evaluation of the inverse Fourier integral over horizontal slowness
(or wavenumber) using contour integration on the “principal” Riemann sheet. In
that case, the residue of a pole contributes to the waveform of a pseudo interface
wave, but in a recent paper it has been observed that the waveform can also be
affected by the loop integrals along the hyperbolic branch cuts (van Dalen et al.,
2010b). Consequently, the wave is not necessarily captured by the residue of the
corresponding pole only. Now the question arises why and under which conditions
the velocity and attenuation of a pseudo interface wave can be computed directly
from the pole location.

To answer this question, in this chapter we compute the transient point-force
response observed at the fluid/porous-medium interface using two different methods
to compose the Green’s functions (impulse responses). Method I is representative
of Feng & Johnson (1983a), Edelman & Wilmanski (2002) and Gubaidullin et al.
(2004), and method II of Allard et al. (2004) and van Dalen et al. (2010b). In
method I we use vertical branch cuts for the involved square roots, which implies
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that the contributing poles are formed exactly by the zeroes found using the square-
root restrictions of Feng & Johnson (1983a). We show that, in the case of separated
waves in the far field, the loop integral along a branch cut only contributes to a single
body wave. Consequently, the far-field waveform of a separate pseudo interface wave
is captured by the residue contribution of the corresponding pole only. In method
II we use the hyperbolic branch cuts and we elucidate that the use of these branch
cuts is responsible for the contributions of the loop integrals to the pseudo interface
waves: there can be various singularities close to the integration path of a branch cut.
Unique physical interpretation is only possible for the pSt-pole in a specific situation.
Further, we explain the differences and similarities of the poles encountered in the
two methods, and explain the physical reason of the migration of pSt-pole from one
to another Riemann sheet, as originally observed in method II (van Dalen et al.,
2010b). Numerical examples are shown to illustrate our findings.

We utilize the model describing the three-dimensional transient response due to
a point force applied normal to the interface of a fluid/porous-medium configuration
(see Figure 5.1) (van Dalen et al., 2010b), but we restrict ourselves to an observation
point on the interface. In Section 5.2 we summarize the governing equations. We
elaborate the two different methods in Section 5.3. In Section 5.4 we investigate
the contributions of poles and branch cuts in more detail. Numerical results are
discussed in Section 5.5 and conclusions are given in Section 5.7.

5.2 Model

We consider the configuration of a fluid half-space on top of a fluid-saturated poroe-
lastic half-space, with a point force F (t) applied normal to the interface (see Figure
5.1; the schematic response is referred to later) (van Dalen et al., 2010b). Both
half-spaces are considered to be homogeneous and isotropic, and the interface is an
open-pore boundary. In this section we summarize the governing equations.

The behavior in the lower half-space (x3 > 0) is governed by the well-known Biot
equations of motion for a fluid-saturated poroelastic solid that were extensively dis-
cussed in this Journal; see e.g., Biot (1956a,b). We assume that for long-wavelength
disturbances with respect to the characteristic pore scale, average local displace-
ments can be defined for the solid (frame) u(x, t) = (u1, u2, u3)

T and the fluid
U(x, t) = (U1, U2, U3)

T . The equations of motion are found from usual combina-
tion of mass and momentum conservation, and constitutive relations giving (Biot,
1956a,b)

ρ11∂
2
t u + ρ12∂

2
t U + b(t) ∗ ∂t(u − U) = P∇∇ · u − G∇×∇× u

+ Q∇∇ · U, (5.1)

ρ12∂
2
t u + ρ22∂

2
t U − b(t) ∗ ∂t(u − U) = Q∇∇ · u + R∇∇ · U, (5.2)

where ∂t = ∂/∂t, the asterisk denotes convolution, and P , Q and R are generalized
elastic constants that are related to porosity φ, grain bulk modulus Ks, fluid bulk
modulus Kf , bulk modulus of porous drained frame Kb, and shear modulus G of
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Figure 5.1: Point force F (t) applied normal to interface of fluid-saturated porous half-space and
fluid half-space, and schematic response (snapshot): fast compressional (P1) wave, slow compres-
sional (P2) wave, shear (S) wave, fluid (F ) wave, pseudo-Rayleigh (pR) wave and pseudo-Stoneley
(pSt) wave. Double-mode symbols (e.g., SP1) indicate lateral waves: first symbol denotes wave-
mode of specific arrival, the second that from which it is radiated. Here, F -wave velocity is assumed
higher than P2-wave velocity and smaller than S-wave velocity. For clarity, we omitted arrivals
FS, P2P1, P2S, P2pR and P2F .

both drained frame and total composite (Biot & Willis, 1957). The effective densities
are defined as

ρ11 = (1 − φ)ρs − ρ12,

ρ22 = φρf − ρ12, (5.3)

ρ12 = −(α∞ − 1)φρf ,

where the tortuosity α∞ ≥ 1, and hence ρ12 ≤ 0. Solid and fluid densities are
denoted as ρs and ρf , respectively. The linear time-convolution operator b(t) was
formulated in the frequency domain as the viscous correction factor by Johnson et al.
(1987) according to (cf. Eq. (5.11))

b̂(ω) = b0(1 + 1
2 iMω/ωc)

1

2 , (5.4)

where the viscous damping factor b0 = φ2η/k0 and Re(b̂(ω)) ≥ 0 for ω ≥ 0. Here, η
denotes the dynamic fluid viscosity and k0 the zero-frequency Darcy permeability.
The shape factor M is usually taken equal to 1 (Smeulders et al., 1992). The rollover
frequency, which represents the transition from low-frequency viscosity-dominated
to high-frequency inertia-dominated behavior, is defined as ωc = ηφ/(α∞ρfk0).

The behavior of the upper (fluid) half-space (x3 < 0) is governed by the acoustic
wave equation

ρF ∂2
t pF = KF∇2pF , (5.5)

where KF and ρF denote the bulk modulus and density of the fluid, respectively,
and pF denotes the fluid pressure.

The behavior at the interface is governed by conventional open-pore conditi-
ons (Deresiewicz & Skalak, 1963), i.e., by continuity of volume flux and fluid pres-
sure, and vanishing intergranular vertical stress σ33 and shear stresses σ13 and σ23
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(Biot, 1956a). The open-pore boundary can be a realistic choice to model the
fluid/poroelastic-medium interface (Burns, 1990), but it is a limiting case of the
general situation where a finite surface flow impedance is considered (Deresiewicz
& Skalak, 1963). When the point force F (t) is applied to the solid, in the limit of
x3 → 0 the following conditions should be satisfied

(1 − φ)u3 + φU3 − UF,3 = 0, (5.6)

pf − pF = 0, (5.7)

σ13 = 0, (5.8)

σ23 = 0, (5.9)

σ33 = F (t)δ(x1)δ(x2), (5.10)

where δ(...) denotes the Dirac delta function, and UF,3 denotes the vertical particle
displacement in the upper half-space.

The medium is considered to be at rest at t ≤ 0. At infinite distance from the
source the motions are bounded.

5.3 Green’s functions

In this section we first summarize the plane-wave domain solution to the set of
governing equations (Eqs. (5.1), (5.2) and (5.5)-(5.10)), as derived earlier (van
Dalen et al., 2010b). Then we show how the space-frequency (x, ω)-domain Green’s
functions are composed using the two different methods (see Section 5.1).

5.3.1 Plane-wave domain response

In order to consider the plane-wave domain response, we apply the Fourier transform
over time t according to

û(x, ω) =

ˆ ∞

−∞

u(x, t) exp(−iωt) dt, (5.11)

where ω denotes the angular frequency and i the imaginary unit. Because u(x, t) is
real-valued it is sufficient to consider ω ≥ 0 only. Following Aki & Richards (1980)
the Fourier transform over horizontal spatial coordinates can be defined as

ũ(pr, x3, ω) =

ˆ ∞

−∞

ˆ ∞

−∞

û(x, ω) exp(iωpr · r) dx1dx2, (5.12)

where pr = (p1, p2)
T is the horizontal slowness vector and r = (x1, x2)

T is the
horizontal space vector. The transforms are applied similarly to the other field
quantities. The hat refers to the (x, ω)-domain and the tilde to the (pr, x3, ω)-
domain.

The response in the plane-wave domain (pr, x3, ω) is described by the phy-
sical quantities ũi and p̃f in the lower half-space, grouped in the vector w̃ =
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(ũ1, ũ2, ũ3,−φp̃f )T , and by p̃F in the upper half-space. The expressions for the
response can be obtained using standard Helmholtz decomposition of the equations
of motion, and the boundary conditions. The resulting set of equations can be sol-
ved analytically. Finally, the (pr, ω, x3)-domain solution can be written in terms of
Green’s functions as

w̃ = g̃+F̂ =
ñ+

∆St

F̂ , (5.13)

p̃F = g̃−F̂ =
ñ−

∆St

F̂ . (5.14)

Here, g̃+ and g̃− are the Green’s functions for x3 > 0 and x3 < 0, respectively, with
numerators ñ+ and ñ−, and ∆St(pr, ω) is the “poroelastic Stoneley-wave denomi-
nator”. F̂ is the Fourier transform of the force signature. The Green’s functions
are linear combinations of the body modes: g̃+ contains the fast compressional (P1)
wave, the slow compressional (P2) wave, and the vertically-polarized shear (S) wave;
g̃− only contains the fluid (F ) wave (see Figure 5.1). The corresponding propagation
terms are exp(∓iωqαx3), where α = {P1, P2, F, S}; in the argument, the + relates
to the upper medium and the − to the lower. The vertical slownesses are defined
as qα = (s2

α − p2
r)

1

2 , with Im(qα) ≤ 0 for real pr. Here, sα are the body-wave slow-
nesses having Im(sα) ≤ 0 for ω ≥ 0, and pr denotes the magnitude of the horizontal
slowness.

The (x, ω)-domain Green’s functions are found by evaluation of the inverse Fou-
rier transform over horizontal slowness (cf. Eq. (5.12)). When cylindrical coordina-
tes are introduced, it follows that (van Dalen et al., 2010b)

ĝ+
3 =

ω2

4π

ˆ ∞

−∞

ñ+
3

∆St

H
(2)
0 (ωprr)pr dpr, (5.15)

where r = (x2
1 +x2

2)
1

2 and H
(2)
0 (...) is the Hankel function of zeroth order and second

kind. We only specify the expression for ĝ+
3 ; the other Green’s functions are obtained

by simply replacing ñ+
3 in Eq. (5.15) by the other numerators. For brevity, from

this point we omit the superscript, i.e., ĝ+
3 = ĝ3.

Now, we change the real-axis integral into a contour integral in the complex pr-
plane (Fuchs et al., 1964). The idea is that by integration in the complex plane,
contributions from branch cuts and poles can be distinguished. Two different sets
of branch cuts are employed to make the square roots single-valued in the entire
pr-plane.

5.3.2 Method I: Vertical branch cuts

In the first method (see also Feng & Johnson (1983a); Edelman & Wilmanski (2002);
Gubaidullin et al. (2004)) we compose the Green’s functions using branch cuts for
the square roots qα along vertical half-lines departing from the corresponding branch
points being the body-wave slownesses sα, as shown in Figure 5.2. In this figure also
the closed integration contour is displayed, which is formed by the entire real axis,
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Figure 5.2: Complex pr-plane for method I with (−−) vertical branch cuts of square roots qα

departing from corresponding (•) branch points sα, α = {P1, P2, F, S}. Poles (∗) spR (pseudo-
Rayleigh) and spSt (pseudo-Stoneley) are zeroes of poroelastic Stoneley denominator; see Eq.
(5.18). Only part of closed integration contour (−) is displayed: real axis, arc in lower half-plane
and loop CP2 along qP2-branch cut. Direction of integration is indicated. Every (· · ·) line indicates
transition between two Riemann sheets as indicated by numbers (Figure 5.3 and Table 5.1). Here,
F -wave velocity is assumed higher than P2-wave velocity and smaller than S-wave velocity.

the loops along the branch cuts and around the branch points, and an arc of infinite
radius in the lower half-plane. For Re(pr) ≤ 0 the horizontal part of the contour lies
just below the axis due to the presence of a branch cut of the Hankel function at
the negative real axis (Abramowitz & Stegun, 1972).

The meaning of the dotted hyperbolas in Figure 5.2 is illustrated in Figure 5.3,
where the behavior of qP1 in the complex plane is sketched. There is a (abrupt)
sign change over the vertical branch cut and throughout the rest of the pr-plane
the magnitude changes smoothly. Along the dotted hyperbolas either the imaginary
part is zero (for Re(pr) < Re(sP1)) or the real part (for Re(pr) > Re(sP1)) (Harris,
2001). The other roots behave similarly. Hence, the dotted lines in Figure 5.2
indicate where Im(qα) = 0. Crossing such a line means that one moves from one to
another Riemann sheet.
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Figure 5.3: Complex pr-plane in method I with (−−) qP1-branch cut departing from branch
point sP1. Hyperbolic lines (· · ·) indicate where either Re(qP1) = 0 or Im(qP1) = 0. In various
areas signs of real and imaginary parts of qP1 are indicated.
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Figure 5.4: Complex pr-plane for method II with (−−) hyperbolic branch cuts of square roots qα

departing from corresponding (•) branch points sα, α = {P1, P2, F, S}. Poles (∗) spR (pseudo-
Rayleigh) and spSt (pseudo-Stoneley) are zeroes of poroelastic Stoneley denominator; see Eq.
(5.18). Only part of closed integration contour (−) is displayed (cf. Figure 5.2). Direction of
integration is indicated. Integration is done entirely on the principal Riemann sheet (indicated by
1; Table 5.1). Here, F -wave velocity is assumed higher than P2-wave velocity and smaller than
S-wave velocity.

Consequently, inside the closed contour (Figure 5.2) nine different Riemann
sheets can be distinguished. Throughout the entire complex plane the signs of
the square roots qα are calculated given the requirement that Im(qα) ≤ 0 on the
real pr-axis, which is the original path of integration (see Eq. (5.15)) (Aki & Ri-
chards, 1980). We indicate every Riemann sheet according to the sign of Im(qα),
e.g., sgn(Im(qP1, qP2, qF , qS)) = (− − −−) is the sheet where all roots have imagi-
nary parts smaller than or equal to zero, which is the “principal” Riemann sheet
(Aki & Richards, 1980; van der Hijden, 1984). In Figure 5.2 this sheet is indicated
by 1. In Table 5.1 an overview is given of all Riemann sheets inside the contour.

5.3.3 Method II: Hyperbolic branch cuts

In the second method (see also Allard et al. (2004); van Dalen et al. (2010b)) we
compose the Green’s functions using branch cuts exactly along the hyperbolic lines
Im(qα) = 0; see Figure 5.4. This implies that Im(qα) < 0 over the rest of pr-plane
(Harris, 2001), and ensures the decay of the exponential terms exp(∓iωqαx3) for
large |pr| (present in Eqs. (5.13) and (5.14)). The qF -branch cut coincides with the
imaginary axis and part of the real axis since the slowness of the fluid (sF ) is real-
valued. The current branch cuts imply that the integration is performed entirely on
the principal Riemann sheet.

In Figure 5.4 also the closed contour is displayed, similar as in Figure 5.2.

5.3.4 Inverse Fourier transform

We now compose the (x, ω)-domain Green’s function ĝ3 as a summation of the
contributions of the branch cuts and the residues of the poles that lie inside the
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Table 5.1: Various Riemann sheets present inside closed contours in Figures 5.2 and 5.4. Every
Riemann sheet is characterized by signs of imaginary parts of involved square roots.

Im(qP1) Im(qP2) Im(qF ) Im(qS)
1 − − − −
2 − + − −
3 − − + −
4 − + + −
5 − − + +
6 − + + +
7 + − + −
8 + − + +
9 + + + +

contour. In both methods Cauchy’s residue theorem (Fuchs et al., 1964) leads to

ĝ3 =
∑

α

ĝ3,α +
∑

β

ĝ3,β , (5.16)

where ĝ3,α denotes the contribution of the loop integral along the qα-branch cut,

ĝ3,α = −ω2

4π

ˆ

Cα

ñ3

∆St

H
(2)
0 (ωprr)pr dpr, (5.17)

and α = {P1, P2, F, S}. Here, Cα represents the integration loop. In Eq. (5.16),
ĝ3,β denotes the residue contribution of a first-order pole sβ of the integrand inside
the integration contour, which is typically the pseudo-Rayleigh (pR) pole or the
pseudo-Stoneley (pSt) pole (see Figures 5.2 and 5.4) (van Dalen et al., 2010b),

ĝ3,β = −2πi

[

ω2

4π

ñ3

∂pr
∆St

H
(2)
0 (ωprr)pr

]

pr=sβ

. (5.18)

Obviously, both methods give the same Green’s function ĝ3, but due to the
different branch cuts the integrands are defined differently (we consider ñ3/∂pr

∆St

on different Riemann sheets) and consequently, the contributions of the loop integrals
ĝ3,α and of the pole residues ĝ3,β are not the same. We can even encounter different
poles on the different Riemann sheets on which the integration is performed.

5.4 Physical interpretation of separate contributi-
ons of the far-field interface response

In this section we determine to what wavemode(s) of the interface response the loop
integral along a single branch cut and a single pole residue contribute(s), respecti-
vely. To facilitate this we only consider the far-field situation and we approximate
the loop integral using the saddle-point method. This leads to expressions that have



80 5. Wavemodes at fluid/porous-medium interface II

a straightforward physical interpretation. We only elaborate the separate contribu-
tions for method I because for method II it is clear on beforehand that the loop
integral along a branch cut can contribute to several waves in the full response,
including the pseudo interface waves (van Dalen et al., 2010b). Unique physical in-
terpretation is only possible for the pSt-pole in a specific situation, as we will discuss
in Section 5.5.

5.4.1 Approximate pole contributions

First, we consider the residue contributions ĝI
3,β(x3 = 0) as given by Eq. (5.18).

Considering the wavefield in the far field (|ωprr| ≫ 1), we can write (Abramowitz
& Stegun, 1972)

ĝI
3,β(x3 = 0) ∼=

(

ω3

2πr

)
1

2 ñ3

∂pr
∆St

∣

∣

∣

∣

x3=0,pr=sβ

s
1

2

β e−iωsβr−i
π
4 (5.19)

= Aβ(ω, r)e−iωRe(sβ)r+iϕβ(ω), (5.20)

where Aβ is the amplitude and ϕβ the r-independent phase angle of the wavemode
that has phase propagation slowness Re(sβ), i.e., the pseudo-Rayleigh (pR) or the
pseudo-Stoneley (pSt) wave. All contributing poles sβ have Im(sβ) < 0 as they lie
inside the integration contour. This ensures the vanishing of the displacements for
r → ∞ (Eq. (5.19)).

5.4.2 Approximate branch-cut contributions

Next, we focus on the contributions of the branch cuts ĝI
3,α(x3 = 0) as given by

Eq. (5.17). Introducing pr = sα − iξ, where ξ is a local variable of integration and
considering the far field (|ωprr| ≫ 1), we can write for the contribution of Cα -
taking both sides (L: left; R: right) in one integral

ĝI
3,α(x3 = 0) ∼=

(

ω3

8π3r

)
1

2

e−iωsαr+i
3
4π

×
ˆ ∞

0

(

ñ3,L

∆St,L

− ñ3,R

∆St,R

)

x3=0

p
1

2

r e−ωrξ dξ (5.21)

= Aα(ω, r)e−iωRe(sα)r+iϕα(ω,r), (5.22)

where the signs of all roots qα can be determined from Figures 5.2 and 5.3, and Table
5.1, and where Re(p

1

2 ) ≥ 0 ∀ p (Aki & Richards, 1980); Aα is some amplitude and
ϕα a phase angle. We now show how the integral over ξ contributes to Aα and ϕα

using a saddle-point approximation. We only show the approximation of the loop
integral CF , but the others (CP1, CP2 and CS) can be approximated similarly.

From Eq. (5.21) it is observed that the integration path is the path of steepest
descent of the far-field integrand at x3 = 0 (Tsang, 1978). The saddle point coincides
with the branch point of the particular branch cut, i.e., pr = sα. This is a limiting
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case of the more general situation where x3 6= 0 and the saddle point lies at pr =
sαr/R0, where R0 = (x2

1 +x2
2 +x2

3)
1

2 (Jeffreys & Jeffreys, 1946; Brekhovskikh, 1960;
Aki & Richards, 1980).

We employ Watson’s lemma (Achenbach, 1973) to evaluate the integral for ωr →
∞

ˆ ∞

0

ξ+afF (ξ, ω)e−ωrξ dξ =

∞
∑

n=0

∂n
ξ fF (ξ, ω)

∣

∣

∣

∣

∣

ξ=0

Γ(a + n + 1)

(ωr)a+n+1
, (5.23)

where ∂n
ξ = ∂n/∂ξn, a > −1, Γ(...) is the gamma function, and

fF (ξ, ω) = ξ−ap
1

2

r

(

ñ3,L

∆St,L

− ñ3,R

∆St,R

)

x3=0

. (5.24)

For the situation that Re(sP2) > sF (which is the case in the numerical examples
that we will consider), we have along the integration path (see Figures 5.2 and 5.3,
and Table 5.1)

pr = sF − iξ, (5.25)

Im(qP1, qS) < 0, (5.26)

Re(qP2) > 0, (5.27)

Im(qF,L) ≥ 0, Im(qF,R) ≤ 0. (5.28)

For a = 1
2 , ∂n

ξ fF (ξ, ω) is finite at ξ = 0 (which can be shown using MAPLE c©) and

hence, using Γ(3
2 ) = 1

2

√
π, Eq. (5.21) can be approximated as

ĝI,os

3,F (x3 = 0) =
1

4
√

2πr2
fF (0, ω)e−iωsF r+i

3
4π, (5.29)

which is the “ordinary” saddle-point approximation (Tsang, 1978) (indicated by
superscript “os”) because it only uses the zeroth-order term (see Eq. (5.23)). The
error is of O(ω−1r−3) provided that fF (0, ω) is not singular in the vicinity of the
saddle point.

