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“Tooit men zich met een nieuwe manier van witdrukken, dan werpt men met het ander
gewaad de oude problemen van zich af.”

L. Wittgenstein, 1946.
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Chapter 1

Introduction

As a consequence of the ever increasing demand for hydrocarbons and the steady decline
of newly explored resources an uprise has taken place towards a more production ori-
ented seismic technology. Traditionally the field of seismic exploration committed itself
primarily to locating resources in the earth’s subsurface. Of late, atternpts have been
made to exploit seismic technology to deliver qualitative and quantitative information
about the reservoir of interest. This new direction is far more ambitious since it strives
for petrophysical and lithological information. This requires an integration of different
types of data, acquired within different disciplines. It also calls for a good understand-
ing on how to interrelate measurements taken at different scales. This has been the
subject of this thesis, a study aimed to improve the understanding on the interaction
between seismic waves and the medium, with variations at different scales. In figure 1.1,
a schematic overview is depicted to illustrate how seismic waves are used to insonify
the earth’s subsurface in order to obtain information. The basic idea of this method is
that waves, excited by a source, tend to reflect at regions where the earth’s material
properties show rapid variations, i.e. where singularities in the medium properties occur.
In this way the seismic wavefield inherits information not only on the locations but also
on the nature of the dominant singularities, possibly containing more, hopefully discrim-
inating, information. This information can be picked up by detecting the wavefield as
a function of the horizontal or vertical coordinate and as a function of time. Measure-
ments taken along the surface are referred to as surface seismic data and are collected in
so-called seismic shot records. An example of such a shot record is given in figure 1.2.
The time traces, measured by the geophones or hydrophones, are plotted vertically as
a function of the horizontal source-receiver offset. Despite the aforementioned trend,
todays exploration seismic processing is still mostly involved in estimating the locations
of the dominant singularities (Bleistein, 1984). These singularities are generally believed
to be jump discontinuities, a special class of singularities.. This is related to the idea
that the earth is constructed of distinct layers, like an onion. The general procedure
to convert the map of reflections to the location of the singularities is called migration




4 1.1 Statement of the problem
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Figure 1.3 A real Vertical Seismic Profile (VSP). The particle velocity s depicted as a func-
tion of the time, horizontally, and vertical offset, depth, vertically. Remark that
as the wave trovels down its “impulsive” nature gredually diminishes.

dominant wavelength in the range of the medium fluctuations (with their observed scale
divergence) one might be in a better position to close the gap between seismic and well-
log based measurements. The latter is a problem of different scales and has to do with
the question on how to coarse-grain the fine-grained well-data to the coarse-grained scale
range inhabited by the probing seismic wavefield.

A first step to face the above challenge is to have a thorough look at the medium’s com-
plexity, followed by the introduction of a proper representation of the observed complexity
making explicit reference to the scale. It has become clear that in this thesis decompos-
ing the heterogeneity along the scale direction is a means to unravel the complexity. It
has been observed that well-log data drastically change as a function of the scale due to
the variability on every scale. This can be analyzed using the multiscale analysis tools
described. To obtain an order of magnitude estimate for the local and global scaling,
Holder exponents are being calculated with the help of the continuous wavelet transform
(Daubechies, 1988; Mallat and Hwang, 1992; Bacry et al., 1993). These Holder exponents
can be used to asses the degree of differentiability of the individual singularities, which
is directly related to scale divergence. In that way the singularity spectrum provides
information on the global degree of differentiability and integrability, on the general-
ized or Hausdorfl dimensions and on the scaling behaviour of the statistical moments
(Mandelbrot, 1974; Parisi and Frisch, 1985; Halsey et al., 1986).

sy
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Figure 1.4 An example of a well-log dataset. On the left the compressional wavespeed (P-
velocity) and on the right a slightly zoomed in version. Remark the overwhelming
complexity displayed by this well-log measurement.

Fractals constitute a class of mathematical objects containing hierarchies of the singu-
larities. It was Mandelbrot (1982) who first coined them as models capturing complexity
across a wide scale range. They are in use to describe many different phenomena: share
prices in the stock exchange, the irregularity of the coast of Britain, the intermittency
and scale-invariance of the hydro-dynamic turbulence and the irregularity of geomag-
netic noise. This wide range of phenomena is believed to include well-log measurements,
as shown in the literature (Walden and Hosken, 1985; Todoeschuck and Jensen, 1989:
Saucier and Muller, 1993) which will be confirmed by this thesis. The observation that
well-log data display a predominant scaling behaviour substantiates the introduction of
a representation with explicit reference to the notion of scale. Mathematically speaking
this implies that functionals rather than ordinary functions will be used to represent the
scaling well-log measurements.

The motivation to invoke the scaling medium representation was to accomplish a better
understanding of the evidenced dynamics: dispersion and specular reflection. Dispersion
(frequency dependent attenuation and time delay, see e.g. figure 1.3} is attributed to




6 1.2 initial approach

an intricate interference mechanism induced by the medium’s heterogeneity. Viscous
relaxation effects have been assumed to be absent. From figure 1.3 it is clear that
this is a cumulative effect leading to a loss of the initial pulse’s sharpness on its way
down. Specular reflections, on the other hand, are the result of an averaging process
of a more local nature. This averaging process maps the singularities, occuring in the
medium properties, to the space time characteristics of the wavefield, an observation

substantiated by the irregular nature of the VSI’s coda and the reflection seismic shot
record. ‘

The current model, utilized to describe the mapping of the singularities in the medium
to the wavefield (Claerbout, 1971; Bleistein, 1984; Yilmaz, 1987; Wapenaar, 1996b;
Berkhout, 1982), is based on the acoustic wave equation in which the medium prop-
erties occur as coefficients. In this formulation no explicit reference is made to the scale.
Despite this possible deficiency, the model is being used there where the medium displays
a strong dependence on the scale.

1.2 Initial approach

The initial goal of this PhD research project was to better understand the induced disper-
sion effects, attributed to the medium’s irregular heterogeneity. To simplify the intricate
interference mechanism perceived to be responsible for the characteristics of the probing
pulse, an approximation was proposed. This approximation, known as the O’Doherty-
Anstey formula (O’Doherty and Anstey, 1971), permits a formulation of the propagation
operator, carrying the wavefield from one depth level to the other, in terms of the sample
power spectrum of the depth traveltime converted reflection coefficients (Banik et al.,
1985a,b; Resnick et al., 1986; Burridge et al., 1988; Burridge and Chang, 1989; Bur-
ridge et al., 1993; de Hoop et al., 1991b.a; Shapiro and Zien, 1993; Shapiroe et al., 1994).
The initial idea was to replace the sample power spectrum by its stochastic expectation,
yielded by an appropriate random process. The random process initially used in this
context resulted in an exponential decaying correlation function, a choice difficult to rec-
oncile with the evidenced long tailed correlations (Walden and Hosken, 1985; Todoeschuck
and Jensen, 1989) displayed by well data. For that reason a fractal representation was
proposed, yviclding an elegant parametric representation in terms of a single scaling ex-
ponent (Herrmann, 1991; Herrmann and Wapenaar, 1992, 1993, 1994; Burridge et al,,
1993). Eventually this line of research amounted to a proposal for a migration scheme
taking the effects of fine layering into account (Wapenaar and Herrmann, 1996). Later
on, the author came to the insight that the underlying assumptions behind the derivation
of the weak fluctuation O’Doherty-Anstey approximation were difficult to reconcile with
the empirical multiscale findings. A similar observation applies to the recent elaborate
results on media containing strong order one fluctuations {Asch et al., 1991, 1990; Papan-
icolaou et al., 1990; Burridge and Chang, 1989; Burridge et al., 1992; Lawecki et al., 1994;
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Chapter 1: Introduction 7

Lawecki and Papanicolaou, 1994). In that case namely, a separation of scales is invoked
where the correlation length of the medium is considered to be small compared to the
spatial width of the pulse while the pulse is assumed to travel long distances. Again this
presupposition does not combine well with the findings of the multiscale analysis where
a separation of scales seemus futile.

1.3 Current state of affairs

The presupposition of a scparation of scales, invoking the necessary stationarity for the
mean of the fluctuations, is also shared by localization theory (Anderson, 1958; Souillard,
1986; Pastur and Figotin, 1991). In this theory one is currently able to exclude the
singular continuous part of the spectrum, under the above assumption, and to prove
that the spectrum for the eigenvalues is pure point with the eigenvalues lying dense
(Pastur and Figotin, 1991; Pastur, 1994). Given this observation one is able to come
up with qualitative estimates for the exponential decay of the eigenfunctions in terms
of Lyapunov exponents. Unfortunately the above presuppositions do not combine well
with the multiscale behaviour empirically found which seems to preclude a separation
of scales. Hence the question on how one-dimensional acoustic waves travel in one-
dimensional media with powerlaw tailed correlations remains open. However, that does,
on the one hand, not rule out the possibility to check for a power law type of behaviour
displayed by the Lyapunov spectrum or to initiate a discussion on the potential role
of scale — the scale derivative operator does not commute with the spatial derivative
operator - within the context of describing wave interactions in scaling media.

1.4 An alternative approach

With the benefit of the hindsight, 1 have the impression that the problem at hand is
perhaps too difficult. This notion became especially clear in relation to the very involved
localization theory. I was unable to grasp its full details and the implications for wave
propagation in media displaying long-tailed correlations. This may explain why partly
this thesis is a conglomeration of yet unfinished ideas. I believe that the problem requires
an explorative approach. In such a way the understanding of the neglected notion of scale
might be improved. Speculations on a more general formulation of the problem, including
the notion of scale, are presented in the Epilogus, which anticipates on future research
and should not be regarded as an official part of this thesis.

1.5 OQutline of this thesis

The contents of this thesis has been divided into three parts: The Capita Prima con-
stituting the body of this thesis; the Capita Selecta consisting of selected topics being
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of relevance for the main part and finally the Epilogus in which I roughly sketch how I
intend to pursue research in the future. To be more specific the Capita Prima consist
of three chapters. The first one addresses the issue of finding a proper representation
for the well-log data. It also gives an overview of fractal models which can be used to
categorize and simulate the well-log’s complexity. Within the multiscale analysis the
continuous wavelet transform plays a central role. This transform is based on transia-
tions and dilatations effectuated on a proper analyzing wavelet. In the second chapter
the operators generating the translations and dilatations are being reviewed. In the fi-
nal chapter attention is paid to the scattering and spectral problem associated with the
acoustic wave equation. It appears that localization theory is possibly required to explain
the dispersion observed.

In the second part of this thesis, the Capita Selecto, several concepts are being reviewed
that are essential in the discussions in the main part and the Epilogus. They can be
skipped by the reader familiar with the concepts of distribution theory, chapter 5; multi-
and monofractals, chapters 6 and 7 and multiscale analysis by the continuous wavelet
transform, chapter 8.

oo
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Chapter 2

A scaling medium representation

In this chapter a multiscele analysis, characterization and modelling mechanism is
laid down which is aimed at capturing the complexity as displayed by well-log mea-
surements. The purpose of this chapter is fourfold. First it is intended to devise
an andlysis method that reveals the scaling behaviour displayed by many geophysical
phenomena amongst which the well-log data. Secondly it intends to come up with
a characterization facilitating the assessment of notions such as the degree of dif-
ferentiability. Thirdly I will come up with a number of fractal models that yield o
complezity that is comparable to the one evidenced from well data for ezample. Fi-
nally I propose a scaling medium representation in terms of the continuous wavelet
transform. )

key words: scaling, continuous wavelet transform, singularity, Hélder exponent,
(universal) multifractal, singularity spectrum, well-log data.

prerequisites: the chapters of the Capita Selecta.

