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CHAPTER 1

RECORDING AND PROCESSING OF
MULTI-COMPONENT DATA

1.1 RECORDING OF MULTI-COMPONENT DATA

Seismic wave motion, although often treated as a scalar phenomenon, is actually a vector
phenomenon since particle motions should be represented by vectors. Three component
detectors are then necessary to define precisely the received wavefield, and three component
sources are necessary to determine the earth's response to any excitation, cf Figure 1.1.1.
Using single-component sources and receivers, means that we only aim at one of the nine
components of the total wavefield, with the underlying assumption that this component is
sufficient to derive the properties of the subsurface.

Dealing with multi-component seismic data instead of conventional single-component data,
implies handling extra information. To take full benefit of this increase of information about the
subsurface, seismic processing must be vector oriented. The change from single- to multi-
component seismic data does not only involve methodology changes in the data processing but
also in the data acquisition. Multi-component data acquisition adds complexity to most field
recording procedures, including geophone planting, flagging, surveying and cabling. The
source and receiver orientation are of particular concern for anisotropy analysis and wavefield
decomposition. The calibration for source and receiver components is important, channel
imbalances can introduce significant errors in further processing.

In elastic media any particle motion associated to wave propagation is a combination of three
different wave-types, cf Figure 1.1 2a. In an isotropic mediam the three possible wave-types
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X
profile axis

vertical axis

Figure 1.1.1a
To measure precisely the received vector wavefield, it is necessary to record it along three
independent directions. Given the fact that vertical and horizontal geophones have different
conceptions and sensitivities and are often set independently-implying different couplings-, it is
preferable to use a special sensor called triphone. Introduced by Soviet geophysicists, the
triphone consists of three geophones mounted rigidly on the same support with the same coupling
and sensitivities (from Cliet and Dubesset, 1984).

STILTS VIBRATOR ACTUATOR

BASEPLATE
AIR SPRINGS

Figure 1.1.1b
To determine the earth’s response to any type of vector source wavefield, three-component
sources are required. In the case of surface sources we can use vibroseis trucks that may apply
normal and tangential tractions to the earth’s surface. The above picture represents a vibroseis
truck that imposes a normal traction 1o the earth'’s surface (from Baeten, 1989).




1.1 RECORDING OF MULTI-COMPONENT DATA
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Figure 1.1.2a
The particle wave motion U associated to a wavefield, propagating in an elastic medium, can be
decomposed into three wave-types, having respectively the particle wave motions -ﬁl, ;4.2, 723
( U = Uy+ua+us ). The polarization and the phase velocity of these three wave-types give
information about the elastic parameters and the density of the elastic medium.

Figure 1.1.2b
In an isotropic medium the three wave-types correspond to two distinct mechanical behaviours.
The first wave-type has a compressional mode of propagation, the second and third one have a
shear mode of propagation. (a) volume variation of a solid medium submitted to a compressional
wave, (b,c) vertical and horizontal shape variation of a solid medium submitted to a shear wave.
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are the compressional (P) and the two shear (S) wave-types, see Figure 1.1.2b. The
polarization, the amplitude and the propagation velocity of these three wave-types give
information about the elastic parameters and the density of the medium. In an anisotropic
medium, we speak of to quasi-P and -S waves; the polarization and the propagating velocity as
a function of the direction of propagation may also give information about the fractures and
stress conditions in the subsurface. We may also mention that the propagation velocity of the
compressional waves depends on both the rock properties and on the pore fill; the propagation
velocity of the shear waves mainly depends on the rock properties. For more interesting
information we refer to a special issue on vector waves of the Leading Edge, November 1990,
Vol 9, N°11. From the above remarks it may be appreciated how important a correct wave-type
decomposition is for the determination of the physical properties of the medium through which
the waves have propagated. To go one step further, Berkhout and Wapenaar (1989) showed
that this type of wavefield decomposition simplifies the initial vector oriented processing into
parallel scalar oriented processing schemes.

1.2 PROCESSING OF MULTI-COMPONENT DATA

A straightforward wave-type decomposition algorithm that can be applied to multi-component
data is described in F. igure 1.2. It consists composed of three steps: the first step (denoted by
step I ) consists of a plane wave decomposition of multi-component data, initially in the space
frequency domain. This plane wave decomposition by Fourier transformation requires a range
of detector positions when applied at the receiver side and requires a range of source positions
when applied at the source side. Step / is typically a multi-channel process. The plane wave
decomposition of the data, which corresponds to a wavefield decomposition per wave of
distinct horizontal slowness (surface seismics) or vertical slowness (borehole seismics), is done
to make the wave-type decomposition, in step I, unique and stable. Indeed, knowing the P
and S wave velocities (here we assume that the velocities are constant all along the sources and
the receivers) we can easily determine for each plane wave the polarization vectors of each
wave-type. From the linear relations that exist between the polarization vectors, the amplitude
of each wave-type and the measured elastic wavefield quantities (particle velocities and,
optionally stresses) we can easily separate in a unique and stable way the distinct wave-types
that constitute the plane wave. In the last step of this algorithm, step //I, the decomposed plane
waves are transformed back to the space domain. So far we have assumed that the medium is
laterally homogeneous along the sources and the receivers. In the case of lateral velocity
variations, the wavefield decomposition is applied in the space frequency domain. Steps 7, II
and 1T together are then replaced by convolutional products of the multi-component data with
space dependent decomposition operators. In the following of this thesis we decide in favour of
this algorithm because of its stability and the unigness of its output, independent of the data
complexity.
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Figure 1.2
Wavefield decomposition algorithm applied to multi-component data. This algorithm is chosen
Jor its stability and the unigness of its output independent of the data complexity. Here we assume
that the medium is laterally homogeneous along the sources and the receivers. In the case of
lateral velocity variations the wavefield decomposition is applied in the space-frequency
domain and the steps I, Il and III together are replaced by convolutional products of the multi-
component data with space dependent decomposition operators.
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When the complexity of the data decreases alternative versions of this algorithm are possible,
but these have a limited validity of application and require a preinterpretation of the data. Cliet
and Dubesset (1984) propose to separate the distinct wave-types using a single detector position
(single channel approach). They assume that over a time window the recorded wavefield only
consists of two incident plane waves with known angles of incidence. Then the plane wave
decomposition, step /, is not necessary and we can directly apply the wave-type decomposition
to the data contained in the selected window. The first disadvantage of this method lies in its
oversimplification of the seismic data. The second disadvantage is that the angles of incidence
have to be known. This is a problem in the case of interfering arrivals or in the case the
recording site interacts with the incident waves (traction free surface). The decomposition is
then not unique as it depends on the values that are chosen for the angles of incidence. The third
disadvantage is the instability if the two incident plane waves have nearly parallel polarization
vectors (e.g. a plane P wave with angle of incidence 6}, has the same polarization as an incident
plane S wave of angle of incidence 05 = 6, + 90°). As a consequence, single channel
decomposition methods are not recommended.

In the case the wavefield can be well approximated by a small number n (e.g. n=4) of plane
waves at each detector position, Leaney (1990) proposes a parametric inversion of the data. His
method consists of fitting the data with »n plane waves, the output of the parametric inversion
being the amplitude and slowness of each of them. The parametric inversion can be done over n
detector positions, instead of all the detector positons as required by the Fourier transforms.
This method is advantageous in the case of laterally variant medium at the source and receiver
side; it has been successfully illustrated for near and medium offset VSP. The parametric
inversion can be substituted in step I of the general algorithm presented in Figure 1.2. A
serious disadvantage of this method is the need of a preinterpretation of the data. Moreover, its
costs increase with the data complexity.

We would like to mention the pioneering work of Dankbaar (1985) as well as Devaney and
Oristaglio (1986). Dankbaar is the first author in the open literature who has applied the
algorithm represented in Figure 1.2 to decompose 2D elastic wavefields recorded by multi-
component detectors on a traction free surface that is laterally homogeneous. Devaney and
Oristaglio have applied this algorithm to decompose 2D elastic wavefields recorded by multi-
component detectors along a VSP well, assuming a homogeneous medium as well.

Using a more general approach, we propose to decompose 3D elastic wavefields at the receiver
as well as at the source side in surface and borehole seismics. The elastic medium may be
anisotropic and inhomogeneous. We will show that the algorithm in Figure 1.2 should be
applied twice, once along the receiver coordinate and once along the source coordinate.
Moreover, we will show that this application should occur by spatial convolution.
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1.3 WAVEFIELD DECOMPOSITION OF SURFACE
SEISMIC DATA

To get a good physical understanding of the decomposition procedure, we present the main
processing steps and their effects on the data with the aid of some illustrations. Let us consider
the 2-D model presented in Figure 1.3, which consists of a single isotropic homogeneous layer
overlaying an infinite isotropic homogeneous half space and bounded by a traction free earth
surface. When vertical (t,,) or horizontal (7y;) traction sources are applied on the earth's
surface, see Figure 1.3.1, downgoing compressional (P) and shear (S) waves are generated.
They propagate into the layer and are reflected and converted at the layer interface between the
layer and the lower half space. These waves propagate then upward and generate vertical (v;)
and horizontal (vy) particle velocities at the traction free surface. Due to the traction free surface
all the upgoing waves are reflected or converted at the earth's surface and are emitted back into
the medium. Thus generating a series of surface related multiples that are not represented in
these Figures. Figure 1.3.1 illustrates how the P and S wave-types are mixed at the source as
well as at the receiver side.

The wavefield decomposition at the receiver side consists of decomposing the wavefield
recorded by the particle velocity detectors into its upgoing compressional and shear wave
constituents. Applying this process on the two original shot records, we obtain two new shot
records represented in Figure 1.3.2. Here again the surface related multiples are not
represented. One can immediately observe that the wavefield decomposition at the receiver side
simplifies the shot record without loss of information. The decomposition at the receiver side is
a multi-channel process, it involves several adjacent multi-component detector positions.

The wavefield decomposition at the source side consists of decomposing the wavefield emitted
by the traction sources into its compressional and its shear wave constituents. Similar to the
decomposition at the receiver side, the decomposition at the source side is a multi-channel
process; it involves several adjacent source positions. Hence the data must be reordered per
common detector gather, see Figure 1.3.3. As can be seen from this figure, in the common
detector gather the simulated detector only records one type of upgoing wave, the sources still
emit both wave-types. The wavefield separation at the source side consists in decomposing the
wavefield emitted by the traction sources into its downgoing compressional and shear wave
constituents. For this process multi-component sources are necessary. Applying the
decomposition at the source side to the two detector gathers we obtain two new detector gathers
represented in Figure 1.3.4. One can observe that the wavefield decomposition at the source
side simplifies the common detector gathers without losing information.
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traction free surface (earth surface)

x
Isotropic layer _

Infinite half-space

Figure 1.3

Subsurface model used to illustrate the different processing steps involved in the decomposition
of the wavefield at the source and receiver side into their different wave-types.

Figure 13.1

If traction sources are applied at the earth’s surface, downgoing P and S waves are emitted.
Similarly, if particle velocity detectors measure the wavefield at the earth surface, both the

compressional and the shear wave-types are recorded withowt distinction. Compressional
waves are solid lines, shear waves are dotted lines.




13 WAVEFIELD DECOMPOSITION OF SURFACE SEISMIC DATA 9

Figure 1.3.2
The wavefield decomposition applied to a shot record at the receiver side has the effect of
replacing the original particle velocity detectors (sensitive to both P and S waves) by simulated

pure P and S wave detectors. There is no loss of information.

Figure 1.3.3
The decomposition at the source side is also a multi-channel process. For this process the data
have to be reorganized into common detector gathers.



10 1. RECORDING AND PROCESSING OF MULTI-COMPONENT DATA

Figure 1.3.4

The wavefield decomposition at the source side applied on a common detector gather has the

effect of replacing the original traction sources (that emit both downgoing P and S waves) by

simulated pure P and § wave sources. There is no loss of information.
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Figure 13.5
Shot gathers after wavefield decomposition at the receiver and source side.
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Reorganizing the decomposed common detector gathers into shot records, see Figure 1.3.5,
and comparing them to the original ones, see Figure 1.3.1, we observe that the wavefield
decomposition of surface seismic data is no more than a data reorganization per wave-type at
the source and receiver side. Starting from these decomposed data panels, further processing
like migration and angle dependent imaging, simplifies to scalar processing, which is similar in
its formalism to the one traditionally used within the acoustic approximation. The philosophy
on the inversion of multi-component data is developed in the DELPHI project (DELft
PHilosophy on Inversion) at the Delft laboratory of Seismics and Acoustics, see Berkhout and
Wapenaar (1988).

1.4 WAVEFIELD DECOMPOSITION OF VSP DATA

Before entering in the theoretical considerations of chapter 5, we would like to show what will
be the effect of the wavefield decomposition at the receiver side on VSP data with the aid of

some illustrations.

Consider the simple 2-D model depicted in Figure 1.4.1, a buried source in an isotropic
homogeneous layer overlaying a half space. The source emits compressional as well as shear
waves, that are reflected and converted at the layer interface. The horizontal and vertical particle
velocity detectors, clamped in the borehole, record the two wave-types. The decomposition at
the receiver side consists in this case of decomposing the elastic wavefield recorded by the
particle velocity detectors into its compressional and shear wave constituents, Applying this
procedure to the original shot record we obtain a new shot record as represented in
Figure 1.4.2. The wavefield decomposition of VSP data is no more than a data reorganization
per wave-type at the receiver side. The decomposition at the receiver side is a multi-channel
process, it involves several adjacent multi-component detector positions. In the case several
multi-component sources have been used, a wavefield decomposition at the source side is also

possible.

1.5 OUTLINE OF THE THESIS

This thesis is divided in two main parts; chapters 2, 3 and 4 are dedicated to wavefield
decomposition of surface seismic data and chapter 5 is dedicated to the wavefield
decomposition of VSP data. The important notions about wave propagation in elastic media are
introduced for the first study; we will directly use these results for the wavefield decomposition
of VSP data.

Surface seismic data

The decomposition at the receiver side consists of separating the three upgoing wave-types at
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VSP borehole VSP borehole

Figure 14.1
Simple subsurface model used to illustrate the effects of the wavefield decomposition at the
receiver side, applied to VSP multi-component data. When particle velocity detectors measure
the elastic wavefield along the VSP borehole, both the compressional and the shear wave-types
are recorded without distinction. Compressional waves are solid lines, shear waves are dotted

lines.

VSP borehole VSP borehole

Figure 1.4.2
The wavefield decomposition at the receiver side, applied to VSP multi-component data, has the
effect of replacing the original particle velocity detectors (sensitive to both P and S waves) by
simulated pure P and S detectors. There is no loss of information.
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the traction free surface (the earth's surface) from the particle velocities, taking into account the
influence of the acquisition surface on the incident wavefield. Similarly, for the decomposition
at the source side we want to be able to separate the three downgoing wave-types generated by
the source. Here we see the following question arising: how can a distinction be made between
upgoing and downgoing waves if the wavefield is only measured on a horizontal surface. The
answer to this question is studied in chapter 2 for anisotropic elastic media. In this chapter we
will see how the wavefield known at a horizontal surface (the three particle velocity and the
three traction components) can be decomposed into its three upgoing and three downgoing
wave-types. In chapter 2 we will also study how the wavefield components can be extrapolated
from one depth level to another, and how they are affected by vertical variations in the density
and in the elastic parameters of the medium. Information is also given about the wave-types
emitted in an isotropic medium by the following sources: explosion, force and moment sources.
Chapter 2 introduces all the basic physical quantities and relations that will be used in the
remainder of this thesis; it can be skipped by readers already familiar with such considerations.

Using the results developed in chapter 2, we show in chapter 3 how a 3x3 component surface
seismic survey (an areal distribution of three component sources and detectors) described in
terms of traction sources and particle velocity detectors, may be decomposed at the source and
receiver side. Chapter 3 is dedicated to the theoretical justification of the wavefield
decomposition of surface seismic data presented in section 1.3. The process will be illustrated
on simulated data for an isotropic medium with lateral variations in the subsurface. We will also
see that the data handling involved in the wavefield decomposition of surface seismic data is
similar to the data handling in full pre-stack migration. To do a correct wavefield decomposition
of surface seismic data we need to know the near surface elastic and density parameters. As
these parameters are not always well defined, part of this chapter will be dedicated to a
sensitivity analysis of the method to these input parameters. The last tackled item will be the
influence of a stack of thin near surface low velocity layers on the emitted and received seismic

wavefields. This situation is often met in practice and may have significant effects.

In chapter 3 we assume an areal distribution of sources and detectors. The system of
coordinates chosen for such a situation is the Cartesian one, which implies a plane wave
decomposition of the data. However, it generally occurs in practice that the seismic survey is
only carried out along a line direction and not over the whole surface. For such situations we
show in chapter 4 that it is preferrable to replace the Cartesian system of coordinates by the
cylindrical one, which implies a cylindrical wave decomposition of the data. If the wavefield is
only recorded for a given azimuth, it is only possible to precisely recognize the different
cylindrical wave types if and only if the wavefield exhibits a specific type of azimuthal
symmetry. As for such situations the cylindrical wave decomposition of the data involves
Hankel transforms, we present two algorithms that enable to compute them efficiently .
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Finally, in chapter 5 we present how the elastic wavefield measured by multi-component
detectors along a VSP borehole, can be decomposed at the receiver side into its one-way P and
S wave-type components. We will study the decomposition at the receiver side for a 2D as well
as for a 3D seismic wavefield propagating in an isotropic and in an anisotropic medium. The
procedure will be illustrated on simulated and on field data.




CHAPTER 2

ELASTIC WAVE EQUATIONS

2.1 INTRODUCTION

The wavefield decomposition procedure presented in this thesis is fully based on the relations
between the two-way and the one-way wavefield components in an elastic medium. A two-way
wavefield component is a physical quantity that describes the total wavefield, in terms of the
particle velocity or the stress. A one-way wavefield component, is a physical quantity that
describes the part of the wavefield propagating in the positive direction (increasing coordinate
values) or in the negative direction (decreasing coordinate values) of a chosen coordinate axis.
In surface seismics, we choose this coordinate axis to be the z- axis. A one-way wavefield
description consists then in making a distinction between: wavefield quantities associated to
waves propagating in the increasing z value direction (+, downgoing waves), and the wavefield
quantities associated to waves propagating in the decreasing z value direction (-, upgoing
waves), see Figure 2.1a. In borehole seismic, we choose the coordinate axis to be the 7- axis
(cylindrical coordinates with the origin at the source). A one-way wavefield description consists
then in making a distinction between: wavefield quantities associated to waves propagating in
the increasing r value direction (+, expanding waves), and wavefield quantities associated to
waves propagating in the decreasing r value direction (-, converging waves), see Figure 2.1b.
In section 2.2 we illustrate the distinction that exists between a two-way and a one-way
wavefield description.

In order to understand the meaning of the notation and of the equations used in the following
chapters, we start from the two basic equations governing the wave propagation in an elastic
medium (i.e. the linearized equation of motion and the constitutive relation), to derive and to
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TN A

Figure 2.1a
In surface seismics, the two-way particle velocity vector ¥ describes the particle velocity fielid
of the total wavefield. The one-way particle velocity vector V' describes the particle velocity
field of the downgoing (increasing z values) part of the total wavefield. The one-way particle
velocity vector ¥ describes the particle velocity field of the upgoing (decreasing z values) par}

.//7 \‘\\A

top view

~_! 7 ﬂiq_ \_\./K/
O\ yl—/ T

In borehole seismics, the two-way particle velocity vector V describes the particle velocity field
of the total wavefield. The one-way particle velocity vector V" describes the particle velocity
field of the expanding (increasing r value) part of the total wavefield. The one-way pariicl#¢
velocity vector V' describes the particle velocity field of the converging (decreasing r value)
part of the total wavefield.
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Table 2.1 Elastic wavefield quantities and their SI units

symbol [SI - unit ]

quantity

"ij [Pa]

dpg  [s1]

7 [m.s-1]
fi [N.m3]
hpq  [1]

Gjj [Pa]
Cijpg  Pal
A (Pa]

Kc [Pa]

p [kg.m3]
k; [rad.m-1]
a) [rad.s™ 1 ]

stress tensor component

deformation rate tensor [dpq = (apvq +aqvp) /2).
particle velocity component along the i axis.
volume density of body force source along the i axis.
deformation tensor [hpq = (dpuq + dqup) / 2].
stress source tensor component [Gjj = Cijpgq hpq]
stiffness tensor.

Lamé coefficients of an isotropic elastic medium.
constrained compression modulus [K¢= A+2u].
volume density of mass.

wavevector component along the i axis.

circular frequency.

Table 2.2 Mathematical symbols and their SI units

symbol [SI - unit ]

quantity

% [m-1]
o [s-1]

8 (1

partial space differential operator.
partial time differential operator.

Kronecker tensor.
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explain step by step the different relations and quantities used throughout this monograph. To
underline the fact that the wavefield decomposition procedure presented here can be applied to
any elastic medium, all the equations are derived for an arbitrary anisotropic medium.

We have made use of several textbooks for writing this chapter. We would like to mention
Musgrave (1970), Achenbach (1973) and Aki and Richards (1980) for their completeness and
clarity; they provide an excellent introduction to the study of wave propagation in an elastic
medium. Also the book of Wapenaar and Berkhout (1989) is unique for its complete overview
of the two-way and one-way wavefield properties in an acoustic or elastic medium.

As far as the notation used throughout this text is concerned, we make use of Einstein's
summation convention for repeated indices. Repeated Latin indices imply a summation over 1,
2 and 3 or, equivalently over x, y and z. Repeated Greek indices imply a summation from I to 2
or, equivalently over x and y..

2.2 ELASTIC WAVE EQUATIONS IN THE SPACE-TIME
DOMAIN

The wave propagation in an elastic medium can be described by two fundamental equations, the
linearized equation of motion :
9jTij - p ovi = -fi, (2.2.1a)

derived from the generalized Newton's law, and the constitutive relation :

9:%ij - Cijpq dpq = -9iGj » (2.2.1b)
which is a generalization of Hooke's law. Using the stiffness tensor symmetry property :

Cijpg = Cijgp » (22.1c)
and the deformation rate equation :

dpq=-2L(apvq+aqvp) y (2.2.1d)

the constitutive relation can be rewritten as follows :
9,T;j - Cijpg 0qVp= -0,Cj - (22.1¢)

The meaning and the S7 units of the symbols used in expressions (2.2./) are summarized in
Table 2.1. The derivation of these equations can be found in Aki and Richards (1980) chapter
2. We regard the elastic medium as time invariant. Therefore the stiffness and the density only
depend on the space coordinates. Equation (2.2./a) relates the total stress field that acts on the
outer faces of an elementary cube and the acceleration of the cube due to the body forces to
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which the cube is submitted. Equation (2.2.1b) relates the time variation of the stress field to the
deformation rate via the stiffness tensor which contains the elastic properties of the medium.

Equations (2.2.1) can be rewritten in a more compact way using a vector notation
(Woodhouse, 1974) :

0jTj-pov =-f, (2.2.2a)
and

0,7 - Cjg 0V = -0,0j , (2.2.2b)
with,

-

Tj = (Txj ,Tyj Tz
V= Vx ,Vy ;VZ)T s
F=(f, 6y, 87,
G = (Ox; ,Oy; .05)"
where T denotes transposition, and
Ciyig  Cij2g Cijzg
Cig=| C2i1qg Crjzg Caj3q |-
Csjig  C3jag  Cijag (2.2.2¢)

Expressions (2.2) are fundamental, in fact as we will see in section 2.4 they can be rewritten in
the wavenumber-frequency domain, simplifying the space and time derivatives to simple
multiplication products. The study of the wave propagation in a linear elastic medium simplifies
then to a problem which involves matrix and vector products. We can then take benefit of the
powerful linear algebra theories to study the laws that govern the wave propagation.

After this presentation of the fundamental equations (2.2), we may illustrate with some Figures
the difference that exists between a two-way and a one-way wavefield description. Equations
(2.2) can be used to simulate how waves propagate in an elastic medium. The simulation
programs are of great importance to gain a better understanding of the physical phenomena that
may occur in such a medium. Let us consider the simple model of Figure 2.2a. It consists of an
upper isotropic homogeneous half-space overlying a lower isotropic homogeneous half space.
As we will see later, isotropic media are characterized by the velocity of propagation of the
compressional waves (cp), the velocity of propagation of the shear waves (c;) and the mass
density (p), see Figure 2.2a for the values chosen for this example. Using a modeling
program, we have simulated the particle velocity field at a distance of 200m above the interface
generated by an explosion source located at a distance of 400m above the interface. Figure 2.2b
represents the lateral space and time variations of the horizontal and vertical components of the
two-way particle velocity vertor (V). They describe the total wavefield. Figure 2.2¢ represents
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‘ x explosion source Isotropic homogeneous upper half-space
<o cp = 2000 mis ; cs = 1000 mis ; p = 1000 kg/m3
z , .
| 4oIo R pargec;iec }’:,’;""y e , ;3 N
y ¥
L Isotropic homogeneous lower half-space
cp = 3000 mis ; cs = 1500 mis ; p = 2000 kg/m3

Figure 2.2a
The model we consider consists of two elastic isotropic half-spaces in contact. Using a
simulation program we can determine the horizontal and vertical particle velocity field (at a
distance of 200 m above the interface) generated by an explosion point source located at a
distance of 400 m above the interface. This example will enable to illustrate the difference that
exists between a two-way and a one-way description of the wavefield.

100 § = ™ 100
o o
200 ""-':,__,_ '} 1 200
300 ]h}‘!" . g 300
24 PJ W o fasd (l 1 >
T. ""!- 19 P 1 3
400 ""w:. L l. LL% 1 < 400
00 i ] B Al 500
3 3N -*gq'.?_‘ %
600 i ; h‘b 1ﬁa 600
':.:_ L <;:L-'lr._
U S
700 g l - 700
N (.L
800 ey 800
900 900
100 1000
000 vy(x,t) vAX,t)
Figure 2.2b

Space and time variations of the horizontal and vertical particle velocity components recorded
by the particle velocity detectors. These seismic sections describe the total wavefield: it
contains the downgoing source wavefield as well as the upgoing reflected wavefield. We have a
two-way representation of the seismic wavefield.
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0 :L , 0
100 W{ﬁ’-. ;WTiﬁz’ 100
200 fﬁh 6] 200
300 ’f;?_ 3 300
400 ﬁ:j__ . 400
500 E{EZ_ 500
600 ?E - 600
700 T 700
800 800
900 900

1000 A VAR 1000

0 0
100 100
200 200
300 35 '”LF,th 300
400 wh“tiﬁi’:l'ﬂq 1 | 400
500 Zki&;;{{j4._ et 500

p. > .
600 1 ?]IF i i =
700 L‘qd r" 700
800 <:<( 800
900 900
1000 VAxD) vax) 1000
Figure 2.2¢

Space and time variations of the horizontal and vertical particle velocity components associated
to the downgoing(+) and to the upgoing (-) waves. We have a one-way representation of the

seismic wavefield.
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the lateral space and time variations of the horizontal and vertical components of the one-way
particle velocity vector (v*) generated by the downgoing source wavefield, and of the one-way *
particle velocity vector (V') generated by the upgoing reflected wavefield. We have v=v" + V..

P e
Similar figures can be made for the stress tensor components, we also have T; = 1; +1;.

In seismics we measure the two-way components of the seismic wavefield as the total
wavefield is measured. In this thesis we show how seismic data described in terms of two-way
components may be described in terms of one-way components. For all the advantages of such
a data transformation we refer to Berkhout and Wapenaar (1989).