A pole lying in the vicinity of the saddle point invalidates the ordinary approxi-
mation. For instance, as we will discuss in a numerical example (Section 5.5), the
pSt-pole can lie very close to the fluid-wave branch point strongly affecting the beha-
vior of fF (ξ, ω). We now show how to include the effect of the proximity of pSt-pole
in the approximation of the fluid branch-cut contribution. We use the “modified”
saddle-point method where the singular part of the integrand is split off and handled
separately (van der Waerden, 1952; Brekhovskikh, 1960; Tsang, 1978).

First, we make a transform of variable, ξ = ζ2/(ωr), so that

pr = sF − iζ2/(ωr), (5.30)

and

ĝI
3,F (x3 = 0) ∼=

( ω

8π3r3

)
1

2

e−iωsF r+i
3
4πI, (5.31)
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where

I =

ˆ ∞

0

y(pr, ω)e−ζ2

dζ, (5.32)

y(pr, ω) = 2ζp
1

2

r

(

ñ3,L

∆St,L

− ñ3,R

∆St,R

)

x3=0

. (5.33)

We split off the singular part from y(pr, ω) by defining

y(pr, ω) = w(pr, ω) +
ypSt

pr − spSt

, (5.34)

where ypSt = ypSt(ω) according to

ypSt = lim
pr→spSt

((pr − spSt)y(pr, ω)) , (5.35)

= −2ζpSts
1

2

pSt

ñ3,R

∂pr
∆St,R

∣

∣

∣

∣

x3=0,pr=spSt

. (5.36)

At pr = spSt the roots take on the same signs as at the right side of the qF -branch
cut; see Eqs. (5.26)-(5.28). The quantity ζpSt is the value that ζ assumes at the
pSt-pole; from Eq. (5.30) we find

ζpSt = (iωr(spSt − sF ))
1

2 , (5.37)

where Im(ζpSt) < 0. It represents a normalized distance between the fluid-wave
branch point (saddle point) and the pSt-pole. Its magnitude squared is the so-called
“numerical distance”. Combining Eqs. (5.32) and (5.34), we have

I = I1 + I2, (5.38)

I1 =

ˆ ∞

0

w(pr, ω)e−ζ2

dζ, (5.39)

I2 =

ˆ ∞

0

ypSt

pr − spSt

e−ζ2

dζ. (5.40)

Watson’s lemma can now again be applied to approximate I1 since the nearby singu-
larity has been removed. The approximation of the first term of I1 (y(pr, ω)) leads
to the result of Eq. (5.29). To approximate the second term of I1 (−ypSt/(pr−spSt))
we need to include two terms of Watson’s lemma to get the same order in ωr. The
integral I2 can be expressed in terms of the complementary error function (Gradsh-
teyn & Ryzhik, 1980). The final result of the modified saddle-point approximation
(indicated by superscript “ms”) is found by combining Eqs. (5.31) and (5.38)-(5.40)

ĝI,ms

3,F (x3 = 0) =
1

4
√

2πr2
e−iωsF r+i

3
4π

(

fF (0, ω) +
(ωr)

1

2 ypSt

spSt − sF

(

1 +
1

2ζ2
pSt

)

+
√

π
(ωr)

3

2 ypSt

ζpSt

erfc(iζpSt)e
−ζ2

pSt

)

. (5.41)
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The second and third terms inside the brackets are the correction terms of the
modified saddle-point approximation with respect to the ordinary one; they cancel
when |ζpSt| → ∞, i.e., when the pole is far away from the saddle point.

In general, also poles that do not lie inside the closed contour can influence the
integrands of the loop integrals along the branch cuts. For instance, the P̄ -poles
that are located close to pr = sP1 (van Dalen et al., 2010b), can lie on sheet 1 and
the (+ − −−)-sheet, respectively, below sheet 3 and 7 (see Figure 5.2), and still
invalidate the ordinary saddle-point approximation (Tsang, 1978). In practice, it is
probably the best to evaluate the full integrals numerically, which ensures that all
effects of nearby poles are included properly. However, the current approximations
allow us to physically interpret the separate contributions in method I.

5.4.3 Physical interpretation of contributions

Using the results of the previous Sections (5.4.1 and 5.4.2) we are able to physi-
cally interpret the separate contributions of the Green’s functions. Comparing Eqs.
(5.21), (5.22) and (5.29), we observe that in the case that there is no pole in the
vicinity of the saddle point, the integral over ξ contributes to the phase angle ϕF

such that it is only ω-dependent: ϕF = ϕF (ω) (this is also the case if more terms
of Watson’s lemma are included). It does not modify the phase slowness of the
exponential term. Therefore, in the far field, a branch-cut contribution in method
I only corresponds to a separate body wave in the interface response. Its geome-
trical decay of the pole residue behaves as r−2, which is typical for a body/head
wave propagating along the interface (Aki & Richards, 1980). Consequently, if the
loop integral only contributes to a separate body wavemode, the far-field residue
contribution of a pole (pR or pSt; Eqs. (5.19) and (5.20)) must capture the entire
waveform of a separate pseudo interface wave in the interface response, i.e., the pR-
or the pSt-wave. The geometrical decay behaves as r−

1

2 , which is typical for an
interface wave.

For the case that there is a pole close to the saddle point, we observe that the in-
tegral over ξ contributes to the phase angle ϕF such that it is also r-dependent:
ϕF = ϕF (ω, r) (cf. Eqs. (5.21), (5.22) and (5.41)). In Eq. (5.41) the term
erfc(iζpSt) exp(−ζ2

pSt) seemingly describes some dispersion of the F -wave. Howe-
ver, this term is merely a consequence of the interference of the body wave and the
interface wave due to the proximity of the pole and the saddle point. In this case,
separate interface and body waves cannot be distinguished (see also next section).

In method II the branch cuts follow curved paths in the complex plane. Hence,
the integrand of a loop integral can encounter several singularities in the complex
plane and thus contribute to the waveforms of the corresponding wavemodes. This is
the reason that in method II, a body wave cannot be attributed to a single branch-
cut contribution and, as a consequence, the residue contribution of an individual
pole does not necessarily contain the entire waveform of the corresponding pseudo
interface wave.
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Table 5.2: Various configurations for which the transient response is considered. The type of
sandstone is Bentheimer (van Dalen et al., 2010b). For fused glass beads (Feng & Johnson, 1983a),
bulk modulus of drained matrix is chosen as Kb = 10 GPa and permeability as k0 = 10 µm2.
Saturating fluid (water) has bulk modulus Kf = 2.22 GPa and density ρf = 1000 kgm−3. Upper

half-space is filled with either light fluid (KF = 1

10
Kf , ρF = 1

8
ρf ) or water (KF = Kf , ρF = ρf ).

For every configuration the poles (pseudo-Stoneley (pSt) and pseudo-Rayleigh (pR)) present inside
integration contour are indicated for both methods (I,II).

Porous solid Saturating Upper Poles Poles
fluid half-space method I method II

1 Sandstone water light fluid pR, pSt pR, pSt
2 Glass beads water water pR, pSt pStii

3 Sandstone water water pR,iii pSt pSt

5.5 Numerical results and discussion

In this section, we subsequently discuss various wavemodes that are excited by the
point force and verify to what parts (poles and branch cuts) of the Green’s functions
their waveforms are related, in both the methods I and II. We show the transient
interface responses for three different fluid/porous-medium configurations (see Table
5.2) yielding illustrative results for the theoretical elaborations. For clarity, we
adhere to the distinction between separate and interfering wavemodes (Sections 5.5.1
and 5.5.2, respectively) as introduced Section 5.4.3. Finally, in Section 5.5.3 we
address the migration of poles, which we first encounter in Section 5.5.1.

In the first and third configurations the porous medium is a water-saturated
Bentheimer sandstone (van Dalen et al., 2010b). The upper half-space is either
a light fluid or water. The second configuration is identical to that of Feng &
Johnson (1983a,b). For every configuration, we show the vertical component of
particle velocity v3 for an observation point at the interface x3 = 0 at offset r =
x1 = 0.10 m. The point force has Ricker signature (Ricker, 1953),

F (t) = Fmax

(

1
2ω2

0 t̄2 − 1
)

exp
(

− 1
4ω2

0 t̄2
)

, (5.42)

where t̄ = t − ts (t > 0), ω0 = 2πf0 and centre frequency f0 = 500 kHz (see
Figure 5.5). The magnitude Fmax = 2.5 · 10−7 N and time shift ts = 5 µs. We
have performed the integration over pr for the frequency range 0 < f ≤ 2 MHz. The
particle velocity is obtained from multiplication of the spectra of the Green’s function
by the source signature (Eq. (5.13)), and by iω. A standard fast Fourier-transform
algorithm is applied for the transform to the time domain.

For both methods we have evaluated the loop integrals by numerical integration
of the exact integrands (Eq. (5.17); no approximations involved). Similarly, in the
evaluation of the pole residues we have used the full expressions (Eq. (5.18)). The
poles inside the closed integration contour contributing a residue are given in Table
5.2. We have identified the pseudo-Stoneley (pSt) and the pseudo-Rayleigh (pR)
poles using the Principle of the Argument to the Stoneley denominator ∆St (Fuchs

iiNot present inside integration contour for f ≥ 310 kHz.
iiiIts residue is not shown.



5.5. Numerical results and discussion 85

0.03 0.04 0.05 0.06 0.07 0.08

−1

0

1

x 10
−5

 v
3

0.03 0.04 0.05 0.06 0.07 0.08

−1

0

1

x 10
−5

 v
3

,S

0.03 0.04 0.05 0.06 0.07 0.08

−1

0

1

x 10
−5

 v
3
,p

R

0.03 0.04 0.05 0.06 0.07 0.08

−1

0

1

x 10
−5

 t [ms]

v pR
I
3, v pR

II
3,

II
 v

3
,F

v S
I
3, v S

I,os
3,

P
1 S

pR F, pSt

x 1/10

F(t)

Figure 5.5: Bentheimer/light-fluid (configuration 1): full response (v3) including source signature

F (t) (Eq. (5.42)), qS-branch cut contribution in method I (vI
3,S) and its approximation (vI,os

3,S
),

qF -branch cut contribution (vII
3,F ) and pR-pole residues (vI

3,pR, vII
3,pR), at x2 = x3 = 0 and

x1 = 0.10 m. Residue vII
3,pR and pR-wave part of vII

3,F are not entirely visible on scale of this

figure. Units are [ms−1]. From dashed vertical line onwards, responses have been scaled by 1

10
.

et al., 1964; van Dalen et al., 2010b); this principle gives the number of poles inside
a closed integration contour. In method I the pSt-pole lies on sheet 1 or 2, and the
pR-pole on sheet 3 or 4 (see Figure 5.2 and Table 5.1). In method I the poles all lie
on sheet 1 (see Figure 5.4).

For all three configurations the full responses and separate contributions are
displayed in Figures 5.5 and 5.7-5.9. Obviously, the full responses are the same
in both methods (and not displayed separately). We have identified the different
arrivals in the full responses using the phase velocities as obtained from the modal
slownesses. For the sake of clarity, a schematic snapshot of the full response with
the different arrivals is shown in Figure 5.1. Here, body waves are indicated by the
solid lines and interface waves by short wavelets; lateral waves (either head waves
or wavefronts radiated by the pseudo interface waves) are indicated by dotted lines.
At the interface, head waves and body waves coincide and therefore, the head waves
are not indicated separately in the figures in this section. Superscripts (I and II)
refer to the different methods.
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5.5.1 Separate wavemodes

We consider the separate (non-interfering) wavemodes present in the full responses.
First, we consider the S-wave. It can be observed that, in the response of confi-
guration 1 (Figure 5.5), its waveform is fully captured by the contribution of the
qS-branch cut vI

3,S in method I (Eq. (5.17)). The ordinary saddle-point approxima-

tion vI,os
3,S (Eq. (5.29)), which is also shown, provides a good approximation of the

exact result. In Figure 5.5 we also show the contribution of the qF -branch cut in
method II (vII

3,F ). Obviously, it contributes to many waveforms including to that of
the S-wave.

Next, we consider the pR-wave. For configuration 1 (Figure 5.5), in both methods
there is a pR-pole present inside the contour. In method I, where it lies on sheet
3 (see Figure 5.2), its residue contribution vI

pR coincides with the entire waveform.
However, in method II where the pole lies on sheet 1 (see Figure 5.4), its residue
contribution vII

3,pR is significantly different in magnitude and waveform. The qF -

branch cut (vII
3,F ) also contributes to the waveform (Figure 5.5). Both contributions

are very strong but partially cancel each other; together they constitute the pR-
wave. In Figure 5.6 we display the locations of the pR-pole as encountered in the
two methods. Remarkably, there is a difference in both the real and imaginary parts.
This illustrates that the pR-pole can lie on different Riemann sheets simultaneously
at rather different locations (pr-values); in fact, we have here two different pR-poles.
For configuration 2 (Figure 5.7) the pR-waveform is again fully captured by the pR-
pole in method I (vI

3,pR), but in method II there is no pR-pole at all present inside
the contour and hence, the entire waveform is captured by the loop integrals.

So far, the numerical results confirm the findings in Section 5.4.3 that, in method
I, a separate pseudo interface wave is entirely captured by the residue contribution
of the corresponding pole in the far-field interface response. The reason is that the
loop integral along a branch cut only contributes to a separate body wave (provided
that are no singularities in the vicinity of the branch point). For method II, our
results show that a loop integral can contribute to the pR-wave, and several other
wavemodes, as it encounters various singularities along the integration path (see
Figure 5.4). We argue that the loop integrals even necessarily contribute to the pR-
wave because the encountered pR-pole, and its residue, differ from those in method I
where the pole residue contains the entire waveform. In some situations the pR-wave
is entirely captured by the loop integrals when there is no pR-pole present inside the
integration contour (on principal Riemann sheet).

Finally, we discuss the pSt-wave. For configuration 2 (Figure 5.7) there is a
clear difference between the two methods for the pSt-wave: the residue contribution
vI
3,pSt contains the entire waveform, but in method II the waveform is constituted

by the residue contribution vII
3,pSt and the loop integral along the qP2-branch cut

(vII
3,P2). For configuration 3 (Figure 5.8), however, in both methods the residue

contribution of the pSt-pole (vI
3,pSt and vII

3,pSt) contains the entire pSt-waveform in
the full response. In the former situation (configuration 2) the qP2-branch cut lies
close to the real axis (cf. Figure 5.4 for small Im(sP2)), and the pSt-pole lies in
between. For increasing frequency the qP2-branch cut comes so close to the real
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Figure 5.6: Bentheimer/light-fluid (configuration 1): location of pR-pole in methods I and II.
Units are [sm−1].

axis that the pSt-pole even crosses the branch cut and vanishes from the principal
Riemann sheet (see also Section 5.5.3) (van Dalen et al., 2010b). For f ≥ 310 kHz the
pSt-wave is totally captured by the loop integral. For f < 310 kHz it is fully captured
by the pole while the loop integral along the qP2-branch cut does not contribute, even
though the pole lies close to the integration path. When the integral is evaluated,
however, its contribution turns out to be zero. This is necessarily the case because,
contrary to the pR-pole (discussed above), the pSt-pole is exactly the same pole in
both methods (same Riemann sheet and location). The residue contributions are
identical. As the residue contribution in method I contains the entire waveform,
this should also be the case for method II and, consequently, the contribution of
any loop integral to the pSt-wave has to be equal to zero for f < 310 kHz. Now, it
is also clear why in the latter situation (configuration 3) the pSt-pole contains the
entire pSt-waveform even for method II: it is because the pole lies on sheet 1 over
the entire considered frequency range.

In conclusion, the observations in this section illustrate that in method I all
information that belongs to a separate pseudo interface wave is captured by the
corresponding pole. Hence, the phase velocity and attenuation can be simply com-
puted from the pole location. In method II, generally, these properties should not
be computed using pole locations but from isolated (separate) waveforms in the full
response. For the pSt-wave, however, in method II one can suffice with the pole lo-
cation for sufficiently low frequencies so that the pole lies on the principal Riemann
sheet.

In the case of a separate “true” interface wave (see Section 5.1), in both methods
the corresponding pole will contain the entire waveform because the pole lies to
the right of every branch point on sheet 1 (see Figures 5.2 and 5.4) at exactly the
same location (same pole) and, consequently, the branch cuts cannot contribute.
Therefore, in both methods the pole location provides all information to compute
velocity and attenuation.
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5.5.2 Interfering wavemodes

Next, we consider the interfering (simultaneously arriving) F - and pSt-waves in
the response for configuration 1 (Figure 5.9). There is strong interference, which
is caused by the small difference in propagation velocities. Mathematically, this
results in a small numerical distance (Eq. (5.37)) when the loop integral of the
qF -cut is approximated (method I), as announced in Section 5.4.2. In Figure 5.9 we
show the exact qF -branch cut contribution (vI

3,F ; Eq. (5.17)) and the corresponding

ordinary (vI,os

3,F ) and modified (vI,ms

3,F ) saddle-point approximations (Eqs. (5.29) and

(5.41), respectively); vI,ms

3,F is indistinguishable from vI
3,F and therefore not displayed

separately. It can be observed that the error in vI,os

3,F is very significant in waveform
and amplitude. In Figure 5.10 we compare both saddle-point approximations and
the full numerical solution of the branch-cut contribution ĝI

F,3 over the considered
frequency band. Obviously, the modified approximation is accurate except for low
frequencies where the far-field assumption is not valid (there, the fixed propagation
distance r is not much larger than the wavelength).

The important notion here is that the interfering F - and pSt-waves (Figure 5.9)
cannot be considered as separate arrivals. The combined waveform is one arrival
that is constituted by the pSt-pole residue and the qF -branch cut contribution. The
correction terms in Eq. (5.41) that modify the phase slowness of the qF -contribution
(compared to Eq. (5.29)) support this idea. Similarly, the pseudo-Rayleigh pole can
lie in the vicinity of the shear-wave branch point (Tsang, 1978), and constitute
together a combined shear-Rayleigh wave.
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In method II the combined F, pSt-wave is also constituted by the qF -branch
cut contribution (vII

3,F ) and the pSt-pole residue (vII
3,pSt); see Figure 5.9. The pole

residue is identical to that in method I (vI
3,pSt) because in both methods the pole is

the same (see Section 5.5.1). The loop integral along the branch cut, however, also
contributes to other waves (see Section 5.5.1).

For comparison, we consider again the pSt-wave in configuration 2 (Figure 5.7)
as discussed in Section V.A. The wave does not (strongly) interfere with the F -
wave and it can be verified that the associated numerical distance (in method I) is
larger. However, we observe that, even when both wavemodes are mathematically
related to individual parts of the Green’s function (in method I), it can be difficult
to separate the waves in time due to the small difference in propagation velocity
and dispersion effects. Recording the waves at very large distances, where the pSt-
wave has been (fully) separated from the F -wave, probably makes no sense because
the pSt-wave will completely be attenuated due to energy radiation and dissipation.
Therefore, one needs to use the entire response or at least the interfering wavemodes
for material characterization. Generally, the pR-pole and the pSt-pole found using
the square-root constraints of method I are related to separate arrivals when their
real parts are sufficiently different from those of the adjacent branch points.

5.5.3 Migration of poles

Finally, we discuss the reason of the migration of the pSt-pole from one Riemann
sheet to another (Albers, 2006; van Dalen et al., 2010b). Using method II we have
found that for configuration 2 the pole vanishes from the principal Riemann sheet
at a certain frequency (see Table 5.1). Because the pSt-pole found in method I is
identical (see Section 5.5.1), we can use this method to illustrate to which sheet the
pole migrates, and explain the physical origin of the phenomenon. We consider the
complex pr-plane (Figure 5.2) with the pSt-pole lying on sheet 1. The crucial point
is that the branch point of the slow compressional wave comes closer to the real axis
when frequency increases. In the limit of ω → ∞ it even lies on the real axis because
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the viscous mechanism is inactivated and the wave propagates without intrinsic
attenuation (similar to the sF -branch point). However, for increasing frequency
the pSt-pole does not migrate to the real axis because it continues radiating slow
compressional waves (see Figure 5.1). Hence, at some frequency the pSt-pole must
migrate from sheet 1 to sheet 2 as the (transition) line along which Im(qP2) = 0
migrates towards the real axis. Similarly, the pR-pole (found in method I) migrates
from sheet 3 to sheet 4 when frequency increases.

In fact, the migration of the poles has already been reported by Gubaidullin et al.
(2004), but they did not refer to it as such. They observed that the imaginary part
of the square root qα of a radiated body wave can have positive or negative sign,
depending on frequency. Our analysis now provides the physical reason for this.

5.6 Discussion

In the previous section we have shown the transient responses excited at the open-
pore interface between a fluid and a porous medium. We would like to emphasize,
however, that the general conclusions about the physical interpretation of poles
and branch cuts are equally valid for closed-pore conditions or for the boundary
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conditions with a finite surface flow impedance (Deresiewicz & Skalak, 1963).
Closely related to this, it can easily be seen that for a separate “true” interface

wave (see Section 5.1) (Feng & Johnson, 1983a,b), in both the methods (I and II)
the corresponding pole will contain the entire waveform. This is because the pole lies
to the right of every branch point on sheet 1 (see Figures 5.2 and 5.4) at exactly the
same location (same pole), where the branch cuts cannot contribute. Therefore, in
both methods the pole location provides all information to compute phase velocity
and attenuation of the true interface wave.

