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Stellingen
behorende bij het proefschrift:
“Time-lapse seismic monitoring of subsurface stress dynamics’
van Menno Dillen

Stelling 1 De integraalrepresentatie van het tijd-convolutietype, gegeven als
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met in de integrant het totale golfveld van de referentietoestand {p), @gl)}
en het totale golfveld van de herhalingstoestand {13(2),@:(,,2)}, kan worden
beschouwd als een verschilgolfveld gegenereerd door temporele contrasten
gesitueerd onder de interactiediepte x3, terwijl temporele contrasten boven
de interactiediepte geen bijdrage leveren aan de interactie-integraal.

Hoofdstukken 6 en 10 van dit proefschrift.

Stelling 2 De integraalrepresentatie van het tijd-correlatietype, gegeven als

jeorr ..R R .S S
[ (2g; @, xy, 2y, 23, w)
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met in de integrant het complex geconjugeerde verstrooide golfveld van de re-

ferentietoestand { gt " TfCt } en het verstrooide golfveld van de herha-

lingstoestand {7>®, 05"}, kan worden beschouwd, na normalisatie, als

het seismisch equ1va1ent van een radarinterferogram (Massonnet en Feigl
1998).




Didier Massonnet en Kurt L. Feigl. Radar interferometry and its
application to changes in the earth’s surface. Reviews of Geo-
physics, 36:441-500,1998.

Stelling 3 Door gebruik te maken van time-lapse data-acquisitiemethodes
uit de exploratieseismologie, die gekenmerkt worden door een dichte be-
dekking van bronnen en ontvangers, wat resulteert in een goede ’belichting’
van de ondergrond en een goede bemonstering van het gemeten golfveld,
wordt het stress-inversieprobleem beter gesteld dan bij aardbevingsseismolo-
gische methodes (Chen et al. 1987), waar gewoonlijk slechts enkele bronnen
en ontvangers gebruikt worden.

Tian-Chang Chen, David C. Booth en Stuart Crampin. Shear-
wave polarizations near the North Anatolian Fault - III. Observa-
tions of temporal changes. Geophys. J. R. astr. Soc. 91:287-311,
1987.

Stelling 4 De interactie-integralen van het tijd-convolutie type (Stelling 1)
en het tijd-correlatie type (Stelling 2) kunnen gebruikt worden voor het
bepalen en afbeelden van de verandering van het ondergrondse stressveld.
Gebruik makend van deze technieken zou, door bestudering van de pre-
seismische stress-evolutie in de omgeving van suspecte breuken, de onze-
kerheid over de plaats en tijd van aardbevingen verminderd kunnen worden.

Stelling 5 De kosten van het meten aan geofysische verschijnselen moeten
worden afgewogen tegen de kosten die onzekerheid omtrent deze verschijnse-
len met zich mee brengt. In de meteorologie is deze balans beter gesteld dan
in de aardbevingsseismologie.

Stelling 6 De allocatie van financiéle middelen aan de Technische Univer-
siteit Delft wordt gemeten naar de productie van wetenschappelijke publi-
caties. Om aan een bepaalde norm te voldoen kan men twee strategieén
volgen: of men produceert een groot aantal publicaties van relatief lage
kwaliteit, of men compenseert een klein aantal publicaties door een relatief
hoge kwaliteit. Omdat de eerste optie een lager risico inhoudt dan de tweede,
terwijl de beloning hetzelfde is, neigt de wetenschapsbeoefening, onderwor-
pen aan dit allocatiemodel, integraal, naar een lagere kwaliteit, alsmede naar
overspecialisatie en een daarbij optredende proliferatie van specialistische
tijdschriften en wetenschappelijk jargon.
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Stelling 7 Vergelijkbaar met bijvoorbeeld ’venture capital’ investeringen en
het boren van putten in de olie- en gasexploratie-industie zou de wetenschaps-
beoefening als een hoge risico/hoge beloning activiteit beschouwd moeten
worden. Men verwacht dan dat onderzoek slechts in enkele gevallen baan-
brekende publicaties zal opleveren. Een zodanige activiteit kan gecreéerd
worden als de beloning voor een belangrijke publicatie voldoende hoger is
dan voor een minder belangrijke publicatie, de tijdsduur waarover gemeten
wordt voldoende lang is en de populatie van wetenschappers waarover geme-
ten wordt voldoende groot is.

Stelling 8 In vergelijking met onderwijs dat de nadruk legt op de specia-
lisaties, waarbij onvoldoende de abstracte samenhang tussen deze specia-
lisaties wordt onderwezen, levert onderwijs, dat gericht is op het ontwikkelen
van algemene wetenschappelijke kennis op basis waarvan specialisaties wor-
den bestudeerd, betere academici af.

Menmno Dillen. Eigen ervaringen met studenten van de Katholieke
Universteit Leuven en met studenten van de Technische Univer-
siteit Delft.
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Chapter 1

Introduction

The earth’s response to a changing stress field, caused by tectonic forces
or by forces induced by human activities, such as hydrocarbon extraction
operations, is to equilibrate these forces by differential displacements (de-
formation) e.g. along faults. Whenever the rigidity along a section of the
fault is high enough to resist the stress build-up a seismogenic zone is cre-
ated, which eventually will relieve the high stress by brittle failure, as one
or several subsequent ruptures along the fault zone. These ruptures are high
energy surface sources of elastodynamic waves which can cause major dam-
age to man-made structures when travelling as high amplitude earth surface
waves. Due to the catastrophic nature of earthquakes it proved impossible
to accurately predict these phenomena in space and time. The predictive
power of several precursors to earthquakes has been studied. In this the-
sis the elastodynamic response of seismic waves to an elastostatic change,
caused by a changing stress field, is investigated as a possible precursor to
carthquakes. The correlation between the occurrence of earthquakes and
man-induced fluid injection or extraction operations offers the opportunity
to study earthquake mechanisms in a semi-controlled way.

The objective of this thesis is to investigate the possibility of (Part I), and
device (Part II), seismic monitoring techniques of the subsurface stress dy-
namics. Therefore, we consider the action of quasi-static (earthquake precur-
sor mechanisms) and dynamic (seismic wave propagation) loading on rocks.
Rocks are heterogeneous porous solids consisting of a solid phase, comprising
of aggregates of crystals and grains, cemented at various degrees, and a fluid
phase, which occupies the pores or voids of the material. The boundaries be-



tween crystals represent weaknesses in the structure of the rock. Rocks are
permeated by thin cracks, which together with the crystal boundaries deter-
mine its micro-mechanical behaviour. On a large scale, discontinuities that
separate layers of rocks and faults explain the macro-mechanical phenomena,
such as earthquakes. Subsurface deformations depend on the mechanical in-
teraction at a range of spatial, but also temporal scales. Therefore, measure-
ments obtained from the small spatial and temporal scales at which experi-
ments are conducted can be indicative for the observed large spatio-temporal
scale of in-situ phenomena. As an example, Fabre et al. (1991) extracted core
samples from deep sedimentary rocks from the oil and gas Lacq field, located
on the northern side of the Pyrenees in France. Several seismic events had
occurred at this site, with local magnitude ranging from 1 to 4.2, which are
attributed to the extraction of gas. In the laboratory the samples were sub-
jected to tests under in-situ stress conditions, such as uniaxial and triaxial
compression tests, hydraulic fracture tests, acoustic activity during loading
and the determination of the brittle-ductile transition of some samples, in
order to determine mechanical behaviour of the in-situ rock formations. The
inferred mechanical parameters were used to prepare a geomechanical model
of the field which could predict the occurrence of seismic activity resulting
from the depletion of the reservoir. In this thesis small scale physical labora-
tory experiments are described which attempt to investigate the possibility
of large scale seismic monitoring of the changing in-situ stress field. The rock
samples used are not from cores, obtained from wells penetrating the reser-
voir of interest, but from quarries with outcrops which are representative for
the small gas reservoirs, consisting of the Rotliegend sandstone formation, as
found in the northern part of the Netherlands. Besides using a representative
sample from a quarry to infer the subsurface mechanical behaviour we inves-
tigate the seismic method. This technique has the advantage that no physical
extraction of a small portion of the material is needed. Instead, the entire
reservoir region can be probed in a non-destructive way. The disadvantage is
that quasi-static (large spatio-temporal scale) mechanical parameters which
govern earthquake precursor mechanisms must be inferred from dynamical
(small spatio-temporal scale) mechanical parameters in which terms wave
propagation theory is described, which makes mutual calibration difficult.
Because time-lapse seismic experiments are elaborate and expensive we will
investigate the effect of stress on wave propagation at the ultrasonic scale. At
this scale we have better control of the mechanical parameters, which make
inferences from observations more reliable.




In Part T of this thesis I give an overview of what is published in the
literature regarding stress diffusion and deformation processes which govern
the mechanics of earthquakes. Thereafter, I present results from ultrasonic
triaxial stress experiments conducted as part of this thesis research. My
intention with Part I is to integrate the subsurface stress dynamics theory
with the seismic monitoring technique developed in Part II. The ultrasonic
stress experiments serve as scaled physical model studies which enable to
investigate the relationship between elasto-quasi-static theory, which gov-
erns crustal deformation, and elastodynamic theory, describing seismic wave
propagation. The time-lapse seismic monitoring theory in Part II is derived
for acoustic waves, whereas Part I assumes elastic wave theory. The analysis
is done for acoustic waves due to time constraints, and in order to keep the
calculations within reasonable limits. The elastic wave theory can be derived
in an analogous manner involving similar operators.

1.1 Outline of Part 1

In Chapter 2 preliminaries on stress are given, before the partial differential
equation are derived, as given in the literature, which govern stress diffusion
from a mechanical disturbance, such as a man-induced relatively sudden pore
pressure change. The effects of pore pressure are included using the effective
stress concept.

Chapter 3 describes several deformation and failure mechanism in a more
descriptive way, in order to acknowledge, the essential complex and nonlin-
ear mechanics of rocks, not sufficiently described by the partial differential
equations in Chapter 2. The linear stress diffusion theory in Chapter 2, as a
model, is possibly valid for small stress changes, in a specific stress range, but
does not encompass the full stress-strain behaviour. The micro-crack model
is explained and used to describe this full stress-strain behaviour. Also, the
granular model, describing many sedimentary rocks, is discussed. The ef-
fect of fluid extraction and injection is shown, with respect to the Coulomb
failure criterion, using Mohr circles. On a large scale the stress dynamics in-
duced by a hydrocarbon reservoir is discussed. Finally, the effect of stress on
wave propagation is explained using examples from laboratory experiments
described in the literature.

In Chapter 4 a description of the ultrasonic triaxial pressure machine is




given, on which three series of experiments were conducted, involving the
Colton sandstone, the Flechtinger sandstone, and the Niederhausen and Bad
Diirckheim sandstones, respectively. Each sandstone, in terms of its mineral-
ogy and mechanical parameters, is described. On the latter two sandstones,
used for the third series of experiments, more extensive stress experiments
on cylindrical cores were conducted.

The three consecutive series of experiments are described in Chapter 5.
Both stress-strain experiments, from which quasi-static elastic moduli were
calculated, and ultrasonic experiments, from which compressional- and shear
wave velocities and dynamic elastic moduli were calculated as function of
stress, were conducted.

1.2 Outline of Part 11

In Chapter 6 a time-lapse contrast formalism is derived in terms of an inter-
action integral of the time-convolution type with respect to the transverse
direction. The difference wave field generated by the interaction integral,
evaluated for a fixed longitudinal coordinate (perpendicular to the transverse
plane, representing depth in surface seismic measurements and inter-well dis-
tance in cross-well tomography), is causally related to a source formalism in
terms of temporal contrasts, located below the interaction depth (surface
seismic experiments).

In Chapter 7, the coupled acoustic wave field equations are rewritten
to a single first-order differential equation, with respect to the longitudinal
direction, in terms of vector-valued wave field quantities. The parameter
in this equation is a matrix operator, containing partial derivatives with
respect to the transverse coordinates. The reciprocity theorems of the time-
convolution and time-correlation types are derived in terms of bilinear and
sesquilinear forms, respectively. Symmetry and adjointness of the matrix
operators, associated with bilinear and sesquilinear forms, respectively, are
implemented, to obtain reciprocity theorems, which are applied in subsequent
chapters.

By introducing a background medium and an associated scattering sur-
face, in Chapter 8, a wave field decomposition is introduced of the total
wave field vector into incident and scattered wave field vectors. Using the
reciprocity theorems, integral representations, in terms of single- and double-
layer potentials, are derived for the incident, scattered and total scalar pres-
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sure wave ficlds. The respective integral representations, at the scattering
surface, are obtained by applying a limit operation, producing Cauchy prin-
cipal value integrals. These latter integrals are used to define single- and
double-layer potential boundary integral operators. In terms of these singu-
lar integral operators, down- and up-going wave field conditions are derived,
with respect to the choice of the background medium. Using this terminology,
the incident and scattered wave fields, at the scattering surface, are desig-
nated down- and up-going wave fields, respectively, representing so-called
one-way wave fields. The singular boundary integral operators involved are
pseudo-differential operators. From these operators one can construct, at the
scattering surface, Dirichlet-to-Neumann (D-t-N) operators for the incident
wave field and the scattered wave field, which transform the first component
of the wave field vector, the pressure, to the second component, the vertical
component of the particle velocity. In terms of these operators a wave field
decomposition matrix operator is obtained which splits the total wave field
into a down-going incident wave field and an up-going scattered wave field.
With respect to the actual medium the D-t-N map of the total wave field is
derived. Application of boundary conditions give the reflection and transmis-
sion operators in terms of the D-t-N operators. The symmetry of each D-t-N
operator is derived, using the reciprocity theorem of the time-convolution
type, and applying boundary conditions towards infinity.

The symmetries of the D-t-N operators are used, in Chapter 9, to obtain
forward extrapolation operators for the incident and scattered pressure wave
fields. In terms of the extrapolation operators and the reflection operator,
the scattered wave field, evaluated above the scattering surface, is shown to
be equivalent to the WRW-model (Berkhout (1985)). Application of the reci-
procity theorem of the time-correlation type yields the inverse extrapolation
operator, which extrapolates the up-going scattered wave field downwards.
This is an approximate result because the contribution of one surface integral
is neglected by assuming an adjointness relation between the D-t-N operators
of the down- and up-going wave fields.

Application of the wave field decomposition operators, in Chapter 10, to
the total wave field vectors appearing in the time-lapse interaction integral of
the time-convolution type, yields an interaction matrix operator with respect
to this bilinear form. A subsequent symplectic eigenvalue decomposition of
this interaction matrix operator yields a D-t-N operator valid for both time-
lapse wave fields. The resulting new paramcterization is used to derive an
imaging scheme which generalizes the configuration, for which time-lapse
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contrasts above the interaction integral’s interaction depth are absent, to
a configuration which allows for these contrasts to be present above the
interaction depth. In this manner non-repeatability and induced time-shifts
are taken into account such that a pure amplitude difference reflectivity is
obtained. This procedure also allows for an inversion scheme in which these
time-shifts are minimized in a top-down recursive way.



Part 1

Subsurface stress dynamics
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Chapter 2

Poroelasticity

First, preliminaries on stress are given to introduce the notation and sum-
marize quantities as, normal and shear stress, principal stresses, and the
associated construction of Mohr circles. Further, introducing the effective
stress concept, the linear elastic theory for solids is generalized to include
porous solids. In terms of pore pressure, poroelastic moduli and pore fluid
flow parameters the partial differential equations are derived which govern
stress diffusion in a linear elastic porous solid.

2.1 Preliminaries on stress

Imagine a closed surface A within a continuum body. Consider a small surface
element A4 of A with a unit vector ¥ normal to AA directed outward from
A. To counteract the action of the matcrial inside the surface A, the part of
the material on the positive side of the normal exerts a force F' on the part
which is on the negative side of the normal. We introduce the assumption
that as AA tends to zero, the ratio AF/AA tends to a definite limit dF /d A,
and that the moment of the forces acting on the surface A A, about any point
within the arca, vanishes in the limit. The limiting vector

dF

= —
dA’

(2.1)

is called the stress vector or traction (Fung (1965)). The lincar relationship of
the stress vector ¢ acting on a surface and the normal v is given by Cauchy’s

9




formula, which in subscript notation is given by
tj = Ty Vi, (22)

in which 7;; represent the components of the stress tensor 7. The stress
vector ¢ can be written as the sum of two components, according to

=t"+ 17, (2.3)

with the normal stress vector £* as the component of the stress vector acting
in the direction of the normal v, and with the shear stress vector t°, acting
parallel to the plane of the surface with the normal v. The components of
the normal stress vector are given by

t,ILl = tkl/k-l/,; = TmkVmVrV; = OV;, (24)

in which ¢ = TpkVmVi is the magnitude of the normal stress. When the
orientation of the surface is such that its normal v is in the direction of the
stress vector ¢, then the stress vector is a called a principal stress vector, while
the direction of the normal v is called a principal direction. In a principal
direction the shear stress vector t* vanishes. To determine such orientations
we rewrite Eq. (2.3) to

£} = TijVi — TmkUmVkVj = Tygls — oV = (Ty5 — 00ij)vi =0, (2.5)

which poses an eigenvalue problem of the stress tensor 7. In this last equa-
tion &;; are the components of |, the symmetrical unit tensor of rank two
(Kronecker tensor). Because the stress tensor is symmetric, Eq. (2.5) has
three non-vanishing orthonormal eigenvector solutions {v®),»®, 1} asso-
ciated with three real principal stresses {oV),0® o3}, if and only if the
determinantal equation satisfies

det (7 —ol) = 0. (2.6)

Hence, if the Cartesian coordinate frame is rotated such that its axes coincide
with the principal axes, we have for the matrix of components of T,

o 0 0
r=(0 o® 0 ]. (2.7)
0o 0 o®

10



In this respect, for a general coordinate frame orientation, the diagonal com-
ponents of T are referred to as the normal stress components, whereas the
non-diagonal components are called the shear stress components. Eq. (2.6)
can be written as the characteristic equation,

~a? 4+ 1Wg? — [P 4 O =0, o€ {oW @, o®}, (2.8)
in which {I(V, I® I®} are the invariants of the stress tensor 7, given by
IV =r1,=0W 4@ (2.9)
1
1% = 5 CktmEpgm TpkTql = oW 0@ g 4 5350 (2.10)
1
1(3) - g €klmCpgrTpkTql Trm = 6(1)0(2)0(3)' (211)

The first invariant, 1", equals the trace of 7, the second invariant, 1,
equals the sum of sub-determinants produced with the components of the
main diagonal of 7, and the third invariant, I®), is equivalent to the de-
terminant of 7. In Egs. (2.10) and (2.11) ¢ represent the components of
the antisymmetrical unit tensor of rank three, also known as the Levi-Civita
tensor, which is defined as

even :
odd permutation of {1,2, 3},

1 .
€ijk = { tl when {i, 7, k} is an
and
€5 = 0 when not all subscripts are different. (2.12)

The normal and shear stress magnitudes, o and 7, for arbitrary orientations
can be obtained by a coordinate transformation. One can show (McDonald
(1996)) that any pair {o,7} obeys the following system of equations

2 3\ 2 2) _ ~(3)\ 2
(U_M) a2 <M> £ (61 = 6®) (o — o)

2 2
(1 3)\ 2 ) _ _(3)\ 2
(U _ #) I (%) + 12 (6 = 50 (6 — 5
M 4 @\?2 1) — 5@\ ?
(0- - #) NI (%) 1+ (6@ — o0) (6® — o)) .
(2.13)

The admissible {0, 7} values determined by these last equations are plotted
as so called Mobhr circles in Figure (2.1).
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Figure 2.1: Mohr circles. The grey area represents admissible magnitudes of
normal and shear stress pairs.

2.2 Constitutive equations of poroelasticity

A porous rock can be modelled by a material consisting of a solid phase and a
fluid (gas or liquid) phase. Quantities associated with either the solid or fluid
phase are represented by .* and .[ superscripts, respectively. The constitutive
equations for a linear elastic fluid-saturated porous rock, according to Biot
(1941); Rice and Cleary (1976); Segall (1992); Chen and Nur (1992), are
given by

7i; = Cinien + o P (2.14)
and
£ £

mf —mf = —playe; + CPL (2.15)

The elasticity relation of Eq. (2.14) is a generalization of Hooke’s law to
porous solids, by incorporating the effect of the the pore pressure P! on the
strain e, in terms of the dry aggregate stiffness C and Biot’s pore pressure
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Symbol Name Unit

T stress Pa

Pf pore fluid pressure Pa

e strain (deformation)

C stiffness of the dry aggregate Pa

a Biot’s pore pressure coefficient

of pore fluid volume density of mass kg.m™
mt fluid mass per unit volume kg.m?
¢ scalar quantity m 2.2

Table 2.1: poroclastic quantities and their units

coefficient a. Eq. (2.15) relates the pore pressure to the fluid mass change
per unit volume, m! —mj, from some initial state mi, and the strain, in terms
of Biot’s pore pressure coefficient, pore fluid volume density of mass pf, and
a scalar quantity (. The poroelastic quantities of Egs. (2.14) and (2.15)
are summarized in Table (2.1). We adopt the convention that compressive
stresses are taken positive which is common in rock mechanics. To have
positive displacements correspond to positive stresses we take, if w is the
displacement vector of the particle initially at , its final position to be

' =x—u, (2.16)

(Jaeger and Cook (1979)). The components of the strain tensor are given in
terms of differential displacements by

€ij = %(@'Ui + 0i;) (2.17)

with u; being a component of the displacement vector. The strain tensor
e is, from this last equation, easily seen to be symmetric. For Am/ = 0,
i.e. undrained conditions, the pore pressure exerts a strain without causing
a fluid mass change. In this casc the scalar quantity ¢ in Eq. (2.15) can be
determined as

_ Alagey

£ f
m —mo

Using the symmetry of the stress tensor 7, which follows from the balance
of angular momentum, and the symmetry of the strain tensor e, the stiffness
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C has the following symmetry properties
Cijki = Cjire = Cyar = Cijix- (2.19)

The inverse of the stiffness, the compliance S, is obtained as

SijmnCrankt = A;rjkl, (2.20)
in which
L1
D = 3 (Oirdj + 0udjk) (2.21)

is the symmetrical unit tensor of rank four (de Hoop (1995)[p. 1015]). Using
Eq. (2.20), Eq. (2.14) can be rewritten in terms of the compliance tensor,

€Emn — Sm'mlj (Tij - Oéz‘ij) ) (2-22)

in which the symmetry of e was used. From this last equation 1t is apparent
that within the current model the deformation is completely determined by

the effective stress 7%,

0 =1 — aP". (2.23)

The concept of effective stress was introduced by van Terzaghi (1943) and fur-
ther developed, amongst others, by Hubbert and Rubey (1959); Nur (1971);
Carroll (1979); Chen and Nur (1992). From Egs. (2.22) and Eq. (2.23) it is
apparent that the effective stress is associated with the deformation of the dry
aggregate through S. Hence, the total stress 7 is, according to Eq. (2.23),
decomposed into a stress 7%, on the solid matrix, and a pressure Pt on the
fAuid. The effective stress, and hence the deformation of the porous solid, can
be manipulated by changing the total stress or by changing the pore pres-
sure. The effective stress law of Eq. (2.23) enables to simulate deformation
with a certain pore pressure (partially drained or undrained condition) by
experiments without a pore pressure (drained or dry condition), the latter
case being represented by

% = 1y, (2.24)

by taking

T |piog =T — Pl (2.25)
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The triaxial stress experiments described in later chapters were conducted
under dry conditions, i.e. no liquid saturant and under atmospheric pore
pressure. Using Eq. (2.25), and assuming values for the components of «,
these dry experiments can be related to the in-situ reservoir situation, where
deformations are induced by pore pressure changes representing hydrocarbon
extraction or injection operations.

Biot’s coefficient « is derived, by following a superposition procedure in
Nur (1971) and Carroll (1979), as

@ij = 0ij — CigttSkimmy (2.26)

in which S°® is the compliance of the solid phase. The deviation of the com-
pliance of the dry aggregate S from S°® is a measure for the porosity. Hence,
o depends on the porosity. The components of a vanish for zero porosity
because then § = S°. For natural rocks the compliance of the dry aggregate
material is often much larger than the compliance of the solid phase. In that
case a =~ |. Using Egs. (2.20) and (2.26), Eq. (2.22) can be rewritten to

Emn = SmnijTij — (Smnij — S,Snm-j) (5,‘ij. (227)
Hence, the larger the difference between the components of § and S® the

larger the component of the deformation induced by the pore pressure.

2.2.1 Equivalent fluid model

Following de Hoop (1995)[p. 343] we consider an equivalent fluid model by
taking into account only dilatational deformation. To this end, Eq. (2.27) is
contracted yielding

Emm = Smmijnj — (KJ - I‘\?S) Pf, (228)

in which the dry aggregate compressibility x and the compressibility for the
solid phase x* are given by

K= Smmii and K° = S',Snmna (229)

respectively. The invariant e, is the volumetric strain or compression (neg-
ative dilatation). When considering the deformation of a spherical solid to an
ellipsoid the volumetric strain is the ratio of the change in area to the origi-
nal area of the sphere. The volumetric strain e,,,, is positive when the area



is decreased. The stress tensor is decomposed into an isotropic confinement
pressure P and a deviatoric stress according to

Tij = P(SZ] + (Tij - P(SZJ), (230)
with
Tii
P=— 2.31
: (2.31)

Multiplying this last equation with S,,,,; yields the same equation in terms
of deformations,

SmnijTij = Smnij Pij + Smnij (15 — Péij) - (2.32)

In accordance with the equivalent fluid model, we neglect the deformation
due to the second term in the right-hand side of Eq. (2.32), and approximate
Eq. (2.28) by

emm = kP, (2.33)
with the effective confining pressure given by
P =p_aPf (2.34)
and with the scalar Biot’s coefficient « given by,

a=1-—. (2.35)
K

This last equation is the expression for a proposed by Geertsma (1957) and
Skempton (1960). The effective stress for « = 1 is the original form intro-
duced by van Terzaghi (1923). According to Eq. (2.35) a =~ 1 if kK >> &,
i.e if the compressibility of the dry aggregate is much larger than the com-
pressibility of the solid phase. This is the case for unconsolidated soils with
a high porosity, which settlement under an applied load was the original field
of investigation of van Terzaghi (1923). In consolidated rocks with a lower
porosity « is smaller than in soils. Assuming dilatational deformation only
in Eq. (2.15), we obtain

mf —ml = —plaen, + CP', (2.36)
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with ¢ of Eq. (2.18) now given by

‘= plaemm
Pt ¢

f—
m =myg

(2.37)

which is proportional to the compression (negative dilatation) of the porous
solid per unit pore pressure increase under undrained conditions. Eqs. (2.33)
and (2.36) are derived by Jaeger and Cook (1979)[p. 211-231] starting from
equations with isotropic coefficients. Eq. (2.33) shows that an increase in
the confining pressure causes a contraction, whereas a pore pressure increasc
causes a dilatation of a porous solid. Eq. (2.36) shows how these processes
are related to fluid mass changes. A fluid mass increase of mf — m/ causes
a dilatation and a pore pressure increase. Consider the following finite dif-
ference increments, AP', AP and Ae,,,, applied to Eqs. (2.33) and (2.36).
Under perfectly constrained conditions there is no change in the volumetric
strain, i.e. Aen, = 0. Then a fluid mass change of mf — mf is counter-
balanced by a fluid pressure increase of APf = (mf — mi)/¢, which puts
the porous solid under a confining pressure AP = aAP!. If a porous solid
is free from constraints, i.e AP = 0, then the dilatation equals —skaAP!.
Rocks surrounding a reservoir are neither free from constraints nor perfectly
constrained. Fluid extraction, for which m! < mf, causes a contraction of
a reservoir which under constraining conditions puts it into tension which
stresses the surrounding rock (Segall (1992)).

2.2.2 Isotropy
For an isotropic solid we have
Cight = 3MAYy + 2u0 L, (2.38)
and
i = ady, (2.39)

with the diagonalising unit tensor of rank four given by,

1
AL, = 300k, (2.40)

2

(de Hoop (1995)[p. 1014]), and the symmetrical unit tensor of rank four AT
given in Eq. (2.21). The scalar Biot’s coefficient « is given in Eq. (2.35). The
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coeflicients A and p are known as the Lamé coefficients. Hence, for isotropic
symmetry Eqgs. (2.14) and (2.15) become

2pei; + Aennijy = Tij — PGy, (2.41)

mf —mb = —plaenm + CP, (2.42)

respectively. Eliminating the volumetric strain ey, in Egs. (2.41) and (2.42),
by substituting Eq. (2.33), yields

v 1—2v

2Neij =Ty — m i 1+ OAPf(Sij, (243)
and
mf —mi = —p'ka [P— (a+ f )Pf], (2.44)
P
with

K = (,\ + %M) B . (2.45)

In these last calculations we used

3(1—2v)
e 2u(l+v)’
with v representing Poisson’s ratio, defined as the ratio of lateral expan-

sion to longitudinal contraction (see Jaeger and Cook (1979)[p. 110-111]).
Introducing Skempton’s coefficient B,

B=(a—|— ¢ >_1, (2.47)

ko

2uv

A=
1—2v

and (2.46)

Eq (2.44) is rewritten to

mf —mi = —p'ka (P— B'PY . (2.48)
For undrained conditions Skempton’s coefficient is given by
Pf
B="— , 2.49
Pl (249)

which is the ratio of the pore pressure to confining pressure, a measure which
can be obtained from laboratory experiments.

18



2.2.3 Darcy’s law

The constitutive law which governs pore fluid diffusion is given by Darcy’s
law,

k f
of + 2 9,p' =0, (2.50)
n

in which the fluid mass flow density ®' is related to the gradient of the pore
fluid pressure. The constitutive parameters k and 7 are the permeability
and the fluid viscosity, respectively. The quantities describing fluid flow are
summarized in Table (2.2).

Symbol Name Unit

&f fluid mass flow density kg.m *.s!
k permeability m?

i fluid viscosity Pa.s

Table 2.2: Fluid flow quantities and their units

2.3 Field equations

For static phenomena, the stress tensor obeys the following equilibrium equa-
tion,

8]-7'1-]- = 0. (251)

The symmetric strain tensor e has in general six independent components.
They are however defined, see Eq. (2.17), through the displacement vector
which has at most three independent components. To ensure the existence of
a single-valued continuous displacement field corresponding to a given strain
tensor we need the so called compatibility conditions for the strain (Maugin
(1993)[p. 54-57]), given by

Eijkflmnaj87nekn - 07 (252)

with the Levi-Civita tensor € given in (2.12). In the following derivation we
assume that the porous medium is isotropic and homogeneous. Taking twice
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the gradient of Eq. (2.41) and substituting the equilibrium equation of Eq.
(2.51), yields

200,055 + A0y0,enn = -0, PE. (2.53)
Contraction of the compatibility conditions of Eq. (2.52) leads to
0;0j€i5 = OgOynn, (2.54)
in which we used

(0mOkn — Ojndkm) , (2.55)

B | =

€ijk€imn = 207 and A7

jkmn jkmn —

with A~ representing the antisymmetrical unit tensor of rank four (de Hoop
(1995)[p. 1016-1017]). Substituting Eq. (2.54) into Eq. (2.53) yields the field

equation for the volumetric strain,

0yOgenn = — a0 P". (2.56)

1
A+ 2u
For vanishing pore pressure this last equation shows that the volumetric
strain obeys Laplace’s equation 0,0,€,, = 0, (Jaeger and Cook (1979)[p.
118]). Subsequently, taking twice the gradient and multiplying twice with
the Levi-Civita tensor €, the constitutive equation (2.43) is rewritten, sub-
stituting the equilibrium equation (2.51), as

v
Epki€qljOkOTij — T+ (8pgOnOm — 0,0,) P
1-2v

=, (6g0r 0, — 0,0,) P* = 0. (2.57)

In this last equation we used

Epki€qli = 2A (258)

pkql?

with A~ given in Eq. (2.55). Contracting Eq. (2.57), using the equilibrium
equation of Eq. (2.51), yields the field equation for the confining pressure,

2(1 - 2v)

%P =3y

a&kBka. (259)
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2.4 Stress diffusion

The conservation of mass is expressed by
omt + 0, @5 = 0, (2.60)

which is also known as the continuity equation of mass flow. Using the
constitutive Eqgs. (2.44) and (2.50) this last equation is rewritten to

k 3a (1 — 2v)
~0,0,P' + ———
778 T ou)

Using Eq. (2.59) we obtain

oo 2u(1+4v) £
aqaq{P R TR

_ 4+ [A-2w)pfe? +2u (1~ v)(]
o 3(1-v)(1—2w)pla O P". (2.62)

2u(l+v)

fi_

8t [P—O{Pf—

Substituting this last equation into Eq. (2.61) we arrive, in terms of Skemp-
ton’s coeflicient B of Eq. (2.47), at

1 1 1
3q8q[P——§Pf] —Eat{P——B—Pf} =0, (2.63)

with the coefficient of consolidation or diffusivity given by
_k[20-v) o

nlat(l—2v) (|’

Eq. (2.63) is the equation derived by Rice and Cleary (1976)). Using the

effective stress law of Eq. (2.34), Eq. (2.63) can also, in terms of the effective
confining pressure, be written as,

(2.64)

040, [Peff - fLPf:| ) [Peff _t Pf] —0.  (265)

plak C pfak

The diffusivity C' has the units of meters squared per second. Hence, the
diffusion equation (2.63) can be interpreted as the area expansion of the field
P — B7'P!. According to Eq. (2.64) the diffusivity is proportional to the
permeability k£, and inverse proportional to the fluid viscosity 7. Hence, e.g.,
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one expects a fast expansion of the stress field P — B~ P! in case of a high
permeable gas saturated rock, as compared to more viscous hydrocarbons
saturating low permeable rock. The diffusivity in soils, for which « is close
to one (see Eq. (2.35)), is smaller than in consolidated deep reservoir rock,
with o smaller than in soils. The porosity dependence of the diffusivity is
included through the parameters o of Eq. (2.35) and ¢ of Eq. (2.37). A
higher porosity leads to a higher compressibility of the dry aggregate, which
yields a higher value for . One expects that a higher porosity also yields a
lower value for pf/¢, which is the pore pressure increase per unit compression
under undrained conditions. Hence, through « and (, an increase in the
porosity gives a decrease in the diffusivity.
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Chapter 3

Failure of rock

3.1 Failure mechanism

In the previous chapter the equations have been presented that govern the
diffusion of the confining pressure, which equals the trace of the stress tensor
divided by three according to Eq. (2.31), and the pore fluid pressure. A
stress diffusion process is initiated by a mechanical disturbance which acts
as a source function. This source function is a function of time and space,
representing e.g. the change of the pore pressure at the well during reser-
voir production or injection operations. The mechanical stress inequilibrium
thus imposed is dissipated away from the well, according to Eq. (2.63), by
a dynamic stress field which cquilibrates for long time. The source function
may also be the stress field associated with a dislocation, which is a spatial
discontinuity in the displacement function, equivalent to, according to Eq.
(2.17), a singularity in the deformation field. The discontinuous displacement
is usually shear but can sometimes be normal depending on the stress condi-
tions. A spatial array of such dislocations, simulates, as a function of time,
the propagation of slip along a fault as in aseismic earth faulting (Rice and
Cleary (1976)). The poroelastic diffusion equation (2.63) generates the evo-
lution of the confining pressure and pore pressure. Using the field equation
of Eq. (2.56) instead of Eq. (2.59) one could also derive a diffusion equation
in terms of strain and pore pressure, from which the evolution of deformation
can be calculated. To establish if slip (singular strain) will occur within the
linear elastic theory a failure criterion is needed. As the state of the mate-
rial approaches failure, depending on the type of material, several modes of
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failure can occur. Brittle failure means a complete loss of cohesion across
a plane such that the ability to resist load decreases with increasing defor-
mation. Beyond the failure surface in stress space ductile deformation (fully
ductile region according to Jaeger and Cook (1979)) may occur, during which
increasing deformation does not impair load resistance. Experiments show-
ing brittle failure and post-failure ductile deformation are shown in Section
(4.5), for the Niederhausen and Bad Diirckheim sandstones, the sandstones
being described in Section (4.4). Rocks show a transformation from brittle to
ductile behaviour upon failure when the confining pressure and/or tempera-
ture increases. This behaviour, for several confining pressures, is also shown
in Section (4.5). Ductile behaviour is observed in limestone and halite, and
other sedimentary rocks, and marble (Jaeger and Cook (1979)). Such mate-
rials deform elastically up to a certain yield stress, beyond which no greater
stress can be sustained. The super-yield stress flow behaviour is called plastic
deformation. The total behaviour is described by elastoplastic theory. The
onset of plastic behaviour is determined by a yield criterion which is a rela-
tion between the principal stresses. The presence of e.g. relatively ductile
rock salt (containing halite), in a reservoir environment of more brittle sand-
stones, is quite significant for the macro-mechanical elastic behaviour of the

reservoir, as is shown with numerical elastoplastic simulations in Nagelhout
and Roest (1997); Roest et al. (1999); Roest and Mulders (2000).

3.2 Microcrack model

The dominant mechanism of brittle failure is the nucleation, growth, interac-
tion and coalescence of cracks called microcracks on the laboratory scale and
joints and faults on the reservoir scale. The extension of existing microcracks
creates new crack surface area and consequently dissipates strain energy. The
onset of this process indicates the development of zones of irreversible de-
formation and may be viewed as a precursor to failure. Ultimate failurc
is described by crack coalescence on a macroscopic scale into planar shear
bands, inclined with respect to the principal stresses (Ouyang and Elsworth
(1991)).

Because of the poly-crystalline nature of rocks crack nucleation and growth
will occur at regions of high stress concentrations such as the tips of preexist-
ing cracks, pores or contacts between adjacent grains. Therefore the failure
stress at those regions in an inhomogeneous rock is smaller than the failure
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stress of the single crystal constituents. Another effect of the inhomogene-
ity of rocks is that failure is initiated over a stress interval rather than a
singular stress value, represented by a locus on the failure surface in the
principal stress space. By assigning effective failure parameters by averaging
the microscopic behaviour one can construct a failure surface in principal
stress space which predicts the onset of failure in rocks. A particular stress
state, uniquely determined by the orientation and magnitude of the principal
stresses, causes, through the process of crack nucleation and growth, a cer-
tain orientation and distribution of cracks. By inference, the orientation and
distribution of cracks is diagnostic for the orientation of the contemporary
and historical principal stresses. Hence, determining the directionality of
crack distributions, identified with the anisotropy of the elastic parameters
(Crampin (1982)), one can infer a principal stress state, which could pro-
duce this geometry. In this respect stress-induced anisotropy is an important
concept in stress inference theory.

The effect that a crack-permeated rock has a smaller compressibility than
the same rock without cracks was shown by Walsh (1965a) using a simple
theoretical model. The compressibility is defined, according to Eq. (2.33), as
the fractional volume decrease (equals the volumetric strain €mm ) Der unit of
confining pressure P°%. Walsh (1965a) equates the difference of the effective
compressibility of the cracked material, k, and the compressibility of the
same material without cracks, k™, to the rate of the decrease of the porosity
per unit of confining pressure, according to

Cr
= thp — C(ll_ﬁ‘v‘ff (31)
The porosity ¢ in this last equation refers to the voids in a porous solid
which are susceptible to closure under pressure, making up the so called com-
pliant porosity or crack porosity. The superscript in the compressibility of
the rock without cracks is designated ."P, because this value can be obtained
by a applying a sufficient high confining pressure to a cracked rock, such that
the compliant cracks get closed. In sedimentary rock like sandstone the com-
pliant porosity ¢ is only a small fraction of the total porosity ¢, whereas in
volcanic rocks such as granite the porosity consists often entirely of compliant
cracks. Assuming low crack density (no crack interaction because each crack
is considered in an infinite field) and penny-shaped cracks, Walsh calculates
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for the cracked compressibility,

16 1— (v°)° B
—ghp = 7 )
K=K ( e T T ) (3.2)

in which " is the Poisson’s ratio of the uncracked or crack-closed rock,
[ is the average crack length, and V is the average volume enclosing one
crack, which is a measure for the crack density. Because the average crack
length appears in Eq. (3.2) to the third power the compressibility is strongly
affected by a few long cracks. The compressibility of the cracked rock, &,
increases with increasing crack density.

3.3 Nonlinear stress-strain behaviour

According to the simple model of Walsh, represented by Eq. (3.1), the com-
pressibility of a rock containing cracks depends on the pressure through a
porosity reduction mechanism of compliant crack closure. However, the stress
diffusion equation (2.63) is stated in terms of the elastic parameters, the shear
modulus g, Poisson’s ratio v, and the compressibility «, which are assumed
to be constant functions of pressure, within this linear theory. According
to experimental results published in the literature, and according to the ex-
periments described in this thesis, elastic parameters of rocks depend on the
stress, and vary strongly with stress at low effective stresses. The linear the-
ory described in Chapter 2, assuming stress independent elastic parameters,
is therefore an approximation, only accurate enough for sufficiently small
stress changes. A nonlinear theory would be more appropriate but possibly
too complex to derive analytical solutions. Other parameters occurring in
Eq. (2.63), such as e.g. the permeability k, are also stress dependent, and
assumed to be constant within the stress range of investigation.