2.3 THE TRANSFORM DOMAIN

The transformation from the space-time domain to the wavenumber-frequency domain
corresponds to a spectral decomposition achieved by using Fourier transforms. The temporal
Fourier transformation of a function h(x,y,z,t) from the space-time to the space-frequency
domain is defined as:

“+oco
h(x, v, z, a))=[ h(x,y,z, ) e JO dr,

(2.3.1a)
and its inverse as,
oo
h(x, y, 2, 1) =ﬁ f h(x, y, 2, ©) e HOtd.
- (2.3.1b)
In the following we will assume that h(x,y,z,t) is a real function so that :
h(x,y,2,-0)=h"(x, 3,2, 0), (2.3.2)

where (*) denotes complex conjugation. From (2.3.2) we note that negative frequency
components do not provide independent information with respect to the positive frequency
components. Therefore in the following we will only consider positive frequencies, ® >0, and

the inverse temporal Fourier transformation can then be reformulated as :

400
h(x,y,2, 0= -i_—Real f h(x,y.,z,w)elOtdw

0 (2.3.3)
From (2.3.3) we deduce that there is a correspondence between the partial time derivative of the
function h and the complex multiplication of the function h with jo:

o h(x,y,z,0) & johx,y,z 0). (2.34)
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The double Fourier transformation of the complex function k(x, y, z, @) from the space-
frequency to the wavenumber-frequency domain is defined as :

+oo
;;(kxv k_ys Z, (0) =jf h(xa y z, m) ej(kxx+ky y) dxdy .

(2.3.5a)
and its inverse as :

+o0
h(x,y, z, ®) = 4—14 f hiks, ky, 2, @) € J (x X+ky Y) ik gk, |
V(4

(2.3.5b)

From (2.3 5b) we deduce that there is a correspondence between the partial space derivative of
the function 4 and the complex multiplication of the function / with -jk :
Oy hx,y,z, ) & -jkx ;(kx, ky ,2,0), (2.3.6a)
Ay hix,y,2, @) & <jky b (kxs by, 2, @) , (2.3.6b)

Combining equations (2.3.1a) and (2.3.5a) we have the triple Fourier transformation from the
space-time to the wavenumber-frequency domain, according to :

-co

h(ky, ky, z, w) = fff h(x,y, z, t) e J (@ t-kx X-kyY) gt dx gy ,
Bl (23.7)
and its inverse, combining (2.3.1b) and (2.3 5b):

+oo
+oo
hix,y,z,0) = 4% Real f f Py (kx, ky, 2, ) e J (@ t-ky x-ky y) dkx dky | dw |,
n

0
(2.3.8)
When h stands for an elastic wavefield component in a homogeneous medium, equation (2.3.8)
indicates that the triple inverse Fourier transformation corresponds to a composition of the
elastic wavefield from monochromatic plane waves, see Figure 2.3.
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A

7" 1000

®

Figure 2.3

The triple Fourier transformation ;(k,, ky, z, @) of the function h(x, y, z, t) corresponds to a
decomposition of the elastic wavefield into monochromatic plane waves of period T=2nl®, of
apparent horizontal wavelength Ax (Ax = 21/ ky) along the x direction and of apparent
horizontal wavelength Ay (dy = 27/ ky) along the y direction.

(a) projection on the plane (x,0.t) of a monochromatic plane wave of period T and of apparent
wavelength Ay along the x direction.

(b) projection on the plane (y,0.t) of a monochromatic plane wave of period T and of apparent
wavelength Ay along the y direction.

2.4 ELASTIC WAVE EQUATIONS IN A HOMOGENEOUS
MEDIUM

In section 2.2 we introduced the equations verified by the two-way elastic wavefield
components. Looking at these equations we see that there is an interaction between all the six
components, which makes difficult the understanding of the wave phenomena they govern. For
some situations like a homogeneous or a laterally homogeneous medium these equations
simplify, thus simplifying by the same way the understanding of the physical behaviour they
govern.
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For the illustration let us consider a homogeneous source free medium. As the medium is
source free the right hand side of equations (2.2.24,b) is zero and we can write :

T =poyv, (24.1a)

a;‘tj-c/‘q aq;’.=0 . (241b)
From (2.4.1b) we deduce an other equation :

9,9 - Cjg 99, =0, (24.1¢)

here we have used the fact that the medium is homogeneous (9; Cj; = 0). The combination of
equations (2.4.1a) and (2.4.1c) leads to the wave equation verified by the two-way particle
velocity vector in an homogeneous medium (we took into account that the medium is time
invariant (d; p=0) ):
AV - Cjqdj 3y =0

P IV -Cjg0j0v=0. (24.2a)
Writing the two-way particle velocity vector as the sum of its one-way components:

v=vt+v, (24.2b)
we can show that equation (2.4.2a) is verified independently by v* and V', We have:

2+ >+ _3
poiv:-Cjgdjdy==0. (24.2¢c)

To simplify the proof, we consider the 1D acoustic situation. Equation (2.4.2a) reads then:

2 2 >
po:iv-Kow=0, (24.3a)
with K the compression modulus. The relation between v and v ¥ is of the form:

Vi) =vix-ct)+Vi(x+ct), (24.3b)
with ¢ the propagating velocity of the wave: c2=K/p. We can easily verify that v* and Vv are
independent solutions of (2.4.3a). In a homogeneous source free medium the one-way
wavefield vectors do not interact, they can be treated separately. The wavefield does not need to
be treated in its totality, we can split the problem in two subproblems. To show that it is not the
case in an inhomogeneous 1D medium, we consider the wave equation in such a medium:

PV - K3V =0. (24.4)

We can easily verify that for an inhomogeneous medium, v* and V" are not independent
solutions of (2.4.4). In an inhomogeneous source free medium the one-way wavefield vectors
interact with each other. We will come back to this for a more general situation in section 2.6
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2.5 ELASTIC WAVE EQUATIONS IN A LATERALLY
HOMOGENEOUS MEDIUM

Let us now consider a more complicated medium. A medium vertically inhomogeneous and
laterally homogeneous, which means that:

0x Cijpg = 9y Cijpg =0, (2.5a)

and

Oxp=9dyp =0. (2.5b)
As far as such media are concerned, working in the wavenumber-frequency domain reduces the
elastic wave study to a problem of linear algebra. The simplification of the problem enables to

focus our attention on the properties of the physical phenemenon governed by the wave
equation.

Applying the forward triple Fourier transform (2.3.7) from the space-time to the wavenumber-
frequency domain to equations (2.2.2a,b), we obtain :

d= . > =z =

— T, =jpoV +jkata-f,

dz (25.1a)
and

Cis 9—$=jkpij'3+jw%+jw§j .

dz (25.1b)
We used conditions (2.5) for the derivation of the transformed equations (2.5.1). We also used
relations (2.3.6) and (2.3.4) for the transformation of the partial space and time derivatives.
Equations (2.5.1) can be further simplified by expressing the partial z derivative of the velocity

and stress vectors as functions of V and 7; only, by elimination of 7y and 7y. From (2.5.1b) we
obtain :

d = al. = .= =

—v =[C33] 1[]kBC3BV +joT, +1cocz],

0z (2.5.2a)
and from (2.5.1a),

9= |, = 1 | 0= = z

— L=jpOV +jkg| - kpCogV+-Cq3—V-0¢ |-f.

9z @ jo 3 (25.2b)

The combination of (2.5.2b) with (2.5.2a) leads to :
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d= | = X =
-1:,=jpa)v+}27)kakp [ Cap- CasCilCsp ]
Z

+jkalCas Cil (5 + 3 - 0 -f . (25.2¢)

Equations (2.5.2a) and (2.5.2¢) can be combined in one equation according to :

Qu
Ly

i =X1 +5,
oz (2.5.3a)

U

where the two-way wavefield vector Q is defined according to :

.

and the first order differential operator A 1 as:

)T
(2.5.3b)

Ky RURCH

-~ An Ap )
A1 A (25.3c)
with,
A = jkpC33 Cp, (2.5.3d)
A =joCi}, (2.5.3¢)
An=jopl+ .Lkakﬂ[caﬂ - Ca3C331C3/3] ,
Jo (25.3f)
A2z = jka Ca3Cad , (2.5.3g)
and finally, the source vector S is defined according to :
52 (2.5.3h)
with ,
Si=Ano;, (2.5.30)
and
52=A2 0, - jkaOa-f . (25.3j)

Matrix differential equations of the type (2.5.3a) (often without source term), which describe
the wavefield variation along a given direction, are frequently used in the seismic literature.
Equation (2.5.3a) is essential in the derivation of the two-way extrapolation operator U which
enables to extrapolate the two-way wavefield components from one depth level to an other one.
Assuming the stiffness and density functions are continuous functions of the variable z, we can

expand the two-way wavefield vector, é (z), in a Taylor series :
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= = (zezeyr " =
0m=3 E07 9 _5a),.
m=0 ™M 0z (254a)
Following Wapenaar and Berkhout (1989, p82), the solution of equation (2.5.3g) reads :
z

0@ = Uz ) 0 (z0) +I U@ 2)5 @) dz

2] (2.5.4b)
where the two-way extrapolation operator U is defined according to :

-~ deo m .
Uiz, 20)= 2, (z;n;o,)-Am (20) »
m=0 *

(254c)
with A m defined recursively :
- 9 ~ - -
Ann(@)=—A,C )IZ() + A, (z0)A1(20) ,
0z (2.5.4d)
and
Ao(zo) =1 . (2.54e)

In the case the medium is homogeneous between depth levels z and zg, the two-way
extrapolation operator U simplifies to :

U (z, 20) = exp (A147) (2.54f)

with,
Az =2z- 2.

The solution (2.5 4b) is fundamental; for any laterally invariant anisotropic medium it enables to
extrapolate the two-way wavefield vector é known at depth level zg to any depth level z. The
solution (2.5.4b) takes into account the stiffness and density vertical gradients as well as the
added wavefield at z related to all sources between zg and z. The two-way extrapolation

operator U, also called propagation matrix, has several properties. The most interesting ones
are:

[z, 20) " = UGz, 2) (2.5.4g)

and

UGz, 20) = UGz, z) UGz, 20) . (2.5.4h)
For the illustration, we give the expression of the first order differential operator A 1 for an

isotropic medium. In such a medium (Aki and Richards, 1980, p23) the following relation
holds for the stiffness tensor :
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Ciipg = A 8ijBpq + 1 (8ipjq + GigBjp) - (255)
From expressions (2.5.3defg) we derive the following matrices :
0 0 Jky
A n= 0 0 Jky ,
_L) ik (J; ;
(MZu P 22 hy 0 (2.5.6a)
Jo
m 0 0
Ap- jo ,
12 m 0
Jjo
(A +2p) (2.5.6b)
jop + ]Lw (k2 + p k) ,“15 M2 keky 0
Ay = L7, kek jop +-L @kl + nik) 0
0 0 jop
(25.6¢c)
0 [~A i
0 (,1+2;¢)j *
Ay = 0 A Vi |,
22 0 ( proym ) Jky
Jkx Jky 0
(2.5.64)
with,
A
m= 4#( a ) ,
A+2p (2.5.6e)
and
30 +2
Th=H ( #)
A+2p (2.5.6f)

The following observation can be made: the first order differential operator A 1 (2.5.3a)is not a
6x6 diagonal matrix. Thus, expression (2.5.4¢c) clearly indicates that the two-way wavefield

vector components are interrelated between depth levels zg and z, even for the simple situation
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of an homogenegus source free medium. It is therefore interesting to look for an other
wavefield vector P whose components would propagate independently of each other, at least in
a homogeneous source free medium. In such a medium the wavefield vector P should then
verify an equation like (2.5.3a) with a dz:ggonal differential operator B 1 in the place of A 1. Each
component of the wavefield vector P will then correspond to a mode of propagation
propagating independently of the others in a ho_rpogcneous source free medium. IrL the
following, the components of the wavefield vector P will be called normal modes and P the
normal mode wavefield vector.

2.6 NORMAL MODES OF PROPAGATION IN A LATERALLY
HOMOGENEOUS ELASTIC MEDIUM

We go back to the general anisotropic situation. The derivation of the normal mode wavefield

vector P is based on the eigenvalue decomposition of the matrix A; :

~ o~
A =LAL , (2.6.1a)
where A is the 6x6 diagonal matrix which contains the 6 eigenvalues of the matrix Ai:
~ 4+
~ A 0
A= ~.
0 A (2.6.1b)
with,
.t
-Jkzy 00
~%
A=l 0 -jk; O
-
0 0 -Jjkg (2.6.1c)

L is the 6x6 matrix whose columns contain the eigenvectors of matrix A; :

L
f=(£1+ E{).
L3 L; (2.6.1d)

The normal wavefield vector P we are looking for, can be introduced as follows :

Q=LP, (2.6.2a)
or equivalently,
P=MQ, (2.6.2b)

with,
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Myt = +
CRa el
M, M, (2.62c)

and

p (2.6.2d)

The matrix L is called the composition operator, and the matrix M is called the decomposition
operator. M and L enable to switch between the two-way and the normal mode wavefield
vectors. The columns of the matrix L contain the two-way wavefield components associated to

a single normal mode wavefield component. In particular, the columns of the submatrices L. li
contain the polarization vectors of the downgoing (+) and upgoing (-) normal waves for
horizontal wavenumber k, and ky. Similarly, the columns of the matrix M contain the normal
mode wavefield decomposition of a single two-way wavefield component. Expression (2.6.2d)

~».

-
corresponds to a separatlon of the normal modes based on their direction of propagatlon, D

downgoing normal waves, p upgoing normal waves, from which we deduce that P is a one-
way normal mode wavefield vector.

The combination of (2.5.3a) with (2.6.1a) leads to the equation :

O EFy=LAB+S,
dz (2.6.3a)
or equivalently ,
9B —BF+5,
0z (2.6.3b)
with,
51 = A -ﬁif S
oz (2.6.3¢)
and
= ~ =t
S =Ms=(% |,
5 (2.6.3d)
with,
Ft=MF5,. (2.6.3¢)

Equation (2.6.3b), constitutes the one-way normal wave equation in the wavenumber-frequency
domain, verified by the normal modes components in a laterally homogeneous medium.
Equation (2.6.3b) is similar to (2.5.3a), hence following the same reasoning as for the two-way

wavefield vector 6(z), the general solution of (2.6.3b) reads ;
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Z
1 (2) = W(z, z0) 1 (z0) + I W, z) 5 () dz',
E2)

(2.6.4a)
where the one-way normal mode extrapolation operator W is defined as :
~ Fee m .
We =Y C2F, ¢,
m=0 M° (2.6.4b)
with Em defined recursively :
~ J ~ ~ -
Bpni1(zo) =—Bn(z )Izo + By, (z0) B 1(20) ,
oz (2.64c)
and
BoGoy=1. (2.6.4d)

The two-way extrapolation operator, ﬁ(z, 2p), is related to the one-way normal mode

extrapolation operator, W(z, zp), according to :

Uz, 20) = L(z) W(z, 20) M(z0) - (2.64e)

We can easily check that the wavefield vector P really constitutes the wavefield vector we were
looking for. As a matter of fact, in a laterally and vertically homogeneous medium the one-way
normal mode extrapolation operator gets simplified into :

W(z, 29) = exp (51 Az) = exp (A Az) , (2.6.4f)
or equivalently,
~ W(z, 20) 0
W(z, zo0) = ~ ,
0 W (z, 20) (2.64g)
with
e~ Jkz, @ -20) 0 0
W ¥z, 20) = 0 et g
T o
0 0 e Jkz (2 -20) (2.6.4h)

As expected for this special situation the one-way normal mode extrapolation operator w
simplifies into a 6x6 diagonal matrix. Which means that the components of the one-way normal

mode wavefield vector P propagate independently of each other. The three components of
7 7) related to the eigenvalues ky; (k; ) correspond to downgoing (upgoing) waves. Going
back to equation (2.6.3b), we see that in a vertically inhomogeneous medium, the differential
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operator B 1 1s no more diagonal, implying an interaction between the upgoing and downgoing
normal waves :

3§*=A+§*-ﬁa*{<if;)§*+ (31’50;)3"} 5

9z z 9z (2.6.4i)
e ~p 2 0 ~. =-| =-

ip =Ap -M, |:(iL;)P++(—“La)P:l+S .

oz z oz (2.64)

From the above developments we can determine the variations in depth of the one-way particle
velocity components, Knowing that :

2t ~+ 2>+
v =L p (2, (2.6.4k)

we deduce that in a homogeneous medium :

d =t ~t  ~E [y ]l ~t 2

—v@=Li(nHA (z)[Ll(z)] v @+Li(@)s (2).
oz (2.641)
As expected, the particle velocity field associated to the upgoing waves propagates
independently of the particle velocity field associated to the downgoing waves. Due to the fact

that the matrices Eli (z) are full 3x3 matrices, we clearly see that the three components of the

=t - . . o
vectors v are interrelated. A similar result could be given for the traction vector 7, .

Although the normal modes behaviour is somewhat difficult to explain for the general
anisotropic situation, for the special case of an isotropic medium it is simple; it is the subject of

the next section. Remark: since M = [i] 1 (see equation 2.6.2¢) it can be easily checked that the
components of the decomposition operator M are related to the components of the composition
operator L according to :

~t [~t ~g g el
M1=[L1‘L1+(L2+)'1L2] , (2.6.5a)
~t [~t ~7 o3 ~p]d
M2=[L2'L2+(L1+)'1L1] . (2.6.5b)

Vice versa the composition operator components are related to the decomposition operator
components according to :

~t [~ e ~3 3]
L =[M1 'Mz(M2+)'1M1+] , (2.65¢)

~t [t o~k 3 3]
L2=[M2-M1(M1+)"M{] . (2.6.5d)
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2.7 NORMAL MODES OF PROPAGATION IN AN ISOTROPIC
MEDIUM : P AND S WAVES

In this section, we study the normal modes of propagation that can take place in an isotropic
medium. Starting from the linearized equation of motion (2.2.2a) and the constitutive relation
(2.2.2b), it is possible to show that in a homogeneous isotropic source free medium, the
compressional and shear waves propagate independently of each other.

The combination of (2.2.2a) and (2.2.2b) leads to the two-way wave equation for the particle
velocity components:

3 (€igd¥ )- PV =-a(F-95)) . (2.7.1a)

Using (2.5.5) for the expression of the stiffness tensor in an isotropic medium, the above
equation simplifies into :

VK. VY )-Vx@Vsy )-pay
+2 [(Vp.V)V ~(VI)(V.V) + VX (V x V)] =-3,(¢-99)).  (2.7.1p)
with K the constrained compression modulus ,
Ke=A1+2p. (2.7.1¢)
In a homogeneous source free medium, equation (2.7.15) simplifies to :
KCV(V.V)-nyVxV-pE),ZV=5. (2.7.1d)

The velocity vector can be decomposed in a compressional and shear component (Achenbach

1973, p65) by introducing the scalar potential ¢ and the vector potential ¥ related to v

according to:

V =Vp+Vs, (2.7 2a)
with,

Vp=V¢,

Vo=V Xy,

Vo=, Wy, v ) (2.7.2b)

It is important to point out that although the vector ¥ has three components only two are
independent. Indeed, since the particle velocity vector v has three independent components
whereas expression (2.7.2a) involves four variables, a relation must exist between the

components of vector ¥ . Later in this section we discuss various possible relations .
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As:

V.V =V.(p+vy) = V., (2.7.2¢)
Vp represents the compressional part of the particle velocity field. An elementary cube submitted
to a particle velocity field Vp will change its volume but not its shape. Similarly, as :

Vv = Vx(Vp+Vs) = Vxvg (2.7.2d)

v, represents the shearing part of the particle velocity field. An elementary cube submitted to a
particle velocity field v will change its shape but not its volume.

Rewriting (2.7.1d), taking into account the decomposition (2.7.2a), the following equation is
obtained:

K. V(Y% - L% )+ pVx (VxVxy-Laky)=3.
K. H (2.7.3a)

The two-way wave equation (2.7.3a) remains unchanged by adding the term V(V.\_|; ) in the

second pair of brackets as V x V(V.\_|; )= 0. Equation (2.7.3a) is then equivalent to :

K, V(V% -Kﬂafcp Y+ V x (VA -ga?\} y=0,
c

(2.7.3b)
where the following vectorial equality has been used :
- . e 9
~VxVxy+V(Vy )=Vy. (2.7.3c)
Equation (2.7.3b) admits two natural solutions :
2. P2
V% -—0di¢ =0,
K, O (2.7.4a)
and
vi -Paly =0,
U (2.7.4b)

Equations (2.7.4) are typical wave equations and clearly indicate that in a homogeneous
isotropic source free medium the compressional part of the wavefield propagates independently
of the shearing part. Conclusion: in an isotropic medium the normal modes of propagation are
the compressional and the shear modes. The compressional waves, also called longitudinal or
P waves, propagate with a velocity cp:

Cp, = I:C _ 2‘
P P p 7
(2. .5a)

For plane waves, the P wave particle velocity vector vy is normal to the wave front or,
equivalently, parallel to the direction of propagation. The shear waves, also called transversal or
S waves, propagate with a velocity ¢
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= [®
G=Ap - (2.7.5b)

For plane waves, the S wave particle velocity vector Vs is tangent to the wave front or,
equivalently, normal to the direction of propagation. Note that cp>cs, meaning that P-waves

propagate faster than S-waves. Figure 1.1.2b displays the volume and shape variations of a
solid column submitted to a P or S wavefield.

In order to determine the solutions of the differential equations (2.7.4) we transform them from
the space-time to the wavenumber-frequency domain. In the wavenumber-frequency domain
they read :

2

a ~ ~
— 0 =- k%.p 0,
0z (2.7.6a)
with ,
By=R-B-B k=2,
A A (2.7.6b)
and
2
9" = =
—‘—2— w =- k%.s V,)
0z (2.7.6¢)
with,

2 _ 12 12_ =0
K2o=k-K2-K2 k=g (2.7.6d)

Expressions (2.7.6b,d) are called dispersion relations. For a monochromatic plane wave the
dispersion relations establish the relation that exists between the wavelength A and the apparent
horizontal (Ax, Ay) and vertical (4z) wavelengths, see Figure 2.7.1. For the most general
anisotropic situation they read :

Lailil-— 1l o B+g+B =k .
a'z A ()'xv Zvya sz) (2.7.68)

Ar Ay
In an isotropic medium the wavelength does not depend on the direction of propagation, we
then have :
1 4.1 .1 _ 1 2 _ 2
2 2 0 2 o Brg+ii=k,
Ax Ay A A (2.7.6f)
where k may stand for &, or k;.

Equation (2.7.6a) admits the following solution for the compressional waves :

~ ~

$=0"+¢ . (2.7.7a)
with,

~% + .
¢ = etikipz, (2.7.7b)
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X

Figure 2.7.1

The dispersion relations establish for a monochromatic plane wave the relation that exists
between the wavelength A and the apparent horizontal (Ax, Ay) and vertical (2;) wavelengths.

The above picture illustrates the relation for the 2D case (1 lly=0).

and

kz'p= vkpz‘kxz'kyz N When kpz‘kxz'kyzzo,

kpp=-jV-(ki-k?-k?), when kZ-k? -kt (0.
Equation (2.7.6¢) admits the following solution for the shear waves

= =+ =

yv=y +y,

with,

<u
i

s
)

+
~
K
=

~N

and

(2.7.7¢c)

(2.7.7d)

(2.7.7e)

(2.7.7)
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ko =VkZ-k2- k2, when ki -k - k220, (2.7.7g)
kys=-jN- (ks2 - kxz - kyz) s when ksz - klz - ky2 (0, (2.7.7h)

The wave splitting (2.7.7a,e) corresponds to a separation of the total P and § wavefield into an
upgoing (-) and downgoing (+) part. Using the notation introduced in the previous section we

define the one-way normal mode wavefield vector fi according to :

2t Tt o~y ~
P=0.v . (2.7.8a)

As expected, in a homogeneous isotropic source free medium, the one-way normal wavefield

L=+
vector P = (I; satifies the following differential equation :
p
9F-Ap,
dJz (2.7.8b)
with the diagonal first order differential operator A,
~+
~ ( A" o
A= ~.
0 A (2.7.8¢c)
and
ey [Tikzp B 0 0
A=l 0 Fky, O
0 O Fjk,, (2.7.8d)

As two eigenvalues are identical, i.e. k§2 = kfa =1 k; 5, the wavefield decomposition into S

waves is not unique.

Here the first order differential operator A has been derived from the two-way particle velocity
equation (2.7.1d). An other way to obtain the matrix A consists in calculating eigenvalues and
eigenvectors of the matrix A 1, as explained in section 2.6.

For the isotropic situation we have found that :
+ -
ki = - kg » (2.7.9)

This relation can not be generalized to an arbitrary anisotropic medium, but only to the one with
a horizontal plane of symmetry. We have also seen that in an isotropic homogeneous source
free medium the compressional part of the wavefield Vp propagates faster than and
independently of the shearing part v; . In an anisotropic medium this is not necessarily the case,
the normal modes of propagation can combine the compressional as well as the shearing part of
the two-way wavefield.
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To conclude this section, we give for the isotropic situation, the expressions of the composition
(L) and decomposition (M) matrices for two different definitions of the S wave vector potential
\V In the following, according to Wapenaar and Berkhout (1989,p49) we slightly chan ge the P
and § wave potentials definition according to:

> _ _ _1_ -

Y= i VTV YD (2.7.10a)
Note that for the limiting case of an ideal fluid, the P wave potential ¢ as defined in (2.7.10a) is
identical to the acoustic pressure p :

v=--1_ Vp
jpw (2.7.10b)

The analytic expression for the composition matrix is easy determined when we combine the
particle velocity-potential relation (2.7.2a) with the stress-strain equation. On the other hand the
analytic derivation of the decomposition matrix, the inverse of the composition matrix, greatly
simplifies due to the symmetry of the composition operator. Here we only give the final results
in the wavenumber-frequency domain. In the first case, we write the S wave particle velocity

vector according to :

- V/x
L wa- vy
"o jpw ¥
¥ (2.7.11a)
with,
V.y=0, (2.7.11b)

= = T
(V is the nabla operator in the wavenumber domain : V = (-jk,, ~Jky, i) ), which implies that :
0z

0~ .~ o~

— Ve = jhke Wi + jhyWy

dz (2.7.11c)
This choice for the :l/; vector has the advantage of making the velocity decomposition (2.7.2a)
consistent with the Helmholtz decomposition of a vector, see Achenbach (1973,p88). The
following relations hold :

- _ Ky z
9="p V¥ (2.7.11d)
and
= jus . =
--Lvx
v XV, (2.7.11¢)

The normal mode wavefield vector P can then be defined as follows:

Fr=( Vi T, (2.7.11f)
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z 4

Sx

Figure 2.7.2

-
For an plane S wave of wave vector k, this figure represents the relative orientation of the

wavevector with the Sx and Sy polarization vectors.
with,

V¥, : potential for S, waves polarized in the (,2) plane,
W, : potential for S waves polarized in the (x,z) plane, see Figure 2.7.2

This choice for the S wave vector potential implies the following expressions for the comp-
osition (L) and decomposition (M) matrices :

2 32
kx x klk) _(I ks ’kx)
kZ,S kz,.\'
232
S 1 (ks-ky) kk
L= & a2 e
2,8 2,8

tk;p -ky kx (27.11g)
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F2ksksp 2krky (k2-2k2)
Ly = Lz F2hykyp -(k2-2k2) ~2kyky .
C\(KZ-2kE-2k5)  H2kykys F2keks s (2.7.11h)
2 np2
2k 2k, ki - 2k - 2ky) 2)
kzp
~ 2 _ _np2
M i‘t =4 ikLkZ _tw -2ky s
20 kz,.\' kz.s
(k- 22 - ) kxky
e T STV /] 2k
kzs ks (2.7.11i)
—ky =k 1
kip  kop
ﬁ it = L 0 _1 __kiy_.
2 kz,s
1 0 Tk
ks (2.7.11j)

One can see from expressions (2.7.11ghij) that the operators Land M are stable except for
horizontally propagating P (k;;,=0) and S (k,s=0) plane waves. This implies that horizontally
propagating waves can not be split into up or downgoing waves.