In our opinion, the general conclusions (from Section 5.5) are also not restricted
to the configuration of two half-spaces. They capture the situation of a layered rather
than a homogeneous porous half-space and the situation where the porous medium
includes a third phase (e.g., gas) too. A difficulty will be to find all pole locations
accurately. Further, as there will be more interface wavemodes (including higher-
order wavemodes), various arrivals can interfere, which makes physical interpretation
of arrivals difficult.

Furthermore, our analysis, which shows that a pseudo interface wave is uniquely
described by a pole (method I), could be used as a starting point for the analysis of
energy radiation. Gubaidullin et al. (2004) have already addressed this problem, but
a more comprehensive analysis is desirable and should include transient responses
to show when exactly the waves are radiative and when not.

Finally, we indicate how our work regarding pseudo interface waves at the fluid/
porous-medium interface connects to the literature on the pR-wave at the fluid/
elastic-solid interface (Roever et al., 1959; Phinney, 1961; van der Hijden, 1984).
Measures for the velocity of the entire pR-pulse can be derived based on a zero-
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crossing in the (exact) time-domain Green’s function or on the pulse maximum
(Roever et al., 1959; van der Hijden, 1984). These velocity measures differ from the
velocity of harmonic waves that can be derived from the location of the pR-pole
(Roever et al., 1959; Phinney, 1961). The latter value represents the phase velocity
and is the elastic counterpart of the phase velocity that we have found for the pR-pole
(method I). However, in our case this velocity is frequency-dependent and therefore,
it is probably impossible to find similar velocity measures for the entire pulse.

5.7 Conclusions

The pseudo-Rayleigh (pR) and pseudo-Stoneley (pSt) waves exist at the interface
of a fluid and a fluid-saturated porous medium. These pseudo interface waves are
related to the pR-pole and the pSt-pole, respectively, of the poroelastic Stoneley
dispersion equation. However, the residue of such a pole does not always capture
the entire waveform of the corresponding wave. Therefore, the question arises why
and under which conditions the phase velocity and attenuation of a pseudo interface
wave can be computed directly from the pole location.

To evaluate the physical interpretation of the poles we computed the point-force
response observed at the fluid/porous-medium interface. We compose the Green’s
functions using two different methods. In method I vertical branch cuts are used
for the involved square roots in the complex slowness plane, which implies that the
contributing poles are exactly found on Riemann sheets determined by the radiation
condition (see Feng & Johnson (1983a); Edelman & Wilmanski (2002); Gubaidullin
et al. (2004)). In method II hyperbolic branch cuts are used, which implies that
the contributing poles are found on the “principal” Riemann sheet (see Allard et al.
(2004); van Dalen et al. (2010b)).

Using saddle-point approximations we showed that, in the case of separated waves
in the far field, the loop integral along a branch cut only contributes to a single
body wave in method I. Consequently, the far-field waveform of a pseudo interface
wave is entirely captured by the residue contribution of the corresponding pole. For
method II, we illustrated that the loop integral along a branch cut can contribute to
several waves as it encounters various singularities along its integration path. The
loop integrals necessarily contribute to the pR-wave because the pR-pole lies on a
different Riemann sheet and at a different location compared to the pole in method
I, where it contains the entire waveform. The loop integrals do not contribute to
the pSt-wave as long as the pSt-pole lies on the principal Riemann sheet because
this pole is identical to that in method I, where it captures the entire waveform.
However, at a relatively high frequency the pole migrates to another Riemann sheet
due to the slow compressional wave becoming less attenuated; then, the pSt-wave is
fully captured by the loop integrals in method II.

As a consequence, the phase velocity and attenuation of a separate pseudo in-
terface wave can be simply computed from the location of the corresponding pole
in method I. In method II, generally, these properties should be extracted from
isolated waveforms in the full response as the pole does not necessarily provide all
information to compute velocity and attenuation.



Chapter 6

Impedance and ellipticity of
fluid/elastic-solid interface waves:
medium characterization and
simultaneous displacement -
pressure measurementsi

Abstract

The interface-wave impedance and ellipticity are wave attributes that interrelate the
full waveforms as observed in different components. For each of the fluid/elastic-
solid interface waves, i.e., the pseudo-Rayleigh (pR) and Stoneley (St) waves, the
impedance and ellipticity are found to have different functional dependencies on the
Young’s modulus and Poisson’s ratio. By combining the attributes in a cost function,
unique and stable estimates of these parameters can be obtained, particularly using
the St-wave. In a validation experiment, the impedance of the laser-excited pR-wave
is successfully extracted from a simultaneous measurement of the normal particle dis-
placement and the fluid pressure at a water/aluminum interface. The displacement
is measured using a laser Doppler vibrometer (LDV) and the pressure with a needle
hydrophone. Any LDV-measurement is perturbed by refractive-index changes along
the LDV-beam once acoustic waves interfere with the beam. Using a model that
accounts for these perturbations, we predict an impedance decrease of 26% with
respect to the plane-wave impedance of the pR-wave for the water/aluminum con-
figuration. Although this deviates from the experimentally extracted impedance,
there is excellent agreement between the observed and predicted pR-waveforms in
both the particle displacement and fluid pressure.

iThis chapter has been submitted for publication as a journal paper to J. Acoust. Soc. Am.

Note that minor changes have been introduced to make the text consistent with the other chapters
of this thesis.

93



94 6. Impedance and ellipticity of fluid/elastic-solid interface waves

6.1 Introduction

Interface waves that travel along the boundary of a medium carry information of
the acoustic parameters. The waves can be utilized to determine these parameters
in-situ. Applications exist in many different fields and scales, e.g., in non-destructive
testing of materials and structures, borehole logging in geotechnical and reservoir
engineering, surface seismics in geophysics, and seismology.

For medium characterization, often simply the propagation velocity and the at-
tenuation of an interface wave are employed (Glorieux et al., 2001; Rix, 2005). In
that case, a single-component measurement is sufficient, e.g., the detection of the
normal particle velocity induced by the waves. The full waveforms of an interface
wave as present in different components exhibit, however, particular properties that
are also worth exploiting in medium characterization. Typically, the well-known
Rayleigh wave at the vacuum/elastic-solid interface induces a retrograde elliptical
motion of the material particles at the interface (Viktorov, 1967). The ratio of the
principal axes of the corresponding ellipse is a function of Poisson’s ratio only (Ma-
lischewsky & Scherbaum, 2004). In order to extract the ellipticity, which is defined
as the spectral ratio of the tangential and normal particle displacements at the in-
terface (Munirova & Yanovskaya, 2001; Malischewsky & Scherbaum, 2004; Ferreira
& Woodhouse, 2007), one needs to record at least two components of the particle
displacement. For the “pseudo” Rayleigh (pR) wave and the Stoneley (St) wave that
exist at the fluid/elastic-solid interface (Viktorov, 1967; de Hoop & van der Hijden,
1983; van der Hijden, 1984; Glorieux et al., 2001), in addition to the ellipticity the
impedance can be distinguished, which can be defined as the spectral ratio of the
fluid pressure and the normal component of the particle velocity at the interface
(de Hoop, 1995). Obviously, for the extraction of the interface-wave impedance also
a two-component measurement is required.

Nishizawa et al. (1998) have measured two components of an ultrasonic wave field
at an interface using laser Doppler vibrometers. Two mutually orthogonal beams at
45◦ incidence, and a normally incident beam were applied to detect the tangential
and normal components, respectively. In general, ultrasonic laser interferometers
and vibrometers give reliable absolute values of particle displacement or velocity, and
have particular advantages, i.e., physical coupling to the sample is not required, they
have a broadband response and a sub-millimeter focal-point size (Scruby & Drain,
1990). Recently, the elliptical particle motion of the Rayleigh wave has successfully
been measured using an adaptive laser interferometer by Blum et al. (2010) by
applying only one laser beam and taking advantage of the surface roughness of the
sample that causes the light to scatter away from the incidence direction. Further, in
several publications it is shown that laser ultrasonics can be used to detect the pR-
and St-waves at fluid/elastic-solid interfaces (Desmet et al., 1996, 1997; Glorieux
et al., 2001).

Laser ultrasonics can also be applied to assess the acoustic pressure at the
fluid/elastic-solid interface by using a Doppler beam skimming over the surface,
normal to the direction of propagation of the wave field (Mattei & Adler, 2000; Han
et al., 2006). Then, using the photoelastic effect, the recorded signal can be conver-
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ted into acoustic pressure (Solodov et al., 2009). However, the involved width of the
acoustic wavefront is quite difficult to estimate, which makes the absolute values of
the pressure rather uncertain.

The goal of this chapter is to show the feasibility of characterizing an elastic solid
by simultaneously using the impedance and ellipticity of each of the ultrasonic pR-
and St-waves at the fluid/elastic-solid interface.

To this end, we first define the impedance and ellipticity theoretically and show
that they have different functional dependencies on the Young’s modulus and Pois-
son’s ratio, for each of the pR- and St-waves. By combining the impedance and el-
lipticity in a cost function, we take advantage of this difference and show that unique
estimates of Young’s modulus and Poisson’s ratio can be obtained simultaneously.
This illustrates the feasibility of medium characterization using the interface-wave
impedance and ellipticity.

Motivated by this result, we show the feasibility of the extraction of interface-
wave impedance from a simultaneous normal particle displacement and fluid pressure
measurement at ultrasonic frequencies. We restrict ourselves to the extraction of im-
pedance because the extraction of ellipticity has already been performed successfully.
We present an experimental set-up using a laser Doppler vibrometer (LDV) for the
particle displacement measurement and a needle hydrophone to record the absolute
values of the fluid pressure. For a water/aluminum configuration, we show how the
impedance of the pR-wave can be successfully extracted from the measurement.

Finally, we compare the experimentally observed waveforms with the modeled
predictions obtained using the Cagniard-de Hoop method (de Hoop & van der Hij-
den, 1983). In the model we include the interference of the acoustic waves in the
fluid and the LDV-beam that crosses the fluid. The laser light is perturbed by the
pressure-induced refractive-index changes. The integrated effect of the perturbations
along the beam gives an additional contribution in the displacement measurement,
which can be quite substantial (Allard et al., 2004). We quantify the effect on the
predicted waveforms and on the extracted pR-wave impedance, and discuss the ef-
fect of the involved measurement inaccuracies in the impedances and ellipticities on
the estimated values of Young’s modulus and Poisson’s ratio.

In Section 6.2 we define the impedance and ellipticity, and illustrate their be-
haviors. We show how the Young’s modulus and Poisson’s ratio can be estimated
in Section 6.3. Then, in Section 6.4 we give expressions for the acoustic response
and derive an expression for the additional contribution to the LDV-measurement.
We show the experimental results and the extracted impedance in Section 6.5, and
compare them with modeled predictions in Section 6.6. The effect of inaccuracies is
discussed in Section 6.7 and conclusions are given in Section 6.8.

6.2 Impedance and ellipticity

In this section we define expressions for the impedance and ellipticity associated
with the pR- and St-waves at the fluid/elastic-solid interface. We use the plane-wave
domain solutions of the governing equations that correspond to interface waves and
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Figure 6.1: a) Fluid/elastic-solid configuration, model for the acoustic response excited by a laser
(modeled as normal force F (x1, t)) and schematic response: compressional (P ) wave, shear (S)
wave, fluid (F ) wave, pseudo-Rayleigh (pR) wave and Stoneley (St) wave. Double-mode symbols
(e.g., SP ) indicate lateral waves (dotted lines): the first symbol denotes the wavemode of the
specific arrival; the second denotes the one from which it is radiated. The position of the Doppler
beam with general orientation (angle γ) is determined by the local ζ-axis. b) Schematic overview of
the experimental set-up used for the simultaneous detection of interface waves at water/aluminum
interface.

illustrate the dependencies of the impedance and ellipticity on the Young’s modulus
and Poisson’s ratio for each of the wavemodes.

Let us define the physical model and the corresponding solution. We consider a
fluid half-space on top of an elastic solid (see Figure 6.1a; the response and the LDV-
beam are discussed later). Both media are homogeneous and isotropic. The behavior
of the elastic solid (x3 > 0) is governed by the elastic wave equation (Achenbach,
1973)

ρ∂2
t u = (λ + 2µ)∇∇ · u − µ∇×∇× u, (6.1)

where ∂t = ∂/∂t, λ and µ are the Lamé constants, ρ denotes the material density, and
u(x, t) = (u1, u3)

T is the particle displacement vector. We assume a two-dimensional
wave motion because this is sufficient to define the impedances and ellipticities of the
interface waves, and because the experimentally-observed wave motion approximates
two-dimensional wave propagation (see Section 6.4). The behavior of the fluid (x3 <
0) is governed by the acoustic wave equation (Wapenaar & Berkhout, 1989)

ρF ∂2
t pF = KF∇2pF , (6.2)

where KF and ρF denote the bulk modulus and density of the fluid, respectively,
and pF denotes the fluid pressure.

The boundary conditions at the fluid/elastic-solid interface comprise the conti-
nuity of the normal component of particle displacement, continuity of the normal
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component of the traction, and the vanishing of the tangential component of the trac-
tion in the solid. Incorporating a force acting normally on the boundary F (x1, t)
[Nm2] to excite waves (Figure 6.1a), in the limit of x3 → 0 the following conditions
should be satisfied

u3 − UF,3 = 0, (6.3)

τ33 + pF = −F (x1, t), (6.4)

τ13 = 0. (6.5)

Here, UF,3 is the vertical component of the fluid particle displacement UF (x, t) and
τij is the stress tensor in the solid.

We apply the Fourier transform over time t and horizontal coordinate x1 accor-
ding to

˜̄u(k, x3, ω) =

ˆ ∞

−∞

ˆ ∞

−∞

u(x, t) exp (−i(ωt − kx1)) dtdx1, (6.6)

where ω denotes the angular frequency, k is the horizontal angular wavenumber
and i is the imaginary unit. It is assumed that u(x, t) is real-valued and hence,
it is sufficient to consider ω ≥ 0. The transforms are also applied to the other
field quantities. In this section we use k = ωp, where p is the horizontal slowness,
because this enables us to show that the characteristic determinant (see further) and
the impedance and ellipticity derived from that, are independent of frequency. The
combined bar/tilde refers to the (k, x3, ω)-domain, and a single tilde refers to the
(p, x3, ω)-domain.

In the (p, x3, ω)-domain, the wave fields in the lower and upper media are descri-
bed by physically relevant solutions of the acoustic and elastic wave equations (Eqs.
(6.1) and (6.2)), respectively, according to (Achenbach, 1973; de Hoop & van der
Hijden, 1983)

ũ1 =
p

iω
ÃP F̃ exp(−iωqP x3) +

qS

iω
ÃSF̃ exp(−iωqSx3), (6.7)

ũ3 =
qP

iω
ÃP F̃ exp(−iωqP x3) −

p

iω
ÃSF̃ exp(−iωqSx3), (6.8)

for x3 > 0, and

p̃F = ÃF F̃ exp(+iωqF x3), (6.9)

for x3 < 0. Here qα = (s2
α − p2)

1

2 , with α = {P, F, S}, are the vertical slownesses
having Im(qα) ≤ 0 for real p, and sα are the corresponding body-wave slownesses
being the reciprocal of the wave velocities (cα = 1/sα). The complex-valued ampli-
tude factors Ãα are determined by the boundary conditions. Using the momentum
equation of the fluid and the stress-strain relation of the elastic solid (Achenbach,
1973; Wapenaar & Berkhout, 1989), the following set of equations for the Ãα is
obtained





qP qF /ρF −p
µ(s2

S − 2p2) −1 −2µpqS

2pqP 0 s2
S − 2p2









ÃP

ÃF

ÃS



 =





0
1
0



 . (6.10)
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The solution can be easily found and reads

ÃP = +
s2

S

ρ

s2
S − 2p2

∆St

, (6.11)

ÃF = −ρF

ρ

qP

qF

s4
S

∆St

, (6.12)

ÃS = −s2
S

ρ

2pqP

∆St

, (6.13)

where ∆St is the characteristic determinant of the matrix in Eq. (6.10),

∆St = ∆R + s4
S

qP

qF

ρF

ρ
, (6.14)

which is the “Stoneley-wave denominator” of the fluid/elastic-solid interface (de Hoop
& van der Hijden, 1983) (or “Scholte-wave denominator”). It contains the “Rayleigh-
wave denominator”,

∆R = (s2
S − 2p2)2 + 4p2qSqP , (6.15)

which is associated with the stress-free vacuum/solid interface (Achenbach, 1973).
The signs of the roots qP , qF and qS are very important to obtain the proper

solutions (zeroes) for the interface wave slownesses in Eq. (6.14). The St-wave is
a “true” interface wave that only propagates along the interface and decays with
distance from the interface. The zero of the Stoneley denominator (Eq. (6.14))
related to the St-wave (p = sSt), which forms the St-pole in the response (Eqs.
(6.7)-(6.9)), is found on the real p-axis at sSt > sF and lies on the Riemann sheet
where Im(qα) ≤ 0 (principal Riemann sheet) (de Hoop & van der Hijden, 1983).
The pseudo-Rayleigh (pR) wave is a “pseudo” interface wave that radiates a fluid
wavefront as it propagates along the interface (see Figure 6.1a: FpR-front), and
decays with distance from the interface into the solid. The zero of Eq. (6.14)
related to the pR-wave (p = spR) is complex-valued with Im(spR) < 0 and lies
on the Riemann sheet where Im(qF ) > 0 and Im(qP,S) ≤ 0 (Viktorov, 1967; Feng
& Johnson, 1983a; van Dalen et al., 2011). The velocity and attenuation of the
interface waves are fully characterized by these slownesses, i.e., by their real and
imaginary parts, and, at the interface, their far-field waveforms are fully captured
by the residue contributions of the corresponding poles once the response (Eqs.
(6.7)-(6.9)) is transformed to the (x, t)-domain (van Dalen et al., 2011).

Consequently, we can define the impedance and ellipticity in (p, x3, ω)-domain by
the spectral ratio of two components for x3 = 0, evaluated at the specific slownesses
sβ , where β = {pR, St}. Evaluation of the full waveforms, which often implies the
evaluation of integrals numerically, is not required. Still, the particular information
present in the multi-component waveforms of an interface wave is captured by these
wave attributes and can be easily exploited (see Section 6.3). We define the impe-
dance Iβ as the spectral ratio of the fluid pressure and the vertical particle velocity
at the interface, which expresses the resistance to the particle motion induced by the
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particular wave (Pierce, 2007), and the ellipticity Eβ as the spectral ratio of the ho-
rizontal and the vertical particle displacements (so-called H/V -ratio) (Malischewsky
& Scherbaum, 2004). The result can be written as

Iβ =
p̃F

iωũ3

∣

∣

∣

∣

p=sβ ,x3=0

= −ρF

qF

∣

∣

∣

∣

p=sβ

, (6.16)

Eβ =
ũ1

ũ3

∣

∣

∣

∣

p=sβ ,x3=0

=
p

qP

s2
S − 2p2 − 2qP qS

s2
S

∣

∣

∣

∣

p=sβ

. (6.17)

We note that both the impedance and ellipticity are independent of frequency as
the model is non-dispersive in nature.

We have now defined the impedances and ellipticities in the (p, x3, ω)-domain
(Eqs. (6.16) and 6.17)). Their expressions are independent of the properties of
the force as it is divided out. Therefore, the quantities are solely attributes of the
waves. In the (x, ω)-domain the expressions also correctly describe the ratios of the
components as the source is still divided out. Hence, they can be referred to as the
plane-wave or far-field impedances and ellipticities, respectively (de Hoop, 1995).

In the limiting case of a free surface (vacuum/elastic solid), only the Rayleigh
wave can exist, which is a true interface wave. The corresponding zero of Eq. (6.15)
lies on the Riemann sheet where Im(qP,S) ≤ 0. The ellipticity ER follows from Eq.
(6.17) for ∆R(p = sR) = 0 and reads (Stein & Wysession, 2003; Malischewsky &
Scherbaum, 2004; Borcherdt, 2009)

ER = − 2pqS

s2
S − 2p2

∣

∣

∣

∣

p=sR,x3=0

= −2i
(1 − s2

S/s2
R)

1

2

2 − s2
S/s2

R

, (6.18)
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Table 6.1: Values of material parameters of aluminum (Young’s modulus E, Poisson’s ratio ν,
density ρ) and water (bulk modulus KF , density ρF ). Further, the values of propagation velocities
for body wavemodes cα = 1/sα, α = {P, F, S}, interface wavemodes cβ = 1/Re(sβ), β = {pR, St},
and impedances Iβ and ellipticities Eβ of the interface wavemodes (Eqs. (6.16) and (6.17)) are
included.

E [GPa] 70
ν 0.33
ρ [kgm−3] 2700
KF [GPa] 2.22
ρF [kgm−3] 1000
cP [ms−1] 6198
cS [ms−1] 3122
cpR [ms−1] 2923
cF [ms−1] 1490
cSt [ms−1] 1487
IpR [kgm−2s−1] −1.731 · 106 + 1.817 · 104i
EpR +7.188 · 10−2 − 0.6364i
ISt [kgm−2s−1] −2.174 · 107i
ESt −0.2994i

where sR is the slowness of the Rayleigh wave with sR > sS . The Rayleigh-wave
ellipticity is a function of Poisson’s ratio only (Malischewsky & Scherbaum, 2004).
From Eq. (6.18) it can be observed that ũ1 and ũ3 have exactly π

2 phase difference,
i.e., ∠(ER) = −π

2 , which indicates retrograde elliptical particle motion at the in-
terface associated with the Rayleigh wave. The corresponding ellipse has principal
axes that are oriented vertically and horizontally, respectively (Borcherdt, 2009).