In order to investigate the nonlinear stress-strain behaviour of rocks con-
sider in Fig. (3.1) the unconfined stress-strain curve of a Niederhausen sand-
stone (Section (4.5)). Stuart (1992) describes the following processes which
follow this curve preceding failure. The first part of the curve is convex up-
wards and results, depending on the orientation of the crack faces, from the
progressive closure and opening of pre-existing, possibly randomly oriented
cracks. Cracks which are predominantly aligned perpendicular to the axial
stress are closed, while cracks parallel to the axial stress are open. Increased
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Stress—strain curve of Niederhausen sandstone
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Figure 3.1: Axial strain versus axial stress applied to a Niederhausen sandstone
core in an unconfined uniaxial pressure machine. Incorporated is a hysteresis loop.

loading in this first convex upwards part stiffens the rock (Walsh (1965b)).
The convexity is explained by the reasoning that increasing increments of
stress are needed to cause the same increments of strain, because the fraction
of remaining open cracks become increasingly less compliant. A possibly ini-
tial superposition of an isotropic rock matrix permeated by randomly oriented
flat cracks makes the rock effectively macroscopically isotropic. However, the
large influence of relatively few long cracks (see Eq. (3.2)) which share a dom-
inant orientation can make the rock behave anisotropically. The progressive
crack closure process in a single direction induces transverse isotropy with re-
spect to the elastic behaviour of the rock. This means that the rock is stiffer
in the direction of the axis of symmetry than in the directions perpendicu-
lar to it. Three different principal stresscs upon a rock with initial intrinsic
isotropic symmetry induces an orthorhombic symmetry. Upon unloading, the
cracks will open elastically and the small permanent deformation observed is
due to the settling of the rock matrix by grain sliding and rotation. Second
loading is completely elastic because subsequent unloading shows no extra
permanent deformation.

The second approximately linear part of the stress-strain curve in Fig.
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(3.1) results probably from a balance due to the superposition of the effects
of continued closure, frictional sliding across the closed surfaces, and the
extension of cracks. Microcrack propagation (nucleation and extension) is in
the direction of the largest principal stress.

The last concave downward part of the stress-strain curve is due to in-
creasing growth and deformation of cracks, parallel and perpendicular to the
largest principal stress direction, to form a serrated failure plane connected
through crack tips and inclined to the principal stress directions. The rock
is progressively less able to sustain stress, a process called strain weakening.
The linkage of previously isolated propagating cracks into serrated shear
bands results in macroscopic failure (Ouyang and Elsworth (1991)). In this
last part the rock becomes more compliant. The damage incurred by the rock
is apparent as permanent deformation after unloading. After failure the rock
is greatly reduced in strength while the strength itself is determined by the
cohesive (frictional) forces across the failure plane rather than by the intact
strength of the rock. The phenomenon that strains occur at discrete posi-
tions, such as at crack faces, grain contacts and, on a larger scale, ultimately
at the shear failure plane, is known as strain localization. This process is also
discrete in time due to its so called stick-slip behaviour. Strains are perceived
to be continuous when the temporal and spatial scale of the measurement is
much larger than the temporal and spatial scale of the phenomenon itself,
such as with stress-induced crack growth in laboratory samples.

3.3.1 Hysteresis

Rocks may follow a different stress-strain path when unloaded compared to
the loading curve as can be seen from the unloading-loading loop incorpo-
rated in Fig. (3.1). This phenomenon is called elastic hysteresis and occurs
when more work is done on the body during loading, by the process of fric-
tional sliding of crack faces, than is done during unloading (Walsh (1965b);
Jaeger and Cook (1979)). Hence, the apparent Young’s modulus during
uniaxial loading depends both on the crack closure mechanism as well as
on the effective friction coefficient of the opposing two surfaces of a closed
crack. According to Walsh (1965b), the initial apparent Young’s modulus
upon unloading is larger because cracks which have undergone sliding do not
immediately slide back. Therefore, Walsh (1965b) suggests that this modu-
lus gives the best estimate of the true modulus of the rock matrix without
cracks.
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3.3.2 Dilatancy

Another measure of deformation is the invariant volumetric strain e,,,,, which
is the sum of the principal strains. The volumetric strain equals the ratio of
the change in volume of the rock during compression to the original volume
in the absence of any applied stress. Near failure, under compression, rocks
show the behaviour that the volumetric strain becomes negative. This means
that under compression the rock increases in volume, a phenomenon known
as dilatancy. Dilatancy is caused by the nucleation and growth of open cracks
which have their long axis parallel to the direction of the maximum principal
stress (Jaeger and Cook (1979)). The opening of cracks is inelastic and occurs
at far higher deviatoric stresses than the elastic opening of cracks at the first
part of the curve in Fig. (3.1).

3.4 Granular model

In the above description of deformation and failurc few remarks were made
about actual granular nature of many sedimentary rocks and its effect on
these phenomena. Schutjens (1995) reported no uniaxial stress-induced inter-
nal grain deformation, which could be identified with inelastic deformation,
after inspection with a scanning electron microscope. Therefore Schutjens
(1995) suggests that the inelastic deformation is explained by local minute
changes in grain contact configurations, caused by grain sliding and/or grain
rotation, triggered by inter-granular crack formation, or by intra-crystalline
plastic deformation (dislocation propagation within crystal), or by brittle de-
formation of the weaker minerals in the load-bearing quartz mineral frame-
work, such as corroded feldspars. The inter-granular cracks originate and
grow due to breakage of micron-size or sub-micron-size asperities at either
grain or cement contact surfaces. Hence, deformation of a sandstone can
be explained by failure processes at grain boundaries and inside relatively
weaker minerals (Schutjens (1995); Hettema (1996)). Explaining damage by
crack mechanics within a rock matrix is a mere conceptual model for sand-
stones encompassing a range of complex phenomena. In sedimentary rocks,
like high porous sandstones, inelastic deformation associated with grain slid-
ing, rotation and crushing can lead to substantial porosity reduction and
compaction weakening. Schutjens (1995) shows that the inelastic deforma-
tion increases with increasing porosity of quartz-rich sandstones. Other pa-
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rameters that influence the deformation behaviour of rock are also cited by
Schutjens (1995). For example, a decreasing indentation parameter, which
is the average contact length between adjacent quartz grains divided by the
average grain diameter, a measure for the inter-granular pressure solution,
correlates with an increasing compressibility. A relatively higher concentra-
tion of (partly corroded) feldspar grains weakens the quartz load-bearing
framework and hence decreases the compressibility.

3.5 Sub-critical crack growth and creep

Crack growth proceeds when the stress at the crack tip exceeds a critical
value called the critical stress-intensity factor. Given enough time cracks
may grow under sub-critical conditions. The mechanism which can cause
sub-critical crack growth are driven chemical effects due to the presence of
pore water, such as: stress corrosion, dissolution, diffusion, ion exchange
and micro-plasticity (Atkinson (1984); Hettema (1996)). Stress corrosion is
probably the main mechanism for sub-critical crack growth. Its effect is that
it degrades the strength of rock, subject to small strain rates, over time.
Continued stress can also increase the strength of a rock by the frictional
related process of strain-hardening. The time-dependent deformation pro-
cesses are categorized under the term ’creep’. The models describing creep
are often power law functions of time. Delayed deformation can explain the
randomness in time of failure processes like earthquakes but also impair the
possibilities of predicting these phenomena (Evans (1984)).

3.6 Failure criteria

A failure criterion is a surface in the principal stress space at which failure
takes place, represented by the functional relationship o® = f (@, o),
in which the principal stresses, o*), 0@ and ¢® are solution of the deter-
minantal equation (2.6). The simplest failure criterion is the linear Coulomb
criterion, which, in case of an anisotropic medium, is given by

7| =7° + tany (o — vy P, (3.3)

(Jaeger and Cook (1979); Chen and Nur (1992)). Anisotropic failure is very
common because rocks have often multiple planes of weakness. The Coulomb
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criterion of Eq. (3.3) is shown in Fig. (3.2), together with the Mohr circles in
{0, 7}-space. The normal stress magnitude o and the shear stress magnitude

Figure 3.2: Locus of failure (¢’,7') given by a linear Coulomb criterion touching
a Mohr circle

7 are solutions of Eq. (2.13), and are depicted in Fig. (2.1). The intercept
shear stress 70 is the inherent shear strength or cohesion, and 1) is the angle of
internal friction, the latter two parameters both depending on the anisotropic
properties of the rock. Biot’s coefficient o is given in Eq. (2.26). The
normal vector to the failure plane is given by v. Failure takes place at
(o,7) = (o', 7"), where the shaded area of possible (o, 7)-values touches the
coulomb failure criterion of Eq. (3.3). There are two possible planes of failure
oriented in the direction of the intermediate principle stress and making
angles of /4 — /2 with the direction of the maximum stress (Jaeger and
Cook (1979)).

Another failure criterion was proposed by Mohr who hypothesized that
normal and shear stress magnitudes are related by the functional relation

|l = f(o), (3.4)
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(Jaeger and Cook (1979)). The curve in (o, 7)-space associated with Eq.
(3.4), which is called a Mohr envelope, can be found experimentally by per-
forming several triaxial experiments under varying stress conditions (See Sec-
tion (4.5)).

The Griffith criterion is based on the assumption that failure is caused by
stress concentrations at the tip of minute Griffith cracks which are supposed
to pervade the material. Griffith’s failure criterion depends on the balance
of consumed surface energy and the supply of mechanical energy for an in-
finitesimal increase in crack length. This energy balance concept enables to
derive the equation of motion of a crack tip. The Griffith criterion is equiv-
alent to the existence of a critical stress-intensity factor, beyond which the
crack will extend. (Aki and Richards (1980)). Murrell’s extension of the
original two-dimensional Griffith criterion to three dimensions represents a
paraboloid, with symmetry axis o) = ¢® = ¢® in the principal stress
space (Jaeger and Cook (1979)).

3.7 Pore fluid pressure changes

To assess the effect of pore fluid pressure changes in a reservoir we review
the effective stress law of Eq. (2.23) for the isotropic case,

T = 7 — aPfl, (3.5)

with the scalar Biot’s coefficient « given in Eq. (2.35), and | being the unit
tensor of rank two. This last equation and Fig. (3.3) show that a pore pres-
sure increase, caused by e.g. fluid injection (dashed semi-circles), decreases
the normal effective stress, but has no effect on the shear stress. Decrease
of the normal stress on a possible failure plane, e.g. a fault plane, while
the shear stress remains constant, destabilizes the fault and can induce slip
along the fault. Fault stabilization occurs when the pore pressure decreases,
due to e.g. fluid extraction (dotted semi-circles), which increases the normal
stress on a plane. Both processes are indicated by the arrow in Fig. (3.3).

Using Eqgs. (2.23) and (2.26), Chen and Nur (1992) give examples of the
deviatoric effect of pore fluid pressure in anisotropic rocks. This means that
the pore pressure also effects the shear stress. They show that, given a cer-
tain anisotropy in the stiffness tensor, a pore pressure increase can stabilize a
fault, while a pore pressure decrease can have a destabilizing effect, see Fig.
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Figure 3.3: Pore fluid pressure changes in an isotropic medium causing transla-
tion of the Mohr circles in (o, T)-space. Failure induced by fluid injection. Fluid
extraction stabilizes material.

(3.4), in contradistinction to the isotropic case, shown in Fig. (3.3). Con-
versely, the deviatoric effect in anisotropic rock can enhance the stabilization
or destabilization compared to the isotropic case where the shear stress does
not alter. This latter result is shown in Fig. (3.5), in which a pore pressure
increase causes more destabilization on the fault plane, compared to the case
shown in Fig. (3.3), whereas a pore pressure decrease stabilizes the fault
more for the situation depicted in Fig. (3.5) than in Fig. (3.3).

3.8 Seismicity

Stresses build up in a fault region can suddenly be relaxed by slip along
the fault creating an carthquake. In this so called seismogenic zone regions
of high strength form, called asperities, which act as barriers to slip causing
high stress concentrations in their vicinity. Asperities may act as sites for the
nucleation of large earthquakes, while their distribution tend to control the
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Figure 3.4: Pore fluid pressure changes in an anisotropic medium causing a trans-
lation and a decrease or increase of the Mohr circles in (o, T)-space. Failure induced
by fluid extraction. Fluid injection stabilizes material.

propagation of rupture along the fault. Slip along an internal surface can be
represented by a continuous array of displacement discontinuities called dislo-
cations. By synchronizing the temporal behaviour of each point dislocation,
equivalent to a moving point dislocation, material failure nucleation and the
spreading of rupture, together with the rupture velocity, along the surface can
be described. This complex mechanism acts as a source for seismic waves.
The amplitude of the seismic wave depends on the temporal behaviour of
the slip functions. Slow dissipation of built-up strain energy results in a rela-
tively small amplitude wave, which may be below detection threshold of the
seismometers. Rapid release of energy, as with brittle fracture, induces high
amplitude waves. If the displacement discontinuity across a fault surface is
known as a time-dependent function of position on the fault, then seismic
motions throughout the medium are completely determined. This enables to
interpret the observable seismic motions that radiate from the source region
in terms of motions on a fault. The principal stress directions on the fault
plane, which eventually reach a certain failure criterion, can be predicted by
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Figure 3.5: Pore fluid pressure changes in an anisotropic medium causing a trans-
lation and a decrease or increase of the Mohr circles in (o,7)-space. Failure
induced by fluid injection. Fluid extraction stabilizes material. The stabiliza-
tion/destabilization is enhanced by the deviatoric effect of the pore fluid pressure.

dynamical modelling of the rupture process, which describes the movement
of a fault tip. Hence, studying the seismic waves, inferences can be made
about the location of the earthquake source, the orientations of the fault,
the principal stress directions and the rupture mechanism (Aki and Richards
(1980)).

3.8.1 Microseismicity

At the microcrack scale the elastodynamic energy, associated with crack nu-
cleation, crack growth and inelastic grain consolidation, is generally called
acoustic emission or microseismicity. First arrival measurements of acoustic
emission wave forms, with ultrasonic transducers, enables to locate the rup-
ture process. Acoustic emission amplitudes indicate the source mechanism
as they depend e.g on the rate of change of incremental crack size (crack ex-
tension velocity). In that respect, acoustic emissions are very sensitive to the
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small crack length increments, with high extension velocity, in brittle rock,
and less sensitive to low extension velocity, large crack length increments, in
ductile material (Stuart (1992)). An important measure is the acoustic activ-
ity which is the number of acoustic emissions above a certain threshold during
an increment of time. It yields information on the overall rate of microcrack
growth which is a measure for the damage accumulation rate. The accu-
mulative acoustic activity from the onset of an experiment is a measure for
the total damage incurred by the specimen. Stuart (1992) reports no acous-
tic emissions measurements upon uniaxial loading of Darley Dale sandstone
specimens at the first region shown in Fig. (3.1), where elastic opening and
closure of microcracks occurs. At the onset of new microcrack growth, in the
linear region (40-50 % of the maximum compressive strength), the acoustic
activity rises approximately exponentially with increasing stress, until to-
tal failure. Schutjens (1995) shows uniaxial compaction data of quartz-rich
reservoir rock with a range of porosities. The cumulative amount of acoustic
activity of the high porous samples, which show strain weakening and an in-
crease of the compressibility, is one to two orders higher than that of the low
porous samples, which show a more elastic response, indicated by a relatively
constant and lower compressibility. Upon second loading all samples show a
smaller compressibility than when subjected to the first loading. The ratio
of second loading compressibility to first loading compressibility decreases
with increasing porosity. Second loading acoustic activity is relatively low
compared to the first loading. When the effective axial stress of the second
loading is increased up to 5 to 10 MPa of the maximum effective axial stress
of the first loading a renewed increase of the acoustic activity is observed.
This stress memory phenomenon is called the Kaiser effect. Stuart (1992)
defines the Kaiser effect as “the absence of acoustic emissions at stresses be-
low a previously applied stress with an abrupt increase when that stress is
exceeded”.

3.9 Reservoir stress dynamics

In the literature many cases can be found on the geomechanical effects of
reservoir operations. Grasso et al. (1992) lists three categories of sources of
mechanical instabilities induced by the recovery of hydrocarbons,

¢ fluid injection,
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e fluid extraction,
e mass transfer and fluid circulation.

As is explained in the previous section a pore pressure change, either an in-
crease due to fluid injection or a decrease due to fluid extraction, can locally
destabilize a fault. The local decrease of the effective stress due to fluid injec-
tion as a cause for instability is obvious. Seismic instability related to fluid
extraction, except for certain cases of anisotropy (see Figs. (3.3), (3.4) and
(3.5)), is less clear. On a larger reservoir scale, fault instability due to fluid
extraction is explained in Grasso et al. (1992) using the poroelastic stress
transfer principle. The interaction between hydraulic diffusivity (permeabil-
ity) and stress diffusivity, modelled by the diffusion equation (2.63), causes
anomalous stress distributions away from the well, particularly at large con-
trasts in the elastic and flow material parameters, manifested by differential
compaction at the edges of a reservoir (Roest and Kuilman (1994)). The
diffusive process also explains the apparent time delay of deformation effects
like subsidence and seismicity with respect to the time of reservoir operations.
Poroelastic stress transfer also plays a role in large fluid injection operations,
like secondary recovery methods and pore pressure maintenance operations
to facilitate production in nearby wells, whereby stress transfers along pre-
existing fractures to areas with seismic unstable faults (Grasso et al. (1992)).
When examined on a larger reservoir scale the release of strain energy by de-
formation associated with transferred stress will occur at the weakest places.
Grasso argues that pore fluid pressure manipulations cause predominantly
seismic instabilities along preexisting tectonic faults. Small magnitude scis-
mic activity originates from microfracturing in the vicinity of a large effective
stress gradient, with small time delay, while large magnitude seismicity oc-
curs at fewer places, often remote from the producing or injecting wells, and
with possibly large time delays. The larger events depend on the deformation
of the entire reservoir, which settles by differential movements along preex-
isting tectonic faults. The scale of the magnitude of the events is matched
by its dependency on a larger spatial scale of the particular crustal region
and the larger temporal scale in which the seismic events can occur. By con-
sidering the reservoir as a number of discrete stiff blocks, each with its own
geomechanical properties, separated by faults representing planes of weak-
nesses, the deformation of the entire reservoir can be modelled (Nagelhout
and Roest (1997); Rocest ct al. (1999); Roest and Mulders (2000)).
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Secondary recovery involves both fluid injection and extraction. It is part
of the third category of Grasso’s list given above. The imbalance between
depletion and injection zones stresses the rock and can generate fractures.
Cold water injection for enhanced oil recovery causes thermal stressing in
the vicinity of the cold front. The removal of load by massive oil extrac-
tion is known to have been the cause of major seismic events. Poroelastic
stress transfer via an aquifer and rocksalt are two mechanism which can
cause seismicity at a large distance from the reservoir itself (Barends et al.
(1995)). Gas reservoir depletion can affect the aquifer pressure and transmit
significant pore pressure. Viscoelastic coupling with rocksalt could trigger a
delayed response.

The induced stress perturbations causing seismicity are small (a few bars),
according to the hypothesis that the continental crust must be nearly every-
where at a state of stress near failure. In this respect the dynamics of the
lithosphere can be described as a self-organized critical phenomenon.

3.10 Crack dynamics

Several mechanisms were discussed in this chapter which explain the relation
between the history of the orientations and magnitudes of the principal ef-
fective stresses and the present alignment of zones of weaknesses, like faults
and cracks. Changes in the arrangements of cracks causes changes in the
elastic moduli of the rock. Hence, the crack model explains the susceptibility
of the elastic moduli of the rock with cracks to changes in the effective stress.
For reservoir rock with relatively compliant pores other mechanisms such as
porosity reduction due to pore collapse also explain stress-induced changes
in the elastic moduli. At low effective stresses the preferential opening and
closure of cracks is a mechanism which affects the elasticity of rocks. Flat
cracks with normals predominantly perpendicular to the direction of the
largest principal stress will preferentially close, while cracks with normals
parallel to the largest principal stress open or stay open. Conditions like
that could occur at high pore pressures near the lithostatic pressure. The
elastic crack closure in this pressure regime is a practically instantaneous
reaction to the changing stress state.

The nucleation and growth of cracks to accommodate a changing stress
state requires relatively high deviatoric stresses, i.e. half the failure stress.
The question is if the required stress levels are present in a reservoir envi-
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ronment to allow crack growth to occur. This might occur during e.g high
fluid pressure injection operations such as hydraulic fracturing or due to high
deviatoric stresses induced by differential compaction caused by the inhomo-
geneity of the fluid pressure (sealing faults).

Dilatancy, which involves the preferential growing of cracks aligned in
the direction of the largest principal stress, occurs near failure at very high
deviatoric stresses. Anomalous high stresses near asperities in the earthquake
preparation zone may be loci of dilatancy (Evans (1984)).

Another mechanism as discussed above is the alignment of cracks caused
by sub-critical crack growth. Crampin et al. (1984) suggest that sub-critical
crack growth causes opening and growth of cracks, parallel to the largest
principal stress, throughout a large part of an earthquake preparation by
stresses one or two orders of magnitude less than those at which dilatancy
occurs. It would explain the occurrence of earthquake precursors at substan-
tial distance away from stress concentrations in the earthquake preparation
zone where dilatancy is unlikely to occur. Crampin et al. (1984) call this
mechanism extensive-dilatancy anisotropy (EDA).

3.11 Stress and wave velocity

The change in the effective elastic anisotropy, which can be modelled by a
change in the alignments of cracks or any other alignment of micro-structural
flaws or defects, induced by a changing stress, is known to affect elastody-
namic waves. As already mentioned in this chapter Walsh (1965a) derives
a model which explains a lower compression modulus (inverse of the com-
pressibility) of a crack permeated solid compared to the same solid without
cracks. Increase of the effective pressure on a cracked solid causes crack clo-
sure and hence an increase in the compression modulus. Wave velocities,
which in elastodynamic theory are a function of the elasticity modulus, are
also known to be affected by the presence of cracks and defects.

Wiyllie et al. (1956) measured ultrasonic waves, using piezo-electric trans-
ducers, through a pile of glass microscope slides in order to affect poor cou-
pling. Ultrasonic velocities measured in the two parallel directions of the
glass plate faces were similar to the velocity of a single slide (17,530 ft/s).
Velocities measured across the pile, perpendicular to the faces, were consid-
erably lower (1,650 ft/s), hence identifying wave velocity anisotropy. In the
same paper ultrasonic velocities of sandstones under uniaxial pressure are
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shown to increase with pressure. The increase is at first rapid but decreases
with increasing effective pressure until a limiting velocity is attained, except
for high porosity samples which collapsed before attaining a limiting veloc-
ity. From this result the presence of microcracks or other generic flaws might
be inferred which show pressure-induced closure. The limiting velocity is
reached when the effective elastic modulus approaches the elastic modulus
of the intact rock matrix due to the pressure action. This latter assump-
tion is confirmed by the observation, described in a later paper by Wyllie
et al. (1958), that different samples from the same rock may show variations
in velocities for fixed effective pressures but the limiting velocities are con-
stant. Wyllie et al. (1958) also verify that wave velocities depend on the
effective stress of Eq. (2.23) by reporting constant velocities (first arrivals)
with samples subjected to an increasing external stress, accompanied by a
simultaneous increase in the fluid pressure.

In Birch (1960) experimental data on igneous and metamorphic rock of ul-
trasonic velocity versus pressure up to 1000 MPa are reported. For example,
Barre granite and Sacred Heart granite show a rapid increase of compres-
sional wave velocity up to 100 MPa, after which the increase slopes down to
small velocity increments per unit pressure at 1000 MPa. Texture dependent
anisotropy is apparent on several samples by the lower velocities of waves
which propagate perpendicular to the foliation or schistosity.

In Nur and Simmons (1969) uniaxial stress experiments are described up
to 30 MPa under dry conditions which concentrate on the effect of stress on
wave velocity anisotropy in rocks. Nur and Simmons (1969) loaded a cylin-
drical sample of Barre granite normal to its axis and measured velocities
parallel to the axis, and also normal to the cylindrical axis, but with variable
angles to the applied load. Compressional-wave velocities, perpendicular to
the axis, increased with pressure in all directions, but the increase becomes
smaller with increasing angle with the applied load, from a maximum at 0 de-
grees down to a minimum at 90 degrees. Hence, they observe a stress-induced
anisotropy, which increases with pressure. For shear-waves which travel per-
pendicular to the axis, polarizations parallel to the axis show a larger stress-
induced anisotropy than polarizations perpendicular to the cylindrical axis.
Nur and Simmons (1969) also verify the occurrence of acoustic double refrac-
tion or shear-wave splitting. Shear-waves, which propagate in the cylindrical
axis direction and are polarized at angles from zero to ninety degrees with
respect to the loading direction, show at intermediate angles an interference
pattern of two wave forms, which can be identified as two shear-waves form-
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ing a split shear-wave pair. This pair comprises a fast and a slow shear-wave
with velocities comparable to the wave velocities in the loading direction and
perpendicular to it, respectively.
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Chapter 4

Description of the experimental
set-up and samples

4.1 The tri-axial pressure machine

The experiments described Chapter 5 were conducted on the tri-axial pres-
sure machine, located in the Laboratory of Rock Mechanics at the Delft
University of Technology, and shown in Fig. (4.1). The machine was de-
signed by J. Gramberg. Each of the three axes of the pressure machine can
build up a computer-controlled maximum force of 3,500 kN. It is not possible
to apply a controlled pore pressure to the rock since it is an open system.
Each uni-axial part of the machine has a piston on one side and a pressure
plate on the other side. All plates, except the bottom plate, are equipped
with spherical seats, which allow for small rotations of the pressure plates,
in case the sides of the sandstone sample are not parallel. The sides of the
sandstone block are longer than the pressure plates to prevent the plates
from touching each other. The forces and displacements are recorded, either
every 10 seconds, or after a change of force of 10 kN, or after a change of
displacement of 0.01 mm, whatever happens first. The displacements in each
of the three axis directions are monitored by two linear variable differential
transformers (LVDT’s). Because of small rotations of the spherical seats of
the pressure plates the average of both LVDT’s is taken to measure the axial
strain. Three ceramic piezo-electric transducers with a center frequency of 1
MHz were mounted in each pressure plate.
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Figure 4.1: Schematic lay-out of the ultrasonic triaxial stress experiment.

4.2 Boundary conditions

In many published experiments (e.g Stuart (1992)) a coupling platen is
present between the piezo-electric transducer and the rock sample. In Groe-
nenboom (1995) the following consequences for the ultrasonic signal are
listed:

e loss of energy,

e creation of reverberations between the faces of the coupling platen re-
sulting in notches in the spectrum of the signal,

e creation of mode-conversions,

which all cause a loss of resolution, making it more difficult to e.g. pick
first arrivals. In the same report several coupling configurations were tested.
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By placing the transducers directly against the sample a high amplitude
localized P-wave arrival is obtained, with a clearly separated S-wave arrival,
without the strong reverberations associated with a coupling plate. Also a
smooth and stable high-frequency band is obtained. In Groenenboom (1998)
experiments are described of acoustic monitoring of hydraulic fracture growth
using this transducer coupling configuration.

To accomplish direct contact of the transducer faces with the sandstone
three holes were drilled through the platen. Through these holes the trans-
ducers are pressed, with the aid of a spring, with a constant force of 900
N on the sample. Shear-wave couplant was applied to the transducer faces
to improve signal quality. To study the relationship between the stress and
the ultrasonic recordings we need an uniform and known stress distribution
within the sample. However the experimental design causes stress gradients
within the sample. In van Dam and de Pater (1995) the influence of the
following factors is investigated:

¢ non-total coverage of the sample by the platens leaving stress-free strips
at the edges of the sample,

e friction-dependent shear-stress between platen and sample caused by
the different elastic moduli of the platen and the sample,

o stress-free transducer holes in the platens,
e imperfect working of the tri-axial pressure machine.

Below I use the data and conclusions from van Dam and de Pater (1995)
to assess the implications for the experiments described in this thesis. Non-
total coverage of the sample by the platens causes a lower normal stress in
the center of the sample than the applied stress at the faces of the sample.
The expected normal stress in the center of the sample, 7¢*, is defined as the
ratio of the end platen surface, AP!, and the sample surface, A%, multiplied
with the applied normal stress, 7P, expressed as

A
r = . (4.1)

Finite difference calculations indicate that the expected normal stress is a
good approximation of the calculated average normal stress along a line par-
allel to an axis direction, from one side to the other side, through the center
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of the sample. When there is a frictional restraint the shear-stress along the
end platen-sample interface also causes a decrease of the normal-stress inside
the sample. This shear stress is not constant, due to the inhomogeneous lat-
eral differential displacement of the platen and the sample. In the middle of
the interface the differential displacement is zero and increases towards the
edges (Al-Chalabi and Huang (1974); van Dam and de Pater (1995)). Given
the configuration of an aluminium end platen, vaseline, 0.1 mm Teflon (poly-
tetrafluorethyleen) and a cement sample, a friction coefficient between 0.001
and 0.01 was measured under a confining stress of 10-20 MPa. A normal
stress decrease of 0.3 MPa for a friction coefficient of 0.005 was calculated.
The friction coefficient decreases after several hours because the vaseline film
thickness gradually decreases. For the experiments described in this thesis
we used the same configuration, except that instead of cement samples we
used sandstone samples, and vaseline was also smeared between the Teflon
layer and the sample surface. The cement surface is much smoother than
the sandstone surface but because the friction between the end platen and
the Teflon is lower than between the Teflon and the sample, movement will
mainly take place between the former surfaces. The transducer holes in the
pressure plate create a circular stress free region. Axisymmetric finite differ-
ence simulations with a stress-free hole at the center yield a normal stress
deviation of 0.82 % at the center of the stress free hole and a deviation of
0.22 % at a distance of 7.5 cm from the center. Large shear-stress near the
hole causes permanent deformation of the sandstone. Inspection of the sam-
ples after a maximum imposed normal stress of 82 MPa shows only minor
visual deformation damage. Concluding, the most significant factor which
diminishes the normal stress inside the sample is the use of end platens with
dimensions smaller than the side of the block.

4.3 Transducers

Three ceramic piezo-electric broad-band transducers with a central frequency
of 1 MHz were mounted in each pressure plate. The central transducer
is a compressional-wave (also called P-wave for primary wave) transducer
(Panametrics V-103) and the two outer transducers are shear-wave (also
called S-wave for secondary wave) transducers (Panametrics V-153). The
two shear-wave transducers have perpendicular polarizations, each aligned
along an axis direction. For the shear-wave splitting experiments the P-
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Figure 4.2: Transducer configuration.

wave transducer is exchanged for a diagonally polarized S-wave transducer
(Figure 4.2). Transducers with corresponding polarizations are positioned
on opposite sides of the sample. The sample frequency is set at 10 MHz.
The record length is 2048, 16 bits, samples. It is possible to measure all
transmitting-receiving transducer combinations, giving a data volume of 18 x
18 x 2048 x 16 = 1.0610° bits per scan. A high-pass filter of 10 kHz and
a low-pass filter with a cut-off frequency of 2 MHz were used. To minimize
trigger effects a post trigger delay was applied.

The transducers are in direct contact with the sample and pressed, with
the aid of a spring, with a constant force on the block. Shear-wave couplant
was applied to the transducer faces to improve signal quality. Using the above
described transducer-sample coupling configuration, a high signal quality was
obtained (Groenenboom (1995, 1998)).

4.4 Sandstone samples

4.4.1 Colton sandstone

The first ultrasonic experiments, described in this thesis, performed by H.M.A.
Cruts and described in (Cruts (1995); Cruts et al. (1995); Dillen et al. (1999)),
were done on a cubic block of Colton sandstone. The Colton formation is
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a eocene fluvial deposit from North central Utah, at the south side of the
Uinta basin, in the U.S.A. The clastic material is deposited at the during
the Eocene. The sample is taken from a channel facies and consists of lithic
quartz and feldspar. It is fairly homogeneous and has a porosity of about 13
% and an unconfined compressive strength of 47 MPa.

4.4.2 Flechtinger sandstone

The second series of experiments (den Boer (1996); den Boer et al. (1996);
den Boer and Fokkema (1996)) were conducted with a Flechtinger sandstone
which is an aeolian Upper Rotliegend Permian sandstone, obtained from the
Sventesius Quarry near Magdeburg in Germany. The quarry is located south
of the Flechtinger Hills at the southern edge of the Southern Permian Basin
(Fig. (4.3)). The Flechtinger sandstone formation consists of massive cross-
bedded aeolian dune sandstone (Fig. (4.4)) of medium grain size of 0.25-0.5
mm. Thicknesses vary, depending on the erosion of the top sequences, be-
tween 18-45 m. North of the location, documented by wells, it can reach
thicknesses of more than 100 m (Weber (1998)). As shown in Fig. (4.5) the
dune sandstone overlies a sequence with conglomerate alluvial fan deposits.
Fig. (4.6) shows a detail of the tangential contact of the crossbedding at the
bottom-set. Three intact rock samples were sawn from a larger piece with its
long axis parallel to the cross-bedding. In spite of the different geological his-
tory of the Flechtinger hills, which were uplifted in the Upper Cretaceous and
the Tertiary, the reservoir quality of the Flechtinger sandstone is still com-
parable to the Rotliegend dune sandstone buried to a depth of 3,000-6,000m.
Laboratory measurements show a porosity of 10.7 %, a permeability of 3.44
mD, and a rock density of 2.65 g/cm3 (Weber (1998)). Measurements at
the Dietz Laboratory resulted in a porosity of 9% and no measurable perme-
ability. The unconfined compressive strength, measured in the laboratory of
Rock Mechanics on three cylinders of 7 cm length and 3 cm diameter, is 75
MPa. The samples we acquired are, as the name suggests, red colored. The
reddening occurs post-depositionally when ferrous ions in the groundwater
were oxidized to the ferric state. Beneath the surface of modern deserts a di-
agenetic environment conducive to reddening is commonly present below the
water table. Reddening is probably mostly an early diagenetic event (Glen-
nie (1990a)). From thin sections digital images were made using the Leica
Quantimet. The characteristic color of the Rotliegend is visible as a thin
coating around the grains (Fig. (4.7)). The name of this type of sandstone
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is an arkose. The category of roundness of the quartz grains is surrounded.
The mineralogy consists of ca. 60% quartz, 20% feldspar, and 20% rock frag-
ments cemented with calcite (Fig. (4.8) and (4.9)). From the thin section
pressure solution of quartz grains is observed, indicating the high level of
compaction. The porosity deduced from the thin sections is between 3 and
5 %, lower than the porosities measured in the laboratory.
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Figure 4.3: Location of the Southern Permian Basin (Ziegler (1981)).
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Figure 4.4: Overview of the Sventesius Quarry. The basement consists of fluvial
deposits overlying massive cross-bedded dune sandstones. The tangential contact
at the bottom of the cross-bedded set can be clearly seen.
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Figure 4.5: Aeolian cross-bedding overlying conglomerate alluvial fan deposits.
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Figure 4.6: Detail of a crossbedding showing steep foreset in upper half of the
figure and tangential bottomset in lower half.
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Figure 4.7: Thin section of the Flechtinger Rotliegend sandstone using unpolar-
ized light. The characteristic color of the Rotliegend is visible as a thin coating

around the grains.

Figure 4.8: Thin section of the Flechtinger Rotliegend sandstone using polarized
light, showing subrounded grains.
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Figure 4.9: Thin section of the Flechtinger Rotliegend sandstone using polarized
light. Mineralogy: feldspar (weathered), rock fragments, multi-grain quartz, meta-
morphic (originally part of e.g. gneiss), quartz, calcite cement, highly compacted,
visible pressure solution of the quartz grains.
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4.4.3 Niederhausen sandstone

The Niederhausen sandstone, used for the third series of experiments, de-
scribed in Swinnen (1997), is a Rotliegend sandstone from an outcrop near
Niederhausen in the Saar-Nahe area in Germany. The samples were acquired
from a quarry run by Fa. Naturstein Faller in Niederhausen am Nahe. A
thin section is shown in Fig. (4.10). The rock is poorly sorted and consists

Figure 4.10: Thin section of the Niederhausen Rotliegend sandstone using polar-
ized light. Orientation of the section is perpendicular to the layering.

mainly of quartz. Several of these grains are grown together, which reduces
the permeability of the rock. According to Schutjens (1996) a permeability of
2.6 mD is noted. Some of the quartz minerals are replaced by calcite. Under
polarized light the quartz minerals show 'unduleus uitdoven’, which is caused
by the stress-induced deformation of the quartz crystal lattice. The thin sec-
tion also shows feldspars (plagioclase), most of which are converted into clay
and iron-hydroxides. The Niederhausen Rotliegend has a yellow-brownish
color because some of the ferric iron-hydroxides have dissolved in reducing
ground waters and precipitated again later (Glennie (1990b)). The porosity
is difficult to deduce from the thin sections. Probably there is some micro-
porosity around the quartz grains. The porosity, measuring 19.3%, and the
bulk density, measuring 2.69 g/cm?®, were determined with a picnometer. The
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layering is visible through the orientation of the mica minerals. The oriented
mica minerals are visible in Fig. (4.10), whereas these same orientations do
not show up in Fig. (4.11), which is oriented parallel to the layering. Fig.

Figure 4.11: Thin section of the Niederhausen Rotliegend sandstone using polar-
ized light. Orientation of the section is parallel to the layering.

(4.12) shows polysynthetic twins which are caused by weathering of plagio-
clase to mica. In Fig. (4.13) we observe sericite which is composed of fine
muscovite layers weathered from plagioclase.

4.4.4 Bad Diirckheim sandstone

The Bad Diirckheim sandstone was also used in the third series of experi-
ments. This sandstone is a Bunter sandstone of Lower Triassic age. Like the
Niederhausen sandstone it was quarried from an outcrop in the Saar-Nahe
area in Germany. The sandstone samples were obtained at the Fa. Zeidler &
Wimmel located in Bad Diirckheim-Leistadt, Baden-Wiirttemberg Germany:.
From the thin section image using polarized light in Fig. (4.14) we can see
that the dominant mineral of the rock is quartz. Some of the grains are
coated with iron-hydroxides which is apparent in Fig. (4.15) in which unpo-
larized light was used. The Bunter Sandstone Formation is known to cousist
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Figure 4.12: Thin section of the Niederhausen Rotliegend sandstone using polar-
ized light. Orientation of the section is perpendicular to the layering. Shown are
polysynthetic twins which are caused by weathering of plagioclase to mica.

of red beds. Glennie (1990b) refers to Walker et al. (1978) and Turner (1980)
for the hypothesis that the red coloration is caused by the post-depositional
degradation of ferro-magnesium minerals, supplemented by detrital ferric hy-
droxides, which form haematite pigment. The red color of the Bad Diirckheim
sandstones has disappeared. A few light-reddish concentrations can still be
seen on the samples. The picnometer test resulted in an average porosity
of 20.2%, and a bulk density of 2.66 g/cm3. According to Schutjens (1996)
a permeability is measured of 953 mD, a much higher value than measured
with the Niederhausen sandstone. This stems from the fact that the quartz
minerals in the Bad Diirckheim sandstone are not grown together by pressure
solution.
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Figure 4.13: Thin section of the Niederhausen Rotliegend sandstone using polar-
ized light. Orientation of the section is perpendicular to the layering. Shown is
sericite which is composed of fine muscovite layers weathered from plagioclase.

Figure 4.14: Thin section of the Bad Diirckheim Bunter sandstone using polarized
light. Pores filled by black epoxy.
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Figure 4.15: Thin section of the Bad Diirckheim Bunter sandstone using unpo-
larized light. Observe iron-hydroxide coating.
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4.5 Stress experiments on cylindrical cores

In this chapter quasi-static stress experiments conducted on cylindrical cores
are described. The main reason for doing these experiments is to establish
the strength of the particular sandstone sample, before it is subjected to high
stresses in the triaxial pressure machine, because failure of the sample during
an experiment might damage the end platens. The strength of the samples
is quantified by the unconfined compressive strength (u.c.s.), which is the
maximum axial stress 0¥, under unconfined conditions (o) = ¢® = (),
sustained by the sample before failure. For the Colton and the Flechtinger
sandstones only the u.c.s. parameter was determined. More elaborate exper-
iments were performed on the Niederhausen and Bad Diirckheim sandstones,
to establish the full nonlinear stress-strain behaviour, under unconfined and
confined conditions. The added value of these experiments, compared to the
experiments on the triaxial pressure machine, is that the elastic behaviour as
a function of applied stress, can be studied up to and beyond failure. Also,
because in Rock Mechanics many stress experiments are standardized to ex-
periments on small cylindrical cores, the experiments in this chapter can be
compared with experiments described in the literature.

4.5.1 Unconfined experiments

The Niederhausen and Bad Diirckheim sandstones were cored perpendicular
and parallel to the layering of the samples. The height and the diameter
of the cores are approximately 80 and 40 mm, respectively. The pressure
machine is displacement controlled. The axial displacement rate is set at
4 pm/s. Two LVDT’s measure the axial displacement, from which the av-
erage value is used to calculate the axial strain, and one LVDT measures
the circumferential displacement, from which the radial strain is obtained.
The cores are loaded until some seconds after failure. To obtain elastic be-
haviour, i.e. no permanent plastic deformation component, two secondary
loading loops are incorporated. In Fig. (4.16) the axial strain versus axial
stress curve is shown for the Niederhausen sandstone sample, drilled perpen-
dicular to the layering. The loading path is divided into 7 subsequent parts,
denoted by part 'a’ to part 'g’. Part ’a’ denotes loading until the first loop,
parts ‘b’ and ’c¢’ are unloading and loading parts of the first loop, respec-
tively, part 'd’ is further loading until the second loop, parts e’ and ’f’ are
unloading and loading parts of the second loop, respectively, and part 'g’ is
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Niederhausen sandstone, perpendicular to layering
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Figure 4.16: Axial strain versus axial stress applied to a cylindrical core of the
Niederhausen sandstone. Core drilled perpendicular to the layering. Subsequent
loading parts ’a’,’d’ and g’ denote main loading curve. Parts b’ and 'c’ denote
unloading and loading parts of the first loop, respectively, whereas parts ’e’ and
'f? signify the respective unloading and loading parts of the second loop.

further loading until and beyond failure. The following experiments follow
this loading path, however not exactly, because the onset of a loop had to be
initiated manually. In Figs. (4.19) to (4.22) we refer to this subdivision.