2.1 Iantroduction

One of the most striking aspects a (exploration) geophysicist! finds himself or herself
faced with is the sheer complexity displayed by geophysical phenomena of various kind. It
was Richardson (1922) who paraphrased the above observation so cunningly by parodying
J. J. Swift’s poem into

Big whorls have little whorls that feed on their velocity
and little whorls have smaller whorls and so on to viscosity
- in the molecular sense (source (Schertzer and Lovejoy, 1993))

!The theory in this thesis can be of relevance also for the general physicist when one comes to think
of the fields of turbulence or other fields where one tries to capture the spatial complexity and to gain a
better comprehension of wave phenomena interacting with this complexity. Think for example of wave
localization phenomena in aerogels, electron localization in solids or electromagnetic scintillations in the
atmosphere.




12 2.1 Introduction

In this way he hands over, in words, the basic ideas behind cascade models that have
proven to be successful in tackling the complexity as being displayed by many geophysical
processes. These cascade models share with these geophysical phenomena

e a certain scale-invariance: This scale-invariance is characteristic of many geophys-
ical phenomena typically containing structures with sizes that span several orders
of magnitude in length and/or time scale and that bear a certain similarity.

e an underlying dynamical non-linear mechanism: This type of mechanism is typi-
cally multiplicative yielding highly intermitient processes. This intermittency refers
to another distinguishing characteristic of geophysical data in the sense that events
tend to occur in a catastrophic fashion. That is to say that relatively quiet regions
are superseded by wild and violent events occurring in a burstly fashion.

I think it is fair to say that the observation concerning the complexity may have profound
implications on the way in which exploration geophysicists conduct their business. Indeed
it is and was Mandelbrot (1974), followed by many others amongst whom le Méhauté
(1991) and Nottale (1992), who advocated that the observed complexity does not strive
very well with the assumptions, on the differentiability for instance, that are, sometimes
lucidly, presupposed while setting up physical models. Within the context of this the-
sis this aspect is also important because the field of exploration geophysics finds itself
confronted with a problem where the complexity seems to be omnipresent. The prob-
lem addressed in this thesis commits itself to improve the comprehension on how to
interrelate measurements taken at different scales namely the fine-grained well-log data
scale range and the coarser grained surface seismic or Vertical Seismic Profile data scale
range. During the integration of these different data types one is generally interested
in the dynamics of the wave interactions and this requires a true understanding on how
waves interact in complex environments where the complexity persists over many scale
ranges. Despite many efforts the gap between the seismic scale range and the well-log
scale range has, to the author’s knowledge, not yet been closed in a satisfactory way. It
is this observation from which this thesis derives its inspiration.

At this point I ask myself the question whether one can use the observations on the
complexity to one’s advantage? In my case this comes down to initiating a discussion
on the properties of wave phenomena taking place in media displaying a highly irregular
behaviour. To be more specific wave interactions in media whose constitutive parameters?
vary along the lines of the highly erratic, chaotic type of processes are of concern. Trying
to come to terms with this challenge, 1 feel obliged to come up with a mathematical as well
as physical proper and comprehensive representation for these constitutive coefficients

2These constitutive parameters refer in the case of acoustic wave motion to the density of mass and
compressibility, both occurring as coefficients in the system of partial differential equations denoting the
wave equation, see chapter 4.
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that honors the notion of scale as founding principle of the evidenced complexity. This
representation will serve as a starting point for a discussion on wave motion in relation to
the notion of scale. The merit of the multiscale representation potentially lies in gaining
a better understanding of the scaling structure in relation to wave interactions since it
comes up with a tool:

e to analyze the Jocal scaling being captured by locel order of magnitude estimates.
These estimates are related to the local degree of differentiability expressed in
terms of Holder exponents (Holschneider and Tchamitchian, 1990; Jaffard, 1991;
Daubechies, 1992; Mallat and Hwang, 1992).

e to analyze the global scaling being captured by global order of magnitude esti-
mates providing information on the global regularity, the hierarchy of the scaling,
the generalized fractal dimensions and the scaling behaviour of the statistical mo-
ments (Mandelbrot, 1974; Hentschel and Procaccia, 1983; Collet, 1986; Schertzer
and Lovejoy, 1987a; Siebesma, 1989; le Méhauté, 1991; Lichtenberg and Lieber-
man, 1992; Ott, 1993; Muzy et al., 1993; Bacry et al., 1993; Davis et al., 1994;
Holschneider, 1995).

The above subdivision is inspired on the idea that the reflection of waves is governed
by a local averaging mechanism, over the gauge of the probing pulse, while a global
self-averaging mechanism, over the propagation distance, can conjectured to be held
responsible for the behaviour of the pulse shape of the propagating wavefield.

I will commence the discussion by trying to convey the basic ideas that come with
taking the notion of scale into consideration. This boils down to a rather intuitive
introduction of the continuous wavelet transform. This wavelet transform forms not
only the basis for the multiscale analysis methods that will be briefly reviewed in this
chapter, the reader is referred to chapter 8 for a more detailed discussion, but also for the
multiscale representation I intend to propose. The multiscale analysis reflects the above
local/global subdivision and provides the necessary estimates for the characterization of
the complexity in terms of mathematical quantities such as Holder exponents or Hausdorff
dimensions. This method is set to work on real well-log measurements. After that I will
proceed the discussion by reviewing models that can be held responsible for generating
the observed complexity and that will yield a way to simulate sequences with a type of
scaling behaviour that matches certain aspects of the empirical observations such as well-
logs. Then I will present my views on the mathematical and physical aspects that come
with the presented multiscale analysis. The observations I make during that discussion
eventually prompt me to propose a scaling medium representation that is consistent with
the data and provides a robust framework in which I can give these irregular data sets a
proper meaning. I will conclude this chapter with a short resume on the models currently
used to characterize the corplexity of the well data within the perspective of describing
wave phenomena.
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2.2 Having a look in the scale direction

The variability displayed by geophysical phenomena tends to persists over a large range
of scales. This observation suggests to undertake an investigation of these data along
different scales. Such an approach is quite natural given the scope and the objectives
of this thesis where I pursue a better integration of seismic and borehole oriented data,
a problem of different scales. Now how can one come up with an approach that is
well equipped to handle/unravel the displayed scaling behaviour and that takes into
consideration the notion that every measurement entails a coarse-graining/dressing of
the actual/bare® physical quantity of interest? To answer this question let me first
formally establish the notion that a measurement can be considered as a projection
of the bare quantity onto a scale o = o0y, corresponding to the measurements device
resolving capability. This map is effectuated via an inner? product of the actual bare
quantity, f, and a real and symmetric smoothing kernel, ¢, »(z'), located at z = ',

F(00,2) 2 {f, boo,2)- (2.1)

The width of the smoothing kernel is proportional to the scale index gy. The scaling,
the dependence of the data on the scale indicator o, can be examined by artificially
coarse-graining the data even further via

f(0007x) = (fa ¢Uo“o,m>' (22)

By setting og = 1 this expression simplifies to

f((fa .CC) = <f7 ¢U,.’c>; (23>

where o is the scale indicator or index. The smoothing kernel in itself is obtained by
the invocation of the combined action of the shift and dilatation operators on the initial
smoothing kernel,

1 -z
(btf,m(m’) = S~a:D§¢(-75’) = “ﬁ¢( pe ) (2.4)
while preserving the L?(R) norm, i.e. ||y o||2 = [|ll2. The reader is referred to chapter 3
for a further substantiation of the shift operator S and the dilatation operator D. Because
the smoothing kernel is chosen to be real and symmetric equation (2.1) can be recasted
in the form of a spatial convolution

£03) = (F+ 80)(&) with 6,(2) = 7= (). (2.5)

3The terminology bare and dressed are borrowed from Renormalization Group theory where they
refer to non-averaged and averaged quantities respectively (Wilson, 1983).

4Defined as (f,9) £ [ f(z)g* (z)dw, with * denoting the complex conjugate and f, g arbitrary func-
tions.




.........

Chapter 2: A scaling medium representation 15

Provided with the formalization of the coarse-graining in equation (2.3) one may wonder
what happens when one considers the effect induced by an infinitesimal change in the
scale indicator, o — do + o. Following Holschneider (1995) one can derive for the
difference f(o — do,z) — f(e,z), while do — 0, that

W{f, ¢} (o, 2) £ ~00, f(0,2) (2.6)
in which W{f,«} represents the continuous wavelet transform defined by
flo,2) = W{f,9}0,2) = (£, ¥0), 2.7
where ¢, ,(z') € L?(R) denotes the analyzing wavelet given by

1 o~z
ﬁl/f( -
This mean zero wavelet, [¥dz' = 0, is obtained by the action of the scale operator, C,
on the smoothing kernel

wcr,a: (-'El) = (28)

P(z) = jCH(x), (2.9)
with the scale operator defined by
o 1,,d d , oy

For further detail the reader is referred to section 3.6.3 of chapter 3.

At this point one might wonder what is gained by recasting equation (2.3) into equa-
tion (2.6)7 First of all one has to take into consideration that f(o,z) contains all details
in f up to the scale o whereas f(o,) delineates the details af scale o. Moreover it
also expresses the change in the scale direction in the sense that it measures the change
effectuated by an infinitesimal change in the scale indicator o. It is this latter property
which is of primary importance. It allows one to examine the local scaling behaviour,
the dependence on the scale indicator o, by applying 2z00ms with respect to the abscissa
T = Zo,

r > W{f,¥vHro,rzg) (2.11)

for some fixed (o,2). It also facilitates the examination of the behaviour for f at a
certain scale, o = gy, and as a function of z,

z = W{f, ¢} og,z) for. (2.12)

This latter operation is called a voice®.

31 borrowed the terminology zooms and woices from Holschneider (1995).
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Figure 2.1 A first ezample of the scaling displayed by a real well-log measurement. On the
top the local compressional wave speeds are on display. The second row depicts
the consecutive smoothings effectuated by o Gaussian bell-shaped smoothing ker-
nel. The third row displays the continuous wavelet transform computed with the
Mezican hat, the second order derivative of the Gaussian bell-shaped smoothing
kernel.

In figure 2.1 I depicted a first example of consecutive smoothings and details obtained by
smoothing and continuous wavelet transforming a well-log profile for the local compres-
sional wave speed. Clearly these type of profiles, see the top row of figure 2.1, demonstrate
a significant scaling behaviour judged by the large activity of the wavelet coeflicients, on
display in lower row, and the substantial changes in consecutive smoothings that are
shown on the middle row.

2.3 A multiscale approach

Given the preliminary introduction to scaling and the continuous wavelet transform I
now would like to go into more detail. One of the points that come to mind first is
the observation that the essential information in a signal® is generally carried by its re-
gions of rapid variation, by its boundaries or edges (Mallat and Hwang, 1992; Mallat and

5Tn this case the signal refers to a well-log measurement.
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Zhong, 1992). Mathematically these regions correspond to the so-called essential points
(Gelfand and Shilov, 1964; Zemanian, 1965) or singularities delineating the irregulari-
ties, transitions or edges in the signal. In words a singularity” is “a point at which the
derivative of a given function of a complex variable does not exist but every neighbour-
hood of which contains points for which the derivative ezists” (Webster, 1988). A basic
property of a singularity is the notion that it manifests itself distinctly by displaying a
specific type of scaling behaviour throughout a wide scale range. That is the main reason
why it can be detected.