As a second case, we write the S wave particle velocity vector according to:

> 1 = = = =
v =-.—Vx[—wa+§],

T jpw (2.7.12a)
with ,

¥=00,0,y), (2.7.12b)
and

¢=(0,0,0)T. (2.7.12¢)

-

The S waves related to the l:f;and E vector potentials are called S, and S, waves, respectively.
For an § plane wave with wave vector ic., Figure 2.7.3 represents the polarization vectors of the
Sy and of the S waves. Note that the Sz wave polarization vector does not have components
along the vertical axis; the Sj waves are polarized in the horizontal plane. This choice for the §
wave vector potential is useful in the case of a horizontally layered medium, as for such a
situation the Sy, waves are decoupled from the P and Sy, waves at any depth level.
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Sh

Figure 2.7.3
For an plane S wave of wavevector k , this figure represents the relative orientation of the
wavevector with the Sp and Sy polarization vectors. The Sy wave polarization vector does not
havea component along the z direction, contrary to the P and Sy waves. In a horizontally layered
medium the S| waves are decoupled from the P and Sy waves. .

Unfortunately the S wavefield splitting into S, and S; waves is undefined for vertically
propagating S plane waves. This ambiguity can be seen from two points of view. Looking at
Figure 2.7.3, we see that for vertically propagating S plane waves, the S, and S waves share
the same (horizontal) polarization plane, it is then not possible to distinguish them. The

ambiguity can also be seen from an other point of view. In the wavenumber frequency domain
we have :
P Vke ky 2, ) = -V X VX Y+ VX,
T
- 0 ~ 0 ~ ~
ipaVsky, ky, 2, @) =|-jky C + jkx — Vf, Jkx C + jky — 'Vv (k§+k§) 14
oz 0z (2.7.12d)

For vertically propagating S plane waves (kx = ky = 0) and finite potentials wand { we have :

'{;s(o’ 0,z )= -6 . (2.7.128)
Which means that with definition (2.7.12a) for the S wavefield vector potential, vertically
propagating S plane waves do not generate a particle velocity field. This is physically

unacceptable and it makes the wavefield decomposition for 5,#0 unstable. To overcome the

=

mstabxhty we can define scaled vector potenuals Vx and {;, related to the vector potentials

wand { according to w, kr Vand {, k. C with k2 = k2+k2 With this new definition for
the S wavefield vector potentials, a vertically propagating S plane wave generates a non-zero
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particle velocity field. The wavefield decomposition for such waves is now stable, but there is
still the ambiguity as 3_‘ is now discontinuous at ky=ky=0. In the following, we derive the
expression of the composition (L) and decomposition (M) matrices for_. the scaled S wavefield
vector potential. We define the one-way normal mode wavefield vector P accordin gto:

P =L VAL, (2.7.13a)
This choice for the S wavefield vector potential implies the following expression for the
composition (f) and decomposition (ﬁ) matrices :

b slkn by

ke kr
~1 1 jkykz,s -k
Ly=-L k D788 ,
' pw ¢ kr ke
+k ik 0
w (2.7.13b)
2 2
ks, el gl
~t — o kZ-2k2 kxks,
Ly=L| F2kpk, el "kr” ,
S
k2 + 2k2 +2jk, sy 0
(2.7.13c)
&3 - 2k2)
+
ks b 2k;,
MEE gk G220 Lk (226 i ,
o 2kz.s kl‘ ZkZ.S kr "
kyk? ak? 0
2k % (2.7.13d)
7k .Tﬁ -1
2,p kz,p
ary_1 Jkx iy ok
M) == —= —= Fi
)

N X
kpskr  kzskr (2.7.13e)

Note that the following relations exist between the composition and decomposition operators:

& -7t a2, (2.7.13f)

2 -7+ a1t (2.7.13g)
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with,

s (2.7.13h)

Looking at the expression of the composition and decomposition operators we see that they are
only unstable for horizontally propagating P and S plane waves. The operator instability for
vertically propagating S plane waves (ky= ky= 0) has been replaced by an operator discontinuity
(due to the square root function k). This discontinuity has the disadvantage of producing long
operators in the space domain. Other S wavefield vector potential definitions are possible but
definitions (2.7.11a) and (2.7.12a) will be frequently used in the remainder of this thesis.

2.8 NORMAL MODES INTERACTION AND BOUNDARY
CONDITIONS

In the previous sections we saw that in any homogeneous anisotropic medium, there exist three
normal modes of propagation. In section 2.6 we also saw that in a laterally homogeneous
medium with a continuous vertical gradient in the elastic parameters there is an interaction
between the upgoing and downgoing normal modes; the interaction being governed by
equations (2.6.4i,j). In this section we study the normal modes interaction for some specific
boundary conditions like the traction free or the rigid surface. We also study the normal modes
interaction in the case of a vertical discontinuity in the elastic or density parameters.

Traction free surface

A surface is traction free, when this surface does not support tractions (e.g. the earth's
surface). If the surface is a horizontal plane at zg, the traction free boundary condition can be
formulated in terms of two-way components according to:

%, (20)=0. (28.1a)
The substitution of the above condition into (2.6.2a) leads to :

L3 B o) + L3 5 (20) =0, (28.1b)
which clearly indicates that at a traction free surface downgoing and upgoing normal waves
interact with each other. Consider an upgoing wave reaching the traction free surface, the
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downgoing waves generated at zg in order to fulfill equation (2.8.1b) are related to the incident

one via a reflection matrix f!'f;(zo). We have :

P (z0) = Rilz0) D (z0) . (2.8.1c)
The expression of the reflection matrix is found by replacing (2.8.1¢) in (2.8.1b), we obtain:

~- ~+ B B

Ri(z0) = - [L3 (20)) "L3(20) . (2.8.1d)
An other expression can be found for Ef}(zo): knowing that equation (2.8.1a) is verified at zg
we derive from (2.6.2b) that :

=t ~ =

p (20) =M (z0) v (z0) , (28.1e)
from which we deduce that we must have :

~. ~4 ~_ -1

Rii(z0) = M (20) [Mi(z0)] . 2.3.1f)

Rp(z20) is a full 3x3 matrix, hence wave conversions occur at the traction free surface. It is

interesting to point out that Ef;(zo) is singular when :

det(L3 (z0) =0, (2.8.1g)
or equivalently,
det(M{(z0)) =0 . (2.8.1h)

This singularity means that the traction free boundary condition can be fulfilled for some
particular "downgoing” evanescent plane waves without the need of "upgoing” waves, as

equations :

%, (20) = L3 (20) B "(20) = 0, (2.8.10)
and

B (20) = Mi(20) ¥ (20) =0, (2.8.1j)

admit non trivial solutions. The wavenumbers by which equations (2.8.1gh) are verified are
called Rayleigh poles, their contribution in the space-time domain constitute the Rayleigh

waves.

To illustrate the effects of a traction free surface on the incident upgoing waves, we consider the
model depicted in Figure 2.8.1a. It consists of a homogeneous isotropic lower half-space
bounded by a traction free surface. A line of particle velocity detectors is buried at a depth of
200m and a pure P wave point source is located at a depth of 400m. Figure 2.8.1b represents
the recorded particle velocity field. We can recognize the source upgoing P wavefield, as well
as the reflected P and converted S waves. Note the angle of incidence dependency of the
reflection matrix (Rg) .
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traction free surface
. 20
o] f
400 m 200m
z article velocity 1
o [ — p detectgrs PR - | o
4$v Isotropic homogeneous lower half-space
explosion source P = 2000 mis ; cs = 1000 mis ; p = 1000 kgim3

Figure 2.8.1a
The above model is used to illustrate the effect of a traction free surface on an upgoing incident
P wavefield. The model consists of an homogeneous isotropic lower half-space bounded by a
traction free surface. A line of detectors is buried at a depth of 200m and a pure P wave point
source is located at a depth of 400m.
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Figure 2.8.10

Space and time variations of the horizontal (a) and vertical (b) particle velocity field. We can
recognize the upgoing P source wavefield, as well as the downgoing reflected P and converted S
waves.




2.8 NORMAL MODES INTERACTION AND BOUNDARY CONDITIONS 47

Rigid surface

A surface is rigid, when this surface does not support particle displacements. If the surface is a
horizontal plane at zy, the rigid surface boundary condition can be formulated in terms of two-
way components according to :

(20 =0. (2.8.2a)
The substitution of the above condition into (2.6.2a) leads to :

L{(200p (20) + Li(20) P (20) = 0, (2.8.2b)
which clearly indicates that downgoing and upgoing normal waves interact with each other at a
rigid surface. Following the same reasoning as for the traction free boundary condition, we find

that an upgoing wavefield reaching the rigid surface generates a downgoing wavefield, related
to the incident one via a reflection matrix R,y :

P @) =RaGo)p (20), (2.82c)
with,

R (20) =- (L (20)) " LiGzo) (2.8.2d)
or equivalently,

Rya (20) = M3 (20) (M3(20)) " . (2.8.2¢)

R, is.a full 3x3 matrix, hence wave conversions occur at the rigid surface It is interesting to
point out that the inverse of matrices Ll+ (z0) and M(z¢) are never singular for real ky, kyand @
values.

Two elastic media in contact
(vertical discontinuity in the elastic and density parameters)

When two distinct solid elastic media are in contact at depth level z;, see Figure 2.8.2a, there is
a discontinuity in the physical parameters between depth levels z; - £ and z; + €. As the
differential operator A 1 is not continuous at z;, the Taylor series expension (2.5.4a) and the
two-way extrapolation operator U defined in (2.5.4c) do not hold. Due to this discontinuity ,
the two-way extrapolation operator U, as defined by (2.5.4¢) is not valid to extrapolate the
wavefield across the discontinuity. As the differential operator A 1is not continuous at z;, the
Taylor expension (2.5.4a) does not hold. To pass the critical depth level z;, we invoke that the
two-way wavefield components must be continuous at z;, which can be expressed :

lim 6 (21+€) =lim 6(21-8) :

e—0" e—0" (283)
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(c) z1

Figure 2.8

If the elastic medium is discontinuous at depth level z1, we can not use the Taylor series
expension of the two-way wavefield vector to extrapolate it through z1. To pass the critical depth
level z1, we invoke that the two-way wavefield components must be continuous at z1. From this
condition of continuity we deduce the reflection and transmission matrices that describe the

effect of the discontinuity on any incident normal wave-type.
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From the two-way boundary condition of continuity (2.8.3) we may deduce its counterpart that
apply on the normal one-way wavefield components in terms of reflection and transmission
matrices.

The first studied situation is the interaction between a downgoing plane wave gf coming from
the upper medium and the discontinuity at z; (see Figure 2.8b). This downgoing wave
generates a reflected upgoing wavefield, [“;.. , in the upper medium and a transmitted downgoing
wavefield, ff , in the lower medium, The reflected and transmitted waves are related to the
incident wave through the reflection (ﬁ +(zl)) and transmission (T~ +(21)) matrices, according
to :

Pu) =R (2) B 1) (2.84a)
and
i) =T @) pu @) . (2.8.4b)
Applying for this situation the boundary condition of continuity (2.8.3) , we obtain :
=+ =+
~ | P, ~ z1)
Lu( 1:7:’(21) )=Lz( pi (n ),
Pu(z1) 0 (2.84c)

fu being the composition operator for the upper medium and L;the composition operator for
the lower medium. Substituting (2.8.4ab) into (2.8.4c) and knowing that this equation must

hold for any downgoing normal wavefield vector 5:(21) we obtain :

ol T )=zz(f+‘“’ )
R 0 (2.8.4d)

from which we deduce that :

T @) =[MauLai]™, (2.8.4e)
and

R'@) [T @) =MauLs,, (2.84f)
or equivalently,

Rz =[MauLa)[Ma.La)™ . (2.8.4g)

As the reflection and transmission matrices are not diagonal, wave conversions will occur at z;.
For the illustration we consider the model represented in Figure 2.8.3a. It consist of two
homogeneous isotropic half-spaces in contact. Figure 2.8.3b,c represent the particle velocity
field measured above and below z;.In 2.8.3b we can recognize the downgoing source
wavefield (we used a pure P wave point source), as well as the upgoing reflected P and §
waves. In Figure 2.8.3c we can recognize the downgoing transmitted P and S waves. Note the
angle of incidence dependency of the reflection and transmission matrices.
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T

Figure 2.8.3a

explosion source

) <A Isotropic homogeneous upper half-space
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Isotropic homogeneous lower half-space
cp = 4000 mis ; cs = 2000 mis ; p = 2000 kg/m3

The above model is used to illustrate the effects of a vertical discontinuity in the elastic and

density parameters on a downgoing incident P wavefield. The model consists of two isotropic

half-spaces in contact. A pure P wave point source is located at a distance of 400m above the

discontinuity and two lines of detectors record the particle velocity field. A first line is located

at a distance of 200m above the interface and a second one at a distance of 200m

below the interface.
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Figure 2.8.3b

Lateral space and time variations of the horizontal (a) and vertical (b) particle velocity field
recorded by the line of detectors located above the discontinuity
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Figure 2.8.3¢
Lateral space and time variations of the horizontal (a) and vertical (b) particle velocity field

recorded by the line of detectors located below the discontinuity

The second studied situation is the interaction between upgoing plane wave 1:;'1 coming from the
lower medium and the discontinuity at z; (see Figure 2.8.2c). This upgoing wave generates a

reflected downgoing wavefield, 1:5?, in the lower medium and an upgoing transmitted wave,}:i.,;,
in the upper medium. The reflected and transmitted wavefields are related to the incident one
through the reflection (R (z1)) and transmission (T "(z1)) matrix, according to :

P =R @i, (2.8.5a)
and
Pae) =T @) Pi(zy) . (2.8.5b)

Following the same reasoning as the one previously developed, we obtain the following
results :

T @) =[MaiLau]™, (2.85¢)
and
RT @) =ML, (2.8.5d)

or equivalently ,
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R(z)= [ﬁ;,l fc;,u] [ﬁ&,l Lo ! (2.8.5¢)
The transmission and reflection matrices may not be defined for some plane waves, i.e., when
the matrix product M i, I:f « is not invertible. The wavenumbers corresponding to these plane
waves are called Stoneley poles and their contribution in the space-time domain constitutes the
Stoneley waves. Such waves are surface waves propagating at the interface zj, they are neither

transmitted nor reflected.

In order to go one step further in the determination of relations between the reflection and
o . . . N . =+
transmission matrices, we consider the following situation : a downgoing plane wave, p,,

coming from the upper medium and an upgoing plane wave, 5[, coming from the lower
medium. The boundary condition of wavefield continuity at z7 can be written as follows :

fu( @T(Zl) )=f; tz(zl) )
du(z1) di(z1)

(2.8.6a)
with,
=+ =+
du (z1) =py (21) , (2.8.6b)
du(z1) =R*(2) B (2 + T (20) Pi (2 (2.8.6¢)
~+ ~ Pt ~_ =
d; (1) =T "(21) Pu (1) + R (@) pi (1) » (2.8.6d)
di(z1) =pi(z1) - (2.8.6¢)
Equation (2.8.6a) can be rewritten as :
=+ =+
( d@ |-, g,( 4 @) ) ,
dy(z1) di(z1) (2.8.6f)
or using (2.8.4ef),
=+ ~47. ~y o~ =+
de \_[ T MauLas )( A ) ‘
duzy | \RYTFN" MawLos )\ dicay) (2.8.68)
From which we deduce that:
My Lo=-[TT'%", (2.8.6h)
and
MauLoy=T -R*[T']'R". (2.8.6i)

Similarly, equation (2.8.6a) can be rewritten as :

(T oo .
di(z1) dy(z1) (2.8.6)
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or using (2.8.5,cd),
= ~y o~ ~_r~1-1 =+
(df(zn )_(M'?JLL R[] )(du(zo)
= 1 g .

Z-(zl) ﬁl-!,l E;,u [i: -]

du(z1) (2.8.6k)
From which we deduce that:
My Lau=T*-R[T]T'R", (2.3.61)
and
MoLg,=-[T1'R", (2.8.6m)
The relations obtained in this section can be summarized as follows :
an | ET TR
wla = ~4[ +]-1 ~ . a4l -]
R*[T] T -R TR (2.8.6n)
and
— R - - S g &[]
i, =T 'RN_[_TllR Rl )
[Tk (7] (2.8.60)

Equations (2.8.6n0) are used in chapter 3.

2.9 COMPRESSIONAL AND SHEAR WAVE SOURCES

A source must be applied in the medium to initialize the elastic wavefield. The source used is
most often mechanical and expressed in terms of forces or deformation applied to a part of the
solid. In this section we study the amplitude and phase of the upgoing and downgoing normal
waves emitted in a homogeneous medium by sources located at depth level z;. More
complicated sources, with a depth extension, can be simulated from the previous response by
applying the principle of superposition as we work with linearized equations. We consider
source fgncsions of the type :

F=folke ky, @) 8 (z-27) » (2.9.1a)
and

G: = Goi (ks kyy @) 8 (z-25) . (2.9.1b)
We start with the normal mode one-way wave equation in a homogeneous medium (2.6.3b) :

AF_AFF,

oz _.(2 9.2a)

where the normal mode source vector S is related to the two-way source vector S via the
decomposition operator M (see 2.6.3d)

—_ —-

S =MS. (2.9.2b)
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The two-way source vector S is related to the force f and stress sources &; according to ( see
253i):

§= ( A 12 O'z ‘) i
Az oz 'Jkao'a f (2.9.2c)
The combination of (2.9.2b) with (2.9.2c) leads to the following result :

= =2+
5 =(s )
3 (2.9.2d)
2t 2t
§ =50 0(z-z), (2.9.2¢)
and
S | 0,
so =A M2 00z - M2 jka00a+f0 (2.9.2f)

where we used expression (2.6.1a). Equation (2.9.2f) gives us the expressions of the upgoing
and downgoing normal waves generated by a force or deformation source. To know how these
waves propagate in the homogeneous medium we solve the differential equation (2.9.2a). The
following solutions are obtained :

7@ =ew (A7 @-2))5 Hzy), (2.9.30)

7@ =-ep (A 2))3 e, (2.9.35)
with H(z) the Heaviside unit step function,

H@z) =0 z<0 (2.9.3c)

H©O)=1/2 (2.9.3d)

H(z) =1 z>0 {2.9.3¢)

These results are valid for an arbitrary anisotropic homogeneous medium. In the following we
give the expression of the P and S waves emitted by, respectively, an explosion, a moment and
a force source in an isotropic homogeneous medium.

Explosion source

An explosion point source is a point of expansion. it can be represented with the deformation
source tensor. In the space-frequency domain we have :

. Vo(w)
hij=—F5—8;6(x)6() §(2), (2.94a)
or, in the wavenumber-frequency domain :
~ Vo((ﬂ)
hij= 6 6(2). (2.9.4b)

The tensor hij corresponds 10 a point of volume injection of strengh Vp(®), localized at the

origin (x=0, y=0, z=0). In an isotropic medium, the stress tensor associated to this deformation
reads :
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I ) ’
0= (A +31)WVo(@) & 5(z) . (2.94c)

Setting the volume density of body forces ; to zero in (2.9.2c) and using expression (2.7.11j)
for the matrix ﬁzt , we find from equation (2.9.2f) the expression of the normal wave source
vector ?o'i :

2t

. 12
ik T
K1) 6% Vo(w)(1,0,0)T.

P (2.9.4d)

An explosion source in an isotropic homogeneous elastic medium only generates P waves. In a
more accurate way we can even say that it is a monopole P wave source.

moment source

A moment source is a distribution of body force sources that generate a moment of given
rotation axis. For the illustration we consider a moment source localized at the origin with a
vertical rotation axis. The associated force distribution reads in the space-frequency domain :

F=Mo@) V x(0,0, 60 55 8@)7, (2.9.50)

or, in the wavenumber-frequency domain :

f= My(w) V x (0, 0, 5(2)) , (2.9.5b)
Mop( @) is the moment strengh. Setting the stress source tensor ':o:'j to 0 in (2.9.2f), the following

. =t
expression holds for the normal wave source vector 5 :

2t_j T
s = 5 My(w) (0, kx, ky) . (2.94e)

A moment source in an isotropic homogeneous elastic medium only generates S waves.

Force source

Finally we consider a vertical body force point source of strength fp(w) localized at the origin :

F=1)(0,0,600 6 52)", (29.50)
Setting the stress source tensor to zero in (2.9.2f), the following expression holds for the
normal wave source vector E(',i :

ke T

2t 1 ky .
S0 = o(w)(-l,i:—,+
f kzs  kzs

T2

(2.9.5b)

A vertically oriented body force source emits both P and S waves.




CHAPTER 3

ONE-WAY WAVEFIELD DECOMPOSITION
OF SURFACE SEISMIC DATA

3.1 INTRODUCTION

Multi-component sources emit three distinct wave-types with an amplitude that depends on the
direction of propagation. Similarly, multi-component particle velocity detectors record without
distinction all the upgoing and downgoing wave-types with a sensitivity that depends on the
angle of incidence of the wavefield. In this chapter we show (using the equations of the wave
propagation) how multi-component sources can be combined to simulate sources that only emit
one wave-type. Similarly we also show how multi-component detectors can be combined to
simulate detectors that are only sensitive to one wave-type (upgoing or downgoing). This
chapter constitutes the theoretical justification of the wavefield decomposition of surface seismic
data presented in section 1.3.

3.2 FORWARD MODEL OF MULTICOMPONENT SEISMIC
DATA

Before we discuss the decomposition scheme we present a forward model of multi-component
seismic data. The formulation we give here, is the same as the one developed in the article
"Decomposition of multi-component seismic data ", see Wapenaar et al.,1990. We can show
step by step that this forward model is obtained by applying a number of simple matrix
manipulations to the primary one-way responses of the subsurface. An important consequence
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is that decomposition of multicomponent seismic data may be accomplished by applying the
same matrix manipulations in reverse order.

First we consider the forward model of the primary response of an elastic subsurface bounded
by a reflection-free surface at zg. With reference to Figure 3.2.1a we write:

P (20) = X(z0)p™(20) , (32.1)

Here vector p*(zg) represents a 3D monochromatic downgoing elastic wavefield at zg (the
matrix/vector notation for discretized wavefields is explained in Appendix 3A). This one-way
wavefield propagates into the 3D subsurface z>zp, is partly reflected by the inhomogeneities
that can exist below this depth level and propagates back to the surface. The 3D upgoing
wavefield arriving at the surface zg is denoted by p™(zp). According to (3.2.1) the primary one-
way response matrix X (zp) describes the relationship between the downgoing and upgoing
one-way wavefields at zg. To give a clear physical meaning to the one-way wave vector
components we consider an isotropic homogeneous upper half-space, the derived equations
staying of course valid for any anisotropic homogeneous upper half-space.

For an isotropic homogeneous upper half-space the one-way wavefield vectors p*(zp)
and p(zg) contain three sub-vectors, according to:

-t
¢ (20)

P (20) = {[,li( ) |
-t
v (z0) (3.2.2a)
whereas the response matrix X (z¢) contains nine sub-matrices, according to :

Xp,0(z0) Xpyi(z0) Xo,yu(20)
X(z0) = Xy, 0(z0) Xyp,yi(z0) Xy,a(20) |»
Xy, 0(20) Xyopi(20) Xy ps(20) (3.2.2b)
Vectors ;L(Zo) and 5_(20) represent the potentials for the 3D monochromatic downgoing and
upgoing compressional (P) waves at depth level zg; vectors ﬁ;f' (z0), 1_/;2+ (zo) and 17/1' (z0), 1712'(:0)
represent the potentials for the downgoing and upgoing first and second shear (§57,52) wave

types at zo. Any of the sub-matrices in (3.2.2b) represents a primary response of the elastic
subsurface. For example, matrix X¢ y,(zo) describes the relationship between downgoing 53

waves and upgoing P-waves at z(. The one-way forward model (3.2.1) is visualized by the
block diagram of Figure 3.2.1b.
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The primary one-way response matrix X(zp) describes the relationship between primary
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downgoing and upgoing wavefields at the reflection free surface z.

P (z0) ——<— —<4+— 5 (z0)

X(z0)

Figure 3.2.1b

One-way forward model of the primary response of an elastic subsurface bounded by a reflection
free surface as zp.
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So far we have assumed that surface zg is reflection free. However in practical surface seismic
situations, surface zp represents the Earth's traction free surface which is a perfect reflector for
the upgoing waves p (o). Therefore in the forward model (3.2.1) we should write for the total
downgoing wavefield at zp:

P*(20) = b7 (20) + P (20) - (3.2.3a)

Here vector p;(zo) is the downgoing reflected wavefield at zp , according to :

Pr (20) = Rj{z0) P (20) » (3.2.3b)

where matrix R ;(z0) describes the reflectivity (including conversion) of the Earth's traction free
surface for upgoing waves as has been described in (2.8.1d). The relationship between Pe(zo)
and the seismic source at zg is discussed later.

Upon substitution of (3.2.3ab) into the forward model (3.2.1) we obtain the following implicit
expression for the upgoing wavefield at zg :

P (z0) = X(20) [Ri(z0) P"(20) + 5 (20)] , (3.2.4a)

see Figure 3.2 2a and Figure 3.2.2b. This expression can be rewritten explicitly, according to :

P (z0) = X5 (20) Ps (20) » . (3.2.4b)

where the free surface one-way response matrix X ;(zo)is defined as :

X (z0) =[I- X Go)Rj(20)} X (20) , (3.24¢)

or, rewriting the inverse matrix as a series expansion ,

oo

Xpr(20) = [’ + Z (X(zo)R7(20)) m] X(z0) .

m=1

(32.4d)

The latter expression clearly shows that the free surface generates an infinite number of multiple
reflections and conversions. This result is equivalent with the acoustic multiple series derived
by Berkhout (1982).

Next we discuss the relationship between the one-way wavefields in the forward model (3.2.4)
and the two-way seismic data. In analogy with (2.6.2a), the general relationship between two-
way and one-way elastic wavefields reads:

(v(z) )=( Li@ Li@ )(E*(z))

7,(2) L3 L@ /\p@@ (3.2.5a)

where the three-component velocity and traction vectors ¥(z) and —'E,(z) are defined according to:
Vx(2)

;(Z) = ;y(z ) )

Ve(2) (3.2.5b)
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The one-way response matrix X, (fr(z0) for the traction free surface describes the relationship

between the reflected upgoing and downgoing source wavefields at the traction free surface zp.

P (z0)

Figure 3.2.2b

\ 4

Rj(z0) Ps (20)

One-way forward model, including surface-related multiple reflections and conversions.
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Tul2)
2@ =|%,2) |-
Tur(2) (325¢)
In the following we restrict ourselves, for an easier comprehension, to the situation where the

sources and receivers are at the free surface see Figure 3.2.3. When the source is located at zo,
it only generates downgoing waves P (z0)in the subsurface.

Replacing (3.2.3a) in (3.2.5a) we obtain :

¥(z0) = LT (z0) [ B;(20) + P (20) ] + Li(z0)P "(20) , (3.2.6a)
and

T,(z0) = L3(20) [ B7(20) + P5 (20) ] + L3(z0) (20) - (3.2.6b)
Substituting (3.2.3b) in (3.2.6ab) we can write :

V(z0) = V(20) + Vs(20) » (3.2.6¢)
and

;z(ZO) = ;z,r(ZO) + ;z,s(z()) s . (3.2.6d)
with,

Vi(20) = [LT(z0)Rji(20) + Li(20)] B (20), (3.2.6¢)

Vs(z0) = L{(20) P (20) , (3.2.6)

T0r(20) = [L3(20)Rji(20) + Li(20)] P (20) » (3.2.68)

.l N — T NE N R
VZ,5\40) T ZZ\EYIP S \LU) - (3.£.0n)
Equation (3.2.6¢) corresponds to a separation of the total particle velocity field at zg in a part
Vs(z0), directly generated at the surface by the source, and in a part v,(z¢), generated at the
traction free acquisition surface by the upgoing reflected waves p(z¢). Vs(2o) corresponds to
the direct waves; in the case of a surface source it contains the direct P and S waves as well as
the non-dispersive Rayleigh surface waves. In the case of a homogeneous subsurface v,(zp)
equals 0, the particle velocity field simplifies then to the direct waves. Similarly equation
(3.2.6d) corresponds to a separation of the traction vector at zp in a part ;m(zo), due to the
applied traction source, and in a part ;,_,(zo), generated by the upgoing reflected wavefield
reaching the surface. As we consider a traction free acquisition surface we have:

;z,r(ZO) = _6 . (3.2.6i)
The combination of (3.2.6g) with (3.2.6i) leads to the following expression for R ;(zp):

Ri(z0) = - [L3(20)] "L3(20) , (3.2.6j)
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]
(a)
(b
Figure 3.2.3
Multicomponent data acquisition
a) Three differently oriented seismic vibrators imposing tractions along the x-, y- and z-
direction to the earth’s surface.
b) Three differently oriented geophones, measuring the x-, y- and z- components of the

particle velocity at the earth’s surface.