In Fig. (4.17) the stress-strain curves are shown, using the loading path
described in Fig. (4.16), for cores of the Niederhausen sandstone, drilled
perpendicular (top figure) and parallel (bottom figure) to the layering. Both
radial, the negative strain curve, and axial, the positive strain curve, strain
are plotted as a function of axial stress. No confinement pressure in the
radial direction was applied. We observe from Fig. (4.17) that the stress
increments per unit strain increase are larger during the loops than during
the main loading curve, indicating that the rock reacts stiffer during the loop
parts. The maximum stress or u.c.s. perpendicular to the layering is 37.5
MPa, which is larger than the u.c.s parallel to the layering, which measures
32.2 MPa. Hence, the Niederhausen sandstone is anisotropic with respect to
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Sandstone u.c.s [MPa]

Colton 47
Flechtinger 75
Niederhausen || 32.2
Niederhausen L 37.5
Bad Diirckheim || 32.1

Bad Diirckheim L 58.1

Table 4.1: Failure stresses under unconfined conditions for the Colton,
Flechtinger, Niederhausen and Bad Diirckheim sandstones. For the latter two
sandstones u.c.s values are shown for cores parallel (||) and perpendicular (1) to
the layering.

its strength, possibly caused by the layering. The axial stress-strain curve
parallel to the layering appears to be more linear than the perpendicular
curve.

In Fig. (4.18) the stress-strain curves are shown for the Bad Diirckheim
sandstone obtained using the loading path described in Fig. (4.16). Comparing
Fig. (4.18) with Fig. (4.17) we observe that the Bad Diirckheim sandstone is
more anisotropic than the Niederhausen sandstone. The u.c.s. of the former
sandstone measures 58.1 MPa perpendicular to the layering, whereas its u.c.s.
parallel to the layering is 32.1 MPa. It is also apparent from Fig. (4.18) that
the stress-strain curve parallel to the layering is generally less steep than the
curve from the core drilled perpendicular to the layering, indicating that the
Bad Diirckheim sandstone reacts more compliant to a normal stress parallel
to the layering than to a normal stress perpendicular to the layering. In Fig.
(4.18) the first loop of both the perpendicular and parallel to the layering
cored samples unloads until zero axial stress. The associated axial and radial
strain values quantify the anelastic permanent deformation, which is larger
parallel to the layering than perpendicular.

In Table (4.1) the unconfined compressive strength parameters are sum-
marized as these were measured for the four sandstones used in the experi-
ments. The highest u.c.s. value is found for the Flechtinger Rotliegend, which
may be attributed to its high quartz content and deep burial depth, causing
large compaction, evidenced by pressure solution (Fig. (4.9)) of some of the
quartz minerals, and relative tight packing and low porosity. The chemical
weathering of the feldspar minerals is small, typical of an arkose sandstone,
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and also attributing to its relatively high strength. No thin sections are
available for the Colton sandstone, so its lower u.c.s. value, as compared
to the Flechtinger sandstone, can only be explained by its higher poros-
ity. The other Rotliegend, the Niederhausen sandstone, has much smaller
u.c.s values than the one obtained for the Flechtinger Rotliegend. This may
be explained by the higher porosity of the Niederhausen, the smaller com-
paction, the poorer sorting and the more abundant chemical weathering of
the feldspar minerals (plagioclase) to clay. Some plagioclase weathering to
mica (muscovite) is shown in Figs. (4.12) and (4.13). The higher u.c.s. value
of the Bad Diirckheim Bunter sandstone as compared to the Niederhausen,
both measured perpendicular to the layering, is due to the higher quartz
content of the former sandstone and less apparent feldspar weathering (rel-
atively high permeability). The Bad Diirckheim sandstone experienced a
smaller compaction, e.g. no pressure solution of quartz, than the Nieder-
hausen sandstone, which does show quartz pressure solution and 'unduleus
uitdoven’. This may explain the differences between the u.c.s. values parallel
to the layering between the Niederhausen and Bad Diirckheim sandstones.
The layers of the Niederhausen are “fused” together due to the compaction
and therefore a higher strength is obtained, under an axial stress parallel to
the layering, than for the Bad Diirckheim sandstone which may experience
more pronounced longitudinal splitting (separation of individual layers or
layer aggregates), which is the dominant mode of failure under unconfined
stress.
To quantify the elasticity of the samples we calculate Young’s modulus,
given by
po T
€33
which is the ratio of the axial stress to the axial strain. This measure is an
unique measure for a rock’s elasticity if it has a linear stress-strain behaviour.
In general, rocks have a nonlinear elasticity which is evident from Figs. (4.17)
and (4.18), and the discussion in Chapter 3. Assuming that for sufficiently
small stress increments a linear approximation is valid the following elasticity
measure is introduced

(4.2)

?

d7' 33
d633 ’

which is the tangent to the stress-strain curve. The elasticity modulus E*,
the superscript ." signifying ’tangent’, is taken as a function of the axial stress

E! (T33) = (4'3)

64




T33. Lo calculate E' from the data of Figs. (4.17) and (4.18), each part 'a’ to
g’ of Fig. (4.16) is separately, and subsequently, interpolated and smoothed
with a Gaussian function. Then E* is approximated using finite differences.

The results for the Niederhausen and Bad Diirckheim sandstones, using
the annotation of Fig. (4.16), are shown in Figs. (4.19) and (4.20). From
Fig. (4.19) one can see that the E* modulus is larger in the two loops than in
the main loading curve. This is partly caused by the additional permanent
anelastic deformation during the main loading curve, which is absent during
the loops, which involve secondary elastic loading. The main loading curve,
parts ’a’, ’d’ and ’g’, in the top figure of Fig. (4.19), shows first an increase
in E*', then a constant part or linear elastic part, followed by a decreasing
part until £* approaches zero at failure. By comparison, the curve parallel
to the layering shows a more linear behaviour from the onset of the loading
until 25 MPa. The unloading parts 'b’ and ’e’, in the top and bottom figures
of Fig. (4.19) show a decrease, whereas the loading parts 'c’ and 'f’, show
an increase, forming a x-shape. These different behaviours are caused by
the elastic hysteresis. During these hysteresis loops the largest E' values are
obtained at the onset of unloading. This observation complies with Walsh
(1965b) who suggests that these values give the best estimate of the true
modulus of the rock matrix without cracks.

The anisotropic stress-strain behaviour of the Bad Diirckheim sandstone
is readily identified in Fig. (4.20) by the anisotropy of the E* modulus.
Comparing the first loading curve ’a’ with the second loading curve ’c’, in
both perpendicular and parallel cored samples, one can see that the modulus
for the second loading over this range is larger, while the total change is
smaller than during the first loading, because anelastic effects are minimal.
In Fig. (4.20) we recognize the x-shapes, outlining the two loop cycles, as in
Fig. (4.19).

Poisson’s ratio v, for a linear elastic solid, is given as the ratio of the
negative radial strain to the positive axial strain. To acknowledge the non-
linear elastic behaviour observed in the experiments we introduce the tangent
Poisson’s ratio as

de
V' (733) = —E;;. (4.4)
Subsequently, interpolating, smoothing of the data of Figs. (4.17) and (4.18),
and calculating the tangent Poisson’s ratio v*, using a finite difference approx-
imation, we obtain Figs. (4.21) and (4.22). In these figures we use the same
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annotation of subdivision into parts as in Fig. (4.16). From the Niederhausen
samples, cored perpendicular and parallel to the layering, depicted in Fig.
(4.21), we observe that v* increases with increasing axial stress during the
main loading curve. For increasing stress, radial strain increments increase
more than axial strain increments, per unit stress increment. According to
linear elastic theory, Poisson’s ratio has the value 1/2 as an upper limit, ei-
ther representative for an incompressible solid, i.e. =0 and p = E/3, or
representative for a compressible fluid, ie. E = 0 and p = 0 (Jaeger and
Cook (1979)). In Figs. (4.21) and (4.22) v* increases with axial stress beyond
the value 1/2. This happens, especially for samples cored parallel to the lay-
ering, before failure and before the tangent Young’s modulus becomes zero
(see Figs. (4.19) and (4.20)). One reason might be that an unconfined axial
stress experiment causes longitudinal splitting in the axis direction which
gives excessive radial displacements and loss of structural integrity due to
separation of the individual split parts. The longitudinal splitting is facili-
tated when the layering is directed in the axial direction. The axial strains
are less affected and hence Young’s modulus is non-vanishing before failure.
The top figure in Fig. (4.21) shows a fairly constant v* during the two hys-
teresis loops, as compared to the main loop. This can partly be explained by
the observation in Fig. (4.17) that the ratio of anelastic to elastic strain is
larger in the radial direction than in the axial direction. Hence, during the
loops, where the anelastic strain is negligible, a unit stress change causes a
relatively small radial strain change, such that ¥ changes less accordingly.
The x-shapes of the loop cycles can also be discerned in Figs. (4.21) and
(4.22). The v* values are least variable during the unloading parts b’ and
‘e’ The smallest values of these parts are attained during the onset of un-
loading, which may be best representative for the true Poisson’s ratio of the
intact rock.

66




Niederhausen sandstone, perpendicular to layering
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Figure 4.17: Radial (negative strains) and axial (positive strains) strain versus
axial stress applied to a cylindrical core of the Niederhausen sandstone. Core
drilled perpendicular (top figure) and parallel (bottom figure) to the layering.
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Figure 4.18: Radial (negative strains) and axial (positive strains) strain versus
axial stress applied to a cylindrical core of the Bad Diirckheim sandstone. Core
drilled perpendicular (top figure) and parallel (bottom figure) to the layering.
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Figure 4.19: Tangent Young’s modulus versus axial stress applied to a cylindrical
core of the Niederhausen sandstone. Core drilled perpendicular (top figure) and
parallel (bottom figure) to the layering. See Fig. (4.16) for the loading parts

legend.
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Bad Duerckheim sandstone, perpendicular to layering
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Figure 4.20: Tangent Young’s modulus versus axial stress applied to a cylindrical
core of the Bad Diirckheim sandstone. Core drilled perpendicular (top figure) and
parallel (bottom figure) to the layering. See Fig. (4.16) for the loading parts
legend.
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Niederhausen sandstone, perpendicular to layering
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Figure 4.21: Poisson’s ratio versus axial stress applied to a cylindrical core of
the Niederhausen sandstone. Core drilled perpendicular (top figure) and parallel
(bottom figure) to the layering. See Fig. (4.16) for the loading parts legend.

71




Bad Duerckheim sandstone, perpendicular to layering
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Figure 4.22: Poisson’s ratio versus axial stress applied to a cylindrical core of the
Bad Diirckheim sandstone. Core drilled perpendicular (top figure) and parallel
(bottom figure) to the layering. See Fig. (4.16) for the loading parts legend.
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4.5.2 Confined experiments

'To establish the elastic behaviour of the Niederhausen and Bad Diirckheim
sandstones, under conditions for which ¢(!) = ¢(® £ 0, uniaxial stress exper-
iments were conducted under a constant confining pressure. The cores for
these experiments, having a height and diameter of approximately 60 mm
and 30 mm, respectively, are wrapped in an impermeable sleeve and placed
in a cylindrical holder filled with oil, which is used to apply the confinement
pressure. Axially, two steal cylinders are put between the pressure plates
and the samples. First, the axial stress and the confining pressure are in-
creased equally to the desired confining pressure. Then, the axial stress is
increased while the recording starts, at which moment the strain is set to
zero. Loading, at a rate of 7 um/s, is continued until a few seconds after
failure. The measured axial displacement is composed of the displacement of
the core as well as the displacement of the total steal column, which has an
effective length of 422 mm and an £ modulus of 200 GPa. The axial strain
of the core is obtained by subtracting the steel strain from the total strain.
Consequently, at the beginning of the experiment, the stress-strain curves do
not start at the confinement pressure for zero strain.

In Fig. (4.23) the stress-strain curves are shown from confined axial stress
experiments for the Niederhausen sandstone, cored parallel to the layering,
and the Bad Diirckheim sandstone, cored perpendicular to the layering. From
the top figure we observe, for increasing confinement pressure, an increasing
failure stress. Also, from the same figure it is evident that the rock shows
a transition from brittle to increasingly ductile behaviour with increasing
confinement pressure. The Bad Diirckheim sample, depicted in the bottom
figure, shows higher failure stresses than the Niederhausen sample, and only
brittle behaviour, even for the highest confinement pressure. The different
behaviours between the two samples may be attributed to the orientation of
the layering with respect to the axial direction, and the different mineralogies,
with the Bad Diirckheim having a higher quartz content and less apparent
feldspar weathering. The failure stresses are summarized in Table (4.2).

In Fig. (4.24) the tangent Young’s modulus of Eq. (4.3) is shown,
calculated from the pre-failure data of Fig. (4.23) in much the same way
as described for the unconfined experiments. The E' moduli for the Bad
Diirckheim sample are more than twice as high as the ones for the Nieder-
hausen sample. All E* curves increase with increasing axial stress to a max-
imum value after which these curves decrease to zero at failure.
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Confinement Failure stress Failure stress
pressure [MPa] Niederhausen [MPa] Bad Diirckheim [MPa]

9 82 116
13 97 140
21 128 173

Table 4.2: Failure stresses at different confinement pressures for the Niederhausen
sandstone, cored parallel to the layering, and the Bad Diirckheim sandstone, cored
perpendicular to the layering.

Shear strength ~ Angle of internal

or cohesion [MPa] friction [degrees]
Niederhausen 12 37
Bad Diirckheim 16.5 41

Table 4.3: Shear strength and angle of internal friction for the Niederhausen
sandstone, cored parallel to the layering, and the Bad Diirckheim sandstone, cored
perpendicular to the layering.

Using the failure stresses from Table (4.2) one can construct the linear
Coulomb criterion of Eq. (3.3) from the tangent of the Mohr circles (Chapter
2), as depicted in Fig. (3.2). The calculated Coulomb criterion is shown in
Fig. (4.25) for both sandstone samples. The associated cohesion or shear
strength 7°, and the angle of internal friction v, for both samples, are shown
in Table (4.3).
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Figure 4.23: Axial strain versus axial stress under 9, 13 and 21 MPa confinement

pressure.

Top figure: Niederhausen sandstone drilled parallel to the layering.

Bottom figure: Bad Diirckheim sandstone drilled perpendicular to the layering.
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Figure 4.24: Tangent Young’s modulus versus axial stress under 9, 13 and 21
MPa confinement pressure. Top figure: Niederhausen sandstone drilled parallel to

the layering. Bottom figure: Bad Diirckheim sandstone drilled perpendicular to
the layering.
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Chapter 5

Experimental results

5.1 Introduction

The fact that propagation of elastic waves in rocks can be sensitive to the
effective stress has been verified in numerous laboratory experiments (Wyl-
lie et al. (1956); Nur and Simmons (1969); Tao and King (1990)). In a
controlled laboratory experiment the effective stress can be manipulated by
changing the pore pressure or, in drained conditions, by changing the applied
external stress (Wyllie et al. (1958); Rai and Hanson (1988)). Because the
pressure machine we used for the experiments can not apply a pore pressure
we changed the external stress under dry conditions. A common observa-
tion from ultrasonic stress experiments is that induced velocity changes in
the stress direction become progressively smaller as stress increases, until an
asymptotic value is reached (Wyllie et al. (1956); Nur and Simmons (1969);
Lo et al. (1986)). Stress-induced velocity changes can be explained by struc-
tural models based on crack geometry and crack density which assume that
cracks open or close in directions depending on the stress state (Nur (1971);
Hudson (1980); Crampin (1982)). In this chapter we relate the stress ten-
sor to ultrasonic velocities in a phenomenological way and show how the
stress imprint can be recognized from its associated velocity pattern. The
data shows the velocity change of nine combinations of compressional- and
shear-waves (three propagation and three polarization directions) during a
true tri-axial stress path. The comparatively large size of the sample and the
transducer-sample coupling in our experiments are different, from those pre-
viously published experiments. Although part of the results in this chapter
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are not new we believe that the experiments produce a unique exposition of
data which clarifies the sensitivity of elastodynamic waves to stress.

5.2 Experiments on the Colton sandstone

The ultrasonic experiments on a dry Colton sandstone were conducted by
H.M.A Cruts, and are described in Cruts (1995); Cruts et al. (1995); Dillen
et al. (2000).

5.2.1 Introduction

Ultrasonic experiments on a dry Colton sandstone placed in a tri-axial pres-
sure machine, show that effective stress changes lead to distinct anisotropic
velocity changes in compressional-waves and shear-waves. The stress imprint
can be recognized from the associated velocity pattern by relating the veloc-
ities to the three normal stress directions. The ultrasonic velocities indicate
that the sensitivity of the different waves to stress predominantly depends
on stresses applied in the polarization and propagation directions of the par-
ticular wave mode. Also, stress-induced changes in shear-wave splitting are
observed.

5.2.2 Experimental design

The ultrasonic experiments (Cruts (1995)) were carried out on a cubic block
of Colton sandstone (Section 4.4). After grinding and polishing, the dimen-
sions of the block are 0.205x0.205x0.205 m®. The tri-axial pressure machine,
its schematics shown in Fig. (4.1), and the transducer arrangement, shown
in Fig. (4.2), are described in Section 4.3.

At zero pressure the measured P-wave velocities in the X - and Z-directions
are approximately equal and differed by 5 % from the velocity in the Y-
direction. Therefore we assume that the Colton sandstone has an intrinsic
transversely isotropic symmetry, with the symmetry axis aligned in the direc-
tion of the Y-axis of the tri-axial pressure machine. Equal confining stresses
in the X- and Z-directions will therefore preserve the transverse isotropy of
the sample and arbitrary stress patterns will induce an orthorhombic sym-
metry (Nur (1971)). Fig. (5.1) shows the load cycle ABCD as a function of
experiment time. The entire ABC D-stress path has equal normal stresses in
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Figure 5.1: Loading cycle ABCD of the tri-axial pressure machine. To preserve
the intrinsic transverse isotropy of the sample, the stress in the X-direction is
equal to the stress in the Z-direction.

the X- and Z-directions. During parts A, B, C, and D, the X-force and the
Z-force increase. Part A shows a decrease of the stress in the Y-direction,
whereas during parts B and C' the stress in the Y-direction was kept con-
stant at 2 MPa and 4 MPa, respectively. Finally part D simulates increasing
hydrostatic stress conditions up to 10 MPa.

5.2.3 Experimental results

Fig. (5.2) shows the full waveform signals of compressional-waves as func-
tions of experiment time (top horizontal axis) and transmission travel time
(vertical axis). The bottom horizontal axis indicates the segments A, B, C,
and D similar to those in Fig. (5.1). The source and receiver are both P-wave
transducers aligned in the X-direction. The transducer-sample coupling, de-
scribed in the previous section, produces clean traces with easily discernible
first arrivals and amplitudes. To visualize shear-wave splitting, shear-wave
transducers were aligned in the X-direction and polarized in the Y Z-plane
in a direction of 45 degrees to the symmetry axis. Fig. (5.3) displays the
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Figure 5.2: Ultrasonic recordings of a compressional-wave in the X-direction
during load-cycle ABCD.

waveforms recorded at time intervals during stress pattern ABC'D. Around
the peak stresses of A, B, and C, two distinct waveforms appear and again
disappear as experiment time progresses. These two distinct waveforms are
split shear-waves traveling in the same X-direction. Shear-wave splitting
becomes visible at those parts of the loading cycle where the stress-induced
transverse isotropy is most pronounced. Comparing data from the diago-
nally polarized transducers with those from transducers polarized in the axis
directions, we can determine that the first arriving shear-wave is polarized
in the Z-direction and the second arriving shear-wave is polarized in the
Y -direction.

From the recordings of P-wave transducer pairs first arrivals were hand-
picked, converted to velocities and displayed in Fig. (5.4). We observe that
the Px- and Pz-wave velocities (subscript denotes propagation direction)
are almost equal and higher than the Py-wave velocity during the entire
load cycle, reflecting the intrinsic and stress-induced anisotropy of the rock.
For part A where the stresses in the X- and Z-directions increase and the
stress in the Y-direction decreases, we can see in Fig. (5.4) that the P x-wave
and the P z-wave velocities increase and the Py-wave velocity decreases. We
observe from parts B and C a larger increase of the velocity in the X- and
Z-directions than in the Y-direction. In Fig. (5.5), six combinations of shear-
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Figure 5.3: Shear-wave splitting in the X-direction during load-cycle ABCD.
Transmitting and receiving transducers are positioned diagonally in the Y Z-plane.

waves are shown. The Sxz and Syx shear-waves (first subscript denotes
propagation direction and second subscript denotes polarization direction)
which neither polarize nor propagate in the Y-direction show an overall faster
and different velocity behavior than the other four shear-waves, Sxy, Szy,
Syx, and Sy, which either polarize or propagate in the Y-direction.

Fig. (5.6) shows the Px-wave velocity versus stress. The velocity lines
show an approximately linear increase of velocity with stress. The slopes
of the lines do not differ much because the stress change in the X- and Z-
directions is similar for all four lines. The P y-wave velocity does not show a
clear dependence upon the stress changes in the Y-direction. The Py-wave
stress-velocity pattern in Fig. (5.7) shows a strong dependence upon the
stress in the Y-direction. P-waves are therefore predominantly affected by
the normal component of the stress tensor that lies in the direction of prop-
agation. The two-dimensional sensitivity of S-waves becomes clear when
we look at the S-wave stress-velocity plots. The Syz-wave velocity plot-
ted in Fig. (5.8) shows no appreciable dependence on the stress change in
the Y-direction because of the almost uniform slopes of the velocity lines.
We observe that, apart from a scaling factor, the stress-velocity pattern of
Fig. (5.8) matches almost exactly the stress-velocity pattern in Fig. (5.6) be-
cause the P y-wave and the Sxz-wave experience equal stress changes in their
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Figure 5.4: Velocities of compressional-waves propagating in the X-, Y- and
Z-directions during load cycle ABCD.

propagation and polarization directions. The Syy-wave velocity in Fig.(5.9)
shows a stronger dependence on the stress in the Y-direction. However the
correlation with the stress in the Y-direction is less pronounced compared to
the stress-velocity pattern observed in Fig. (5.7) for the Py-case.

5.2.4 Conclusions

The experiments on the Colton sandstone described in this section show
how certain changes in a triaxial stress state cause changes in the velocities
and anisotropy of compressional- and shear-waves. We observe that for all
applied stress patterns compressional- and shear-waves are most sensitive to
those normal stresses that lie in the propagation or polarization directions
of the wave. Consequently, compressional-waves are predominantly sensitive
to one direction of the prevailing stress state, whereas shear-waves show a
two-dimensional sensitivity to stress. A split shear-wave pair is sensitive
to all components of the stress tensor. The sensitivity analysis shows how
experiments must be designed in order to acquire sufficient data, in terms of
polarization and propagation directions, for stress inference purposes.
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Figure 5.8: Velocity of a shear-wave with propagation in the X-direction and
polarization in the Z-direction versus the normal stress in the X-direction during
load cycle ABCD.
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5.3 Experiments on the Flechtinger sandstone

The second series of experiments, conducted on the Flechtinger sandstone,
are described in den Boer (1996); den Boer et al. (1996); den Boer and
Fokkema (1996).

5.3.1 Introduction

A second series of experiments was initiated for the following reasons. The
stress range up to 10 MPa to which the Colton sandstone was subjected, as
described in the previous section, is to low to encompass in-situ stresses which
occur in a hydrocarbon reservoir, except for overpressured reservoirs, showing
anomalous high pore fluid pressures, resulting in correspondingly low effec-
tive stresses. Therefore, the second series of experiments were conducted at
stresses from 0 to 82 MPa. The experiments were primarily designed to simu-
late in-situ conditions of small gas reservoirs in the north of the Netherlands.
The gas bearing sandstones of these reservoirs are part of the Rotliegend
formations, hence the need for a Rotliegend sandstone sample. The outcrop
Flechtinger Rotliegend sandstone was taken as a close representative of the
in-situ reservoir Rotliegend sandstone.

After grinding and polishing the dimensions of the Flechtinger sandstone
samples are 204 x 204 x 204 mm?® + 0.03 mm, parallel within 0.01 mm. The
results shown in this chapter are after multiple loading cycles such that the
anelastic effects, most prominent at the first loading, are largely excluded.

5.3.2 Quasi-static experiments

The triaxial stress ranges of the following experiments are shown in Fig (5.10).
Two loading cycles, denoted by ’a’ and ’'b’, respectively, are depicted. One
for which all axial stresses are equal, i.e. 711 = To2 = 733, and one, for which
only the transverse axial stresses are equal, i.e. 71 = Top 7# T33. Both cycles,
'a’ and 'b’, contain an up loading and a down loading part. A loading rate
of 5 kN/s (= 0.12 MPa/s) was used. In Fig. (5.11) the stress-strain curves
in the three axis directions are shown. Except for a small deviation of the
strains in the z-direction, all directions show a similar strain response. The
up and down loading curves show hysteresis due to nonlinear effects discussed
in Section 3.3. No permanent deformation is visible at the end of the down
loading part.
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Figure 5.10: Axial stress 733 versus axial stress T11 = Toy. Two experiments for
a cube of the Flechtinger sandstone: loading cycle ’a’, for which all axial stresses
are equal, i.e. T11 = Too = 733, and loading cycle ’b’, for which only the transverse
axial stresses are equal, i.e. 71| = Ty # T33.

By first smoothing the data of Fig. (5.11) with a Gaussian function we
can calculate the tangent modulus E* of Eq. (4.3) using finite differences.
The modulus in the z3-direction, denoted by Ej, is shown in Fig. (5.12)
as a function of the axial stress m33. During up loading we observe that Ef
increases In two, approximately, linear stages, with a transition stress at 27
MPa. The first stage, from 13 to 37 GPa, shows a steeper ascent than the
second stage, from 37 to 45 GPa. During down loading a similar division
into two stages is observed, with the same transition stress of 27 MPa, but
less pronounced. Also, the first stage of the up loading curve almost coin-
cides with the down loading curve, whereas the second stage diverges from
it. The different stress-strain behaviour during up loading and down load-
ing is caused by the hysteresis effect, as described in Section 3.3, which can
be explained by the process of frictional sliding of crack faces. The above
evidence suggests that, according to this crack model, before the transition
stress of 27 MPa, either frictional sliding does not occur, so only crack clo-
sure and opening causes the change in F}, or this process is the same, but
directionally reversed, during up loading and down loading. The E§-modulus
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Figure 5.11: Axial strains ey, ey and es3 versus axial stress 733 applied to
a cube of the Flechtinger sandstone. Loading cycle ’a’, all axial stresses equal:
T11 = T22 = T33.

reaches its highest value, at approximately 90 GPa, just after the onset of
down loading, This observation is in agreement with Walsh (1965b), who
suggests that the initial tangent Young’s modulus upon unloading is larger
because cracks which have undergone sliding do not immediately slide back.
According to Walsh (1965b) this E* maximum is the best estimate of the true
modulus of the rock matrix without cracks. The initial unloading modulus is
quite difficult to obtain accurately, because of the stick-slip behaviour of the
LVDT’s and the sensitivity of the tangent to the local irregular stress-strain
data.

Within the linear elastic theory, using Eq. (2.33), we have for vanishing
pore pressure

K=—, (5.1)

in which the compression modulus K is the inverse of the compressibility «,
emm 1S the volumetric strain and P is the confining pressure. We introduce
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Figure 5.12: Axial stress 733 versus Young’s modulus in the three axis directions
for a cube of the Flechtinger sandstone. Loading cycle ’a’, all axial stresses equal:
T11 = T22 = 733-

the tangent compression modulus as,

dpP

deym

K (P)

(5.2)

The K'-modulus is taken as a function of the confining pressure P. In Fig.
(5.13) the K*-modulus, calculated in a similar manner as E' above, is de-
picted as a function of the confining pressure P. It ranges from 4 to 16 GPa
during up loading, and from 32 to 4 GPa during down loading. A similar
behaviour is observed as with the E* in Fig. (5.12). The values of K* are
about a third of the values of E*.

In Fig. (5.14) the stress-strain curves are shown for the loading path ’b’,
see Fig. (5.10), for which the transverse axial stresses are equal, and one-
third, of the longitudinal axial stress. Observe that the transverse strains are
much smaller than the longitudinal strains. Comparing the strains for this
deviatoric stress state with the strains depicted in Fig. (5.11), for which all
three applied axial stresses are equal, we observe that for the deviatoric case
the transverse strains are smaller and that the longitudinal strain is larger.

The tangential Young’s modulus E% of Eq. (4.3) obtained from the data
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Figure 5.13: Confining stress P versus compression modulus for a cube of the
Flechtinger sandstone. Loading cycle ’a’, all axial stresses equal: 711 = To2 = T33.

depicted in Fig. (5.14) is shown in Fig. (5.15). In this last figure lower
values for E} are observed than in Fig. (5.12). Also, in Fig. (5.15) the
difference between up and down loading behaviour is smaller than in Fig.
(5.12), perhaps because the deviatoric stress state facilitates frictional sliding
along the crack faces.
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5.3.3 Dynamic experiments

Using the same experimental set-up and transducer arrangement, as de-
scribed in Section 5.2, and shown in Figs. (4.1) and (4.2), ultrasonic mea-
surements were conducted during loading paths ’a’ and ’b’, depicted in Fig.
(5.10). In Fig. (5.16) compressional-wave transmission recordings are shown
during loading path ’a’, from waves travelling in the z3-direction, as a func-
tion of the axial stress 733 (horizontal axis) and transmission travel time
(vertical axis). The wave form shows that the first arrival time decreases
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Figure 5.16: Compressional-wave transmission versus axial stress applied to a
cube of the Flechtinger sandstone. All axial stresses equal: T1; = T2 = T33.

with increasing stress towards an apparently asymptotic value. This observa-
tion has been described in numerous published experiments. The asymptotic
behaviour is explained using the crack model by postulating that near the
asymptote all cracks are closed and that the response to elastodynamic waves
is close to the response that would be registered for the uncracked or intact
rock. Another observation that we can make from Fig. (5.16) is that the
peak amplitude of the transmitted wavelet increases with increasing stress.
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Regarding the entire wavelet from low stress to high stress we measure a
shortening of the time span it covers. The combined effect of the change in
first arrival time and compression of the wave form can be represented by a
scaling of the time axis, such that a recording obtained at one stress level can
be transformed to a recording at another stress level (den Boer and Fokkema
(1996)).

In Fig. (5.17) shear-wave transmissions in the zs-direction are shown
using the same display as in Fig. (5.16). The same phenomena, of first
arrival increase, peak amplitude increase and wave form compression, with
increasing stress are observed for the shear-waves as these were observed for
the compressional-waves.
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Figure 5.17: Shear-wave transmission versus axial stress applied to a cube of the
Flechtinger sandstone. All axial stresses equal: 111 = Tog = Ts3.

After picking the arrival times of the first arriving wave forms wave ve-
locities are calculated by dividing the distance between the transmitting and
receiving transducers by these travel times. The obtained velocities for the
P-waves travelling in the xq, 25 and xs-directions are shown in Fig. (5.18)
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as a function of the axial stress 733. The stress-velocity curves show with
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Figure 5.18: Axial stress in the z3-direction versus v}, v§ and v§ wave velocities,
applied to a cube of the Flechtinger sandstone. All axial stresses equal: Ti; =

T22 = T33.

increasing stress a decreasing increment in the P-wave velocity per unit axial
stress increase. Hence, the sensitivity of the P-wave velocity to stress is great-
est at the low stress regime. The P-wave velocity in the z3-direction appear
to be smaller than those in the other two transverse directions, which are
approximately equal. The Rotliegend sample has been mounted such that
its layering is perpendicular to the z3-direction. The measured anisotropy in
P-wave velocity may therefore be caused by the layering of the sandstone.
In Fig. (5.19) the following P-wave velocity anisotropy measure

P P
P_oU Y

a;; _2__UP+vP’ (5.3)
K J

is depicted for two cases as function of the longitudinal stress. Both al,
and ab; increase fast from 0 to 10 MPa, then rise more slowly until 20 MPa
after which these stay more or less constant at approximately 2.5 %. The
phenomenon that the anisotropy reaches a constant value after the applica-
tion of sufficient axial stresses may be explained by the presence of randomly

96




oriented defects or cracks which mask the layer-induced anisotropy. Progres-
sive closure of these crack during loading with equal axial stresses causes the
layer-induced anisotropy to emerge. Both Figs. (5.18) and (5.19) show that
the Rotliegend is slightly anisotropic with respect to the transverse direction.
Hence, the anisotropy of this sandstone shows that it has orthorhombic or
lower symmetry but that transverse isotropic symmetry is a good approxi-

mation.
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Figure 5.19: Axial stress in the x3-direction versus compressional-wave velocity
anisotropy, between vg and v}, and vy and v, applied to a cube of the Flechtinger

sandstone. All axial stresses equal: T11 = Ty = T33.
n

Fig. (5.20) shows six shear-wave velocities, two calculated from first ar-
rival time picks in each axis direction (first subscript), from which each pair
has two mutually perpendicular polarizations (second subscript). The S-
wave curves have the same form as the P-wave curves in Fig. (5.18). The six
curves lie close together but some differences are noticeable. The velocities
v}, and v3), from waves which either propagate or are polarized in the trans-
verse direction, are larger than the other four velocities, from waves which
either propagate or are polarized in the longitudinal direction. This obser-
vation can also be attributed to the layering of the sample. Introducing the
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Figure 5.20: Axial stress in the x3-direction versus v§3, v3,, v§’3, v§1, v§2, and v§;
wave velocities, applied to a cube of the Flechtinger sandstone. All axial stresses
equal: 711 = To2 = T33.

following shear-wave anisotropy

v — v

v
kl
afjkl =27, (5.4)

two combinations, af,;, and a},s, are depicted in Fig. (5.21). We observe
a somewhat different behaviour than with the P-wave anisotropy depicted
in Fig. (5.19). First a rapid rise after which the curves slowly decline.
The average shear-wave anisotropy is approximately 1.5 % for the second
slowly declining part which is a percentage point lower than for the P-wave
anisotropy. The lower S-wave than P-wave anisotropy might be explained
by the fact that azsj,d must have at least one double subscript, e.g. a%,3; and
3,3 in Fig. (5.21), such that at least one of the S-waves of the S-wave pair is
influenced by both the transverse and longitudinal directions through either
its propagation or polarization direction.

Assuming that during the loading path ’a’ in Fig. (5.10) the sample is
approximately isotropic we may calculate the dynamic compression modulus
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Figure 5.21: Axial stress in the xs-direction versus shear-wave velocity anisotropy,
between v}, and v§;, and v$, and v$,, applied to a cube of the Flechtinger sand-
stone. All axial stresses equal: 711 = 792 = T33.

from
K% = {(UP)2 — (US)Z] . (5.5)

In Fig. (5.22) the dynamic compression modulus K4 is shown as a function
of the confining stress P, using v} and v§,, together with the quasi-static
tangent compression modulus of Fig. (5.13). From this figure we see that the
dynamic compression modulus is larger than the static compression modulus
by approximately 10 to 12 GPa over the entire stress range of 0 to 80 MPa.
Hence the sample reacts stiffer to dynamic strains than to quasi-static strains.
The shape of both curves is more or less the same, showing a similar kind of
behaviour with stress.

The following figures were made using loading path ’b’ of Fig. (5.10),
where the transverse axial stresses are one third of the longitudinal axial
stress. Fig. (5.23) shows the P-wave velocities v{ as a function of the axial
stress 733. In this figure the P-wave velocity in the longitudinal direction is
larger than the other two velocities in the transverse directions, the latter
two being approximately equal. This is in contrast with the curves shown in
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Figure 5.22: Axial stress in the z3-direction versus dynamic and static compres-
sion modulus, applied to a cube of the Flechtinger sandstone. All axial stresses
equal: T11 = T22 — T33.-

Fig. (5.18) where the velocity in the longitudinal direction is smaller than in
the transverse directions. This is explained by postulating that the P-wave
anisotropy of Fig. (5.23) is stress-induced as well as layer-induced, whereas
the anisotropy observed in Fig. (5.18) is probably only layer-induced. In Fig.
(5.24) the P-wave anisotropies af; and af, are shown as a function of 733. Both
anisotropies increase steeply until 10 MPa, after which these increase less
rapidly per unit stress increase, and then decrease somewhat with increasing
stress. The average P-wave anisotropy after 20 MPa is approximately 5 %.
The stress-induced P-wave anisotropy for this stress region is this last value
of 5%, representing the total anisotropy, minus the layer- or texture-induced
anisotropy of -2.5 %, which can be obtained from Fig. (5.19), giving a value
of approximately 7.5%. The near constancy of the anisotropy after 20 MPa
is reflected by the invariant layering and stress ratio’s.

In Fig. (5.25) the same combination of S-waves is shown as in Fig. (5.20)
but now for loading path 'b’. One observes that the S-wave velocities of waves
which propagate and are polarized in the transverse directions, v3, and v5;,
are slower than the other waves which either propagate or are polarized in
the longitudinal direction. This observed anisotropy is stress-induced and re-
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Figure 5.23: Axial stress in the x3-direction versus v}, v§ and v} wave velocities,
applied to a cube of the Flechtinger sandstone. Transverse axial stresses equal:
Ti1 = Ta2 7 T33.

versed to the layer- or texture-induced anisotropy in Fig. (5.20) for which the
transverse velocities are the largest. Using Eq. (5.4) the S-wave anisotropy
measures a3;;, and a$,;, are depicted in Fig. (5.26). Both anisotropies in-
crease rapidly from negative to positive values over the stress range of 0 to
10 MPa. Subsequently, these increase more slowly from 10 to 20 MPa, after
which we see a levelling off to sustained values of approximately 2%. The
stress-induced S-wave anisotropy is this total anisotropy of 2% minus the
layer-induced anisotropy of -1.5%, shown in Fig. (5.21), giving a value of
approximately 3.5 % for the 20 to 80 MPa stress range.
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Figure 5.24: Axial stress in the x3-direction versus compressional-wave velocity
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5.3.4 Sensitivity of wave velocities to stress

In Section 5.2 the sensitivity of ultrasonic elastodynamic waves to stress
is investigated for the Colton sandstone. A number of loading paths were
applied up to 10 MPa. In order to measure this stress sensitivity for a more
extensive coverage of the stress space, and to have it tested for a Rotliegend
sandstone, the loading sequence depicted in Fig (5.27) was devised. Using

Normal stress T,, Versus normal stresses T T
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Figure 5.27: Loading sequence which covers the three-dimensional normal stress
space from 0 to 30 MPa. Transverse axial stresses equal: 111 = Taa # T33.

the transducer configuration described in Section 4.3 and shown in Fig. (4.2)
the first arrival travel times of the following waves are converted to velocities:
e P-wave in the x-direction,
e S-wave propagating in the z;-direction and polarized in the x,-direction,
e P-wave in the z3-direction,
e S-wave propagating in the z3-direction and polarized in the z,-direction,
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¢ quasi P-wave travelling diagonally from one transducer of the trans-
ducer pair that is aligned in the z;-direction to one transducer of the
transducer pair that is aligned in the x3-direction.

. oy P . .
The associated velocities, vf’, v5,, v§, v§; and vy, are shown in Figs. (5.28),

(5.29), (5.30), (5.31) and (5.32), respectively, as a function of the transverse
stresses 711 and Ty, with 71 = 759, and the longitudinal stress 733. The
loading sequence preserves the approximate transverse isotropic symmetry
of the Rotliegend sample. From Fig. (5.28) we observe that v! is relatively
insensitive to changes in the axial stress 733, whereas it is relatively sensitive
to changes in the transverse axial stresses, 71; and Too. The sensitivity for the
transverse axial stresses decreases with increasing transverse axial stresses.
The shape of the surface in Fig. (5.28) confirms the experimental findings in
Section 5.2 which state that a pure P-wave is most sensitive to that normal
stress which acts in its propagation-polarization direction.

Flechtinger sandstone, T, = T, 7% T,

11

P -wave velocity [m/s]

1.. [MPa 00 -
53 [MPa] T,,=T,, [MPa]

Figure 5.28: Transversely isotropic stress, 0-30 MPa, versus v}

The velocity v7, in Fig. (5.29) shows, qualitatively, the same sensitivity
to the transverse stress directions as v in Fig. (5.28). This is explained by
the propagation and polarization directions of v3, which are both oriented in
the transverse direction.
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Figure 5.29: Transversely isotropic stress, 0-30 MPa, versus v3,

In Fig. (5.30) the velocity v} shows a higher sensitivity to the longitudinal
axial stress than to the transverse axial stresses because its propagation-
polarization direction is aligned in the longitudinal direction.

From Fig. (5.31) we observe an approximately equal sensitivity of v to
the stress in the transverse directions as to the stress in the longitudinal di-
rection. Because the shear-wave associated with the velocity v§; propagates
in the longitudinal direction and is polarized in the transverse direction it
experiences both longitudinal and transverse stress changes. The velocity
v3, at zero longitudinal stress and 30 MPa transverse stress is approximately
2400 m/s. At 30 MPa longitudinal stress and 0 MPa transverse stress this
velocity measures approximately 2350 m/s. Hence, the velocity change as
a function of transverse stress is somewhat larger than the velocity change
as a function of the longitudinal stress. Therefore, the sensitivity of this
shear-wave to stress changes seems larger with respect to the polarization
direction than with respect to the propagation direction. However this rea-
soning assumes that the polarization and propagation are perpendicular and
directed along the pressure machine’s axis directions, which is the case for
exact transverse isotropy with symmetry axis along the zs-direction. But
we already concluded from the P- and S-wave velocity anisotropies that the
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Figure 5.30: Transversely isotropic stress, 0-30 MPa, versus vf

Rotliegend samples deviates somewhat from this symmetry. Hence, the veloc-
ity difference from which the conclusion is drawn with respect to the relative
sensitivity of the propagation and polarization directions to stress may be
attributed to the non-conformance of the sample to ideal transverse isotropic
symmetry.