The primary aim of this section is to render the apparatus required to analyze and
subsequently measure/quantify, see section 2.4, the different types of singularities. The
proposed multiscale analysis presented here commits itself to unravel the signal’s com-
plexity either locally, via zooms, or globally, via a partition functional defined in terms of
the voices. Both methods have in common that they allow for a quantification by means
of exponents that express order of magnitude estimates for the powerlaw behaviour dis-
played by the wavelet coefficients in the zooms and by the partition function. From the
introductory sections it became clear that the wavelet transform is well capable to live
up to the task of performing the above type of analysis because it decomposes a sig-
nal into its multiscale constituents (Holschneider and Tchamitchian, 1990; Jaffard, 1991;
Daubechies, 1992; Mallat and Hwang, 1992; Mallat and Zhong, 1992; Chui, 1992; Farge
et al., 1993; Bacry et al., 1993).

By way of the choice for the continuous wavelets — allowing for superior multiscale analysis
properties as compared to the discrete wavelet transform — the transformed domain is
inherently redundant because of the wavelet’s non-orthogonality. In order to circumvent
this deviancy — the inspection of the whole redundant space-scale space — an efficient
partitioning of this space-scale plane is proposed. This partitioning is effectuated by
reviewing the scale-space behaviour of the wavelet transform modulus maxima lines which
interconnect the extrema of the wavelet transform, the regions of rapid variation, across
the different scales (Mallat and Hwang, 1992; Mallat and Zhong, 1992).

2.3.1 The continuous wavelet transform

It was briefly demonstrated that the continuous wavelet transform serves well as the main
vehicle to conduct a multiscale analysis. The wavelet transform maps the original signal,
the functional® f, depending on say the spatial coordinate z, to a double-indexed function
f(o,z) depending on the scale or dilatation parameter o and the spatial coordinate z.
This mapping is defined by

fiom) = Wit )en = [ ) g (25 as (2.13)

"Remark, however, that for fractal constructs the singularities lie dense.
81 use the term functional rather than function because the wavelet transform is able to host a larger
class of mathematical objects then functions, see chapters 5 and 8.
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where 9(z) € L?(R) is a proper? analyzing wavelet. When submitting this definition of
the continuous wavelet transform to a close examination one can see that it represents a
Cauchy type of sequence approximating the derivative, see chapter 5,

d .
(.f: d&,m) = ”“O-‘(a";? f) (b(r,:l;)a (214)
where
1
Po,2(2") = C’a%gd’a,w(xl), (2.15)

represents the analyzing wavelet being given by the derivative of the smoothing func-
tion!®. The way in which the derivative in equation (2.14) is taken is known as taking
the derivative in the distributional or weak sense (Zemanian, 1965; Reed and Simon,
1980). By way of this definition one can interpret the wavelet transform as taking the
derivative of the smoothed signal (Mallat and Hwang, 1992).

Since the dilatation parameter rules the effective width of the weak differentiating!
kernel it is possible to analyze the functional f at any given but finite scale. So when
applying a multiscale analysis one can resolve the local features of the functional f by
zooming in on it, by increasing the resolution. This zooming is effectuated by choosing
a sequence of analyzing wavelets with decreasing effective supports.

Similar to the selection of the optimal optics for a microscope, it is also necessary to
impose certain conditions on the analyzing wavelet. By definition a wavelet has to
have a mean zero, 1 dz = 0 and besides this constraint additional conditions can be
imposed and this will allow for an extension of the class of signals which can be analyzed
meaningfully (Bacry et al., 1993; Muzy et al., 1993). This latter notion can easily be
understood given the above argument where the wavelet is seen as a test function to which
one can assign certain properties in order to make equation (2.13) valid. For this reason
1 intendedly opted to refer to a signal as a functional, because a functional constitutes
a larger class of objects, namely including the tempered distributions (Schwartz, 1957;
Gel'fand and Shilov, 1964; Zemanian, 1965; Duistermaat, 1993; Mallat and Hwang, 1992)
which do ‘not fit’ into the rather limited class of conventional functions. The reader is
referred to chapter 5 for a summary of the important concepts that come with distribution
theory.

9A wavelet that is smooth enough and having an adequate number of vanishing moments. If these
conditions are not adhered to then the analysis will be dominated by the properties of the analyzing
wavelet itself rather than by the function to be analyzed, and the results will be erroneous.

101 opted here to use a slightly different definition for the wavelet which is more in line with chapter 8.

117The order of the derivative depends on the number of vanishing moments, see chapter 8.
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2.3.2 The wavelet transform modulus maxima

As I already mentioned most of the important information in a signal is carried by its
singularities, by its regions of relatively rapid variations. Taking the derivative of such a
signal pronounces this effect and can even lead to a divergence, an unbounded growth for
the derivative at the singular points. With other words the derivative tends to diverge
in the limiting procedure defining the derivative. Now the interesting point is that this
notion directly translates to the behaviour displayed by the extrema in the modulus of
the continuous wavelet transform. That probably inspired Mallat and Hwang (1992) and
his co-workers to introduce a multiscale representation for the signal f in terms of a
partitioning by the wavelet transform modulus maxima, the extrems for the modulus of
the continuous wavelet transform.

To understand why the wavelet transform triggers on singularities one has to take into
consideration that a wavelet with M vanishing moments, see definition 8.1 of chapter 8,
acts as a M*' order distributional derivative and hence localizing singular behaviour
in the M*® order derivative. To say it in another way the vanishing moments cause
the wavelet transform to be orthogonal, read insensitive, with respect to polynomials of
O(z™-1). It is this notion that makes the wavelet transform a powerful tool to analyze
the singular behaviour of functionals f and it explains why the regions of fast variations
are reflected into local multiscale extrema, by the scale transformation.

Following Mallat and Hwang (1992), a modulus maximum (o9, o) of the continuous
wavelet transform constitutes a strict local maximum for the modulus of the wavelet
transform, max |W{f,¢}(o,z)|, for one specific scale and within the cone of influence
given by |x — o] < Co with C being a constant depending on the wavelet (Mallat and
Zhong, 1992). For a more formal definition given by Mallat and Hwang (1992) the reader
is referred to chapter 8. To illustrate the role played by the wavelet transform modulus
maxima I included figure 2.2 where the singularities and the corresponding modulus
maxima, computed with the help of definition 8.2, are depicted.

By repeating the localization of the extrema across the different scales it is possible to
define a wavelet transform modulus maxima, line, a wTMML. This line commences at the
smallest scale, at the resolution of the measuring device, and progresses, while connecting
the extrema, to the coarser scales. Because the number of extrema within the cone of
influence is restricted to ome, a bifurcation occurs as soon as two cones, carrying the
extrema, start to overlap. This notion is illustrated in figure 2.3 where the number of
WTMML’s declines as the resolution is decreased. Given this effective WTMML partitioning
it is now possible to conduct a local analysis on the signal f. A first example of such local
analysis is included in figure 2.3 (c) where the log amplitudes, yielded by the WrMML,
the amplitudes along the wIrMML’s in space-scale space, are depicted versus the log scale.
The different dashings are used to link the wTMML’s in (b) to the amplitude behaviour
in (c). Finally I would like to remark that it is possible to reconstruct the original signal
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Figure 2.2 This figure illustrates the wrMM. (a) The unsmoothed data set. (b) The data set
smoothed with a Gaussian bell shaped smoothing function. Only a fized scale is
considered. {c) One scale of the wavelet iransform of the data set. The wavelet
used here is the first derivative of the Gaussian, so the wavelet has one vanishing
moment. The scale of the wavelet is the same as that from the Gaussian of (b),
hence this plot shows a smoothed version of the derivative of {a). The local mazima
and minima indicate the points of sharp and slow variation. (d) The modulus of
(¢). The local mazima indicate the points of sharp variation and are denoted by
the circles.
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Figure 2.8 This figure illustrates the WTMML partitioning. (a) The unsmoothed data set. (b)
The continuous wavelet transform with the WTMML’s superimposed on it, notice
the bifurcations. {c) The local multiscale analysis reviewing the amplitudes at the
WITMML’s in log-log scale-amplitude space. The different dashings are intended
to illustrate the correspondence of the WTMML in the space-scale space and the
evidenced amplitudes along these lines. Notice the changes in amplitude behaviour
when the bifurcations occur.
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f from the sparse representation in terms of the WTMML’s, i.e. from a vector containing
the abscissa and the corresponding moduli for every scale (Mallat and Hwang, 1992).

2.3.3 Local analysis

Given the focusing ability — within bounds imposed by the width of the cone of influence
of the continuous wavelet transform together with the effective partitioning yielded by the
WTMML’s, it is now possible to conduct a local multiscale analysis. Within this analyzing
procedure the WIMML’s are used as navigators directing the analysis in the redundant
space-scale plane. The analysis itself simply consists of studying the behaviour of the
modulus of the wavelet transform at the maxima as the resolution is being increased
to the resolution at which the signal has been measured. While approaching the finest
resolution the WTMML’s start to point to the abscissa where the singular “points” in the
signal are located. Note, however, that in an experimental setting one is always faced
with an inner bound of the obtainable resolution. So the points refer to a small region of
a size proportional to the accuracy of the measuring device. Therefore it is in this case
more appropriate to refer to these singularities as regions the behaviour of which can,
within the resolution of the measured signal, not be discerned from being singular'?, see
the discussion in section 2.5. So the concept of a singularity can only be of relevance in
the physical context, when taking the limit is interpreted as studying the behaviour of the
signal as the small scale limit is approached. In chapter 8 I provide a series of theorems
by Mallat and Hwang (1992) that make the local analysis precise. As to summarize the
local multiscale analysis boils down to the examination of zooms along the partitioning
provided by the wTMML.

In figure 2.3 1T included an example of conducting a local analysis on the signal of fig-
ure 2.2. Indeed one can see that the WIMML delineate the regions where the functional
is singular. One can also clearly recognize the bifurcations occurring when the cones
carrying a WTMML start to overlap, when the WTIMML start to merge. Judged by the
amplitudes, depicted in the bottom row, these bifurcations do have a substantial effect
on the amplitudes versus scale behaviour.

In this section I only briefly introduced the concept of a local scaling analysis. In sec-
tion 2.4.1 I will introduce order of magnitude estimates for the behaviour of the modulus
maxima as a function of the scale index o. These estimates will not only provide an
efficient quantification/parameterization but also offer a mathematical characterization
of the signal’s regularity within the available resolution range.

2.3.4 Global analysis

Within the realm of multiscale analysis one is generally not only interested in the local
features of a signal. The global multiscale characteristics are of interest as well. For

12That is to say not to be discerned from being non-differentiable or singular in some order of their
derivative.
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example think of statistical physics where attempts are made to model and character-
ize the complex behaviour displayed by systems with a large number of degrees of free-
dom (Lichtenberg and Lieberman, 1992), such as hydrodynamic turbulence (Mandelbrot,
1974; Hentschel and Procaccia, 1983; Schertzer and Lovejoy, 1987b) or sedimentation pro-
cesses (Walden and Hosken, 1985; Leary, 1991; Muller et al., 1992; Saucier and Muller,
1993). '

The common denominator in all these systems appears to be a seaming insensitivity of the
system to certain scale operations. In other words the system’s behaviour on a larger scale
can be seen as a scaled up, averaged, version of the system’s action on a smaller scale, i.e.
the system adheres to certain renormalization group properties (Wilson, 1983). Clearly
this observation of a certain scale-invariance is closely related to the fractal concept where
the objects are being constructed via an iterative scheme, say multiplicative cascades,
where the system adds scaled down versions of itself to increasingly smaller scales. By
means of this construction the fractal will display a certain scale-invariance as does the
renormalization group.