A 4

V' 3

Rj/(z0) +

Clzo)

Figure 3.2.4
Forward model for multicomponent seismic data (the direct waves are ignored).
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which is in agreement with the result (2.8.1d).

We define a source-decomposition operator D(zo), which describes the relationship between the

traction source vector ;z,s(zO)at the traction free surface and the downgoing source wave vector
P(zo) according to :

P (z0) = D(20) T;,5(20) - (32.7a)
Combining (3.2.7a} with (3.2.6h), the source-decomposition operator reads :

D(z0) =[L3(z0)] . (32.7p)

We also define a receiver-composition operator C(zp) which describes the particle velocities
generated at the traction free surface v,(zp), by the upgoing wavefield p(z), according to :

V(z0) = C(20) p(20) - (3.2.8a)
Combining (3.2.8a) with (3.2.6e) and (3.2.6j), the receiver-composition operator reads :

C(20) = - L{(20{L3(20)] " L3(z0) + Li(z0) , (3.2.8b)

or according to (2.6.5a),

C(z0) =[Mizo)] . (3.2.8¢)

Note that the one-way forward model (3.2.4b) may be elegantly combined with the decom-
position and composition operators (3.2.7a) and (3.2.8a) yielding:

W(z0) = C(20)X7{20)D(70) T.,5(20) + V5(z0) » (3.2.9a)

or suppressing the direct wave from the data :
Vi(20) = C(z0)X(z0)D(20) Te,s(20) » (3.2.9b)

see also Figure 3.2.4. From right to left (3.2.9b) contains a source vector (describing the
traction distribution of a seismic vibrator at the free surface), a decomposition matrix
(transforming the traction into downgoing one-way waves), a one-way response matrix
(describing the response of the subsurface, including multiple reflections and conversions
related to the free surface), and a composition matrix (transforming the upgoing one-way waves
into velocities at the traction free surface). We may conclude that (3.2.9b) is the forward model
of one (monochromatic) multicomponent shot record, ignoring direct waves. For a point source
of tensile stress (vertical vibrator), vector ;,,, s(z¢) contains only one non-zero element, its value
representing the source signature s(®). Similarly, for a point source of shearing stress (a
horizontal vibrator), one of the vectors 'f,,,,(zo) or _t',,,,(zo) contains only one non-zero
element, its value representing s(@). When the vibrators are not ideal point sources, the source
vector contains the stress distribution at zgp. The forward model for one shot record can be
extended easily to a forward model for a complete seismic survey. Ideally, in the elastic
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situation three independent seismic experiments should be carried out for each source position
by applying three differently oriented seismic vibrators. For a 3x3 component seismic survey
the extended forward model reads.

Vi(z0) = C(z0) Xg(20) D(zp) Tm(lo) . (3.2.10a)
Here the columns of the data matrix V,(zg) contain the different data vectors v,(zp). The
columns of the source matrix T, 4(20) contain the corresponding source vectors 7 s(zp). When

use is made of independent horizontal and vertical vibrators (Figure 3.3) then the source
vectors can be ordered in such a way that the source matrix can be written as:

Teeszo) O 0
Tsz0=| 0 Ty 0
0 0 T,(20) (3.2.10b)
Moreover, for identical point sources this expression may be further simplified to:
T,.s(z0) = s(@) I . (3.2.10c)
Now (3.2.10a) may be replaced by :
V(20) = C(zp) X7i{z0) D(20) , (3.2.11a)
with,
Xi(z0) = s(®) Xg(20) (3.2.11b)
and

Vxx(20) Vix,y(20) Vx,2(20)
Vi(z0) = Vy,x(ZO) Vy.y(ZO) Vy,z(ZO)
Vzx(20) V2y(20) V,2(20) (3.2.11¢)
Here any of the submatrices V; j(z) for i=x,y,z and j=x,y,z represents a (monochromatic)
single-component seismic survey, carried out with geophones oriented in the i- direction and
vibrators oriented in the j- direction. The purpose of this section was to present how a two-way
seismic experiment can be written as a sequence of basic one-way operations thus providing a
starting point for a systematic discussion of the surface-related processing scheme.

3.3 DECOMPOSITION OF SURFACE SEISMIC DATA

Assume that a 3x3 component seismic survey has been carried out. When the different
vibrators are oriented in arbitrary directions, then mutually perpendicular vibrators should be
simulated by applying a weighted summation of the different responses. A similar remark can
be made for the geophones (Cliet and Dubesset,1984). Before the dcconiposition can be carried
out, the direct waves vy(zp), should be removed from the data. We do not discuss this
procedure, a good reference is Beresford-Smith and Rango (1989) and Mc Mechan (1991). By
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applying a Fourier transform to each trace, the data are decomposed into monochromatic
seismic surveys. Any of those monochromatic surveys satisfies the forward model described in
the previous section. Our starting point for the discussion of the elastic decomposition scheme
is (3.2.11a), which is the forward model of a monochromatic multi-experiment multi-offset
multi-component seismic data, excluding the direct waves. Assuming that the source signature
s(w) is unknown, the scaled free one-way response matrix can be obtained from the seismic
data V,(29) by inverting (3.2.11a) yielding:

Xi(z0) =[C(20)] V,(20) [D(z0)] ! , (33.1a)
where,

[D(z0)]! = L3(z0) , (3.3.1b)
and

[Czo)] = Mi(z0) - (3.3.1c)

The decomposition of the two-way seismic data into normal one-way wave responses may be
carried out by applying the matrix operator [C(zg)] !and [D(zp)] 'to the data matrix, see Figure
3.3.1. Note that [C(z9)]!V,(z0) describes a lateral deconvolution process along the columns
(i.e, the monochromatic common shot records) of matrix V,(zp). This accounts for the
decomposition of the received wavefields into upgoing one-way waves. We name this process
"decomposition at the receiver side" and accordingly [C(z0)] " "decomposition operator at the
receiver side". Similarly, V,(z0){D(z)] 'describes a lateral deconvolution process along the
rows (i.e the monochromatic common receiver records) of matrix V:(z0)_ This accounts for the
composition of the emitted wavefields into downgoing one-way waves. We name this process
“composition at the source side" and accordingly [D(zq)] " composition operator at the source
side”. In the case of an homogeneous medium at the source and receiver side these operations
can be done in the wavenumber domain, convolutions are replaced by multiplications,

Note the important similarity of the wavefield decomposition (3.3.1a) with Berkhout's
formulation of prestack inverse wavefield extrapolation, which is the nucleus of prestack
migration (Berkhout,1982). Hence, the practical implementation of a decomposition scheme is
very similar to the practical implementation of a prestack migration scheme. Like prestack
migration, decomposition as formulated by (3.3.1a) fully accounts for lateral variations of the
medium parameters.

In analogy with (3.2.2b) the decomposed data matrix Xf£(zp) may be written as :

Xp6(20) Xow(20) Xgyo(z0) |
Xfr(lo) =l X V1.¢(ZO) X v,V (z0) X w;,vz(zo)
Xvut(20) Xyowi(20) Xy yi(20) [ (3.32)
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Figure 33.1

According to (3.3.1a), decomposition into normal one-way responses involves lateral
deconvolution processes along the receivers in each common shot record and along the sources

in each common receiver record. Note that the same principle holds for prestack inverse
wavefield extrapolation, as applied in depth migration.
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Any of the submatrices simulates a (monochromatic) single-component one-way seismic survey

at the free surface. Matrices (X ¢,¢(z0)),(;)and (X, %(zo)t«;')for o=1,2 represent seismic surveys in

terms of received upgoing P-waves related to sources in terms of downgoing S;- or S2- waves.
Similarly, matrices (X .,,ﬁ,¢(zo))(;) and (X vp ¥a(20) for f=1,2 and a=1,2 represent seismic

surveys in terms of received upgoing S;- or S2- waves related to sources in terms of
downgoing P-waves or downgoing Sj- or S2- waves. In Figure 3.3.2a the situation is shown

for one element of matrix (X ,¢(20))f¢. Similarly, in Figure 3.3.2b,c,d the situation is shown for

the corresponding elements in matrices (X Vy,¢(zo))$-f),(X ¢,.,y(zo))(»f)and (X Vy,wy(zo))(f),
respectively.

We illustrate the elastic decomposition procedure with a 2D example. For the subsurface
configuration shown in Figure 3.3.3 we generated 128 multi-component seismic shot records
by finite-difference modeling (Kelly et al.,1976; Haimé,1987). We used vertical and horizontal
vibrators as well as vertical and horizontal geophones at the free surface zg. Figure 3.3.4 shows
the source and receiver configuration used for this experiment. One multicomponent shot record
is shown in the space-time domain in Figure 3.3.5. In the case we use a vertical traction source
T,2,5 and vertical particle velocity detectors v;, we call the data panel recorded with such a
configuration a pseudo P-P panel. For vertically propagating waves this source only emits P
waves and the detectors only record P waves. As this is only true for vertically propagating
waves we have a pseudo P-P data panel. Figure 3.3.6 shows the same multi-component shot
record after removal of the direct wave. All multicomponent shot records are transformed from
the time domain to the frequency domain, yielding a data matrix V,(zp)for each frequency in the
seismic band (5Hz < f=(0/2x) < 80 Hz ). Next we apply the decomposition at the receiver side
(Figure3.3.7) followed by the decomposition at the source side (Figure3.3.8). Figure 3.3.8
represents one muiticomponent shot record afier full devomposiiion. Noie that the spurious
events, indicated by the arrows in Figure 3.3.6 have vanished completely. After the
decomposition has been carried out, the scaled multicomponent one-way response matrix at the
traction free surface X, ,g;’ )(zo), is available for all frequencies in the seismic band. This response
matrix contains significant multiple reflections and conversions related to the free surface, see
Figure 3.12. They can be removed following the multiple elimination scheme proposed by
Berkhout (1982) andVerschuur et al. (1990), yielding the primary one-way response X(zo) of
the subsurface, see Figure 3.3.9.and Figure 3.3.10. The proposed decomposition procedure is
valid for any inhomogeneous anisotropic subsurface. An interesting aspect of this procedure is
that no knowledge of the subsurface is required, the subsurface may have any degree of
complexity. In the decomposition algorithm (3.3.1a) the matrices C(zp)and D(zo)are fully
determined by the medium parameters at the free surface. For the anisotropic situation they can
be computed numerically, for the isotropic situation we have their analytic solution. In the next
section we discuss in details the physical meaning and the properties of the decomposition
operators at the source and receiver side.
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Figure 3.3.2
2D visualization of decomposed data at a free surface z(.
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Figure 33.3
2D inhomogeneous elastic subsurface. The multicomponent vibrators and geophones are located

at the free surface z() = Om.
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Figure 3.34
2D visualization of multicomponent data acquisition at a traction free surface 20. The double

raypaths symbolically represent P- and S- waves

3.4 WAVEFIELD DETECTION IN SURFACE SEISMICS

The decomposition operator at the receiver side enables to obtain the upgoing normal one-way
wavefield components reaching the traction free surface from the measured particle velocities.
Thus, the inverse of this operator enables to study the conditions of detection of the elastic
wavefield by particle velocity detectors in surface seismics. Expression (3.2.8a) establishes that
the particle velocity detectors sensitivity to upgoing normal one-way plane waves is described
by the receiver-composition operator C(zg). In the wavenumber-frequency domain we have :

Vz0) = C(z0) B (20) » (34.1a)
with,

Clzo) =[Mi(z0)] ", (34.1b)
or using (2.6 5a) and (2.8.1d),
C(z0) = L1(z0) + Ly (20) Riz0). (34.1c)

The last expression makes clear that the receiver-composition operator takes ino account the




3.3 DECOMPOSITION OF SURFACE SEISMIC DATA 71

st
il
ﬂnu?!]gl

/

I

N

i i

(d)

Figure 3.3.5
Multicomponent shot record. The source position is indicated by the arrow in Figure 3.3.3
a) pseudo P receiver-pseudo P source ¢) pseudo P receiver-pseudo Sy source
b) pseudo Sy receiver-pseudo P source d) pseudo Sy receiver-pseudo Sy source
The arrows indicate the ground-roll, being non dispersive here as the near surface medium is
homogeneous. The amplitude of the ground-roll is much higher that the one of the body waves for

three reasons:

-The ground roll consists of evanescent horizontally propagating P and S waves, its geometrical

spreading is less than that of body waves.
-Traction sources applied on a traction free surface generate high amplitude Rayleigh waves.

-The sensitivity of the particle velocity detectors put on a traction free surface is high for waves

propagating with the horizontal slowness of the Rayleigh waves.
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Figure 3.3.6
Multicomponent shot record of Figure 3.3.5 after removal of the ground-roll
a) pseudo P receiver-pseudo P source ¢) pseudo P receiver-pseudo S y source
b) pseudo Sy receiver-pseudo P source d) pseudo Sy receiver-pseudo Sy source

The arrows indicate some events that would not be in the sections if instead of the pseudo P and
Sy sources and detectors we had use the true ones.

These figures clearly illustrate that traction sources emit both P and S waves and that particle
velocity detectors are both sensitive to incident P and S waves. The amplitude variations along
the reflection curves is an illustration of the directivity of the sources and of the sensitivity of
the particle velocity detectors to the direction of propagation.
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Figure 3.3.7
Multicomponent shot record of Figure 3.3.6 after decomposition at the receiver side into
upgoing one-way P- and Sy- wave responses
a) true P receiver-pseudo P source c) true P receiver-pseudo Sy source

b) true Sy receiver-pseudo P source d) true Sy receiver-pseudo Sy source

These sections represent the data that would have been recorded if instead of the particle
velocity detectors we had used detectors that only record upgoing P or upgoing S waves. The
comparison of Figures 3.3.6 and 3.3.7 already shows how the decomposition at the receiver side

simplifies the original seismic sections without loss of information.
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2D visualization of decomposed data at a reflection-free surface z() (afier surface related elastic

multiple elimination).

particle velocity field L 1(z0) 5.(20), generated by the upgoing normal one-way wavefield, as
well as the particle velocity field L 1 (z0) I?f,(zo) '3'(20) generated by the downgoing reflected

normal one-way wavefield.

Let us now describe in detail the receiver-composition operator for an isotropic medium. The

first column of E(zo) contains the particle velocity vector ';7;,, generated at the traction free
surface zo by an upgoing unit amplitude zero-phase plane P wave. Similarly the second and

third column of E(zo) contain the particle velocity vectors 531 and 352, respectively generated by
an upgoing unit amplitude zero-phase S; and S plane wave. Using expression (2.7.13d) for the

matrix M 1(zo),we have :

Lo o o
3 =160 G Bl =02 (g, 2k 227,
K Ak (34.2a)
S50 =[Cun, Can, Gl =@ Fhas [ 2242y ) (2242) , 2 k2]
K kA, (34.2b)
$Sh=[613, Cas, 533]T=2ﬁ242— [ky kx ,0 r,

kik, (34.2¢)

I T
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K=i2+ 4k, (34.2d)

Alky) = B iy ok ? + (k2-262F . (342¢)
Looking at (3.4.2) we note that the particle velocity detectors are particularly sensitive to
"upgoing” P and S, plane wave when A(k,)=0. We recognize in A(k,) the Rayleigh
denominator, that vanishes for k,= #kg with kg=av/cy, c, being the Rayleigh wave propagating
velocity. This explains one of the reasons why Rayleigh waves appear so strong compared to
the body waves when the wavefield is recorded on the traction free surface by particle velocity

detectors.

Remark: the scaling factors in front of expressions 3.4.2 depend on the definition of the P and
S wave potentials.

To simplify the study of the sensitivity of the particle velocity detectors to the angle of incidence
of the upgoing P and S plane waves, we restrict ourself to the two-dimensional situation. Then,
we only have plane waves of the type (kx,ky=0,w) with kx = @ sin,/c, for the P waves and
kx = @ sinBy/c; for the S waves. Choosing k,=k;, the following results are obtained:

| Vx " Vy ” Vz l
- 1 c2
5 =2 [__s‘”zep i-sanG,,, 0 .=k <059 B . 2sing )}
14,6, 4p(6y) c? (34.3a)
ﬁs -2jcs l:coses cos20, , 0, 8in26, ) /%-sinzesJT,
H As(Oy) As(6y) Cp (34.3b)
VSh =- —[0 L] 1 ’ 0] T .
) (34.3b)
| Ve vy |l vz l
with,
Ay(8,) = 45in’8, cos6, i 29 +|% 2sin?@ )2
sm cos ——-Slll - in N
(O 4 c2 P2 ? (3.4.3d)

2
A(6y) = 4sinzescost9M / 9—;— - sinzes +cos?20; ,
Cp (34.3e)

Expressions (3.4.3) establish that the particle velocities generated at the traction free surface
depend on the angle of incidence of the incident plane waves and on the P and S wave velocity
ratio (or equivalently on the Poisson ratio o = (r2-2)/(2r2-2) with r = cp/cs) of the near surface
layer. This is contrary to Sh waves for which the generated particle velocities are independent of
the angle of incidence and of the P and § wave velocity. From (3.4.3ab) we observe that for
vertically propagating waves (6,=6;=0), the vertical particle velocity detector only records P
waves (pseudo P wave detector) and the horizontal one only S waves (pseudo S wave
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detector). When the upgoing plane wave has a non-zero angle of incidence, it will be recorded
on both particle velocity detector components. In the case of a low velocity near surface layer
(weathering), the rays are bended towards the vertical before reaching the surface, hence the P
and S waves will then be naturally separated by the vertical and horizontal particle velocity
detectors, see Figure 3.4.1a. In the case of a high velocity near surface layer (permafrost) the
rays are bended away from the vertical before reaching the surface, hence the P and S waves
are recorded by all the particle velocity components, see Figure 3.4.1b.

To get a good feeling of the effects induced by a traction free surface on the sensitivity of the
particle velocity detectors, we can compare their sensitivity to upgoing P and S plane waves in
the case they record the wavefield on a traction free or non-reflecting surfce, see Figures 3.4.2,
343and344.

r x
z \
low velocity layer high veloczty layer
| |

Figure 34.1
(a) In the case of a low velocity near surface layer (weathering), the rays are bended towards the
vertical. The P and S waves are naturally separated by the vertical and horizontal particle
velocity detectors.
(b) In the case of a high velocity near surface layer (permafrost), the rays are bended away from
the vertical. The P and S waves are recorded by all the particle velocity detector components.

3.5 SENSITIVITY ANALYSIS OF THE DECOMPOSITION AT
THE RECEIVER SIDE

To separate the normal one-way wavefield components from the particle velocity field we use

the decomposition operator at the receiver side [E(zo)] 1 This operator depends on: the
stiffness tensor (for the wave-type polarization vectors) and on the wave-type propagation
velocities (for the dispersion relations) in the near surface. In this section we study the

sensitivity of the decomposed upgoing normal one-way wavefield (3'(20)) to errors made in
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Figure 3.4.2
Sensitivity of the particle velocity detectors to upgoing P plane waves. Horizontal (a) and
vertical (b) particle velocity amplitudes generated at a traction free surface (solid line) and at a
non reflecting surface (dotted line). We used cplcs=2.
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\ /45

6, \00 _/ec

Figure 3.4.3
Sensitivity of the particle velocity detectors to upgoing S plane waves. Horizontal (a) and
vertical (b) particle velocity amplitudes generated at a free surface (solid line) and at a non
reflecting surface (dotted line). We used cpl/cs=2.
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L

Figure 3.44
Comparison of the sensitivity of the particle velocity detectors at the free surface to upgoing P

(solid line) and § (dotted line) plane wave. (a) Horizontal component, (b) vertical component. We
used cplcs = 2.

the input parameters. When the stiffness tensor and the wave-type propagating velocities are not

properly estimated, we use an erroneous decomposition operator at the receiver side
~ 11 . . =-

([C(zo)] ). To obtain the true upgoing normal one-way wavefield vector p (zg) we have to

use the true decomposition operator at the receiver side [E(zo)] 1

Knowing that the two following equations hold :

7 (20) =[Cz0)) ' o) , (35.1a)
and
B (20> = <[Clzo)] "> V(z0) , (3.5.1b)

we find the following relation between the estimated and the exact upgoing normal one-way
wavefield:

(P o =[T+Efep) |7 o) (35.1c)
with,

E(20) = <[C(z0)) '>Ca0) - T . (35.1d)
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In the case that no errors are made in the parameters estimation, E,(zo) is zero. Otherwise the
relative error matrix E,(zo) is a full square matrix, which implies from (3.5.1¢) that the upgoing
normal one-way wavefield components are not properly separated from each other. An
interesting question to address is the following: is it possible from the decomposed wavefield
results to find a criterion that could inform us when the correct input elastic parameters have
been used?. A possible criterion may be formulated as follows: when the correct parameters are
used, the elements of the relative error matrix are zero. These zeroes have the effect of
removing in each of the decomposed wave-type sections the two other undesired wave-types.
The number of seismic events in each of the decomposed seismic sections is thus minimum
when the decomposition parameters are correctly estimated. This may constitute an interesting
criterion. The sensitivity of this criterion being then governed by the sensitivity of the off
diagonal elements of the relative error matrix E,(zo).

In an isotropic medium we see from expressions (2.7.11i) and (2.7.13d) that the S wave
decomposition operator at the receiver side, only involves the S wave velocity, cs. This implies
that the wavefield decomposition into S waves is independent of the P wave velocity. This
constitutes an important result. On the other hand, the P wavefield decomposition operator,
depends both on the P and S wave propagation velocities. In Figure (3.5.1a) the amplitude of
the P wave residuals in the decomposed S panel is represented for a set of ky values going from
0, to the horizontal slowness of horizontally propagating P waves. For larger k, values the P
wavefield is evanescent. The sensitivity of the P wave suppression from the S panel, to errors
made in the § wave velocity estimation <cs>, is weak for moderate angles of incidence and
increases for higher angles (far offset data). Figure (3.5.1b) represents the amplitude of the §
wave residuals in the decomposed P panel, assuming a correct estimate of the S wave velocity.
The function is represented for a set of ky values going from 0 to the horizontal wavenumber of
critical S waves (for larger & values, a low-pass filter is applied to the operator to avoid the
operator instability for horizontally propagating P waves). From Figure (3.5.1b) we see that
the sensitivity increases with the angle of incidence of the S waves.

Conclusion: For moderate angles of incidence the decomposition is robust to the choice of cp
and cs. An estimation of the P and S wave velocities of the near surface (based on the wavefield
decomposition results) is possible if and only if we have incident P and S waves with high
angles of incidence (far offset data). In this case the following algorithm is proposed: as the S
wavefield decomposition only depends on the S wave velocity cs, we first estimate it by
minimizing the P wave residuals in the decomposed S panel. Once csis known, the P wave
velocity cp can be estimated by minimizing the S wave residuals in the decomposed P panel.

We illustrate the discussion on simulated data. We consider an homogeneous isotropic medium
(cp =3000m/s, cs=1730mls, p=1000kg/m3) bounded by a traction free surface at zg. A buried
vertically oriented body force source generates a wavefield rccorded by horizontal and vertical
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Figure 3.5.1
a) P wave residuals in the decomposed S panel as a function of the P wave angle of incidence 8p.
These residuals only depend on the accuracy of the S wave velocity estimation.
b) § wave residuals in the decomposed P panel as a function of the S wave angle of incidence s
(up to the citical angle 8;). Here we assume that <cs>=cj.

particle velocity detectors at zg, see Figure 3.5.2. Figure 3.5.4 represents the decomposed P
and S wavefields obtained with different values of the P and S wave velocity.

3.6 WAVEFIELD EMITTED BY SURFACE SEISMIC SOURCES

The source-composition operator [5(20)] lenables to simulate at the surface a downgoing
normal one-way source wavefield by combining three mutually perpendicularly oriented surface
traction sources. Thus, the inverse of this operator enables to study the amplitude and phase of
the downgoing normal one-way waves emitted by surface traction sources. For simplicity we
consider an homogeneous near surface layer and we work in the wavenumber-frequency
domain.
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Decomposed upgoing S (a) and P (b) wavefields obtained with <cg> = 0.9 cg and <cp>= 08 cp.
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Figure 3.5.4c
Decompos: dupg ing S (a) and P (b) wavefields obtained with <
M ]

Figure 3.5.4e (a) (b)
Decomposed upgoing S (a) and P (b) wavefields obtained with <cs> = c5 and <cp>= cp.
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In the wavenumber-frequency domain we have:

Ps (20) = D(z0) Tu5(20) » (3.6.1a)
with,

~ =~+ -1

D(z) =[L7 o)) . (3.6.1b)
The ith column of 5(z0) contains the amplitude and phase of the downgoing normal one-way

source wavefield 5;1‘-2, emited by a unit traction source 7;; applied at the earth surface zg. In the
case of an isotropic near surface layer we have (see (2.7.13c)):

L Pl S llsn |

= o~ o 2knks s jho(k2-2k2 k |7
p;:‘l'xz=[D11:D21,D31]T=k3|:‘ e L r)’-kky } ’
Alk,) Ak, rkz,s (3.6.2a)
= ~  ~ o~ a7 Dkykys  jy(k2-2k2 T
P:,ryz=[012,1)22, Daz] = k?[- 2 ,] (ke 2k7) ,ki" }
Alk,) AkDk,  Krkzs (3.6.2b)
2 2 a2 T
i ~ o~ o~ 2, 2k’ k
P:,rzz=[D13, Dy, D33} = k?[- (ks-247) I adac? ] ,
Alkr) Ak, (3.6.2c)
I P ” Sv “Sh |
with,
2 2
K=k +i, (3.6.2d)
and
Alky) = &y phy k2 + (k2-262F. (3.6.2¢)

Looking at (3.6.2) we note that the traction sources emit high amplitude "downgoing"
evanescent P and Sv plane waves when A(k,) = 0 (A(k,) Rayleigh denominator). This explains
why Rayleigh waves appear so strongly when surface traction sources are used. A possibility
to reduce the Rayleigh wave contribution consists then in burying the sources. Note that the
Rayleigh wave phenomenon does not affect the Sh waves. To simplify the study of the
amplitude and phase of the downgoing P and S waves generated at the surface by a unit traction
source, we restrict ourselves to the two-dimensional situation. We then only have plane waves
of the type (kyky=0,0) with k, = @ sinfy/c, for the downgoing P plane waves and
kx = @ sinB/c, for the downgoing S plane waves. Choosing k,=k,, the following results are
obtained:

| P I s Isn 1
= 2¢2sin6 2 . jcos26,
p::xz=- . o -%—-Slnzp ’Em—s 0 ’
c3A(6,) V ck 4A(65) (3.6.3a)
;’.;:Tyz=[0 30 ’—_a)_]T’
cscos 6 (3.6.3b)
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(a) (b)
low velocity layer hi/gh velocity la}ier

TN/ /

Figure 3.6.1

(a) In the case of a low velocity near surface layer, the rays are bended away from the vertical in
the lower medium. For small offsets (small angles), the vertical traction source may then be
considered as a P wave source and similarly the horizontal traction source as a S wave
source.(b) In the case of a high velocity near surface layer, the rays are bended towards the
vertical in the lower medium. In this case even for small offsets, the vertical and horizontal

traction sources may no longer be considered as P and S wave sources.