In Fig. (5.32) the velocity v%; of a quasi P-wave is shown as a function of
transverse and longitudinal axial stresses. The prefix quasi is added because
the wave travels at an inclination of 45 degrees with respect to the principal
axes of the presumed transversely isotropic sample. One can show that in
such a direction the propagation and polarization directions of the P-wave are
not aligned but diverge somewhat depending on orientation with the principal
axes. The quasi P-wave associated with the velocity vg travels from a x is
constant to a x3 is constant plane. Propagating and polarized in the (z7, x3)-
plane the wave shows, in Fig. (5.32), approximately equal sensitivity to the
longitudinal and the transverse stresses. Observe that the velocity v(fé) of this
quasi P-wave shows qualitatively the same kind of sensitivity as the velocity
v5, of the S-wave of Fig. (5.31).
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Figure 5.31: Transversely isotropic stress, 0-30 MPa, versus v§;

5.3.5 Conclusions

The quasi-static EY shows that the Rotliegend sample has a nonlinear stress-
strain behaviour by increasing with increasing stress and decreasing with
decreasing stress. Its highest value of approximately 90 GPa is obtained just
after down loading, which agrees well with Walsh (1965b), who suggests that
the initial Young’s modulus upon unloading is larger because cracks which
have undergone sliding do not immediately slide back. The deviation of the
up loading from the down loading Ef increases with increasing applied stress
after a transition stress of 27 MPa. This may be caused by the fact that the
sample has undergone deviatoric pre-stresses up to about 30 MPa, which may
have altered frictional processes. The same qualitative observations are found
for the tangent compression modulus K* as a function of the confining stress,
having values of approximately one-third of the tangent Young’s modulus
E*. For deviatoric stresses, i.e. for 711 = 799 = 733/3, F} exhibits a smaller
deviation of the up loading curve from the down loading curve, compared
with the non deviatoric case for which 71, = 79 = 733, probably because the
deviatoric stress state facilitates frictional sliding along crack faces.

The dynamic data, identified with an oscillatory stress state superposed
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Figure 5.32: Transversely isotropic stress, 0-30 MPa, versus vg

on ambient applied stress, associated with relatively small strains as com-
pared to the quasi-static experiments, is quantified in terms of wave velocity
and stress. For equal axial stresses one observes an increasing P- and S-
wave velocity with increasing stress. The velocity increase per unit stress
increment decreases with increasing stress. Hence, the sensitivity of elasto-
dynamic response to a changing ambient stress state is greatest for small
stresses. We also observe that the peak amplitude of the wave form increascs
with increasing stress while the wave form itself compresses with respect to
recording time. The cross-bedding of the aeolian sandstone appears through
the velocity anisotropy of P- and S-waves. Waves which propagate or are
polarized in the direction perpendicular to the layering are slower than the
other waves. Application of the deviatoric stress state, 717 = 790 = 733/3,
shows stress-induced velocity anisotropy. The measured anisotropy is the
sum of both intrinsic (layer-induced) and stress-induced anisotropies. In or-
der to infer the change in a stress state from a measured changing anisotropy
on must know the intrinsic anisotropy, which is static, to obtain the stress-
induced component. The data in this section on the Rotliegend sandstone,
obtained for axial stresses in the 0 to 30 MPa range, agrees with the conclu-
sion from the data in section 5.2 on the Colton sandstone, for a few loading
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paths from 0 to 10 MPa, i.e. that compressional- and shear-waves are most
sensitive to those normal stresses that lie in the propagation or polarization
directions of the wave. The respective sensitivities can easily be deduced
from the orientations of the surfaces in the wave velocity versus longitudinal
stress versus transverse stress graphs.

The dynamic modulus, calculated from P- and S-wave velocities, assum-
ing isotropy under equally applied axial stresses, is an approximately 10 to 12
GPa larger as the quasi-static tangent compression modulus, obtained from
strain measurements, over the stress range of 0 to 80 MPa during uploading,.
Hence, the sample reacts stiffer when subject to higher (oscillatory) stress
rates. The approximate constant difference between the dynamic and quasi-
static moduli over the entire stress range suggests a relation between the
two which depends on the intrinsic properties of the Rotliegend. This would
enable to infer a change in a quasi-static modulus from a change in the wave
velocities given the knowledge of some intrinsic property of the sandstone.
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5.4 Experiments on the Niederhausen and Bad
Diirckheim sandstones

The third series of experiments, conducted on the Niederhausen and Bad
Diirckheim sandstones, are described in Swinnen (1997).

5.4.1 Introduction

The Flechtinger Rotliegend sandstone is, due to its deep burial history, and
consequent compaction, with the associated changes to its mineralogy (Sec-
tion 4.4), a so-called tight sandstone with a relative low porosity of approx-
imately 9 percent. The Rotliegend sandstone formations, forming gas reser-
voirs in the North of the Netherlands, show porosities of 20 percent and
higher, and are less compacted than the Flechtinger formation. Because
porosity and stress history are factors which influence the elasticity of a rock
the Niederhausen and Bad Diirckheim sandstone samples were acquired to
better match the reservoir sandstone. The sample descriptions and the lo-
cation of the quarries were provided by Schutjens (1996). The results on
the Flechtinger sandstone in the previous section were acquired after mul-
tiple loading such that anelastic effects are eliminated. In this section first
loading experiments are described which investigate hysteresis and anelastic
deformation.

5.4.2 Quasi-static experiments

In Fig. (5.33) the loading cycles of the experiments, on the Niederhausen
and Bad Diirckheim sandstone samples, described in this section are shown.
Two experiments are shown, which attempt to simulate possible in-situ con-
ditions, one, denoted by loading cycle ’a’, for which the horizontal axial
stresses are one-half of the vertical axial stress, i.e. 71 = Ty = %7‘33, and
another, denoted by loading cycle 'b’, for which the horizontal axial stresses
are one-third of the vertical axial stress, i.e. 717 = 7o = %733. Both cycles
('main loops’) contain during up loading a single loop ('lower loop’) at lower
stresses, a double loop at intermediate stresses (‘intermediate loops’), and
again a single loop at higher stresses (‘upper loop’). In Figs. (5.34) and
(5.35) the three axial strains, e;;, ey and e33 versus the axial stress 7y3 are
shown, for the Niederhausen and Bad Diirckheim sandstones, respectively.

111




The top figures in Figs. (5.34) and (5.35) depict the results for loading cycle
'a’, whereas, the bottom figures show the loading cycle ’'b’ results.  We
observe in Figs. (5.34) and and (5.35) for loading cycle ’a’, in the top fig-
ures, a smaller deviation between the two horizontal strains and the vertical
strain, than for loading cycle ’b’, in the bottom figures, for which the de-
viatoric stress are higher. Also, for both cycles, in Figs. (5.34) and and
(5.35), the ey strain is smaller than the e;; strain, while 711 = 72, which
indicates a lower symmetry than the initially assumed layer-induced trans-
verse isotropic symmetry with respect to the vertical s-axis. The four inner
loops, superposed on the main loop, display smaller strain changes per unit
stress change than the main loop, showing that during the inner loops both
rocks react stiffer than during the main loop. After unloading both the
Niederhausen as well as the Bad Diirckheim sandstone show a substantial
permanent deformation. The strains and the permanent deformation asso-
ciated with the Niederhausen sandstone are approximately twice as large as
the one measured for the Bad Diirckheim sandstone, which is confirmed by
the core experiments described in Section 4.5, and explained on the basis of
the mineralogies of both sandstones.

By first smoothing the data of Figs. (5.34) and (5.35) with a Gaussian
function we can calculate the tangent modulus E* of Eq. (4.3) using finite
differences. This modulus, calculated in the zs-direction, is shown in Figs.
(5.36) and (5.37) as a function of the axial stress 733. From these figures we
discern, apart from an interrupted main up-loading curve and a main down-
loading curve, the x-shapes associated with the four inner loops, similar to
the ones observed for the core experiments of Section 4.5. The E° values
during the inner loops are, for a given axial stress 733, higher than at the
main loop, while the main down-loading E* values are higher than the main
up-loading ones. The largest values are reached at the onset of down-loading
of an inner loop.

The difference between the up- and down-loading main loop is also seen,
after multiple loading excluding anelastic effects, in Fig. (5.15), for the
Flechtinger sandstone, for which the loading path, 717 = T = 733/3, is
the same as in the bottom figures of Figs. (5.36) and (5.37). Comparing,
observe that the difference between up- and down-loading Young’s moduli is
largest in the bottom figure of Fig. (5.36), and smallest for Fig. (5.15). The
magnitude of this same difference in the bottom figure of Fig. (5.37) is in
between that of the former two figures. This may be explained by the softer
mineralogy of the Niederhausen with respect to the Bad Diirckheim, and the

112




difference between first loading, in Figs. (5.36) and (5.37), and the result of
loading after multiple loading in Fig. (5.15).

The x-shapes of the inner loops reflect the hysteresis effect. Approxi-
mately half-way the stress interval of an inner loop, the down- and up-loading
moduli are the same. During the first half of an inner loop stress interval the
down-loading modulus is smaller than the up-loading modulus, whereas, dur-
ing the second half of the stress interval the down-loading modulus exceeds
the up-loading modulus, beyond the up-loading modulus maximum. This
small inner loop behaviour is different from the main loop, in Figs. (5.36)
and (5.37), with regard to the observation that during the main loop the
up-loading modulus never exceeds the down-loading modulus. However, in
Fig. (5.15) we do recognize a 'flattened’ x-shape with a point of intersection
between the up- and down-loading curves at approximately 15 MPa. This
similarity is possibly caused by the fact that both the loading cycle in Fig.
(5.15) and the inner loops in Figs. (5.36) and (5.37) are associated with
elastic deformation.

The tangent Young’s modulus is somewhat higher during loading cycle ’a’
than during loading cycle 'b’; other than that, there is not much difference
between these two loading cycles. Observe that the two intermediate loops in
Figs. (5.36) and (5.37), representing secondary and tertiary loading, almost
coincide, indicating that after first loading anelastic effects are, for the most
part, eliminated.

5.4.3 Dynamic experiments

Using the same experimental set-up and transducer arrangement, as de-
scribed in Section 5.2, and shown in Figs. (4.1) and (4.2), ultrasonic mea-
surements were conducted during loading paths ’a’ and ’'b’, depicted in Fig.
(5.33). In Figs. (5.38) and (5.39), P- and S-wave transmissions (top and
bottom figure, respectively) are shown, as function of experiment time and
wave travel time, during loading cycle 'b’ (711 = 7oy = 733/3), for the Nieder-
hausen and Bad Diirckheim, respectively. The geometry of the main loading
loop with its four inner loop, as displayed in Fig. (5.33) is easily recognizable
from these figures.

After picking the arrival times of the first arriving wave forms wave ve-
locities are calculated by dividing the distance between the transmitting and
receiving transducers by these travel times. The obtained velocities for the
P-waves travelling in the z;, z; and zs-directions, during loading cycle ’a’
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and ’'b’, are shown in Figs. (5.40) and (5.41), as a function of the experiment
time, for the Niederhausen and Bad Diirckheim sandstones, respectively. We
observe that in all four figures the P-wave velocities change per unit experi-
ment time is highest at low stress levels, i.e. at the beginning and end of the
loading cycles. The permanent deformation at the end of both loading cycles,
as is observed from Figs. (5.34) and (5.35), is apparent in Figs. (5.40) and
(5.41), from the higher velocity at the end of a particular cycle, compared
to the velocity at the beginning of a cycle. This effect is much larger for the
Niederhausen sandstone than for the Bad Diirckheim sandstone, confirming
the results from Figs. (5.34) and (5.35). The P-wave anisotropy between the
horizontal P-wave velocities v¥, v5 and the vertical P-wave velocity vf, in
all four figures, is larger for loading cycle 'b’ than for loading cycle ’a’, the
former having the largest deviatoric stresses. In Fig. (5.40) the anisotropy
between v and vi is quite small, as compared to Fig. (5.41), which shows a
large anisotropy between these two velocities. Because the horizontal axial
stresses are the same this horizontal P-wave anisotropy reflects an intrinsic
anisotropy, attributed to texture or layering of the Bad Diirckheim sand-
stone. In order to obtain the stress-induced anisotropy one has to discern
the intrinsic anisotropy from the total anisotropy, which in time-lapse mea-
surements is facilitated by the fact that the intrinsic anisotropy is constant
over time, excluding small stress effects.

In Figs. (5.42) and (5.43) the six shear-wave velocities, vy3, v5y, V33, V3,
v5,, and v§;, are shown, in which the first and second subscripts designate
propagation and polarization directions, respectively, using loading cycles
’a’ and ’'b’ on the Niederhausen and Bad Diirckheim sandstones. Consid-
ering all four figures we discern, roughly, three groups of two shear-waves,
{v35,05,}, {v5,,v5;} and {v$,,v5,}, in order of velocity magnitude. Hence,
the zs-direction has presidence over the z;- and z,-directions, reflecting
stress-induced effects, and the z;-direction causes larger velocities than the
zo-direction, explained by the intrinsic anisotropy, particularly for the Bad
Diirckheim sandstone. Analogously to the observations from the Colton and
Flechtinger sandstones in previous sections of this Chapter, the respective
shear-wave is sensitive to those axial stresses which lie in its polarization or
propagation direction.

In Figs. (5.44) and (5.45) the P-wave velocities in the three axis directions
are depicted as a function of the axial stress 733, during loading cycle "a’, top
figures, and loading cycle ’b’, bottom figures, for the Niederhausen and Bad
Diirckheim sandstones, respectively. As in Fig. (5.18) for the Flechtinger
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sandstone the stress-velocity curves show with increasing stress a decreasing
increment in the P-wave velocity per unit axial stress increase. The differ-
ence with Fig. (5.18) is that anelastic effects are included, especially during
first loading, and the unloading curve is also shown, together with the four
inner loops. In Fig. (5.44) the Niederhausen shows a larger difference in
P-wave velocity between the up-loading and the down-loading curves, com-
pared with the Bad Diirckheim of Fig. (5.45). This may be explained by the
mineralogy of both sandstones (the Niederhausen contains less quartz and
more weathered feldspar), causing anelastic effect to be more pronounced for
the Niederhausen. The inner loops in Fig. (5.44) show a smaller velocity
change per unit stress change than the main loops. In Fig. (5.45) their is
no discernible difference between the inner and main loop velocity change
per unit stress change. This latter observation may also be attributed to
the "harder’ mineralogy of the Bad Diirckheim causing smaller anelastic ef-
fect. The observed P-wave velocity anisotropy in Figs. (5.44) and (5.45) has
already been discussed with regard to Figs. (5.40) and (5.41).

Figs. (5.46) and (5.47) depict the axial stress versus the shear-wave ve-
locities v§, and v3; for the Niederhausen and Bad Diirckheim sandstones,
respectively. Qualitatively, the same observation can be made in these fig-
ures as in Figs. (5.44) and (5.45).

In Eq. (5.5) the dynamic compression modulus is calculated for the
Flechtinger sandstone, assuming isotropy during loading path ’a’ of Fig.
(5.10). The loading cycles of Fig. (5.33) induce a transverse isotropy, su-
perposed on the intrinsic anisotropy of the samples, hence isotropic dynamic
elasticity moduli can not be calculated. Therefore the following dynamic
elasticity modulus is introduced

M = p ()2, (56)

in which v} is the P-wave velocity in the z3-direction, and compared with the
static tangent Young’s modulus E* of Eq. (4.3), evaluated in the zs-direction.
In Figs. (5.48) and (5.49) the static tangent Young’s moduli, of Figs. (5.36)
and (5.37), are reproduced and superposed on the dynamic elastic moduli of
Eq. (5.6), for the Niederhausen and Bad Diirckheim sandstones, respectively.
Both E* and M%™® are calculated from stresses and strains in the zs-direction.
We observe in Figs. (5.48) and (5.49) that the dynamic modulus is larger than
the static modulus of the main loop, except for values just after the beginning
of down-loading. The dynamic modulus curves are more or less parallel to
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the main up-loading curve, which agrees with Fig. (5.22). Comparing the
dynamic modulus with the static values in the inner loops we can see that the
dynamic modulus is larger, or intersects, the up-loading inner loop curves,
and intersects the down-loading curve. Hence, the dynamic modulus equals
some small loop static modulus after some time instant after the onset of
down-loading.
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Two experiments
for cubes of Niederhausen and Bad Diirckheim sandstones: loading cycle 'a’, for

which the horizontal axial stresses are one-half of the vertical axial stress, i.e.
T = Tog = %7'33 (top figure), and loading cycle ’b’, for which the horizontal axial
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5.4.4 Conclusions

The third series of experiments investigates additionally, as compared to
the second series, the phenomena associated with anelasticity, as these are
observed at first loading. Also, the elasticity and wave velocities during small
loading cycli superposed on the main up-loading path is investigated. The
conclusions that can be drawn are listed below.

e The strains and the permanent deformation associated with the Nieder-
hausen sandstone are approximately twice as large as the one measured
for the Bad Diirckheim sandstone, which is confirmed by the core ex-
periments described in Section 4.5, and explained on the basis of the
mineralogies of both sandstones.

e The tangent Young’s modulus E* in Figs. (5.36) and (5.37) is higher
during down-loading of the main loading cycle than during up-loading.

e The largest values for the tangent Young’s modulus E* are obtained at
the onset of down-loading of an inner loop, which is confirmed by the
core experiments described in Section 4.5.

e Approximately half-way the stress interval of an inner loop the down-
and up-loading moduli are the same. During the first half of a in-
ner loop stress interval, the down-loading modulus is smaller than the
up-loading modulus, whereas, during the second half of the stress inter-
val, the down-loading modulus exceeds the up-loading modulus. This
phenomenon is the hysteresis effect.

e The two intermediate loops representing secondary and tertiary load-
ing, almost coincide, indicating that after first loading anelastic effects
are apparently eliminated.

e The permanent deformation at the end of both loading cycles, as is
observed from Figs. (5.34) and (5.35), is apparent in Figs. (5.40)
and (5.41), from the higher velocity at the end of a particular cycle,
compared to the velocity at the beginning of a cycle. This effect is
larger for the Niederhausen sandstone than for the Bad Diirckheim
sandstone.
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e Analogously to the observations from the Colton and Flechtinger sand-
stones in previous sections of this Chapter, compressional- and shear-
waves are sensitive to those axial stresses which lie in the polarization
and/or propagation direction.

¢ Anisotropy between the horizontal P-wave velocities v} , v} and the ver-

tical P-wave velocity v!, is larger for loading cycle ’b’ than for loading
cycle ’a’, the former having the largest deviatoric stresses.

e The horizontal P-wave anisotropy of the Bad Diirckheim sandstone
reflects an intrinsic anisotropy, attributed to texture or layering,

e The Niederhausen shows a larger difference in P-wave velocity be-
tween the up-loading and the down-loading curves, compared with the
Bad Diirckheim. This may be explained by the mineralogy of both
sandstones (the Niederhausen contains less quartz and more weath-
ered feldspar), causing anelastic effect to be more pronounced for the
Niederhausen.

e The dynamic elastic modulus of Eq. (5.6), at a certain stress 733, equals
the static elastic modulus of Eq. (4.3), evaluated after some instant
after the onset of down-loading during some small loop cycle around
the stress 7s3.

5.5 Discussion

The determination of the applicability of the results in this section to seismic
experiments is not straightforward. It requires the translation of the wave
velocity dependence on stress from the ultrasonic scale (hundreds of kHz)
to the seismic scale (tens of Hz). The possibility of this transformation
is suggested by the self-similar or fractal nature of the dynamic scaling laws
observed in deformation (finite strain) and in wave propagation (infinitesimal
strain). This will be argued below.

The sensitivity of ultrasonic waves to stress can be explained by micro-
crack mechanisms as micro-crack closure, nucleation, and growth, and micro-
seismicity. According to Main (1996) these mechanical deformation phenom-
ena have spatio-temporal scaling properties. Following this argument one
can imagine that some spatio-tcmporal scaling law might explain a transfor-
mation of a small loop stress-strain curve to the main loop curve in Figs.
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(5.34) and (5.35). According to Plona and Cook (1995) the elastic modulus
determined from a small loop will approach the dynamic elastic modulus
as the size of the small loop is decreased. In Figs. (5.48) and (5.49) one
observes, in accordance with Plona and Cook (1995), that the small loop
moduli are closer to the dynamic moduli than the main loop moduli.

In the limit from quasi-static to dynamic strain inertial effects will become
significant enough to generate wave propagation. In the spatio-temporal
domain associated with wave propagation we also observe scaling laws. In
Fig. (5.50) the traces of Fig. (5.16) are superposed on one time axis. We
observe a clear scaling behaviour of the wavelet, with respect to time and
amplitude, as a function of the triaxial stress. The stress increases from
right to left in Fig. (5.50). The spatio-temporal scaling property of crack
deformation is visible as a scaling of the transmitted wave. The scaling

Rel. Amplitude
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l‘/‘-
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Figure 5.50: Superposition on one time axis of compressional-wave transmissions
through the Flechtinger sandstone for stresses from 2 to 20 MPa. The stress
increases from right to left. All axial stresses are equal: T11 = To2 = T33.

operations, with respect to time and amplitude, is further detailed in Fig.
(5.51). In this figure the solid and the double dashed lines represent P-wave
recordings at 8.7 and 20 MPa, respectively. The dashed line is computed
from the 20 MPa recording by a scaling of the time and amplitude axis (den
Boer and Fokkema (1996)). Observe that the recorded and the computed
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lines are similar for the first cycle part, validating the existence of a dynamic
scaling law.

tracc recorded at 8.7 MPa
————— trace recorded at 20 MPa

N scaled trace from 20 to 8.7 MPa

Rel. Amplitude

=)

. . . s
0.05 0.06
Time (msce)

Figure 5.51: Detail of Fig. (5.50). The solid and the double dashed lines represent
P-wave transmissions through the Flechtinger sandstone at, respectively, 8.7 and
20 MPa. The dashed line is computed from the 20 MPa recording by a scaling of
the time axis and the amplitude axis.

Using the observed self-similar nature in well-log measurements of geo-
logical strata (Walden and Hosken (1985); Todoeschuck and Jensen (1989);
Saucier and Muller (1993); Herrmann (1997)), one can envisage some renor-
malization technique (Lesne (1998)), which transforms the ultrasonic results
to the seismic scale through a so-called coarse-graining procedure. Given
the above indication of scaling laws governing the medium and the dynamics
of deformation and wave propagation one could conceive that the transfor-
mation from the ultrasonic to the seismic scale involves a scaling law which
relates the two spatio-temporal observation domains in a correct way. Her-
rmann (1997) suggests that one has to include scale dynamics in wave the-
ory involving derivatives with respect to scale. Given the complexity of the
ultrasonic-seismic scale problem no attempt is made in this thesis to up-scale
the ultrasonic results to the seismic scale. Of course it is an intriguing prob-
lem that must be addressed when working with down-scaled experiments,
that are supposed to be relevant for the seismic scale.
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Experiments have shown that the wave-velocity dispersion (a measure for
the velocity change over a frequency band, e.g. from seismic to sonic) in case
of dry- or gas-saturated porous media is quite small (Spencer (1981); Win-
kler (1985)). The small dispersion can be explained according to Fermat's
shortest path principle, meaning that higher frequency waves show higher
velocities than low frequency waves, because on a small scale a wave is more
‘manoeuvrable’ to pass through the higher velocity parts. Moos and Zoback
(1983) and Murphy IIT (1984) argue that the observed velocity dispersion
is primarily due to the sample size rather than the frequency. Ultrasonic
measurements, as in this thesis, are conducted on intact samples, whereas
field measurements from the sonic to the seismic scale involve the in-situ rock
containing cracks and fractures on a range of scales. According to the simple
model of Walsh (1965a) in Eq. (3.2) the average crack length appears to
the third power. Hence, the compressibility and wave-velocity are strongly
affected by a few relatively long cracks making a comparison between labo-
ratory and in-situ measurements difficult.

The wave-velocity dispersion in fluid-saturated rock is known to be signif-
icantly larger than in dry rock (Winkler (1985)). Therefore, the translation
of the room-dry ultrasonic results reported in this thesis to the saturated
seismic scale must be done carefully. The reason for this is that additional
loss mechanisms come into play. Winkler (1985) and Wang and Nur (1990)
discuss dispersion mechanisms as the viscous interaction between fluid and
solid, described by Biot’s theory (Biot (1956a,b)). Further they identify lo-
cal flow mechanisms, which take into account that some parts of the pore
space are more compliant than others (e.g. squirt mechanisms in Mavko
and Nur (1975)). Winkler (1985) suggests that, assuming that velocities in
dry rock are independent of frequency, seismic velocities in fluid-saturated
rock can be computed from ultrasonic measurements on dry rock, using the
low-frequency limit of Biot’s theory (equivalent to the static limit theory of
Gassmann (1951)).

For stress inference wave-velocity anisotropy is important. In Mukerji
and Mavko (1994) a local-flow theory is derived which predicts the high- and
low-frequency saturated velocities in anisotropic rocks in terms of dry-rock
properties measured e.g. in the laboratory. At low frequencies the predicted
velocities are equivalent to the ones computed from the fluid substitution
theory of Brown and Korringa (1975), which is an anisotropic extension of
Gassmann (1951). The data displayed in Figs. (5.28) to (5.32) can be used
to compute the dry-rock elastic moduli assuming transverse isotropy (Cruts
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(1995); Cruts et al. (1995); den Boer (1996)). Using Mukerji and Mavko
(1994) one can compute from these ultrasonic measurements the seismic ve-
locities for a fluid saturated transversely isotropic rock.

The number of parameters involved in theories on wave propagation in
porous media is often quite large. These parameters must be specified in
order to compute wave velocities at one scale from those at another scale.
The scaling laws observed from experiments on porous media are, however,
simple relations.

My view is that we must adhere to this experimental simplicity and find
scaling laws involving a minimum number of parameters, corresponding to
good scientific practice. The derivation of a transformation law between the
ultrasonic and seismic scale is not pursuit in this thesis.

In Part IT of this thesis a processing scheme is derived which produces an
image of temporal contrasts in terms of the kernel of a difference reflection
operator. This reflection operator depends on the acoustic velocities and
densities of the reference and monitor media. To yield the change in the
stress state these velocities must be inverted using stress-velocity relations
obtained from ultrasonic laboratory or field experiments. This inversion has
not been implemented but appears high on the future research agenda.
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Part 11

l Time-lapse seismic monitoring
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Chapter 6

Time-lapse contrast formalism

The following chapters are partly based on the work reported in the M.Sc.
theses van Spaendonck (1996), Beishuizen (1997), and de Brouwere (1998).
Chapter 6 is adapted after Dillen et al. (1999).

6.1 Introduction

By calculating a time-convolution type interaction integral, evaluated at a
certain depth, involving two sets of time-lapse acoustic wave fields, one ob-
tains a representation of a difference wave field at the recording level. This
difference wave field appears as difference reflections originating from tempo-
ral contrast sources located below the interaction depth. Temporal contrasts
above the interaction depth do not produce difference reflections in this dif-
ference wave field. The equivalence of the time-convolution type interaction
integral with a difference wave field is derived by introducing a temporal
contrast source formalism, similar to the spatial contrast source formalism in
scattering theory. In this respect the difference wave field takes the role of the
scattered wave field. Calculating the interaction integral progressively with
depth one obtains an elimination procedure of difference reflections above
the interaction depth, which is illustrated by some finite difference examples
in this chapter. These vanishing difference reflections can be used in a min-
imization scheme which attempts to infer the temporal contrast parameters
above the interaction depth. Numerical examples show that the arrival time
of the difference wave field, generated by the interaction integral, appears to
be governed by a medium which is some average of the two media, each rep-
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resentative for a time-lapse state. In Chapter 10 the difference reflections are
derived as functions of temporal contrasts in the admittance operator. By
applying a symplectic eigenvalue decomposition in Chapter 10 the interac-
tion integral is set in terms of a single eigenvalue operator for both time-lapse
states, which is a function of the two admittance operators, each representa-
tive for a time-lapse state above the interaction depth. Hence, the absence
of difference reflections in this domain. The arrival time is shown in to be
governed by an up-going and a down-going wave field extrapolation operator,
the former identified with the reference state, whereas the latter is identified
with the monitor state. Using the aforementioned extrapolation operators an
image of the temporal contrasts is obtained from the consecutive interaction
integrals.

In the following sections, first a temporal contrast source formalism is
derived in terms of the wave field equations of the difference wave field.
Subsequently, the difference wave field is decomposed, at a particular depth,
into a down-going and an up-going wave field. Application of the acoustic
reciprocity theorem yields a boundary integral representation involving the
reference and monitor wave fields. This interaction integral, evaluated at the
decomposition depth, is shown to be equivalent to the up-going component
of the difference wave field, which is causally related to the temporal contrast
sources below the decomposition (interaction) depth.

6.2 The acoustic wave field equations

We consider two sets of time-lapse acoustic wave fields. One set of wave fields
is denoted by the term reference wave fields, whereas the other set of wave
fields is identified as monitor wave fields. Reference and monitor wave fields
are denoted by the superscripts .() and .(?), respectively. The space and time
Cartesian reference frames used are introduced in Appendix A. We define a
global time scale #'. With respect to this time scale, and for a certain shot
position, the onset of a reference wave field is at the time instant ¢’ = ™),
whereas the onset of a monitor wave field is at the time instant ¢t = ) with
t® > () Local time scales are obtained as t' —t() and ¢ —#(?), and are both
denoted by the symbol t. Between the time instants ¢ = ¢! and ¢ = ¢(®),
changes in the medium parameters may have occurred. We assume that
the duration of the seismic experiments is much smaller than the time-lapse
interval t® — ¢ such that during either seismic experiment the medium
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parameters p and k may be approximated by constant functions of time. The
reference state is governed by the medium parameters {pV), k(V}, whereas
the medium of the monitor state is governed by the parameters {p® x(®}
(see Chapter 7 for an introduction of the acoustic wave field quantities and
equations). Consider the Laplace domain (see Appendix B) acoustic reference
wave field equations,

opV (m;ms,s) + sp) (z )@,E,l) (a:'ws s) = f,ﬁ”( )6 (z — %), (6.1)

Gk@,(cl) (z; x>, s) + ske® (a) pV) (z; =° ,8) = ¢V (s)é (z — :cs) , (6.2)
and the Laplace domain acoustic monitor wave field equations,

Orp? (; x5, s) + sp@ () 13,(92) (z; x5, s) = f]gz) (s)6 (x— ws) , (6.3)

8k@,(f) (z; 2%, s) + s6@ () p? (z;25,5) = ¢ (5) 6 (- ), (6.4)

in which z € R? and s is the Laplace transform parameter. The space R?

iy
D¢ :
S 12

Figure 6.1: Time-lapse configuration with source position.

is divided by the planar surface oD% = {(mT,az3)| xzr € R? z3 = zY} into
an upper half—%pace DY, for which 3 < 7%, and a lower half-space D', for
which z3 > 2§ (Fig. 6. 1) The transverse coordinate &1 equals (z1, ). For
this conﬁguratlon the longitudinal coordinate :1:3 is %)omting downwards. The
source distributions with source functions, {¢V), f;”'} and {¢®, ka)} in Egs.
(6.1) to (6.4), are located at =5 € Dv. Rewriting Eqs (6.3) and (6.4) yields

0p® + sp Vo) = —sA%p0D + f176 (x — 2%) (6.5)
Or0 ( ) + skWp@ = —gA¥kp® 4 35 ( — :BS) , (6.6)
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with temporal contrast functions given by
Alp=p® — p and Al = k@ — kD, (6.7)

By subtracting Eqs. (6.1) and (6.2) from Eqgs. (6.5) and (6.6) we construct
the following difference wave field equations

Op™t + sp(l)fu"hf ,fif, in R3 (6.8)

a dlf + SK,(l) ~dif (jdlf in R3,
in which the difference wave field quantities are given by
P =p@ — 50 and  off =5 — oY, (6.10)

The difference source quantities in Egs. (6.8) and (6.9) are obtained as

0~ _sAtpaf®) 4+ AU, (6.11)
G = —sAkp® 4 Allg, (6.12)
in which
AU = (ﬁz) _ A]gl)) § (x— %), (6.13)
At — (q(2) _ q(l)) § (z —ab). (6.14)

6.3 Wave field decomposition

Next, we assume the following decomposition of the difference wave field
quantities

pAif — pdifd 4 it in R (6.15)

N (difd | dif, .
e in R3. (6.16)

The wave field components {pdif:d, 13,‘:if’d} are governed by the wave field equa-
tions

apdlfd+8p(1) dif,d _ f;cilfd, in R?, (6.17)
i spDpdifd = gditd in R3 (6.18)
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with source quantities

[fURA gditd) _ g fdif g in DY (6.19)
{FULd gaitdy _ 60 0}, in D. (6.20)
The wave field equations of the wave field components {ﬁdif’“, @gif’u} are given
by
9 pdlf g Sp(l),v(hf R ";lif,u’ in R3, (621)
Bl | g plitn — gdifn in R?, (6.22)

with source quantities

{f-;lif,u, Adif,u} — {0 0} in ]D)u’ (623)
{f;chf u’ qulf u} { d1f7 ~dif in ]D)l_ (624)

Observe that in D!

it — s AH 552 in D, (6.25)
GH = —sA%kp®, in DL (6.26)

Hence the temporal contrast sources of {p4t2 o¢""} in Eq. (6.24) only de-
pend on the time-lapse differences of p and « in D!, and are independent
of the time-lapse changes in the source functions fk and ¢. The decomposi-
tion of Egs. (6.15) and (6.16) is invoked by choosing different supports for
the temporal contrast functions of Egs. (6.11) and (6.12). From the source
domains given in Egs. (6.19), (6.20), (6.23) and (6.24) one can show that
{pitd 309 s a down-going wave field at ODY, whereas {pit", i, pdbu s an
up-going wave field at ODY. Observe that the difference wave fields deﬁned by
Egs. (6.8), (6.9), (6.17), (6.18), (6.21) and (6.22) propagate in the reference

medium.

6.4 Reciprocity theorem

In this section the acoustic reciprocity theorem of the time-convolution type
is used (for a more elaborate discussion see Chapter 7). This theorem has
its roots in Green’s theorem for Laplace’s equation and Helmholtz’s exten-
sion to the wave equation. A reciprocity theorem interrelates the wave field
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quantities of two admissible states, A and B, that occur in one and the same
time-invariant domain D C R3 (de Hoop (1995)). In forward/inverse source
and scattering problems one state is identified with a physical wave field
while the other state is identified with a computational or so called Green’s
wave field. In time-lapse problems both states are identified with physical
wave fields. The respective wave field equations for State A and State B are
given by

Bp™E (x,5) + sp™P (x) 0278 (¢, 5) = f2F (2, ), (6.27)
Ao (x,8) + sk™E () A8 (z, 5) = ¢4F (2, 5) . (6.28)

The complex-frequency domain reciprocity theorem of the time-convolution
type (in the time-domain the multiplications represent convolutions) is ob-
tained as (Fokkema and van den Berg (1993); de Hoop (1995)),

/ (09" — p*0F) red A
€T oD
+/ s[ (0% = p*)ofof — (K% — k) p*p® | AV
reh

= [ (fFt - fok + %" - a#5) 4V, (029)

TeD
in which the normal v is pointing outward ). Using the reference and monitor
wave fields of (6.1) to (6.4) as State A and State B, respectively, taking the

source position of the reference wave field to be «® instead of 5, and using
only ¢ sources, application of the reciprocity theorem yields, omitting s,

[ [ @a")5® (@ie%) -5 (@) of? @i2) |
X ecob
+/ s [A“pv,(cl) (z; =) s (z;2%) — Akp (z; 2®) p@ (e S)] dv
TeD
= W@ (= 2%) - GApL ( z™) . (6.30)

Hence, the sum of a boundary integral and a volume integral containing
temporal contrast sources is equivalent to a difference measurement.
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6.5 Interaction integral

Taking the boundary integral of Eq. (6.30) we define the following interaction
integral (for a more elaborate analysis see Chapter 10),

feony (wgl’ o wS) def / [ﬁ:g]) (arp, 22 z¥) P (2, 2%, %)
T ecR?2

—p (o, 28 @ )v§2) (zr,28; S)] dzr. (6.31)

The integration is with respect to the transverse coordinate zr = (1, 2),
at a depth z. Consider the wave fields, {pV, v(l)}(mT, ¥ ®) and

{pM vkl)}(mrp,:pg},m ), which differ with respect to their source positions.
Applications of the reciprocity theorem of Eq. (6.29) to these wave fields,
with respect to the domain D', leads to

0= / [ﬁél) (wr, 285 %) pO (1, 2Y; 25)
Tt eR?
—p (:1: , 7Y ) pi! (wT,:cgl, S)] dzr. (6.32)

In the derivation we have taken into account that contributions at

(# 4+ 23) — oo and at T3 — oo vanish. Because there is no contrast in
the medium parameters between the two states, and inside the domain of
application D' both states have no sources, the two volume integrals of Eq.
(6.29) also vanish in Eq. (6.32). Subtracting Eq. (6.32) from Eq. (6.31),
using Eq. (6.10), yields

j—conv (CL‘;I,.’;UR w@) :/

[@él) (JZT, U mR) pAit (iBT 2l wS)

— M (e, 28 2®) o (or,z4;2°%) ] der. (6.33)

Next, consider the wave fields, {p(V), o, )}(a:T,a:3 ;zR) and

{pU0d, 5759} (@, 28 2°), the latter wave field being governed by Egs. (6.17)
and (6.18). Applications of the reciprocity theorem of Eq. (6.29) to these
wave fields, with respect to the domain D!, leads to

0= [ [ (i) 5904 (@, 509
T

— ph (a:T,wgl,wR) pgitd (@, z5; S)] der. (6.34)
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Subtracting Eq. (6.34) from Eq. (6.33), using Egs. (6.15) and (6.16), yields

foonv (:Eg’ R w%) _ / [ (1) (mT’ xgl, mR) it (iET, xgl, wS)
T €R?
— pW (zr, 23 ) o5 (@, 7 ) ] der. (6.35)

Taking the wave fields, {p, 9"} (@r, z4; ®) and {pU0¥, 085"} (@, 21l 29),
the latter wave field being governed by Egs. (6.21) and (6.22), and applying
Eq. (6.29) to these wave fields, with respect to the domain D", gives

q(l)ﬁdif,u (mR’ mS) _ / [@él) (iET, :L_:t)’l’ wR) ﬁdif,u (CBT w;l, mS)
IET c R2
- 3 (er,afsa") 6§ (wr,af;25) | der. (6.36)
Using Eqgs. (6.35) and (6.36) the interaction quantity is expressed as
j'conv (l‘gl, ﬂ'JR, :BS) — qA(l)pdif,u (mR, iBS) ) (637)

We arrived at a representation of Iem in terms of the difference wave field
p3bu - According to Eqs. (6.21) and (6.22), this wave field has sources de-
pending on the temporal contrasts inside D'. Temporal contrasts inside D"
do not generate difference reflections in the difference gather pUfuand hence
in [°" whereas these would occur in pdif, If Ienv g calculated incorrectly
residual difference reflection energy from temporal contrasts inside D" will
appear. Minimizing this energy could be the basis for an inference scheme
for the reference and monitor medium parameters inside D". The reference
and monitor two-way wave fields appearing in I can be calculated from
data by applying a wave field decomposition into down-going and up-going
one-way wave fields at the recording level (Fokkema et al. (1999)). In the
next section ¢ is calculated numerically, using Eq. (6.31), for several zY,
using wave field simulation with finite differences. Also, I g calculated in
case {pM, kW} = {p® k®} in D, using the right-hand side of the following
equation,

jconv

3,.’13 x® ‘{p (1)} _ {p(z),,i@)} in DY
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We consider two cases: one for which, inside D" the reference material state
is equalized to the monitor material state, and one, vice versa, for which
the monitor material state is equalized to the reference material state. Both
calculations of I, one using the boundary integral, and the other using
the difference wave field on the right-hand side of Eq. (6.38), are compared.

6.6 Numerical example

We consider the two-dimensional model shown in Fig. (6.2), with coordi-
nate vector * = (x1,x3), in which z; denotes the lateral position in terms
of source-receiver offset, and z3 denotes depth (no z; dependency). The
wave fields are calculated and displayed in the time domain. The refer-
ence and monitor velocities and densities are given in Table (6.1). With a

c® fm/s] p [kg/m’]

background 1800 1500
diamond-shaped object 2500 2000
lower layer 2700 2300
¢® [m/s] p® [kg/m’]
background 1800 1500
diamond-shaped object 2700 2200
lower layer 2900 2400

Table 6.1: Reference and monitor velocities and densities, c(l),p(l) and ¢ and
@)
p\.

two-dimensional finite difference code two acoustic time-lapse wave fields in
(z1, z3)-space are simulated. The reference and monitor sources are placed at
the top of the model at 0 m depth, at 0 m offset. Th e receivers for both ex-
periments are placed at 0 m depth, at offsets covering the entire model. Fig.
(6.2) shows a difference gather p4 (see Eqs. (6.8) and (6.9)), obtained by
subtracting a single reference shot-gather from a single monitor shot-gather.
The first reflection originates from the top sides of the diamond-shaped ob-
ject. The reflection from the bottom sides merges with the reflection from
the top side at larger offsets, and shows a triplication at small offsets. The
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Reference model

offset [m]

Figure 6.2: Model containing a diamond-shaped object, embedded in a back-
ground medium, and a lower layer. Temporal contrast in diamond-shaped object
and lower layer.

reflection from the lower layer starts, at zero offset, just after 0.700 s, its
complex shape determined by the diamond-shaped object.