Another important property shared by complex systems is their apparent degree of non-
stationarity and intermittency. The non-stationarity refers to the notion that, for exam-
ple, the two-point correlation function looses its meaning because of a divergence of the
variance, i.e. the emergence of a non-integrable DC component for the power spectrum.
The intermittency on the other hand rules the spikiness, the bursty fashion in which cer-
tain (geophysical) events occur. In such a situation the underlying system behaves highly
non-linear resulting in an output where the relative quiescent regions are superseded by
bursty and violent active regions.

As will become clear later the non-stationarity demands certain integrability conditions,
number of vanishing moments, to be imposed on the analyzing wavelet whereas the inter-
mittency requires the examination of a large range of statistical moments. In cases where
the singularities become negative an additional regularity condition must be imposed on
the analyzing wavelet.

As in statistical physics a multiscale partition function is introduced to explore the global
characteristics of the singularity structure pertaining to the data. Following Bacry et al.
(1993) and Muzy et al. (1993) one can define this partition function in terms of a “stack-
ing” procedure along the voices yielded by the multiscale partitioning supplied by the
wTMML’s. This partition function is defined as follows,

1
Z{f: 1.'/}}(0—’ (I) == Z [sup {“NTMMLU (m)}}q, (216)
NG
meM
where WTMML, (m) refers to a maximum, a WTMM, at scale o yielded by the m*™™ mod-
ulus maxima line and the supremum, sup, denotes the supremum of the wrMML. This
supremum is necessary to circumvent a possible divergence for negative powers ¢ in case
the values of the modulus maxima become too small (Bacry et al., 1993; Muzy et al.,
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1993).. The reader is kindly referred to chapter 6 where I introduce the basic- concepts
surrounding (multi)fractals and to chapter 8 where I review the technical details, by a
series of theorems taken from the work of Bacry et al. (1993), that lie behind conducting
the global multiscale analysis with the help of the WTMML’s.

Inspection of equation (2.16) shows that by varying the positive order for the power q
the active regions, the strong singularities, are being emphasized for increasing positive
q. An opposite effect occurs for the passive regions that are emphasized for increasing
negative values for ¢. In this way the partition function Z(o, q) acts as a sieve where the
q hunts for the different type of singularities, the active and passive regions.

For those not familiar with this type of partition function it might look somewhat arti-
ficial. 1 can assure that that is not the case, especially because it can easily be shown
that Z{f,¥}(o,q) is directly related to the sample form of the conventional structure
function or variogram, D(c), by setting the wavelet ¢ to the Poor Man’s wavelet!?,

geostatistics and is used for studying processes with stationary increments (Mandelbrot
and Wallis, 1969; Tartarskii, 1971; Yaglom, 1987; Bacry et al., 1993; Schmitt, 1993). Fi-
nally, as in case of the local multiscale analysis, one is interested in the behaviour for the
partition function as the resolution is increased to the resolution at which the signal has
been measured.

2.4 Multiscale quantification and modelling

Given the brief introduction on the local and global multiscale analysis by means of
the WTMML framework one is now set to come up with order of magnitude estimates.
These estimates not only locally characterize the decay/growth rate for the modulus of
the wavelet coefficients along zooms guided by the WTMML but also refer to a charac-
terization for the joint scaling behaviour displayed by the WTMML’s and captured by
the scaling behaviour of the partition function. As in many ficlds in physics it scems to
be justifiable to limit oneself to order of magnitude estimates that aim at revealing the
scaling behaviour in terms of powerlaws characterized by scaling exponents. This choice
corresponds for t;he local analysis to come up with estimates for the Hélder ezponents,
a, in

IW{f,9}o, )| x 0°T2, (2.17)

while for the global analysis one tries to reveal the mass exponent function, 7(g), from
the scaling of the partition function

Z{f,¥}o,q) oo™ (2.18)

13 he Poor Man’s wavelet defines the increment.
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The reader is referred to chapter 8 for detailed definition and theorems substantiating
equations (2.17) and (2.18). Mathematically the above exponents refer to

® a proper characterization, by means of the local Holder/Lipschitz exponents (Hol-
schneider and Tchamitchian, 1990; Jaffard, 1991; Daubechies, 1992; Mallat and
Hwang, 1992) expressing the local degree of regularity, i.e. the local degree of differ-
entiability.

¢ a proper characterization of the global regularity, by means of the singularity spec-
trum (Mandelbrot, 1974; Hentschel and Procaccia, 1983; Parisi and Frisch, 1985;
Collet, 1986; Schertzer and Lovejoy, 1987a; Siebesma, 1989; le Méhauté, 1991; Lichs-
enberg and Lieberman, 1992; Ott, 1993; Muzy et al., 1993; Bacry et al., 1993; Davis
et al., 1994; Holschneider, 1995), expressing the hierarchy of the different singular-
ities. This singularity spectrum is related, via the Legendre transform, to the mass
exponent function which, on its turn, is related to the generalized Renyi dimensions.

2.4.1 Local quantification

In this section the work of Mallat and Hwang (1992) will be followed closely. He provides
— by means of a number of concise mathematical theorems, see chapter 8 — an apparatus,
based on a WTMML partitioning, that is able to measure the local degree of differentiabil-
ity of & functional containing an isolated singularity or singularities the cone of influence
of which overlap for a certain scale range. The degree of differentiability or regularity
is expressed by a Holder exponent a, i.e. a functional being Holder a at a point is «
times differentiable at that point'*. This exponent can be estimated by analyzing the
amplitudes of the WITMM’s along the WIMML’s in the log-scale log-amplitude space. In
this way the powerlaw relationship,

WL, 930, 2)] < Co*ts W(o(s),2(5))m, men (2.19)
is fully explored and becomes
1
log [ W{f,¥}(o,z)| <logC + (a + -2-) log o, (2.20)

the asymptotic behaviour of which simplifies to

lim sup log Wif,9}ea)l _ 1 (2.21)

logo 2

Equation (2.21) constitutes the main vehicle to compute the Holder exponent to be
associated with the singularity.

While applying the local analysis method attention should be paid to the following:

14Only in case o > 0 otherwise the functional is a tempered distribution.
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s that the emergence of a WIMML may have been caused by a fast oscillation rather
than a singularity. This oscillatory region may not be singular. However, the
reverse argument holds: a signal containing a singularity emanates a WrMML when
the proper wavelet is being used.

e that when the Holder exponent equals the number of vanishing moments then one
has to increase the number of vanishing moments. If this, after repetitive tries, does
not help!® one has most probably to do with a function that is C*, i.e. infinitely
many times differentiable.

e that, for computational purposes, one has to restrict the number of vanishing mo-
ments.

s that there exist non-isolated singularities, singularities the WTMML’s of which start
to interfere at a certain resolution.

In chapter 8 Iincluded a number of examples dealing with the Holder exponent estimation
of isolated algebraic singularities (Staal, 1995). To illustrate what happens in case the
singularities can not longer be considered as isolated I included the subsequent subsection.

Measuring the Holder exponent for non-isolated singularities

Generally one is more interested in finding local estimates for the Holder exponents
yielded by signals containing more than one singularity. In that case there will always be
a scale range within which the wTMML’s start to interfere with each other. With other
words the cones of influence will start to overlap and this is indicated by a bifurcation of
the WTMML. Despite the apparent mutual influence by the singularities it is still possible
to come up with Holder exponent estimates. This requires a rather technical theorem,
see chapter 8 and for this reason I will limit myself to reviewing the simple example
of a box-car'® only. In figure 2.4 I have included this box-car which can, within the
seismic context, be associated to a “thin” layer sandwiched between two homogeneous
halfspaces. Inspection of the WTMML yielded by this box-car clearly shows that two scale
ranges, separated by a bifurcation, can be distinguished. These two scale ranges refer,
on the one hand, to a scale range acting on scales smaller than the spatial extent of the
box-car, whereas on the other hand to a scale range exceeding the support of the box-car.
Inspection of the amplitude behaviour of the WITMML’s over the first scale range clearly
shows that the estimates for the Holder exponent correspond to a Hélder exponent!” for
an isolated discontinuity, a = 0. But as soon as the WTIMML’s start to overlap, as soon

157 the sense that the o still equals the now increased number of vanishing moments.

16 A pox-car function is a characteristic function or indicator function, a function being non-zero over
a specific range.

17Notice that due to the L?(R)-normalization the slopes for the magnitudes of the wrMML’s are off by
a factor 1/2.
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Figure 2.4

This example illustrates the local scaling characteristics of two non-isolated sin-
gularities, discontinuities in this case. Clearly for the small scale range Hoélder
exponents are found consistent with the discontinuities. But as soon as the cones
of influence start to overlap a bifurcation occurs having a drastic smpact on the am-
plitude behaviour along the middle and to a lesser extent for the outer WTMML’s.
The asympiotic behaviour for ¢ — 0o yields a scaling behaviour corresponding to
that of a delta distribution.




28 2.4 Multiscale quantification and modeliing

as the bifurcation occurs, a complete different behaviour becomes evident. The Holder
exponent to be associated to the decay rate of the WIMML equals a = —1 for ¢ — o00.
This means that for this scale range the box-car, layer, acts as a functional that can not
be discerned form a é-distribution. That is to say that the box-car function can be seen
as an element of the delta convergent sequence {Gel’fand and Shilov, 1964).

The lesson to be learned from this example is that the signal, the functional, can display
a different scaling behaviour for different scale ranges. However, this does not mean that
the concept of parameterization by the Hélder exponents looses its meaning. It just tells
one that care should be taken with respect to the scale range one is interested in. In
section 2.5.3 T will pay more attention to this delicate issue.

2.4.2 Global quantification

Performing a global multiscale analysis obviously serves different merits than conducting
a local analysis. Despite the fact that local information on the signal’s irregularity is
lost, it serves as an excellent tool to obtain information on the generalized Hausdorff
dimensions, the mass exponent function 7(¢) and the singularity spectrum (). In
fact it gives ~ by means of the singularity spectrum — a comprehensive picture on the
hierarchy of singularities present in highly intermittent, chaotic signals such as well-
log measurements. For many purposes this type of global information suffices, because
it governs the scaling behaviour of the statistical moments and provides information
on the signal’s intermittency, stochastic non-stationarity and global differentiability and
integrability. It also circumvents problems related to the mutual interference between the
different singularities. Before going into detail on the actual measuring of the singularity
spectrum let me briefly define (Renyi, 1970; Mandelbrot, 1974; Hentschel and Procaccia,
1983; Parisi and Frisch, 1985; Schertzer and Lovejoy, 1987a; Siebesma, 1989; le Méhauté,
1991) the generalized or Renyi dimensions D, and the mass exponent function 7(g) in
terms of a WTMML partitioning (Bacry et al., 1993; Muzy et al., 1993).