90° D 7 oQ°
(a) 7 )

45° 45°

Figure 3.6.2

Amplitudes as a function of the emergence angle for the downgoing P (solid line) and S(dotted

line) plane waves emitted by a horizontal (a) and vertical (b) traction source (cplcs=2).
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T
5:_1 - —[ ( P 2sin? ) , - %jsin6; —L- sinzes , 0 } ,
ch(e,,) 4(8;) (3.6.3¢)

I s I sk

Ap(6p) = 4sin20pcos0p i - sinzep + ( ﬁ) - 2sin26p)2
V ¢ c? ’ (3.6.3d)

2
Ay(65) = 4cosO,sin 8, —2 - sin6; + (cos20s)2 .
Cp (3.6.3e)

with,

and

We observe that the amplitude and phase of the downgoing P and Sv plane waves generated by
a surface traction source depend on the emergence angle @ as well as on the P and S wave
velocity ratio (or equivalently on the Poisson ratio of the near surface layer). Expressions
(3.6.3) indicate that vertical and horizontal unit traction sources emit both P and S waves. For
vertically propagating plane waves (6,=6;=0), the vertical traction source only emits P waves
(pseudo P wave source) and the horizontal traction source only S waves (pseudo S wave
source). In the case of a low velocity near surface layer, the rays are bended away from the
vertical in the lower medium, see Figure 3.6.1a. For small offsets (small angles) the vertical
traction source may then be considered as a P wave source and, similarly, the horizontal
traction source as a § wave source. In the case of a high velocity near surface layer the rays are
bended towards the vertical in the lower medium, see Figure 3.6.1b. For small offsets the
vertical and horizontal traction sources may no longer be considered respectively as P or §

wave sources.
Figure 3.6.2 represents the amplitudes as a function of angle for the downgoing P (solid line)
and S (dotted line) plane waves emitted by a horizontal (a) and vertical (b) traction source
(Cp/Cs=2 )

3.7 SENSITIVITY ANALYSIS OF THE DECOMPOSITION AT
THE SOURCE SIDE

The traction distribution E,,s(zo) that must be applied at the earth's surface to simulate a
. =+ . . . -
downgoing source wavefield ps (zo), is contained in the composition operator at the source

side [5(20)] ! This operator depends on: the stiffness tensor and on the wave-type propagation
velocities in the near surface. In this section we study the sensitivity of the simulated

. =+ . .
downgoing source wavefield <p; (z0)> to errors made in the input parameters.
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When the stiffness tensor and the wave-type propagation velocities are not properly estimated,

we use an erroneous decomposition at the source side [<5(zo)>]'l. Knowing that the two
following equations hold:

7 20)= D(zo) %us(20) (3.7.1a)

and

<§; (20)>= <D(z0)> iz,s(ZO) , (3.7.1b)

we find the following relation between the effective downgoing normal source wavefield

emitted in the subsurface 5: (zp) and the expected one <§:(zo)> :

B (o) = [T+ Ex(z0)] <Ps z0)> » (3.7.1c)

with,

Ez0) = D(z0) [<DGo)>] ' - T. (3.7.1d)

In the case that no errors are made in the parameter estimation E «(zo) equals zero. Otherwise the
relative error matrix Es(zo) is a full square matrix. Which implies from (3.7.1c) that if the
expected source wavefield consists of only one wave-type the effective source wavefield will in
fact be a mixture of the three wave-types.

The study of the sensitivity of the decomposition at the source side in an isotropic medium, is
similar to the one previously developed for the decomposition at the receiver side. We will just
mention that similarly to the decomposition at the receiver side the wavefield decomposition at
the source side into S waves does not depend on the P wave velocity: the two last columns of

the composition operator [5(20)] ‘1=Z2+ (z0) do not involve the P wave velocity, see expressions
(2.7.11h) and (2.7.13c).

3.8 DECOMPOSITION OPERATORS IN THE SPACE-
FREQUENCY DOMAIN

The decomposition at the receiver side in the wavenumber-frequency domain is satisfactory in
the case of a large distribution of regularly spaced particle velocity detectors over a laterally
homogeneous near surface layer. Except for this ideal situation we would rather work in the
space-frequency domain; indeed this domain offers much more flexibility for the following
situations:

- For a laterally inhomogeneous near surface layer, the decomposition operator is space
dependent. It is adapted according to the elastic parameters at all surface locations where the
wavefield has to be decomposed. This space dependency is easily taken into account in the
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space-frequency domain.

- In the space-frequency domain the decomposition operators can take into account quite
well all kinds of detector distributions. This domain is suited for wavefields that are irregularly
sampled. This irregularity could come, for example, from the rejection of some noisy traces.
An other advantage of this domain is that it is also easier to take into account the finite extent of
the shot records, this aperture limitation being always the root of artefacts.

In this section we explain how we design the decomposition operators in the space-frequency
domain, bearing in mind to make them as small as possible. This is not only to reduce the
computational cost of the decomposition, but mainly to make the decomposition process as
local as possible. Local operators are well suited for laterally inhomogeneous near surface

layers.

In the space-frequency domain the decomposition operation is no more a scalar product but a
convolutional product of the data with the decomposition operators. The problem of
determining the space-frequency representation of an operator known in the wavenumber-
frequency domain, is often met in geophysical techniques such as migration (Berkhout, 1985,
Blacquiére et al, 1989). To introduce the method that we use, we illustrate it for the two
dimensional case, leaving us with a simplified notation (this method can be easily extended to
the three dimensional case). We want to determine the expression of the convolutional operator,
that, at a lateral position xg = 0, simulates the filter F(ky,w) for all the incident plane waves that
may reach xg, see Figure 3.8.1. As in the space domain the data are discretized we consider a

discretized convolutional operator of M2+Mj+1 complex points, contained in the vector f(a)) :
@) = (@), .. , fo(@), .., fu, (@) . (38.1a)

To determine the vector coefficients we proceed as follows: A unit plane wave of horizontal
wavenumber ky recorded at the M2+M;+1 lateral surface positions x_p,, ... , X0 = 0, ..., XM;»

leads to M2+M;+1 complex values d(ky, X;, @), that can be written in a vector J(kx,a))

according to :

d(kzy ©) = (dlks, X.pyy ©), .. Ay X0, ®), ... dlks, 131, D), (3.8.1b)
with,

ks, xi, ®) = eJkeXi . (38.1c)

We would like that the vector product of the vector, f(w)with the data vector c—i.(kx,a))leads to the
filtered version ddkx, xp, ) of d(ky, xp, @), with:

dglkx, xo, @) = F(kx, ®) d(kx, X0, @) = F(ky,m) . (3.8.1d)

The M+M/+1 complex coefficients fi(w) must then verify :
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elky, 0, Rw)) =0, (3.8.2a)

with,

elks, &, (@) =d" (ks, ) ) - Flkx,) . (3.8.2b)

Working per frequency component equation (3.8.2a) must be verified for all £, values such that

kx € [kxmins kxmaxls Kxmin and kxmax depending on the horizontal wavenumbers of the plane
waves that are expected to reach the lateral position xg.

Introducing the error vector é(w, f"(a))):

(@, i) = (elexmin, ©, K@), -+, elkxmaz, ©, KN (3.8.3a)
we have : . . .
&, flw) =L lw) - F(w), (3.8.3b)
with,
2 T(kxmimm)
L= : ,
-T
d (kxmax,®) (3.8.3¢c)
and
- F(kxmin, @)
F(w) = : .
F(kxmax, ) (3.8.3d)

The coefficients fj( ) are computed to minimize S(w, a(®)) :

S(o, fiw) = &, Aw) W) &0, fo)) , (3.8.3¢)

(H stands for Hermitian: conjugate transpose), with W() an hermitian positive definite diagonal
matrix :
W (kxmin,®) 0

W(w) =
0 W (kxmax,®) (3.8.3)
The weight matrix W(w) is introduced to give more or less importance to the errors made for

some plane waves. As W(®) is an hermitian positive definite matrix, expression (3.8.3e) can be
rewritten as:

S(o, fion =W 2w, fan)” [ 72w, flan)] (3.8.32)

From the above expression we deduce that the operator ](w) that minimize (3.8.3g) is the least
square solution of the linear system:

W2[L fw) - F@) =0 . (3.8.3h)
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XM2 X1 X =0 X1 AM1

—» X

Figure 3.8.1

We want to determine the M2+M1+1 complex points of the convolutional operator that filters
the plane waves of horizontal wavenumber ky with the filter function F (ky,®).
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The least square solution of (3.8.4h), is a solution of the square linear system:

A() fo) = B(w) , (3.8.4a)
with,
A)=L" W)L, (3.8.4b)
kxmax
Amn(@) = Y, Wiky,0) efksmXn)  m,n=-My,-.., M1,
kx=kuu'n (384(:)
and
b(w) = L¥W(w) F(w) (3.8.4d)
kxmax
(@)= Y, Wky,®) F(ks,) efkim .
ke = Komin (3.84e)

Note that A is an Hermitian matrix, which has a Toeplitz structure if we can write x; =i Ax,
which is the case for a regularly sampled data set. When A has a Toeplitz structure the linear
system (3.8 4a) can be efficiently solved using a Levinson type algorithm (Numerical Recipies,
p47-52).

The linear system (3.8.4a) greatly simplifies for the following situation :

Consider a regularly sampled operator, with a sampling interval Ax. Choose kxmin = -kxnyq and
kxmax = Kxnyq - Akx, kxnyq being the spatial Nyquist wavenumber (7/Ax) and Ak, being the
sampling interval in the horizontal wavenumber domain Ak, = 22/NAx, with N an integer. Set
the weight matrix W(@) equal to the identity matrix. We then have:

kxNyq - Akx
flo=L ¥ Fleoyeks  i=-My,.- My
ke=-kayq (3.8.5)

We recognize in solution (3.8.5) that for this special situation the convolutional decomposition
operator f(w) can be obtained by truncating in the space domain the inverse Fourier transform
of the filter F(ky,@) to M2+M+1 points. Outside this particular situation the system (3.8.4a)
has to be solved either with a Levinson type of algorithm for a regularly sampled operator, or

with the Cholesky algorithm (A is a positive definite matrix) in the case of irregularly sampled
data.

In practice the number of points per operator depends on the accuracy and stability conditions
the operator must obey. We want the operator to be accurate over the spectral band
corresponding to the data, and we want it to be stable outside this band (noise region). For the
low frequencies the convolution operator determination is mainly concerned with stability
conditions and for high frequencies the convolution operator determination is mainly concerned
with accuracy conditions.
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Convolutional operator response for differemt choices of F(kx) and W(ky) over the seismic

bandwidth where the convolutional operator response has just to be stable.
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Depending on the method used to compute the convolutional operator coefficients, the
convolutional operator response will be more or less close to the filter F(ky) We illustrate this
with an example. Consider the operator F(ky)=ky. We want the convolutional operator be
accurate over the seismic band &, € [-50 Aky, 50 Akx] with Ak, =27m/(256 Ax) and Ax=25m
and be stable outside this band. We choose M2 = M; = 2. We then have a five point
convolutional operator. In Figure 3.8.2 the convolutional operator response is displayed for
different choices of F(ky) and W(ky) in the seismic band over which the operator has just to be
stable. We see that the best choice consists in taking a low weight function and setting F(k,) to
zero over the seismic band where the operator has just to be stable and by setting F(ky)=ky with
W(kx)=1 over the seismic band where the operator response has to be close to F(ky).

To illustrate the possibility of doing a correct elastic wavefield decomposition at the receiver
side in the space-frequency domain in the case of a laterally inhomogeneous near surface, we
consider the simulated data set displayed in Figure 3.8.3. The model consists of a laterally
inhomogeneous medium with two buried vertically oriented body force point sources. At the
traction free surface, vertical and horizontal particle velocities are measured, see Figures
3.8.3a,b. Figures 3.8.3c,d represent the result of the P and S wavefield decomposition at the
receiver side in the space-frequency domain. As can be seen the wavefield is correctly separated
even around the discontinuity.

For the derivation of the decomposition operators at the source side in the space-frequency
domain, we keep the same formalism as the one used for the decomposition operator at the
receiver side. The equations stay the same, except for (3.8.2¢) that must be rewritten as :

d(ks, xi, @) = e*TkaXi, (3.8.6)

For the decomposition at the source side we do a plane wave front synthesis instead of a plane
wave decomposition, this explains why the - sign is transformed into a + sign.

3.9 INFLUENCE OF NEAR SURFACE LAYERS ON THE
RECORDED SEISMIC WAVEFIELD

In the case of one or more near surface layers we would like a decomposition operator at the
receiver side that gives us the upgoing one-way wavefield at the top of the lower medium, see
Figure 3.9.1, thus free of the influence of the near surface layer. To determine this operator we
need to know the phenomena induced by such a near surface. We start this study for the simple
case of a single near surface layer, first with a one-way approach to well see all the wave
phenomena involved, then with a two-way approach which easily enables the extension of the
previous results to the case of a multi-layer near surface medium. We will check that the two
approaches give exactly the same solutions. For simplicity we consider laterally homogeneous
near surface layers and the expressions are derived in the wavenumber-frequency domain.
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One-way-approach

With this approach, we follow the propagation of an upgoing plane wave ;3"(z1) (coming from
the subsurfac), through the near surface layer, taking into account the transmission, reflection,
conversion and propagation effects occuring along its path. Figure 3.9.1 illustrates the different
wave phenomena affecting the incident upgoing wave. We consider an upper layer
characterized by the stiffness tensor Cyjiz,y and the density py, overlying a lower medium

characterized by the stiffness tensor Cjjxi,; and the density p;. The particle velocity 5(zo)

measured at the traction free surface, (i.e., ;,(zo) =0), is related to the upgoing wavefield

5_(zo) according to:

= ~_ 7.1 2-

(o) =M1 B (20) - (3.9.1)
To relate ¥(z0) to i‘;'(zl), we need to know how 34(20) is related to 5_(21). The relation is :

5 (z0) = (W (z020)T (21) + [W_(Zo,ll)ii @)W *(z1,20)R '(Zo)] W (z0.20)T (21) +
[W (20,200R @)W " (21,200R (20))> W (20,20T (1) +---) B (1) (3.92a)

or equivalently,
7 @) =[T- W o.z)R @)W (21,208 (20) "W (@0,2)T ()P (@1) . (3.9.2p)

The first term of the series in (3.9.2a) represents the primary response, taking into account the
transmission effects i'(zl) at the boundary zj, as well as the wavefield propagation effects in
the upper layer from z; to zp, W-(zo,zl). The second term in the series accounts for the first
order multiple : the primary wave is reflected at the surface zg, propagates downward from zg to
z1, is reflected at z) and propagates upward to zg. The n+15 term in the series accounts for the
nth order multiple. The combination of equation (3.9.1) with (3.9.2b) leads to the relation
between p (z1) and $(zo) :

Feo) = (M) [T - W (20,20R (@)W (21,2008 (o) ' W (z0,20)T (@) P (21) -
(3.9.3a)
Note that the term [i - W-(zo,zl)ﬁ +(21)W+(zl,zo)if '(zo)] 71 is at the origin of a frequency
dependent reverberation phenomenon.

The operator developed in (3.9.3a) describes the particle velocities generated at the traction free
surface by an upgoing wavefield coming from the lower medium, taking into account all the
near surface layer effects. The inverse of this operator is the decomposition operator at the
receiver side we are looking for :

F e =[F el W Gom)] ™ - R @)W @R @) Miuseo) . (3.9.3
(3.9.3b)
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R (z0) P (z0) Upper medium

/ \ Cijt u > Pu

R (1) i"'(z1)
21 = -
P (z
p (a1) Lower medium
Cijii 1 » P1
R (z0) ¢
W+(zl,zo)l |W-(20,21)l
P (1)
Figure 3.9.1

Near surface layers induce frequency dependent reverberation phenomena to the upgoing

incident wavefield.
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Two-way approach

This more straightforward approach can be easily extended to the case of a multi-layer near
surface. The two-way approach can be described as follows: knowing the velocity and traction
field at zg, 5(20) and "-t”.z(zo), we extrapolate them to z; using the two-way extrapolation operator
U(z1.20) :

(;ﬁ(“) =Ulz1, 20) (f(z") ) .
T(z1) 7:(20) (3.9.4a)
with,

U(z1,20) = Ly W(z1,20) M, , (3.9.4b)

when the near surface layer is source free, which is the case in our derivation. Then, from the
velocity and traction field at z;, we can determine the up and downgoing one-way wavefields at
the top of the lower medium with the decomposition operator M, I3

=+ = =
(1;.(21) )=A71(:(z’) )=ﬁ1 U(z1, 20) ;'(20) )
p (z1) T,(21) 7A20) (3.94c¢)

Taking into account that '%z(zo) = 6, we have :

=- ~_ o~ [ 1~ ~ ey 1~ —y =
p (@)= ( [M a,ILa,u] [WGo,20)] "M 1ut [M a,IL;,u]W *(z1,20)M7, .,) V(20) . (3.9.5a)
Using relations (2.8 5c), (2.8.6m) and (2.8.1f) equation (3.9.5a) can be rewritten :

7@ =l @] [W o] - K eW Lok el Miudeo. (3055

As expected the two-way and one-way approaches lead to the same result.

This procedure can be extended to the case of a near surface medium consisting of a stack of
horizontal homogeneous layers with interfaces at depths zj, 23, ..., z,,. To obtain the upgoing
waves }:)'.'(z,,,) at the top of the lower medium from the measured particle velocities '{7.(20) at the
traction free surface, we first extrapolate the velocities and stresses from zg to z,, using a
cascaded combination of two-way extrapolation operators:

( Tem (z0) ) .

T(2m) 0

= Uzmozm1) - -- U(z1,20) (

(3.9.6a)
From the velocities and stresses at the top of the lower medium, we can determine the upgoing
normal wavefield with the decomposition operator M; :

(i.(z"') )-’- M, :(z'") =M, UGipzm) -+ UGz1,20) (v(.z.O) ) ‘
P (zm) Tu(Zm) 0 (3.9.6b)

From which we deduce that:
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B (2m) =[Czm, 20)] " ¥(z0) » (3.9.6¢)

with [C(zs, 20)] ! the lower left submatrix of the matrix product M; U(zmzm.1) - - U(z1,20)
In the case of an m layer near surface medium equation (3.9.6¢) describes the decomposition
operation at the receiver side that enables to obtain the upgoing wavefield ,'7"(z,,,) at the top of
the lower medium from the particle velocities '3(20).
Going back to the case of a single near surface layer, it is interesting to know how the
decomposition operator described in (3.9.3b) behaves when the upper layer thickness is small.
Knowing that :

lim U(zy,20) =1

(z1-20) > 0 (3.9.7a)

we then have :

( P )z i (f(lo) )= ﬁl(ﬁio) )
P (21 7(20) 0 (3.9.7b)

which implies that :

P (z) = M1 ¥(z0) . (3.9.7¢)
‘We then conclude that in the case of a very thin near surface layer the decomposition operator at
the receiver side that has to be used is the one of the lower medium M 1. and not the one of the

near surface layer M; .- A layer can be considered as thin when the ratio of the layer thickness

and the apparent vertical wavelength of the incident wave is small. This implies that:

- high frequency waves are more affected by the near surface layer than low frequency
waves.
- § waves are more affected than P waves.

With simulated data we illustrate the influence of a thin low velocity near surface layer, as well
as the effects of the dereverberation and decomposition operator at the receiver side (3.9.3b). In
Figure 3.9.2 the thin layer model is displayed; traction sources are applied at the surface.
Figure 3.9.3 represents the vertical particle velocities recorded at the surface when a vertical
traction source is applied. We can recognize the dispersion phenomena generated by the low
velocity near surface layer. Figure 3.9.4 represents the decomposed upgoing P wavefield
without and with dereverberation. As can be seen the reverberation modifies the seismic
wavelet. Figure 3.9.5 represents the horizontal particle velocities recorded at the surface when a
horizontal traction source is applied. We can recognize the dispersion phenomena that affect the
seismic wavefield due to the presence of the low velocity near surface layer. Figure 3.9.6
represents the decomposed upgoing S wavefield without and with dereverberation. The
reverberation affects more the S wavefield than the P wavefield as the S wavelength is smaller
than the P wavelength.
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Traction free surface
[ ¢, = 1225 mfs
thin layer cs =850 m/s 25m
p = 1000 kg/m3 l
[ ¢p = 2000 m/s
layered Cs=2350 m;'s
half space p =2000 kg/m3
Figure 3.9.2

Thin low velocity near surface layer model

Figure 3.9.3

Vertical particle velocities recorded at the surface due to a vertical traction source

(a) 0dB clipped (b) 40 dB clipped
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Figure 3.9.4
Decomposed upgoing P wavefield

(a) without dereverberation (b) with dereverberation
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Figure 3.9.5
Horizontal particle velocities recorded at the surface due to a horizontal traction source

(a) 0dB clipped (b) 40 dB clipped
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Figure 3.9.6
Decomposed upgoing S wavefield

(a) without dereverberation (b) with dereverberation

3.10 INFLUENCE OF NEAR SURFACE LAYERS ON THE
SEISMIC SOURCE WAVEFIELD

The decomposition at the source side consists in simulating a pure downgoing normal source
wavefield by combining several horizontal and vertical traction sources. The decomposition
operator at the source side, that describes this traction distribution, is fully based on the
expressions of the downgoing normal waves emitted by a traction source applied at the surface.
These expressions involve the elastic parameters of the medium over which the traction is
applied. In the case of one or more near surface layers we would like that the decomposition
operator at the source side simulates a pure downgoing normal source wavefield in the lower
medium and not in the near surface layers. To determine this operator we need to know what
are the downgoing waves emitted in the lower medium due to a traction source applied at zg. As
for the previous study we start with the simple case of a single near surface layer, first with the
one-way wave equations to see well all the wave phenomena involved, then with the two-way
wave equation. This second approach enables to extend easily the results to the case of a multi-
layer near surface medium.

One-way approach

With this approach, we follow the propagation of the downgoing plane source wave fi.: (z0)
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(emitted by a traction source 7;,5(z0) ) through the near surface layer, to determine the

transmitted downgoing waves §+(zl) in the lower medium. Figure 3.10.1 illustrates the

N . =+ . . = .
situation. The downgoing wave p; (z0) emitted by a traction source 7z,5(2o) is given by :

s (20) =[L3) " Ts(z0) - (3.10.1)

Torelate §+(zl) to iz,s(z()), we first need to know how 1_7.+(21) is related to 5: (z0). The relation
1S :
7 @) = (T @)W e1,20) + T 20) [W (21,200 o)W (20,20 *(20)] W ¥(z1,20) +

T @) [W'@1,20R oW @o20R '@ WWianz) +--) 55 @) (3.102a)

or equivalently,

=+ = T W ~. = ~ A1 =
P @) =T @[I- W G120R oW (20.20)R ")) W (21,20 By 20) . (3.10.2b)
The first term of the series (3.10.2a) describes the transmitted primary waves, taking into
account the propagation effects in the upper layer to go from zg to z; and the transmission

effects that affect the downgoing wavefield §+(zl) at the boundary z;. The second term of the
series accounts for the first order multiple :the primary waves are reflected at z;, propagate
upward to be reflected at the traction free surface zp and finally propagate downward from Zp to
z] to be transmitted into the lower medium. The n+ 15! term in the series accounts for the nth

order multiple.

The combination of equations (3.10.1b) and (3.10.2b) leads to the relation between f_):+(zl) and
;z,s(ZO) :
= ~ ~ ~ ~_ ~ 1 ~41-12
Bl =T e I- We,20R W (20,208 )] W20 [£2.] " Tse0) -
(3.10.3a)
It is interesting to note that the term [; - W+(zl,zo)§ ‘(zo)ﬁ"'(zo,zl)ﬁ +(zl)] s at the origin of
a frequency dependent reverberation phenomenon. The operator developed in (3.70.3a)
describes the downgoing waves emitted in the lower medium, generated by a surface traction
source, taking into account all the near surface layer effects. The inverse of this operator is the

composition operator at the source side that has to be used if we want to simulate a pure

downgoing normal source wavefield in the lower medium:

iz,s(ZO) = L5 [W*Go,21) - R (20)W (20,200 )] (f+(21))‘1 ). (3.10.3b)

Two-way approach

This more straightforward approach can be easily extended to the case of a multi-layer near
surface. The two-way approach can be described as follows: knowing the upgoing and
downgoing wavefields at z; in the lower medium §+(z1) and 'p_ﬁ'h(zl), we can determine '3(21)

and 7,(z;) using the composition operator L;:
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Figure 3.10.1
Downgoing source wavefields are affected by frequency dependent reverberation phenomena
induced by the near surface layers.
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(ﬁzl) )= 5{( A )
T(21) 0 (3.10.4a)

here we took into account that for a traction source applied at zg we only have downgoing

waves in the lower medium (i.e p (z1) = 6).The velocity and traction wavefields can be
extrapolated from z; to zg using the elastic two-way extrapolation operator Uz, z;) :

( j(zo) = U(zo, 21) (f(zx) - U(zo, 21)51( 17+£21) )
T2.5(20) 7(21) 0 (3.10.4b)
with,

U(zo, 21) = L, W(z0, 21) M, . (3.104c)
We then have :

Ez,s(ZO) = (Ezuﬁ;+(20121) [ﬁt;:uil;,l] + i’?:,uﬁ; -(ZO’ZI) [ﬁr;,ui:;,l] )§+(Zl) . (3.10.5a)
Using relations (2.8.4e), (2.8.1d) and (2.8.4f) we obtain::

%z,s(ZO) = L5 [W(20,20) - R ()W (20,20R @[T @] " B 20) . (3.10.5b)

As expected the one-way and two-way approaches lead to the same result. The procedure can
be extended to the case of a near surface medium consisting of a stack of horizontal layers with
interfaces at depths z3,z2, ..., zjy. First from the upgoing and downgoing wavefields in the
lower medium , ’3 +(z,,l) and 5'(2,,,) =0 we determine the associated particle velocities and

tractions using the composition operator [, I

( ﬁ(zm) )=£l( §+(zm) ) .
To(zm) 0 (3.10.6a)

The velocity and traction wavefields are extrapolated from depth level z,, to the surface zg using
a cascaded combination of two-way elastic extrapolation operators :

= = =2+
( e N G- ﬁ(zm.l,zm)( 2@ = Gagzr) - Uamarrzm) L ( P G )
TZ,S(ZO) Tz(zm) 0
(3.10.6b)
From which we deduce that :
T,.5(20) = [5(20,Zm)] B 5 (em) (3.10.6¢)

[5(20,2,,,)] 'Ibeing the lower left submatrix of the matrix product U (zo,zl)..l7 (z,,,_,,z,,.)Z,.

We deduce that in the case of an m layer near surface medium equation (3.10.6¢) describes the
decomposition operator at the source side that enables to simulate a downgoing normal source
wavefield in the lower medium by combining several surface traction sources. This operator
takes into account all the wave phenomena generated by the near surface layers.
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Going back to the case of a single near surface layer, it is interesting to know how the
decomposition operator at the source side (3.10.5b) behaves when the layer thickness becomes
thinner and thinner. Following the same approach as for the decomposition at the receiver side
we find that:

= ~y

T5(20) = L2P (@), (3.10.7)
We deduce that in the case of a thin near surface layer the decomposition operator at the source
side that has to be used is the one of the lower medium L. 2+ 1 and not the one of the near surface

layer f{ u,




APPENDIX 3A

MATRIX/VECTOR NOTATION FOR
DISCRETIZED WAVEFIELDS

We review Berkhout's matrix notation, generalized for 2D and 3D applications. Consider a 2D
wavefield, measured at a constant depth level as a function of lateral position and time,
described by :

p(xy 20, t) ’ (3A1a)
where,
P wavefield ( for instance acoustic pressure),
X lateral coordinate of the receivers,

zp depth level of the acquisition surface,
t time.

After a Fourier transformation from time to frequency, this wavefield is described by :

px, 29, @) , (3A.1b)
where,

P Fourier-transformed wavefield,
(0] circular frequency.