In Figure 6.2 we depict the magnitudes of the impedances and ellipticities of
the pR- and St-waves (fluid/elastic solid) as a function of Young’s modulus E and
Poisson’s ratio ν. The values of the non-varying material parameters are taken
according to a water/aluminum configuration (see Table 6.1). The magnitudes of
IpR and ISt are mainly dependent on E (variation mainly in E-direction). The
magnitudes of EpR and ESt are, however, mainly dependent on ν, similar to the
ellipticity of the “true” Rayleigh wave. The phases of IpR and EpR vary only slightly
over the (E, ν)-domain (and are therefore not displayed): ∠(IpR) ∼= π, which implies
that the pressure and the vertical particle velocity induced by the pR-wave are out
of phase; ∠(EpR) ∼= −π

2 , implying that the particle motion is retrograde elliptical as
for the true Rayleigh wave, but the principal axes of the ellipse are slightly rotated
as the phase difference between ũ1 and ũ3 is not exactly π

2 due to spR being complex-
valued (Borcherdt, 2009). The phases of the attributes of the St-wave are constant,
i.e., ∠(ISt) = −π

2 and ∠(ESt) = −π
2 . The latter equality shows that the St-wave

also induces a retrograde elliptical particle motion.
In this section, we have only shown the behaviors of the impedances and ellipti-

cities in the (E, ν)-domain. The attributes are less sensitive to the material density
ρ of the solid and hence these dependencies are not illustrated here.
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Figure 6.3: Separate cost functions for impedances Iβ and ellipticities Eβ (β = {pR, St}), and
the joint cost functions in which these attributes are combined for each of the wavemodes.

6.3 Medium characterization

From Figure 6.2 it can be observed that for each of the pR- and St-waves, the im-
pedance Iβ and ellipticity Eβ have quite different behaviors in the (E, ν)-domain.
Obviously, both wave attributes carry the information which is present in the cor-
responding waveforms of the specific interface wave in a different way. This is an
important observation that can be utilized when the impedance and ellipticity are
simultaneously exploited to estimate the solid parameters E and ν. In this section
we show a way to accomplish this.

We assume that the impedance and ellipticity of a single interface wavemode (pR
or St) can be extracted from a multi-component measurement (u1, u3 and pF ; see
Section 6.5). Then, taking advantage of the different behaviors in the (E, ν)-domain,
we combine both quantities in a cost function according to (Ghose & Slob, 2006;
van Dalen et al., 2010a)

CI,E
β (E, ν) =

|Iβ(E, ν) − Iβ,d|
2|Iβ,d|

+
|Eβ(E, ν) − Eβ,d|

2|Eβ,d|
. (6.19)

Here, Iβ(E, ν) and Eβ(E, ν) are model predictions of the impedance and ellipticity
(see Figure 6.2), and Iβ,d and Eβ,d are the corresponding experimentally observed
values (subscript “d” denotes “data”). The cost function is to be minimized to
obtain estimates for E and ν. The two terms in the right-hand side of Eq. (6.19)
are the cost functions related to the impedance and ellipticity separately (CI

β and

CE
β ), respectively (scaled by a factor 2).

In order to illustrate the behaviors of the cost functions in the (E, ν)-domain, we
have performed a synthetic test for the water/aluminum configuration (Table 6.1).
In this table also the theoretical values of the impedances and ellipticities computed
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using Eqs. (6.16) and (6.17) are given. Taking these values as representative of the
experimental observation Iβ,d and Eβ,d, respectively, for both wavemodes we have
computed the cost function (Eq. (6.19)) for varying values of E and ν. As the
extraction of the phase of the impedance from a combined u3,pF -measurement can
be difficult (see Section 6.5), we have only used the magnitudes of the impedances
and ellipticities in the cost functions.

For each of the wavemodes the result is illustrated in Figure 6.3, where the
separate cost functions and the joint cost function are shown. As the separate cost
functions do not provide a unique minimum, it is clear that many combinations of E
and ν can explain the observed impedance or ellipticity. However, each of the joint
cost functions clearly shows a unique minimum, precisely at the values of E and ν
of the aluminum (Table 6.1). Unique estimates of E and ν can thus be obtained
when the impedance and ellipticity of one of the wavemodes are estimated together.
The strength of this approach is that, by combining the wave attributes in the cost
function, we simultaneously exploit the information in the waveforms of an interface
wave as present in both the impedance and ellipticity.

In this numerical test, we have assumed that the values of the impedances and
ellipticities can be extracted from a measurement with 100% accuracy. The effect of
measurement inaccuracies on the estimated values of E and ν is discussed in Section
6.7.

6.4 Experiment-specific modeling

Obviously, the above estimation of E and ν involves the extraction of impedance
and ellipticity of the interface wavemodes from a multi-component measurement
(u1, u3 and pF ). Recently, an elegant way to detect the ellipticity using laser ul-
trasonics has been reported, showing promising results for the Rayleigh wave at the
air/aluminum interface (Blum et al., 2010). Similar results can be expected for the
fluid/elastic-solid interface waves and therefore, in this chapter we restrict ourselves
to the extraction of impedance from a simultaneous u3,pF -measurement.

In the experiment we have excited the waves at the fluid/elastic-solid interface
using a pulsed laser source that is focused onto a narrow strip on the interface (see
Figure 6.1b). It approximates an infinitely long line source and creates a thermal dif-
fusion field and acoustic wavefronts that can be considered plane near the excitation
site (Scruby & Drain, 1990; Desmet et al., 1996, 1997). Depending on the energy
density deposited by the laser pulse, the fields are either generated by the thermo–
elastic expansion or by ablation forces (Scruby & Drain, 1990; Arias & Achenbach,
2003).

The displacement measurement has been performed using a laser Doppler vibro-
meter (LDV), where the LDV-beam crosses the (optically transparent) fluid and is
focused at the interface. The pressure measurement has been carried out using a
needle hydrophone placed very close to the surface under a small angle with the
surface, and just next to the focal point of the LDV-beam (see Figure 6.1b). Details
about the sample, instrumentation and acquisition in the experiment are given in
Section 6.5.
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To investigate the feasibility of the extraction of the interface-wave impedances
from a combined (u3, pF )-measurement, we now first give the expressions for the
acoustic response as excited by the laser source using elastic wave theory (Figure
6.1a; the specific source and the various wavemodes are explained below). We also
model the effect of the interference of the LDV-beam and the acoustic waves present
in the fluid (see Figure 6.1a). It is well-known that the optical refractive index of
the fluid changes due to pressure variations induced by the acoustic waves (Allard
et al., 2004). Once the LDV-beam and the acoustic waves interfere, the laser light
is perturbed. The integrated effect of all perturbations along the LDV-beam gives
an (undesired) additional contribution to the surface displacement measurement.

6.4.1 Acoustic response

As we are only interested in the wave motion, we neglect the optical penetration and
the thermal diffusion effects induced by the laser source. In this simplified model,
laser excitation in the thermoelastic regime can be modeled by a shear traction dipole
loading at the surface (Arias & Achenbach, 2003). Excitation in the ablation regime
can be modeled by a vertical force (Scruby & Drain, 1990). Since we are dealing with
excitation in the ablation regime, we use a line force F (x1, t) = S(t)δ(x1) (see Eq.
(6.4)) to model the two-dimensional acoustic response (see Figure 6.1a). Here, δ(...)
is the Dirac delta function and S(t) is the time signature of the source representing
the energy deposition, which we approximate by the four-point optimum Blackman
window function. This is a pulse constituted by the sum of four different cosines
functions multiplied with a box function (de Hoop & van der Hijden, 1983), and
its shape is very similar to the Gaussian function that is often employed (Scruby &
Drain, 1990).

The two-dimensional acoustic response, which is the solution of Eqs. (6.1)-(6.5),
can be derived using the Cagniard-de Hoop method (de Hoop & van der Hijden, 1983;
Chapman & Orcutt, 1985). The result is given in Appendix A. The exact Green’s
functions are known analytically in the time domain and the physical response in u3

and pF is found according to (see Eq. (6.31))

u3(x, t) = S(t) ∗ Gu3
(x, t), (6.20)

pF (x, t) = ∂tS(t) ∗ GpF
(x, t), (6.21)

when 0 < t < ∞. Here, the asterisk denotes convolution over time, Gu3
and GpF

are the Green’s functions of the vertical particle displacement in the solid and of the
fluid pressure, respectively (Eqs. (6.32) and (6.33), and (6.41)).

The response is schematically illustrated in Figure 6.1a. It consists of body
waves, interface waves and lateral waves. The body waves are indicated by the solid
lines: the compressional (P ), shear (S) and fluid compressional (F ) waves. The
interface waves are indicated by short wavelets: the pseudo-Rayleigh (pR) wave and
the Stoneley (St) wave. Lateral waves, i.e., either head waves (SP , FP and FS),
or the FpR-wavefront radiated by the pR-wave, are indicated by dotted lines and
addressed by double mode symbols (see caption Figure 6.1a).
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6.4.2 Effect of optical refractive-index changes integrated
along laser beam

Now, we derive a theoretical prediction of the effect of pressure-induced refractive-
index changes in the fluid on the LDV-measurement. We show how the additional
contribution in the measurement is related to the acoustic pressure in the fluid for
arbitrary orientation γ of the LDV-beam (see Figure 6.1a).

The location of the LDV-beam is determined by the local coordinate ζ along the
center of the beam (see Figure 6.1a). We denote the (unperturbed) refractive index
of the fluid as nF,0. Using the photoelastic effect, we can relate a local change (along
the LDV-beam) in refractive index ∆nF to a change in local pressure pF as (Scruby
& Drain, 1990)

∆nF (ζ, t) =
∂nF

∂pF

pF (ζ, t). (6.22)

Now, the locally perturbed wavenumber of the laser light can be written as

kF (ζ, t) = kF,0

(

1 +
1

nF,0

∂nF

∂pF

pF (ζ, t)

)

. (6.23)

Here, kF,0 = nF,0Ω/v is the unperturbed wavenumber, where Ω denotes the angular
frequency of the light and v the light wave speed in vacuum. The resulting phase
acquired by the optical signal is (Solodov et al., 2009)

θ = Ωt − 2

ˆ L(t)

0

kF (ζ, t) dζ (6.24)

= Ωt − 2kF,0 (L0 + us,γ(t) + uf,γ(t)) , (6.25)

where

uf,γ(t) =
1

nF,0

∂nF

∂pF

ˆ L(t)

0

pF (ζ, t) dζ, (6.26)

and the length of the LDV-beam is given as L(t) = L0 + us,γ(t), where L0 is the
unperturbed length in the fluid and us,γ(t) is the length variation due to the surface
displacement (subscript s) at the focal point; uf,γ(t) is discussed below. In Eq.
(6.25) it is taken into account that the beam picks up all changes twice.

In the unperturbed situation, the acquired (reference) phase of the optical signal
is

θref = Ωt − 2kF,0L0. (6.27)

Subtraction of the phase related to the perturbed situation and the reference phase
now yields

θ − θref = −2kF,0 (us,γ(t) + uf,γ(t)) . (6.28)
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From this equation the total LDV-detected signal,

uγ(t) = us,γ(t) + uf,γ(t), (6.29)

can be readily computed. It consists of two parts: the surface displacement us,γ(t) in
the direction γ, which is the desired contribution, and the integral over the refractive-
index changes along the LDV-beam uf,γ(t) (Eq. (6.26)), which can be interpreted
as the additional (virtual) displacement that is measured by the LDV in the fluid
(the subscript f refers to the fluid). We address uγ as the “apparent LDV-detected
displacement”.

For the line force excitation at the interface, which is representative of the laser
excitation (see Section 6.4.1), the acoustic pressure field in the fluid is known (Eq.
(6.21)). By substitution of this into Eq. (6.26) we obtain the following expression
for the additional displacement

uf,γ(t) =
1

nF,0

∂nF

∂pF

(

ˆ L0

0

GpF
(ζ, t) dζ

)

∗ ∂tS(t). (6.30)

Due to the use of the Cagniard-de Hoop scheme for the acoustic response, the in-
tegrand is known analytically (see Eqs. (6.41)-(6.45)). Hence, the integral can be
readily evaluated. We note that the upper bound is taken as L0 because the (linear)
pressure field pF is only defined for the unperturbed geometry of the system. We
use Eq. (6.30) later to quantify the additional contribution to the apparent displace-
ment waveforms, the effect on the extracted impedance (Section 6.6) and the angle
dependence of the additional contribution (Section 6.7).

6.5 Experimental results and impedance
extraction

In Section 6.4 we have briefly introduced the experimental set-up that we have used
to perform a simultaneous (u3, pF )-measurement (see also Figure 6.1b). Here, we
give the details about the sample, instrumentation and acquisition, and we show the
results that we have obtained accordingly.

The specific configuration that we have used is aluminum in water (see Table
6.1 for properties). The aluminum sample with thickness of 50 mm has been put
into an optically transparent water tank made of glass. The water layer thickness is
also 50 mm. The excitation laser pulses (produced with a repetition rate of 10 Hz),
generated with a broad band Nd:YAG laser, have a duration of 8 ns. A cylindrical
lens has been used to focus the beam to a strip of approximately 20 µm wide and
15 mm long.

The laser Doppler vibrometer (PolyTecr) that we have used for the displace-
ment measurement contains a high-frequency displacement decoder DD-300 having
50 kHz-20 MHz bandwidth. The smoothness and reflectivity of the aluminum sam-
ple are sufficiently high to ensure good quality of the LDV-signal. The pressure
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Figure 6.4: a) Observed spatiotemporal evolution of normal particle displacement u3 (dB re. 1
m) and fluid pressure pF (dB re. 1 Pa) using a laser Doppler vibrometer and a needle hydrophone,
respectively, for a scanning source over a distance of x̄ = x1 − x0 = 30 mm (the smallest source-
receiver distance x0 = 13 mm). The P -wave is indicated by (1), the pR-wave by (2) and the
interfering F - and St-wave arrivals by (3). b) Corresponding frequency-wavenumber domain spectra
|˜̄u3(f, k)| and | ˜̄pF (f, k)|. The dominating joint F - and St-wave spectra have been eliminated as
much as possible by tapering the time-domain signals to clearly identify the pR-wave spectra. The
P -wave spectra are too weak to be distinguished.

measurement has been carried out using a needle hydrophone HNP-0400 with a
preamplifier AH-2010 (Ondar), calibrated over 250 kHz-20 MHz.

During the experiment we have moved the excitation beam over a distance of 30
mm in x1-direction with steps of ∆x1 = 200 µm using a scanning stage, keeping the
position of the receivers fixed. The smallest source-receiver distance is 13 mm. For
every location of the source, we have averaged the signals 256 times to improve the
signal/noise ratio.

In Figure 6.4a the experimentally observed u3 and pF are shown. We have
applied a low-pass filter at 3.5 MHz to all data to eliminate high-frequency noise.
The pF -data have been deconvolved by the frequency-dependent sensitivity of the
needle hydrophone/amplifier combination. The u3-data have been divided by the
refractive index of water, nF,0 = 1.333 (Scruby & Drain, 1990), because the laser
Doppler vibrometer is calibrated for measurements in air. In Figure 6.4a we clearly
observe the P -wave arrival (appr. 6160 ms−1), the pR-wave arrival (appr. 2960
ms−1) and an interference of the F - and St-wave arrivals (appr. 1500 ms−1); the
latter arrivals cannot be distinguished from each other due to the small difference
in propagation velocity (see Table 6.1). The observed propagation velocities closely
match the predicted values (see Table 6.1). In addition, some (undesired) reflections
from the sides and the sample’s back can be distinguished (weak curved arrivals).
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Figure 6.5: Observed normal particle displacement u3 and fluid pressure pF using a laser Doppler
vibrometer and a needle hydrophone, respectively, for source-receiver distance of 28 mm. Only the
time window of the P - and pR-waves is shown. The data have been filtered using a low-pass filter
at f = 3.5 MHz.

In Figure 6.5 we show the typical waveforms of the P - and pR-wave in u3 and
pF (in this case x1 = 28 mm). We have time-windowed the response around the P -
and pR-waves because the St-wave cannot be distinguished from the less interesting
F -wave; therefore, we only focus on the extraction of the pR-wave impedance.

We have computed the (f, k)-domain spectra of u3 and pF using a standard
two-dimensional Fourier transform algorithm (cf. Eq. (6.6)). Before applying the
transforms, the data have been tapered in time to eliminate the interfering F - and
St-waves and all subsequent arrivals, using a quarter period of a cosine squared (50
kHz) as taper function. The resulting spectra ˜̄u3(f, k) and ˜̄pF (f, k) are shown in
Figure 6.4b. The combined F, St-spectra have not completely been filtered, and the
P -wave is too weak to be identified. The pR-spectra can be clearly distinguished and
it is confirmed that the wave propagates without dispersion. The frequency content
of the pR-wave in ˜̄u3 is more narrow than that in ˜̄pF . This is reasonable since the
fluid pressure is proportional to the divergence of the displacement, which involves
multiplication by ω in the (k, ω, x3)-domain; the more narrow frequency content in
u3 can also be observed from the waveforms in Figure 6.5.

Now, the impedance I(f, k) can be computed from the measured response by
division of the two spectra and by iω. Its magnitude is shown in Figure 6.6. This
figure shows the advantage of using a scan of measurements as the pR-wave impe-
dance can be easily identified in the (f, k)-domain. In principle, however, a single
source-receiver combination would suffice to extract the impedance in the (x, f)-
domain. The impedance |I(f, k)| is relatively constant over all (f, k)-combinations
that belong to the pR-wave, particularly between 0.25-1.5 MHz. However, it can
be verified that it deviates from the magnitude of the theoretical plane-wave impe-
dance, |IpR| = 1.731 · 106 kgm−2s−1 (see Eq. (6.16) and Table 6.1). The reason is
that, apart from measurement inaccuracies, in the displacement measurement also
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Figure 6.6: Magnitude of extracted impedance I(f, k) as obtained by division of (the experimen-
tally observed) ˜̄pF (f, k) and ˜̄u3(f, k) (see Figure 6.4b), and by iω.

the effect of refractive-index changes along the LDV-beam is included, resulting in a
modified measurement (see Eq. (6.29)). In the next section we quantify this effect.

The phase of the pR-wave impedance cannot be successfully retrieved from
∠I(f, k) due to the small but unknown difference between the locations of the two
detection spots, i.e., the focal point of the LDV-beam and the tip of the needle hy-
drophone (it can be verified that the waveforms in pF in Figures 6.4a and 6.5 arrive
slightly later than in u3). This results in an additional unknown phase difference.

In conclusion, we can say that the extraction of the pR-wave impedance from
a simultaneous (u3, pF )-measurement at the fluid/elastic-solid interface is feasible.
Obviously, the extraction of the St-wave impedance is also feasible when this wave
can be detected as a separate arrival, i.e., for configurations where its velocity is
sufficiently different from the F -wave velocity or far away from the generation region,
where the F -wave has vanished in the interface response.

6.6 Experimental observations versus model
predictions

In this section we compare the experimentally observed waveforms using the laser
Doppler vibrometer and the needle hydrophone with modeled equivalents. We quan-
tify the effect of the pressure-induced refractive-index changes integrated along the
LDV-beam on the predicted waveforms, and illustrate the influence on the impe-
dance extracted from the (u3, pF )-measurement.

In Figure 6.5 we have shown the typical P - and pR-waveforms observed in u3

and pF . Now, the corresponding modeled waveforms obtained using the acoustic
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Figure 6.7: Modeled normal particle displacement u3 and fluid pressure pF for source-receiver
distance of 28 mm excited by a line force with Smax = 2.176 · 10−3 Nm−1 and center frequency
f0 = 1 MHz. A prediction of the apparent LDV-detected displacement for γ = 90◦, which includes
the effect of refractive-index changes in the trespassed fluid, is also shown (see Eq. (6.29): u3 is
equivalent to us,90).

response at the interface only (Eqs. (6.20) and (6.21)) are shown in Figure 6.7
(the additional contribution of uf,90 is referred to below). For the involved fitting
parameters we have chosen Smax = 2.176 ·10−3 Nm−1 (force magnitude) and f0 = 1
MHz (center frequency of the Blackman pulse; Section 6.4.1), where we have taken
the pR-waveform in pF as reference (cf. Figures 6.5 and 6.7). For these choices, the
experimentally observed waveforms are very similar to those predicted theoretically.
The measured P -wave in pF is a bit weaker compared to the predicted result, and
in u3 the observed pR-wave magnitude is slightly larger, especially in the tail of the
waveform. However, generally the magnitudes are consistent in the two components
u3 and pF simultaneously, as well as the magnitudes of the P - and pR-waves relative
to each other in the separate components. In both cases, this is independent of the
fitting parameter values. The ripples that are present around 2 µs and immediately
after the pR-wave in Figure 6.5 have no modeled equivalents. We consider them
as noise. Further, by isolating different contributions in the acoustic response (Eqs.
(6.20) and (6.21)) (van Dalen et al., 2011), it can be shown that there is a weakly-
excited S-wave present at the onset of the (modeled) pR-waveforms.

It can be verified that the smallest wavelength present in the observed responses
(Figures 6.4a-6.5) is much larger than the width of the focal strip of the excitation
laser beam. This validates the line source assumption in the model for the acoustic
response which we have used to compute the theoretical waveforms.

Now, we address the effect of pressure-induced refractive-index changes on the
apparent LDV-detected displacement (Eq. (6.29)). We have evaluated the integral
over ζ in Eq. (6.30) numerically using an adaptive 8-point Legendre-Gauss algorithm
(Abramowitz & Stegun, 1972; Davis & Rabinowitz, 1975) that is able to handle the
integrable singularities present in the integrand (i.e., branch points; see Appendix
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Figure 6.8: Predicted magnitude of modified impedance Imod(f, k) as obtained by division of the
modeled ˜̄pF (f, k) (Eq. (6.21)) and ˜̄u90(f, k) (Eq. (6.29): including the effect of refractive-index
changes), and by iω.