Definition 2.1: Generalized or Renyi dimensions [
In order to define the generalized dimensions Dy use the partition function defined in
equation (2.16),

Z{f,9}0q) = \}3 S [sup {wrL (m)}]7, (2.22)
meM

where f is the singular function, v a proper analyzing wavelet and ¢ the scale. The set
of generalized dimensions D, is then defined by,

H NOA g Iogz{f>w}(67Q)
— DD, & r(q) 2 lim 282NV, 9) 2.2
(g-1)D, (@) %5% logo ’ (2.23)
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implying a scaling behaviour for the partition function Z(o,q){f, v}, for small o,
Z(0,q) x o™9 (2.24)

and where 7(q) is the mass exponent.
The singularity spectrum itself is formally defined as (Bacry et al., 1993)

Definition 2.2: Singularity spectrum of a function
A singularity spectrum of a function f(z) is the function f(a), o € Hy (the set of finite
Hélder exponents of f) such that

fla) = dimg{zo € Rla(zg) = a} (2.25)

where dimg denotes the Hausdorff dimension

and expresses the Hausdorff dimension to be associated with the set of points the Hélder
exponent of which lie between a and a + da. Quantitatively the singularity spectrum
delineates the rate of occurrence of a certain singularity and therefore unravels the hier-
archy of scaling exponents. Again the reader is referred to chapters 6 and 8 for a more
thorough introduction of these multifractal concepts and for more technical details.

For example when the functional f(z) contains only one isolated singularity then the
singularity spectrum will be zero everywhere except at a = ag, where it is infinitesimally
small, since the dimension of a point is zero. On the other hand a singularity spectrum
yielding f(e) = 1 at one particular abscissa a = ag refers to a functional being singular
everywhere, where the singularities are all of the same strength, having the same Hoélder
exponent og. In chapter 8 a number of illustrating examples have been included.

2.4.3 Categorization of singular muitiscale models

When studying the current literature dealing with the characterization and modelling of
irregularity one is struck by the sheer variety of the different approaches. This calls for
some sort of categorization although one always has to keep in mind that data must make
the final “decision”. The categorization 1 like to propose is very much in line with the
ideas coined by Davis et al. (1994) and involves invoking a characterization of the singular
processes that are being used as (toy-)models to generate, capture and parameterize the
irregularity one is often confronted with when tackling problems in geophysics (Schertzer
and Lovejoy, 1987a, 1993; Davis et al., 1994). The characterization is based on external
characteristics that come down to

o the signal’s non-stationarity: This non-stationarity!® is linked to the observa-
tion that irregular processes tend to display long ranged correlations withstanding

18Remark that this non-stationarity refers only to a specific type of non-stationarity namely that of a,
powerlaw type of divergence for the covariance function.
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the identification of some sort of correlation length marking a break in the scaling,
i.e. a break in the scale range where the data shows some sort of scale-invariance.
In cases of non-stationarity one observes that certain statistical moments diverge.
The degree of this non-stationarity is expressed in terms of the exponent H which
I introduced in chapter 7. For H > 0 this implies, for example, that the data
can not longer be considered as densities since the mean is not longer a conserved
quantity. This manifests itsclf, for instance, in the notion that the covariance func-
tion of Brownian motion, H = 1/2, does not longer exist because the variance
diverges. Fortunately Brownian motion and its generalization fractional Brownian
motion, 0 < H < 1, are processes with stationary increments so one can work with
structure functions instead, see chapter 7 (Mandelbrot and Wallis, 1969; Tartarskii,
1971; Yaglom, 1987).

the signal’s intermittency: This intermittency is linked to the spikiness, the
erratic occurrence of major catastrophic events, the outliers. Clearly this property
withstands a characterization by the Gaussian distribution because the measure of
the process is not longer concentrated around the mean.

These two identifying characteristics are directly connected to the generating mechanism

that is envisaged to capture the main characteristics, the overall texture, of the data.

These mechanisms comprise

e an additive mechanism: This mechanism is being held respounsible for the emer-

gence of the long range correlations as evidenced in Brownian motion, fractional
Brownian motion and Levy flights (Mandelbrot and Wallis, 1969; Mandelbrot, 1982;
Montroll and Schlessinger, unknown; Schertzer and Lovejoy, 1993; Samarodnitsky
and Taqqu, 1994; Klafter et al., 1996). All these processes, see chapter 7 for details,
have in common that they are generated via a (fractional) integration acting on
a random measure. Due to the integration they are heavily correlated, a notion
becoming manifest in the divergence of certain statistical moments, such as the
variance, and this gives rise to a stochastic non-stationarity. The cross-over from
stationary to non-stationary behaviour can be defined in terms of the divergence
for the DC component, (k = 0), of the power spectrum, S(k), with & being the

1
yielding stationarity for 8 < 1 and non-stationarity for § > 1. The process is said
to be stationary in its first increments'® when 1 < 8 < 3. Visually speaking the
degree of non-stationarity, being related to the degree of fractional integration, H,
according to 8 = 2H + 1, rules the roughness of the process. This latter aspect

19%irst increment is given by Af(o,z) £ f(z + o) ~ f(z).

B
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is easily comprehended because for large H the decay rate of the power spectrum
increases diminishing the high frequency contributions. Generally speaking, how-
ever, these type of processes fail to grasp the truly large outliers and they display a
homogeneous type of scaling behaviour, they are monofractal, and this corresponds
to the emergence of only one ruling scaling exponent, the degree of fractional inte-
gration. Specific care has to be taken concerning the measure which is going to be
fractionally integrated. If this measure is not positive, like for a density®®, then one
can not guarantee the fractionally integrated result to be positive and that can have
serious consequences for its applicability. In figure 2.8 of section 2.4.4 1 depicted
an example that refers to fractionally integrating a realization of a singular white
noise measure and of a universal multifractal density.

¢ a multiplicative mechanism: This type of mechanism is found in multiplicative
cascades (Mandelbrot, 1974; Hentschel and Procaccia, 1983; Collet, 1986; Schertzer
and Lovejoy, 1987a) where it is held responsible for the generation of highly inter-
mittent densities where the quiet regions are superseded by large violent bursts
that quickly return to where the measure is concentrated. In chapter 6 I demon-
strate that this type of behaviour is displayed by the binomial multifractal. That
type of multifractal is a simple example of a multifractal being generated by a mul-
tiplicative cascade yielding a heterogeneous scaling which is reflected in the fact
that these constructs contain a whole hierarchy of scaling exponents. Within this
continuum of scaling exponents and their associated Hausdorff dimensions one can
recognize the co-dimension determining the sparseness of the mean, Cy = D — Dy
as one of the ruling characteristic exponents. Here D denotes the dimension of the
embedding space and, unless stated otherwise, equals 1. It is this exponent which
predominantly captures the apparent intermittency and for the extreme sparse frac-
tal sets, given by only one isolated algebraic singularity, it equals unity, C; = 1
which is consistent with the fact that the dimension of the singular support, being
limited to a single point, is zero.

e a mixture of the two: In many situations the combination of two mechanisms
gives superior results. In this case this corresponds to conducting a fractional
integration on the densities which came out of the multiplicative cascades (Schertzer
and Lovejoy, 1987a; Davis et al., 1994). This results in a shift to the right of the
singularity spectrum, adds correlation and increases the smoothness.

To illustrate the above characterization I included figure 2.5. In this figure the stationar-
ity and intermittency parameters are plotted versus each other. As annotation I included
the main characteristics for the singularity spectrum, (o), corresponding to the H and
Cy abscissa in the H ~ C)-plane where (H,C;) € [~3,1] ® [0,1] covers the necessary

20With a density I mean a positive measure with respect to which one can define a conserved quantity
such as the mean.
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Figure 2.5 This figure serves as an illustration of the proposed categorization of singular scal-
ing models. The horizontal axis delineates the degree of fractional iniegration, H,
shifting the singularity spectrum. On the verticel axis the amount of sparseness of
the mean, C1, is depicted. In the H-Ci-plane I included o number of ezamples of
realizations and remarks on the properties of the singularity spectrum. I included
the corresponding f(a) spectra in figure 2.6 -

ground. In the left-hand side lower corner one finds white noise a random process being

singular everywhere with a scaling exponent of o = ——%, i.e. it is fractionally “integrated”

to the degree H = w%, yielding a slope for the power spectrum, S{k) o };_1—5, of B = 0.
The singularity spectrum in this case equals f(a) = 1 for @ = H an notion easily recon-
ciled with the fact that the dimension of the singular support of white noise, Dy = f{ao),
equals one. When moving to the right one fractionally integrates yielding an increase of
the scaling exponents a. For H = 0, i.e. § = 1 the cross-over from stationary to non-
stationary processes occurs. Then at H = 15 one arrives at Brownian motion marking the
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Figure 2.6 This figure serves as an illustration of the proposed categorization of singular scal-

ing models. The horizontal azis delineates the degree of fractional integration, H,
shifting the singularity spectrum. On the vertical azis the amount of sparseness of
the mean, Cy, is depicted. In the H-Ci-plane I included a number of ezamples of
the corresponding f(a) spectra.

transition from anti-persistent, 0 < H < % to persistent % < H < 1 fractional Brownian
motion. Finally at H = 1 the process becomes smooth, i.e. C*. The reader is referred to
chapter 7 for a more general discussion on stochastic monofractals. In figure 2.8 of sec-
tion 2.4.4 I included a series of examples elucidating the effect of smoothing by fractional

integration.

When going up from bottom to top the field undergoes a different experience in the sense
that it transforms from a pure additive process, displaying a homogeneous monofractal
scaling behaviour, to a multiplicative process. This is accompanied by the emergence of a
whole suite of singularities with different scaling exponents, an observation substantiated
by the non-linearity of the mass exponent function, 7(g). What remains by pushing the
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sparseness of the mean parameter, Ci, to the limit, are the isolated singularities. In
figure 2.9 of section 2.4.4 I displayed a number of universal multifractal simulations that
differ in their sparseness of the mean, their intermittency.

There exist several alternatives to generate intermittent densities and the binomial multi-
fractal has been one of them. Judged by the relative success of the universal multifractal
cascade model in characterizing geophysical phenomena (Schertzer and Lovejoy, 1987a,
1993; Schmitt, 1993; Davis et al., 1994) I will briefly introduce this model followed by a
section where I bring fractals in relation to the renormalization group equations.

2.4.4 The universal multifractal cascade model

Global multiscale analysis conducted on a wide variety of geophysical data sets has
shown evidence that there might exist a universality®® class for multifractal cascade
models (Schertzer and Lovejoy, 1987a, 1993; Schmitt, 1993). This universality class is
composed of a continuous?? multiplicative cascade where the properly normalized oy
stable Levy process?® is used as the scale invariant generator. In this way Schertzer and
Lovejoy (1987a) have been able to come up with an effective model parameterized by
only three parameters that captures the continuum of scaling exponents as they occur in
the singularity spectrum f(«). Since this model is based on a stable Levy process their
work is set along the lines of probability theory. However that does not withstand a
connection with the global multiscale framework reviewed so far.