The following finite difference modelling results were done to test the
equivalence of the interaction integral of Eq. (6.31) with an up-going dif-
ference wave field, governed by Egs. (6.21) and (6.22), as expressed by
Eq (6.37). First, we model the interaction integral at z§ = 400m and
373 = 650m, for (a:l,a:g) (0,0) m, zf ranging over the entire model and
2} = 0m. From Eq. (6.31) we see that (2%, z¥) is the source location of the
reference wave field, whereas (z$,z5) is the source location of the monitor
wave field. Hence, several reference shot-gathers are modelled for the afore-
mentioned (z}, a:3R) -range, with the wave field measured at x3 = zf. Also,
a single monitor shot-gather with source position, (z%,z3) = (0,0), and also
with receivers at zz3 = z¢, is modelled. Using these shot-gathers we calculate
the interaction integral of Eq. (6.31), in the time-domain, at 2§ = 400 m and
2l = 650 m. The resulting 1™ (zY; =%, 2, 27, 25) are shown in Figs. (6.4)
and (6.5), respectively.

To test if 1°™ is equivalent to an up-going difference measurement p

according to Eq. (6.37), evaluated in the time domain, we should model thls

~dif, u
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Difference data at 0 m depth
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Figure 6.3: Difference wave field evaluated at 3 = 0m depth for a range of offsets
covering the model.
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Difference data at 0 m depth

-1500 -1000 -500 500 1000 1500

0
offset [m]

Figure 6.6: Difference wave field at 3 = 0m, no temporal contrasts for r3 <
400 m.

wave field using the wave field equations of Eqgs. (6.21) and (6.22). Given
the source distribution of this wave field this is quite difficult to accomplish.
Using the fact that pdif" originates from contrast sources at z3 < Tl we
apply the following simpler procedure given in Eq. (6.38). The monitor
model of Table (6.1) is changed such that it equals the reference model for
r3 < 400m (halfway the diamond-shaped object), thereby eliminating the
temporal contrasts for 3 < 400m and retaining the temporal contrasts for
25 > 400m. The resulting difference gather, using the same source/receiver
parameters with which Fig. (6.3) is obtained, is shown in Fig. (6.6). One
observes that Fig. (6.6) is very similar to Fig. (6.4), thereby indicating
that the interaction integral is equivalent to a difference wave field which
shows no temporal contrast above the interaction depth. We proceed by
further altering the monitor model such that there is no temporal contrast
in the diamond-shaped object. The only temporal contrast is in the lower
layer. In Fig. (6.7) the difference gather is shown. The difference reflections
associated with the temporal contrast in the diamond-shaped object, visible
in Fig. (6.3) have disappeared. Note the similarity of Fig. (6.7) with Fig.
(6.5).

In Fig. (6.7) the monitor model was changed such that it equalized the
reference model for z3 < 650 m. To examine the arrival times of the difference
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Difference data at 0 m depth
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Figure 6.7: Difference wave field at x3 = O0m, no temporal contrasts for x3 <
650 m.

reflections for this configuration, Fig. (6.7) is reproduced in Fig. (6.8) at a
smaller scale. For comparison, in Fig. (6.9), a difference gather is shown
obtained by changing the reference model to the monitor model for z3 <
650m. We observe that the maximum of the first arrival, at zero offset,
in Fig. (6.8), is approximately at 0.73 s, whereas the same arrival, in Fig.
(6.9), measures 0.71 s. The first reflection in the latter figure arrives earlier
because, according to Table (6.1), the monitor velocity, c¢(?, is larger than
the reference velocity, c¢(). To examine the same arrival time in case of the
interaction integral, calculated at x3 = 650 m, as shown in Fig. (6.5), this
last figure is also shown on a larger scale in Fig. (6.10). The arrival time of
the maximum of the first reflection, at zero offset, is approximately 0.72 s, in
between the aforementioned arrival times in Figs. (6.8) and (6.9). Because
there are no apparent difference reflections present above the interaction
depth of z3 = 650m in Fig. (6.10), we expect to be able to identify with
the first reflection two media descriptions which do not generate difference
reflections, as is possible in the Figs. (6.8) and (6.9). Because the wave ficld
of Fig. (6.10) is constructed using the interaction integral of Eq. (6.31), these
media descriptions will be some integral average of both the reference and
monitor media, with respect to the lateral coordinates ;. This observation
is quantified in Chapter 10 in terms of the reference and monitor scalar
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density and admittance operators. The temporal contrast in the density
is maintained, but the contrast in the admittance operator is eliminated
through an eigenvalue decomposition (see Fig (10.1)). Because difference
reflections only depend on temporal contrasts in the admittance operator,
absence of this contrast eliminates these reflections.
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Difference data at 0 m depth

Difference data at 0 m depth

OIGST — 068, m s ——
0.7 0.7
0.72 0.72
0.74 0.74 "
0.76 0.76
“Zo7s Zo7s
" 02 )\HH”  0s2 ) ' .
0.84 0.84
0.86 » 0.86 )’ ’.
o % .M» »"h
-600 -400 -200 0 200 400 600 -600 -400 -200 0 200 400 600
offset [m] offset [m]
Figure 6.8: Difference wave Figure 6.9: Difference wave
field at 3 = Om, monitor field at x3 = 0m, reference
model equalized to reference model equalized to monitor

model for z3 < 650m.

model for 3 < 650m.
Boundary integral at 650 m depth

600 —400 -200 0 200
offset [m]

Figure 6.10: Interaction inte-
gral at x3 = 650 m.
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Chapter 7

Acoustic reciprocity theorems

7.1 Introduction

In this chapter the acoustic reciprocity theorems of the time-convolution and
the time-correlation types are derived. The theorems have their roots in
Green’s theorem for Laplace’s equation and Helmholtz’s extension to the
wave equation, the latter being introduced by Lord Rayleigh in his book The
theory of sound. The acoustic reciprocity theorem, or Rayleigh’s reciprocity
theorem, has numerous applications, such as in

e transmitting/receiving properties of acoustic transducers,
o direct(forward) and inverse source problems,

e forward and inverse scattering problems,

e time-lapse problems (this thesis).

It also leads, as will be shown later, to a mathematical formulation of Huy-
gens’ principle. A reciprocity theorem interrelates the wave field quantities of
two admissible states that occur in one and the same time-invariant domain
D C R® (de Hoop (1995)). In forward/inverse source and scattering prob-
lems one state is identified with a physical wave field while the other state is
identified with a computational or so called Green’s wave field. In time-lapse
problems both states are identified with physical wave fields. Application of
the time-domain reciprocity theorem to these problems leads to an integral
representation of the physical wave field in terms of its time-retarded state
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(forward problems) or in terms of its time-advanced state (inverse problems).
According to Brody (1993), Einstein already showed in 1909, with regard to
Maxwell’s equations, that as long as the domain of application is confined to
a finite region, the time-retarded and the time-advanced representations are
equivalent. Initial conditions in the form of the physical wave field’s initial
state are used in the time-retarded representation to calculate its final state.
The time-advanced representation uses the physical wave field’s final state as
final conditions to confirm the initial state. Mixed boundary conditions are
also possible as long as the domain is finite. Brody (1993) identifies this bi-
directional determinism with finite and limited systems on the one hand and
reversibility on the other. According to Brody (1993) infinite systems are as-
sociated with uni-directional determinism which can not be inverted. In this
thesis the domain of application for a reciprocity theorem comprises a finite
interval along the longitudinal coordinate and is infinite in the transverse di-
rections. Contributions for which the transverse coordinates tend to infinity
vanish (Fokkema and van den Berg (1993)). The time-retarded representa-
tion of a wave field in terms of contributions from two infinite surfaces can be
reduced to one, using Sommerfeld radiation conditions (causality conditions
in de Hoop’s terminology) at infinity, yielding the mathematical formulation
of Huygens’ principle. The time-advanced representation, in which the state
of the physical wave field depends on its future state, involves anti-causal
Green’s wave fields. These latter wave fields do not satisfy Sommerfeld ra-
diation conditions at infinity, which excludes the possibility of representing
the physical wave field in terms of contributions from a single infinite surface
(Bojarski (1983)). Hence, the incompatibility of the time-retarded and time-
advanced representations for a half-space configuration poses one example of
an infinite system which does not allow bi-directionality. The philosophical
implication of a system which is both infinite and bi-directional is that the
concept of causality becomes meaningless because no distinction can be made
between cause and effect (Brody (1993)).

7.2 The acoustic scalar wave field equations

The wave field equations of acoustics are given by the equation of motion,
oLp (.’L‘, t) + ‘i)k (ZB, t) = fr (:l?,t) , (71)
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and the deformation equation,

Ok, (mv t) —0 (m’ t) =4q ($,t) (72)

(Fokkema and van den Berg (1993); de Hoop (1995)). In Eq. (7.1) p consti-
tutes the pressure, ®; represents a component of the mass flow density rate
and fj signifies a component of the volume source density of volume force.
In Eq. (7.2) vy constitutes a component of the particle velocity, § represents
the cubic dilatation rate and g represents the volume source density of injec-
tion rate. For a fluid that is linear, time-invariant, instantaneously reacting,
locally reacting, isotropic and lossless in its acoustic behaviour we use the
following constitutive equations,

& (x,t) = p(x) Dy (1) (7.3)

and
0 (x,t) = —k (x) Dyp (x, 1), (7.4)

with the co-moving time derivative, D; = 0; 4+ vx0k, which produces the rate
of change with time that an observer registers when moving through the fluid
with the particle velocity v. We assume that inside the considered domain the
constitutive quantities, the volume density of mass p and the compressibility
Kk, in Egs. (7.3) and (7.4), are smooth, i.e. infinitely differentiable functions
of position. The acoustic quantities are summarized in Table (7.1). The

Symbol Name Unit

p pressure Pa

v particle velocity ms?

P mass flow density rate kgm=2s2
0 cubic dilatation rate s~1

p volume density of mass kgm™3

K compressibility Pa~!

f volume source density of volume force Nm™3

q volume source density of volume injection rate s!

Table 7.1: Acoustic quantities and their units

system of equations (7.1) to (7.4) is nonlinear in the particle velocity v due

161




to the occurrence of v in the co-moving time derivative D,. Assuming that the
dynamic pressure, associated with the acoustic wave motion, represents small
amplitude variations on a static equilibrium distribution of pressure (e.g.,
seismic waves in the Earth superposed on a hydrostatic gravity background
pressure), and assuming that the particle velocity is small with respect to the
stream velocity of the fluid (e.g., sound waves in a stream of the exhaust of
an internal combustion engine), the linearized acoustic wave field equations
can be derived as

Op (2,1) + p () Opvk (2, 1) = fi (, 1), (7.5)
and
Our (X, 1) + K6 (x) Op (x,1) = ¢ (x,1), (7.6)

(see de Hoop (1995)[p. 31-34]).
The causal wave field quantities, p and v are subject to the following
initial conditions

p(x,t) =0 for t<0, (7.7)
v(xz,t)=0 for t<0.

Application of the Laplace transform of Eq. (B.2), to the Eqgs. (7.5) and
(7.6) yields

O (¢, 8) + sp () O (2, 8) = p () v (2,0+) + fi (m,5),  (T.8)
and
Ay, (,8) + sk (x) P (x,5) = K (x) p (x,0+) + § (2, 5), (7.9)

where we used Eq. (B.21). Non-vanishing wave field quantities at ¢ = 0 are
handled by incorporating these in the source terms in the right-hand sides
of Eqs. (7.8) and (7.9). Assuming that f and § incorporate the extended
source definitions we can write

-~

Op (z,8) + sp(x) Ok (x, 8) = fr (x,5), (7.10)
and

Opp (x,8) + sk () p(x,s) =¢(x,s). (7.11)
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Any causal Laplace transformed function in Egs. (7.10) and (7.11), satisfying
the initial conditions of Eqs. (7.7), satisfies the condition Re(s) > 0, which
ensures regularity in the right half plane of the complex s-space. By reversing
the time-axis, according to {p*, vi}(zx,t) = {p,vs}(x, —t) (Eq. (B.14)), one
can also consider the following anti-causal wave field equations,

Okp” (x, 1) — p (@) O (, t) = fi (@, 1), (7.12)
and

Opvi (1) — K (2) Op” (1) = ¢* (w, 1), (7.13)
which are subject to the following final conditions

p*(x,t) =0 for t>0, (7.14)
v*(x,t) =0 for t>0.

Taking the Laplace transform of Egs. (7.12) and (7.13), using (B.10) and Eq
(B.16), and incorporating non-vanishing wave field quantities at £ = 0 in the
source terms on the right-hand sides of these equations, yields

O (z, —52) — 2p (@) O (, —s*) = fr (x, —5%), (7.15)
and
Oy (¢, —8*) — sk (z) p (@, —s*) = G (x, —s), (7.16)

in which the Laplace transform parameter s*, in Egs. (7.15) and (7.16),
satisfies the condition Re(s?) < 0. Hence, wave field equations which describe
anti-causal wave fields are obtained by time-reversal in the time domain and
taking —s® instead of s as the Laplace parameter in the transformed domain
(Fokkema and van den Berg (1993) and de Hoop (1995)).

7.3 The acoustic vectorial wave field equation

Employing a Cartesian reference frame we regard the wave field quantities as
a function of the transverse vector coordinate @ and the longitudinal scalar
coordinate 3. The orientation of the Cartesian reference frame is fixed by
choosing the longitudinal coordinate x3 to coincide with the general wave
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field direction. In surface seismic measurements the longitudinal direction is
chosen to be vertical and measures depth, whereas e.g. in cross-well seismic
measurements the longitudinal direction is horizontal, measuring inter-well
distance. To accommodate such a directional decomposition the transverse
particle velocity components ©; and v, are eliminated from the wave field
equations (7.10) and (7.11), obtaining a single differential vector equation in

terms of wave field vectors.

We separate from the wave field equations, Eqgs. (7.10) and (7.11),

b + spbr = fi,

Opr + sKp = 4,
the transverse and longitudinal spatial derivatives,

Oap + $pie = fu,
Osp + spbs = fs,

63{)3 + 60/004 + 8Kp = (j

Extraction of 9, from Eq. (7.19),

6(1 = - (sp)_l 8aﬁ + (Sp)_l fa}

and substitution of the result into Eq. (7.21) yields

83@3 + (5)0)_1 [’3’2 - paa (p_laa) ] ]5 = QA - 5_160 (p_lfa) 3

in which

N S
y=-

c
and the acoustic wave speed is given by

¢ = (pK)
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Combining Eq. (7.20) with Eq. (7.23) results in the following first-order
ordinary differential equation with respect to z3 (Wapenaar and Berkhout
(1989); de Hoop (1992)),

OsF + AF = N, (7.26)

with thg wave field vector f‘, the acoustic system operator A and the source
vector N given by

n_ (P A (0 sp o fs
F_<®3)’ A_<S’€ 0)’ N_(C}—S_lﬁa(p_lfa)>’ (7.27)

respectively. The operator Kf, given by
K=k—s20,(p"0a), (7.28)

contains only spatial derivatives with respect to the transverse coordinates.
Defining the so called Helmholtz operator as,

def .2

Hy = 4% — pOy (p 00 , (7.29)

we have

~

K =s72p 1, (7.30)

7.4 Acoustic states

We consider a time-invariant, open domain D in R®, bounded by the infinite
surfaces r3 = 73 and x3 = o} (the superscripts .* and .! stand for ‘upper’ and
‘lower’, respectively), with x5 > =¥ (geological configuration), in which two,
possibly non-identical acoustic states can occur. The two states are denoted
by the superscripts . and .Z. Both states are defined by:

e the wave field quantities {F4, F5},
e the material matrix operators {AA, AB},

e the source quantities {N4, N5},
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For both State A and State B, the relation between the wave field state,
the material state and the source state is governed by the wave field vector
equation (7.26). The two states are expressed as

A={F4 A4 N4} and B ={FP AP NP} (7.31)
The respective wave field vector equations are given by

BsFA + AYFA = N4, (7.32)
9FP + APFE = N5, (7.33)

The two states and the domain of application of the reciprocity theorem are
shown in Fig. (7.1). The wave field vector equations of Eqs. (7.32) and

T3 =2a§-r— i3
{FA A4 NA} {FB AB NB}
D
.’E3 - .’[,'3 """""""

Figure 7.1: The two states, State A = {FA A4 N4} and State B =
{FB, AB NB}, and the domain of application D of the reciprocity theorem.

(7.33) apply to those points in D where the medium parameters « and p are
smooth, i.e. infinitely differentiable with respect to the spatial coordinate
(xr,73). At interfaces z3 is constant, for which the medium parameters are
discontinuous with respect to the longitudinal coordinate 3, the wave field
vector equations of Eq. (7.32) must be supplemented with the following
boundary conditions,

{F4 F5} is continuous across interface. (7.34)
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In case of interfaces represented by hyper-surfaces, which coincide e.g. with
geological contrasts, a reference frame with curvilinear coordinates would be
more appropriate. In this thesis we confine ourselves to planar surfaces.

In de Hoop (1995) and Fokkema and van den Berg (1993) the wave field
equations (7.10) and (7.11) are used to derive the Laplace domain reciprocity
theorems. In this thesis we use instead the wave field vector equation (7.26)
to accommodate the preferential longitudinal propagation direction of the
wave fields.

7.5 Bilinear forms

Consider the following definition of a bilinear form f ,

f(F,G)Y / F'(z1)BG (zr) dzr, (7.35)

Tt eR?

which constitutes the mapping,
£ [ (R x [12 (RH])* — ¢, (7.36)

from the product of two Hilbert spaces into the complex plane C. A Hilbert
space [L? (R?)]? is a set of square-integrable (L?), vector-valued ([]?) func-
tions, F, G € [L?(R?)]?, defined on the transverse coordinate space R?. The
superscript .' denotes transposition of the vector F. The linear operator B
associated with f is given by the map,

B: [L2(RY)]* — [LA(R)]*. (7.37)

Bilinearity means that (Lang (1993)), VF,F1,F, G, G}, G, € [L*(R?)]? and
Ya,b € C, we have linearity in the first variable

fF1+F,G) = f(F,G) + f(F2,G), (7.38)
f (G’F7 G) = af (FvG)7

and linearity in the second variable

J(F,G1+Gy) = f(F,G1) + f(F,Gy), (7.39)
f(F,bG) =bf (F,G).
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We say that f is a symmetric bilinear form if
f(F,G)=f(G,F), VF,G e [l*R?)]". (7.40)
A bilinear form f is called an alternating form if
f(F,F)=0, VF e [L}RY]". (7.41)
An alternating form has the following property,
f(F,G)=—f(G,F), VF,G e [[*R%)], (7.42)
as one can see by substituting F + G in Eq. (7.41) and using the bilinearity

property of Egs. (7.38) and (7.39).
The bilinear form f associated with B is symbolized as

f(F,G)=(F,BG),. (7.43)

Given the linear operator B and its associated bilinear form f there exists a
unique linear map

B': [L*(R%)® — [LA(RY)]’, (7.44)
such that
(F,BG), = (B'F,G),, VF,G e [L*R?)]". (7.45)

We call B* the transpose of B with respect to f. For, a € C and B,C :
[L?(R?)]? — [L*(R?)]?, we deduce that (Lang (1993)),

(aB)' =aB', (B+C)'=B'+C!, (B) =B, and (BC)'=C'B"
(7.46)

In terms of scalar operators we have,

B B ¢ (B'ii 51
B = — B'= 7.47
(321 Bz2> LB, (7.47)

in which the operators B, constitute the maps Bag : [L2(R?)]' — [L2(R?)]",
with [L%(R?)]! being a Hilbert space of scalar-valued functions, and the
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transposition operation is with respect to a bilinear form, f : [L? (R?)]!
[L? (R*)]! — C, of scalar-valued functions.
If f is symmetric then, using Eqgs. (7.35), (7.40) and (7.45),

(F,BG), = (G,BF), = (B'G,F), = (F,B'G), ,
VF,G € [L2(RY)]*. (7.48)
Hence,
B =B, (7.49)

The matrix operator B is said to be symmetric with respect to f. If f is
alternating then, using Eqs. (7.35), (7.42) and (7.45),

(F,BG), = - (G,BF), = — (B'G,F), = (F,-B'G),,
VF,G € [*RY)]*. (7.50)
Hence,
B = —Bt. (7.51)

The matrix operator B is said to be skew-symmetric or alternating with
respect to f.

7.6 Time-convolution type reciprocity theo-
rem

Consider the domain D = {(xr,z3)| xT € R? 2} < 23 < 23} shown in Fig.
(7.1). Following Wapenaar (1996b) and Haines and de Hoop (1996), in D, an
interaction quantity I hetween the two states, A and B, associated with
the wave field vector Egs. (7.32) and (7.33), is defined, according to,

[ (22 (R2)]) x [L2 (R?)]* — C. (7.52)
and

[Iconv (FA FB)] (3, 5)

def

o\t .
:’/ (FA) (z7, 23, 8) JFP (@1, 23,5) dXT. (7.53)
:I:Te]R2
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The interaction quantity [ constitutes a bilinear form with the variables
73 and s acting as parameters. The standard alternating matrix operator J,
associated with the bilinear form 7™, is given by

= (—Oz é) , (7.54)

with @ and Z representing the scalar null and scalar identity operators,
respectively. Using the notation of Eq. (7.43) the bilinear form I°" is
symbolized as

feonv (FA,FB) - <FA,JFB>b. (7.55)

In accordance with the skew-symmetry of J,
J=-J (7.56)

the interaction quantity I*™ ig an alternating form. Hence, according to Eq.
(7.41)

o (B,F) =0, VF e [L(RY)], (7.57)
and according to Eq. (7.42)
Jeonv (FA’:FB> — _Jeonv (ﬁ\B’FA) ’ VFA,FB e [LQ(RZ)]Z ) (758)

The multiplication of the Laplace transformed wave field quantities in Eq.
(7.53) is equivalent to a convolution in the time domain, hence the denotation

~

ICOI).V

Taking the derivative of Eq. (7.53) with respect to the longitudinal co-
ordinate x3, omitting the Laplace transform parameter s from the argument
lists, yields

85 <FA, JFB>b (5) = <63FA,JFB>b (3) + <FA,J83FB>b (z3). (7.59)

Substitution of the wave field vector Eqgs. (7.32) and (7.33) into the right-
hand side of Eq. (7.59) leads to the local form of the reciprocity theorem of
the time-convolution type,

o (4,067 (2;) = - <F [(AA)tJ+ JAB] FB> (23)

+ <NA,Jﬁ‘B>b (z3) + <13“A,bJNB>b (z3), (7.60)
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Eq. (7.60) is local with respect to the longitudinal coordinate z3. In this last
equation (AA)t denotes the transpose of the matrix operator A4, as defined
in Eq. (7.45). The contrast operator in the first integral on the right-hand
side of Eq. (7.60) is derived as

(AA)tJ +JAE = |7 [’CB B (’CA)t] © (7.61)
O —s(pP - p*) I ’ .

which constitutes a diagonal matrix operator. Taking identical states in Eq.
(7.31),

A=B={F,AN}, (7.62)

Eq. (7.60) becomes, using Eq. (7.41), the quadratic form

<F, (AU + JA) F)b (z3) = 0, (7.63)
with
A'J+ JA = <s (’C - ,@) O) . (7.64)
o o

Because Eq. (7.63) must hold for VF € [L(R?)]” we have that K of Eq.
(7.64) is symmetric with respect to its associated bilinear form,

~ ~

K =K" (7.65)
Hence, A is symplectic, i.e.
A'J = —JA. (7.66)
We can now write
(AA)tJ 1 IAE = JAA = (S%’C ~Sip1> , (7.67)
with
AA = AP — AA (7.68)
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and
AK=KP —K* and Ap=pf —p" (7.69)

Integration of Eq. (7.60) with respect to z3, from z3 = z% to x3 = i,
with z} > z3 (Fig. (7.1)), yields the global form of the reciprocity theorem
of the convolution type,

(c4) — (E4,JB%) (a})

_ / * <FA,JAAﬁ‘B>b(x3)dx3

—pu
3=Ig

<FA’ JFB>b

LN, G+ (BN (a)]an (70

—pu
3=23

In de Hoop (1995)[p. 164-166] and Fokkema and van den Berg (1993)[p. 95-
97, the reciprocity theorem of the convolution type is derived in terms of
the scalar wave field quantities p and . In case of equality of the material
parameters of State A and State B Eq. (7.70) reduces to

(#387) ) (#4387,

= [ L), o (008, (e G

Y—mu
3=T3

7.7 Sesquilinear forms

Consider the following definition of a sesquilinear form g,

def

g(F,G) = /a: o F' (1) BG (z7) dxr, (7.72)

which constitutes the mapping,
g: [2(RY]* x [I* (RY)]* = C, (7.73)

from the product of two Hilbert spaces into the complex plane C. The
superscript .| denotes the product operation of transposition, signified by .!,
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and complex conjugation, signified by .*. The linear operator B associated
with ¢ is given by the map,

B: [LA(R?)]" — [L3(RY)]". (7.74)

Sesquilinearity means that (Lang (1993)), VF,F,F2, G, G, G, € [L*(R?)]?
and Va, b € C, we have anti-linearity in the first variable

g(F1 +F2,G) =g(F1,G) +g(F2,G) , (775)
g (CI,F, G) - a*g (Fv G) 3

and linearity in the second variable

g (F, G+ Gg) =g (F, Gl) +g (F, GQ) s (776)
g (F,bG) =bg (F,QG).

A sesquilinear form g is called a hermitian form if
9(F,G)=g¢*(G,F), VF,Ge [*R)]". (7.77)
The sesquilinear form g associated with B is symbolized as
g(F,G) = (F,BG),, (7.78)

The subscript . is used to distinguish it from a bilinear form, for which in
Eq. (7.43) the subscript ., is employed. Observe that a sesquilinear form can
be expressed as a bilinear form according to

(F,BG), = (F*,BG), . (7.79)

Given the linear operator B and its associated sesquilinear form g there exists
a unique linear map

Bt : [L3(RY)]* - [L2(RY)]?, (7.80)
such that

(F,BG), = (B'F,G) , VF,G ¢ [L*(R?)]". (7.81)

s

We call B the adjoint of B with respect to g. For, a € C and B,C :
[L*(R?)]* — [L*(R?)]?, we deduce that (Lang (1993)),

(@B)' =a'Bf, (B+C)f=BI+C, (B")'=B, and (BC)'=C'Bf.
(7.82)
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In terms of scalar operators we have,

By, Blz) B}, B}
B= — Bi=(_1 "2}, 7.83
(le By B!, Bl (7.83)
in which the adjoint operation is with respect to a sesquilinear form, g :
[L% (R?)]* x [L? (R*)]' — C, of scalar-valued functions.

Consider the operator B and its associated sesquilinear form g of Eq.
(7.78). If ¢ is hermitian then, using Egs. (7.72), (7.77) and (7.81),

(F,BG), = (G,BF)! = (B'G,F) = (F,B'G)_,
VF,G e [LX(R?)])". (7.84)
Hence,
B =B (7.85)

The matrix operator B is said to be self-adjoint or hermitian with respect to
a sesquilinear form g. One can easily prove that (Lang (1993))

B=B' <« (F,BF), isreal, YF e [L}(R})]". (7.86)

7.8 Time-correlation type reciprocity theorem

Consider the limiting case in which the Laplace parameter s — jw via
Re(s) > 0, i.e. we consider the wave field quantities in the Fourier do-
main, and express this, according to Eq. (B.6), with the symbol . Follow-
ing Wapenaar (1996b) and Haines and de Hoop (1996), inside the domain
D = {(x1,zs)| &1 € R%, 2% < 23 < z}}, shown in Fig. (7.1), an interaction
quantity I between two states, A and B, associated with the wave field
vector Egs. (7.32) and (7.33), is defined, according to,

fom (22 (RY)]® < (L2 (R?)]* = C, (7.87)
and
[jcorr (FA’ FB) :l (.’,C3,CU)

déf / (FA)T (mT’ I3, U.)) KFB (wTa I3, UJ) dwT) (788)
Tt eR2
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The interaction quantity 7°" constitutes a sesquilinear form with the vari-
ables z3 and w acting as parameters. The matrix operator K, associated with
the sesquilinear form I, is given by

O I
K = (I (9) . (7.89)
Using the notation of Eq. (7.78) the sesquilinear form I°°™ is symbolized as
[°7 (F4 FP) = (F4 KFP)_. (7.90)

In accordance with the self-adjointness of K,
K =K, (7.91)

the interaction quantity ° is a hermitian form. Hence, according to Eq.
(7.77)

jcorr (FA’ FB) — [jcorr (FB7 FA)} * : VFA, FB c [LZ (R2)] 2 ) (792)

Multiplication in the Fourier domain of a function with an other complex
conjugate function, as in the interaction quantity of Eq. (7.88), is equivalent
to a correlation of the pertaining functions in the time-domain, hence the
denotation I®.

Taking the derivative of Eq. (7.88) with respect to the longitudinal coor-
dinate x3, omitting the Fourier parameter w from the argument lists, yields

85 (B4 KFP) (z5) = (05F*, KEP) (z3) + (F4 KO FP) (z3).  (7.93)

Substitution of the wave field vector Eqs. (7.32) and (7.33) into the right-
hand side of (7.93) leads to the local form of the reciprocity theorem of the
time-correlation type,

05 (FA,KE?), (z5) = — (B4, | (A%) K+ KAP | F?) (ay)
+ (N KF?)_(z3) + (F4, KN®)_(z3), (7.94)

In this last equation (A%)! denotes the adjoint of the matrix operator A4,
as defined in Eq. (7.81). The contrast operator in the first integral on the
right-hand side of Eq. (7.94) is derived as

iV was [ dw | K= (KA 0 ,
(A%) 'K+ KA ( [ o }jw(pB—pA)I>’ (7.95)

175




which constitutes a diagonal matrix operator. Taking identical states in Eq.
(7.31),

A= B={F AN}, (7.96)

Eq. (7.94) becomes, using Eq. (7.86),

(F, (ATK + KA) F)_(z3) is real, (7.97)
with

Kt i (jw(K-K) O

AK+KA_< o o) (7.98)

From Eqs. (7.97) and (7.98) we obtain the scalar form
(p, jw (K = K1) p)_(z3) is real. (7.99)
We consider real frequencies, hence
(B, (K — K1) p), (ws) is purely imaginary. (7.100)

Because this last equation must hold for Vp € [L*(R?)]", we must have that,
using the fact that for lossless media K of Eq. (7.28) is a real operator, K is
self-adjoint with respect to its associated sesquilinear form, expressed as

K =K' (7.101)

In Wapenaar (1996b) it shown that K is a self-adjoint operator assuming
certain boundary conditions. We obtain the following property for A

ATK = —KA. (7.102)

We can now write

ANt AB __ A ]CUA’C O
(AY) K+ KA _KAA_< 0 ijpI)’ (7.103)

in which the difference quantities are given in Egs. (7.68) and (7.69). Inte-
gration of Eq. (7.94) with respect to 3, from z3 = z3 to 3 = z}, yields the
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global form of the reciprocity theorem of the correlation type,

(F4 KEP) (z}) — (F4, KE?) (%)

— / (F4 KAAF?) (x3) dz;

+/x3 [(NA,KE®)_(z3) + (F4, KNP) _(25)] das, (7.104)

—pu
3=T3

In de Hoop (1995)[p. 169-171] and Fokkema and van den Berg (1993)[p. 101-
102], the reciprocity theorem of the correlation type is derived in terms of the
scalar wave field quantities p and ©. Equality of the material states entails,

(B4 KE?), (ah) — (B4 KE?)(a5)

- / [(NAKEP)_(25) + (F4 KN®) (23)] des. (7.105)

P
3=Ig3

The reciprocity theorems of the time-convolution and time-correlation
types, derived in this chapter, are used in the subsequent chapters to derive
wave field representations, and symmetry and adjointness relations.
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Chapter 8

Wave field decomposition

8.1 Introduction

By defining a background medium and an associated laterally infinite scat-
tering surface, acting as a bounding surface of a scattering domain, a wave
field decomposition is introduced. The wave field components are the inci-
dent wave field, propagating with respect to the background medium and
originating from the actual source, and the scattered wave field, which also
propagates through the background medium, but originates from contrast
sources located inside the scattering domain. Both the incident and scattered
wave fields are, obeying down- and up-going wave field conditions, respec-
tively, with respect to the background medium, one-way wave fields, which
can be propagated into the medium using operators derived in the Chapter
9. This enables a recursive approach, where a sub-domain is progressively
enlarged, reflecting an increasing state of knowledge, until the entire domain
of application is covered. This approach is especially suited to time-lapse
states, in which the interactions (e.g. quantified by phase differences) are
cumulative in the main wave field directions.

Integral representations are derived for the first component of the wave
field vectors of the incident, scattered and total wave fields. Taking the
limit towards the scattering surface these representation are used to derive
Dirichlet-to-Neumann (D-t-N) operators, which transform, at the scattering
surface, the first component of the wave field vectors to the second com-
ponent. Decomposition, reflection and transmission operators are derived
and expresscd in terms of D-t-N operators. The aforementioned operators
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characterize the medium and will be used to quantify temporal changes that
might occur within two media realizations.

8.2 Wave field equations

Consider the surface 9D*, given by z3 = 75", which divides R* into two half
spaces: the open scattering domain, D**) and the open domain s’ which
is the complement of D** U D in R3 (Flg. (8.1)). Consider the acoustic
wave field vector F governed by the following wave field vector equation (see
Eq. (7.26)) inside R?,

NG (z; 2%, s) + AF (z;25,s) = N (z;25s), zeR%a’¢ D (8.1)

with source vector

N (z; 2%, s) = (q (5)6 (?U B ms)> : (8.2)

The source vector N has a zero first component, and a second component
given by the volume density of volume injection rate g, represented by a
Dirac distribution with support at @ = x5, indicated in the argument lists
of F and N. The medium system matrix operator A is determined by the
medium parameters {p, x}, from now on also called actual medium param-
eters, according to Eq. (7.27). In R3? the background medium parameters,
{p®, nb} characterizing the background medium and an associated back-
ground medium system matrix AP are defined, and set with respect to the
actual medium parameters according to

{p,x} = {*,K"}, in D, (8.3)
{p, 5} = {p" s"} + {Ap, AK}, in D**. (8-4)

Inside D*" the actual medium parameters equal the background medium
parameters, whereas inside D**, the actual medium parameters are the sum
of the background medium parameters and the perturbations {Ap, Ax} (Fig.
(8.1)). Accordingly, the actual wave field vector F, also denoted as the total
wave field vector, is decomposed into an incident wave field vector F'"°, and
a scattered wave field vector FSCt,

F=Fr 4 Fst in RS (8.5)
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{p,r} = {p" K"}
sct 8Dsct

553:£E3 """""""""

{p,s} = {p° K"} + {Ap, Ak}
]D)sct

Figure 8.1: Scattering configuration with actual medium parameters in terms of
background medium parameters and a perturbation. Actual source position x5
inside D5t

The incident wave field is governed by the background medium, expressed
by the incident wave field vector equation as

dy e (; 2 ) + Abfrinc (z; z° ,8) = N (z; z° ,8)
x € R® 25 e DY, (8.6)

with the same source vector N as with the total wave field, which is given in
Eq. (8.2). Inside D*°* the incident wave field has no sources expressed as

dsFmc 4 APFirC — Q) in DS, (8.7)

with O representing the null vector. Inside D** the total wave field vector
equation of Eq. (8.1) is rewritten to

8, F 4 APF — _ (A _ Ab) F, in D (8.8)
Subtracting Eq. (8.7) from Eq. (8.8), using the decomposition of Eq. (8.5),

we obtain the wave field vector equation of the scattered wave field in D5,
as

oFsct 4+ B = — (A= A")F, in D™ (8.9)
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Because the incident and total wave fields have identical source distributions
inside Dt it follows that the scattered wave field is source-free inside this
domain,

9 F5t 4 APt — O, in DY, (8.10)

Combining Eqs. (8.9) and (8.10) yields the wave field vector equation for the
scattered wave field in R3,

051 (x; 25, 5) + APF** (2525, 5) = N** (2%, 5)
z R 2® e D, (8.11)

with source vector

Nsct («’.U ;I:S 5) = 0 - ~ ~ ze DSCt/ (8 12)
& —(A-A")F (z;2%s), @ D™, ‘

(Fokkema and van den Berg (1993)[p. 140-144]).

8.3 Integral representations

8.3.1 Incident wave field

Following Fokkema and van den Berg (1993)[p. 129-131], we introduce the
volume-injection Green’s state vector

. 5,0
fob — (gq,b> , (8.13)

3

governed by
BFW (z; @', 5) + AR (@52, 5) = N (z;2',5), @2’ €R°, (8.14)

with source vector

N7 (z: 2, s) = (q 03 (Ow B m,)) . (8.15)

The wave field vector F¢® is governed by the background medium parameters
and is causally related to a Dirac distribution with support at @ = . The
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source position is indicated in the argument list of F2b. Observe that, using
Egs. (8.6) and (8.14),

Frine (z; xS s) = Fob (z; xS s). (8.16)

Because p?P and @g’b are linearly related to ¢, we may define the monopole
Green’s state G4

PP (z; 2, s) ¥ G (s) GO (', 8) (8.17)

and the dipole Green’s state fg’b

0g® (@;2,5) © —4(s) 18" (@52, 9) . (8.18)

The reciprocity theorem of the convolution type is applied to the domain
D = {(z1,z3)| zr € R?, 2} < 73 < 23}, with 2 > 25 (Fig. (8.2)). We take
for State A the volume-injection Green’s wave field of Eq. (8.14), with source
at ® € R3, and for State B the incident wave field of Eq. (8.6), with source
at 5 € D**. We have in D

A:{F%b,Ab,Nq} and B:{Fim,i\b,o}, in D. (8.19)

Because both these states are determined by the background medium we
apply the reciprocity theorem of the convolution type of Eq. (7.71), yielding

<Fq,b, JFinc>b (Ig, x, 338) _ <F‘Lb’ JFinC>b (l‘g, x, mS)

ﬂ}l
_ / ! (N7, 3B (ol 2,2%) daf. (8.20)

V1 ——
3=7T3

in which the sources of F#* and F™™ are indicated in the argument list of
the bilinear forms. Because the source of the incident wave field has no
support inside D, the second term in the integrand on the right-hand side of
Eq. (7.71) vanishes in Eq. (8.20). The first term in the integrand on the
left-hand of the representation of Eq. (8.20) vanishes because in the limit,
zy — 00, Sommerfeld radiation conditions are applicable. In terms of scalar
wave field values we can derive the following integral representation for the
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£C3:.273 """""""

Figure 8.2: The incident wave field representation: the two states and the domain
of application of the reciprocity theorem

incident wave field

xo (Tr, T3) 5™ (21, T35 2T, 73)
- / [ (., s s 00 (2, 2, 25)
T eR?
— 05 (wh, 2ty @, ) 57 (2, 0% 08, 75) | dah,

xr,x3) € R zf > x5, (8.21
3 3

(see Fokkema and van den Berg (1993)[p. 152]), in which the characteristic
function xp is given by

1, (xr,z3) €D
XD (iET, $3) = %, (mT, 1,'3) € dD (822)
0, ((IZT, 1’3) S ]D)l,

and D = {(@r,23)|@r € R% 23 > 24}. The open domain, D' = R*\ D,
is the complement of the closure of D, signified by D, with respect to R>.
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The integral in Eq. (8.21), at the limiting value D, is a Cauchy principal
value integral, in which the integration is over the pertaining boundary with
the symmetric exclusion of the singular point (Colton and Kress (1983)).
Implementing the Green’s states of Egs. (8.17) and (8.18) we arrive at

XD (.’BT, I3) ﬁinc (mT> T35 m%‘v .’L‘?)

~q,b o N pinC (A0 7S S
=/ [Gq (wT,lfmmTaxa)vS (mT>$3a$Ta$3)
T eR?