In the following we only consider the frequency-domain representation, that is, we assume that
monochromatic wavefields p(x, zo, ®;) are available for a range of w; values. All these

monochromatic wavefields can be treated ihdcpendently. If we consider one frequency
component ; only, then the discretized version of the wavefield can be represented by a

vector, according to :
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p ('K Ax’ Zp, mi)
P =| p (k Ax, 20, @) | >

p (K Ax, 29, @) (3A.1c)

where Ax is the distance between the receivers.

For the seismic situation this vector may represent the (monochromatic) data in one common
shot record. Let us now write this vector symbolically as :
Pk
p(20) =| Pk ,
: Xr
124 (3A.2a)
where x, denotes that the different elements in this vector correspond to the different lateral
positions of the receivers. With this notation we can write the (monochromatic)
data p(x;, X5, 2o, @;) of a 2D seismic survey symbolically as a matrix, according to :

— Xs
p_K: M P-I{, m pK_ M
: : : i
P(zo)=| Pk, M ~  Pkm PkM ,
: : ! Xr
Pk, -M PK.m PK.M (3A.2b)

where x; denotes the different lateral positions of the sources. Each element py,, correspond to
a fixed lateral receiver coordinate x, ¢ and a fixed lateral source coordinate xg . Each column
(fixed x,) in this data matrix represents one (monochromatic) common shot record; each row
(fixed x;) represents one common receiver record; the diagonal (x; = X, ) represents zero-offset
data and the anti-diagonal ( xs = -x;) represents common midpoint data.

The (monochromatic) data p(xy, yr, Xs, ¥s, 20, @;) in a 3D seismic areal survey can also be
represented by a matrix (Kinneging et al. 1989), according to :

—>Ys
P-K. M s P—K. m e P'K.M
: : : l
P@zo)=| Pe,.m -~ Pem - Prm )
: : : Yr
Px,.m - Pgkm -~ P (3A2c)

where y, denotes the different cross-line positions of the receivers and where yg denotes the
different cross-line positions of the sources. Each submatrix P; , corresponds to a fixed cross-
line receiver coordinate y, 7 and a fixed cross-line source coordinate ys,. The elements in the
sub-matrix itself are defined as in (3A.2b) (see Figure 3A.1). Note that each column (fixed
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X5 ys) of the total matrix P(zg) represents one (monochromatic) common shot record and each
row (fixed x,, yr) represents one common receiver record.

So far we considered the situation of single-component data. The data matrix for multi-
component data contains 3x3 submatrices, each submatrix having a similar organization as the

single component data matrix P(zp), see for instance equation (3.2.11c).

Vs
( - — s —x )
| R |
X X X
— :
| f
Xy :
? |
s é %
g —x
[ |
x X
N J

Figure 3A.1
Organization of the data matrix for a 3D seismic areal survey




CHAPTER 4

2D ACQUISITION OF 3D SEISMIC DATA

4.1 INTRODUCTION

Whenever the data acquisition is restricted to a multicomponent line survey rather than to an
areal survey, we only get a 2D slice (r,60=80p,z=2,t) of the 3D seismic wavefield (x,y,z=zp.t) ,
see Figure 4.1.1 (r, radial distance, is used instead of x to point out that the wavefield is
measured along a line of fixed azimuth 8p). In this chapter we discuss under which conditions,
the normal one-way wavefield decomposition can still be accurately achieved for such an
acquisition geometry. As we will see it depends on the wavefield variations along the x and y
directions. Only two types of wavefields can be well handled: wavefields that are constant
along a direction (line source data) and wavefields with simple azimuthal symmetry. Apart from
these two particular situations, two-way wavefields recorded along a line of detectors can not
be uniquely decomposed into their normal one-way wavefields components.

4.2 LINE SOURCE DATA

In the hypothetical situation of a line source, the source function is constant along the line
direction. Therefore, if the stiffness tensor Cjj (x,y,z) and the density function p(x,y,z) are
constant functions along this direction, so will be the direct and reflected waves. For the
example let us consider a line source oriented along the y-axis. As the wavefield is constant
along the y- direction, the wavevectors of the plane waves that compose the elastic wavefield
are of the type (ky, ky=0, k;)T. The plane-wave decomposition of the particle velocity vector
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Figure 4.1.1
When the seismic wavefield is measured along a radius with azimuth angle 60, we only get a 2D

slice (r,0=6p,z=z0,t) of the 3D seismic wavefield (x,y,z=z(.t).

traction free surface

T

600m  Cp = 3000 mis ; Cs=1500mis ; p = 1000 kg/m’

3
1000m  Cp = 5000 m/s ; Cs=2500mis ; p = 1000 kgim

. 3
I Cp = 7000 mis ; Cs=3500mis ; p = 1000 kg/m

lower Aalf-space

Figure 4.2.1
Model used to illustrate the difference in the seismic response between a line and a point source
of vertical traction . In the following simulated data sets, the multiples and surface waves are
ignored.: they have not been modeled. The trace distance is 33m.
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may then be done according to:

+oo
_j H
Vilky, O, z, @) eJkex 0 0 vy(x, 0, 2)
Vy(kx, 0, 2, @) | = 0 edkx 0 vy 0,2) |dx,
Vz(kx; 0: z, (0) 0 0 E'jkxx vz(x, 0, Z)
- (4.2.1)

where H denotes Hermitian (transpose complex conjugate). A similar expression also holds for
the traction components. The wavefield recorded along the x-direction at depth zy, is enough to
describe completely the wavefield over the whole surface z=zp. The normal one-way wavefield
decomposition is then possible. In the case that the subsurface stiffness tensor and/or the
density are arbitrary functions of x, y and z, so will be the direct and reflected wavefields. The
wavevectors ic. = (kx, ky, k,)T of the plane waves that compose the elastic wavefield may then
have any direction. From the wavefield only recorded along the x-direction, it is then not
possible to distinguish between plane waves with distinct ky horizontal wavenumber.
Consequently the wavefield decomposition into its normal one-way wavefield components can
not be uniquely done.

To illustrate the difference between the wavefield emitted by a line source of vertical traction
and a point source of vertical traction, we consider the simple model described in Figure 4.2.1.
The seismic response (without multiples and surface waves) of this subsurface to a line source
and to a point source is represented in Figures 4.2.2 and 4.2.3. Differences appear at near as
well as at far offsets.

4.3 POINT SOURCE DATA

In reality the sources used in the field emit waves that have both a dependency along the x- and
y- directions. Then, independently of the subsurface configuration, we can not assume any
more that the elastic wavefield is constant along a direction. Wapenaar et al. (1992) propose to
simulate the line source response of the subsurface from the point source response. They point
out that a line source response is obtained from many point source responses by an integration
along the source coordinate axis ys, see Figure 4.3.1. The underlying assumption is that the
point source responses are described by a linear wave equation. For a continuous distribution
of point sources along the ys-axis, the superposition principle may be mathematically
formulated as :

+oo
lp\(xn Zy; Xsy 253 8) = I P, ¥r=0, zy; X5, ¥5, 252 1) dys

e (4.3.1)
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(a) vertical particle velocity component generated at the surface by a line source of vertical
traction.
(b) vertical particle velocity component generated at the surface by a point source of vertical

traction.
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Figure 4.2.3 (b)
(a) horizontal particle velocity component generated at the surface by a line source of vertical
traction.
(b) horizontal particle velocity component generated at the surface by a point source of vertical

traction.
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Here p(x,, ¥r, 2r; Xs, ¥ss 253 £) iS @ point source response as a function of time (f) at receiver
position (x;, y,, z,) for a point source at (xs, ys, 2s) and P, 23 Xs, Zgy ) is a line source
response at receiver point (x,, z,) for a line source at (xg, zs). When the medium parameters are
independent of the ys- coordinate, the response of a point source at (xs, ¥s, zs) is just a shifted
version of the response of a point source at (xg, 0, z,) :

POXry Yrs 2oy Xy Y 253 1) = DXr, Yr-¥s, 23 X5, 0, 25 8) (43.2)
Substitution in equation (4.3.1) yields :

+00
Pxr, 253 X5, 253 D) = j PXr, Y5, 273 X5, 0, 253 1) dys

- (4.3.3a)

or renaming the integration variable,

+ oo
PGry 21y Xs 253 1) = j D, Yrs 2 X5, 0, 25 1) dyy .

-e (4.3.3b)

The latter equation states that the line source response p(xy, zr; Xs, Zs; ) may be synthesized
from a single point source response by carrying out an integration along the receiver coordinate
¥r. The principle is visualized in Figure 4.3.2. Equation (4.3.3b) is not yet suited for practical
situations where the response is often measured only for y,=0. When the response satisfies
certain symmetry properties in the x,, y, - plane, the integral (4.3.3b) along the receiver
coordinate y, may be replaced by an integral along the receiver coordinate xy, as described by
Wapenaar et al.(1992). The symmetry properties that make this procedure possible are verified
for wavefields propagating in a laterally homogeneous medium, see section 4.5. In the case of a
moderate laterally inhomogeneous medium it is preferable to work per CMP (Common Mid
Point) gather instead of per CSP (Common Shot Point) gather. Once the point source response
has been transformed into a line source response, the elastic wavefield can be decomposed with
the 2-D version of the decomposition algorithm. Of course we must then be aware that we
decompose the elastic wavefield generated by the simulated line source and no more the one
generated by the original source.
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4.4 CYLINDRICAL WAVE DECOMPOSITION OF 3D
SEISMIC DATA

As explained in the previous section, a possibility to treat point source data consists in
transforming the point source response into a line source response. In the case we want to
preserve the point source amplitude behaviour, this transformation must be avoided. We leave
the Cartesian coordinates (x, y, z) for the cylindrical coordinates (r, 0, z), see Figure 4.4.1. The
cylindrical coordinates are naturally adapted to the acquisition geometry we are dealing with.
They enable to treat point source data without going through the line source transformation. A
change of coordinates implies modifications in the transform domain introduced in chapter 2.
Starting from the results established in 2.7, we show in Appendix 4A, how cylindrical waves
(instead of plane waves) naturally appear in the seismic wavefield description when cylindrical
coordinates are used. In this section we give, for an isotropic medium, the integral formulas
that enable to transform the data from the space domain to the wavenumber domain and vice
versa. In cylindrical coordinates, this data transformation corresponds to a cylindrical wave
decomposition or composition of the data, depending on the direction of the transformation
(forward or backward). The following expressions are exact for wavefields propagating in an
isotropic laterally homogeneous medium. In the case of moderate lateral inhomogeneities, it is
preferable to apply the transformations on CMP gathers rather then on CSP gathers.

In cylindrical coordinates, the forward transform of the particle velocity components from the
space domain to the wavenumber domain reads (for all the derivations we refer to Appendix
4A, for the numerical aspects see Appendix 4B):

27 400
V8 (ky.2,0) er®) ke 0 | vrezm
Wrz,o) |=5 || | -8 ftr6) 0 ve(r,0,2,0) | rdrd6 ,
VE(k,,z,0) 0 0 [ (k,r,6) v, (r,0,z,w)

00

(44.1a)
with,

Fhor,8) = g (k) €im giUyr) = L Lm s Tmaa ()]
U ,0) = gk} eim8; g (hor) = 3 Uma (et Y mss ()]

B kyr,0) = J(k,r) ejmB

The inverse transform from the wavenumber to the space domain reads:
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+oo
v(r,0,2,0) o flk,r.0)  f(k,r,0) 0 V§(k,,z,0)
vG("s 9,2,(0) = 2 - me(kr", 9) flm(krrv e) 0 V?(k”z’w) k’ dk’ *
vi(r,8z,w)) " 0 0 fkr.0) |\VEknz.0)

0

(44.1b)
Similar expressions are also valid for the traction components. The superscript m is an integer,
it represents the azimuthal order of the cylindrical wave. The real k, represents the horizontal
wavenumber of the cylindrical wave. The cylindrical wave transformation matrices involved in
expressions (4.4.1ab) are not diagonal, contrary to the plane wave transformation matrices.
Consequently, to transform one of the horizontal components (radial or tangential), the other
one has also to be used. It is interesting to note that under the far field approximation (k,r>>1),
the transformation matrix can be well approximated by a diagonal matrix. Under the far field

approximation we have:
J"kyr,6) = j Im1(k,r) eJmE (4.4.2a)

' k,r,0) =0 (4.4.2b)

The forward transform of the normal one-way wavefield components from the space to the

wavenumber domain reads:

+ 27 oo

~tm

¢ (k.z,0) f3”‘(k,r,6) 0 0 H ¢;t(r’ 0.2,0)

~S ,m(k,,Z,(O) = L 0 f3m(krr, 9) O (r, 0,2,(0) rdrd9 .
2r s

7 0 0 A k,r,0) EHr,0,2,0)

LM
gs (knz * CD)

(44.3a)

The inverse transform of the normal one-way wavefield components from the space to the
wavenumber domain reads:

+o0
~tm
66w | - | [AEre 0 0 ¢ k2o
V620 |= 0 fhro 0 Ve 2, 0) | Kr
+ m= -oo " ~.
{s (r,0,z,00) 0 0 5 (krr,e) {:’m(k,,z,w)
(4.4.3b)

The transformation matrices used for the normal one-way wavefield components are diagonal
and are valid both for the near and far field terms.
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Applying the cylindrical wave decomposition formulas to the two-way wavefield vectors, we
obtain simple linear relations, similar to the ones developed in chapter 2, between the two-way

and the normal one-way wavefield components. We have:

m\ (L Z{)?"‘”
" L o \g")

and its inverse,
7))
P\ M M;

=m . .
v the particle velocity vector :

QU <l

with,

=2m '~ ~ —~.

v "y 2,0) = (V8 (kr,2,0), FFky2,0), VR kr,z. )
*m
% the traction vector :

-m o, ~ ~
T (k2,0 = T3k 2,0), THkp2,00), Toplkrz,0))
=+m

P the normal downgoing wavefield :

=+m ~+m ~im ~+m T
p (kr’zyw) = (¢ (kr’z9w)’ WS ! (kr,z,(l)), gs (kr,zsa))) E

=-m
P the normal upgoing wavefield :

—-m m ~ ~.m
5 k2, = (0 " Uriza), T 2., & )

and
k *jk,s O
~%
L:-_L1. _ ,
1 P 0 0 1
tk,, Sk O
Tkkyp  -jkE-2k7) 0
~t
L, =kl2 0 0 thys |
T\ (h2+2k2)  £2jkky s 0
2 2
kr 0 __,_ (k:‘zkr)
2z
~ 292
R R o,
) 2k
k2
0 &
3 0

(44.4a)

(4.4.4b)

(4.4.5a)

(4.4.5b)

(44.5¢c)

(4.4.5d)

(4.4.6a)

(4.4.6b)

(4.4.6¢)
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Tk o
kz.p
ar_1 . —Jkr
= A 0 +
272 s
2
0+ o
Kz.s (4.4.6d)

The properties of the composition and decomposition matrices developed in chapters 2 and 3,
stay valid here. Note that expressions (4.4.6a-d) can be deduced from expressions (2.7.13b,c)
setting ky to O and replacing ky by k..

Expressions (4.4.1a) and (4.4.3a) make clear that the wavefield decomposition into cylindrical
waves requires an integration over the azimuth angle 6, in order to separate the cylindrical
waves of distinct azimuthal order m. In the case the seismic wavefield is only recorded along a
line of detzctors, that is, only for a given azimuth angle 6, the azimuthal integration can not be
done. This has the consequence that the elastic wavefield decomposition into cylindrical waves
can not be done uniquely, as we can not make the distinction between waves of distinct
azimuthal behaviour. From the above remark we conclude that for such an acquisition geometry
the normal one-way wavefield decomposition is possible, if and only if the wavefield contains a

unique type of known azimuthal symmetry.

4.5 WAVEFIELD SYMMETRIES IN ISOTROPIC LATERALLY
HOMOGENEOUS MEDIA

In this section, we show that when the subsurface is isotropic and laterally homogeneous, the
elastic wavefield generated by traction point sources only contains one type of azimuthal

symmetry.
Applying the change of variables:

kx =k, cospP, ky =k, sinf, (4.5.1a)
in expressions (3.6.2), we obtain (in the wavenumber domain) the azimuthal behaviour as a
function of B of the downgoing P, Sy, and Sy monochromatic plane waves emitted by surface

traction sources. From this, we can deduce in the space domain, the azimuthal behaviour as a
function of 8 of the downgoing emitted P and S waves. The azimuthal angle @ is defined

according to:
x=rcos0, y=rsind. (4.5.1b)

The azimuthal behaviour, in the space domain, of the downgoing P, Sv and Sh waves emitted
by horizontal and vertical traction sources applied to the earth surface, is summarized in rable

4.5.1.
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Txz Tyz T2z
ot cos® sin0 1
yt cos@ sin@ 1
ot sin@ cos@ 0

(table 4.5.1)
From the azimuthal dependency of the downgoing emitted P and S, waves we can determine
the azimuthal dependency of the radial (v,, 7,;), tangential (v4, 7g,) and vertical (v,, T;;)
particle velocity and traction field. The following relations are obtained :

Tz Tyz Tzz
Ve, Trz cos@ sin6 1
Vs, Taz cos@ sin@ 1
ve, Tgz sin@ cosO 0

(table 4.5.2)
table 4.5 .2 illustrates well that the particle velocity and the vertical traction field generated by
surface traction sources have a simple azimuthal dependency. In the case of a laterally
homogeneous subsurface the azimuthal behaviour of the elastic wavefield is preserved during
reflection and transmission at horizontal interfaces. This means that for such a medium the
azimuthal dependency displayed in table 4.5.2 does not only apply to the downgoing source
wavefield but to all wave types (body and surface waves), at any depth level. Consequently the
azimuthal dependency of the normal one-way wavefield displayed in table 4.5.1, does not only
apply to the downgoing normal source wavefield but also to all upgoing and downgoing normal
wavefields at any depth level.

To summarize we may say that the elastic wavefield, generated by surface traction point sources
applied over an isotropic horizontally layered medium, only involves one type of azimuthal
symmetry. This result can be extended to buried horizontal and vertical body force point -
sources. Due to this simple sitnation, the integral over 6 in equation (4.4./a) can be computed
analytically, meaning that it is possible to decompose such a seismic wavefield into its
cylindrical wave components, even if it has only been recorded at a single azimuthal angle 6.
In the following we give the expression of the cylindrical wave decomposition formulas that

must be applied to the two-way wavefield vector v(r,0,z,w) generated by a surface traction
source (T;z, i=X, y, 2).

For a 1, traction source :

V(r,0,2,0) = v/(r,00,2,0) T + vy(r,60,2,0) 7, (45.3a)
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from which we deduce that :

™ kp2,0) = 0 for mz0, (4.5.3b)

for the components of the vector '3’" we refer to (4.4.5a) and, for m=0 :

+oo
~0
VS(kr,Z,a)) '_]-Il(krr) 0 0 H vr(rveoyzyw)
iky 2, 0) 0 -jnkn 0 vg(r.60.2,@) |rdr.
FRkrrz,) 0 0 Jotkr) v,(r,80,2,0)
0 (45.3¢)

For a 1 traction source:

Vr(r: 90123 w) >

- . v r,9 yZ, @, - rye sZ,(0) -
v(r,0,2,0) = cos 0 """ F + sin GM 0+ cos Gﬁ(—o—) z

’

cos 6y sin 6 cos 6y
(4.54a)
from which we deduce that :
'gm(k,,z,a)) = 6 form # *1 , (4.5.4b)
and, for m=%1:
+oa
gler  glter 0 |7 vir.60.z.0)cos 6
@D 1 — .1 < 1 . d
v (knz,m) =5 Fjgdtkr) jelkn 0 vg(r,60,z,w)/sin 8y | rdr .
0 0 + J1(k,7) v,(r,60,2,@)/cos 6
0
(454c)

For a 1y, traction source:

Vr(r,e(),zyw) >

vg(r,00,2,0) 5 . v (r,00,2,0) ~
r+cos0—————9(’ 0%, )9+sm9ﬁ2( 0,2, )z,

v(r,0,z,0) = sin 6

sin Gy cos 6y sin 6y
(4.5.5a)

from which we deduce that :

3" (krz,) = 0 for m# %1, (4.5.5b)
and, for m=%1:

400
tjglten) tjgdtkry 0 |7 [ v0r60.2,0)sin 6

ARl =1 1 1 d
v (kpz,0) 2 -gikr)  giler) 0 vg(r,60,2,@)/cos 6 | rdr .

0 0 JIkr) v4(r,600,2,0)/sin Gy

(455c)
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These expressions (also valid for the vertical traction field) look complicated, but they are valid
both for the near- and the far-field. In Appendix 4A we see that the cylindrical wave
decomposition formulas greatly simplify when we neglect the near-field terms. Under the far
field approximation (k,r>>1) the transformation matrix simplifies to a diagonal matrix. We
have:

g1 (k1) = jJo(k,r) and ghk,r) ~ 0. (45.6)

The above formulas show that the cylindrical wave decomposition of the two-way wavefield
involves Hankel transformations of zero, first and second order. In the next section, we present
how they can be efficiently computed. The transformation formulas involve divisions by cos 6p
and sin 6p, which are unstable for the following azimuth angles 6p= 0, /2, &, 37/2. It is then
advantageous to make use of the following relations:

ve(r,80,2,0) _ v,2%(r,00,2,0)

>

cos 6o sin 6o (45.7a)

K3
vee(r,00,2,0) _ vy (r,60,2,0)
= ’

sin 6y cos Oy (4.5.7b)

vixe(r,0p,2,0) _ v%(r,00,2,0)

»

cos 6 sin 6y (4.5.7c)

where the notation viffz means " component of the particle velocity field generated by a 7,

traction source.
Wavefield decomposition at the receiver side

Once the wavefield has been decomposed into cylindrical waves, it is possible to do a correct
normal one-way wavefield decomposition at the receiver side with the decomposition operator

[E(zo)]'1= M 1(z0) . The decomposed wavefield can be transformed back to the space domain by
applying an inverse Hankel transform, the order of the Bessel function depending on the source
type:

for a 1;; source, we have:

¢(r,0,2,0) Jkr) 0 0 ‘f (kr2,@)
Vs (r,6.2,0) = 0 Jokry O | Wilknzo) |k
{5(r.8,2,0) 0 0 Jotkr) 0

0 (4.5.8a)
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For a T source, we have:

+o0
¢ (r,0,z,0) Tler) 0 0 cos Gﬁ (ky,2,@)
w(r,0,z,0) |= 0 Jnkn O cos 0 W (kp,z,) | krdk, .
0 ~
0

{s(r,0,2,0) 0 Jilen) sin 8 Ly (ky,z,0)
(4.5.8b)
For a 1y, source, we have:

400
¢ (r,0,z,w) Jukr) 0 0 sin 6?' (ky,z,0)
Vi (r.0,z,0) |= 0 Ntkr O sin 8 ys(ky,z,w) |krdk, .
&5 (r,6,z,0) 0 0 itkn cos 0 Cx (ky,z,0)

Y (4.5.9¢)

For tie illustration, we consider a 3D seismic wavefield measured at a traction free surface, for
the azimuth angle 6p=0, see Figure 4.5.1. The subsurface consists of a number of isotropic
laterally homogeneous layers. To generate the data we used a buried point source, that only
emits P waves, without azimuthal dependency. Figures 4.5.2a and 4.5.3a represent the
decomposed P and S wavefields when the proper transforms are applied to the data. Figures
4.5.2b and 4.5.3b represent the decomposed P and S wavefields, when the data are erroneously
decomposed into plane waves instead of cylindrical waves. It is interesting to note that in both
cases the P and S waves are well separated. The differences appear in the relative amplitude of

the decomposed arrivals and in the wavelet phase.
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Figure 4.5.1
3D seismic wavefield measured at the traction free surface, for the azimuth angle 6y = 0. trace

interval: 20m. a) radial particle velocities b) vertical particle velocities.
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Figure 4.5.2

Decomposed P wavefield
a) with the appropriate cylindrical wave decomposition of the wavefield
b) with a plane wave decomposition of the wavefield.
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Decomposed S wavefield
a) with the appropriate cylindrical wave decomposition of the wavefield
b) with a plane wave decomposition of the wavefield




APPENDIX 4A

THE TRANSFORM DOMAIN IN CYLINDRICAL
COORDINATES

In section 2.3 we have seen that when the wavefield is described with Cartesian coordinates,
the transformation from the space to the wavenumber domain corresponds to a plane wave
decomposition of the data. In this appendix, we assume the wavefield to be described with
cylindrical coordinates. We show that within this system of coordinates the transformation from
the space to the wavenumber domain corresponds to a cylindrical wave decomposition of the
data.

In a homogeneous isotropic medium, the particle velocity vector can be described with the
scalar potential ¢ (for the P waves) and the two potentials y and { (for the S, and S, waves). In
the space-frequency domain the relation between the particle velocity vector and the three
potentials reads:

- 1 O Ty T
v =-T_(V¢- VXVX ‘I/+ Vx C)y
jpw (4A.1a)

with,

"‘;= (O,O,I/I)T (4A.1b)
and

- T

&= (0,0,C) . (4A.Ic)

In a source free medium, the three potentials are solutions of the Helmholtz equations:

Vie+ 2 g=o0,
2 (4A2a)
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Vzi./ + .QLZ. ‘7] = 6 s
c? (4A.2b)
v+ @ ¢=0.
c? (4A.2¢)
The method of separation of variables applied to the differential equations (4A4.2) (see Goudet
(1943)) establishes that the general solution is a superposition of cylindrical waves of the type:

¢m(k,,r,9,l,(0) = Ym(krvrve) ¢m(khz’w), (4A3a)
Y (kyr,0,2,0) = Y™ (k,1,0) ¥ (k;,2,0), (4A.3b)
" (kyor,0,2,0) = Y™(ky,1,0) { (kpy2,0). (4A.3c)

The horizontal wave function Y”(k,,r,6) is defined as:
Y™(ky, r,6) = In(k,r) €m0, (4A4)

~m
with J,.(k, r) the mt" order Bessel function. The vertical wave functions @ (k,z,),

V" (ky,z,@) and & m(k,,z,w) are defined according to:

m +,m ~em

¢ (knzvm) = ¢ (krvzyw) + ¢ (kr)sz) ’ (4A_50)
with,

~t.m ~t.m —

¢ (kzw)=¢o (krnw)e Fhap?, (4A.5b)

"I/m(khziw) = ‘;+’m(krrz’w) + g'/_’m(kr,zaw) ’ (4A.5€)
with,

~ Ni’ —_—

V" k2, 0) = Yo (ks 0)e Fkes?, (4A5d)
and

~m ~4m ~-m

§ rz)y=¢  (krz,0) + & (kpz,0), (4A 5¢)
with,

~+.m ~t.m _

¢ ) =8 ke Fikesz, (4A.5f)
For the P waves the vertical wavenumber &; , reads:

2
k%,p = 60_2 - krz,
Cp (4A6a)
similarly, for the S waves the vertical wavenumber k; ¢ reads:
2
ko= k7,
c? (4A.6b)

The azimuthal dependency of the cylindrical wave is described by e/m6. As we must have
e/m0 = ejm(6+27) for any angle 6, the azimuthal order m must be an integer. The radial

amplitude behaviour of such a wave is determined by the mt" order Bessel function J(k,7),
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with kr the horizontal wavenumber. Note that a cylindrical wave is fully determined by its
azimuthal order and its horizontal wavenumber. The wave splitting in expressions (4A.5)
corresponds to a decomposition of the compressional and shear wavefield in an upgoing (-) and

. ~t,m ~+m ~+.m
downgoing (+) part. ¢  (k,z,0), ¥ " (kp.z,0) and {  (k,,z,w) are the normal one-way
wavefield components of the cylindrical wave of azimuthal order m and of horizontal
wavenumber k.
The combination of all the possible cylindrical P waves leads to the solution of equation
(4A.2a). We have:

+oo
+oo
¢(r.6,z,0)= Y, jtpm(k,,r,e,z,w) kydk,.
0

me oo
(4A.7a)

or equivalently,

400
"« ~
m .
¢(r797z1a)) = z [ ¢ (khz’w) -’m(krr) e]mekfdkl"

TR (4A.7b)

To decompose the P wavefield from the space to the wavenumber domain, we must be able to
separate the cylindrical waves of distinct azimuthal order m and of distinct wavenumber k,. This
can be done according to:

271 400

6"k, 2, ) = 2 I f o(r, 6, 2, @) [Jnik,r) i8] rr
00 (4A.8)

where * denotes complex conjugate. Similar expressions are obtained for ¥ (k,z,@) and

Zm(krvz’w)-

Solutions of the type (4A.7) mean that in a homogeneous isotropic medium any P or S
wavefield is the result of a cylindrical wave composition. In Figure 4A.1, the radial and time
variations of a cylindrical wave of fixed horizontal wavenumber &, and of fixed frequency @ is
shown for the azimuth angle 6=0, for different azimuthal orders m.