First of all Schertzer and Lovejoy (1987a) introduce a partition function in terms of the
stochastic expectation of a coarse-grained density living at a scale o,

e(o,2) = (e * ¢o)(z), (2.27)

where the convolution runs over all realizations and where € refers to the bare density,

the density yielded by the fully developed cascade. The partition function associated
with this quantity reads

(€(o,) xa™¥D g>0 (2.28)

with the angular brackets denoting the stochastic expectation operation®*. The K{g) is
related to the second Laplace characteristic function. Remark that this partition function
resembles the definition for the partition functions introduced earlier. One only has to

21The guthor is aware of and agrees with the statement: “For quite a while I have set for myself the
rule if a theoretician says "universal” it just means pure nonsense”, by Woifgang Pauli. However, in this
context it can be argued that this class seems to give rise to a behaviour that is shared by surprisingly
many different geophysical phenomena.

22Continuous means in this case multifractals which consist of & continuous densification of the reso-
lution ¢ rather than resolution increments by a fixed factor, say o —+ %m

23Note that the Levy index a; has nothing to do with the Hlder exponent a. See chapter 7.

24Not to confuse with an inner product denoted by (-,-).
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Figure 2.7 In this figures it is schemnatically demonstrated what the co-dimension ezactly ex-
presses. The coarse grained field at the scale o is depicted together with two thresh-
olds 6™ and 072, corresponding to two orders of singularity: Y2 < Yi.

replace the ensemble averaging by a spatial averaging®®. For that reason the K (g) and
7(g) functions can shown to be related according to 7(g) = (g —1)D ~ K{(q), with D
being the dimension of the embedding space. Along similar lines a mutual relationship
can be discovered between the probability distribution delineating the space occupied by
singularities exceeding order v,

Pr(e(o,) > 0™7) oc 0, (2.29)

and the singularity spectrum f(a). Here c(y) refers to the co-dimension function of the
singularities being related to f(a) according to f(a) = D — ¢(y) with y = D — a.

To illustrate the notion of the co-dimension function I included figure 2.7 (Schertzer and
Lovejoy, 1993; Pecknold et al., 1993). It illustrates schematically the notion that the co-
dimension expresses the probability of finding a value for the coarse-grained field (o, z)
with a value exceeding the scale dependent threshold o=, Pr(e(o, ) > ™) o o),
Remark that the behaviour of the partition function depicted in equation (2.28) or equiv-
alently the partition function Z{f, v}(o,¢) are not only related to the statistical moments
but also, via the Mellin transformation, to the probability function (Schertzer and Love-
joy, 1993). A similar relationship exists between the K (q) function or equivalently the
mass exponent function®® r(g) and the co-dimension function c(y) or the singularity
spectrum f{a). This relation is expressed by the Legendre transform, which is a saddle
point approximation to the Mellin transform (Schertzer and Lovejoy, 1993).

25The author is aware of the fact that one requires ergodicity to do this. Is is beyond the scope of this
thesis go into more detail on this.
26Which on its turn is related to generalized Hausdorff dimensions or Renyi dimensions, see chapter 6.
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One of the key points of the work by Schertzer and Lovejoy (1987a) lies in finding closed
form expressions for the second Laplace characteristic function, K{(g), and its Legendre
transform, the co-dimension, ¢(7y). These expressions read

Ch ‘
e (g ) O< oy <2Aar# 1
K(g)=q @1 (2.30)
Ciqing ap =1

and

1.
G+ Ly 0 cor<anarts
Cle?‘l ap =1

with a% -+ 317 = 1 and provide an effective parameterization for ¢ > 0. The parameters
e i . . 0 . .

ruling the behaviour of the continuous cascade model, with Levy noise as its generator,

comprise

e IT describing the degree of non-conservation of the mean, see figure 2.8.

o C; describing the sparseness of the mean, see the left-hand side of figure 2.9, and
is defined as

C1 2 {0,K (9)}g=1 (2.32)

also known as the co-dimension where the measure is concentrated (Schertzer and
Lovejoy, 1987a; le Méhauté, 1991).

e o describing the degree of multifractality, a; = 0 monofractal, oy = 2 log-normal,
see the right-hand side of figure 2.9.

The additional parameter H I introduced expresses the degree of fractional integration
implying a shift from a conservation of the mean®’, {e{o,)) = 1, Vo, necessary for
the initial definition of the cascade, to a non-conservation {¢(c,-)) « of!. In chapter 5
I introduced the operation of fractional integration/differentiation and I like to remark
that extreme care should be taken by invoking this operation because in many cases it
can only be given a proper meaning in the distributional sense. The impact of applying
the fractional integration on the quantities above comes down to the mapping,

K(g) — K(g)—qH (2.39)
e(v) — ely—H).

2T§ere in an ensemble sense, the multiplicative cascades of Schertzer and Lovejoy (1987a) are canonical
while the binomial multifractals are microcanonical,
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Figure 2.8 Comparison is made between fractional integrations with values for H ranging from
bottom to top, H = 0,0.15,0.25,0.5,0.75,1, of white Gaussian noise (left-hand
side), yielding indes-H Browntan motion, and the same fractional integrations for
a universal multifractel density (right-hand side) with C1 = 0.25 end oy = 1.5. It
is clear that the value of H rules the degree of “smoothness”.

This, on its turn, implies for the slope of the power density spectrum, using egua-
tion (2.33),

1 1

S(k) o oK@ S(k) o k1~MK{2)+2H’

(2.34)

where K(2) can be interpreted as a correction term on the effective slope of the power
density spectrum given by f.
Estimates for the H can obtained by evaluating the Laplace characteristic function K(g)
at ¢ = 1 and using the property of conservation of the mean, i.e K(1) =0,

H = —{K(g)}4=1. (2.35)

At this point T will refrain from going into more details on the deeper theory behind the
continuous cascade concept. To elucidate how these constructs look like I included some
simulation examples in the following section.

Universal multifractal simulations

Generating continuous stochastic multifractals is not straightforward. Pecknold et al.
(1993) propose a useful but unfortunately numerical unstable — for certain ranges of the
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Figure 2.9 Illustration of the dependence of universal multifractals on the parameters Cy (left-
hand side) and a; (right-hand side). The values for C1 are (from bottom to iop)
C1 = 0.99,0.5,0.25,0.125, 0.05, 0.01 with ay fized (o = 1.5). It is clear that the C;
determines the sparseness of the field, as C1 becomes larger the simulations become
more and more dominated by a small number of large outliers (singularities). The
simulations for varying oy (2,1.75,1.65,1.50,1.25, 1.65) with C fized (Ci = 0.25)
display more deviations from the mean for decreasing ay.

multifractal parameters — technique to simulate continuous multifractal cascades with
preset values for the oy, Cy and H.

On the first place the effect of fractional integration on a sequence of random numbers
is reviewed in figure 2.8. The plot on the left depicts 6 different fractional integrations,
for H increasing, from bottom to top, according to H = 0, 0.15, 0.25, 0.5, 0.75, 1, of
a white Gaussian noise simulation and the same fractional integrations are displayed

o = 1.5. All simulations consist of 16384 samples and are normalized to yield the
same mean and variance. Inspection of these simulations shows that the parameter H
rules the apparent “smoothness” of the simulations whereas the extension of the Gaussian
process to a multifractal process clearly introduces intermittency in the realizations. The
sensitivity of the simulations to changes in the other two ruling parameters are displayed
in figure 2.9. On the left-hand side the different traces correspond to simulations with oy
fixed, a; = 1.5, and increasing Cy’s, from bottom to top. As the values for the C increase
the simulations become more and more dominated by a few large outliers, the strong
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singularities. On the right hand side the impact of variations in the other parameter oy
are reviewed. Again the values decrease from bottom to top and the simulations show a
increasing number of deviations from the mean.

In summary it can be concluded that the generalization of the monofractal coucept to

processes which display a multifractal behaviour drastically influences the appearance of
the simulations. In the presented simulations I was only able to show a limited number

of realizations belonging to the universal multifractal family. However, the examples

clearly indicate that the universal multifractals capture the problem of intermittency.

Notice that this concept becomes particularly important when the distinctive features of ‘
reflectivity are concerned.

2.4.5 Scaling in relation to renormalization group equations

Renormalization group equations are those equations in physics that deal with scale
dependence of certain phenomena (Wilson, 1983; Nottale, 1995, 1996). They accomplish
this by prescribing how the physics at a large scale depends on what happens at a smaller
scale. The way they appreciate this interrelation is by renormalizing the coarse-grained
quantity. Within the cascade models a similar type of relationship is utilized. Only
in that case it refers to the apparent interrelationship developing while going from the
large scales to the smaller scales via some sort of fractalization process. In this view the
Renormalization Group theory can be seen as a theory for an inverse fractal process, an
observation made by Nottale (1992) and already remarked upon by Wilson (1983). Let
me now explore these ideas a little bit further.

Following Nottale (1995) the renormalization group equations can, in their simplified
form, be written as

aaaf(av 21?) = g(f(o’, .CII)), (236)

where the function g(-) performs the renormalization. Interpretation of the equation
shows that the equation maps an infinitesimal dilated function onto itself. Via lineariza-
tion of this equation, by expanding it into powers of f and neglecting all powers exceeding
one, one obtains the simple relationship

00, flo,z) =C + af (2.37)

with C' being a constant, C' # 0. Then it can be shown, following Nottale (1995) that
there are different regimes pertaining to equation (2.37) (@ > 0) namely:

® g > oo where the scaling dominates with respect to constant ' term and conse-
quently this results in homogeneous scale-invariance for the solution?®

flo,z) = (f(;)“f(oo,w)-

*8The = sign can be seen either in the sense of distributions or in the sense that it expresses equality
in probability distributions, also denoted by £,
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e 0 € og then f(o,z) becomes independent of o.

In this the oq is a reference scale depending on C and delineating the transition from
scaling to non-scaling behaviour. For a < 0 the opposite of the scaling behaviour is
found.

This procedure demonstrates that one can obtain a scale invariant behaviour by solving
a renormalization group equation of the type depicted in equation (2.37). This scale
behaviour is, however, restricted to a scale range exceeding the transition scale op. For
o & og the solutions becomes independent of the scale. This transition marks a break
in the scaling and facilitates a separation of scales. By setting the constant C' to zero,
' = 0, the break is removed and one obtains a truly scale invariant solution.

As a matter of fact by setting C' == 0 the problem becomes an eigenvalue problem per-
taining to the scale derivative,

00, f = af (2.38)

or alternatively to (see equation (2.10) too)

jcf = (et 3)f, (2.39)

where the eigenfunctions f are of the general form, to be interpreted in the sense of
distributions,

f(z) ocz® (2.40)

and where the scaling exponents « play the role of eigenvalues. It is this property that
substantiates the initial ansatz to look for powerlaws when unraveling scaling complexity.