~inc

a,b oo 1ol S 8 /
+ 137 (@, 23, 271, 25) P (wTaxE)?mTaxS)]mea

(xr,23) € R 25 > 25. (8.23)

In terms of a bilinear form of scalar-valued functions we can express this last
equation more compactly as

xo () 5™ (= wS) _ <éq,b,ﬁ;’nc>b (z}; w7wS) 4 <fg,b’ﬁinc>b (w4 z,z%) |

x € R zh > a5, (8.24)

8.3.2 Scattered wave field

In order to derive an integral representation for the scattered wave field
we take for the domain of application of the reciprocity theorem, D =
{(zr,23)| 21 € R?, 2§ < @3 < 24}, with 25 < 25 (Fig. (8.3)). We take for
State A the volume-injection Green’s wave field of Eq. (8.14), with source
at & € R?, and for State B the scattered wave field of Eq. (8.11), associated

with the actual source at ° € D5, We have
A= {F%b,Ab,NQ} and B = {ﬁsct,Ab,o} in D. (8.25)

Because both thesc states are determined by the background medium we
apply the reciprocity theorem of the convolution type of Eq. (7.71) yielding,

<]§‘q’b,JFSCt>b (@, @) — <Fq’b, J]?‘S“>b (% x, 2%)

:/3 <NQ,JFSCt>b (5 @, %) daff.  (8.26)

"__,u
3=%3
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u

I3 — 563
T3 = Ty
T3 = $§Ct

contrast sources

Figure 8.3: The scattered wave field representation: the two states and the domain
of application of the reciprocity theorem

Because the contrast sources of the scattered wave field have no support
inside D, the second term in the integrand on the right-hand side of Eq.
(7.71) vanishes in Eq. (8.26). The second term in the integrand on the
left-hand of the representation of Eq. (8.26) vanishes because in the limit,
x} — —oo, Sommerfeld radiation conditions are applicable. In terms of
scalar wave field values we can derive the following integral representation
for the scattered wave field

xp (1, 3) G7°* (@1, T3; T, 25)

N / ! 2 [_ﬁq’b (:B{T,Ig; wT’$3) i};(:t (CE&\,CI,‘%,Q)%,CL‘%)
I eR

~q,b I /. ~sCt ! NS .- !
+ 097 (@h, o4; Tr, T3) P (mT,z3,wT,x3)]dwT,

(r,z3) € R oy < z¥*, (8.27)
3S T3
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in which the characteristic function xp is given by

1, (@r,z3) €Y
xv (@7, 23) =< 3, (Tr,23) € E)ID) (8.28)
O) (wTu:EB)

and D = {(@r,x3)| T € R?* 23 < z4}. The integral in Eq. (8.27) is, when
evaluated at 0D, a Cauchy principal value integral, in which the integration
is over the pertaining boundary with the symmetric exclusion of the singular
point. Implementing the Green’s states of Eqgs. (8.17) and (8.18) we arrive
at

xv (@, 23) P (@71, 23, 2%, 25

= '/ [Gq’ (7, T3; T, 25) 05 (@, ol; @, 25)
T ER?
+ 9P (@, w3; 2k, ) 7°° (xf, 25; m%,zg)] dz’,
(wT7 1'3) S RS 1:3 < QSSCt (829)

(see Fokkema and van den Berg (1993)[p. 151]). In terms of a bilinear form
of scalar-valued functions we can express this last equation more compactly
as

xo (@) 7 (2; )
<qu Asct>b (wg;w’wS) _ <fg, 7ﬁ:ct> (;pé;a},ms) ’

x e R xy <. (8.30)

8.3.3 Total wave field

Following Fokkema and van den Berg (1993)[p. 129-131], we introduce the
volume-injection Green’s state vector

A nd
F7 = (ﬁ’q) : (8.31)
U3

governed by

0sF (m; @', 5) + AR (z; 2/, 5) = N (a2, 5), @, @' € R, (8.32)
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with source vector

N9 (- ! <) — 0
N (x;x',s) = ((j(s) 5 (@ — a:’)) . (8.33)

The wave field vector F? is governed by the actual medium parameters,
whereas F#° of Eq. (8.14) is determined by the background medium param-
eters. 7 is causally related to a Dirac distribution with support at © = .
Because p? and 04 are linearly related to ¢, we may define the monopole
Green’s state (7

P (z 2, s) Y G(s) G (' m, ), (8.34)

and the dipole Green’s state '
o (@', s) & —g (s) T (s 2, 5) . (8.35)

The reciprocity theorem of the convolution type is applied to the domain
D = {(ay,z3)| xr € R2, 24 < z3 < 24}, with 2§ > z§ (Fig. (8.4)). We take
for State A the volume-injection Green'’s wave field of Eq. (8.32), with source
at € R3, and for State B the transmitted wave field governed by the total
wave field vector equation of Eq. (8.1), with source at 5 € D**'. We have

A={FQ,A,N"} and B={F,A,o}, in D. (8.36)

Because both these states are determined by the actual medium we apply
the reciprocity theorem of the convolution type of Eq. (7.71), yielding

<]§“?, Jﬁ‘>b (zh; 2, 2°) — <ﬁ‘q,JF>b (2f; z°)

:/3 <N4,JF>b (zf; @, 2%) dzj. (8.37)

Y/ ——
3= T3

Because the source of the total wave field has no support inside D, the second
term in the integrand on the right-hand side of Eq. (7.71) vanishes in Eq.
(8.37). The first term in the integrand on the left-hand of the representation
of Eq. (8.37) vanishes because in the limit, 2§ — co, Sommerfeld radiation
conditions are applicable. In terms of scalar wave field values we can derive
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Figure 8.4: The total wave field representation: the two states and the domain of
application of the reciprocity theorem

the following integral representation for the total wave field

Xo (T1, 23) 4P (2T, T35 27, 25)
=/ [ﬁq (h, o4 @7, T3) U3 (m&,x%,msr,rg)
T eR?

— 03 (@, o3; @1, 73) P (TN, 7855 Y, 75) | daty,
(7, 23) € R? 2f >z} (8.38)

(sec Fokkema and van den Berg (1993)[p. 153]), in which the characteristic
function xp is given by Eq. (8.22). The integral in Eq. (8.38) is, when
evaluated at dD), a Cauchy principal value integral, in which the integration
is over the pertaining boundary with the symmetric exclusion of the singular
point. Implementing the Green’s states of Egs. (8.34) and (8.35) we arrive
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at

xo (o, 23) b (@1, T35 x5, T3)

A e NS R N - B
= /’ ) I:Gq (wT,:Eg,:BT,.’L'3) ’l)3 (wT,$3,$T,$3)
T eR

+ fg (e, 23; %7, T5) P (CL‘T, T'y; :I:rsr, a:g)] de’,

(xp,z3) € R 2} > x5, (8.39)

In terms of a bilinear form of scalar-valued functions we can express this last
equation more compactly as

xo (@) (2:2%) = (G1,3) (a32,0%) + ([%,5) (ahiw.a®),

xecR® x> a5 (8.40)

8.4 Dirichlet-to-Neumann operators

We proceed by defining, inside D, the following single-layer potential bound-
ary integral operator

Sbf (xT,73) def 2][ ] Gab (x, T3; T, T3) f (X7, T3) deX'y, (8.41)
TieR

and the double-layer potential boundary integral operator

’[)bg (mT7 333) dﬁf 2][ ) fg’b (wT’ Z3; wfl‘? 373) g (mi[‘) I3) dm{I" (842)
ILeR

(Colton and Kress (1983); Sabatier (1990)), in which f,g € [L*(R?)]". The
integral symbol in these last two definitions signifies that the integrals are
Cauchy principal value integrals. Consider the incident wave field repre-
sentation of Eq. (8.23) for xi > x5. Evaluating this representation at
(z7,23) = (27,24), Vo > x5, using the singular boundary integral operators
yields the down-going wave field condition for {p™, 90} (xr, z3; €7, 3),

Z—DP)p™ —SPolrc =0, at a3 > 15, (8.43)
3
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with respect to the background medium. One should keep in mind that the
directionality is relative with respect to the choice of a medium. For exam-
ple, the incident wave field in Eq. (8.43) is not necessarily down-going in
the usual sense, i.e. with respect to a homogeneous medium. Next, con-
sider the scattered wave field representation of Eq. (8.29) for zf < z¥*
Evaluating this representation at (zT,23) = (zr,2%), Vo < 25%, using the
singular boundary integral operators, yields the up-going wave field condition
for {p*t, 05} (x7, 23; H, T3),

(I n ﬁb) 8Pt =0, at oy < 23, (8.44)
with respect to the background medium (Weston (1988)). Assuming the

existence of the inverse of &P, we arrive at the following operators, at any
level surface in D, for the incident and scattered wave fields,

g — P ot o> g, (8.45)
B PuEE at g < g, (8.46)
with
4 — ( S-b)_l (I _ f)b) , (8.47)
= gb)_l (z+2). (8.48)

The operators V4 and YU are Dirichlet-to-Neumann operators which map
the first component of ¢ and Fct to the second component of these wave
field vectors, respectively. I.e., these operators map the pressure functions
P and p** to the longitudinal component of the particle velocity vector

functions, 9™ and 05, respectively.

8.5 Decomposition operator

We designate the domain D = {(z,23)|zr € R* 2§ < z3 < z§*}. Eqgs.
(8.5), (8.45) and (8.46) yield the following wave field composition operation

F=TP° in D, (8.49)
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with the wave field components vector,

]'Sb - (Zp;sct) ’ (850)

and with the wave field composition matrix of operators,

- I T
TP = (2 ). 8.51
(3¢ ) 851
The inverse operation, wave field decomposition, is given by
o Lay (=Y T .
Lk = 5S ( i —I) , n D, (8.52)
in which we used
. . oy =1
yi-yr=2 (Sb) : (8.53)

In Haines and de Hoop (1996) a similar decomposition is implemented, in
terms of curvilinear coordinates, for the case of internal wave fields, i.e. wave
fields that are represented by two bounding surfaces, and originating outside
the enclosed domain. Eq. (8.52) can also be written as

[b_ % Gtgz j;’b> , (8.54)

(see Weston (1988)). Hence, we obtain the converse of Egs. (8.43) and (8.44)
(z — bb) p—8Po =0 — p=pm (8.55)

(I + ﬁb) PSP =0 = p=p, (8.56)

respectively.

8.6 Reflection and transmission operators

We define the following single-layer potential boundary integral operator

SF (wrr2s) 2 ][ G (wr, w93 @y, 73) f (2, 23) daclp, (8.57)
T eR?
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and the double-layer potential boundary integral operator

Dy (wr,13) = 2][ T (xr, T3; Ty, 23) g (@hp, 23) daly, (8.58)
T cR?

(Colton and Kress (1983); Sabatier (1990)), in which f,g € [L2(R?)]'. These
last singular integral operators are defined with respect to the actual medium
in contradistinction to the operators of Eqs. (8.41) and (8.42), which are
defined with respect to the background medium. Consider the total wave field
representation of Eq. (8.39) for z} > z3. Evaluating this representation at
(zr,73) = (21,25), Vi > 25, using the integral operators of Egs. (8.57) and
(8.58), yields the down-going wave field condition for {p, 03T, T3; 5, 23),

(I—ﬁ)p—&gzm at @3> o, (8.59)

with respect to the actual medium. Assuming the existence of the inverse of
S, we obtain

by = Vp, at x3> 23, (8.60)
with

y=§4@fﬁ) (8.61)

The operator ) constitutes the Dirichlet-to-Neumann map of the total wave
field. Consider the domain D = {(z1,z3)| 1 € R? 2§ < 23 < 25*}. Com-
bining the down-going wave field condition of the incident wave field in Eq.
(8.43), with the up-going wave field condition of the scattered wave field of
Eq. (8.44), together with the wave field composition of Eq. (8.5), yields

(I+ﬁﬂp+$%y:%m,in D. (8.62)

Using this last equation and Eq. (8.59), and using the boundary condition
of Eq. (7.34), we obtain

LF = P in D, (8.63)

with
Hinc pinc
pinc — ( 0 ) , (8.64)
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and

- 1 (T+D> &
L=2 R . .
2 <I—D —S)’ (8.69)

(see Weston (1988) and compare with Eq. (8.54)). The inverse operation is
given by

F=TP"™, in D, (8.66)
with
. 7"’d 'f'u
T=1 .. NP I 8.67
(de yuTu) ( )
(compare with Eq. (8.51)), in which the transmission operators are given by
. N R |
Ti=2(¥-3) (&) (8.68)
A A A\ L L
Fu_o (y _ yU) s (8.69)

From Eq. (8.66) we obtain
p=T%", in D. (8.70)
The reflection operator R is defined by
7 RIp in D, (8.71)
From the wave field composition of Eq. (8.5) we obtain
RI=T4-T (8.72)

Hence,
R = (Y-9) - (3-9). (8.73)

The reflection operator R4 quantifies the spatial contrasts between the back-
ground medium and the actual medium, in terms of the D-t-N operators of
the incident, scattered and total wave fields. Therefore, it is a global operator

encompassing all contrasts for z3 > z§*.
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8.7 Symmetry of the D-t-N operators

8.7.1 Symmetry of }¢

Consider the application of the reciprocity theorem of the time-convolution

type. We take for State A the incident wave field of Eq. (8.6), denoted by

o4 - A '
Fined — (pineA 504Nt with source vector,

N4 (x, s) = (ti (5)6 ((; B mR)> , xR e DY, (8.74)

For State B we also take the incident wave field of Eq. (8.6), and denote it

A, " ~inc,B .
by FireB — (pineB 57Vt with source vector,

NZ (x,5) = (q (5)6 (?E B a::S)) AR (8.75)

(see Fig. (8.1)). Thus, the two states differ in the positioning of their sources.
The reciprocity theorem is applied to the domain D = {(zr,z3)|xT €
R?, z < 23 < 23}, with 2} > z& = 2§ (Fig. (8.5)). We have in D

A= {Finc’A,Ab, 0} and B = {FimvB,Ab,o}. (8.76)

Because both states are governed by the same material state we apply the
reciprocity theorem of Eq. (7.71). Taking into account that both states are
source-free inside D we obtain

<Finc,A,JFinc,B>b (a}; 2, 25) — <Finc,A’JFinc,B>b (2%, 2%) = 0. (8.77)

Taking the limit z}, — oo and applying Sommerfeld’s radiation conditions,
this last equation is expressed, in terms of a bilinear form of scalar-valued
functions, as

~inc,A ninc,B 1. R .S\ _ /ainc,A ainc,B r..R .S
<p » Ug >b($37:c ,:l})—<’l)3 P >b(x3’m ax)a
! S
xy > 3. (8.78)

Substitution of the Dirichlet-to-Neumann operator of the incident wave field
of Eq. (8.45), and using the property that Y¢ is independent of the source
position of the wave field function it operates on, yields

<pinc,A, j)dﬁinc,B>b — <3>dﬁinc,A,ﬁinc,B>b ] (879)
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$3:£3 ...........

D

Figure 8.5: The interaction of two incident wave fields with different source posi-
tions: the two states and the domain of application of the reciprocity theorem.

Hence, the D-t-N operator Y9 is, analogous to Eq. (7.48), a symmetric
operator with respect to a bilinear form, expressed as

cd (vd)’ ) S
Ye=(Y") , atall surfaces xz3 =z, > z5. 8.80
3 3

8.7.2 Symmetry of yu

Consider the application of the reciprocity theorem of the convolution type
to the domain D = {(xr,z;3)|xr € R* 2} < z3 < 24}, with 2 < x5
Take for State A the scattered wave field of Eq. (8.11), denoted by Fs4 =

(ﬁsctaA, @g‘:t’A)t, with source vector,
A o T c ]D)sct’,
Nsct,A . R = ~ ~ o 81
(:c,:c ,5) —(A—Ab) FA(w;wR7S)’ o c Dt (8.81)
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For State B we also take the scattered wave field of Eq. (8.11), denoted by

2 . N N
FoctB = (petB 537t with source vector,

Nsct,B (m'ms S) _ O ) ) A x € Dt ) (8 82)
;L _(A_Ab) FB (a:;ws,s), z € Dt )

(Fig. (8.6)). The wave field vectors F4 and FB, which appear in the source
descriptions of the scattered wave fields of Eqs. (8.81) and (8.82), are gov-
erned by Eq. (8.1), and have respective source vectors given by Eqs. (8.74)
and (8.75). Thus, the two states differ in the positioning of their actual
sources. We have in D

R 25
° X e
T3 =a3--rrirm—— ..
D
A= {4 Av 0} B = {Fm A, 0]
T3 =oy-rrr— ..
By = e

contrast sources of F5t4 and Fsct-B

Figure 8.6: The interaction of two scattered wave fields with different source
positions: the two states and the domain of application of the reciprocity theorem.

A={F=4 A" 0} and B-{F# A0}, (8.83)

Because both states are governed by the same material state we apply the
reciprocity theorem of Eq. (7.71). Taking into account that both states are
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source-free inside D we obtain
<ﬁ1set,A, Jﬁsct,B>b (.7}%, :BR, :ES) _ <Fsct,A, JFsct,B>b (IE;, wR’ mS) = 0. (884)

Taking the limit 2§ — —oo and applying Sommerfeld’s radiation conditions,
this last equation is expressed, in terms of a bilinear form of scalar-valued
functions, as

~sct,A nsct,B /.. R .S\ _ /asct,A ~sct,B r..R .S
<p » U3 >b(x371: ,w)—<v3 P >b($3,m ,:I)),

Ty < 2t (8.85)

Using the D-t-N operator of the scattered wave field of Eq. (8.46) yields

<}55Ct’A, j‘;uﬁsct,B>b — <J>Uﬁsct,A,ﬁsct,B>b _ (886)

Hence, the D-t-N operator in this last equation is a symmetric operator with
respect to a bilinear form, expressed as

A

P\
Y= (y“) , at all surfaces x5 =z} < 25" (8.87)

The symmetries of ‘)Afd and 3}“ are a direct consequence of the validity of
Sommerfeld radiation conditions towards infinity. Because of the latter two
symmetries we have, using Eq. (8.53), and the fact that inverse and symme-
try are interchangeable,

~ ~ t
SP = (Sb) , at all surfaces x5 = x5, 75 < o} < 25 (8.88)

8.7.3 Symmetry of y

Consider the application of the reciprocity theorem of the convolution type.
We take for State A the total wave field of Eq. (8.1), denoted by FA =
(p*,84)¢, with source vector N given in Eq. (8.74). For State B we also
take the total wave field of Eq. (8.1), and denote it by FZ = (p%,9F)t,
with source vector NB given in Eq. (8.75). Thus, the two states differ in
the positioning of their sources. The reciprocity is applied to the domain
D = {(zr,x3)| er € R%, 2% < 73 < 74}, with z} > 2§ = 2§ (Fig. (8.7)). We
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Figure 8.7: The interaction of two total wave fields with different source positions:
the two states and the domain of application of the reciprocity theorem.

have in D
A= {FA,A,O} and B — {FB,A,O}. (8.89)

Because both states are governed by the same material state we apply the
reciprocity theorem of Eq. (7.71). Taking into account that both states are
source-free inside D we obtain

<FA, JIAi‘B>b (zh; 2™, 2%) — <FA, JFB>b (zf; 2™, 2%) = 0. (8.90)

Taking the limit z§ — oo and applying Sommerfeld’s radiation conditions,
this last equation is expressed, in terms of a bilinear form of scalar-valued
functions, as

<ﬁA,ﬁf>b (zfy; ™, @%) = <®§4,ﬁ3>b (z5; 2™, %), =) > 2f. (8.91)

Substitution of the Dirichlet-to-Neumann operator of the total wave field
of Eq. (8.60), and using the property that ) is independent of the source
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position of the wave field function it operates on, yields
<ﬁ“,5/ﬁ3>b = <3>13A, zﬁB)b. (8.92)

Hence, the Dirichlet-to-Neumann operator Y is a symmetric operator with
respect to a bilinear form, expressed as

Y=Y atall surfaces z3 =z} > 5. (8.93)

The symmetries of the D-t-N operators for the incident and scattered wave
fields are used in the subsequent chapters to derive extrapolation operators
which propagate a pressure wave field from one level surface to another.
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Chapter 9

Wave field extrapolation

9.1 Introduction

In Chapter 6 the interaction integral of Eq. (6.31) is introduced, which in-
tegrand contains total wave fields. Using the decomposition introduced in
the previous chapter one can construct these total wave fields from measurc-
ments, the latter being represented by the scattered wave fields. Because the
wave fields in the interaction quantity are evaluated at a certain depth, one
needs to express these in terms of wave fields at the recording level. To this
end, cxtrapolation operators are derived, in this chapter, which exploit the
fact that at the decomposition level the incident and the scattered wave fields
obey down- and up-going wave field conditions, respectively. For the inverse
formalism an inverse extrapolation operator is derived for the scattered wave
field. Enforcing radiation conditions, equivalent to certain conditions on the
D-t-N operators, one derives the necessary up-going wave field condition for
a time-correlation type scattered wave field representation, analogous to the
Sommerfeld radiation condition in case of the time-convolution type rep-
resentation. The inverse extrapolation operation produces an approximate
result for wave fields travelling in the transverse directions, e.g. refracted
waves.

9.2 Incident wave field

The reciprocity theorem of the convolution type is applied to the domain
D = {(zr,z3)|xr € R*, 2§ < 23 < 2%}, with 2§ < 23 and 2} > 23 (Fig.
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(9.1)). We take for State A the volume-injection Green’s wave field of Eq.
(8.14), with source position « € D and for State B the incident wave field of
Eq. (8.6), with source position, as stated above, x5 € D. We have in D

—0o0

D

Figure 9.1: The incident wave field: the two states and the domain of application
of the reciprocity theorem
A= {ﬁq’b,/&b, NQ} and B = {Fim}Ab, N} Cin D (9.1)

Application of the reciprocity theorem of the convolution type of Eq. (7.71)
yields

<FA‘Q,b)JFA\inC>b (wg’ x, wS) _ <]§‘q»b, Jﬁ‘inc>b (:Eg;m, a:s)

(), () (B R, ()] a0

[} §
3=T3

By extending the domain D to R3, and applying Sommerfeld radiation con-
ditions towards plus and minus infinity, the bilinear forms on the left-hand
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side of this last equation vanish. Substituting the source distributions of
both states into the integral of the right-hand side of Eq. (9.2) gives

+o0

P (anasiat,af) = [ del (s =)

[
Ly=—00

X / p*° (@, o T, 73) 6 (' — @) oy (9.3)
Tl eR?

Integration with respect to the longitudinal coordinate, and using the monopole
Green’s state of Eq. (8.17), leads to

X/ cR?
' (9.4)

Taking the limit z3 | x3, using the single-layer potential of Eq. (8.41), we
obtain the following initial condition,

77 on.afi o ad) = 10 (or - o), ®9
with

8% (@r — @) = 2 ][ G (e, o ah, 25) 6 (2l — o3) dazp.  (9.6)
T eR?

Substituting Eq. (9.5) into Eq. (9.4) gives

~inc

p (-TT, I3; w’?ﬁ :L.g)
~ ~a\—1 .
= 2/ Gab (wT, Z3; m'T,asg) (Sb) pme (a:'T, x5 x5, mg) dar,
Tl eR?
zs > 5. (9.7)
We define the following two-parameter extrapolation operator Wq’b,

WP (23, 25) f (e, 75)

def

~ N 1
S eeneand) () f @) der 08
T/ eR?
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In terms of a bilinear form we can write compactly,
. . Ay -1
Wi (o, 28) f (@, 2%) =2 (G, () £) @ie)  (©9)
b

with f € [L2(R?)]!. Using Eq. (9.8), Eq. (9.7) is written as
ﬁinc ($Ta Ty; w%’ 55'3) Wq ,b (SEJ, ) sinc (wT7 xg; w'SI‘, J;g) , X3 2> :L'g, (910)

in which (2, 25; 25, 25) is given in Eq. (9.5).

Taking z3 > z4 in Eq. (8.23) yields

ﬁinc (mTaxISQm%‘)Ig)
:/ [G’q’ (@, z3; 27, T5) 0y pine (mT,:cd,mrSF,a:g)
Il eR2

+ fg’b (wT,x3;mir,:):g)}5i“° (mT,xg, m%,xg)] dzr, :vg < 7y < x3. (9.11)

Using the similarity between the Green’s state vector 2" and the incident
wave field vector Fi"® expressed by Eq. (§.16), and using Egs. (8.17), (8.18)
and (8.45), one can show that for {G%® T¥°} (&, z3; T, 74),

Ieb = —YiGob, a5 < af, (9.12)
and

[9> = —)uGeP, w3 >} (9.13)
These last two equations express that the Green’s state is an up-going or
down-going wave field, respectively, depending on the source-receiver config-

uration. Implementing Egs. (8.45) and (9.12), into Eq. (9.11), and using
Egs. (8.53) and (9.7), yields

~inc eSS
p (wT7$3)wT7z3)
-1
_ ~g,b o ! 5b ~inc / r...S .S '
_2/ G* (z, T3; T, T3) (S ) e (@, o @y, 25) dee',
. eR?

15 < 1y < 73, (9.14)
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This last equation and Eq. (9.8) yield
i)inc (wTv L33 513§r, »Ug) = Wq,b (.1'3, ‘Lg) ﬁinc (mTv 33;,) mbl7 372) ’
75 < o < x3. (9.15)
Taking the limit 23 | 2% in Eq. (9.8) we obtain for the extrapolation operator

Wq,b (.1'3, 1'3) f (wTa IS)

~

. -1
= 2][ G® (xp, 23; Ty, T3) (Sb) f(xp, x3) defp. (9.16)
T cR?

Hence, using the single-layer potential of Eq. (8.41), it follows that the
extrapolation operator becomes the identity operator

WP (25, 25) = T. (9.17)
Using Eq. (9.15) we can write
N s .S

ﬁinc (mT, x3’ mrsr, CE3) Wq b (x?,) )p (mrr, xg; wT7 J’.3) y Zlfg S l‘g (918)

Substituting Eq. (9.18) into Eq. (9.15), yields the following transitivity
property for Web,

W (a5, 25) = W (23, 25) WP (a5, 25) , @ < oy < a3, (9.19)
Consider the two-parameter family of operators {We® (x3,2%) | x3, 2% € R}.

Because any operator W4 satifies Eqs. (9.19) and (9.17) this family of linear
operators constitutes a semigroup (Pazy (1983); Goldstein (1985)).

9.3 Scattered wave field

Using Eq (8.29), the scattered wave field representation at (xr,zs3), with
T3 < zh < 25, is given by

~sct oS S
D (wTal37mT7I3)
S S

_ vg, asct (0 . R
- _/ |:Gq (wT,x37wT7$3) Ug(‘ (iUT,l?3,:lZT,l3)
T eR?

ra,b ~sC
+ I3 (o, 23 xh, 23) P (@p, 2y; @}, 23) ] da?, =z <y <z’ (9.20)
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Substituting the D-t-N operations of Egs. (8.46) and (9.12) into Eq. (9.20),
yields

p\sct (mT7 L33 .’B%\, xg)

-1

_ ~g,b ol 5b ~sct (o 1.8 .S !

—2/ G (@, z3; 277, T4) (8 ) P (o', o oy, 23) daty,
T cR?

T3 < 17’3 < a:?ft. (921)

in which we used Eq. (8.53). Implementing the extrapolation operator of
Eq. (9.8), and the identity property of Eq. (9.17), yields

~sct S 8\ yAigb 1\ ~sct r..S S ! sct
p (wT,ﬂ'Jg, mT7I3) =W (.’1;3,.'173)]) (CBT,$3, mT71"3) y I3 < T3 < I3 .

(9.22)

Using the reflection operator of Eq. (8.71), and using Egs. (9.15), Eq. (9.22)
can be expressed, in terms of the "'WRW-model’ of Berkhout (1985), as

Asct

p (wT7x3;m'sl‘)l.§)
= Web (z3,13) RIWP (x5, 75) p™ (:cT, T3; iL‘rS[\, :cg) ,
x3, 25 < x5, (9.23)
except for the difference that the operator R4 is a global operator with respect

to the z3 coordinate, whereas the reflection operator in the WRW model is
local.

9.4 Reflection operatoi'

In the following analysis I follow Fokkema (1993), except that I implement
a scalar reflection operator with respect to a x3 is constant surface, whereas
Fokkema (1993) employs a matrix reflection operator for a curved surface.
The results below can also be generalised to a curved surface, in terms of a
scalar reflection coefficient, using curvilinear coordinates. Taking the limit
T3 1 x4 in Eq. (9.21), the scattered wave field representation is given by the
following Cauchy principal value integral,

~sct R
D (IBT,$3,$T,$3)
-1
o ~g,b T Q) ~sct ’ .5 S !
- 2][ G1 (:I!T,.'Eg,ﬂ:T,.’Eg) (8 ) p (mT’$3amTax3) dwT’
T eR?

z3 <z (9.24)
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(Colton and Kress (1983)). According to Eq. (8.41) this last equation con-
stitutes the identity operation. Using source-receiver reciprocity

P (@, vy @y, 25) = P (h, 25; @1, 23), (9:25)

we obtain

P (@, 35 @5, 73)

R -1
= 2][ G2® (7, z3; Th, T3) (8b> P (xly, T35 T, T3) daelp. (9.26)
Tl eR?

Defining the monopole scattered state éq’“t,

R def A
P (e, 235 20, 1) = GGT5 (2, Th; T, T3) (9.27)

using Eqs. (8.17) and (8.16), yields

P (o7, 37 25, 75)

-1
Sb ~vg,sct Lt ~inc ’ .S 8 ’
= 2][ (8 ) G (@, x3; T, T3) P (wT,xg,a:T,x3) dzr,
T eR2
sct

Implementing the definition of the reflection operator of Eq. (8.71) yields for
the reflection operator,

~d ~inc S S
Rp ($T,$3,$Taa’3)
Hd N ~inc ! S S !
:][ R (7, z3; @', T3) P (mT,x3,wT,x3) dzr,
T eR?
sct
r3 <zi", (9.29)

in which the kernel of R is given by

~

-1
d el _ Sb ~g,sct L
R (wT’ L35 &, $3) =2 (S ) G1 (mT7 T3; L, 1'3) . (930)
In imaging one inverts for R at 23 = 75,
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9.5 Inverse extrapolation

In the thissection the wave field quantities are considered in the Fourier
domain and annotated according to Eq. (B.6). Application of the reciprocity
theorem of the time-cmrelation type of Eq. (7.105) to the domain D =
{(zr,z3)| @ € R? 2} < 23 < 74}, o < 5, with the states of Eq. (8.25),
yields

<Fq’b, K]?‘S“>S (5; , ms) — <Fq’b, K]?‘s“t>S (:E3R; x, ms)
= / ’ (N®,KF*) (a;@,2°) daff, 2§ <@g <af. (9.31)
.’173—1'3

In terms of scalar wave field values we can derive the following integral rep-
resentation for the scattered wave field

~* ~sct R T
qp (ZI)T,.’B?,, ﬂZT,.’L'3)

= [ [P @i o (e tiahad
+ 907 (@, 2h; mr, T3) P (mT,a:?,,w%,x«s)}me

_/a:”eJR? [ﬁq’b (;cT,:v3R, @, T3) UV (w%,x?;w%,x?)

+ 2P (a:if,a:g‘; o, T3) P (zff, 25 =5, 75) ] dzl. (9.32)

Invoking a wave field decomposition and implementing the Green’s states of
Eqgs. (8.17) and (8.18) we obtain

ﬁsct :;bsct,d +psct,u in ]D), (933)
with
psct,d (iUT, Ty a:rsf,xg)
~sct S S

:// 2 [Gq’b (@, T3; T, 5) U (w'T,:cg;wT,a:3)
T R

- f‘g’b* (xr, T3; T, T3 ) P°° (a:T, Th; T3, azg)] dzfp, (9.34)
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and

~sct,u IR
b (mva&mTax?,)

_ _ gb* !l RY ysct n R...S .S
_/ [ G (@7, z3; 27, z3) U5 (2], 28 @, 235)
:BIIERE

+ 19" (w2 @, a) 5 (@, o8 2%, 05) | et (9.35)

The symmetry of the D-t-N operators with respect to a bilinear form is de-
rived in Section (8.7) using Sommerfeld radiation condition. Because Som-
merfeld radiation condition does not apply to anti-causal wave fields we nced
other means to establish symmetry properties for the D-t-N operators with
respect to a sesquilinear form. The following radiation condition is used as
an ansatz,

P4 =0, in D. (9.36)

In terms of sesquilinear forms, [L? (R?)]! x [L? (R?)]! — C, of scalar-valued
functions Eq. (9.34) is rewritten as

Z55(:t,d (IL‘ T ) _ <Gq,b §CL>S (x:I37 x, .’L'S) _ <F§,b,ﬁsct>' (-Ti",; w7mS) ,
T3 < xg <yt (9.37)

Invoking the radiation condition of Eq. (9.36), using Eqs. (8.46) and (9.12),
yields

<C¥q’b, j)u?sct>s (xg, x, mS) _ <_j)déq,b’ vsct>s (lé’ T wS)
zy < xy < x5t (9.38)

One can show that starting from either Eq. (9.36) or Eq. (9.38) we have

F=0 in D

= Y= P4 at all surfaces zy € (3,257 ). (9.39)
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In order to find this last relation at z3 = =& we substitute Eqgs. (8.46) and
(9.13) into Eq. (9.35), yielding

~sct,u

P (@, 73 25, 75)

*q,b * .1 _R)~ugssct (/ R..S _S
:/m, Rz[_Gq (mTvx%mT’-’ES)yupsc (”’T’wav“’T’xs)
T€
vou* Avg,b* - R\ sct R. .5 ,.S
— Y G (zp, w3y w0y, 7 ) B (w’T,zc3,wT,x3)]dm’T
Ty < 3. (9.40)

Assuming for the moment that the condition of Eq. (9.39) can be extended
to

ﬁsct,d —0 in D <— j}“T = —j}d, at the surface xz3 = x3R. (9.41)

Then, using 7*4 = 0 implies p**" = p**, Eq. (9.40) becomes

T eR?
y o\ —1 o
G*" (wr, a3 @, 25) (8°) P (w2 2h,73) o <@s. (942)

Taking the limit z3 | & in Eq. (9.42) yields (Colton and Kress (1983)),

7 (e, T XD, 15) = 2][ da’
Tl eR?
v - 71 -
G*" (zy, z3; 20, 75) (S°) 7™ (zh, 25 @5, 73) ,  (9.43)

which, using Eq. (8.41), proves the consistency of Eq. (9.41). Combining
Egs. (9.39) and (9.41) gives, with D = {(x1,z3)| &1 € R%, 2} < @3 < 257},
and its closure D = {(xr, 73)| 21 € R% 2§ < z3 < 25},

psct,d:() in D = j}“T_—:—j)d in ]D (944)

Implementing equivalence (9.44) in Eq. (9.33) it follows that the cor-
relation type representation of the scattered wave field is given by a single
integral, enforcing uni-directionality with respect to the background medium.
In general, the two contributions of Eq. (9.33) make it meaningless to as-
sign a direction to the scattered wave field in D, in case of correlation type

210




representations, due to the incompatibility of Sommerfeld radiation condi-
tions to anti-causal wave fields (Bojarski (1983)). This means that Huygens’
principle, which states that an infinitesimal change in a wave field can be
constructed from infinitesimal contributions from secondary sources along a
single surface, is not valid for these representations. The adjointness relation
in (9.44) enables to use Huygens’ principle such that extrapolation operators
can be deviced that, when regarded in the time domain, can propagate a wave
field back in time. Wapenaar (1992) derives the same radiation condition of
Eq. (9.36) for a homogeneous medium.
We have, using the adjoint relations in (9.44),

Q(Sb)—l:j)d_j}u:_J}uT+J}dT:2[(5b)—1]T7 (9.45)

ie., (S8?)7!, and consequently SP, is self-adjoint. Using Eqs. (7.81), (9.8)
and (9.45), Eq. (9.42) is written as

o bt .
pSCt (wTaxi’);w%‘?x;) = Wb (x37$é)pSCt (mTaxghm’?‘axg) y T3> xi",,

it Yt = —yd (9.46)

In Berkhout (1985) this last equation is called the matched filter approach.
Using a Laplace domain analysis Fokkema and van den Berg (1993) derive
that inverse extrapolation is an exact operation without any additional sym-
metry requirement. Using Eqs. (9.22) and (9.46) we obtain

Wq’bT (1’3,333) = [Wq’b (:Eé, 373) ] - ) T3 > 3313, lf j;UT = —jjd- (947)

9.6 Fundamental solutions
Substituting the D-t-N operators in Eqgs. (8.45) and (8.46) into Egs. (8.6)
and (8.11), see Eq. (7.20), yields the following evolution equations for p»¢ =
Pz, T35 25, 25) and Pt = P (@, 35 2], 73),
Oup™ + spY P =0, for s € (a8, 25", (9.48)
APt + spVUp*t =0, for x4 € [z5,25Y), (9.49)
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with initial conditions (see Egs. (9.5))

ﬁinc _ Z5inc (wT, CL‘g; wrSF’ l'g) , (950)
ﬁsct — ﬁsct (mT7 I.ECt, w%, xg) (951)

One can show (Haines and de Hoop (1996)), by substitution in Eq. (7.20),
that the D-t-N operators 4 and Y" in Egs. (9.48) and (9.49), are solutions
of the nonlinear Ricatti equation,

“ N ~ 1 -~
83)} — yspy + 57‘[2 = O, (952)
with initial conditions,
yi=y : (9.53)
w:}:wgct
Y= : (9.54)
3=ad

and with 74, given in Eq. (7.29). To solve Eqs. (9.48) to (9.51) we follow
the fundamental solution approach (Pazy (1983); Krueger and Ochs (1989);
Haines and de Hoop (1996); Wapenaar (1996a); Grimbergen et al. (1998)).
In order to calculate p™ = p™(@r, z3; €, 23), using Eq. (9.10), we need to
obtain the kernel of WP(z3,25) which, from Eq. (9.7), is given in terms of
GO (@, x3; lp, 25). Using the similarity between the Green’s state vector
Fob of Eq. (8.14) and the incident wave field vector F¢ of Eq. (8.6),
expressed by Eq. (8.16), and using Eq. (9.13), yields the evolution equation
for G4P (@, xs; hp, 25),

B,GT® — spI"CHb = 0, for g € (a8, (9.55)

with initial condition, using Eq. (9.5),
G (zy, 25; T, 5) = = Sb6 (xp — 7). (9.56)

The D-t-N operator V" in Eq. (9.55) is obtair}ed by solving Eq. (9.52) with
the intitial condition of Eq. (9.54). Hence, G?°(xr, z3; x4, x5) and Y* are
solved downward from z3. In order to calculate p° = p**(xy, z3; 25, 25),

using Eq. (9.22), we need to obtain the kernel of W (z3, 25*) which, from Eq.
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(9:21), is given in terms of GO (e, zg; 2, 23%). Using (9.12) the evolution
equation for GO (&, z3; 2y, 15) is given by,

9GP — spVIGIP =0, for a3 € [2F, 25), (9.57)

with initial condition, using Eq. (9.5),

1 .
G (o, 25 ahp, o) = 3 S8 (e — ). (9.58)

The D-t-N operator V¢ in Eq. (9.57) is obtained by solving Eq. (9.52) with
the intitial condition of Eq. (9.53). Hence, G*®(xy, x3; xl, 25°) and Y9 are

sct

solved upward from z3™.

9.7 Longitudinal invariance

Consider the subdomain D* C D, with D = {(z, z3)| @1 € R, 25 < x3 <

¥} and D* = {(zT,23)| 2T € R 7t < 13 < 57}, In D' the medium
parameters are assumed to be invariant with respect to the longitudinal
z3-coordinate. Then, implementing longitudinal-invariance into the Ricatti
equation (9.52) yields

A - 1 - )
Vsp)Y — ;7—[2 =0, in D" (9.59)

From this last equation we take the following solutions

yi =yt in D (9.60)
Y= Y in D (9.61)

with
V= (sp)” ' Hy, (9.62)

in which the symmetric pseudo-differential operator #; (J)Z is symmetric) is
given by

Hy = HaHiy, with Re(A) >0, VA€o (7:[1) , (9.63)
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in which o(H;) designates the spectrum of H,. It follows from Egs. (8.47)
and (8.48) that longitudinal-invariance implies Db = O, and therefore

v =(8) o (9.64)

Implementing longitudinal-invariance the evolution equation (9.55) for
GP = G (z7, z3; &l 74) becomes,

3G + H,GW* =0, for z3 € (w37$z3+1]7 (9-65)

whereas, the evolution equation (9.57) for G%P = Gab (1, 23; mT,x?l) be-

comes,
8G9 — H, G =0, for x5 € [z8, 25, (9.66)
The respective initial conditions, using Eq. (9.16), are given by
G (zr, 2% iy, 78) = (2))’) § (xy — xh), (9.67)
G (zr, 25 2k, 25H) = (25)")7 §(zr — xh). (9.68)

For a zs-invariant medium the nth derivative of G¥® of Eq. (9.65) with
respect to the zz-coordinate is given by

amGad = (—1)" (ﬂl)n Gab, (9.69)
A Taylor expansion gives
Go® (@1, z3; 27, T5)
= k (T3 —xg)k 7\ (o) ! '
=S (- B () (2) d(er— k), (9.70)
k=0
which yields the following solution
A . AN A\ —1
G*®(zr, z3; T, ) = exp [— (z3 — z5) ’Hl] (237’) §(xy — ). (9.71)

Analogously, one can show that

A

Gob (e i1y [ i+l y o) 7! .
Ty L3; T, Ty ) = €XP ( Ty a:3) Hi| (2Y § (e — ).
(9.72)
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Substitution of Eq. (9.71) into Eq. (9.14), using Eq. (9.64), yields
WP (74 23) = exp [— (z3 — %) ’}21} , xh <xg < abth (9.73)

Substitution of Eq. (9.72) into Eq. (9.21), using Eq. (9.64), gives
WP (13, 25™) = exp [— (25! — z3) ’}:[1} ooab < xg < ot (9.74)

Eq. (7.29) shows that, by taking the limit Re(s) | 0, the partial dif-
ferential operator H, is a real operator. Hence, the square-root operator
H, is, evaluated in the real-frequency domain, either real or purely imag-
inary. Eqs. (9.73) and (9.74) show that with imaginary H; one asso-
ciates propagating waves, whereas real H; describes exponentially decaying
waves, or so-called evanescent waves. The exponential decrease is ensured
by Re(A) > 0, VA € o(H,). From Eqgs. (9.74) it follows that the adjoint
extrapolation operator is a stable operator, whereas the inverse extrapola-
tion operator increases exponentially in the extrapolation direction, in the
evanescent region. Hence, for z3-invariant media, the adjoint operator equals
the inverse operator for the propagating wave field, whereas, as an inverse
extrapolator its erroneous for the evanescent wave field. Substituting the D-
t-N operators of Eqgs. (9.60) and (9.61) for longitudinal invariant media, into
the transmission and reflection operators of Egs. (8.68) and (8.73), yields

T4 =9 (52 + y) Ty, (9.75)
and
R = (437) (¥ -9), (9:76)

which represent the transmission and reflection operators, respectively, for
depth-invariant media at either side of the scattering surface. .
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Chapter 10

Acoustic time-lapse interaction

In this chapter the interaction integral of the convolution type I of Eq.
(6.31) is investigated. Regarding it as a bilinear form, its associated ma-
trix operator, in terms of D-t-N operators with respect to the reference and
monitor background media, is first normalised to a symplectic operator. As-
suming identical D-t-N operators for the two time-lapse cases, one obtains
an alternating form for I, associated with a skew-symmetric or alternat-
ing operator. For a general time-lapse configuration, i.e. for contrasting
D-t-N operators with respect to the background media, the symplectic ma-
trix operator can be transformed to an alternating form, using a symplectic
eigenvalue decomposition, yielding a symplectic eigenvalue operator, which
parameterises both the reference and monitor background media. The re-
sulting cancellation of the temporal contrast in D-t-N operators explains the
absence of difference reflections in I°™ of Figs. (6.4) and (6.5), above the
interaction depth, as compared to the difference wave field of Fig. (6.3).
The alternating form of I after the transformation, obtained from the
symplectic eigenvalue decomposition of its operator, enables to introduce a
difference reflection operator, which is used in an imaging scheme.