From expression (4A.3) it is possible using expression (4A./a) and the constitutive relation, to
derive the particle velocity as well as the traction field generated by a P and/or S cylindrical
wave. Knowing that the gradient and the curl of the horizontal wave functions are often used,
we introduce the following vectors:

§™ ket 8) = L VY™ (kyrr,8) = gkyr) eJOF - gZk,r) €JmB 6,
k, (4A.9a)
i:m(kr,f,e) =- i Vx(0,0,Y"™(k,,r,0))T = gZ'(k,r) eJmOF + g'(k,r) eJm0 6, (4A.9b)
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R (k7,60 = Y™ (ky,7,6) 7 = Jnlkor) €Jm8 %, (4A.9¢)
with,

gf’(k,r) 5[ 'm-10k7) ‘Jm+l(krr)] s (4A.9d)

880kar) = 2 [Imatlr) + Jmr )] (44.9¢)

The following expressions are obtained for the particle and traction field:

Vo1, 0,2,0) = Uk, 2,0) S (krot,0) + k2, 0) T (Kyr,0) + VB k2,00) R " (kyr,0)

(4A.10a)
;:"(k,,r,e,z,a)) = ;;’,'s(khsz) Em(khr’g) + EZITT(khz’m) i‘.m(khrvg) + ;Z’th(khzaw) k.m(kr’rye) ’
(4A.10b)
with :
smo_ 1 a ™ o ~m_~-m
Vs k(@ +0 )+ jky s (W =W,
Pw[ ’ ) (4A.11a)
- ~4+m ~-m
VTm =- _I“[Cs +Cs ] ’
(4A.11b)
~ m ~-m ~ ~.m
B =Ly 00 - ik (™)
p(o[ P TS : ] (4A.11c)
~m [ e N N Nt ~-,m]
TS = 5 2krk; p (¢ ¢ ) - Jks 2k (s YT
kg (4A.114d)
~m ks ~-m
TzT _2[Cs -Cs ],
ks (4A.11e)
L [ K242k2 ~hm em . ~4m "‘-,m]
R =~ (ks+2k7) (9 +¢ ) + 2keky (W -y5 )] -
% (4A.11f)
with,
~ ~im ~t.m ~t.m
vl =k oy and & =k ¢ . (44.11g)

The combination of all the possible P and S cylindrical waves leads to the expression of the
two-way wavefield vectors v and ;z in the space-frequency domain:

oo

V,-(r 0 z w) ;.g'n(khzyw)

400
Vo(r 6 Z 0)) = 2 I[C(krrro)] W(kr,zgm) kr dkr s
ve(r.6,z,0) "0 VR (kr 2, 00) (4A.12a)
with,
gPk,r) eimb  gB(k,r) ejm0 0
Ckr,0) =| . gpik,r) ejmB  gPi(k,r) ejm0 0

0 0 Infk,r) €m0 (4A.12b)
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The azimuthal functions e/™0 for different m being orthogonal to each other, the two-way
wavefield decomposition into cylindrical waves of distinct azimuthal order can thus be easily
done. The wavefield decomposition into cylindrical waves of distinct k, values is more
complicated as the Bessel functions of distinct index m are not orthogonal to each other. We
must find a suited change of coordinates which transform the matrix C(k,r,8) into a diagonal

matrix, with a unique type of Bessel function on its diagonal.

Expression (4A.]2a) can be rewritten:

vr(rvevzaw) +oo " ;gn(khz’w)
AlvgrBz.0)|= X I[AC(k,r,G) BB %k, ) |k dkr .
v,(r,8,z,0)) " "0 VR(kr.2,0) (4A.13a)
By choosing,
1450 Jj 1
A={1j 0|andB={- 1 0|,
001 001 (4A.13b)
we have,
Jm1(k,r) eJm0O 0 0
A C(k,r,0) B = 0 Im1k,r) eim6 0
0 0 Tnlk,r) ejm0 (4A.13c)

Now, we can easily invert expression (4A.13a), from which we deduce the expression of the
transformation formulas that have to be used to do a proper cylindrical wave decomposition of
the two-way vector wavefield. We finally find that:

V¥ (ky,2,0) 2z v(r,0,2,0)
P hr2,00) | = 5 f I[C(k,r,e)]" ve(r,6,z,0) | drde .
VR (ky,z,0) 00 v,(r,0,z,m) (4A.14)

where i hands for Hermitian (transpose complex conjugate), expression (4A.14) is also valid
for the traction vector. The cylindrical transformation matrices involved in expressions (4A.12a)
and (4A.14) are not diagonal, contrary to the plane wave transformation matrices.
Consequently, to transform one of the horizontal component (radial or tangential), the other one
has also to be used. It is interesting to note, that under the far field approximation (k,r>>1) the
matrix C(k,r,0) can be well approximated by a diagonal matrix. Under the far field
approximation, we have:

81kr) = jImatk,r) and g8 (k,r) = 0. (4A.15)

A final interesting point to note is: as the operator that enables to decompose the elastic
wavefield in cylindrical waves is the transpose complex conjugate of the operator that enables to
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compose all the cylindrical waves, the vectors § m(k,,r,e), fm(k,,r,e) and ﬁ m(k,,r,e) are
orthogonal to each other and each of them satisfies an orthogonality relation of the form:

5" r,8) [S™ Ui ,8)] rdrd6 = 27 Gy KoK
Vi kr

O“‘§
O".I—

(4A.16)
Equality (4A.16) is also verified by T (k,.7,6) and R " (ky.r6).



APPENDIX 4B

NUMERICAL IMPLEMENTATION OF
THE HANKEL TRANSFORM

In the previous section we have seen that the 3D elastic wavefield decomposition into
cylindrical waves involves integrals of the type :

+oo
Yk, =f v(©) Jnlk,r) rdr .

0 (4B.1a)
Such a transformation is called a forward Hankel transform of order n. The inverse Hankel
transform of order n is defined according to:

v(r) = f V(ky) Julker) ky dky .

0 (4B.1b)
A direct numerical evaluation of expressions (4B.1) is possible but computationnaly expensive.
An efficient scheme to compute the zero order Hankel transform, named Fourier transform
plus square root filter, has been presented by Fokkema et al.(1992). In this section we review
their method and extend it to higher order transforms. We also propose a different formulation,
which has a clear physical meaning.

4B.1 FOURIER TRANSFORM plus SQUARE ROOT FILTER
method

From Goudet (1943, page 35 ) we have the following expression for the nth order Hankel
function J,(k,r):
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2z
Jnlk,r) = )" f elkr rcosp cos(nB)dp.
0

2z
(4B.2a)

When we introduce the above expression in (4B.1a) and we do the following change of

variables k; =k, cosf and a change in the order of integrations, we find that (4B.1a) can be

rewritten as:
using,
int(n/2) - , \
cos(nf) = -1)? C¥ (cosB) ™ ¥ (sin pwithCZJ”:—ﬂ—'—,
np) ,,go )P C¥ (cosP) ™ (sinf) ¥ = o
we get,

k,
0 int(n/2) 4 .
V(kr) = P 2 (_1)p Cgp ffn,p(kr,kx) U(ky) dky ,
k" oo
0
V) =0 for n=0,
v = l U =
v(0) ) u(0) for n=0, (4B 3a)
with,
~ ’ 2p-1
Fuptrks) =k W= ) (4B.3b)
and
+-00
u(ky) = f v(r) | r|eikxr dr .
00 (4B.3c)

To derive these expressions we used the property that v(7) is an even function of r when n is
an even integer, and an odd function of » when n is an odd integer (v(-r) ={-1)"(r)).
Expression (4B.3a) states that the Hankel transform (4B.1a) can be efficiently evaluated by
firstly computing (k;), i.e., the Fourier transform of v(r)|r| (FFT routines can be used for
this purpose), followed by a square root filter of %(k,) with fn,,,(kr, ky), see Figure (4B.1a)
The lateral filter f:,,,,(k,, k) is data independent. It can be computed in advance and be used for
different data sets.

To derive the inverse Hankel transform, expressions (4B.3) can again be used, we have just to
change the name of the variables and of the functions according to :

ky - r ,
kx s d X ,
r - kr ,
V) v
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APPENDIX 4B
point source point source point source
response response response
FOURIER LATERAL FILTER
TRANSFORM
line source
response
SQUARE ROOT HANKEL FOURIER
FILTER TRANSFORM TRANSFORM

cylindrical wave
response
(a)

Figure 4B.1

cylindrical wave cylindrical wave
response response
(b)

(a) The Hankel transform can be split into two operations: a Fourier transform followed by a
square root filter.

(b) Alternatively, the Hankel transform can be split in two operations: a lateral filtering which
transforms the point source response into a line source response, followed by a Fourier

transform which does the plane wave decomposition of the line source response.

vik)
u(x)

vir) o
k) — (4B4)
Due to the term &;” in (4B.3a) some numerical problems may arise when k™ << 1 (for small k,
values and/or high order transforms). It is also important to point out that in the case of
discretized data recorded at a finite aperture, the Fourier transform of v(r)|r| may generate
artefacts due to the first and higher order derivative discontinuities at the origin (the derivative
discontinuities are introduced by the multiplication of v(r) with | r[).

4B.2 LATERAL FILTERING plus FOURIER TRANSFORM
method

Here we propose to compute the Hankel transform with the following sequence of steps: first
we introduce ¥(x) as the inverse Fourier transform of V(k,) :

+oo

) =§%I (k) eJke X dk, .

(4B.5a)
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In the above expression we substitue for V(k,) the expression (4B.1a) and we change the order
of integrations. We find that:

+ o0

v(x) =j V(D) fulr, x) dr,
0 (4B.5b)
with,

+ oo

I, x) = ;_”f Ju(k,r) e'jerdkr .

- (4B.5c)
From (4B.5b) we see that ¥(x), the inverse Fourier transform of V(k;) can be obtained by
lateral filteringing v(r) with fy(r, x). The lateral filter f,(r, x) is data independent, it can be
computed in advance and be used for different data sets. Once ¥(x) is known, we can easily
obtain V(k,) from the forward Fourier transform of $(x), see Figure (4B.1b). We have:

+ oo

Vk,) = f ) efkrx dx .

-ee (4B.5d)
The forward Fourier transform can be efficiently computed using FFT routines. With this
Sformulation, the lateral filtering has a clear physical meaning: it transforms the point source
response into a line source response, see also section 4.3. The forward Fourier transform
corresponds then to a plane wave decomposition of the line source response.
To determine the expression of f,(r, x) we have to calculate the forward Fourier transform of
the n*# order order Hankel function. We start from expression (4B.2a) and we apply the
following change of variable :

r cos ﬂ=x. (43.6(1)
Taking into account that :
int(nf2)
cos nff= z (-1)P C2 (cos B)™ 2 (sin BP* ,
p=0 (4B.6b)
we find that :

r
Julkyr) = f gn(x,r) efke X dx

r (4B.6¢)
with,

() e .
gn(x, 1) = ;er S )P C¥ xnr (Vr2x2) %!
P (4B.6d)
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From which we deduce that :

+o0

fur,)=L-} J(kb) edkrxdk,=0  when|r|<|x|,
2r

-oo

(4B.7a)
+ 00
falr, x) = f Jnk,r) edkeX dk, = r gu(x,r)  when|r|2|x| .
me (4B.7b)
Expression (4B.5b) can then be rewritten according to :
+ oo
an int(n/2) R p-1
9= ¥ (1yr crxn (" 22T iy dr.
T 2o
[xi (4B.8)

To compute the inverse Hankel transform, expression (4B.8) stays valid, we just have to
change the name of the variables and of the functions according to :

r - kr B

x > Kk ,

kr - r s

vy 5 Yk

V) —» v

ux) o Utk | (4B.9)

With this formulation we see that the lateral data filtering (4B.8) involves an integration from a
given offset to infinity. Due to the finite aperture of the data some artefacts may arise from the
integral truncation. It can be overcome by slightly tapering the far offset data. Nevertheless we
must be aware that even if the upper boundary of the integral goes to infinity, the main
contribution comes from the lower boundary. Which means that the finite aperture of the data
will mainly affect the transformation of the far offset data.

4B.3 NUMERICAL EVALUATION OF THE LATERAL
FILTERING

The Hankel transform can be obtained from the combination of a lateral filtering and of a
Fourier transform. For the Fourier transform we can use efficient FFT routines everywhere
available, for the lateral filtering we develop our own algorithm. In this paragraph we study the
numerical evaluation of the square root filter (4B.3a) and of the lateral filtering (4B.8) for the
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zero, first and second order Hankel transforms. We follow a similar approach as Fokkema et
al. (1992)

For the FFT plus square root filter method we approximate equation (4B.3a) by :

(m+1)Aky
M(k,)-1
V)= Y f W™k hnlrdes) dks
m=0
m Aky (4B.10a)
where,
M(k;) = kp/Aky (4B.10b)
and
5™ int(n/2) 4
k) = D2 %,y ek WP
r p=0 (4B.10c)

Ak, is the wavenumber discretization interval and #™(k,) is a polynomial representation of
%(k,) on the interval mAky < ky < (m+1)Aky, hence :

Wmky) = AT + ke AT + K2 AT 4o (4B.11a)

In practice accurate results are obtained by using the first two terms only, with :

AG = (m+1) U(mAky) - m u((m+1)Aky) , (4B.11b)
and
AT = U((m+1)Aky) - U(mAky) .
Aky (4B.11c)
Thus equation (4B.10a) can be rewritten as :
M(k)-1
V)=~ Y, [IBat)AR + (kAT ,
m=0 (4B.12a)
where,
(m+1)Aky
I ('J'tn(kr) =I hn(ky, kx) dkx ,
maky (4B.12b)
and
(m+1)Aky
I i’:n(kr) =f kx hn(kr, kx) dks .
mAky (4B.12c)

To be more efficient on vector computers, we rewrite expression (4B.12a) as :
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M)
V) = Y, WmAky) FIky)
m=0 (4B.12d)

with,

10,k
F3ky) = I8nlls) - “f(’ :

X

13

m m-1
F,':'(k,)=(m+1)16?,,(k,>-"2'ﬂ- (m-l)lat',;‘(k,)-"—';ﬁ m= 1o Mk)-1

M, « Ik
FY®ER) = - Mk)-DIIE ) + 2

Aky (4B.12¢)
As the filter coefficients are data independent they can be computed in advance and stored in a
table. Simplifying any further lateral filtering to a simple vector operation see (4B.12d). The
table coefficients can be efficiently computed using this type of algorithm :

Ionew = 0

Itnew =

DO m = 0, M(k,)-1
Tooid = Ignew

I101d = I1new
Tonew = I, 0’:';; k)
Itpew =1 lc’;n(kr)/ Aky

F' = (m+1) Ionew - Tnew ~( (m-1) Ipota - I1o1d )
ENDDO

Mk
F'O < (M(k)-1) Ionew + T1new

Now we give the expression of hu(k,.kx), Iffu(k,) and I{"(k,) for the zero, first and second
order Hankel transforms.

Zero order Hankel transform : n =0

hoky, k) =L —L— |
TNk

2_j2 (4B.13a)
(m+1)Aky
dk 1 Mk (m+1)Ak,
Ifok,) =1 —% =4 arcsm(—") s
Tl Ve ® ke | ma,
mAky (4B.13b)
(m+1)Aky
k 1 2 .2 (m+1)Ak,
k) =1 |  —Ea_ak=-L viZaZ | .
4 4/k,2-k§ /(4
mAky

(4B.13¢)
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First order Hankel transform : n=1

hy(ky, ky) =L
1€ r kx) 7k, 1/[?,27
(m+1)Aky
- )4k,
Ik =L ks J Vkrz k2 2”41) ,

ks «/kf-k,%

mAky

(m+1)Aky

. 2 .
I k) ==L k= I [k K2 K2 2 ,,(k_xn
1.1k, ey 1/k,2~—k,% =5 |k ki -kx - kFarcsi '

mAaky

mAky

Second order Hankel transform : n=2

k2-242
ha(ky, ky) = L Kr-2hx
w2 IE k2

(m+1) Ak

2 57 | (m+1)Ak,
I 0'?2(,(!) = ﬁ 5}{7];—2 x = k2 kx mAky ,
r - r
mAky
(m+1)Aky

kl2) , _ 1

mey=_1_ = 2K2 1 VE2-k2
11,2(kr) 7dc,2 "/m X 3Ir (k,z + kr X

mAky

(m+1)Aky

mAkys

For the lateral filtering plus FFT method we approximate equations (4B.8) by :
(m+1)Ar

Mmax-1
V(x) = 2 I vm(r) ho(x, r) dr ,
m= M(x)
mAr

where,

M) =|xyar ,

Mmax =| offsetmax |/Ar .
and

n int(nf2)
ha(x, 1) = %_ 20 -1n» C,%”x n-2p pln (1,2_x2>2p-1 )
p =

(m+1)Ak,

(4B.14a)

(4B.14b)

(4B.14c)

(4B.15a)

(4B.15b)

(4B.15¢)

(4B.16a)

(4B.16b)

(4B.16¢)

(4B.16d)
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Ar is the spatial discretization interval, offsermax the largest offset available in the data set and
vm(r) is a polynomial representation of v(r) on the interval mAr < r < (m+1)Ar, hence :

vm(r)=A6ﬂ+rAi”+r2Ag‘+..._ (4B.I7a)

In practice accurate results are obtained by using the first two terms only, with :

Af = (m+1) v (mAr) - mv ((m+1)Ar) , (4B.17b)

and

- v((m+1)Ar) - v(mAr)
Ar ) (4B.17c)
Thus equation (4B.16a) can be rewritten as :

AT

Mmax-1

o= Y, [IFRAR + IW0AT],
m=M(x) (4B.18a)

where,
(m+1)Ar

Ig.n(x) =I ha(x, r) dr,

mAr (4318b)
and

(m+1)Ar

ITa(x) = I r hy(x, 1) dr .

mar (4B.18c)

To be more efficient on vector computers, we rewrite expression (4B.18a) as :

Mmax

YW= Y, vman) FR(),
m = M(x) (4B.184d)

with,

)

FM®) = I3,0() -
Ar

»

m m-1
F ) = (me DIGH0) - 228 ((m-l)léf‘.;‘(x) . - ("’) ,m= M)+1, -, Mmax-1
r ‘4
Mmax-1
F,.Mm“x(x) = - (Mmax-1)]I, ,,""”“l(x) + I———l’" @)
Ar (4B.18e)

As the filter coefficients are data independent they can be computed in advance, stored in a
table. Simplifying any further lateral filtering to a simple vector operation see (4B.18d). The
coefficient table can be efficiently computed by using this type of algorithm :
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Iopew = 0

Iipew =0

DO m = M(x), Mmax-1
Tootd = Ionew

I1o1d = I1new
Tonew =1 o’f:,(x)
I1new = [Ta()/Ar

F? = (m+1) Ipnew - Inew ~( (m-1) Ioold - 1101d )
ENDDO

'I:lmax = -(Mmax-1) Ipnew + I1new

Now we give the expression of hn(x, r), I{fu(x) and I{/(x) for the zero, first and second order

Hankel transforms.

Zero order Hankel transform : n=0

hox, ) =1 _L—,

{722
(m+1)4r

1)A
’570"‘“#[ Rt AL e
r2-x

mAar

(m+1)Ar

1T o) =lj 12 gr= L[ VP25 + x2In(r + Vr2-x2)]|f::w ,

n Vrix2 2r

mAr
First order Hankel transform : n=1

mox,=-L X

w22’
(m+1)Ar
) 1)ar
IG1(x) = -I—x-f L gr=-2jx In(r + Vrz-x2)|f:; ) ,
n r2x2
mar
(m+1)Ar
) i (m+1)ar
o =-El —r—gr=-2% V2,2 ,
l,l(x) ”j Wdr T re-x |mAr
mAr

Second order Hankel transform : n=2

ho(x, 1) = 1 r2.2x2

Tryr2x2’

(4B.19a)

(4B.19b)

(4B.19¢c)

(4B .20a)

(4B.20b)

(4B.20c)

(4B.21a)
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(m+1)Ar

r -1 r2x2 o _ 1 2x2 -2 x| | (m+1)Ar

152(x) ) e dr=- [Vrox arcco.»(r)] |m ,
mar (4B.21b)
(m+1)ar

2-2x2 (m+1)ar
Ii'fz(x)=%J %dr=—21’;[r Vr2-x2-3x21n(r+Vr2—x2)]|M ,

mar (4B.21c)




CHAPTER 5

WAVEFIELD DECOMPOSITION OF VSP DATA

5.1 INTRODUCTION

The data acquisition along a borehole, the so called VSP technique, is another type of
acquisition geometry often used. The source can be located at the surface or can be buried; the
particle velocity detectors (clamped along the VSP borehole ), measure the particle velocities of
the elastic waves that cross the borehole. In this chapter, we show how the normal one-way
components of the elastic wavefield can be deduced from the measured particle velocities. Due
to the differences in the acquisition geometry and in the boundary conditions at the receiver
side, the decomposition operator for VSP data is different from the one used for surface data.
We first derive the operator expression for a homogeneous medium. But due to the strong
vertical velocity variations that may occur along the borehole, we will put our attention to the
derivation of short local operators in the space domain.

5.2 VSP SURVEY DESCRIPTION

The acquisition geometry for VSP experiments is schematically described in Figire 5.2.1. The
elastic wavefield generated by a surface or buried source, propagates into the subsurface and is
recorded by multi-component particle velocity detectors clamped along the borehole. The (z,f)
seismic sections contain: direct, reflected and converted waves. Depending on the vertical
distance (z4) of the receivers to the source and depending on the source-borehole offset (rp), the
moveout of the seismic events will more or less deviate from the linear moveout of vertically
propagating waves. For the extreme case of vertically propagating waves, the normal one-way
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wave components can be separated in the vertical wavenumber-frequency domain by apparent
vertical velocity filtering. This technique only holds for detectors for which rp/zg is small. Note
that velocity filtering does not yield the normal one-way wave amplitudes but their associated
horizontal or vertical particle velocity components. For most common surveys, however, the
waves do not propagate vertically; most often, the normal one-way wavefields overlap each
other in the vertical wavenumber-frequency domain and can not be separated with a simple F-
K, fan filter. That is why it is necessary to develop a more advanced filter, not only based on
the moveout but also on the polarization of the incident waves.

5.3 TWO-WAY AND NORMAL ONE-WAY WAVEFIELD
RELATIONS FOR VSP DATA

Similarly to what has been done for surface seismic data, the decomposition operators
presented here are based on the linear relations that exist in the wavenumber-frequency domain
between the two-way and the normal one-way wavefield components. We start the derivation
of the decomposition operator for the special case of a 2D seismic wavefield propagating in a
homogeneous medium. A 2D seismic wavefield is a wavefield without dependency along a
certain direction, e.g. the y- direction. This situation corresponds to the use of line sources
parallel to the y- axis, over or in a medium whose stiffness tensor and density function do not
depend on the y- coordinate. Such a wavefield is only composed of plane waves with wave-

vectors k of the type: k= (kx, ky=0, kz)T. As ky=0, the square of the horizontal wavenumber
of any normal one-way plane wave can be deduced from its vertical wavenumber k; using the
dispersion relation :

K2+ k2 =22
T2 (53.1)

with ¢, the propagation velocity of the wave. To transform the two-way wavefield component f
(particle velocity or stress measured along the borehole) from the space(z)-time(f) domain to the
vertical wavenumber-frequency domain, we make use of the 2D spatial and temporal Fourier
transform :

+ oo
fks, @) = I j £(z, t) eJ(@x-k;2) dz dt ,

e (5.3.2a)

the inverse transform being defined as :

+oo| +oo
f(z, 1) =;1;Real‘ j I fiky, @) ef(@t-k:2) dk, | do> .
¥/ 3
\" - e ‘ (5.3.2b)
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x
L 0 VSP borehole
r

Vx
Vv, 4 l
y v
Figure 5.2.1

Schematic representation of a VSP acquisition geometry, (rp) borehole offset, (24) depth of a

detector relative to the source position.

In the vertical wavenumber-frequency domain, using a similar approach as the one used in
chapter 2, it is possible to find a linear relation between the two-way and the normal one-way
wavefield components. There is a composition operator L, which relates the normal one-way
wavefield components to the two-way components:
(5)_( LY L )p+
% \Li L )\p

] ) (5.3.3a)

The columns of the operator L i't contain the polarization vectors of the normal one-way waves
of vertical wavenumber £, that propagate in the source-borehole (+) and in the borehole-source
(-) direction. The inverse of the composition operator, constitutes the decomposition operator
M which relates the two-way components to the normal one-way components:

p ] \ M M;J\% (5.3.3b)

Hence, ¥ is the particle velocity vector :

ks, @) = (Follr, 0), By ke, 0), Vilh, O (5.3.3c)

and 7, is the traction vector:

:x(kz, w) = (Exx(kzs ), ;yx(kzs ), ;zx(kz: w))T . (5.3.3d)
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=+ . . .
The vector p contains the amplitude of the three normal waves propagating in the source-

borehole direction and ﬁ'contajns the amplitude of the normal waves propagating in the
borehole-source direction. In an isotropic medium, 2D P and Sy wavefields only affect the x

and z components. Thus we only consider two components particle velocity and traction
vectors and 4x4 composition and decomposition operators. We have:

~ +k -k.
ol )

PO\ k, thys (5.3.4a)
Tt ( (2-2k2) 2k sk, )
K2\ T2k, -(k2-2k3) (5.3.4b)
L(k3-2k2)
= kx,p z
—: p
M =_— 24120 |°
2w\, 2D
2kn s (5.34c)
— k
—_ -1 + -
Mzi =% kxp |,
+ke
Ks.s (5.3.4d)
with,
k2 _ ﬁ 2
Xp = 2 Z )
2 (5.34e)
and
2
kzzc,s =w_2' k22 .
c2 (5.3.40)

These expressions developed for 2D wavefields remain valid, under the far field
approximation, for any 3D wavefields propagating in a laterally homogeneous medium.
Expressions (5.3.3a) and (5.3.3b), constitute the basic relations that will be used to determine
the expression of the decomposition operator at the receiver side for VSP data.

5.4 WAVEFIELD DECOMPOSITION OF VSP DATA AT THE
RECEIVER SIDE

In the (hypothetical) case that velocities as well as stresses are measured along the borehole, the
operator Min (5.3.3b) constitutes the decomposition operator at the receiver side. This operator
is unstable for vertically propagating P and S waves, as for such waves kyp= 0 and ky 5= 0.
This instability arises from the impossibility to split vertically propagating waves into source-
borehole or borehole-source propagating waves. A way to overcome this instability is to
decompose the elastic wavefield into normal waves without splitting them into (+) or (-) wave-
types, according to :
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E -2 - N TR B N B

p=p"+p =[M+M]7 +[M;+M]] 7, , (54.1a)
with, for the isotropic case :

M{+M] =E(01 ,
! ©"\10 (54.1b)
M;+M;=- 10}
(0 1 ) (54.1¢)
As can be seen from expressions (5.4.1), we then have stable decomposition operators. To

determine the P wavefield (5 = 5 ++$ ) we only need to know V,and Ty, . Similarly to
determine the S wavefield (¥ = ¥+ ") we only need to know v, and 7, .