These deliberations clearly demonstrate that the solutions of equation (2.37) in the scal-
ing regime or with C set to zero adhere to the scale-invariance - f(oz) = o*f (z) with
o® being the renormalization factor — satisfied by homogeneous distributions, see chap-
ter 5. This type of behaviour can be extended to all abscissa via translations (Holschnei-
der, 1995), eventually yielding a monofractal type of behaviour. In case of stochastic
monofractals the scale-invariance becomes manifest in

flox) & 0 f(2) (2.41)

which has to be interpreted as an equality for the probability distribution function per-
taining to f and implying the following behaviour for the statistical moments

(1 (o, %) = o (1, )19 (2.42)

Up to this point I limited myself to describe constructs that display a homogeneocus scal-
ing behaviour, characterized by one single scaling exponent. The multifractal framework,

sy
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on the other hand, demonstrated that there exist alternative intermittent models that
generate functionals containing whole hierarchies of different singularities. In that situ-
ation the scale-invariance becomes more intricate in the sense that it refers to a scaling
exponent for each statistical moment implying that

(1F (0, )% = " D(F(1,)]7). (2.43)

When dealing with-a multifractal, the renormalization term, o7(@ is not longer governed
by a single scaling exponent « but by a series of exponents incorporated in the mass
exponent function, 7(q), being non-linear in this situation. In terms of the partition
function the above relationship comes down to

Z{f, ¥} (o,q) = " DZ{f,Y}(1,q), (2.44)

suggesting that the exponents 7(g) refer to eigenvalues pertaining to the following eigen-
value problem

~08,Z(a,q) = 7(q)Z (0, q). (2.45)

2.5 Mathematical and physical aspects of scaling

Now that the basic framework for conducting a multiscale analysis followed by a quan-
tification has been laid down it is time to contemplate on the more mathematical aspects
in a physical setting. On the first place the discussion will directed towards the selection
of the mathematically proper analyzing wavelets. Then I will bring the notion of scaling
in relation to the notion of differentiability?®. I will pay specific attention on what the
singularity spectrum and mass exponent function have to say on the global differentia-
bility, integrability and rectifiability. The second main item of this section commits itself
to say something on discretization and the mutual relation between the measuring device
and analyzing wavelet. It is interesting to note that the octave pass-band filters utilized
by the experimentalist — e.g. to anti-alias filter the data before discretization — find their
exact counterpart in terms of wavelets. I will conclude this section by making an attempt
to clarify the meaning of abstract mathematical concepts, such as differentiability, in the
physical context. While doing so one immediately finds oneself confronted with the in-
terference of the measuring device that effectuates an inevitable coarse-graining and in
this way troubling one to issue rigorous mathematical statements. Despite this seeming
difficulty I will express my personal opinion on why the mathematical concepts maintain
their importance.

29This was already mentioned in the context of local scaling and Hélder exponent. The relevance of
the singularity spectrum in this context will be treated here.
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2.5.1 Pure mathematical considerations on multiscale analysis and quantification
Selection of the proper analyzing wavelet

From the mathematical point of view it is important that the analyzing wavelets being
used adhere to the mathematical conditions that go with the proper mathernatical def-
inition of the continuous wavelet transform. Only then the multiscale analysis can be
expected to work properly. The mathematical restriction to be imposed on the wavelet
refer to a compliance with respect to the admissibility condition, see chapter 8, and to
the invocation of a sufficient regularity. The first requirement is met by demanding a
sufficient number of vanishing moments, M.

The two afore mentioned restrictions on the wavelet do not only serve an abstract mathe-
matical purpose but, judged by the examples presented in chapter 8, may have a profound
impact on the validity of the multiscale analysis and the quantification. Selecting im-
proper wavelets in relation to the data, the object of study, yield erroneous results. This
is because the wavelet’s singularity detection range is restrained and depends on the
regularity and the number of vanishing moments, M, pertaining to the wavelet. Unfor-
tunately there does not exist a simple way out of this situation because one can jeopardize
the effectiveness of the multiscale analysis by choosing a too regular wavelet and/or a
wavelet with too many vanishing moments. Namely the smoother the wavelet the lesser
its localization capabilities while the larger the number of vanishing moments the larger
the number of extrema. Within the wTMML framework the localization aspect does not
really give rise to a problem.

To be more specific, the number of vanishing moments constraints the maximum order
of the detectable Holder scaling exponent to amax < M. The wavelet’s regularity on the
other hand restricts the accessible negative singularities t0 @min > —IN where N denotes
the wavelet’s regularity, 1 € C}' (Bacry et al., 1993; Muzy et al., 1993).

In figure 2.10 it is shown what the relation is between the analyzing function and the
observable range of singularities in the spectrum. From this schematic overview one can
conclude that the Haar/box-car scaling function®® is, as a consequence of its discontinuity
and lacking of vanishing moments, only capable of detecting singularities in the range
1 < a < 0. The variogram analyzing technique, the Poor Man’s wavelet, being the
“derivative” of the Haar scaling function, extends the observable detecting range to
0 < a < 1. But unfortunately this range is still limited due to the singular nature
of the analyzing function itself. When within the analyzing technique, based on the
WTMML’s, a C§° wavelet with M vanishing moments is being used, then one is able to
circumvent part of this problem because such a wavelet is able to detect singularities
over the range3! —oo < a < M. These observations are consistent with the examples
discussed in chapter 8.

30Note that this is not a wavelet but a “smoothing” function.
31 Note that for a discretized data set the infinite differentiability has to be replaced by a differentiability
in the order of number of data points.
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Figure 2.10 The relation between the analyzing functions and the singularilies that can be
detected. The Haar scaling function - alse known as the boz-car or indicator
Junction — has no vanishing moments, bul a finite mean, so it is not able to
detect singularity strengths larger than zero. Its smoothness is zero, hence it
can not detect singularity strengths smaller than minus one. Is derivative — the
Poor Man’s wavelet — has one vanishing moment and a smoothness of minus one,
enabling it to detect singularity strengths between zero and one. The Gaussian has
no vanishing moments, but it is infinitely smooth, so if can detect singularities
in the range (—o0,0). Its first derivative is infinitely smooth too, but it has one
vanishing moment, so it can detect singularities in the range (~o0,1).

Differentiability, integrability and rectifiability

It goes without saying that the intricate relationship between scaling and differentiability
is very significant and deserves further exploration. From the local scaling analysis it is
known that the Hélder exponents represent order of magnitude estimates for the local
scaling and these exponents provide information on the local degree of differentiability.
That is to say that a signal containing a singularity of strength o < 1 is referred to
as being non-differentiable at the location of the singularity while for @ < 0 the sig-
nal/function is referred to as singular. This notion can easily be extended to signals
being non-differentiable/singular everywhere. For example Brownian motion being con-
tinuous everywhere but non-differentiable, @ = %, whereas white noise is singular and

Holder a = m% everywhere.

According to Nottale (1992) the apparent non-differentiable becomes manifest in a so-
called scale divergence. This scale divergence refers to the following argument concerning
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continuous but non-differentiable functions, i.e. Holder regular functions with 0 < a < 1.
For this purpose consider two points that lie on the curve delineated by the function f(z).
Call these points, with their respective coordinates, Ao{zo, f(zo)} and Ao{zq, f(za)}-
Since f is non-differentiable there exists a point A;{z1, f(21)} with zo < 71 < 2g that
does not lie on the segment spanned by AgAq. This means that the total length becomes
Iy = I(AgAy) + I{A; Ag) exceeding the distance between A and Ag, ie. Iy = 1{AgAgQ).
Via iteration of this argument one can easily see that the total length diverges as the
successive approximations of the non-differentiable function are being constructed. These
approximations exist of line segments the length of which decreases for an increasing
number of iterations. This length can be seen as the resolution or the gauge and the
scale divergence refers to the divergence of the total length { as the resolution approaches
zero, i.e. I, = | = 00 as n — 00, a behaviour also known as non-rectifiability (le Méhauté,
1991). So whenever a function is continuous but non-differentiable it is non-rectifiable
and the rate of the scale divergence is related to the degree of irregularity.

Let me now be more specific by posing the question on what can be learned mathemat-
ically from the quantities that characterized multifractals? First of all it can be stated
that the mass exponent function 7(q) carries, for specific values of g, information on the
integrability>? or equivalently on the stochastic stationarity of the signal and is obtained
via (Schertzer and Lovejoy, 1987a; Davis et al., 1994)

H 2 —{1(q)}g=1- (2.46)

The value of this exponent H refers to the degree of fractional integration which is related
to the degree of non-conservation of the mean or to the degree of non-stationarity. This
exponent has to be understood in the sense that when H > 0 the mean of a density
depends on the scale,

(f(o,)) < o™,

hence the mean diverges as o - 00.

Information on the global differentiability of f is carried by the Legendre transform of the
7(¢) function, the singularity spectrum f(a). The abscissa for the endpoints of this spec-
trum provide the extrema for the estimates of the differentiability of the data being ex-
amined. The endpoint with the smallest value for @, i, refers to the strongest/wildest
singularities whereas the abscissa for the other endpoint refers to the weakest/calmest
singularities, i.e. the largest value for &, amax. Needless to say the smaller the a the
lesser f is differentiable, for & > 1, the more non-differentiable for 0 < a < 1 and the
more singular for & < 0. The endpoints are defined (Parisi and Frisch, 1985; Collet, 1986;

320)f course it also contains information on the differentiability but that is easier revealed via the
singularity spectrum that is found via the Legendre transform performed on the mass exponent function.
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Siebesma, 1989; le Méhauté, 1991; Lichtenberg and Lieberman, 1992) as follows

Omin = {0,7(@) } 43400 (247)

amax & {047(0)}g-r—oc0-

These endpoints mark the interval of values taken up by the singularity exponents, i.e.
0 € [Qmin, @max), characterizing the singularities present in the data. The asymptotic
definition of these endpoints can very well be reconciled with ¢ being the selector for
the singularities. The larger the ¢ the smaller the scaling exponent which dominates the
partition function.

Finally the singularity spectrum, f(a), itself expresses the Hausdorff dimension to be
associated with the singularities in the multifractal set that scale with a scaling expo-
nent ranging from « to a + da. The singularity spectrum f{«) expresses a probability,
Pr(c® < f(o,-) < 0®19%) x o~f(®) Of the generalized fractal/Hausdorff dimensions the
dimension in which the measure is concentrated is identified as an important one and
reads

Dy =flay) =y (2.48)
with
a1 = {8y7(@) g1 (2.49)

This dimension is also known as the information dimension and is directly related
(le Méhauté, 1991) to Shannon’s entropy via

Se(0) = —aq Ino. (2.50)

Remark that this dimension is only properly defined for conservative fields, H = 0. If
this is not the case one has to correct the ay for a shift by H. One can see that the
information dimension is related to the €1, the sparseness of the mean, which is just the
co-dimension of the Dy, i.e.

Dy =D~ (2.51)

with D being the dimension the embedding space. Finally one can designate a dimension
to the set carrying the fractal, i.e the singular support of the fractal, and this one is
defined by

D() = f(ao) = Qg (252)
with

ao = {0,7(q) }¢=0- (2.53)
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2.5.2 Physical aspects of measuring

Discretization

As already indicated in chapter 5, where I gave a preliminary discussion on distribution
theory, a measurement is always the result of a non-linear averaging procedure, over a
finite and non-vanishing interval, conducted on the physical quantity of interest. This
observation also applies to the examples discussed so far. In fact all these examples
concern discretized versions of the finite resolution measurement, i.e. a spatial bandpass
filtering® and subsequent sampling®* and optional digitization® yielding a discretized
measurement of the spatial characteristics of the physical quantity. As a result of this
procedure the measurement or functional is not known at every abscissa value for, say
the spatial coordinate z, and its resolution will depend on the sample interval. This
sample interval is inversely proportional to the Nyquist frequency delineating the high
frequency cut-off of the bandpass filter characterizing the measurement device.

"The spatial sampling procedure is mathematically defined by

+o00
(f'”’)nEZ =/ f(z)¢(z ~ nAz)dz, (2.54)

where ¢ is the appropriate kernel conducting the bandpass filtering, Az the spatial sample
interval and ( f“)n <z the discretized approximation to f(z). In the examples reviewed
so far and in the remaining part of the thesis I took the liberty to refer to ( fn)n ez 38 f
or f(z).