10.1 Interaction operator
Taking the same time-lapse configuration as described in Fig. (6.1) we con-
sider the domains D" and D!, divided by the the surface dD'. In the follow-

ing analysis, instead of the scalar wave field equations (6.1) to (6.4) used in
Chapter 6, the wave field vector equation (see Eq. (7.26)) is used. The wave
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field which acts as a reference wave field is governed by the wave field vector
equation,

Oy F) (w xt ) + AWRa (w;wR,s) =N® (w;a:R, S) , (10.1)
with source vector

0 u
NO (z; 28, 5) = (cj(l) (5)6 (@ — :I:R)) , zcRxNeD" (10.2)

The wave field of the monitor state is governed by the wave field vector
equation

HEO (25 5) + ADF® (2;25 5) = N® (z;25,5) (10.3)
with source vector
. 0 u
N(2) (m, ms, S) = (qA(2) (5) 5 (m . ms)) 5 xTr & Rg,ws & D . (104)

Both the reference as well as the monitor source are located inside D" In
the further analysis, see Figs. (6.1) and (8.1), we take z5* = z§, and hence
D** = D" and D*** = D. Consider the domain D = {(wT, z3)| 1 € R, 2§ =
15 < z3 < zl'}. We introduce, in D, according to Eq. (8.49), the following
decomposition operations,

FO Z RO gy D, (10.5)
FO — To@pb@ iy (10.6)

with the wave field composition matrices of operators given by

. YA . I I
Fh0) _ (j;d,u) yu,u)) and Tb,(2)=(‘)}dv(2) yu,<2)>> (10.7)

in which the D-t-N operators are given, according to Egs. (8.47) and (8.48),
in terms of single- and double-layer potential operators. Implementing the
wave field decompositions, the interaction quantity of the convolution type
I which at OD! is given by Eq. (6.31), in D, expressed as a bilinear form
according to Eq. (7.53), yields

[fconv (];1(1),]}(2))] (wgl’wR - ) _ <15b,(1)’?b,(1,2)15b,(2)> (mB;wR’mS),
b
in D (10.8)
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with the interaction matrix of operators yb(1.2) given by

t Ad»(2) — Adv(l) A117(2) _ Ad,(l)
(1,2) _ (b b2 (Y Y Y Yy
YR — (To0) e <)}d,(2) "3 e _Jew ) (109)

In this last equation we used the symmetries of the pertaining Dirichlet-to-
Neumann operators derived in Section 8.7. Next, consider the case

{j}d,(l)’ yu,a)} _ {yd,@), j;u,m} _ {j;d, j)u} in D. (10.10)
If there is absence of temporal contrasts in D we obtain the stronger condition

{p(l)’ﬁ(l)} _ {p(z),,i@)} in D, (10.11)

which implies the condition of Eq. (10.10). The weaker condition of Eq.
(10.10) is exploited in the further analysis. Implementing the latter condition,
using Eq. (8.53), Y»(12) of Eq. (10.9) becomes

vb,(1,2) _yb
Y {)}d,(l)’5;11,(1)}:{3}(1,(2)75}",(2)} Y

-1
ANb @) —2 (Sb)
- (Tb) = . (10.12)
2(8) 0
in which we introduced the operator Y?, and T® is given in Eq. (8.51). We
have according to Egs. (6.7) and (6.30),

reonv (1(1) 1 (2)
[f (F ,F ) ] (T3a y & ‘{p(l) k0 }={ o2 )
= VPP (@®; %) — ¢PpV (% 25) . (10.13)

Hence, given the strong condition of Eq. (10.11), which states that there are
no temporal contrasts in the density and the compressibility above the inter-
action depth D", I°°™ becomes, because Eq. (10.11) implies Eq. (10.10), an
alternating form (Eq. (10.12)), equivalent to a difference wave field evaluated
at the recording depth (Eq. (10.13)). In Chapter 6 we derived, according
to Eq. (6.37), that, in general, Jeonv g equivalent to an up-going differ-
ence wave field which has no temporal contrast sources above the interaction
depth (Eqgs. (6.21) to (6.24)). However, according to Eq. (10.9), Y>(1? s in
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general, not alternating. The appearance of I in Fig. (6.10), as compared
to the difference wave fields in Figs. (6.8) and (6.9), suggests that Y»(1:2)
can be expressed in alternating form, exploiting the weak condition of Eq.
(10.10), using an symplectic eigenvalue decomposition (Abraham and Mars-
den (1978)). This decomposition requires that Y>1:? is symplectic, which it
is not, 1.e.
. t .

(va<1»2>) J4 YR £ Q. (10.14)

In order to have Y»(1?2) in symplectic form we use the ansatz

~ L NN ~
(Db> YoDb = P, (10.15)

This last equation represents a similarity transformation to Y of Eq. (10.12),
with DP given later. This transformation yields the following normalisation

. S\t . A
Yh = (Tg) JT° and TP =TPDV. (10.16)
To obtain the normalised operators we write the wave field composition ma-

trix operator T® of Eq. (8.51), using Eqs. (8.47) and (8.48), in terms of the
single- and double-layer potential operators of Eqgs. (8.41) and (8.42), as

o)) @) o

Taking for the transformation matrix operator

b

b ) , (10.18)
2

the normalised composition operator is given by

) T T
T, = ((Sb)*l ~ (s”b)_l) . (10.19)

Due to the symmetries of Y4 and j/“, Eqgs. (8.80) and (8.87), respectively,
the difference of these operators, (S®)™1, is symmetric (Eq. (8.88)). Hence,
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according to Egs. (8.47) and (8.48), (SP)~1DP, is also symmetric, which result
is necessary for the transformation of Eq. (10.15) to be valid. Observe that

Tﬁ does not contain the double-layer potential boundary integral operator
DP of Eq. (8.42), whereas, TP of Eq. (10.17) does. In fact,

TP =T" when D*=0. (10.20)

Observe that for longitudinal-invariance, for which Eqgs. (9.60) and (9.61) are
valid, we also have D® = . Hence, the normalisation induces a symmectry
with respect to the longitudinal direction. Defining,

yr & (Sb)_l , (10.21)

the interaction operator of Eq. (10.12), for which the background reference
and monitor D-t-N operators are equal, is written as

Yb = (2(39% _éy b> : (10.22)
The normalised composition operator of Eq. (10.19) is written as
T = (;, _§b> : (10.23)
Likewise, we define
= (Sb’(”)l, (10.24)
o) & (Sb’@))_l . (10.25)

Using the normalisation of Eq. (10.16), we obtain the following normalised
wave field composition matrices

- I z
Tg’(l) = (J}b,(l) _J}b,(l)) (10.26)

and

o T 1
T}Z’(”:(J;b,@) _yb,m)- (10.27)



In terms of these latter two matrices the wave field composition operations
of Egs. (10.5) and (10.6) transform to

FO = T2OPAO) - gt oDY, (10.28)
FO =T>Op>@ 4t oDY, (10.29)

in which P2 and P2® are the reference and monitor normalised wave
fields components vectors. Implementation of the wave field composition
matrices of Egs. (10.26) and (10.27) into the interaction quantity of the
time-convolution type I°™ of Eq. (10.8), in I, yields

feonv (];,(1)71,;(2)) - <pg,<1>,\?g»<1:2>f>g’<2>> in D, (10.30)
b

72)

with the normalised interaction matrix of operators yoa given by

Po@ _ PhO ) _ Phi)

t
ybi(1,2) _ (Th(D) jTh(2) — y
Y = (Tn ) JT = (j}b,(z) 4+ Ph() _Ph(2) 4 Ph()

) . (10.31)

In contradistinction to Y»(12 of Eq. (10.9) the normalised operator Yo 2

has the desired symplectic property, i.e.

N t ~
(yg,(1,2)> J4 Iy — 0. (10.32)

10.2 Symplectic eigenvalue decomposition

We investigate the eigenvalue decomposition of Y2 of Eq. (10.31). we
consider the following eigenvector equations,

YRUAQ = 2jQi)", (10.33)
Yo00Q, = —2jQu01, (10.34)

with eigenvalue operators +2 jji“, and with eigenvectors

A o A O1s
= ~ ( ! = ~ . 10
Q (Qm) and 2 (Q22> (10.35)
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Using Eq. (10.31), Eq. (10.33) is written as
(350 = 350 0y — (3704 320) 0y =20, 3%, (1036)
(750 4 I00) 0y — (358 - F00) 4y = 203" (1037
Adding the last two equations gives
NS (Qn - Q21) =] (Qu + Qzl) v, (10.38)
Taking the normalisation
On+9n =1, (10.39)

we obtain for the first eigenvector

.1 [T+ (ﬁb’@’)_l)?“
Q=5 ) : (10.40)

2 T (j;b,(Q) 71j;t1

Alternatively, subtracting Eq. (10.37) from Eq. (10.36) and applying the
normalisation of Eq. (10.39) yields

1 (24590 (3) B

Q-3 Lo (5/“) 1 (10.41)
Hence, we obtain
(32) 9t =3 (30) (10.42)
This last result is needed later. This last equation also yields
Yyl = yh@ybm, (10.43)
Hence, we obtain a square-root operator written as
Y= (;)?b@))?b’(l))%. (10.44)
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Following the same procedure for Eq. (10.34), and taking the normalisation
Oz + Qn =1, (10.45)

yields for the second eigenvector
. -1,
. 1 T — ] (yb,(?)) ytl
QQ == 5 R -1 . . (1046)
T +j (yb,(Z)) ytl
If, instead of the eigenvector Eq. (10.33) we use the following equation,
Yo t?Q = 29" Q;. (10.47)
Then, we obtain instead of Eq. (10.36) and (10.37),
(370 - 30 &, — (304 30) &y 2570, (1049
(3@ 4 320) @, — (P4 - P0) Oy =291, (10.49)
Adding the last two equations gives
PO (G = Q) =" (D + Do) (10.50)
Application of the normalisation @}, + @}, = Z, similar to Eq. (10.39), yields
. -1,
3 A 1 (Z+] (yb’@)) i
Q- () -3 aRaet (10.51)
21 Z—j (yb,(Z)) yil
Hence, Q) equals Q; of Eq. (10.40), yielding the commutation relation

i (yb,(z))"l _ (J}b,@))_l Y, (10.52)

Also, subtracting Eq. (10.49) from Eq. (10.48), using the normalisation
Q' + Q4 =Z, and using the fact that Q} equals Q, yields

(j)ﬂ)_l P = Pi() (3")'51)_1 ' (10.53)
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Using Egs. (10.33), (10.34), (10.40) and (10.46) we obtain the following

. s Ob,(1,2
eigenvalue decomposition of n( ),

Y2LAQ = Qv. (10.54)

The eigenvalue matrix Y is given by

o (20 O

Y = ( O o) (10.55)
with the operator Y given in (10.44). The eigenvector matrix Q is given by

1 (T ()T 2 (gre) T g
=3 - (j}b,(Q))_l P T4 (J}b,(?})l yu ) (10.56)

We have from Eq. (10.52) symmetry for the eigenvector matrix, expressed
as

Q=Q" (10.57)

In order to change the eigenvalue decomposition of Eq. (10.54) into a sym-
plectic one we proceed, using a similar approach as in Abraham and Marsden
(1978), as follows. The linear combinations of the eigenvectors Q; and Q,
of Egs. (10.40) and (10.46), respectively,

R . 1 T+ (V) Y
Qi +jQ =5 (14) () ) (10.58)

T — (yb,(2)) ytl

N -1 .

. A 1 T — (yb,(z)) ytl
JQ1+ Q2 = 5 (L+7) R 1) (10.59)

I+ (yb,(Z)) ytl

transform the eigenvector equations (10.33) and (10.34) to,

Yo (Ql +]Q2> =2 (JQ1 + Qz) v, (10.60)
v (le + Qz) = -2 (Ql + jQ2) . (10.61)
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Using the last two equation the eigenvalue decomposition of Eq. (10.54) is
transformed to a symplectic eigenvalue decomposition, written as

Yb (1, Z)Qtl QtlYtl (1062)

with the alternating matrix of symplectic eigenvalue operators,

o O _25}“
Y — (237“ s , (10.63)

and with the symplectic eigenvector matrix given by

z+ (9 b’m)_lj} tI-(y b’(z))_lyﬂ (10.64)
7

_ (3}b,(2))_1 P T4 (j}b,(2))_1:)>tl

From the commutation relation of Eq. (10.52) it follows that, using the
symmetry of Y>® and YU, this last matrix is symmetric,

N N t
Q' = (Q“) . (10.65)

Using the transformation , see Eq. (10.62),
yh(12) _ Quy (Qtl)—l | (10.66)

we obtain an alternating interaction operator Yt which has the same form
as Y® of Egs. (10.12) and (10.22). The interaction operator Y® is valid if
the background reference and monitor D-t-N operators, Y>® and Y™, are

equal, i.e. when the condition Eq. (10.10) is satisfied. The operator Ytl
valid for any temporal contrast configuration. Substituting Eq. (10.66) into
Eq. (10.30), using the symmetry of QY yields

foonv (13‘(1),]?‘(2)) _ <15t1,(1),\?t113t1»(2)> in D, (10.67)
b
in which
PO _ QUpbO), (10.68)
P _ (Qu)‘l P, (10.69)
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with

(Qﬂ)“ _ L[ (5’ “)_l T (5’ ﬂ)-l e (10.70)

2 \7_ (3)u>_13}b,(2) T4 (J}tl) ! Po(2)

From Egs. (10.26), (10.27), (10.28) and (10.29) we obtain the following wave
field decomposition operations

Eg,(l)ﬁ(l) _ 153,(1), (10.71)
(bR — pb@) (10.72)
with
. -1
) L (T (yb,u))
(b = 2 A 1, (10.73)
2 \7 _ (yb,(l))
and

-1
\)b,(2)
w1 (T (y )
n 2 (Ab(Z))_l
r —{y>

Substituting Eqgs. (10.71) and (10.72) into Egs. (10.68) and (10.69), respec-
tively, yields

(10.74)

QILEMEFM = pila) (10.75)
(@1) - (PO _ P, (10.76)

Using Eqs. (10.42) and (10.64) for Q" and Eq. (10.70) for (Q")~, one can
show that the last two wave field decomposition operators are identical, i.e.

QUb) — (Qﬂ) - [b@, (10.77)

Defining,
[ 4 pem) (10.78)
[H@) 4 pel2) (10.79)



then Egs. (10.75) and (10.76) and Eq. (10.77) yield

~ -1
-l i—(z);t)l)_l : (10.80)

The composition operations are given by

FO = THpO), (10.81)
F& = TUpLO), (10.82)
with
- I I
Tt = (aﬁ)ﬂ _)}ﬂ) : (10.83)

The symplectic eigenvalue decomposition of Eq. (10.66) yields one symplectic
eigenoperator V! of Eq. (10.44), which is a square root function of the ref-
erence and monitor normalised background D-t-N operators of Egs. (10.24)

and (10.25). Defining the components of P*»® and P%® of Eqs. (10.68)
and (10.69), respectively, as

A Adv(]-) ~ "d,(2)
def (P (2) def (P
ptL@) de (ﬁu,(l)) and P & (ﬁ“’(2)> : (10.84)
Eq. (6.31) is, using Eq. (7.53), and Eqgs. (10.81) and (10.82), written as

fconv (iEgl, mR’ ZBS) _ 2/ [ﬁd,(l) (wT, :L.t:‘;)l, (ER) j}tlﬁu,(Z) (wT, l'gl, iBS)
It cR?
— p»® (zr, z4; =) Yypd@ (zr, zd; ws)] dzy. (10.85)

The analogy of Egs. (10.22) and (10.23) with Egs. (10.63) and (10.83) sug-
gests that the interaction quantity of Eq. (10.67) should produce a difference
wave field, as is found in Eq. (10.13). Indeed, this difference wave field is
derived in Chapter 6 and given in Eq. (6.37).

10.3 Time-lapse imaging

Consider the domain D = {(@r,7z3)| 1 € R?, 2§ = 2§ < 23 < z}. In this
section the interaction integral, as expressed by Eq. (10.85), is set in terms
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of a time-lapse difference reflection operator. To enable this we introduce,
according to Eq. (8.71), the following reflection operators, which transform
the down-going wave field constituents to the up-going ones,

ﬁu(l def ']%tl (1) ~d,( )7 in ]D’ (1086)
@ L R0@pd@ 4y P, (10.87)

Following a similar procedure which yields Eq. (8.73), using the wave field
composition of Egs. (10.81), (10.82), (10.83) and (10.84), and the boundary
conditions of Eq. (7.34), yields

B0 (3}(1) + j;tl) - (j;tl _ j/(U) , (10.88)
R1® = (3@ ytl)‘l (3 -9®). (10.89)

Analogously to Eq. (8.17) we define the reference and monitor monopole
Green’s states as,

pd(1) a:T,x:s;mR,wR def A(l)@q’“’(l) SBR,&"R; LT, T3), 10.90
p Ty L3 Ts 43
e (wT,fE?,;iU'Srax?S;) = G (m’sf’37§5wT’x3) . (10.91)

Eq. (10.85) becomes, after substitution of Egs. (10.86), (10.87), (10.90) and
(10.91), and subsequently, using the symmetry of V!,

jconv (.’13;1; (BR, .’BS)
:2(2(1)@(2)/ [éq,tl,(l (2%, 2l 2, o) PURIL) Ga:t1(2) (m 25z, )
:BTER'~
— PIRIOGILD) (R GR. g o8) GO (g5, 05 w3 )] der. (10.92)

Assuming that there are no temporal contrasts inside the entire R3, i.e. we
have,

jconv —0 and ﬁtl,(l) — 7%,“’(2) — rfztl' (1093)

In terms of bilineair forms of scalar-valued functions (Section 7.5) Eq. (10.92)
then yields,

< Gat (V) gl Grq,tl,(2)> (:Cgl; z®, wS)
b

<yththq 1) ot (2) >b («f; z® 2%) . (10.94)
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Hence, we obtain the following symmetry relation
A A NS t
ythtl _ (ythtl) ) (1095)

Because this last relation must hold for arbritrary VIR we can apply this
latter symmetry to Eq. (10.92),

fconv (iﬂgl,mR T ) — 2@(1)(}(2)/ dxr
L1 eR?
Gaib) (R oR: g 28) PIARIGIN® (25, 25 @r,2Y),  (10.96)
with
ARY = RO _ RO (10.97)

and with R%® and R™® given in Egs. (10.88) and (10.89), respectively.
Defining the following extrapolation operator, similar to Eq. (9.8), as

W (g, 24) f (2, 23)

o 2/ G (xp, g @y, 2h) VU f (xh, o5) daly,  (10.98)
& eR?

Eq. (10.96) becomes

jconv (CBgl, mR .’BS)
GO GgAWM (z¥,2¥) ARNGIH?) (mT,x§,w%,x§1) (10.99)
Likewise, defining,
WL (5, 24) g (2, 75)

def 2/ GO (g, za; @y, 24) YW (zh, 24) dal,  (10.100)
TheR?

and following Eqs. (9.5) and (9.10), Eq. (10.99) is written as
iconv (:cgl,:cR - ) _ d(l)q(Z)th,(l) (a; x3) ARthtl ( 3,m§)
X (25)“)' 5 (2% —a%), (10.101)
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in which (2)")~16(xk — a3) represents a dipole source. Eq. (10.101) ex-
presses the interaction integral of Eq. (6.31) in terms of the "WRW-model’
of Berkhout (1985), except for the difference that the operator ARY is a
global operator with respect to the x5 coordinate, whereas the reflection
operator in the WRW model is local.

Using Eq. (6.37) we can express the difference reflection operator in terms
of a difference wave field, by deconvolving ™ with §(!), obtaining

P (2 2®) = Wt (R 2) AR (z,23)
~(2) (257“) 15(33% —z3). (10.102)

In this last equation, the difference wave field p%" is governed by Egs. (6.21)

0 (6.24). The source function §®) appears in the right-hand side of Eq.
(10.102) because of the source functions in Egs. (6.25) and (6.26). Eq.
(10.102) can be rewritten, in the real-frequency or Fourier domain, employing
the symbol “of Eq. (B.6), to

P (o, 2t @, a5) = ARYFMD (2B, 2% 2 1) (10.103)
relating an up-going difference wave field with a down-going wave field com-
ponent through a difference reflection operator. In this last equation we

applied, analogously to Eqgs. (9.5) and (9.7), using Eq. (10.91), the forward
extrapolation,

5O (@, a8 2, 75) = W (et 23) g (29%) 716 (o — o),

and, analogously to Eq. (9.46), the inverse extrapolation,
P (@, 2l 2%, 25) = Web T (o8 o) it (o 2 25 25) . (10.105)
Taking the kernel of ARY after Eq. (9.29), Eq. (10.103) is written as

~dif,u R _.tl S S
p ($T7$37mT7 5)

:]{B X ARY (a:T,:cgl,wT,x?,)ﬁd () (', 2 cc;,xJ) der. (10.106)
' eR?
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This last equation is inverted to obtain an image of the kernel ARY. When
the condition of Eq. (10.11) holds, and also ¢V = §® = §, we have according
to Eqgs. (6.37) and (6.38)

p\dif,u (:I:R; wS) _ Aﬁsct (mR;wS) , (10107)
with
AP = pb@) et (), (10.108)
Using Eq. (9.23) we then have

At (xF, 25) = gV (2F, 28) ARW (x3,x3) Sb6 (2} — }).

(10.109)
with
AR =R —RW, (10.110)
and, using Eq. (8.73), with
b= (30 - 3) - (34— ), (10.111)
R = (3O 5;1:)‘1 (3¢ -99). (10.112)

We can also write, in the Fourier domain, using the forward extrapolation of
Eq. (9.7), and the inverse extrapolation of Eq. (9.46),

Ap*t (wT, a;gl, x5, x3) ARp™ (:BT, :cg, x5, :cg) (10.113)

The representation of Eq. (10.109), and Eq. (10.113), for which the time-
lapse contrast in the density and the compressibility vanishes for z3 < zy
and for which the source functions are equal, is generalised by the represen-
tation of Eq. (10.102), and Eq. (10.103), respectively, which is valid for an
arbritrary time-lapse contrast configuration.

10.4 Fundamental solutions

In the following analysis we apply the fundamental solution approach, ac-
cording to Pazy (1983); Krueger and Ochs (1989); Wapenaar (1996a); Grim-
bergen et al. (1998), and in particular we follow Haines and de Hoop (1996).
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Taking the reference and monitor versions of Eqs. (9.48) to (9.51), and
substitute these into Egs. (10 1) and (10.3), we obtain the D-t-N operators
(Y20 Y} and {P4@, Y@} in accordance with Eq. (9.52), as solutions
of the nonlinear Ricatti equations,

03y — VspbVy + — 31> — 0, (10.114)

b(l

BsY — Vsp 2>y+ ’H2 =0, (10.115)

respectively (Haines and de Hoop (1996)). The initial conditions are given

Y= and =0 (10.116)
zz=x} zz=xy
y — j\]d7(2) and j} = j)u’(2) . (10117)
1-3:m§1 :1:3:3:3
b,(1)

IeSpectlvely The densities p™!) and p™? | and the Helmholtz operators
H @ and ’Hb @ of Eq. (7.29), are background medium parameters given
accordmg to Egs. (8.3) and (8.4) and Fig. (8.1), taking 5 = 2Y. The ref-
erence and monitor normalised D-t-N operators, of Egs. (10 24) and (10.25),
are obtained, using Eqs. (8.47) and (8.48), as

o) = % (3200 — ) (10.118)
Ph2) _ % (32— 32} (10.119)

Subsequently, the symplectic eigen D-t-N operator P! is calculated using Eq.
(10.44), repeated here as,

P — (ybmz)yb,(l)) 7 (10.120)

Using Eqgs. (10.1) and (10.3) we have in D" (Fig. (6.1)),

Il

. (10.121)

8;17( ) ($T7£d, w}%,m) + 507 P (z, T?)@:gl) (wT’xl“; m%,z?) 0
0. (10.122)

Il

83]7 (mlyl?any =C3) + 5[7 (wTaxﬁ) é ) (iBT,Z'?,;CU%,.Tg)
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According to Egs. (10.81) to (10.84) we have, in D", the following wave field
compositions

13(1) = 5@ 4 D), (10.123)
— ytlﬁd, 1) _ j\}tlﬁu’(l)’ (10124)
and
p\(?) — I’jd7(2) + ﬁuv(Q)’ (10125)
52 — Prlpd2) _ Prlgm2) (10.126)

Substitution into Eqs. (10.121) and (10.122) yields

s (ﬁd’(l) +Z3u’(1)) + Spb,(l) (j;tlﬁd,(l) _ )}tlﬁu,(l)) =0, (10_127)

B, (ﬁd,(2) +ﬁu,(2)) + 5p@ ()}tlﬁd,@) _ j)tlﬁu,(Z)) 0. (10.128)

In accordance with Egs. (9.48) and (9.49) we take, in order to satisfy
Eqs (10.127) and (10.128), the followmg evolution equations for 41 =
p (1) (mT’ L3, m%? [E?) and p p ) = (1)(113']:‘, T3, :13%, .’1713{),
9spP W 4 spPWPpdM) = in D, (10.129)
Osp™ V) — gp> WP — 0, in D, (10.130)

with initial conditions

1311,(1) =p% (1) (a:T,a:;l, m%,x?) (10.132)

For p% (2) = pd(2) (zT, 3; ar;rsf, :1;3) and p"™ 2 = o (2)(mT, T3; m%, :vg), we have
o ﬁd’(2) + Spbv(2)j;t1ﬁdv(2) =0, in D, (10.133)
Bp™ @ — b:@)j)tlﬁ“’(z) =0, in D (10.134)

with initial conditions

70 = 550 (@, 5; 25, 25) (10.135)
PO = 5o (g ot 2S 1) (10.136)
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Eqgs. (10.129) and (10.130), and Eqs. (10.133) and (10.134), show that
we have obtained a parametrisation of the background medium in terms
of {p>M Y} and {p>@ P} for the reference and monitor case, respec-
tively. Because there is no time-lapse contrast in the admittance operator
no difference reflections are generated in D", ie. for z3 < z§. This new
parametrisation, associated with the interaction integral Joonv of Eq. (6.31),
and the difference wave field p8** (Eq. (6.37)), is illustrated in Fig. (10.1).
Also shown is the parametrisation of the background medium in terms of
densities, and admittance operators for the down- and up-going wave field
constituents, p>M and { PN, Y=} and p>@ and {P4@ Yu@} for the
reference and monitor case, respectively, in case we evaluate the difference
wave field Ap™ of Eq. (10.108).

AﬁSCt
Dv
b,(1) £yd,(1) pu,(1) b,(2) (Vd.(2) YPu,(2)
P ’ {y ’y } p ) {y 7y }
8]D)t1
P P P2, P2
Dl
jconv’ ﬁdif,u
Du
pb,(l)’ j}tl pb,(2), J}tl
aDtl
P P) p2) P2
]D)l

Figure 10.1: Parametrisation of Ap**, in terms of p>(1) and {YM) YuM  and
p>@) and {Y4@) Y121 (top), and parametrisation of I° and pUfu in terms
of p»() and Y%, and p»? and P! (bottom).
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Tn order to calculate the extrapolation operators, WM (z&, 28} and
Weib@ (g8 2%) in Eq. (10.102), we need to obtain, according to Eqs. (10.98)
and (10.100) the kernels or fundamental solutions,

G (zp, 2R 2y, 23) and GYMO(zp, 23 @l 25), Tespectively. Following
Egs. (9.57) and (9.55), the evolution equations for the latter two funda-
mental solutions are given by

respectively. Analogously to Eqs. (9.58) and (9.56), the initial condition are,
-1
GO (g, ol 2y, 2Y) = (237“) § (xr — xlp) , (10.139)
-1
G (g, 23 xp, 23) = ( yﬂ) §(xr — 27, (10.140)
respectively. The fundamental solution G%*() is parameterised with pP(1)

and Y%, and solved upwards whereas the fundamental solution G is
parameterised with o> /(2 and yﬂ, and solved downwards.

10.5 Numerical examples of the interaction
integral

Consider the model of Fig. (10.2) which consists of 6 layers. Using this
configuration reference and monitor wave speeds, ¢ and ¢®, and densities,
oM and p?, are assigned according to Table (10.1). Time-lapse changes are
modelled in layer 1, in which the source and receivers are placed, such that
nonrepeatibility of the time-lapse experiments is modelled, and in layer 3
and 5. In order to calculate the interaction integral of Eq. (6.31) we use
a software code which simulates the pressure and vertical component of the
particle velocity, response, p and vs, using finite differences in Egs. (7.5) and
(7.6). The compressibilities are calculated from Eq. (7.25). Equal monopole
sources ¢! = ¢@ are employed. In Fig. (10.3) the difference wave field
Ap* is shown, which is the time domain version of Eq. (10.108), obtained
by placing the source and receiver array at 0 m depth. In this figure a dif-
ference direct wave, associated with the time-lapse changes in layer 1, and
several difference reflections, associated with the time-lapse changes in layer
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Reference model
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Figure 10.2: Model for time-lapse finite difference simulations.

1, 3 and 5, are observable. The difference wave field Ap** can be parame-
terised by the densities, and the down- and up-going admittance operators
of the reference and monitor media, p>® and {Y&O), YW} and p»? and
(V3@ Y@ respectively (Fig. (10.1) top). The parametrisation of the
latter admittance or D-t-N operators, at a level surface x5 = i, in terms
of {p>®, k>W} and {p>@, k>P} for 23 < 25, is accomplished using Eqgs.
(7.26) to (7.28), Egs. (8.3) and (8.4) and Fig. (8.1), Egs. (8.14), (8.15),
(8.17) and (8.18), and Eqs. (8.41), (8.42), (8.47) and (8.48). The expression
for the reflection operator in Eq. (8.73) shows that a time-lapse contrast in
{)A?d’(l) ,j}u’“)} and {yd’@),)}“’(z)} yields nonvanishing difference reflections
for z3 < z5%, examplified by Fig. (10.3). Calculating 1% of Eq. (6.31)
at z§ = 80 m depth, i.e. halfway layer 1, using the finite difference code,
we obtain Fig. (10.4). It appears that the difference direct wave associated
with time-lapse contrasts for x3 < 80 m has dissapeared, as compared to
Fig. (10.3). Hence, differences in the medium parameters in the source and
receiver domains are cancelled in the /°™-gather of Fig. (10.4), thus solving
the nonrepeatility problem associated with these time-lapse differences. For
23 < 80 m we obtain a parametrisation in terms of p>() and Y, and pb®
and V' (Fig. (10.1) bottom). Therefore, a difference reflection is introduced
at the interaction depth #§ = 80 m through I°™ of Fig. (10.4), as compared
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layer | & [m/s] ) [ke/m?] | ¢® [m/s] p® [ke/m’]
1 1800 1500 2000 1600
2 2100 1700 2100 1700
3 2200 1800 2400 1900
4 2500 2000 2500 2000
) 3000 2400 3200 2500
6 2700 2300 2700 2300

Table 10.1: Reference and monitor velocities and densities, ¢),p") and ¢(?) and
(2)
P2,

to Fig. (10.3) in which this difference reflection does not appear. The differ-
ence reflections in Fig. (10.4) are assciated with the operator ARY of Egs.
(10.88), (10.89) and (10.97) (Fig. (10.1) bottom), whereas the difference
reflections in Fig. (10.3) are associated with the difference of the reference
and monitor versions of the reflection operator of Eq. (8.73) (Fig. (10.1)
top). The time shifts of the difference reflections in Fig. (10.3) depend on
the time-lapse contrasts for x3 < 80 m. In Fig. (10.4) the time-shifts of the
difference reflections induced by the time-lapse contrasts for z3 < 80 m have
dissapeared. Also the amplitudes of the difference reflections in Fig. (10.4)
are corrected, as compared to Fig. (10.3), such that their dependencies on
the temporal contrasts for z3 < 80 m are cancelled. Hence, the corrective
action of the interaction integral is both kinematically as well as dynamically
valid.

In Figs. (10.5) to (10.7) the interaction integral ™ is calculated at
zy = 164, 264 and 404 m depths, i.e. just below the bottoms of layer 1,
2 and 3, respectively (Fig. (10.2)). One observes that in Fig. (10.5) the
time-shifts and amplitudes of the difference reflections are such that these
appear to be independent of the temporal contrasts in layer 1. Fig. (10.6)
is the same as Fig. (10.5), confirming that 7°°® is an invariant in a domain
(for e.g. layer 2) in which no time-lapse changes have occured. In Fig. (10.7)
the difference reflections are associated with the time-lapse contrast in layer
3, and are independent of the time-lapse contrasts in layer 1 and layer 2.
Observe that the first difference reflection, associated with the top of layer 3,
is a pure amplitude difference, involving no time-shift, in contradistinction to
the same difference reflection in Figs. (10.4) and (10.5), the former containing
the sum of the time-shifts induced by the temporal contrasts in layer 1 and
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Difference data at 0 m
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Figure 10.3: Difference wave field Ap™* at r3 = 0m

2, the latter containing the time-shift induced by the temporal contrast in
layer 2.

10.6 Longitudinal invariance

Consider the subdomain D' = {(zr,z3)| 2zt € R%, 25 < 25 ' < 23 < 2} <

z4}, in which the medium parameters are assumed to be invariant with

respect to the xs-coordinate. Then, implementing longitudinal-invariance in
Egs. (10.114) and (10.115), similarly to Eq. (9.59), yields

VspP DY — (sppO) IV — 0, i D, (10.141)
VspP@YP — (spbN T HED — 0, i D', (10.142)

From this last equation we take, analogously to Eqs. (9.60) and (9.61), the
following solutions,

(YW pry = () _pe) in D, (10.143)
(PO Pu@y = (i@ i)y in D, (10.144)
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Boundary integral at 80 m
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Figure 10.4: interaction integral I at z% = 80m.

with
P — (Spb,a))—l >0, (10.145)

A

PO = (5p02) ), (10.146)

The symmetric pseudo-differential square-root operators ’Hb M and 7:1?’(2) are
given by

Hy W =AY, with Re(AV) >0, VAW e o (Fp®

(10 147)
Hy® =ApPAPP ) with  Re(A®) >0, vA® ¢ 0(7:[1 2>)
(

10.148)

in which o(7>™") and o(H>®) designate the spectra of #>M and H@
respectively. The reference and monitor Helmholtz operators are, according
to Eqgs. (7.24) and (7.29), given by,

A~ 2 _
700 — (cbs(l)) — b, [(pb,(l)) 13a.] | (10.149)
@) _ (S N b(2)) -1

Hy' " = (Cb,(2)> — p>3g, [(p (2)) 6a,] , (10.150)




Boundary integral at 164 m
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Figure 10.5: interaction integral I°™ at z§ = 164 m.

respectively. Because, according to Eq. (10.20), the admittance operators
of Egs. (10.145) and (10.146) are in normalised form, we have, using Eq.
(10.120), for the symplectic eigenvalue operator,

P (J}i,(z)yi,(l))% . (10.151)
Defining,
TR PVLIOR R T ) ) (10.152)
HD L b @8 iy D (10.153)
we obtain, according to Egs. (10.137) and (10.138),
B Gt W) — M Geth (D) — 0 for 25 € [af, M), (10.154)
Byt 7.2;17(2)@«1#61,(2) =0, for z3¢ (af, 25 (10.155)

The extrapolation operators of Egs. (10.98) and (10.100) are, for a longitudinal-
invariant medium, given by, according to Eqs. (9.73) and (9.74),

W) (7, 25+ = exp { (254 — z3) 7:[;1,(1)} gk <y <ot
(10.156)
W@ (21 25) = exp {— (23 — b) ?%'f"z)} .2k <oy < ait (10.157)
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Boundary integral at 264 m
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Figure 10.6: interaction integral I°™ at z§ = 260 m.

Using a recursive scheme, assuming that the medium is piece-wise invariant
with respect to the longitudinal x3-coordinate, one can construct, using the
semi-group property of Eq. (9.19), using these last two equations, extrapo-
lation operators for an inhomogeneous medium. Some examples are shown
in the next section.

10.7 Proposed processing scheme

The objective of this thesis is to infer from time-lapse changes in the seismic
velocities, and associated dynamic elasticity parameters, the change in the
in-situ stress during two measurements. For acoustic waves we would try
to estimate changes in the compressional-wave velocity and the dynamic
compressibility. To do so I propose a recursive top-down approach which
first solves the nonrepeatibility problem and subsequently estimates the time-
lapse changes, with respect to the reference measurement, as these occur,
with increasing depth. The estimated time-lapse changes are then used to
obtain a temporal contrast reflectivity image. Below I give an outline of
the proposed processing steps. Consider an interaction depth zY, below
expected nonrepeatibilty changes and above the expected time-lapse changes
associated with e.g. reservoir activities.
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Figure 10.7: interaction integral I°°™ at z§ = 404m.

. Transform the reference and monitor pressure data to the Fourier do-
main.

. Equalise the reference and monitor source signatures (Egs. (10.2) and
(10.4)) such that ¢V = ¢@ = q.

. If necessary calculate 3"\ (25, 23; 2%, 28) from pt @) (&, 2f; &f, 23),
using source-receiver reciprocity.

. Calculate the reference incident wave field p>® (5., z4; 2%, z5 ) at ¥
using the reference forward extrapolation operator WP M) (g4l &) of
Eq. (9.15), applied to the reference dipole source 3 §S>Wé(xh — )
of Eq. (9.5).

. Calculate the reference scattered wave field p>%(\ (23, 2%, wT,mg) at

T
2Y, using the reference inverse extrapolation operator Wb (g8 2%)

of Eq. (9.46), applied to the reference measurement p*t( (., z5; =&, 2}

. Calculate the monitor incident wave field po® (! 2t x5 25), at
3751, using an estimate of the monitor forward extrapolation operator
Wab@ (28 25) of Eq. (9.15), applied to an estimate of the monitor

dipole source 1 ¢S*Pé(zr — @) of Eq. (9.5).
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7. Calculate the monitor scattered wave field p*t@ (2% 2% 25, 23), at

z¥, using an estimate of the monitor inverse extrapolation operator

Wab, (2§, z8) of Eq. (9.46), applied to the monitor measurement
psct (2)( R R S S)

8. Calculate the interaction integral 7°°™ (zf; xR, %) of Eq. (6.31), at 2%,
using Eq. (10.8).

A deviation of the true monitor model from the estimated monitor model
leads to, using steps (6) and (7), an incorrect estimation of the monitor
incident and scattered wave fields. This causes residual difference reflection
energy, associated with the time—lapse contrasts in the medium parameters
above the interaction depth z§. By updating the estimated monitor model, in
steps (6) and (7), towards the true monitor model, we minimize the difference
reflection energy. Application of the correct monitor model yields vanishing
difference reflection energy, associated with the time-lapse contrasts in the
medium parameters above the interaction depth z¥, as is exemplified by Figs.
(10.4) to (10.7).

9. Minimize difference reflection energy, associated with the time-lapse
contrasts in the medium parameters above the interaction depth zf,
by repeating steps (6), (7) and (8), using updating of the monitor model
estimate towards the true monitor model.

10. Repeat steps (4) to (9) for subsequent depth levels, until below deepest
time-lapse contrast, using the semi-group property of the extrapolation
operator (9.19), resulting in a top-down recursive approach.

The previous steps yield an estimate of the unknown monitor model. The
scheme depends on a sufficient accurate knowledge of the reference model.
Depending on the uncertainty in the reference model, it might also be neces-
sary to update the reference model. The estimated model(s) are used in the
following steps to image the difference reflectivity.

11. Calculate the symplectic eigenvalue operator Y using Egs. (10.118),
(10.119) and (10.120).

12. Deconvolve I with the source signature §, according to Eqs. (6.37)
and (10.102), to obtain pUite (xR 8 x5 13).
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13. Calculate the down-going wave field component p(2 )(mlfw,ac?) s, 1),

according to Eq. (10 104), by downward extrapolation of g(Y*)~!§ (ZBTA
x3), using Woth@) (28 28), through a medium parameterised by p™®
and Y%

14. Calculate the up-going difference wave field piifu(zR 2t 23, z3), ac-

cording to Eq. (10.105), by downward extrapolation of
P (2, 25 2%, 25), using Wath (z%, %), through a medium pa-
rameterised by p>®) and Y.

15. Estimate the kernel ARY(z%, z%: x5, 21!) by inverting Eq. (10.106),
using the results of steps (13) and (14).

16. Obtain angle-dependent difference reflectivity by applying a double
Radon transform to ARtl(mT,xgl,w%,xg), with respect to the trans-
verse receiver and source coordinates, % and x3., respectively, and by
subsequently applying the imaging condition, which amounts to an in-
tegration with respect to the frequency cooordinate (see e.g. de Bruin

et al. (1990)).