A). Using ∂nF /∂pF = 1.444 ·10−10 Pa−1 for water at 25◦C (Scruby & Drain, 1990),
a prediction of the additional contribution uf,90 can be computed. The result is
depicted in Figure 6.7 (for γ = 90◦): the (modeled) additional contributions to the
waveforms are in phase with and add up to the waveforms in the surface displace-
ment so that the modeled total waveforms are (still) very similar to those observed
experimentally (Figure 6.5). The influence of uf,90 is significant, particularly for the
pR-wave.

To quantify the implication of the modified displacement signal on the extrac-
ted pR-wave impedance, we have calculated the responses for a scanning source to
mimic the experiment using Eqs. (6.21) and (6.29), by choosing the same force
magnitude and center frequency as discussed above. A prediction of the magnitude
of the modified impedance Imod(f, k) = ˜̄pF /(iω ˜̄u90) is shown in Figure 6.8. To ex-
tract the involved modified pR-wave impedance |IpR,mod| from |Imod(f, k)|, we can
take the average over all (f, k)-combinations pertaining to the pR-wave since the
wave is non-dispersive. Taking 0.25-1.5 MHz, over which the value of |Imod(f, k)|
is relatively constant, the result is |IpR,mod| = 0.74 · |IpR|. Obviously, the extracted
result is smaller than the (theoretical) plane-wave impedance of the pR-wave. This
is consistent with the observation in Figure 6.7, where the (prediction of the) appa-
rent LDV-detected displacement is larger than the surface displacement, resulting
in larger spectral values in the denominator of Imod(f, k).

Comparing the (modeled) modified impedance (Figure 6.8) with the impedance
as obtained from the measurement (Figure 6.6), and taking their averaged values
over the mentioned frequency range, we find that the pR-wave impedance extracted
from the measured data |IpR,d| = 1.51 · |IpR,mod| (where the subscript d refers to
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data; cf. Eq. (6.19)). This difference between the experiment and the model is quite
significant and is, naturally, related to the larger pR-wave magnitude in the predic-
ted apparent LDV-detected displacement compared to that in the experimentally
observed displacement (cf. Figures 6.7 and 6.5). Based on the measurement inac-
curacies in the equipment, the estimated uncertainty in the measurement is roughly
±35%, which is smaller than the actual difference. We believe that the larger devi-
ation can be due to some calibration error, particularly because the experimentally
observed waveforms are almost identical to the modeled equivalents. Another possi-
ble cause is a misalignment of the two detection spots (focal point of LDV and tip of
needle hydrophone) so that the two measurements are performed at different points
on the wavefront. Once the amplitude is not exactly constant over the wavefront (in
x2-direction; see Figure 6.1a), this introduces magnitude inconsistencies.

6.7 Discussion

The additional contribution to the apparent LDV-detected displacement does not
only modify the extracted impedance, but also the ellipticity once this would be
extracted from a measurement. Hence, for different orientations of the LDV-beam
(different values of γ), we show the modeled additional contribution uf,γ to the
apparent displacement in Figure 6.9. The magnitude of uf,γ varies a little over 0 <
γ < 90◦, but the contribution to the pR-wave rises for γ > 90◦ and becomes slightly
broader. This is because γ approaches the angle under which the FpR-wavefront is
radiated by the pR-wave (149.4◦; cf. Figure 6.1a), which means that the LDV-beam
and the FpR-wavefront coincide more and more, and the length over which the beam
and the acoustic waves interfere increases. The additional contribution to the P -wave
would also increase once γ approaches the angle of radiation of the FP -head wave
(166.1◦). Obviously, the effect on the ellipticity can be very significant when it is
extracted from a measurement where a LDV-beam is used with γ > 90◦ (Nishizawa
et al., 1998), or when light scattered in many directions (including γ > 90◦) is
collected (Blum et al., 2010).

To quantify the effect of the involved measurement uncertainties on the estimated
values of E and ν using impedance and ellipticity simultaneously in the joint cost
function (Section 6.3), we can apply perturbations to the extracted values |Iβ,d| and
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|Eβ,d|. Assuming that the experimental equipment is recalibrated and/or properly
aligned to ensure higher measurement accuracies, and that the effect of the refractive-
index changes can be corrected for, we take perturbations of ±5% for both the
extracted impedance and the ellipticity. We find that the estimated values of E and
ν can deviate quite significantly from the true values for the pR-wave, i.e., 49% and
20% at most. Using the St-wave, however, much more stable estimates of E and ν
are obtained: at most 4% deviation for E and 5% deviation for ν. This difference
between the pR- and St-waves is due to the much stronger sensitivity of the St-wave
impedance and ellipticity to E and ν compared to those of the pR-wave (see Figure
6.2), which results in a sharper (see Figure 6.3) and, obviously, in a more stable
minimum in the joint cost function of the St-wave.

6.8 Conclusions

The impedance and ellipticity of an interface wave are attributes of the wave that
interrelate the full waveforms as observed in the different components. The attribu-
tes are defined as the spectral ratios of the fluid pressure at the interface and the
normal particle velocity, and of the tangential and normal particle displacements,
respectively.

In this chapter we showed that, for each of the pseudo-Rayleigh (pR) and Stone-
ley (St) waves at the fluid/elastic-solid interface, the impedance and ellipticity have
quite different functional dependencies on the Young’s modulus and Poisson’s ratio.
By combining the wave attributes in a joint cost function, unique estimates of these
parameters can be obtained. Measurement inaccuracies in the impedance and ellip-
ticity can strongly influence the estimated values of Young’s modulus and Poisson’s
ratio when using the pR-wave. Using the St-wave, however, very stable estimates
were obtained. This illustrates the feasibility of medium characterization using the
interface-wave impedance and ellipticity, particularly when exploited simultaneously.

Subsequently, we showed that the impedance of the ultrasonic pR-wave at the wa-
ter/aluminum interface can be successfully extracted in the frequency-wavenumber
domain. This was accomplished with laser excitation and a simultaneous normal
particle displacement and fluid pressure measurement using a laser Doppler vibro-
meter (LDV) and a needle hydrophone, respectively. The St-wave impedance could
not be extracted in the water/aluminum configuration due to strong interference
with the fluid compressional wave. The extraction of ellipticity has recently been
performed by others (Blum et al., 2010).

The extracted impedance does not only include the fluid pressure and normal
particle displacement at the interface (which would give the plane-wave impedance),
but also an additional contribution to the displacement measurement due to the
interference of the LDV-beam, which crosses the fluid, and the acoustic waves in the
fluid. The acoustic waves perturb the laser light by modifying the optical refrac-
tive index due to pressure variations. By integrating the refractive-index changes
along the LDV-beam using the modeled fluid pressure, we predicted that the effect
decreases the extracted impedance by some 26% compared to the theoretical plane-
wave impedance. The actual impedance extracted from the experiment is, however,
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51% larger than this model prediction. As there is excellent agreement between the
shape of the observed and predicted pR-waveforms in both the displacement and
fluid pressure, we believe that this difference is due to a calibration error in the me-
asurement equipment or due to a misalignment in the detection points of the LDV
and the needle hydrophone.

6.9 Appendix A: Cagniard-de Hoop solution

Here, we give the analytical expressions of the Green’s functions associated with the
vertical particle displacement and fluid pressure in the fluid/elastic-solid configura-
tion excited by a line force applied normal to the interface, i.e., F (x1, t) = S(t)δ(x1)
(Eqs. (6.8) and (6.9)), where S(t) is the time signature. The functions are obtai-
ned using the Cagniard-de Hoop method (de Hoop & van der Hijden, 1983). We
have followed the derivation of Chapman & Orcutt (1985) because in there the same
transforms are used as we apply (Eq. (6.6) with k = ωp). As the Cagniard-de Hoop
method is well-established we only give the outcomes. We assume that cS > cF and
take x3 positive downward (see Figure 6.1a).

The response u3 in the solid (x3 ≥ 0) due to the line force is found by convolution
of the associated Green’s functions Gu3

(x, τ) and the time signature of the force
according to

u3(x, t) =

ˆ t

0

S(t − τ)Gu3
(x, τ) dτ , (6.31)

when 0 < t < ∞ and where τ is an auxilary time variable. The expressions that
constitute Gu3

(x, τ) = Gu3,P
(x, τ) + Gu3,S

(x, τ) read

Gu3,P
=

{

0, −∞ < τ < TP ,
1
π
Im(qP ÃP ∂τp)

∣

∣

∣

p=ξP

, TP < τ < ∞,
(6.32)

Gu3,S
=















0, −∞ < τ < TSP ,
1
π
Im(−pÃS)∂τp

∣

∣

∣

p=ξSP

, TSP < τ < TS ,

1
π
Im(−pÃS∂τp)

∣

∣

∣

p=ξS

, TS < τ < ∞,

(6.33)

where, using R2 = x2
1 + x2

3,

ξP =
x1

R2
τ + i

x3

R2
(τ2 − T 2

P )
1

2 . (6.34)

ξSP =
x1

R2
τ − x3

R2
(T 2

S − τ2)
1

2 . (6.35)

ξS =
x1

R2
τ + i

x3

R2
(τ2 − T 2

S)
1

2 . (6.36)

TP = RsP , (6.37)

TSP = x1sS + x3(s
2
S − s2

P )
1

2 , (6.38)

TS = RsS . (6.39)
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Here, ξP denotes the Cagniard path associated with the P -wave running into the
complex slowness (p) plane; ξSP and ξS denote the Cagniard paths associated with
the SP -head wave (see Figure 6.1a) and the S-wave, respectively, running along
the real p-axis and running into the complex p-plane. TP is the arrival time of the
P -wave, TSP that of SP -head wave, and TS that of the S-wave. The SP -wave is
only present if

x1

R
>

sP

sS

. (6.40)

In Eqs. (6.32) and (6.33) ÃP and ÃS are the amplitude factors of the (p, x3, ω)-
domain solution in the solid; see Eqs. (6.7) and (6.8). The involved square roots

(vertical slownesses) qα = (s2
α−p2)

1

2 are defined such that Im(qα) ≤ 0, α = {P, F, S},
along the Cagniard paths. The amplitude factors are singular at the body-wave
slownesses (branch points) sα and at the Stoneley pole (sSt), which is located at
the real p-axis and only crossed by the Cagniard paths ξP (τ > TP ) and ξS(τ > TS)
when x3 = 0 (the St-wave arrives later than all other waves) (de Hoop & van der
Hijden, 1983). The pseudo-Rayleigh pole lies on another Riemann sheet close to the
ξP (x3 = 0)- and ξS(x3 = 0)-paths (see also Section 6.2) (van der Hijden, 1984).

The response in the fluid pressure (x3 ≤ 0) due to the line force is found by
convolution of the associated Green’s function GpF

(x, τ) and the time derivative of
the force (de Hoop & van der Hijden, 1983). The expression of GpF

(x, τ) reads

GpF
=















0, −∞ < τ < TFP ,
1
π
Im
(

ÃF

)

∂τp
∣

∣

∣

p=ξF P

, TFP < τ < TF ,

1
π
Im
(

ÃF ∂τp
)∣

∣

∣

p=ξF

, TF < τ < ∞,

(6.41)

where

ξFP =
x1

R2
τ − |x3|

R2
(T 2

F − τ2)
1

2 , (6.42)

ξF =
x1

R2
τ + i

|x3|
R2

(τ2 − T 2
F )

1

2 , (6.43)

TFP = x1sP + |x3|(s2
F − s2

P )
1

2 , (6.44)

TF = RsF . (6.45)

Here, ξFP and ξF denote the Cagniard paths associated with the FP -head wave and
the F -body wave, respectively, running along the real p-axis and running into the
complex p-plane. TFP is the arrival time of the FP -head wave (see Figure 6.1a),
and TF that of the F -wave. The FP -wave is only present if

x1

R
>

sP

sF

. (6.46)

In Eq. (6.41) ÃF is the amplitude factor of the (p, x3, ω)-domain solution of in the
fluid (x3 ≤ 0); see Eq. (6.9).

The expressions of the Green’s functions are known analytically throughout the
entire (x, t)-domain; they are used in the main text of the chapter.



Chapter 7

Impedance and ellipticity of
fluid/porous-medium interface
waves: medium characterization
and simultaneous displacement -
pressure measurements

7.1 Introduction

In the previous chapter we have argued that the impedance and ellipticity of an
interface wave capture information about the medium in the multi-component wa-
veforms. For a water/aluminum configuration, we have shown that the impedance
of the ultrasonic pseudo-Rayleigh (pR) wave can be extracted successfully from the
measurement of the normal component of the particle velocity and the fluid pressure
at the interface, using a laser Doppler vibrometer (LDV) and a needle hydrophone,
respectively. The Stoneley (St) wave could not be detected as a separate wavemode
due to strong interference with the fluid body wave having nearly the same velocity.
Further, we have illustrated that the Young’s modulus and the Poisson’s ratio can
be accurately determined when the impedance and ellipticity of these fluid/elastic-
solid interface waves are used simultaneously by combining them in a cost function,
particularly for the St-wave.

The counterparts of the pR- and St-waves at the fluid/porous-medium interface
waves are the pseudo-Rayleigh (pR) and pseudo-Stoneley (pSt) waves, respectively,
as discussed in detail in Chapters 4 and 5. Only a few authors have reported on
the experimental detection of these waves at the interface between water and a
water-saturated porous medium at ultrasonic frequencies. Mayes et al. (1986) have
experimentally validated the existence of the interface waves using a periodically
corrugated sample surface. They have detected the pR- and pSt-waves, and, in
addition, the slower true interface wave which only exists for certain parameters
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combinations at the open-pore interface (Feng & Johnson, 1983a). Allard et al.
(2004) have observed the pSt-wave at a flat interface using laser excitation in the
thermoelastic regime (see Section 6.4) and a laser Doppler vibrometer (LDV) for
the detection; in their configuration the pR-wave is absent due to the shear-wave
velocity being smaller than fluid-wave velocity. Other publications in this field in-
volve measurements at air/porous-medium interfaces (Nagy, 1992; Adler & Nagy,
1994; Allard et al., 2002, 2003). In all cases the waves have been detected using a
single-component measurement only (e.g., particle displacement u3 or fluid pressure
pF ).

Concerning the medium characterization using the fluid/porous-medium inter-
face waves, there is a focus on permeability estimation using the attenuation of
pSt-waves along a borehole (e.g., Burns, 1990; Tang & Cheng, 1996). Obviously, to
use the attenuation for parameter estimation, only a single-component measurement
is required. To our knowledge, Tang & Cheng (2004) are the only ones who employ
the full waveform of the pSt-wave to estimate permeability and make use of the
travel time and the frequency content. However, they use the information present
in a single component only (pF ).

Hence, the extension of the framework introduced in Chapter 6 to the fluid/
porous-medium pR- and pSt-waves is challenging, both in view of the two–component
(u3, pF ) experimental detection and the extraction of the impedances, and in view
of the estimation of medium parameters using three-component (u1, u3, pF ) full wa-
veforms. Therefore, in this chapter we aim to investigate the feasibility of using the
ultrasonic fluid/porous-medium interface waves for the estimation of medium para-
meters, by simultaneously exploiting the corresponding impedances and ellipticities.

First, we define the impedances and ellipticities, and show their behaviors as a
function of Young’s modulus and Poisson’s ratio, being parameters related to the
porous frame, and as a function of permeability and porosity, which are parameters
that govern the attenuation mechanism associated with the relative fluid-solid mo-
tion. For comparison, we include the behaviors of the wave attenuations because
they are commonly exploited in medium characterization (see above). Then, using
the joint cost functions as introduced in Section 6.3, we show that unique estima-
tes of the four parameters can be obtained by combining either the impedance and
ellipticity or the impedance and attenuation of the interface wavemodes. Next, we
investigate the feasibility of the extraction of the interface-wave impedances from a
simultaneous particle displacement and fluid pressure measurement using the same
experimental set-up as described in Section 6.4. In this case, we use water-saturated
QF20, which is an artificial porous material (Johnson et al., 1994). Finally, we
compare the experimental results with the theoretical predictions using the com-
putational model developed in Chapters 4 and 5.

7.2 Impedance and ellipticity

In this section we derive expressions for the impedance and ellipticity associated
with the pR- and pSt-waves at the fluid/porous-medium interface. Similar to the
derivation for the fluid/elastic-solid interface waves, we use the plane-wave domain
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Figure 7.1: a) Fluid/porous-medium configuration, model for the acoustic response (laser modeled
as normal line force with signature S(t)) and schematic response: fast (P1) and slow (P2) com-
pressional waves, shear (S) wave, fluid (F ) wave, pseudo-Rayleigh (pR) wave and pseudo-Stoneley
(pSt) wave. The double-mode symbols (e.g., SP1) indicate lateral waves: the first symbol denotes
the wavemode of the specific arrival; the second denotes that from which it is radiated. Here, the
F -wave velocity is assumed higher than the P2-wave velocity. For clarity, we have omitted some
arrivals: FS, P2P1, P2S, P2pR and P2F . b) Schematic overview of the experimental set-up used
for the simultaneous detection of waves at water/water-saturated QF20 interface.

solutions of the governing equations that correspond to interface waves (Section
6.2). We illustrate the behavior of the impedance and ellipticity of the pR- and pSt-
waves as a function of Young’s modulus and Poisson’s ratio, and of permeability and
porosity.

We consider the configuration displayed in Figure 7.1a, which is the same as
discussed in Section 4.2: a fluid half-space on top of a fluid-saturated porous me-
dium. We do not repeat the involved parameters, the governing equations and their
solution but we just refer to Chapter 4. The only modification is that we consider
wave propagation in only two dimensions here ((x1, x3)-plane): the field variables
in the governing equations are functions of x1 and x3 only, and u(x, t) = (u1, u3)

T

(displacement of the solid), U(x, t) = (U1, U3)
T (displacement of the fluid). Further,

all derivatives in the x2-direction vanish, which implies that pr = p1 and p2 = 0 in
the (pr, ω, x3)-domain solutions, and that the SH-mode cannot exist (Section 4.3
and Appendix A of Chapter 4).

The source that has been included in Figure 7.1a is assumed to be a line source
(Dirac distribution in the x1-direction) in view of the experiment-specific modeling
(Section 7.4). However, for the current derivation of impedance and ellipticity this
is not strictly required (cf. Section 6.2).

The wave slownesses of the pR- and pSt-waves are zeroes of the poroelastic
Stoneley dispersion equation ∆St(p1, ω) = 0 (see Eq. (4.35)). As shown in Chapter
5, the zero related to the pSt-wave (p1 = spSt) is complex-valued, with Re(spSt) > sF

and Im(spSt) < 0, and lies either on the sgn(Im(qP1, qP2, qF , qS)) = (− + −−)
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Riemann sheet or on the (−−−−) sheet, depending on frequency. The zero related
to the pR-wave (p1 = spR) is also complex-valued, with Re(spR) > Re(sS) and
Im(spR) < 0, and lies either on the (− + +−) sheet or on the (−− +−) sheet, and
depends on frequency as well; the wave exists only when Re(sS) < sF . The velocity
and attenuation of the interface waves are fully characterized by these slownesses,
i.e., by their real and imaginary parts. At the interface, their far-field waveforms
are fully captured by the residue contributions of the corresponding poles once the
response (Eqs. (5.13) and (5.14)) is transformed to the (x, t)-domain (see Chapter
5: method I).

Using the definitions of the impedances and the ellipticities of the interface wa-
vemodes as given in Section 6.2, we find (β = {pR, pSt})

Iβ =
p̃F

iωũ3

∣

∣

∣

∣

p=sβ ,x3=0

= −ρF

s2
S

×

(s2
S − 2p2)(qP1φP1s

2
P2HP2 − qP2φP2s

2
P1HP1) + 2p2∆2φS

φ2ρF ρ̂−1
22 qP1qP2∆1 + qF ∆2

∣

∣

∣

∣

p=sβ

, (7.1)

Eβ =
ũ1

ũ3

∣

∣

∣

∣

p=sβ ,x3=0

=
p

s2
S

(s2
S − 2p2)∆4 − 2qS∆5

∆5 − 2Gp2(qP1 − qP2)

∣

∣

∣

∣

p=sβ

, (7.2)

where ∆4 = s2
P2KP2 − s2

P1KP1 and ∆5 = qP1s
2
P2KP2 − qP2s

2
P1KP1. Iβ and Eβ can

be addressed as the far-field or plane-wave impedances and ellipticities, respectively
(de Hoop, 1995). The impedance relates the fluid phase to the solid phase and it is
therefore a “coupling impedance” (see Section 3.3). In the remainder of this chapter
we simply refer to it as the (plane-wave) impedance.

Now, we illustrate the behavior of the impedances and ellipticities as a function
of the Young’s modulus E and Poisson’s ratio ν of the solid frame (Figure 7.2),
which are purely elastic parameters (Achenbach, 1973), and as a function of the
permeability k0 and porosity φ (Figures 7.3 and 7.4) being parameters of the porous
frame that govern the attenuation mechanism (see Eq. (2.64)); we note that φ
also influences the elastic and inertial mechanisms. We choose the values of the
other (non-varying) material parameters in agreement with those of a water/water-
saturated QF20 configuration (Johnson et al., 1994); see Table 7.1. The properties
of the water filling the upper half-space are KF = Kf and ρF = ρf .