Unfortunately, in VSP surveys the stress measurements are not available along the well. We
. - . . 2+ =
only measure the particle velocities, thus it is not possible to recover both the p andp waves.

The situation could be solved if we knew one of the two, say ; . Then from (5.3.3a) we can
determine the other one, according to :

D+ A1 2

5 =L F-LiF). (5.4.2a)
For the situation depicted in Figure 5.2.1 we can assume that at the well ff =0. This
assumption is realistic for two main reasons :

- Except in the case of a complicated subsurface, all the waves emitted by the

source reach the detectors as 1:7"+wavcs (especially when the borehole offset 7 is
large).

- Since the diameter of the well is small compared to the wavelength of the incident

body waves, its effect on any incident wavefield §+can be neglected.Similarly to
surface waves in Chapter 3, here we assume that the particle velocities associated
to the tube waves have been removed from the total particle velocity field.

Under the assumption p = 0,we have :

7 =[L]"s. (54.2b)

The aforegoing leads to the decomposition operator at the receiver side in the case we only
measure the particle velocities along the borehole.
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5.5 THE DECOMPOSITION OPERATOR AT THE RECEIVER
SIDE IN THE SPECTRAL DOMAIN

In the previous section we saw that the decomposition operator at the receiver side reads:

[~+] -1 fol0)] krs k;
Lil == % &, |
k7 +kyx pkx s z TEP (55.1)

Figure 5.5.1 represents the real and imaginary part of the operator components as a function of
k,. Expression A(k;) = k2 + ky ,pkx,s does not vanish for real k, values, the decomposition
operator at the receiver side is then stable for all incident plane waves. The operator components
are either symmetric or antisymmetric functions of k; . It is important to point out that the
operator has discontinuous first and higher order derivatives at k, = k, and k; = k5 . These two
wavenumber values correspond to vertically propagating P and S waves. In the next section
we will see that these discontinuities are difficult to handle when we want to design short
decomposition convolutional operators in the space-frequency domain.

The decomposition operator at the receiver side requires the knowledge of both the P and §
wave velocities along the VSP borehole. In the case we use an erroneous estimate <cp> and
<cs> of the true P and S wave velocity, as well as an erroneous estimate<p> of the density, it

is possible to quantify the error made on the decomposed wavefield < §+>, by relating it to the

=

true one, p ",
Knowing that the two following equations hold :

2+ [~4]-13
5 =Ly, (5.5.2a)
and
= ~y 112
<p>=[<L{>]T, (5.5.2b)
we have the following relation between the estimated and the exact normal one-way wavefield:
= ~ o~ yz4
<p+>=[I +ER]p , (552¢)
with,
= ~+ 1-1 5+ 5
Er= [<L1>] Ly-TI. (5.5.2d)

In the case no errors are made in the parameters estimation Eg = 0. Otherwise, the relative
error matrix ER is a full square matrix. Which implies from (5.5.2¢) that the normal one-way
wavefield components are not well separated from each other. Just by looking at expression
(5.5.1) we may say that in the case where the shear wave velocity is correctly estimated, the P
wavefield will be well separated from the total wavefield. Its amplitude will be correct if and
only if the compressional wave velocity has been correctly estimated as well. Due to the k;
dependency of the scaling factor, the decomposed P panel in the space-time domain may be
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Figure 5.5.1
Real and Imaginary part of the decomposition operaior components in the spectral domain
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VSP borehole
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Figure 5.5.2
When the wavefield is recorded along the VSP borehole, we only have access to the vertical
wavenumber k; of the incident plane waves. To determine their direction of propagation | or

equivalently their angle of incidence a, we have to determine their horizontal wavenumber ky.

VSP borehole

Figure 5.5.3
An incorrect estimation of the wave-type phase velocity leads to an incorrect estimation of the
angle of incidence of the incident plane waves. The wave-type polarization vector is then not

correctly estimated.
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seriously deteriorated when cp is not well estimated. Similar remarks hold for the decomposed
S panel.

The physics behind the wavefield decomposition of VSP data is simpler than the one involved
in the wavefield decomposition of surface data, as the recording site does not interfer with the
incident waves. We can then give a simple physical understanding of the sensitivity of the
method to its input parameters. Let us consider a plane wave propagating in the source-borehole
direction, see Figure 5.5.2. To be able to decompose the incident elastic wavefield, we
implicitly need to know its direction of propagation. Indeed, from the direction of propagation
(i), we can determine the polarization vectors, so the columns of L 1+ , of the three wave-types
that can propagate along this direction, thus the particle velocity field can be decomposed
according to (5.4.2b). The wavefield being recorded along the VSP borehole, we can only
determine the vertical wavenumber £, of the incident plane wave. To be able to determine its
direction of propagation, or equivalently its angle of incidence ¢, we have to know the
horizontal wavenumber &y (tga = ky/k,). For a given wave-type, k, may be deduced from the
dispersion relations. As these relations involve the wave-type propagation velocity, an incorrect
estimate <c> of the true velocity ¢ leads to an erroneous estimate <a> of a. From this
development we may then say that: the sensitivity of the decomposition at the receiver side
depends on the sensitivity of the wave-type polarization vectors to the direction of propagation
and to the stiffness tensor. As in an isotropic medium the wave-type polarization vectors only
depend on the direction of propagation, the wavefield decomposition will be more robust for
isotropic than for an anisotropic medium.

For the illustration, we consider an isotropic medium and a wave-type with propagation
velocity ¢. We have:

ke =/ k2.
c2 (55.3)

If we use for the phase velocity <c> instead of ¢, the following relations hold between o and

<a>:
k= cos (<a>) _ cos (0)
2T <e> ¢ ’ (554)

From expression (5.5.4) we deduce that an underestimation (overestimation) of the phase
velocity implies an overestimation (underestimation) of the angle of incidence. It is then
preferable to underestimate the velocity then to overestimate it, in order to avoid that
propagating waves are interpreted as evanescent waves. In Figure (5.5.4) the difference <or>-
« is represented as a function of « for different ratios <c>/c. The error made on the angle of
incidence decreases for increasing angle . As in an isotropic medium the errors made on the
estimate of the polarization vectors directly depend on the error made on the angle of incidence
of the plane wave, see Figure 5.5.3, we may say that: the sensitivity of the decomposition at the
receiver side to errors made in the phase velocity estimation decreases with the source-
borehole offset (rp). Figure 5.5.5 represents the amplitude of the P wave residuals in the
decomposed S panel, as well as the amplitude of the S wave residuals in the decomposed P
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Figure 5.5.4

This graph represents the error <a>-a made on the estimation of the angle of incidence, as a

function of a, for four relative velocity error <c>/c.
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Figure 5.5.5
(a) P wave residuals in the decomposed S panel when cPlc5=1/3 and <cg> = Cg
(b) S wave residuals in the decomposed P panel when cplcs=V3 and <cp> = ¢p
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panel, for several relative errors made in the P and S wave propagating velocities. This Figure
well illustrates that the quality of the separation increases with the angle. Hence, the sensitivity
of the decomposition at the receiver side of VSP data to its input parameters, decreases with
the source-borehole offset (rp).

In section 5.4 we have seen that the decomposition operator at the receiver side has been
derived under the assumption that we only have waves propagating in the source-borehole
direction ( 5 =0). In the case the subsurface is not laterally homogeneous, reflected P and S
waves propagating in the borehole-source direction may be recorded by the particle velocity
detectors. It is then interesting to know how such waves will be decomposed, see Figure 5.5.6.
We have:

3~ ~oz

V=L1+p +L1p . (5.560)
The decomposition operator at the receiver side (5.4.2b) applied to the particle velocity field
(5.5.6a), leads to:

=+ 2+ ~4) -
$>=p +[LTLip, .
with,
[ij'] -151. = _1—( Cos(fxp +0;)  sin(2oy) ,
cos(op - )\ - sin(2a)  cos(oy + o) 5560
and
r = $05(%) _ cos(a)
g = = —

Cp Cs (55.6d)

As the matrix product [l':'fr ] A 1 is not diagonal, P waves propagating in the borehole-source
direction (-) will be interpreted as a combination of P and S waves propagating in the source-
borehole direction (+). A similar remark can be made for the S waves propagating in the
borehole-source direction. Figure 5.5.7 represents the amplitude of the P waves ((5-) in the
decomposed S panel (¥ )and the amplitude of the S waves (¥) in the decomposed P panel

@),

5.6 THE DECOMPOSITION OPERATOR IN THE
SPACE-FREQUENCY DOMAIN

The wavefield decomposition at the receiver side in the wavenumber-frequency domain, suits
well for a large distribution of regularly spaced particle velocity detectors in homogeneous
medium. Outside this ideal situation we would rather work in the space-frequency domain;
indeed this domain offers much more flexibility for the following situations :
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VSP borehole

Figure 5.5.6
Due to the assumptions made for the derivation of the decomposition operator at the receiver
side, P waves that propagate in the borehole-source direction (-) will be interpreted as a

combination of P and S waves propagating in the source-borehole direction (+). A similar remark

can be made for the S waves.
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- When the borehole crosses a vertically inhomogeneous medium, the decomposition
operator is space dependent. It has to be adapted to the elastic parameters at all depth levels
where the wavefield has to be decomposed. This space dependency is easily taken into account
in the space-frequency domain.

- In the space-frequency domain the decomposition operators can take into account quite
well all kinds of detector distributions. This domain suits well then for wavefields that are
irregularly sampled. An other advantage of this domain is that it is also easier to take into
account the finite vertical aperture of the survey.

To determine the M;+M2+1 complex points of the discretized convolutional operator that
simulates in the space-frequency domain one of the four decomposition operators Fi (kz, @)

(previously developed in the vertical wavenumber-frequency domain), we use the same method
as the one developed in section (3.8). We find that for one frequency component, the

Mj+M>+1 complex operator points contained in the filter vector f ,

F=( @), fol@), -, (@, (5.6.1a)
are solutions of the linear system :
A fi) = b(o), (5.6.1b)
with,
kz = kzmax .
Am(@ = Y, Wk, eik(zmzn), mn=-M,, ..., My
kz = kzmin (5.6.1c)
and
kz = kzmax ~ i
b(@)= Y,  Wlky) Flks,0) efksZm .
kz = kzmin (5.6.1d)

Where W(k,,w) is a weight function and kzpin, kzmax depend on the vertical wavenumbers of
the plane waves that are expected to reach the vertical position zp. Due to the derivative
discontinuities at k, = kp and &, = kg, the decomposition operator in the space domain will be
long if we want to include these values in the seismic band over which the operator has to be
accurate. When the data does not contain vertically propagating P and § waves, the
convolutional operator length greatly reduce by allowing the operator not to be accurate for
these spectral waves. Conclusion: The wavefield decomposition of VSP data with convolutional
operators is more suited for VSP surveys with source-borehole offset than without offset.

To illustrate the wavefield decomposition in the space-frequency domain we first consider
simulated data. The subsurface model consists of three horizontal layers overlaying a
homogeneous lower half space. The physical properties and the thickness of the three layers
are :



o0

- oo

NO O

5. WAVEHELD DECOMPOSITION OF VSP DATA
L]
0
(4

t(ms)

8

o0

00

*TOO

~NOO

158

(b)

s

|

AN

|
il

~

i

1

vertical

re 5.6.

Fi;

(c) decomposed P wavefield 10dB

City,

zontal particle velo

, (b) hori

particle veloc

clipped, (d) decomposed S wavefield 10dB clipped.

(a)



5.6 THE DECOMPOSITION OPERATOR IN THE SPACE-FREQUENCY DOMAIN 159

Cp1 = 2249 mfs,cs1 = 1300 mfs, py1 = 1 glem3, Az = 600 m;
Cp2 = 2595 m/s, cs2 = 1500 m/s, pr = 1 g/em3, Az = 600 m;
Cp3 = 3460 ms, cs3 = 2000 m/s, p3 = 1 g/em3, Az = 600 m;
Cpa = 3700 ms, cs4 = 2000 m/s, ps = 1 glcm3.

The VSP borehole is at a distance rp=150 m from the source. The source consists of a vertical
force buried at a depth of 300 m. The detector spacing is 2 meters and the time sampling is
4 ms. Figures 5.6.1a,b represent the vertical and horizontal particle velocities simulated with a
2D finite difference modeling program; Figures 5.6.1c,d represent the decomposed P and S
wavefields, 7 points convolutional operators have been used. We can note the excellent normal
one-way wavefield separation for a wide range of incident angles.

Now we present an example of wavefield decomposition of real VSP data. The data provided
by the Compagnie Générale de Géophysique (CGG) have been shot in the Paris basin.

The data were recorded with the following parameters:

detector spacing : 10 (m)
first detector : 220 (m)
last detector : 1810 (m)
borehole offset : 650 (m)
sample interval : 2 (ms)
frequency content : 10 - 80 (Hz)

Figures 5.0.2a,b represent the horizontal and vertical particle velocity components recorded
along the well. We used S points convolutional operators and the following depth model for the
wavefield decomposition:

layer depth (m) cp (mis) cs (mls)
1 220 2690 1237
2 280 2815 1427
3 425 3075 1563
4 528 3343 1731
5 640 2771 1298
6 737 2417 1029
7 795 2650 1231
8 901 2600 1180
9 1005 3548 1686
10 1115 3862 2124
11 1227 3486 1570
12 1349 3320 1762
13 1432 4930 2620
14 1580 4080 2155
15 1733 3400 1688
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As can be seen on the original sections, P and S wave energy is recorded both on the horizontal
and vertical particle velocity components. At small depths (200-600m), the data are mainly
composed of refracted horizontally propagating P and S waves. We can also notice the presence
of upgoing reflected waves (with small angles of incidence) coming from the deeper layers.
This part of the data will enable to test if our decomposition operators can correctly treat P and
S waves of the same apparent vertical velocity. In this case the separation is only based on the
difference of polarization of the two wave types. This part of the data is also interesting to
check if we can treat a wide range of angles of incidence. From the reflector at depth 1000m a
lot of wave reflections and conversions occur, because here the medium contains strong vertical
velocity variations. It will enable to test if the local decomposition operators can handle a
complex medium. One can see from the horizontal and vertical particle velocity sections the
effect of the sensitivity of the particle velocity detectors to the angle of incidence of the waves.
It is interesting to check if these effects are removed on the decomposed sections. The result of
the decomposition, Figures 5.6.3a,b, is considered to be impressive. The following comments
can be made: the strong downgoing direct P wave has been completely removed in the
decomposed S section. The effects of the detector directivity has been removed and the
continuity of the P and § waves is much better on the decomposed section than on the particle
velocity sections. We can also note that all the dips have been correctly treated, and that the
spatial resolution of the decomposed S section is high (even in the highly inhomogeneous part
of the medium around 1000m).

In conclusion, the VSP real data example indicates that the decomposition operators effectively
separate P- and S- waves in a true amplitude sense, also under complex field conditions (many
overlapping events, similar apparent velocities, fast medium velocity variations).

Remark:

The decomposition convolutional operator is well suited to decompose a seismic wavefield
composed of a wide range of plane waves. Indeed, the convolutional operator is not designed
to fit the theoretical operator exactly but in a least squares sense. By allowing a small error in
the operator response for the plane waves of interest, a larger number of plane waves (larger
than the number of operator points) may be satisfactory treated. In the case that the data can be
well approximated as the sum of a small finite number of plane waves, an other decomposition
approach is preferrable to treat in an exact manner the few plane waves contained in the data.
For the illustration, let us consider a small offset VSP survey. At any depth level the seismic
wavefield can be well approximated by the sum of two downgoing (P and S) and two upgoing
(P and S) plane waves. From the relation between the amplitude, the angle of incidence of the
normal wave-types and the particle velocities (5.3.3a), it is possible using an inversion
algorithm to determine these two parameters for each of the four incident plane waves. Such a
scheme has been developed and illustrated by Esmersoy (1990) and Leaney (1990). With this
method it is even possible to determine the P and S wave propagating velocities at the depth
level where the wavefield is decomposed and to correctly treat plane waves propagating in the
borehole-source direction. Unfortunately, the method requires a pre-interpretation step.
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CONCLUSIONS

In this thesis, we have defined elastic wavefield decomposition as a transformation of a two-
way vector wavefield representation into a one-way scalar wavefield representation. Starting
from this definition and using the relations between the two-way and normal one-way
wavefield components, we have developed a general formalism for the wavefield
decomposition of elastic waves.

For surface seismic data the following topics have been addressed

1) 2D and 3D

The elastic wavefield decomposition has been derived for 2D and 3D seismic wavefields
(chapters 2 and 3). For 3D seismic wavefields recorded along one direction only, we have
developed the proper cylindrical wave decomposition formulas, that enable to apply an exact
wavefield decomposition when the subsurface is horizontally layered (chapter 4).

2) Isotropic and anisotropic

In isotropic media we separate the compressional (P) and shear (S) waves. In anisotropic
media the decomposition operators separate the three normal modes of propagation that
compose the total wavefield (chapter 2).

3) Lateral variations

For laterally variant media, the wavefield is decomposed in the space-frequency domain by
means of convolutions. Special attention has been put in the derivation of short convolutional
operators that act locally (chapter 3).

4) Wavefield decomposition at the detector and source side
We decompose the wavefield recorded by the detectors as well as the wavefield emitted by
the sources (chapter 3).
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5) Extra wavefield information

The decomposition operators are designed in such a way that any extra information about
the wavefield can be easily included. It enables the decomposition of extrapolated wavefields
(chapter 3)

6) Sensitivity analysis

We showed that for isotropic media the sensitivity of the wavefield decomposition
algorithm to the P and S wave velocity of the near surface increase with the angles of incidence.
We also studied the effect of the traction free surface on the sensitivity of the decomposition
process (chapter 3).

Our experience with surface land data is yet small. However, from our limited experience we
may conclude that proper-preprocessing (statics, coupling) prior to decomposition is a pre-
requisite. In the case of a low velocity near surface medium the wavetype separation is largely
made by the horizontal and vertical component sources/receivers.

The same topics have been addressed for VSP data (chapter 5). Due to the strong vertical
velocity variations that may occur along the VSP well, the wavefield decomposition has to be
done in the space-frequency domain. If the data can be well fitted by few plane waves (by e.g.
two downgoing, two upgoing) it is preferrable to do a parametric wavefield decomposition as
proposed by Leaney (1990). If the data is complex it is preferrable to do the wavefield
decomposition by means of convolutional products (this thesis, chapter 3).

As the convolutional operators play an important part in wavefield decomposition, it is
interesting to continue their development. For instance, the weighting function, as introduced in
section 3.8 for the computation of the operators in the space-frequency domain, is defined in a
very simple manner. An improvement will be obtained by updating the weighting function in an
iterative way (one or two iterations).
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SUMMARY

To determine the geological structure of the subsurface, single component seismic surveys are
generally sufficient. When we are interested in the type of materials that constitute the
embedded layers, we have to determine their elastic (and preferably also their lithologic)
properties. This can be done by illuminating the subsurface materials with different wave-types
and to analyse the subsurface responses for each wave-type (DELPHI approach).

To analyse the total seismic subsurface response, the reflected wavefields have to be recorded
by multi-component detectors. To determine the subsurface response for each wave-type, we

have to use multi-component sources as well.

The image of the subsurface is obtained from the recorded data after a series of processing
steps. We propose data decomposition prior to image related processing. This data
decomposition step separates P and S waves at the surface.

In this thesis we present a general formalism for the decomposition per wave-type at the source
as well as at the receiver side, both in surface and borehole seismics. For the decomposition at
the receiver side we have formulated the relation between the quantity measured by the
detectors (particle velocities) and the amplitudes of the three incident wave-types (see Chapter
2). For the decomposition at the source side we have formulated the relation between the
emitted source quantity and the amplitudes of the three emitted wave-types (see Chapter 2).
From these relations we can determine the expression of the decomposition operator at the
receiver side; it enables us to separate the three wave-types reaching the detectors. Similarly, we
can also determine the expression of the decomposition operator at the source side; it enables us
to separate from the seismic earth response the part due to the different wave-types emitted by
the sources (see Chapter 3). For reasons of stability and uniqueness we prefer the multi-
channel approach to the single-channel approach, resulting in a spatial convolutional process to
be applied to the source and receiver gathers. The decomposition operators depend on the
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elastic parameters of the medium at the source and receiver side. As these parameters are
generally not known during data acquisition, it is essential to do the decomposition numerically
(in a data adaptive way) in the processing center. Hence, wavefield decomposition should not
be done in the field.

Using the matrix notation, the operations involved in the decomposition are very similar to the
operations involved in one extrapolation step of pre-stack depth migration, the wavefield
extrapolation operators at the source and at the receiver side being replaced by the wavefield
decomposition operators at the source and receiver side (see Chapter 3). Similar as in prestack
migration, if the elastic medium is homogeneous at the source and receiver side the
decomposition can be applied in the wavenumber-frequency domain. For inhomogeneous
media the wavefield decomposition has to be done in the space-frequency domain. Contrary to
pre-stack migration, we do not need a subsurface model but only a model of the elastic medium
around the sources and receivers. It is important to note that in the case we are not interested in
applying the proposed decomposition at the actual source and receiver locations, all the tools
presented in this work can still be used to decompose the elastic wavefield away from the
sources and receivers, after wavefield extrapolation. In the DELPHI project it has been shown,
however, that decomposition should be carried out prior to extrapolation.

Low velocity near surface layers automatically realize wavefield separation at the source and
receiver side. Therefore for surface seismics, the result of the wavefield decomposition will be
most effective for high velocity near surface material. Generally, the near surface is
unconsolidated, leading to poor quality data affected by problems of changes in coupling
between adjacent sources and/or detectors, problems of statics and problems of absorption.
Under such conditions pre-processing prior to decomposition is a pre-requisite.

In borehole seismics the particle velocity detectors are situated below the surface. The
embedded layers are well consolidated and the coupling of the detectors to the borehole is well
solved nowadays. These advantages make convolutional wavefield decomposition at the
receiver side very effective for VSP surveys.




SAMENVATTING

Voor de bepaling van de geologische struktuur van de ondergrond kan in het algemeen volstaan
worden met seismische gegevens welke zijn verkregen met éénkomponents-bronnen en
—ontvangers. Wanneer het bovendien van belang is om de materiaaltypen van de verschillende
lagen te bepalen, dan zullen hun elastische (en bij voorkeur ook hun lithologische)
eigenschappen bepaald moeten worden. Dit kan gerealiseerd worden door de lagen in de
ondergrond met verschillende typen golven te belichten en door de respons van de ondergrond
voor ieder golftype te analyseren (de DELPHI methode).

Om de totale seismische respons van de ondergrond te analyseren zullen de gereflekteerde
golfvelden met multikomponenten-ontvangers geregistreerd moeten worden. Om de respons
voor ieder golftype te bepalen zullen bovendien multikomponenten-bronnen gebruikt moeten
worden.

De afbeelding van de ondergrond wordt verkregen door de geregistreerde data een aantal
processen te laten ondergaan. Wij stellen voor om data-decompositie toe te passen voorafgaand
aan de afbeeldingsgerichte processen. Deze data-decompositie scheidt de P- en de S-golven aan
het oppervlak.

In dit proefschrift presenteren we een algemeen formalisme voor de decompositie per golftype
zowel aan de bronzijde als aan de ontvangerzijde (zowel voor oppervlakte- als voor boorput-
seismiek). Voor de decompositie aan de ontvangerzijde hebben we een relatie geformuleerd
tussen de door de ontvangers geregistreerde grootheid (deeltjessnelheid) enerzijds en de
amplituden van de drie invallende golftypen anderzijds (zie Hoofdstuk 2). Voor de decompositie
aan de bronzijde hebben we de relatie geformuleerd tussen de brongrootheid enerzijds (traktie)
en de amplituden van de drie uitgezonden golftypen anderzijds (zie Hoofdstuk 2). Uitgaande
van deze relaties is het mogelijk om de uitdrukking te bepalen van de decompositie-operator aan
de ontvangerzijde: deze stelt ons in staat om de drie golftypen te scheiden welke bij de
ontvangers arriveren. Evenzo zijn we in staat om de uitdrukking te bepalen van de decomposite-
operator aan de bronzijde: deze stelt ons in staat om de respons van de ondergrond te scheiden
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naar de drie door de bronnen uitgezonden golftypen (zie Hoofdstuk 3). Op grond van stabiliteit
en uniekheid geven we de voorkeur aan een multikanaals-proces boven een éénkanaals-proces.
Dit leidt tot een spatieel convolutieproces langs de bronnen en langs de ontvangers. De
decompositie-operatoren zijn afhankelijk van de elastische eigenschappen van het medium ter
plaatse van de bronnen en ontvangers. Aangezien deze parameters in het algemeen nog niet
bekend zijn tijdens de data-acquisitie, is het essentieel om de decompositie numeriek te
verrichten (data-adaptief) in het dataverwerkingscentrum. Golfvelddecompositie moet dus niez
in het veld verricht worden.

Door gebruik te maken van een matrixnotatie vertonen de bij de decompositie betrokken
operaties grote overeenkomst met de operaties welke bij één extrapolatiestap in dieptemigratie
voor stack toegepast worden. Hierbij spelen de decompositie-operatoren aan de bron- en
ontvangerzijde dezelfde rol bij de decompositie als de extrapolatie-operatoren aan de bron- en
ontvangerzijde bij migratie (zie Hoofdstuk 3). Evenals migratie voor stack kan het
decompositieproces in het golfgetal-frequentiedomein worden uitgevoerd wanneer het medium
geen variaties vertoont aan de bronzijde en aan de ontvangerzijde. Voor inhomogene media
echter moet het decompositieproces in het plaats-frequentiedomein worden uitgevoerd. In
tegenstelling tot migratie, is bij decompositie geen model van de gehele ondergrond vereist,
doch slechts een model van het elastische medium ter plaatse van de bronnen en de ontvangers.
Het is belangrijk op te merken dat indien men niet geinteresseerd is om het voorgestelde
decompositieproces uit te voeren ter plaatse van de bronnen en ontvangers, al de in dit werk
gepresenteerde gereedschappen ook gebruikt kunnen worden om het elastische golfveld te
decomponeren op andere plaatsen in de ondergrond, na golfveldextrapolatie. In het DELPHI
project is echter aangetoond dat decompositie bij voorkeur vé6r het extrapolatieproces dient te
worden uitgevoerd. Wanneer de oppervlaktelaag een lage golfpropagatiesnelheid heeft, wordt
automatisch een golfvelddecompositie verkregen aan de bronzijde en aan de ontvangerzijde.
Daarom zal bij oppervlakteseismiek het decompositieproces het meest effektief zijn wanneer de
oppervlaktelaag een hoge golfpropagatiesnelheid bezit. In het algemeen is de oppervlaktelaag
ongeconsolideerd, hetgeen leidt tot een lage kwaliteit van de data, nog versterkt door problemen
t.g.v. de veranderingen van de koppeling van opeenvolgende bronnen en/of ontvangers,
problemen met statische variaties en absorptie. Onder zulke omstandigheden zijn voor-
bewerkingen van de data noodzakelijk alvorens tot decompositie wordt overgegaan.

Bij boorputseismiek zijn de deeltjessnelheiddetectoren onder het oppervlak gesitueerd. De
omliggende lagen zijn goed geconsolideerd en het probleem van de koppeling van de detectoren
met de boorputwand is opgelost. Deze voordelen maken golfvelddecompositic d.m.v.
deconvolutie langs de ontvangers in een boorput zeer effectief.




Name
Born
Nationality

EDUCATION

1979 - 1981
1982-1983
1984
1985-1987
1988

1989 - 1991

EMPLOYEMENT

1992

CURRICULUM VITAE

: Herrmann, Philippe, Charles
: January 14, 1964
: French

: Lycée Camille Sée (Colmar)

: DEUG A (Mulhouse)

: Strasbourg University

: Ecole et Observatoire de Physique du Globe de Strasbourg
: Military service

: Delft University of Technology

: Geophysicist at CGG