In Fig. (10.8) a numerical imaging example is shown, using steps (1) to (8),
and steps (11) to (16), for a range of depth levels, using the model of Fig.
(10.2), and the reference and monitor parameters of Table (10.1). Because
the reference and monitor parameters are known the inversion update steps
(9) and (10) are excluded. The forward and inverse extrapolation operators
are calculated, using Eqgs. (10.156) and (10.157), recursively, valid for a
piece-wise depth-invariant medium. Fig. (10.8) shows the kernel AR" as a
function of horizontal ray parameter (Radon transform parameter dual to the
horizontal receiver coordinate) and depth. Clearly, the temporal contrasts
in layers 1, 3, and 5 are imaged as a function of horizontal ray parameter.
In Fig. (10.9) the difference reflectivity at zero horizontal ray parameter
(normal incidence) is shown. In Fig. (10.10) the difference reflectivity as a
function of horizontal ray parameter, at a depth of 100 m, is depicted. The
high values beyond £1 x 107 are associated with evanescent waves.
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Figure 10.8: Imaged kernel of the difference reflection operator ARY as a function
of horizontal ray parameter and depth.
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Figure 10.9: Difference reflectivity at zero horizontal ray parameter (normal in-
cidence).
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10.8 Discussion

A recursive pre-stack processing scheme has been proposed, based on the
full acoustic wave equation, for time-lapse datasets, involving reference wave
fields, travelling through a reference medium, and monitor wave fields, which
propagate through a monitor medium. To this end a boundary integral of the
time-convolution type is employed which represents an up-going difference
wave field, originating from temporal contrast sources below the boundary,
at which this integral is evaluated. The up-going difference wave field is the
temporal analogue of the up-going scattered wave field, which originates from
spatial contrast sources.

The reflection operator is derived which, quantifying the scattering pro-
cess, relates an up-going scattered wave field to a down-going incident wave
field. This spatial scattering formalism is set in terms of spatial contrasts
between a computational background medium and the actual medium. By
comparison, the time-lapse scattering formalism, in terms of a difference re-
flection operator, uses temporal contrasts between the two actual reference
and monitor media.

The reference and monitor wave fields, in the integrand of the boundary
integral of the time-convolution type, are determined using computational
background media, based on partial and insufficient knowledge of the ac-
tual media. The interaction of two actual wave fields is considered. This in
contradistinction to spatial scattering formalisms, in which an actual mea-
surement wave field interacts with a smooth computational wave field. For
this reason may expect that with time-lapse seismic measurements a higher
resolution can be attained than in single seismic measurements.

From the difference reflection operator, changes in the compressional-
wave velocity or compressibility, and the density can be inferred. Using
a suitable parametrization one could linearize this inversion, e.g. for small
temporal contrasts, and carry out an AVO-type analysis. For stress inference
one ideally needs a scheme based on elastodynamic waves in an anisotropic
medium. The wave-vector formalism can be generalized, see e.g. de Hoop
and de Hoop (1994), in terms of elastodynamic wave field quantities and
anisotropic elastic moduli. The compressional- and shear-wave velocities
inferred from such a scheme can be input to a stress-inversion scheme. For
this we can use results from ultrasonic experiments, as are shown in the first
part of this thesis. All under the assumption that we are able to translate
the scaled experiments to the in-situ stress conditions.
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Appendix A

Notations and conventions

In this thesis we consider the three-dimensional space R? equiped with an
Euclidean metric. Within this space a standard measuring rod is defined
with respect to a Cartesian reference frame, consisting of three mutually
perpendicular base vectors, {%,,%2,%3}, which form a right-handed system.
A position in space, denoted by the vector x, is specified by the Cartesian
coordinates {x, z2, x5}, written as @ = (x1, 7o, 23), and given by

r = .’Elil + .1,'27:2 + l’gig. (Al)

To discriminate between the transverse direction, specified by the coordi-
nates {z1,2,}, and the longitudinal direction, specified by the coordinate
x3, the position vector is also denoted by @ = (2T, z3), with the transverse
coordinate given by

T = xlil + 932?:2. (AZ)
We make use of Einstein summation convention and write
TT = Tat, and T = x4, (A.3)

in which a repeated lower-case Greek subscript takes the values {1,2}, and a
repeated lower-case Latin subscript takes the values {1,2,3}. Time is given
in the one-dimensional space R, specified by the coordinate {t} with respect
to a standard clock, and denoted by ¢.
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Appendix B

Integral transformations

In this appendix the one-sided Laplace transform pair with respect to time,
of functions which represent causal or anti-causal wave fields, is introduced.
Additionally, the Laplace-Fourier transform pair with respect to the time
and transverse coordinates is given.

B.1 Laplace transform with respect to time

B.1.1 Causal wave fields

Consider a space-time wave field, p(x,t), originating from a source which
excites at time ¢ = 0. Because the wave field is causally related to the action
of the source, we have the following causality condition

p(x,t)=0, t<O0. (B.1)

The one-sided Laplace transform with respect to time of a causal space-time
wave field p(x, t) is defined by

ple,s) = /000 exp (—st)p(x,t)dt, Re(s) >0, (B.2)

with the Laplace transform parameter s € C. The function p(x, s) is regular
in the right half-plane Re(s) > 0. The condition Re(s) > 0, together with
the boundedness of the wave field p(a, t), ensures that the Laplace transform
is a converging integral, which, when regarded as an integral equation, for a
given p(x, s), produces as a solution an unique space-time function p(z, ),
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which vanishes for ¢ < 0. Due to the analyticity of the Laplace transform
kernel exp(—st), p(x, s) is an analytic function in the region of convergence
Re(s) > 0, see Widder (1946) and de Hoop (1995)[p. 1050]. Using the causal-
ity condition of Eq. (B.1) the Laplace transform integral is extended over
the entire real line, according to

plx,s) = /tERexp(—-st)p(w,t) dt, Re(s)>0. (B.3)

To be able to express the Laplace transform in terms of a Fourier transform
s is separated into its real and imaginary parts,

s=jwte w,eeR, €>0. (B.4)

Substituting this last definition for s into the Laplace transform of Eq. (B.3),
we obtain

plx,s)= /t Rexp(—jwt) [exp (—et) p(x,t)]dt, €>0, (B.5)

which constitutes a Fourier transform of the function exp(—et)p(x,t). Taking
the limit € — 0, we obtain

lim p (2, 5) = (2, jw) = B (@,0), (B.6)

in which p(x,w) is introduced for symbolic convenience and represents the
Fourier transform of p(z, t).
The inverse Laplace transform is given by
€+joo
pla,t) = 5 / exp (st)p(x,s)ds, €>0. (B.7)
s

€—joo

Again, separating the real and imaginary parts of the Laplace parameter s,
we can rewrite the inverse Laplace transform as

p(x,t) = exp (et) % / exp (jwt) p(x, s) dw, (B.8)

weR

which constitutes an inverse Fourier transform of p(x, s), multiplied by the
real exponential function exp(et).
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B.1.2 Anti-causal wave fields

Consider an anti-causal space-time wave field p*(z,t), anti-causally related
to a source which excites at ¢ = 0, which satisfies the following anti-causality
condition

p*(x,t) =0, t>0. (B.9)

The one-sided Laplace transform with respect to time of p?(a,t) is given by

P (x,s*) = / exp (—s%) p* (z,t)dt, Re(s*) <0, (B.10)

—o0

in which s* is the Laplace transform parameter and the function p*(x, s*) is
regular for the left half-plane Re(s*) < 0. The Laplace transform parameter
s* is taken as

s =jw—¢€, w,eeR, >0 (B.11)
Substituting this last definition for s* into the Laplace transform of Eq.

(B.10), and using the anti-causality condition of Eq. (B.9), such that the
integration is extended over the entire real line, we obtain

P (x,s*) = /LERexp (—jwt) [exp (€*t) p* (x,t) | dt, €* >0, (B.12)

which constitutes a Fourier transformation of the function exp(e*t)p*(x,t).
Using Eq. (B.5) we have

b (@, —s™) = /t exp (o) [exp () p(@ )t >0, (B3

Suppose that an anti-causal wave field can be obtained by a time-reversal
operation on a causal wave field according to

p*(x,t) = p(x,—t). (B.14)

Applying time-reversal Eq. (B.13) can be rewritten as,

p(x,—s*) = /teRexp (—jwt) [exp (€*t) p* (2, t) ] dt, €* > 0. (B.15)
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Hence, Egs. (B.12) and (B.15) yields
Pz, s*) =p(x,—s%), s*=jw—¢€, >0, (B.16)

(Fokkema and van den Berg (1993) and de Hoop (1995)). Because of Eq.
(B.14) we can choose € = €*, with € given in Eq. (B.4). Hence, Eq. (B.12)
can be rewritten as,

P (x, s*) = /tERexp (—jwt) [exp (et) p(z, —t)]dt, €>0. (B.17)

Using time-reversal of the right-hand side of Eq. (B.17) this equation can be
written as

P (x,s%) = {/tERexp (—jwt) [exp (—et)p(w,t)]dt} , €>0, (B.18)

where the star superscript denotes complex conjugation. Using Eq. (B.5) we
obtain

~a ay __ o~k s = jw+6
P (x, ") =p* (=, 5), {Sa — Gw—e € > 0. (B.19)

Taking the limit ¢ — 0 in Egs. (B.16) and (B.19), as in Eq. (B.6), we have
P (0,0) = 5 (@, —w) = 5 (). (B.20)

B.1.3 Partial differentiation with respect to time

The Laplace transform of the partial derivative with respect to time of a
causal wave field p, O,p, is obtained by means of partial integration as

/ exp (—st) Oyp (x, t) dt
0

oo

+3/ exp (—st)p (x,t)dt
0

= —p(x,0+) + sp(x,s). (B21)

—exp (~st)p (o) [

The term —p (x,0+) accounts for the presence of a discontinuity at ¢t = 0,
when passing the instant ¢ = 0 in the direction of increasing ¢ (Fokkema and
van den Berg (1993)[p. 19]). Hence, for vanishing p (x,0+), differentation
with 0, in the time domain is equivalent to multiplication with s in the
complex-frequency domain.
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B.2 Spatial Fourier transformation

The three-dimensional Fourier transform, with respect to the spatial coordi-
nate vector x, is defined as

ﬁ(k,s):/mew exp (jkqz,) p (z, s) d. (B.22)

The inverse transform of Eq. (B.22) is obtained as

1
(2m)*

plx,s) = / exp (—jkmam) D (k, s) dk. (B.23)
kers

The two-dimensional spatial Fourier transform, with respect to the transverse
coordinate vector @, is defined as

b (kr,z3,5) :/ exp (jkats) p (T, T3, ) dET, (B.24)
ZBTER2

in which the the argument list of the space-domain function and its transform
is adjusted to distinguish between the transverse and longitudinal directions.
The inverse transform of Eq. (B.24) is given by

1
(2m)?

p(xr,z3,8) = / exp (—jkaxa) p (K1, 23, ) dkp. (B.25)
k:TER2

B.2.1 Partial differentiation with respect to the spatial
coordinates

Partial differentiation of the Laplace transformed wave field p with respect
to the mth spatial coordinate is given by

/ exp (jkqty) Omp (x, s)dx = —jk,.p (k,s). (B.26)
T eR3

Hence, partial differentation in the spatial domain with the operator 9, is,
in the wave-number domain, equivalent to multiplication with —jk,,.

255




256




Bibliography

Abraham, Ralph and Marsden, Jerrold E. Foundations of Mechanics. The
Benjamin/Cummings publishing company, inc., second edition, 1978.

Aki, K. and Richards, P. G. Quantitative seismology. W. H. Freeman and
Company, New York, 1980.

Al-Chalabi, M. and Huang, C. L. Stress distribution within circular cylinders
in compression. Int. J. Rock Mech. Sci. €9 Geomech. Abstr., 11:451-455,
1974.

Atkinson, B. K. Subcritical crack growth in geological materials. J. Geophys.
Res., 89:4077-4114, 1984,

Barends, F. B. J., van der Poel, J. T., and Teunissen, J. A. M. Geomechan-
ical simulation of static and dynamic subsidence by reservoir compaction.
In Proc. Fifth Int. Symposium on Land Subsidence, pages 237-245, The
Hague, Netherlands, 1995.

Beishuizen, Jeroen. A proposal for 4-d seismic imaging. Master’s thesis,
Delft University of Technology, Department of Applied Geosciences, 1997.
TA/TG 1997-07.

Berkhout, A. J. Seismic migration: Imaging of acoustic energy by wave field
extrapolation. Elsevier, 1985.

Biot, M. A. General theory of 3-dimensional consolidation. J. Appl. Phys.,
12:155-164, 1941.

Biot, M. A. Theory of propagation of elastic waves in a fluid saturated porous
solid i, low-frequency range. J. Acoust. Soc. Am., 28:168-178, 1956a.

257




Biot, M. A. Theory of propagation of elastic waves in a fluid saturated porous
solid ii, high-frequency range. J. Acoust. Soc. Am., 28:179-191, 1956b.

Birch, F. The velocity of compressional waves in rocks to 10 kilobars , part
1. Journal of geophysical research, 65(4):1083-1102, 1960.

den Boer, E. G. The effect of stress on wave propagation in aeolian rotliegend
sandstone. Master’s thesis, Delft University of Technology, Department of
Applied Geosciences, 1996. MP/TG 1996-01.

den Boer, E. G., Dillen, M. W. P., Duijndam, A. J. W., and Fokkema, J. T.
The effect of stress on wave propagation in aeolian rotliegend sandstone.
In FAGE 58th Conference and Technical Exhibition, Extended abstracts,
volume 1, page P071, Amsterdam, The Netherlands, 1996.

den Boer, E. G. and Fokkema, J. T. Scaling propagation phenomena as result
of an externally applied isotropic stress on an aeolian rotliegend sandstone
sample. In SEG International Exposition and 66th Annual Meeting, Ez-
panded abstracts, volume 2, pages 1703-1706, Denver, Colorado, 1996.

Bojarski, N. N. Generalized reaction principles and reciprocity theorems for
the wave equations, and the relationship between the time-advanced and
time-retarded fields. J. Acoust. Soc. Am., 74(1):281-285, 1983.

Brody, T. The philosophy behind physics. Springer-Verlag, 1993.

de Brouwere, L. J. Repeatability in time-lapse seismic monitoring. Master’s
thesis, Delft University of Technology, Department of Applied Geosciences,
1998. TA/TG 1998-07.

Brown, R. and Korringa, J. On the dependence of the elastic properties of
a porous rock on the compressibility of the pore fluid. Geophysics, 40:
608-616, 1975.

de Bruin, C. G. M., Wapenaar, C. P. A., and Berkhout, A. J. Angle de-
pendent reflectivity by means of prestack migration. Geophysics, 55:1223—
1234, 1990.

Carroll, M. M. An effective stress law for anisotropic elastic deformation.
Journal of Geophysical Research, 84:7510-7512, 1979.

258




Chen, Q. and Nur, A. Pore fluid pressure effects in anisotropic rocks: mech-

anisms of induced seismicity and weak faults. Pure and applied geophysics,
139(3/4):463-479, 1992.

Colton, D. and Kress, R. Integral equation methods in scattering theory. John
Wiley & Sons, 1983.

Crampin, S. Effective anisotropic clastic constants for wave propagation
through cracked solids. Journal Royal Astronomical Society, 76:133-145,
1982.

Crampin, S., Evans, R. S., and Atkinson, B. K. Earthquake prediction: a
new physical basis. Geophys. J. R. astr. Soc., 76:147-156, 1984.

Cruts, H. M. A. Experimental verification of stress-induced anisotropy. Mas-
ter’s thesis, Delft University of Technology, Department of Applied Geo-
sciences, 1995. MP/TG 1995-05.

Cruts, H. M. A., Groenenboom, J., Duijndam, A. J. W., and Fokkema, J. T.
Experimental verification of stress-induced anisotropy. Ezpanded abstracts,
65th SEG meeting, Houston, pages 894-897, 1995.

van Dam, D. B. and de Pater, C. J. Influence of boundary conditions
on the stress situation in true triaxial block tests. Technical Report
TA/PF/97.014, Delft University of Technology, Department of applied
Geosciences, 1995.

Dillen, M. W. P., Cruts, H. M. A., Groenenboom, J., Fokkema, J. T., and
Duijndam, A. J. W. Ultrasonic velocity and shear-wave splitting behavior

of a colton sandstone under a changing triaxial stress. Geophysics, pages
1603-1607, 1999.

Dillen, M. W. P., Fokkema, J. T., and Wapenaar, C. P. A. Convolution
type interaction of time-lapse acoustic wave fields. In SEG International
Ezxposition and 66th Annual Meeting, Expanded abstracts, volume 2, pages
0-0, Calgary, Canada, 2000.

Evans, R. Anisotropy: a pervasive feature of fault zones? Geophys. J. R.
astr. Soc., 76:157-163, 1984.

259




Fabre, D., Grasso, J. R., and Orengo, Y. Mechanical behaviour of deep
rock core samples from a seismically active gas field. Pure and applied
geophysics, 137(3):201-219, 1991.

Fokkema, J. T. Personal communications, 1993.

Fokkema, J. T. and van den Berg, P. M. Seismic Applications of Acoustic
Reciprocity. Elsevier, 1993.

Fokkema, J. T., Wapenaar, C. P. A., and Dillen, M. W. P. Reciprocity
theorems for time-lapse seismics. In 6th SBGf meeting, 325, Rio de Janeiro,
1999.

Fung, Y.C. Foundations of solid mechanics. Prentice-Hall, New Jersey, 1965.

Gassmann, F. Uber die elastizitit poroser medien. Vierteljahrsschr. der
Naturforsh. Ges. Zurich, 96:1-23, 1951.

Geertsma, J. The effect of fluid pressure decline on volumetric changes of
porous rock. Trans. AIME, page 331, 1957.

Glennie, K. W., editor. Introduction to the petroleum geology of the North
Sea, chapter 5. Blackwell Scientific Publications, third edition, 1990a.

Glennie, K. W., editor. Introduction to the petroleum geology of the North
Sea, chapter 7. Blackwell Scientific Publications, third edition, 1990b.

Goldstein, J. A. Semigroups of linear operators and applications. Oxford
University Press, New York, 1985.

Grasso, J. R., Fourmaintraux, D., and Maury, V. Le role des fluides dans les
mécanismes d’instabilités de la croiite supérieure: ’exemple des exploita-
tions d’hydrocarbures. Bulletin de la société Géologique de France, 163(1):
27-36, 1992.

Grimbergen, J. T. L., Dessing, F. J., and Wapenaar, C. P. A. Modal ex-
pansion of one-way operators in laterally varying media. Geophysics, 63:
995-1005, 1998.

Groenenboom, J. Progress report ultrasonic measurements, final report.
Technical report, Delft University of Technology, Department of applied
Geosciences, 1995.

260




Groenenboom, J. Acoustic monitoring of hydraulic fracture growth. PhD
thesis, Delft University of Technology, 1998.

Haines, A. J. and de Hoop, M. V. An invariant embedding analysis of general
wave scattering problems. J. Math. Phys., 37(8):3854-3881, 1996.

Herrmann, F. J. A scaling medium representation, a discussion on well-logs,
fractals and waves. PhD thesis, Delft University of Technology, 1997.

Hettema, M. H. H. The thermo-mechanical behaviour of sedimentary rock:
an experimental study. PhD thesis, Delft University of Technology, 1996.

de Hoop, A. T. Handbook of Radiation and Scattering of Waves. Acadamic
Press Limited, 1995.

de Hoop, M. V. Directional decomposition of transient acoustic waves. PhD
thesis, Delft University of Technology, 1992.

de Hoop, M. V. and de Hoop, A. T. Elastic wave up/down decomposition
in inhomogeneous and anisotropic media: an operator approach and its
approximations. Wave Motion, 20:57-82, 1994.

Hubbert, M. K. and Rubey, W. W. Role of fluid pressure in mechanics of
overthrust faulting. Bull. Geol. Soc. Am., 70:115-205, 1959.

Hudson, J. A. Wave speeds and attenuation of elastic waves in material
containing cracks. Journal Royal Astronomical Society, 64:133-150, 1980.

Jaeger, J. C. and Cook, N. G. W. Fundamentals of Rock Mechanics. Chap-
man and Hall, London, 1979.

Krueger, R. J. and Ochs, R. L. A green’s function approach to the determi-
nation of internal fields. Wave Motion, 11:525-543, 1989.

Lang, S. Algebra. Addison-Wesley Publishing Company, third edition, 1993.

Lesne, Annick. Renormalization methods: critical phenomena, chaos, fractal
structures. John Wiley & Sons Ltd, Chichester, England, 1998.

Lo, T., Coyner, K. B., and Toks6éz, M. N. Experimental determination of
elastic anisotropy of Berea sandstone, Chicopee shale, and Chelmsford
granite. Geophysics, 51:164-171, 1986.

261



Main, lan. Statistical physics, seismogenesis, and seismic hazard. Reviews of

Geophysics, 34(4):433-462, 1996.

Maugin, Gérard A. Material inhomogeneities in elasticity. Chapman & Hall,
1993.

Mavko, G. M. and Nur, A. Melt squirt in the astenosphere. J. Geophys.
Res., 80:1444-1448, 1975.

McDonald, P. H. Continuum mechanics. PWS Publishing Company, Boston,
1996.

Moos, D. and Zoback, M. D. In situ studies of velocity in fractured crystalline
rocks. J. Geophys. Res., 88:2345-2358, 1983.

Mukerji, T. and Mavko, G. Pore fluid effects on seismic velocity in anisotropic
rocks. Geophysics, 59:233-244, 1994.

Murphy III, W. F. Seismic to ultrasonic velocity drift: intrinsic absorption
and dispersion in crystalline rock. Geophys. Res. Lett., 11(12):1239-1242,
1984.

Nagelhout, A. C. G. and Roest, J. P. A. Investigating fault slip in a model
of an underground gas storage facility. Int. J. Rock Mech. & Min. Sci., 34
(3-4):212, 1997.

Nur, A. Effects of stress on velocity anisotropy in rocks with stress. Journal
of Geophysical Research, 76(8):2022-2034, 1971.

Nur, A. and Simmons, G. Stress-induced velocity anisotropy in rock: an
experimental study. Journal of Geophysical Research, T4(27):6667-6674,
1969.

Ouyang, Z. and Elsworth, D. A phenomenological failure criterion for brittle
rock. Rock mechanics and rock engineering, 24:133-153, 1991.

Pazy, A. Semigroups of linear operators and applications to partial differential
equations. Springer-Verlag, New York, 1983.

Plona, T. J. and Cook, J. M. Effects of stress cycles on static and dynamic
young’s moduli in castlegate sandstone. In Daemen&Schultz, editor, Rock
Mechanics, pages 155-158. Balkema, Rotterdam, 1995.

262




Rai, Ch. S. and Hanson, K. E. Shear-wave velocity anisotropy in sedimentary
rocks: A laboratory study. Geophysics, 53:800-806, 1988.

Rice, J. R. and Cleary, M. P. Some basic stress diffusion solutions for fluid-

saturated elastic porous media with compressible constituents. Rev. Geo-
phys. and Space Phys., 14:227-241, 1976.

Roest, J. P. A. and Kuilman, W. Geomechanical analysis of small earth-
quakes at the eleveld gas reservoir. In Proc. Furock 94 Symposium, pages
573-580, Delft, Netherlands, 1994.

Roest, J. P. A. and Mulders, F. M. M. Overview modelling gas production-
induced seismicity mechanisms. In Proc. Eurock 2000 Symposium, pages
Aachen, Germany, 2000.

Roest, J. P. A., Mulders, F. M. M., and Kuilman, W. Data-limited geome-
chanical modelling for investigating induced seismicity mechanisms. In

International Society for Rock Mechanics, pages 10611064, Paris, France,
1999.

Sabatier, P. C. On the scattering by discontinuous media. In Colton, D.,
Ewing, R., and Rundell, W., editors, Inverse problems in partial differential
equations, pages 85-100. STAM, 1990.

Saucier, A. and Muller, J. Use of multifractal analysis in the characterization
of geological formation. Fractals, 1(3):617-628, 1993.

Schutjens, P. M. T. M. Personal communications, 1996.

Schutjens, P.M.T.M. Experimental observations of the uniaxial compaction
of quartz-rich reservoir rock at stresses of up to 80 mpa. In Barends and
Brouwer&Schroder, editors, Land Subsidence, pages 389-408. Balkema,
Rotterdam, 1995.

Segall, P. Induced stresses due to fluid extraction from axisymmetric rescr-
voirs. Pure and applied geophysics, 139(3/4):535 560, 1992.

Skempton, A. W. Effective stress in soils, concrete, and rock. Pore pressure
and suction in sous, page 1, 1960.

263




van Spaendonck, R. L. C. Pre-stack depth migration of time-lapse seismic
data. Master’s thesis, Delft University of Technology, Department of Ap-
plied Geosciences, 1996. TA/TG 1996-01.

Spencer, J. W. Stress relaxation at low frequencies in fluid saturated rocks:
Atttenuation and modulus dispersion. J. Geophys. Res., 86:1803-1812,
1981.

Stuart, C. E. FEwvaluation of anisotropic microcrack damage in cyclically
stressed rock, characterized by contemporaneous acoustic emission and
elastic wave velocity measurements. PhD thesis, University College Lon-
don, Department of Geological Sciences, 1992.

Swinnen, G. The effect of stress on wave propagation in reservoir rocks.
Master’s thesis, Katholieke Universiteit Leuven, Department of civil engi-
neering, 1997.

Tao, G. and King, M. S. Shear-wave velocity and q anisotropy in rocks: a
laboratory study. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 27
(5):353-361, 1990.

van Terzaghi, K. Die berechnung der durchlassigkeitsziffer des tones aus
dem verlauf der hydrodynamischen spannungserscheinungen. Sitzungsber.
Akad. Wiss. Wien Math. Naturwiss. Kl. Abt. 24, 132:105, 1923.

van Terzaghi, K. Theoretical Soil Mechanics. Wiley, New York, 1943.

Todoeschuck, J. P. and Jensen, O. G. Scaling geology and seismic deconvo-
lution. Pure and Applied Geophysics, 131(1/2), 1989.

Turner, P. Continental Red Beds. Number 29 in Developments in Sedimen-
tology. Elsevier, Amsterdam, 1980.

Walden, A. T. and Hosken, J. W. J. An investigation of the spectral prop-
erties of primary reflection coefficients. Geophysical Prospecting, 33(3):
400-435, 1985.

Walker, T. R., Waugh, B., and Crone, A. J. Diagenesis in first-cycle alluvium
of cenozoic age, south-western united states and north-western mexico.
Bull. Am. Geol. Soc., 89:19-32, 1978.

264




Walsh, J. B. The effects of cracks on the compressibility of rock. Journal of
geophysical research, 70(2):381-389, 1965a.

Walsh, J. B. The effects of cracks on the uniaxial elastic compression of
rocks. Journal of geophysical research, 70(2):399-411, 1965b.

Wang, Z. and Nur, A. Dispersion analysis of acoustic velocities in rocks. J.
Acoust. Soc. Am., 87(6):2384-2395, 1990.

Wapenaar, C. P. A. The infinite aperture paradox. Journal of Seismic
Exploration, 1:325-336, 1992.

Wapenaar, C. P. A. One-way representations of seismic data. Geophysical
Journal International, 127:178-188, 1996a.

Wapenaar, C. P. A. Reciprocity theorems for two-way and one-way wave
vectors: a comparison. J. Acoust. Soc. Am., 100(6):3508-3518, 1996b.

Wapenaar, C. P. A. and Berkhout, A. J. Elastic wave field extrapolation.
Elsevier, 1989.

Weber, K. J. Personal communications, SEG-excursion guide, 1998.

Weston, V. H. Factorization of the wave equation in a nonplanar stratified
medium. J. Math. Phys., 29(1):36-45, 1988.

Widder, D. V., editor. The Laplace transform, page 243. Princeton University
Press, seventh edition, 1946.

Winkler, K. W. Dispersion analysis of velocity and attenuation in berea
sandstone. J. Geophys. Res., 90:6793-6800, 1985.

Wryllie, M. R. J., Gregory, A. R., and Gardner, L. W. Elastic wave velocities
in heterogeneous and porous media. Geophysics, 21:41-70, 1956.

Wyllie, M. R. J., Gregory, A. R., and Gardner, L. W. An experimental
investigation of factors affecting elastic wave velocities in porous media.
Geophysics, 23:459-493, 1958.

265




266




Summary

In this thesis the time-lapse seismic method is investigated with regard to its
application in monitoring the subsurface stress. The objective is to use this
method to study the temporal changes of the stress field associated with the
geomechanics of an earthquake. In particular, the application towards small
earthquakes, induced by fluid injection or extraction operations such as in oil
and gas production, is investigated. The derived processing scheme is generic
enough to be used for other time-lapse seismic problems, e.g. monitoring
hydrocarbon saturation changes.

The elastodynamic response of seismic waves to a changing stress field is
considered as a possible precursor to earthquakes. The major problem that
must be solved is that quasi-static (large spatio-temporal scale) mechanical
parameters which govern earthquake precursor mechanisms must be inferred
from dynamical (small spatio-temporal scale) mechanical parameters which
underlie wave propagation theory. Ultrasonic stress experiments are con-
ducted to serve as scaled physical model studies which enable to investigate
the relationship between elasto-quasi-static theory, which governs crustal de-
formation, and elastodynamic theory, describing seismic wave propagation.

Three series of experiments were conducted on a triaxial pressure ma-
chine, involving the Colton, the Flechtinger, the Niederhausen and the Bad
Diirckheim sandstones. The machine can not apply a controlled pore pressure
to the rock since it is an open system. According to the effective stress con-
cept a decrease/increase of the fluid pressure results in an increase/decrease
of the effective stress. Hence, up-/down-loading in the triaxial pressure ma-
chine simulates the effective stress during extraction/injection of fluids from
a reservoir. During the experiments, phenomcna such as anisotropy, hys-
teresis, and anelasticity are studied with respect to quasi-static finite strains
(stress-strain curves) and dynamic infinitesimal strains (wave propagation).

The ultrasonic experiments show that effective stress changes lead to dis-
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tinct anisotropic velocity changes in compressional-waves and shear-waves.
The stress imprint can be recognized from the associated velocity pattern.
The ultrasonic velocities indicate that the sensitivity of the different waves
to stress predominantly depends on stresses applied in the polarization and
propagation directions of the particular wave mode. Also, stress-induced
changes in shear-wave splitting are observed. The wave velocity change per
unit stress increment decreases with increasing effective stress, for all ve-
locities, showing a decreasing sensitivity of ultrasonic waves to stress with
increasing effective stress. Hysteresis, apparent through a different behaviour
during up- and down-loading, is less significant for wave velocities than for
quasi-static strains. Anelasticity, which depends on the mineralogy, appears
as a permanent deformation and a permanent wave velocity increase after a
first loading experiment. Depending on the anelastic effect, first up-loading
wave velocities are smaller than first down-loading velocities. Dynamic elas-
tic moduli, calculated from wave velocities, are larger than the quasi-static
moduli, calculated as the tangent of stress-strain curves. Static and dynamic
elastic moduli are approximately parallel during up-loading, suggesting a
simple explanation which enables to relate the two moduli.

In seismic exploration the earth’s elastodynamic response to an acoustic
source (e.g. dynamite or air guns) is measured. Data from a multitude of
such measurements are processed in order to obtain an image of the sub-
surface from which geological structures are identified which might enclose a
hydrocarbon reservoir. Time-lapse seismic monitoring is a technique in hy-
drocarbon production which uses repeated seismic experiments, employing
optimal time intervals, to obtain difference maps such that reservoir opera-
tions can be optimized.

With time-lapse seismic measurements one can obtain compressional- and
shear-wave velocity changes induced by pore fluid pressure changes. The ve-
locity changes appear as travel time and reflection amplitude changes in a dif-
ference seismogram. Using an integral representation of the time-convolution
type, which contains in the integrand the total wave fields of the reference
and the monitor states, a new difference wave field is computed, generated by
temporal contrasts located below the interaction depth, at which the integral
is calculated, whereas temporal contrasts above the interaction depth do not
contribute to the interaction integral. This enables to obtain pure difference
amplitudes at every depth level from which an image can be constructed of
the temporal contrasts. The recursive annihilation of phase shifts above the
interaction depth also offers an inversion scheme which aims to invert for
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wave velocity changes above the interaction depth.

The integral representation of the time-convolution type constitutes a
bilinear form. Substitution of the reference and monitor wave field decom-
position operations, in terms of Dirichlet-to-Neumann (D-t-N) operators of
the wave field components, and subsequently applying a normalization, one
obtains a symplectic matrix operator with respect to this bilinear form. As-
suming equality of the reference and monitor D-t-N operators of the wave field
components, the matrix operator becomes alternating. In case of inequality
of these D-t-N operators, application of a symplectic eigenvalue decomposi-
tion yields an alternating matrix operator. On this new basis a difference
wave field can be constructed with vanishing difference reflections above the
interaction depth. At the interaction depth a pure amplitude reflection is
obtained while deeper reflections are dynamically corrected in contradistinc-
tion to the difference wave field constructed from the reference and monitor
wave fields measured at the acquisition surface.

The implementation of the ultrasonic scale results (Part I) to the seismic
scale (Part II) is discussed but not carried out. The time-lapse seismic moni-
toring theory in Part II is derived for acoustic waves, whereas Part I assumes
elastic wave theory. The analysis in Part II is done for acoustic waves in
order to keep the calculations within reasonable limits. The elastic wave the-
ory can be derived in an analogous manner involving similar operators. The
derived theory on time-lapse seismic wave fields is generic and not just appli-
cable towards stress inference, but can handle arbitrary time-lapse problems,
such as a combination of pore fluid saturation changes and effective stress
changes.
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Samenvatting

Het onderzoek dat in dit proefschrift beschreven wordt heeft betrekking op
de in tijd herhaalde seismische methode en meer specifiek op de toepassing
ervan in het meten van de ondergrondse spanningen. Het doel is om deze me-
thode te gebruiken voor een studie van het spanningsveld en de veranderingen
ervan in de tijd die gerelateerd zijn aan de geomechanica van aardbevingen.
Wat vooral wordt bestudeerd is de toepassing met betrekking tot kleine aard-
bevingen die geinduceerd worden door vloeistofinjectie- of extractieprocessen
zoals bij olie- en gasexploitatie. Het hier afgeleide dataverwerkingsschema is
voldoende algemeen om ook bij andere in de tijd veranderlijke seismische
problemen gebruikt te kunnen worden, zoals het meten van de verandering-
en in olie- of gassaturaties.

Het elastodynamische effect van een veranderend spanningsveld op seismi-
sche golven wordt onderzocht als een mogelijke voorbode van aardbevingen.
Het grootste probleem dat opgelost moet worden is dat quasi-statische me-
chanische parameters (cp een grote ruimte-tijd schaal), die aardbevingsme-
chanismen beheersen, afgeleid moeten worden uit dynamische mechanische
parameters (op een kleine ruimte-tijd schaal), die ten grondslag liggen aan
de golfvoorplantingstheorieén.

Drie reeksen van experimenten zijn uitgevoerd op een triaxiale druk-
bank met Colton, Flechtinger, Niederhausen en Bad Diirckheim zandstenen.
De drukbank kan geen gecontroleerde vloeistofdruk aanbrengen aangezien
het een open systeem betreft. Volgens het concept van effectieve span-
ning resulteert een toename/afname van de vloeistofdruk in een respectieve-
lijke afname/toename van de effectieve spanning. Daarom simuleert de toe-
/afname van de belasting in de triaxiale drukbank de effectieve spanning
tijdens extractie/injectie van vloeistoffen uit/in een reservoir. Gedurende
de experimenten worden fenomenen zoals anisotropie, hysterese en inelas-
ticiteit bestudeerd met betrekking tot quasi-statische eindige rek (spannings-
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rekcurves) en dynamische infinitesimale rek (golfvoorplanting).

De ultrasone experimenten laten zien dat veranderingen in de effectieve
spanning leiden tot duidelijke anisotrope snelheidsveranderingen in druk- en
schuifgolven. De spanningstoestand kan herkend worden aan de hand van het
bijbehorende snelheidspatroon. De ultrasone snelheden wijzen erop dat de
gevoeligheid van verschillende golven op de spanning voornamelijk afhangt
van de spanningen aangebracht in de polarisatie- en voorplantingsrichtingen
van de specifieke golfvorm. Ook spanningsgeinduceerde veranderingen in de
splitsing van schuifgolven zijn waargenomen. De ratio tussen de verandering
van de golfsnelheid en de toename van spanning neemt voor alle snelheden af
met een toenemende effectieve spanning, en laat dus een afnemende gevoe-
ligheid van ultrasone golven voor de spanning zien bij het toenemen van de
effectieve spanning. Hysterese, zichtbaar door verschillend gedrag tijdens
het vergroten en verkleinen van de belasting, is minder significant voor golf-
snelheden dan voor quasi-statische rek. Inelasticiteit, die athangt van de
mineralogie, blijkt uit een permanente deformatie en golfsnelheidstoename
na een eerste belastingsexperiment. Afhankelijk van het inelastische effect,
zijn de golfsnelheden, voor een bepaalde eerste spanningsbelasting, bereikt
door een toename van de belasting kleiner dan na een afname van de belas-
ting. Dynamische elastische moduli berekend uit golfsnelheden, zijn groter
dan quasi-statische moduli, berekend als de raaklijn aan spannings-rekcurves.
Statische en dynamische elastische moduli lopen bij benadering parallel tij-
dens een toename van de belasting. Dit suggereert dat er een eenvoudige
verklaring bestaat hoe deze twee moduli aan elkaar gerelateerd zijn.

In seismische exploratie wordt de elastodynamische respons van de aarde
ten gevolge van een akoestische bron (bijvoorbeeld dynamiet of airguns)
gemeten. Gegevens van zeer vele van dat soort metingen worden verwerkt
om een beeld van de ondergrond te verkrijgen. Het doel is de geologische
structuren te bepalen die een olie- of gasreservoir zouden kunnen bevatten.
"Time-lapse seismic monitoring’ (het monitoren m.b.v. in tijd herhaalde seis-
miek) is een techniek, die gebruikt maakt van, na bepaalde optimale periodes
herhaalde, seismische experimenten, om veranderingen in kaart te brengen
zodat de produktie van olie of gas uit het reservoir geoptimaliseerd kan wor-
den.

Met time-lapse seismische experimenten kan men druk- en schuifgolfsnel-
heidsveranderingen opsporen die het gevolg zijn van veranderingen in de
vloeistofdruk in de porién. De snelheidsveranderingen manifesteren zich
als veranderingen in de looptijden en reflectie-amplitudes in verschilseis-
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mogrammen. Gebruikmakend van een integraalrepresentatie van het tijd-
convolutie type, dat in de integrant de totale golfvelden van de referentie- en
herhalingstoestanden bevat, wordt een nieuw verschilgolfveld berekend, dat
voortkomt uit temporele contrastbronnen onder het interactie-niveau waarop
de integraal wordt berekend, terwijl contrasten boven dit niveau niet bijdra-
gen aan de integraal. Dit maakt het mogelijk dat op ieder diepteniveau
zuivere verschilamplitudes verkregen kunnen worden, zodat uiteindelijk een
totaalbeeld van de temporele contrasten opgebouwd kan worden. De recur-
sieve verwijdering van fasedraaiingen boven het interactieniveau geeft ook
de mogelijkheid van een inversie schema met als doel het inverteren voor de
veranderingen in de golfsnelheden boven dat niveau.

De integraalrepresentatie van het tijd-convolutie type vormt een bi-lineaire
vorm. Substitutie van de ontbindingsoperaties van de referentie- en herha-
lingsgolfvelden in termen van Dirichlet-naar-Neumann (D-n-N) operatoren
van de golfveld componenten, en hierna een normalizatie, geeft een symplec-
tische matrix operator met betrekking tot die bi-lineaire vorm. Dit wordt
een alternerende matrix operator als we aannemen dat de referentie en her-
halings D-n-N operatoren van de golfveld componenten gelijk zijn. In het
geval van ongelijkheid van deze D-n-N operatoren, leidt het toepassen van
een symplectische eigenwaardenontbinding tot een alternerende matrix ope-
rator. Op deze nieuwe basis kan een verschilgolfveld gemaakt worden uit
verschilreflecties die verdwijnen boven het interactie niveau. Op dit niveau
verkijgt met een zuivere amplitude reflectie terwijl de diepere reflecties op een
dynamische manier gecorrigeerd worden, in tegenstelling tot het verschilgolf-
veld dat gemaakt wordt uit de referentie- en herhalingsgolfvelden gemeten
op het acquisitie oppervlak.

De transformatie van de resultaten van de ultrasone schaalexperimenten
(Deel I) naar de seismische schaal (Deel II) wordt besproken maar is niet
geimplementeerd. De time-lapse seismische theorie in Deel I is afgeleid voor
akoestische golven, terwijl Deel I de theorie van elastische golven aanneemt.
De analyse in Deel II is gedaan voor akoestische golven om de omvang van de
berekeningen binnen de perken te houden. De elastische golftheorie kan op
een vergelijkbare manier afgeleid worden met gebruikmaking van eenzelfde
soort operatoren. De afgeleide theorieén met betrekking tot time-lapse seis-
mische golfvelden zijn zeer algemeen en ook toepasbaar buiten het bepalen
van alleen spanningen. Zij kunnen arbitraire time-lapse problemen aan, zoals
een combinatie van saturatieveranderingen van de porievloeistof en effectieve
spanningsveranderingen.
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