The existence of the wavemodes has been verified for all parameter combinations
shown in the Figures 7.2-7.4 using the Principle of the Argument (Fuchs et al., 1964;
van Dalen et al., 2010b). We only show the magnitudes of the impedances and
ellipticities as their phases hardly vary: ∠IpR

∼= 3, ∠EpR
∼= −1.3, ∠IpSt

∼= −1.5,
∠EpSt

∼= −1.6. These values show that the particle motions of the pR- and pSt-waves
at the interface are retrograde elliptical (with the principal axes of the ellipse slightly
rotated; cf. Section 6.2), and that the fluid pressure and the normal component
of the particle velocity are approximately out-of-phase for the pR-wave and have
approximately π/2 phase difference for the pSt-wave. This is comparable to the pR-
and St-waves at the fluid/elastic-solid interface (see Section 6.2). Apart from the
magnitudes of the impedances and ellipticities, we incorporate the attenuations in
Figures 7.2-7.4. This enables us to compare the behaviors of the impedances and
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Figure 7.2: Magnitudes of impedances [kgm−2s−1], ellipticities [-] and attenuations [-] of the pR-
and pSt-waves in the (E, ν)-domain for f = 820 Hz.

ellipticities with that of the attenuation of the pSt-wave, which is known to have
particularly strong k0-sensitivity (Rosenbaum, 1974; Winkler et al., 1989; Burns,
1990). Here, we express the attenuations by the inverse quality factors, Q−1

β =
2 · |Im(sβ)/Re(sβ)|.

The ranges of E and ν in Figure 7.2 are restricted by two constraints. The first
constraint is the physical requirement for the relation between porosity and the solid
and grain bulk moduli (Eq. (2.24)),

φ ≤ 1 − Kb

Ks

= 1 − 1

3(1 − 2ν)

E

Ks

. (7.3)

This constraint is not fulfilled for all values of ν once values of E > 25 GPa would
be incorporated (which can be verified by substituting the values of φ ands Ks from
Table 7.1). The second constraint is that the pSt-wave does not exist for all values
of ν when E < 15 GPa. Therefore, only the domain 15 ≤ E ≤ 25 GPa is considered
for the pSt-wave. For reasons of comparison, we depict the behavior of the pR-wave
over the same ranges.

In Figure 7.2 it can be observed that |IpR|, Q−1
pR, |IpSt| and Q−1

pSt are most sensitive
to the parameters, i.e., their magnitudes vary significantly in the (E, ν)-domain.
We only show the (E, ν)-domain behaviors for the frequency f = 820 Hz, which is
approximately equal to the rollover frequency fc. It can be verified that the behaviors
are almost identical for all other frequencies. The patterns are similar and the specific
values differ only slightly, which implies that the dependencies of the attributes on E
and ν are hardly affected by the attenuation mechanism. Remarkably, the behavior
in the (E, ν)-domain is independent of the behavior in the f -domain. This is because
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Figure 7.3: Magnitudes of impedance [kgm−2s−1], ellipticity [-] and attenuation [-] of the pSt-
wave in the (k0, φ)-domain at f = 1 Hz ≪ fc for all (k0, φ).

the Young’s modulus and Poisson’s ratio are solely related to the solid frame. Their
influence on the relative fluid-solid motion is independent of frequency.

We have computed the behaviors of the impedances, ellipticities and attenuations
as a function of permeability (10−13 ≤ k0 ≤ 10−9 m2) and porosity (0.1 ≤ φ ≤ 0.445)
for three very different frequencies, i.e., f = 1 Hz ≪ fc for all (k0, φ)-combinations,
f = 5000 Hz ∼= fc for k0

∼= 5 · 10−12 m2 and φ = 0.3, and f = 2 MHz ≫ fc for all
(k0, φ)-combinations. Now, there is significant frequency-dependence: the behavior
in the (k0, φ)-domain is not independent of the behavior in the f -domain. This
can be understood because variations in k0 and φ imply variations of f/fc (cf. Eq.
(2.77)). It can be verified that a change in f/fc works out differently in the behavior
in the special cases of f/fc ≪ 1, f/fc

∼= 1 and f/fc ≫ 1. Further, recalling that
an interface wavemode consists of a combination of body wavemodes (Achenbach,
1973), we can argue that especially the implicitly present highly f/fc-dependent
P2-mode is responsible for the differences (see, e.g., Eq. (3.38)).

We illustrate the behaviors in the (k0, φ)-domain only in those situations where
the wavemodes have a relatively strong k0-sensitivity: we show the attributes of the
pSt-wave for f ≪ fc (Figure 7.3) and those of both the pR- and pSt-waves for f ∼= fc

(Figure 7.4). In these situations the wavemodes are influenced by the attenuation
mechanism. For f ≫ fc the wavemodes are dominated by inertia effects and the
k0-sensitivity is weak.

From Figures 7.3 and 7.4 it can be observed that the sensitivity of Q−1
pSt is very

strong in both the k0- and φ-directions. The strong k0-dependence confirms findings
in the literature and is because Q−1

pSt is governed by the radiated P2-mode to a large
extent (P2pSt-front; see Figure 7.1a). The impedances |IpR| and |IpSt| also have a
relatively strong k0-sensitivity for f ∼= fc (Figure 7.4). They are also influenced by
the relative fluid-solid motion, which can be understood as the impedances capture
the resistance of the fluid phase to a motion of the solid phase (see Section 3.3). In
the other situations of f ≪ fc and f ≫ fc the impedances are dominated by the
inertial and elastic mechanisms. For each of the wavemodes the ellipticity has only
weak k0-sensitivity because it interrelates the waveforms in two solid displacement
components only.

Further, the fact that a variation of k0 or φ implies a variation of f/fc can be



7.3. Porous-medium characterization 121

 

 

0.1

0.2

0.3

0.4

3.5

4

4.5

5

x 10
6

 

 

0.1

0.2

0.3

0.4

0.44

0.45

0.46

0.47

E| | | |I
pSt

E
pSt

10-11 10-910-13

k
0
 [m2] k

0
 [m2]

10-11 10-910-13

φ

 

 

0.1

0.2

0.3

0.4

0.02

0.04

0.06

0.08

Q
pSt

-1

10-11 10-910-13

k
0
 [m2]

 

 

0.1

0.2

0.3

0.4

1.5

2

2.5

x 10
6

 

 

0.1

0.2

0.3

0.4

0.7

0.72

0.74

E| | | |I
pR

E
pR

10-11 10-910-13 10-11 10-910-13

φ

 

 

0.1

0.2

0.3

0.4

0.12

0.14

0.16

0.18

Q
pR

-1

10-11 10-910-13

Figure 7.4: Magnitudes of impedances [kgm−2s−1], ellipticities [-] and attenuations [-] of the pR-
and pSt-waves in the (k0, φ)-domain at f = 5000 Hz ∼= fc for k0

∼= 5 · 10−12 m2 and φ = 0.3.

clearly observed in the Figure 7.4 (f ∼= fc): the transition behavior around f/fc = 1
takes place when k0

∼= 5 · 10−12 m2.

7.3 Porous-medium characterization

In the previous section we have discussed the behaviors of the impedances, elliptici-
ties and attenuations in the (E, ν)- and (k0, φ)-domains. Their combinations can be
used to uniquely estimate the medium parameters (cf. Section 6.3). In this section
we show the combinations of the impedance and ellipticity, and of the impedance
and attenuation, for each of the wavemodes. These are the most promising combi-
nations: the most sensitive to parameter variations and the most different behaviors
in the parameter domains of the combined attributes with respect to each other.

Like in Section 6.3, we assume that the impedances and ellipticities of the wave-
modes can be extracted from a three-component measurement (see also Section 7.5);
for the attenuations only a single-component measurement is required. We combine
the attributes in a joint cost function similar to Ghose & Slob (2006)

CI,E
β (E, ν) =

(

∑

f |Iβ(E, ν, f) − Iβ,d(f)|γ
2
∑

f |Iβ,d|γ

+

∑

f |Eβ(E, ν, f) − Eβ,d(f)|γ

2
∑

f |Eβ,d|γ

)
1

γ

. (7.4)
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Here, Iβ(E, ν, f) and Eβ(E, ν, f) are model predictions of the impedance and el-
lipticity (see Figure 7.2), and Iβ,d and Eβ,d are the corresponding experimentally
observed values (subscript “d” denotes “data”). The cost function involves summa-
tion over frequency f , which we incorporate in the case that the behavior of the
cost function is expected to benefit from the frequency-dependence (see below). We
use γ = 2, but in case of noisy data with a zero mean γ = 1 is preferred. The
cost function can also combine the impedance and attenuation (CI,Q

β ) rather than

the impedance and ellipticity (CI,E
β ). Then, Q−1

β denotes the model prediction and

Q−1
β,d the attenuation as extracted from the measurement. Further, in the case of the

estimation of k0 and φ, obviously these parameters appear in the argument instead
of E and ν.

In order to illustrate the behavior of the cost function in the (E, ν)- and (k0, φ)-
domains, we have performed a synthetic test for the water/water-saturated QF20
configuration (the non-varying material parameters are given in Table 7.1). The
corresponding theoretical impedance and ellipticity of the pR- and pSt-waves are
computed using Eqs. (7.1) and (7.2), respectively. Taking those as representative of
the experimental observation Iβ,d and Eβ,d, respectively, we have computed the cost
function (Eq. (7.4)) for varying values of E and ν, and for varying values k0 and φ.
In both cases we incorporate only one frequency component. For the estimation of
k0 and φ we take f = 100 kHz, which is at the lower end of the detected frequency
range in our experiment (Section 7.5). We do not incorporate higher frequencies as
they have weaker k0-dependence and, thus, would reduce the k0-sensitivity of the
cost functions. For the estimation of E and ν we use f = 820 Hz, corresponding
with the (frequency-independent) results in Figure 7.2, because the pSt-wave does
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Table 7.1: Material parameters as used for water-saturated QF20 porous material. We have
measured the magnitudes of ρs, φ and k0 ourselves; the other values are taken from (Johnson
et al., 1994). The values of E and ν have been calculated from those of Kb and G.

Solid (frame) density ρs [kgm−3] 2628
Fluid density ρf [kgm−3] 1000
Tortuosity α∞ 1.89
Porosity φ 0.397
Permeability k0 [µm2] 40.8
Dynamic fluid viscosity η [Pa·s] 0.001
Pore shape factor M 1.75
Shear modulus G [GPa] 7.63
Bulk modulus Kb [GPa] 9.47
Grain bulk modulus Ks [GPa] 36.6
Fluid bulk modulus Kf [GPa] 2.22
Young’s modulus E [GPa] 18.04
Poisson’s ratio ν 0.182

not always exist in the chosen (E, ν)-domain for f = 100 kHz.
The behavior of the cost functions in both domains is illustrated in Figures 7.5

and 7.6, respectively. For each of the wavemodes, both the cost functions CI,E
β and

CI,Q
β give unique minima in the (E, ν)-domain, exactly at the E- and ν-values of

the QF20 (Table 7.1). This results from the different behaviors of the attributes
in this domain (see Section 7.2), which can be clearly recognized from the shape of
the valley in the joint cost functions. By simultaneously exploiting the attributes,
unique estimates of E and ν can thus be obtained, similar to the findings in Section
6.3.

In the (k0, φ)-domain, however, the joint cost functions as shown in Figure 7.6 do
not have clear unique minima. The k0-sensitivities are very weak. This is because the
behavior of the combined attributes is not sufficiently different from each other and
all of them have a weak k0-sensitivity when f ≫ fc (see Section 7.2). Consequently,
in this case the combination of different attributes does not improve the behavior of
the cost functions and only accurate estimates of φ can be obtained.

When, however, frequencies around f ∼= fc are taken for the estimation of k0

and φ, the cost functions do benefit from the combination of individual attributes.
Taking three very distinct frequencies, f = 82, 820 and 8200 Hz, the cost functions
as shown in Figure 7.7 all have clear unique minima, precisely at the k0- and φ-
values of the QF20 (Table 7.1). Remarkably, the combination of the impedance
and ellipticity gives a unique minimum for each of the wavemodes, even though the
ellipticities have relatively weak k0-sensitivities (Figures 7.3 and 7.4). Obviously, the
cost functions benefit from the frequency-dependence of the constituents (see Section
7.2). Generally speaking, the combination of wave attributes is advantageous for
the estimation of medium parameters whenever the behaviors of the individual ones
differ enough from each other. Incorporating frequency-dependence can be crucial
in this respect.
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Figure 7.6: Joint cost functions in the (k0, φ)-domain of impedance and ellipticity, and of impe-
dance and attenuation, for each of the interface wavemodes at f = 100 kHz.

In the above numerical tests, we have assumed that the values of the impedances
and ellipticities can be extracted from a measurement with 100% accuracy. To check
the influence of measurement inaccuracies on the estimated values of E and ν, we
have applied perturbations to Iβ,d, Eβ,d and Q−1

β,d of ±5%. It appears that the
pSt-wave yields the most stable result: at most 4% deviation in the E-value and
34% in the ν-value when impedance and ellipticity are combined, and at most 5%
deviation in the E-value and 27% in the ν-value when impedance and attenaution are
combined. This is similar to the fluid/elastic-solid interface waves, where the St-wave
yields the most stable result when perturbations are applied to the experimentally
extracted attributes (Section 6.7). In both configurations, the estimated E- and
ν-values obtained using the pR-wave are rather unstable.

To check the influence of measurement inaccuracies on the estimated values of k0

and φ we have applied random perturbations between ±10% to each of the frequency
components, separately to their real and imaginary parts. Overall, again the pSt-
wave appears to yield the most stable estimates of the parameter values. In the
case that we take the frequencies around f ∼= fc (Figure 7.7), we find at most 16%

deviation in k0 and 3% deviation in φ for CI,Q
pSt , which is very accurate. Using CI,E

pSt ,
we find 38% deviation in k0 and 12% deviation in φ, which is still quite good because
one is usually interested in the order of magnitude of the permeability. Obviously,
CI,Q

pSt yields the most stable result, which can be expected as the minimum of this
cost function is the sharpest (Figure 7.7).

For the sake of completeness, we have checked the behavior of the cost function
that combines IpSt and Q−1

pSt for the situation that f ≪ fc, which might be promising
due to the different behaviors in the (k0, φ)-domain (cf. Figure 7.3). It appears that
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Figure 7.7: Joint cost functions in the (k0, φ)-domain of impedance and ellipticity, and of im-
pedance and attenuation, for each of the interface wavemodes incorporating frequencies around
f = fc, i.e., f = 82, 820 and 8200 Hz.

this combination is not successful: the separate cost function of the Q−1
pSt gives the

best results. Even though it has no unique minimum, it yields the most stable
estimates of k0 and φ because Q−1

pSt has much stronger sensitivity to the parameters
than IpSt. This confirms the results in the literature that only employ the pSt-
wave attenuation for the estimation of k0 for f ≪ fc (Burns, 1990; Tang & Cheng,
1996). In this case, a single-component measurement is sufficient for the parameter
estimation.

7.4 Experiment-specific modeling

For the above estimation of medium parameters, obviously, the extraction of im-
pedance and ellipticity of the interface wavemodes from a three-component mea-
surement is required. Similar to the measurements in Chapter 6, here we restrict
ourselves to the extraction of impedance from a simultaneous (u3, pF )-measurement
because an elegant way to extract the ellipticity from a laser ultrasonic measurement
has recently been reported (Blum et al., 2010). We do not discuss the extraction of
the frequency-dependent attenuation of the interface wavemodes, which can be done
relatively straightforward from a single-component measurement (cf. Section 4.5.1).

In the experiment we have used the same set-up to excite and detect the waves as
described in Section 6.4 (see also Figure 7.1b): a pulsed laser to excite the waves, a
laser Doppler vibrometer (LDV) for the detection of the normal particle displacement
and a needle hydrophone for the pressure measurement. Details about the sample
and acquisition are given in Section 7.5.
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For the comparison of the detected waveforms and the extracted impe–dance
with the theoretical predictions according to the poroelastic wave theory, we first
discuss a model for the acoustic response as excited by the laser source (Figure 7.1a).
Similar as in Section 6.4, we are only interested in the wave motion and, therefore,
we neglect the optical penetration and the thermal diffusion effects induced by the
laser source. Since we are dealing with excitation in the ablation regime, we use a
line force F (x1, t) = S(t)δ(x1) to model the two-dimensional acoustic response (see
Figure 7.1a). Here, δ(...) is the Dirac delta function and S(t) is the time signature
of the source representing the energy deposition. The particular form of S(t) is
discussed is Section 7.6.

The two-dimensional acoustic response can be obtained by a modification of the
three-dimensional response as derived in Chapter 4 (van Dalen et al., 2010b). In

Eq. (4.20) the factor 1
2ωprH

(2)
0 (ωprr) in the integrand is replaced by exp(−iωp1x1).

Further, the horizontal derivative operator ∂h (now h = 1 only) in the argument of
the Green’s functions resulting from −iωp1 in the (pr, ω, x3)-domain is not required:
the −iωp1 can be retained in the (p1, ω, x3)-domain integrand because the integration
goes over p1. Subsequently, we use the method I of integration (see Section 5.3) to
perform the inverse spatial Fourier transform because the individual contributions
(the loop integrals along the branch cuts and the poles) are related to separate
wavemodes in the case that the wavemodes do not interfere; see Section 5.4.3.

The response is schematically illustrated in Figure 7.1a and explained in detail
in Sections 4.5.1 and 5.5.

In this chapter we do not calculate the additional contribution in the LDV-
measurement due to the pressure-induced refractive-index changes along the LDV-
beam (see Section 6.4) because it is not required in the comparison of the experimen-
tal and modeled results (see Section 7.6). It is sufficient to keep in mind that the
effect perturbs the measurement, giving larger magnitudes of the apparent LDV-
detected displacement compared to the desired surface displacement (see Section
6.6).

7.5 Experimental results

Here, we give the results obtained using the simultaneous (u3, pF )-measurement
illustrated in Figure 7.1b. The specific configuration is a water-saturated QF20
sample in water (see Table 7.1). The sample with thickness of 50 mm has been
installed in an optically transparent water tank made of glass. The water layer
thickness is also 50 mm. To ensure good quality of the LDV-signal, we have glued a
small piece of retroreflective tape (PolyTecr) on the sample at the detection point.

During the experiment we have moved the excitation laser beam over a distance
of 34.2 mm in the x1-direction with steps of ∆x1 = 200 µm using a scanning stage,
keeping the position of the receivers fixed. The smallest source-receiver distance is
23 mm. For every location of the source, we have averaged the signals 256 times to
improve the signal/noise ratio.
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Figure 7.8: Observed spatiotemporal evolution of normal particle displacement u3 (dB re. 1 m)
and fluid pressure pF (dB re. 1 Pa) using a laser Doppler vibrometer and a needle hydrophone,
respectively, for a scanning source over a distance of x̄ = x1 − x0 = 34.2 mm (the smallest
source-receiver distance x0 = 23 mm). The P -wave is indicated by (1), the pR-wave by (2) and
the interfering F - and St-wave arrivals by (3). The corresponding frequency-wavenumber domain
spectra |˜̄u3(f, k)| and | ˜̄pF (f, k)| are also shown. The pR-wave spectra are too weak to be identified.
The P1-wave can only be distinguished in | ˜̄pF (f, k)|.

In Figure 7.8 the experimentally observed u3 and pF are shown. We have ap-
plied a low-pass filter at 3 MHz to eliminate high-frequency noise. The pF -data
have been deconvolved by the frequency-dependent sensitivity of the needle hydrop-
hone/amplifier set. The u3-data have been divided by the refractive index of water
nF,0 = 1.333 (Scruby & Drain, 1990) because the laser Doppler vibrometer is cali-
brated for measurements in air.

In u3(x1, t) and pF (x1, t) we can observe the P1-wave arrival (appr. 3344 ms−1),
and an interference of the F - and pSt-wave arrivals (appr. 1500 ms−1). Also the pR-
wave is present in both the components, but quite weakly in u3 (appr. 1872 ms−1,
indicated with the dashed line). These propagation velocities match the predicted
values as shown in Figure 7.9 quite closely; the deviation is the largest for the P1-
wave (predicted as 3465 ms−1 for f → ∞).

In Figure 7.10 we show the typical waveforms of the observed arrivals in u3 and
pF (in this case x1 = 53 mm). We have vertically clipped the response to clearly
show the P1- and pR-waveforms because the pSt-wave cannot be distinguished from
the F -wave. The P1-wave is clearly a separate arrival. However, the tail of the
pR-wave, which has a relatively low-frequency waveform, seems to interfere with the
combined F, pSt-waveform. Further, there is a very low-frequency oscillation present
in u3 starting at t ∼= 0 ms, which cannot be filtered due to the low frequencies present
in the pR-wave.

We have computed the (f, k)-domain spectra ˜̄u3(f, k) and ˜̄pF (f, k) using a stan–
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Figure 7.9: Theoretical predictions of the propagation velocities cα,β = 1/Re(sα,β) of the body
wavemodes (α = {P1, P2, S}) and interface wavemodes (β = {pR, pSt}) as a function of frequency.
The F -wave velocity is not shown as it almost coincides with the pSt-wave velocity: cF = 1489
ms−1.

dard two-dimensional Fourier transform algorithm (cf. Eqs. (2.1) and (2.3)). The
spectra are shown in Figure 7.8 (lower part). In ˜̄u3(f, k) only the combined F, St-
spectrum can be distinguished. In ˜̄pF (f, k) also the P1-wave spectrum can be ob-
served. The pR-wave spectra, however, cannot be observed in both components due
to the weak magnitude of the pR-wave and because the spectra lie rather close to
the joint F, St-spectra. Hence, we are not able to extract the pR- and pSt-wave
impedances.

7.6 Experimental observations versus model
predictions

In Figure 7.10 we have shown the (typical) experimentally observed waveforms.
Now, we compare those with modeled equivalents as shown in Figure 7.11. To
make the P1-waveforms correspond in magnitude, frequency content and shape, as
time signature of the source S(t) we have taken the normalized time-derivative of
the four-point optimum Blackman window function (de Hoop & van der Hijden,
1983). Remarkably, taking this time derivative is not required in the model for
the fluid/elastic-solid configuration (Sections 6.4 and 6.6), where the experimentally
observed P -waveform looks different particularly in pF (cf. Figures 6.5 and 7.10);
in Figure 7.10 the exact shape of the waveform in u3 is difficult to observe due to
the noise. The reason for the different source signature might be the very powerful
excitation that we have applied to generate the pR-wave, for which the normal point
force does not correctly describe the interaction of the excitation laser and the porous
sample.

For the involved fitting parameters we have chosen Smax = 7.996 · 10−4 Nm−1
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Figure 7.10: Observed normal particle displacement u3 and fluid pressure pF for source-receiver
distance of 53 mm. The different wavemodes are indicated. The data have been filtered using a
low-pass filter at f = 3 MHz.

and f0 = 350 kHz (magnitude and the center frequency of the Blackman window
function, respectively). For these choices, the modeled P1-waveforms are pretty
similar to the experimentally observed ones in u3 and pF (note the range difference
between the u3-axes in Figures 7.10 and 7.11). The arrival time difference is due
to the different P1-wave velocities between model and experiment (see Section 7.5).
The modeled pR-waveforms are clearly different from the experimental ones: the
frequency content is higher, and the shapes and the magnitudes are different. The
reason for this seems to be that, due to the low-frequency content of the pR-wave and
the corresponding relatively large wavelength, it behaves as a guided wavemode due
to the finite depth of the water layer and the sample (Achenbach, 1973). Apparently,
the excited frequencies are too small for the current experimental set-up, even though
the excitation spectrum (laser) is very broad. Further, as the residue contribution
of the pR-pole (see Sections 7.2 and 7.4), which we have incorporated in Figure
7.11, does not entirely coincide with the full-response waveform, there must be an
interfering S-wave present in the modeled response at the onset of the pR-wave (in
pF , it is the FS-head wave generated by the S-wave; see Figure 7.1a, and Sections
4.5.1 and 5.5). It is not clear whether the S-wave is also present in the experimentally
observed response. At least, in Figure 7.8 no arrival with the shear-wave velocity
can be distinguished. Concerning the joint F, pSt-waveform, it can be seen that
its magnitude is considerably underestimated in the u3, and the waveforms look
different in both the components. These differences might also be caused by the
oversimplification of the modeled source.

The above deviations in the pR-waveforms cannot be caused by the refractive-
index changes as their influence is expected to give an additive contribution in the
displacement measurement only (which is in phase with the surface displacement;
see Section 6.6).
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Figure 7.11: Modeled normal particle displacement u3 and fluid pressure pF for source-receiver
distance of 53 mm excited by a line force with Smax = 7.996 · 10−4 Nm−1 and center frequency
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In Section 7.5 we have argued that the extraction of the pR- and pSt-wave
impedances from the measurements is not possible. It can, however, be verified
that in principle the extraction of the pR-wave impedance is feasible when the layer
thicknesses are sufficiently large. We have calculated the responses for a scanning
source to mimic the experiment, using the same force magnitude and frequency
content as described above. We have not included the perturbing effect of the
refractive-index changes (cf. Section 6.6) because we are only interested in the
feasibility of extracting the pR-wave impedance from any (u3, pF )-measurement (in
which not necessarily a LDV is used). As the pR-waveform is much better separated
from the combined F, pSt-waveform in the modeled response (cf. Figure 7.11; except
for the very low frequencies), the pR-wave spectra can be distinguished in the (f, k)-
domain and its impedance can be computed from the ratio of ˜̄pF (f, k) and ˜̄u3(f, k),
divided by iω. The pR-wave impedance extracted from these modeled spectra closely
matches the frequency-dependent plane-wave impedance IpR (Eq. (7.1)). This might
seem to be obvious, but it shows that the interfering S-wave hardly influences the
extracted impedance, which is probably due to its weak presence. In principle,
however, larger offsets should be taken for the extraction of the pR-wave impedance
such that the S- and pR-waves are separated.

7.7 Conclusions

The impedance and ellipticity of an interface wave are attributes that interrelate
the full waveforms in the different components. In this chapter we found that the
impedances and ellipticities of the pseudo-Rayleigh (pR) and pseudo-Stoneley (pSt)
waves at the fluid/porous-medium interface can be simultaneously used to uniquely
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estimate Young’s modulus (E) and Poisson’s ratio (ν) of the porous solid, like those
of the fluid/elastic-solid interface waves (see Section 6.3). The pSt-wave gives the
most stable estimates against measurement uncertainties. For reasons of compari-
son, we showed that the combinations of the impedances and attenuations of the
wavemodes give similar results.

For the permeability (k0) and porosity (φ), which are parameters that govern the
attenuation mechanism, we showed that the attributes can have different functional
dependencies (like in the (E, ν)-domain), and are, in addition, frequency-dependent.
The attenuation of the pSt-wave has a strong k0-sensitivity in the low-frequency
regime f ≪ fc and for f ∼= fc (fc denotes Biot’s rollover frequency; see Section 2.5.1),
which is due to the radiation of the slow compressional (P2) mode that governs the
pSt-wave attenuation to a large extent. The pR- and pSt-wave impedances also have
relatively strong k0-sensitivity for f ∼= fc as they interrelate the fluid to the solid
phases and, thus, can sense the relative fluid-solid motion. The ellipticities have
weak k0-sensitivity as they only interrelate the solid displacement components.

Once the impedance and attenuation of the pSt-wave are combined in a cost
function, unique and very stable estimates of k0 and φ are obtained when we incor-
porate frequencies around f ∼= fc. In that case, also the combination of the pSt-wave
impedance and ellipticity, that of the pR-wave impedance and ellipticity, and that
of the pR-wave impedance and attenuation all give a unique minimum in the corres-
ponding cost function, even though not all of the individual attributes have a strong
sensitivity. This is due to their frequency-dependence. The corresponding minima
are, however, less stable than that obtained from the pSt-wave impedance and at-
tenuation. In the situation that f ≪ fc, the best results are obtained using the
pSt-wave attenuation only. Even though the cost function has no unique minimum,
it yields the most stable estimates of k0 and φ because the pSt-wave attenuation
has much stronger sensitivity to the parameters than any other attribute. This con-
firms the results in the literature that only employ the pSt-wave attenuation for the
estimation of k0 for f ≪ fc (Burns, 1990; Tang & Cheng, 1996). In this case, a
single-component measurement is sufficient for the parameter estimation.

Using the experimental set-up as introduced in Chapter 6, we showed that the
impedance of the ultrasonic pR- and pSt-waves at the water/water-saturated QF20
(artificial porous material) interface cannot be successfully extracted. The pSt-
wave interferes with the fluid compressional wave. The pR-wave is too weak and
is influenced by the dimensions of the water layer and the sample: it behaves as
a guided wavemode due to its low-frequency content. Using the computational
model as developed in Chapter 4, however, it was shown that the extraction of the
pR-wave impedance from a simultaneous particle displacement and fluid pressure
measurement is in principle feasible once the layer thicknesses are sufficiently large.
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Chapter 8

In-situ permeability from
integrated poroelastic reflection
coefficientsi

Abstract

A reliable estimate of the in-situ permeability of a porous layer in the subsurface is
extremely difficult to obtain. We have observed that at the field seismic frequency
band the poroelastic behavior for different seismic wavemodes can differ in such
a way that their combination gives unique estimates of in-situ permeability and
porosity simultaneously. This is utilized in the integration of angle- and frequency-
dependent poroelastic reflection coefficients in a cost function. Realistic numerical
simulations show that the estimated values of permeability and porosity are robust
against uncertainties in the employed poroelastic mechanism and in the data. Po-
tential applications of this approach exist in hydrocarbon exploration, hydrogeology,
and geotechnical engineering.

8.1 Introduction

Reliable information of the distribution of the Darcy permeability (k0) in a porous
layer in the subsurface is critically important in many disciplines, e.g., hydrocarbon
exploration, hydrogeology and geotechnical engineering. Permeability can be highly
variable, both vertically and horizontally. In general, in-situ k0 can hardly be asses-
sed directly (e.g., Ratnam et al., 2005). The indirect methods are based on empirical
relations involving other measured parameters and have large uncertainties. For in-
stance, with the Kozeny-Karman equation and an independent measurement of the
porosity (φ), only an approximate estimate of k0 can be obtained.

iThis chapter has been published as a journal paper in Geophysical Research Letters 37, L12303
(van Dalen et al., 2010a). Note that minor changes have been introduced to make the text consistent
with the other chapters of this thesis.
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There have been attempts to estimate in-situ k0 from the attenuation of tube
waves using poroelastic wave theory (e.g., Burns, 1990). More recently, seismic
body waves have been used for k0-estimation employing poroelasticity (De Barros
& Dietrich, 2008; Lin et al., 2009). Poroelasticity predicts a motion of the pore fluid
relative to the skeleton as waves propagate through the porous medium. However,
at field seismic frequencies (10-100 Hz in soft soil, as a conservative range) the
relative fluid flow becomes negligible if the porous material is homogeneous or well
cemented. The effects of local relative fluid flow become quite substantial if there
are heterogeneities like gas inclusions. Goloshubin et al. (2008) have estimated k0

from frequency-dependent fluid flow and scattering mechanisms.
Strong k0-dependence can be observed in the mesoscopic-flow mechanisms that

can explain the dispersion and attenuation at field seismic frequencies (Pride et al.,
2003). Accounting for mesoscopic-flow mechanisms opens the way for exploiting the
frequency-dependent seismic reflectivity (Chapman et al., 2006). The use of seismic
reflection data seems particularly advantageous to study the spatial variations of k0.
A major difficulty, however, arises as many combinations of k0 and φ can explain the
observed frequency-dependent velocity and attenuation data, and no unique estimate
can be reached.

Here we present the result of an integration of angle- and frequency-dependent
poroelastic reflection coefficients of different seismic wavemodes at the interface of
two fluid-saturated porous layers containing minute quantities of gas. Because the
wavemodes behave differently in the (k0, φ)-domain, their integration in a cost func-
tion leads to a unique and reliable estimate for in-situ k0 and φ simultaneously. We
first consider a realistic flow mechanism for the field seismic frequencies. Then we
illustrate the results through tests on synthetic data, and finally discuss the scope
of this approach.

8.2 Mesoscopic-flow mechanism

For homogeneous porous materials (e.g., glass beads), the wave velocities predicted
by Biot’s theory are quite accurate (Berryman, 1980). However, for fluid-saturated
natural rocks or sediments, Biot’s macroscopic (wavelength scale) flow mechanism
cannot simultaneously explain the observed dispersion and attenuation. Recent
studies have shown that the major cause of intrinsic attenuation in porous media can
be wave-induced local fluid flow due to the presence of mesoscopic (sub-wavelength
scale) heterogeneities causing fluid-pressure gradients. Inhomogeneities in the frame
structure (e.g., pockets of weakly cemented grains) can be described by the double-
porosity theory (Pride et al., 2004). Inhomogeneities in the fluid (e.g., gas pockets
larger than the grain size) can be modeled using an effective plane-wave modulus
(White, 1975) or an effective fluid bulk modulus (Smeulders & van Dongen, 1997).
A model for random distributions of inhomogeneities has been proposed by Müller
& Gurevich (2005).

In order to investigate the seismic reflection coefficients at the boundary between
two porous layers, we consider an unconsolidated near-surface situation made of two
layers of water-saturated loose sands containing minute quantities of gas (bubbles).
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Table 8.1: Realistic material parameters differing between the two layers.

ρs φ k0 α∞ G Kb

[kgm−3] [µm2] [MPa] [MPa]
layer 1 2500 0.4 8 1.75 42.75 79.75
layer 2 2550 0.3548 5.5 1.91 64.80 108.00

We use the mechanism of Smeulders & van Dongen (1997) and Vogelaar (2009),
which uses the Rayleigh-Plesset equation for the gas-bubble behavior and is known
to provide realistic results (e.g., Wijngaarden, 1972; Bedford & Stern, 1983). Both
sand layers (1: upper layer, 2: lower target layer) have identical grain bulk modulus
Ks = 36.5 GPa, fluid bulk modulus Kf = 2.22 GPa, fluid viscosity η = 0.001
Pa·s, fluid density ρf = 1000 kgm−3, gas bubble radius rg = 5 mm, gas fraction
sg = 0.001, and gas bulk modulus Kg = 142 kPa (air). The two layers differ in
shear modulus G, bulk modulus Kb, porosity φ, matrix density ρs, tortuosity α∞,
and permeability k0 (see Table 8.1).

Using the mesoscopic-flow mechanism, seismic wave velocities and attenuations
can be computed for both layers. We illustrate in Figure 8.1 the results for layer
2 as a function of frequency (f). The presence of gas does not affect the shear (S)
wave propagation. The fast compressional (P1) wave is, however, strongly affected
by the gas inclusion and shows significant dispersion. The frequency regime where
the velocity cP1 sharply changes highly depends on rg. For smaller bubbles, as
encountered in pressurized marine sediments (Anderson & Hampton, 1980), the
dispersive regime shifts towards higher frequencies (Figure 8.1). At low frequencies,
the P1-wave attenuation (expressed by the inverse quality factor Q−1

P1) shows the
typical behavior of sandy sediments (Buchanan, 2006). Values of Q−1

P1 exceeding
0.1 are reported in shallow loose sand layers (Malagnini, 1996). Therefore, our
considered mechanism offers a realistic description of the seismic dispersion observed
in the field.

In the low-frequency limit cP1 only depends on stiffnesses, densities, φ and sg,
and it senses k0 only at the onset of the dispersive regime. While φ-information is
present in both cP1 and Q−1

P1, the k0-information is mainly implicit in the frequency-
dependent attenuation, as Q−1

P1 ∝ f/k0 (Pride et al., 2004).

8.3 Permeability from integrated reflection
coefficients

In this section we present the results of integration of different wavemodes to esti-
mate k0 and φ. We use the angle- and frequency-dependent reflection coefficients
(e.g., Dutta & Odé, 1983) at the open-pore interface of the two water-saturated gassy
sand layers. We incorporate the mesoscopic-flow mechanism as discussed above. Re-
garding reflection coefficients, Johnson et al. (1994) have shown that the coefficients
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Figure 8.1: Wave velocities cP1,S and attenuations Q−1
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in layer 2 for gassy and non-gassy

situations (Smeulders & van Dongen, 1997; Vogelaar, 2009); values of the bubble radius rg are
given in brackets. PBH represents the patchy saturation model of Pride et al. (2004), which is used
in Section 8.4.

at a fluid/porous-medium interface agree quite well with the experimental results.
In practice, both 3-component seismic (particle velocity) data and the pore-fluid

pressure data need to be acquired for different seismic wavemodes (P1P1, P1SV ,
SV P1, SV SV , SHSH) at a given location. A reflection event present in these
multiple datasets should correspond to a given interface and reflection point, e.g.,
common midpoint. The data need to be preprocessed to minimize all surface-related
effects and various noise, and then decomposed into P1, SV and SH waves. This is
not a trivial task for the land data, but recent developments are promising. During
all processing, amplitudes should be preserved. The feasibility of such processing
has been reported earlier (e.g., Schalkwijk et al., 2003; Ghose & Goudswaard, 2004;
Holvik & Amundsen, 2005).

We assume that all properties of layer 1 are known, and that k0 and φ are the only
unknown properties for layer 2. We calculate the reflection coefficients of various
wavemodes (RP1P1, RP1SV , RSV P1, RSV SV and RSHSH) for varying values of k0

and φ in the target layer (model space: 0.1 ≤ k0 ≤ 100 µm2; 0.02 ≤ φ ≤ 0.7). In
Figure 8.2 we illustrate the behavior of RP1P1, RP1SV , and RSV SV in the parameter
(k0, φ)-domain. RSV P1 behaves identical to RP1SV (apart from a normalization
factor), and RSHSH similar to RSV SV . The presence of gas and the resulting high
k0-sensitivity can only be observed for the reflection coefficients associated with the
P1 wave, which is due to the influence of gas on cP1 and Q−1

P1 only (see Figure 8.1).
Remarkably, the orientation of the contours in the (k0, φ)-domain is very different,
particularly for RP1P1 and RP1SV . This is due to the difference in local (at reflection
point) physical behavior of these two wavemodes.

Next, we take advantage of this difference and integrate two different wavemodes
by combining their reflection coefficients in a cost function similar to Ghose & Slob
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(2006):

Cαχ,κς(k0, φ) =





∑

p,f |∆αχ|γ

2
(

∑

p,f |∆αχ|γ
)
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(
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


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, (8.1)

where ∆αχ = ∆αχ(k0, φ) = Rαχ(p, f, k0, φ) − R̄αχ(p, f) is the difference between
model prediction Rαχ, with χ denoting the incident wave and α the reflected, and
the reflection coefficient R̄αχ representing field observation, generated using the true
values of k0 and φ (Table 8.1). Similarly, ∆κς represents a different wavemode. The
cost function involves summation over both the ray parameter p and the frequency
f . Normalization using the maximum value of each of the terms ∆αχ and ∆κς in the
(k0, φ)-domain, respectively, takes care of the magnitude differences. We use γ = 2,
but in case of noisy data with a zero mean γ = 1 is preferred. The cost function
Cαχ,κς is to be minimized to obtain estimates for k0 and φ in the target layer.

For this numerical test, we adhere to the constraints of near-surface seismic field
data in soft soil, viz. the low frequency content and the difficulty in measuring
the P1-wave dispersion in the field. Therefore, those values are taken only at two
discrete frequencies: for P1 40 and 100 Hz; for S 10 and 50 Hz. RP1SV and RSV P1

have only frequencies that are common to both P1 and S, hence 40 and 50 Hz. The
number of p values is 48 and the corresponding station spacing is 0.75 m. We use
only those p values that are related to propagating waves in layer 1.

In Figure 8.3 we show the separate cost functions CP1P1 and CP1SV (individual
terms in equation 8.1) and the integrated cost function CP1P1,P1SV . While the
separate cost functions do not provide sharp minima, the integrated cost function
clearly shows a very sharp minimum (precisely at the correct k0 and φ for layer
2, see Table 8.1). A unique solution for k0 and φ can thus be obtained in the
field seismic frequency band. The integration of CP1P1 and CP1SV offers a good
convexity because their individual local minima alignments are nearly orthogonal to
each other in the (k0, φ)-domain. This is due to the underlying physics, as shown
in Figure 8.2: RP1P1 has a strong k0-sensitivity as it is highly affected by the
presence of mesoscopic heterogeneities (gas bubbles), while RP1SV is more sensitive
to φ. RP1SV and RSV P1 are most suitable for integration with RP1P1. The other
reflection coefficients can only be used for φ-estimation.

The strength of this approach lies in exploiting the physical difference in the
poroelastic behavior of the different seismic wavemodes reflected at an interface.
Any mechanism of poroelasticity that reliably captures this difference at seismic
frequencies will successfully allow such integration. Because the poroelastic reflec-
tion coefficients incorporate the effects of both frequency-dependent velocity and
attenuation, and angle-dependence provides further constraint, such integration of
reflection coefficients is promising. It has been so far impossible to obtain estimates
of k0 and φ that individually and simultaneously satisfy the field observations. The
present approach provides a solution to this problem.

For pre-critical angles the reflection coefficients have non-zero imaginary parts
due to attenuation. Since k0 affects mainly the attenuation at the field seismic
frequency band, one can intuit that the imaginary part of the reflection coefficient
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would have the strongest k0-sensitivity. In Figure 8.3 the results for both real and
imaginary parts of the reflection coefficients are also illustrated. Because the pre-
critical angles are used together with the post-critical ones, the k0-sensitivity of the
imaginary part decreases. The total reflection coefficient, in this case, offers the best
result for integration, as it combines the effect of both real and imaginary parts.

8.4 Discussion

Because all mesoscopic-flow mechanisms exhibit strong k0-dependence (Pride et al.,
2003), reliable estimation of in-situ k0 is feasible. To verify the effect of inaccuracy
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in the observed R̄P1P1(p, f) and R̄P1SV (p, f), we have applied to each data point
a random perturbation between ±50% (real and imaginary parts seperately). We
find that the estimated values of k0 and φ have less than 1% and 5% inaccuracy,
respectiveley, indicating the robustness of the method. In order to evaluate the ef-
fect of mechanism uncertainty on the estimated values of k0 and φ, we have tested
two very different mechanisms. We have synthesized R̄P1P1(p, f) and R̄P1SV (p, f)
using the patchy saturation mechanism of Pride et al. (2004), which also considers
mesoscopic gas inclusions in the pore fluid, but employs a simple branching function
to connect the low- and high-frequency limits of the frequency-dependent mesosco-
pic flow. On the other hand, for model predictions, we have, as before, used the
mechanism of Smeulders & van Dongen (1997) and Vogelaar (2009). The disper-
sive regime and the frequency corresponding to the maximum attenuation are quite
different between these two mechanisms (see Figure 8.1). Next, we have minimi-
zed the integrated cost function CP1P1,P1SV . We find that the effect of mechanism
uncertainty on the estimated values is small. The value of φ can be retrieved very
accurately (< 1% inaccuracy). For k0, the error in the retrieved value is less than
25%, which is acceptable for in-situ k0. When the frequency restrictions in the field
data are slightly relaxed, for instance 300 Hz for the maximum P1-wave frequency
and 150 Hz for the maximum P1SV -wave frequency, then the inaccuracy in the k0

estimate becomes less than 15%.
In this chapter we have considered only two layers. However, the methodology

can be adapted to a stack of layers by progressively going downwards. Further, the
approach can incorporate more unknown parameters in the lower layer; rg and sg

can also be considered unknown. Alternatively, a priori estimates of rg and sg can
be obtained from the low-frequency limit of cP1 and the corresponding slope of Q−1

P1

(e.g., Pride et al., 2003). Starting with initial values of k0 and φ, rg and sg can be
estimated in an iterative manner.

A reflection coefficient relates to local plane-wave amplitudes and phases. Hence,
it contains information about the local k0 and it should, therefore, be possible to
capture the lateral variation of k0 in an otherwise homogeneous layer. The influence
of k0-fluctuation within a layer (e.g., Müller et al., 2005) can be incorporated in the
model reflection coefficients and in decomposition algorithms.

Although the proposed integration of reflection coefficients is powerful, the con-
vexity of the integrated cost function (Figure 8.2) can also be sensitive to model
parameters other than k0 and φ. For instance, different combinations of bubble ra-
dius (rg) and gas fraction (sg) will require different maximum frequency in the data.
For rg = 1 mm and sg = 0.001, which is typical for marine sediments (Anderson
& Hampton, 1980), we find the best k0-sensitivity for CP1P1 when the maximum
P1-wave frequency is 400 Hz; this is realistic for marine data. Therefore, one needs
to consider a priori if and which reflection coefficients should be integrated, and if
the frequency content allows such integration successfully. This can be accomplis-
hed through numerical tests. In the case that the mesoscopic gas inclusions are
absent (sg = 0), the integration is not successful due to the weak k0-sensitivity of
all reflection coefficients in the seismic frequency range. In this situation reliable
k0-estimation is very difficult.
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8.5 Conclusions

We presented a concept for the estimation of in-situ permeability (k0) together with
porosity (φ) of a fluid-saturated porous layer containing minute gas inclusions. We
found that reliable and unique estimates can be obtained by minimization of a
cost function which integrates local angle- and frequency-dependent poroelastic re-
flection coefficients. Obtaining simultaneously permeability and porosity estimates
from near-surface field seismic data using poroelasticity has so far not been possible.
The approach presented here promises a solution to this problem. It takes advantage
of the physical difference in the poroelastic behavior of the different seismic wavemo-
des reflected at the boundary between two porous layers. One needs a poroelastic
mechanism that explains data at the field seismic frequencies; we incorporated a
flow mechanism that accounts for mesoscopic inhomogeneity. The validity of the
integration approach, however, is not dependent on a specific mechanism. Tests on
realistic synthetic data illustrated that the approach is robust against uncertainties
in the employed mesoscopic-flow mechanism and in the data.



Chapter 9

Conclusions

In the Introduction (Chapter 1) we formulated that in this thesis, we investigate
the feasibility of exploiting full-waveform information present in multi-component
acoustic observations for the estimation of poroelastic parameters, particularly for
the permeability.

With regard to the poroelastic theory and its general solution we conclude (Chap-
ters 2 and 3)

1. The body wavemodes computed using the Green’s tensors of Biot’s equations
have different waveforms for different excitation frequencies. The coupling bet-
ween the fluid- and solid-phase waveforms is also frequency-dependent, par-
ticularly for the slow compressional wave. For each of the wavemodes this
coupling is described by the “coupling impedance”, which can be addressed as
a “multi-component full-waveform attribute”.

With regard to the mathematical representation of the pseudo interface wavemodes
we conclude (Chapters 4 and 5):

2. The relation of the pseudo-Rayleigh (pR) and pseudo-Stoneley (pSt) waves
with the corresponding poles in the complex slowness plane is not unambi-
guous, depending on the choice of branch cuts. When vertical branch cuts are
chosen for the evaluation of the inverse Fourier integral (which we denoted as
method I), the Riemann sheets of the pR- and pSt-poles are such that the ra-
diation condition is obeyed. Then, in the far field a separate pseudo interface
wave is entirely captured by the corresponding pole residue because the loop
integral along a branch cut only contributes to a separate body wave.

3. Contradictory to the conventional explanation about the origin of pseudo inter-
face waves, poles related to the pR- and pSt-waves can also lie on the “princi-
pal” Riemann sheet. In this case, also the loop integrals along the hyperbolic
branch cuts (which we denoted as method II) necessarily contribute to the
pR-wave because the pR-pole is different from that in method I. They do not
contribute to the pSt-wave when the pSt-pole lies on the principal Riemann
sheet because the pole is identical to that in method I. However, when the
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pSt-pole has migrated to another sheet, which occurs at some high frequency,
the pSt-wave is fully captured by the loop integrals.

4. In general, the full waveform and the velocity and attenuation of a separate
pseudo interface wave can be computed from the pole location in method I,
but should be extracted from the full response in method II.

With regard to the medium characterization using fluid/elastic-solid interface waves,
we conclude (Chapter 6):

5. The impedance and ellipticity have different functional dependencies on the
Young’s modulus and Poisson’s ratio, for both the pR- and Stoneley (St) waves.
Hence, by combining the multi-component full-waveform attributes in a cost
function, unique estimates of these parameters can be obtained. The estimates
are stable against measurement uncertainties, particularly for the St-wave.

6. Using a laser Doppler vibrometer (LDV) to measure the normal particle dis-
placement and a needle hydrophone for the fluid pressure, we successfully
extracted the laser-excited pR-wave impedance at the water/aluminum inter-
face. The St-wave impedance can be extracted only when 1) its propagation
velocity differs sufficiently from the fluid compressional-wave velocity, or 2)
the St-wave is detected very far from the source where the fluid compressional
wave has decayed.

7. Any LDV-measurement is perturbed by refractive-index changes along the
LDV-beam once acoustic waves interfere with the beam. Using a model
that accounts for these perturbations, we predicted an impedance decrease
of 26% with respect to the plane-wave impedance of the pR-wave for the wa-
ter/aluminum configuration. Although this deviation is different for the experi-
mentally extracted pR-wave impedance, there is excellent agreement between
the observed and predicted pR-waveforms in both the particle displacement
and fluid pressure.

Then, regarding the medium characterization using the fluid/porous-medium inter-
face waves, we conclude (Chapter 7):

8. The pR- and pSt-waves can also be used for the estimation of Young’s mo-
dulus and Poisson’s ratio. The results are very similar to those using the
fluid/elastic-solid interface waves (cf. point 5): the pSt-wave yields the most
stable estimates.

9. For each of the interface waves, both the combination of impedance and el-
lipticity, and that of impedance and attenuation, yield unique estimates of
permeability and porosity when frequencies around Biot’s rollover frequency
are incorporated. The combination of the pSt-wave impedance and attenua-
tion gives the most stable result because these attributes are most sensitive
to permeability: the (coupling) impedance relates both the fluid and solid
motions and the attenuation is controlled by the radiated slow compressional
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mode. The ellipticity is less sensitive as it only relates the solid displacement
components.

10. The extraction of the interface-wave impedance at the water/water-saturated
QF20 (artificial porous material) interface is not feasible using the same set-up
as described under point 6. The frequency content of the pR-wave is too low,
which makes it behave as a guided wavemode, and the pSt-wave interferes with
the fluid compressional wave.

Finally, regarding the characterization of a porous layer from a reflected wavefield,
we conclude (Chapter 8):

11. At field seismic frequencies unique and stable estimates of permeability and po-
rosity can be obtained from the combination of angle- and frequency-dependent
poroelastic reflection coefficients of different wavemodes in a cost function, pro-
vided that a mesoscopic-flow mechanism is incorporated for realistic attenua-
tion behavior.
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527–537.

Ricker, N. 1953. Wavelet contraction, wavelet expansion, and the control of seismic
resolution. Geophysics, 18(4), 769–792.

Rix, G.J. 2005. Near–surface site characterization using surface waves, in: Surface
Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks, Lai,
C.G., & and Wilmanski, K. (eds.). Udine: CISM.



152 BIBLIOGRAPHY

Roever, W.L., Vining, T.F., & Strick, E. 1959. Propagation of elastic wave motion
from an impulsive source along a fluid/solid interface. Philos. Trans. R. Soc.
London, Ser. A, 251(1000), 455–523.

Rosenbaum, J.H. 1974. Synthetic microseismograms: logging in porous formations.
Geophysics, 39(1), 14–32.

Sahay, P.N. 2001. Dynamic Green’s functions for homogeneous and isotropic porous
media. Geophys. J. Int., 147, 622–629.

Sayers, C.M., & Dahlin, A. 1993. Propagation of ultrasound through hydrating
cement pastes at early times. Advn. Cem. Bas. Mat., 1(1), 12–21.

Schalkwijk, K.M., Wapenaar, C.P.A., & Verschuur, D.J. 2003. Adaptive decomposi-
tion of multicomponent ocean–bottom seismic data into downgoing and upgoing
P– and S–waves. Geophysics, 68(3), 1091–1102.

Schanz, M. 2009. Poroelastodynamics: Linear models, analytical solutions, and
numerical methods. Appl. Mech. Rev., 62, 1–15.

Scholte, J.G. 1947. The range of existence of Rayleigh and Stoneley waves. Mon.
Not. Roy. Astr. Soc.: Geoph. Suppl., 5, 120–126.

Scruby, C.B., & Drain, L.E. 1990. Laser Ultrasonics: Techniques and Applications.
New York: Adam Hilger.

Sebaa, N., Fellah, Z.E.A., Fellah, M., Ogam, E., Mitri, F.G., Depollier, C., & Lau-
riks, W. 2008. Application of the biot Model to ultrasound in bone: Inverse
problem. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 55(7), 1516–1523.

Smeulders, D.M.J. 1992. On Wave Propagation in Saturated and Partially Saturated
Porous Media. Eindhoven: Eindhoven University of Technology (Ph.D. thesis).

Smeulders, D.M.J., & van Dongen, M.E.H. 1997. Wave propagation in porous media
containing a dilute gas–liquid mixture: theory and experiments. J. Fluid Mech.,
343, 351–373.

Smeulders, D.M.J., Eggels, R.L.G.M., & van Dongen, M.E.H. 1992. Dynamic per-
meability: reformulation of theory and new experimental and numerical data. J.
Fluid Mech., 245, 211–227.
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Summary

Multi-component acoustic
characterization of porous media

In the area of characterization of porous media, up to now limited use is made of
information captured in full acoustic waveforms. In addition, the information that
can be obtained from multiple measurements is usually not employed to its full
extent. However, when for example both the particle motion and the fluid pressure
induced by a wavefield are detected, it can be expected that this information is
sensitive to the poroelastic parameters as it combines the waveforms observed in
both the solid and fluid phases. Therefore, in this thesis we investigate the feasibility
of exploiting full-waveform information present in multi-component observations for
the estimation of poroelastic parameters, particularly for the permeability. This
parameter is very important for geotechnical and reservoir engineers, but is very
difficult to determine accurately.

We focus on using the pseudo interface waves at the interface between a fluid and
a fluid-saturated porous medium. Two methods are introduced for the evaluation of
the inverse Fourier integral to compute the full waveforms excited by a point force:
vertical branch cuts (I) and hyperbolic branch cuts (II) in the complex slowness
plane. We find that the relation of the pseudo-Rayleigh (pR) and pseudo-Stoneley
(pSt) waves with the corresponding pR- and pSt-poles in the slowness plane is not
unambiguous, depending on the choice of branch cuts. In method I, the Riemann
sheets of the pR- and pSt-poles are such that the radiation condition is obeyed.
Then, in the far field a separate pseudo interface wave is entirely captured by the
corresponding pole residue because the loop integral along a branch cut only con-
tributes to a separate body wave. Opposite to the conventional explanation, poles
related to the pR- and pSt-waves can also lie on the “principal” Riemann sheet,
which is the sheet of integration in method II. In this case, also the loop integrals
can contribute to the pseudo interface waves, i.e., necessarily to the pR-wave be-
cause the pR-pole is different from that in method I and for high frequencies also to
the pSt-wave. In general, the full waveform and the velocity and attenuation of a
separate pseudo interface wave can be computed from the pole (location) in method
I, but should be extracted from the full response (which includes all contributions)
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in method II.
Next, we investigate how the multi-component acoustic full-waveform informa-

tion can be exploited and what parameters can be estimated. We start with the pR-
and Stoneley (St) waves at the fluid/elastic-solid interface and use their impedances
and ellipticities, which are attributes that interrelate the full waveforms as observed
in different components. We find that unique estimates of the Young’s modulus and
Poisson’s ratio can be obtained when the “multi-component full-waveform attribu-
tes” are exploited simultaneously by combining them in a so-called cost function,
for both the pR- and St-waves. The uniqueness is a result of the different functional
dependencies of the impedance and ellipticity on the medium parameters. The esti-
mates are stable against measurement uncertainties, particularly for the St-wave. In
a laboratory validation experiment, we have successfully extracted the laser-excited
pR-wave impedance at the water/aluminum interface using a laser Doppler vibro-
meter (LDV) to measure the normal particle displacement and a needle hydrophone
for the fluid pressure. The St-wave impedance can be extracted only when its pro-
pagation velocity differs sufficiently from the fluid wave velocity or very far from
the source. Any LDV-measurement is perturbed by refractive-index changes along
the LDV-beam once acoustic waves interfere with the beam. Using a model that
accounts for these perturbations, we predict an impedance decrease of 26% with
respect to the plane-wave impedance of the pR-wave for the water/aluminum confi-
guration. Although this deviation is different for the experimentally extracted pR-
wave impedance, there is excellent agreement between the observed and predicted
pR-waveforms in both the particle displacement and fluid pressure.

The pR- and pSt-waves at the fluid/porous-medium interface can also be used
for the estimation of the Young’s modulus and Poisson’s ratio. The results are very
similar to those using the fluid/elastic-solid interface waves: the pSt-wave yields the
most stable estimates. In addition, both the combination of impedance and ellipti-
city, and that of impedance and attenuation, yield unique estimates of permeability
and porosity when frequencies around Biot’s rollover frequency are used, for both the
pR- and pSt-waves. The combination of the pSt-wave impedance and attenuation
gives the best results because these attributes are most sensitivity to permeability:
the impedance relates both the fluid and solid motions, and the attenuation is con-
trolled by the radiated slow compressional mode. The ellipticity is less sensitive as
it only relates the solid (horizontal and vertical) displacement components. Fur-
ther, we find that the experimental extraction of the interface-wave impedances at
the water/water-saturated QF20 (artificial porous material) interface is not feasible
with our set-up. The frequency content of the pR-wave is too low, which makes it
behave as a guided wavemode, and the pSt-wave interferes with the fluid wave.

Finally, in a synthetic application to the seismic frequency band we show that
unique and stable estimates of permeability and porosity of a porous layer can be
obtained from a wavefield by combining angle- and frequency-dependent poroelastic
reflection coefficients of different wavemodes in a cost function. To correctly describe
the seismic attenuation, we have incorporated a mesoscopic-flow mechanism, which
causes the permeability sensitivity of the wavefield. The use of reflection coefficients
implies that multi-component full-waveform information is employed.



Samenvatting

Multi-componenten akoestische
karakterisering van poreuze media

Tot op heden wordt er op het gebied van de karakterisering van poreuze media
slechts beperkt gebruikt gemaakt van de informatie die in volledige akoestische golf-
vormen ligt besloten. Daarnaast is het zo dat de informatie die kan worden verkregen
uit meerdere metingen gewoonlijk niet volledig wordt benut. Wanneer echter bij-
voorbeeld zowel de deeltjesbeweging als de vloeistofdruk, die zijn gëınduceerd door
een golfveld, worden gemeten, kan worden verwacht dat deze informatie gevoelig
is voor de poroelastische parameters omdat het de golfvormen gemeten in zowel
het skelet als in de porievloeistof combineert. Om die reden onderzoeken we in dit
proefschrift de haalbaarheid van de exploitatie van informatie die ligt besloten in
volledige golfvormen en aanwezig in multi-componenten observaties, voor het schat-
ten van poroelastische parameters, in het bijzonder van de permeabiliteit. Deze
parameter is erg belangrijk voor geotechnische and reservoiringenieurs, maar is erg
moeilijk nauwkeurig te bepalen.

We richten ons op het gebruik van pseudo-oppervlaktegolven ter plaatse van het
grensvlak tussen een vloeistof en een vloeistofverzadigd poreus medium. Er worden
twee methoden gëıntroduceerd voor het evalueren van de inverse Fourier integraal
die wordt gebruikt om de volledige golfvormen geëxciteerd door een puntlast, te
berekenen: verticale vertakkingslijnen (I) en hyperbolische vertakkingslijnen (II) in
het complexe inverse-snelheidsdomein. We vinden dat de relatie tussen de pseudo-
Rayleighgolf (pR) en de pseudo-Stoneleygolf (pSt), en de corresponderende pR- en
pSt-polen in het inverse-snelheidsdomein niet ondubbelzinnig is, afhankelijk van de
keuze van de vertakkingslijnen. In methode I zijn de Riemannvlakken van de pR-
en pSt-polen zodanig dat aan de stralingsconditie wordt voldaan. Een gescheiden
pseudo-oppervlaktegolf (niet met andere golven interfererend) wordt dan in het verre
veld volledig beschreven door het corresponderende poolresidu omdat de lusintegraal
langs een vertakkingslijn alleen bijdraagt aan een gescheiden bulkgolf. In tegenstel-
ling tot de conventionele opvatting kunnen polen die zijn gerelateerd aan de pR-
en pSt-golven ook liggen op het hoofd-Riemannvlak; dat is het integratieoppervlak
in methode II. In dat geval kunnen ook de lusintegralen bijdragen aan de pseudo-
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oppervlaktegolven: noodzakelijkerwijze aan de pR-golf omdat de pR-pool een andere
is dan in methode I en voor hoge frequenties ook aan de pSt-golf. In het algemeen
kunnen de volledige golfvorm, de snelheid en de demping van een gescheiden pseudo-
oppervlaktegolf in methode I worden berekend uit (de locatie van) de pool, maar
deze moeten in methode II worden bepaald uit de volledige responsie (die bestaat
uit de som van alle bijdragen).

Vervolgens onderzoeken we hoe de informatie in volledige akoestische golfvormen
met behulp van multi-componenten metingen kan worden geëxploiteerd en welke pa-
rameters er kunnen worden geschat. We beginnen met de pR- en Stoneleygolven (St)
ter plaatse van het grensvlak tussen een vloeistof en een elastisch medium en gebrui-
ken hun impedanties en ellipticiteiten. Dat zijn attributen die de volledige golfvor-
men zoals geobserveerd in verschillende componenten aan elkaar relateren. We vin-
den dat unieke schattingen van de Young’s modulus en de Poisson constante kunnen
worden gevonden wanneer de “attributen van de volledige multi-componenten golf-
vorm” gelijktijdig worden geëxploiteerd door hen te combineren in een zogenaamde
kostfunctie, voor zowel de pR- als de St-golf. De uniciteit is een gevolg van de
verschillende afhankelijkheden van de impedantie en de ellipticiteit als functie van
de mediumparameters. De schattingen zijn stabiel ten aanzien van meetonnauw-
keurigheden, in het bijzonder voor de St-golf. In een validatie-experiment in het
laboratorium hebben we de impedantie van de lasergeëxciteerde pR-golf ter plaatse
van het grensvlak tussen water en aluminium succesvol bepaald met behulp van een
laser Doppler vibrometer (LDV) voor de meting van de normale deeltjesverplaat-
sing en een naaldhydrofoon voor de vloeistofdruk. De impedantie van de St-golf
kan alleen worden bepaald wanneer de voortplantingssnelheid voldoende verschilt
van de snelheid van de vloeistofgolf, of heel ver verwijderd van de bron. Nu is het
zo dat een LDV-meting wordt verstoord door variaties in de refractie-index langs
de LDV-bundel wanneer akoestische golven met de bundel interfereren. Gebruik-
makend van een model waarin deze verstoringen in beschouwing worden genomen,
voorspellen we een impedantieafname van 26% ten opzichte van de vlakkegolfimpe-
dantie van de pR-golf voor de water/aluminium configuratie. Hoewel deze afwijking
verschilt voor de experimenteel bepaalde impedantie van de pR-golf, is er een uitste-
kende overeenkomst tussen de geobserveerde en voorspelde pR-golfvormen in zowel
de deeltjesverplaatsing als de vloeistofdruk.

De pR- en pSt-golven ter plaatse van het grensvlak tussen een vloeistof en een
poreus medium kunnen ook gebruikt worden voor het schatten van de Young’s mo-
dulus en Poisson’s ratio. De resultaten vertonen sterkte overeenkomsten met die van
de golven ter plaatse van het grensvlak tussen een vloeistof en een elastisch medium:
de pSt-golf levert de meest stabiele schattingen. Daarnaast kunnen unieke schattin-
gen van permeabiliteit en porositeit worden verkregen met behulp van de combinatie
van impedantie en ellipticiteit en met behulp van impedantie en demping wanneer
frequenties rond Biot’s transitiefrequentie gebruikt worden, zowel voor de pR- als de
pSt-golf. De combinatie van de impedantie en de demping van de pSt-golf geeft de
beste resultaten omdat deze attributen het meest gevoelig zijn voor permeabiliteit:
de impedantie relateert de vloeistof- en skeletbewegingen, en de demping is afhanke-
lijk van de uitgestraalde langzame compressiemode. De ellipticiteit is minder gevoe-



159

lig omdat het alleen de skeletverplaatsingscomponenten (horizontaal en verticaal)
aan elkaar relateert. Verder vinden we dat de experimentele bepaling van opper-
vlaktegolfimpedanties ter plaatse van het grensvlak tussen water en waterverzadigd
QF20 (kunstmatig poreus materiaal) niet haalbaar is met onze meetopstelling. De
frequentie-inhoud van de pR-golf is te laag, waardoor deze zich gedraagt als een
geleide golfmode, en de pSt-golf interfereert met de vloeistofgolf.

Tenslotte laten we in een synthetische toepassing voor de seismische frequentie-
band zien dat unieke en stabiele schattingen van permeabiliteit en porositeit kunnen
worden verkregen uit een golfveld door middel van het combineren van hoek- en
frequentieafhankelijke poroelastische reflectiecoefficienten van verschillende golfmo-
des in een kostfunctie. Om de seismische demping correct te beschrijven, hebben
we een mesoscopisch stromingsmechanisme in het model opgenomen dat de gevoe-
ligheid van het golfveld voor permeabiliteit veroorzaakt. Het gebruik van reflec-
tiecoefficienten impliceert dat informatie uit volledige golfvormen zoals aanwezig in
multi-componenten observaties wordt gebruikt.
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