The inevitable constraint on the available resolution initiates the discussion whether
the abstract concepts of mathematics, generally delimited by bounds at zero and/or
infinity, make sense in the physical context where these limits are void of a meaning. In
section 2.5.3 I will express my opinion on this important issue.

Measuring device versus the analyzing wavelet

When one comes to think of it there lies a deep analogy hidden between the selection
of the proper analyzing wavelet and the choice of the appropriate measuring device.
The underlying reason for this correspondence can be found in the shared property that
taking measurements as well as conducting multiscale analysis involves the interaction of
the known instrument/analyzing wavelet with the unknown signal. Hence one is during
the selection process for the instruments/wavelet confronted with a lack of information
on the true nature of the signal. From the examples I showed in chapter & it became
very clear that an improper choice for the wavelet gives rise to erroneous results because
the analysis became completely dominated by the analyzing function itself rather than

33Hopefully with a filter that is consistent with the regularity of the physical quantity of study. With
other words the correct, “enough decades per octave”, anti-aliasing has hopefully been used.

347his discretization has to be done in accordance to the so-called Nyquist sampling criterion.

35This digitization is required to represent the measured numbers digitally.
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by the data. In practical circumstances the experimentalist runs the same risk since he
finds himself confronted with a similar problem. His worries, for instance, may concern
the selection of the proper anti-aliasing filter. These filters invoke a low-pass filtering,
reducing the high frequencies in the signal, in preparation of a sampling. Perfect filters,
filters with a an infinite sharp cut-off, can for practical reasons not be realized and one
has to choose a filter with an adequate number of decibels per octave cut-off rate. The
interesting point about this is that this decay rate is directly related to the regularity
of the filter’s impulse response. Hence the regularity conditions for wavelets find their
direct counterpart in selecting the proper cut-off rate for the anti-aliasing filter.

The only way to check whether one made the correct choice in the above context is to
fiddle around with the different types of filters/analyzing functions followed by a close
inspection of the outcome. For the multiscale analysis this procedure boils down to an
examination of the singularity spectrum for the possible occurrence of a phase transition
while nearing the endpoints of the spectrum. A phase transition that emerges when
approximating the cy,x endpoint can generally be attributed to an insufficient number of
vanishing moments whether phase transition at the other side may point in the direction
of insufficient regularity. In the cases where increasing the regularity and/or number of
vanishing does remove the phase transitions the data itself may contain them.

The interesting thing about all this is that in practice people are in some cases taking
more or less adequate measures. For instance in the field of geostatistics and atmospheric
turbulence (Tartarskii, 1971; Yaglom, 1987; Schmitt et al., 1992; Schmitt, 1993; Davis
et al., 1994) people use (generalized) structure functions also known as variograms instead
of box-cars. This latter choice is equivalent to conducting an analysis with the poor
man’s wavelet having one vanishing moment and being singular by itself, see chapter 8.
In this way the detection range shifted from o € (—1,0) for the box-car to a € (0,1)
and thereby allowing for a sensible examination of stochastic processes with stationary
increments. Notice, however, that this approach has the disadvantage that it is not
equipped to detect singularities with negative scaling exponents. Obviously this due to
the lack of regularity of the analyzing function. Summarizing care must always be taken
while conduction measurements on processes containing singularity structures exceeding
the detectable scale range.

2.5.3 Mathematical theory from a physical perspective

At this point the physicists under the readers may wonder what the physical significance
is of the multiscale analysis in general and more specifically in the relation to differ-
entiability. The reason for this question lies in the observation that without exception
a physical measurement /observation represents a coarse-graining of the actual physical
“reality”. This inevitability seems to jeopardize — with the exception of the practical
and fundamental criteria for the selection of the proper wavelets — all pure mathematical
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arguments issued so far in relation to the multiscale analysis applied to actual physical
measurements. The underlying reason for this dilemma lies in the fact that a mathe-
matician delimits his statements with bounds at zero or infinity while these limits are
physically speaking meaningless. For instance, the notion of differentiability, can within
the mathematical context, straightforwardly be given a meaning for functions since they
assign a value to a point. Physically speaking, however, the concept of a function is
unmanageable because one is never able to resolve a quantity at a point! This is the
prime reason why I am reluctant to consider, perhaps prematurely, a measured data set
as a function. This is because the measurement process in itself can be seen a some sort
of testing with a test function, an operation in line with a functional that assigns a value
to a proper vector space of test functions. These functionals are able to host a much
larger class of mathematical constructs amongst which the class of regular distributions
that correspond to ordinary functions. Moreover they keep reference to the scale.

Now the point I want to make is that one has to tune the representation of choice
for data depending on the data itself. In practical circumstances this comes down to
choosing a representation that matches the data within the scale range of interest and that
necessitates an interpretation of notions like differentiability in order to make them apply
to physical data. For me such a physical interpretation is justifiable given the findings on
what can go wrong in setting up a multiscale analysis as presented in chapter 8. Namely in
those examples it became clear that when not adhering to strict mathematical conditions
to be imposed on wavelets one gets an intermingling of the multiscale analysis with the
data leading to erroneous results. Strictly speaking one might not have anticipated on
such a notion because these examples inevitable referred to approximate versions of the
actual mathematical objects.

For that reason I think it is legitimate to still talk about singular behaviour and non-
differentiability in the context of finite resolution measurements. The explanation for this
lies in the observation that the singular behaviour at the coarse scales may be interpreted
as if it is preserved for the scale range untouched by the coarse-graining/smoothing op-
eration. That is to say that an observer living in his characteristic scale still experiences
the data as being non-differentiable or even singular even though his observation is in-
evitable coarse-grained. To be more precise the observer can not discern the data from
being non-differentiable or singular within his scale realm. For example if one would ask
an ant to draw a tangent line along the curbstone than the ant would be perfectly able
to do so while for a human being — living at a larger scale — the curbstone acts as if it
were discontinuous — one can stumble over it while the ant can not — withstanding one
to draw the requested tangent line. However, when one sends the ant around the coast
of England the ant would not only have also trouble to draw his tangent but would also
have to cover a much longer distance than the human being would have to. Clearly the
first example illustrates a separation of scales where the inner scale is smooth, when one
considers the pave stone to be smoothly cut at some small length scale exceeding the char-
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acteristic scale of the ant. The second example elucidated the seeming scale-invariance
displayed by the coast of England, yielding an apparent non-rectifiability directly linked
to its non-differentiability.

To summarize my statement is that the regularity assessment methods presented in this
chapter preserve their meaning within the physical domain. I am aware that this line of
reasoning can be full of pitfalls but T am afraid that physicists sometimes have to make
choices. However, I think that the above argumentation fits well within the concepts
of distribution theory where an instance of a Cauchy sequence can either be seen as
an approximation to a generalized function or as a test function. For me the main
consequence of this is that one requires a representation for the data that can in an
appropriate manner be reconciled with the properties displayed by the data. With other
words one must be very careful when selecting a representation for the data. One may
even postulate that perhaps one is not “free” to choose a representation for the data at
will!

For instance, in the continuum mechanics it is perfectly suitable to represent the con-
stitutive parameters as smooth functions despite the fact that such a representation is
certainly not defendable at scales pertaining to the Quantum Mechanics. Alternatively
speaking one can make similar remarks with respect to the constitutive parameters that
display a singular behaviour, in the preceding interpretation, within the scale range the
dynamic interactions are believed to take place. This observation forms the key of the
discussion in the epilogue. In the next section I try to elucidate the point made in this
section via an example of scaling where the transition singular smooth occurs. But before
doing that I like to endorse to the reader the opinion of *t Hooft (1994) who asks himself
“How do I interpret my mathematical equations?”. Furthermore I wholeheartedly sub-
scribe the remark made by le Méhauté (1991) who refers to a scale divergence as: “It
is of course the way in which this upper bound®® approaches infinity that determines the
fractal dimension, a property we shall meet when studying problems in physics.”

An illustrative example expressing the relativity of regularity

In this section I will try to convey the inherent relativity linked to the concept of regularity
or smoothness. For example, everybody would, on first sight, agree with the observation
that the box-car in figure 2.11 is not smooth, non-differentiable and even discontinuous,
whereas the Gaussian’s appearance seems to be very smooth, C°°. The careful observer,
however, could have asked the critical question to which resolution the pronouncement
of smoothness refers. To clarify this point let me submit the profiles of figure 2.11 to
the local multiscale analysis presented in section 2.4.1. For the small scale range, being
limited by the effective support of the two profiles, it is indeed clear that the box-car
contains two discontinuities, judged by the estimates for the local Holder exponents over
this scale range. But when the scale range of observation is increased beyond this scale
range a complete opposite behaviour becomes apparent for the box-car as well as for the

36Here le Méhauté (1991) makes reference to the divergence for the slope of the line joining {zo, f(z0)}
and {z1, f(z1)} as zg — 1.
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Figure 2.11 In this figure a Gaussian with an effective scale logo = 4 is analyzed together with e boz-car with the same support.
Clearly the Gaussian and boz-car display o deviating behaviour for the small scales but as soon as the scale of observation
exceeds log o = 4 they display the same behaviour. This notion can be understood by taking into consideration that both
functions are members of a delta convergent sequence. Finally notice that the Holder ezponent for the small scales
yielded by the Gaussian bell-shape approzimately equals the number of vanishing moments of the analyzing wavelet.
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Gaussian bell-shape when o — co. For this case namely, the Holder exponent estimates
correspond to the behaviour yielded by the d-distribution. Especially for the Gaussian
this may appear to be strange because one could have the impression that it is smooth; a
property that certainly can not be associated with a d-distribution. But on the other hand
it is quite well understandable because both the box-car and Gaussian are functionals
adhering to the conditions imposed on functionals generating a delta convergent sequence
(Gel'fand and Shilov, 1964), see also chapter 5. This means that they both constitute
an approximation to the d-distribution, an observation in agreement with the presented
regularity analysis. Summarizing: when issuing statements about the smoothness of a
measurement one has to include a scale of reference to which the pronouncement has to
apply.

At this point I may have left some of the readers puzzled. This is because the Gaussian
is, of course, in a strict sense an infinitely differentiable function. But one might wonder
whether the concept of a function, a rule locally assigning a value to a point, is a com-
prehensive concept given the inevitable limitation on the measurement’s resolution? So,
is it not better to use the concept of a functional? A functional is a rule assigning a value
to each function in a set of so-called test functions of non-vanishing support (Zemanian,
1965). Here the ambiguity has been built in by associating the non-vanishing aspect of
the test function’s support to the boundedness of the measurement’s device resolution.
In this way a measurement, a functional, will only be an approximation to a possibly
singular function, a function containing a singularity. That explains why the Gaussian
is smooth for the small scale range but indiscernible from a singular non-differentiable
function for the larger scales. This is because the Gaussian can be seen as an approxi-
mating measurement of the §-distribution, with an instrument the response of which is
given by the Gaussian.

The apparent ambiguity that goes with the interpretation of mathematical constructs
in the physical framework could have been circumvented when representing the data
in the space-scale plane. In that case, namely, one could easily have recognized the
transition occurring in the scaling behaviour. For this reason Nottale (1992) proposed a
representation that includes a reference to the scale by considering the functional/data
itself together with all its coarse-grained/smoothed versions. My ideas will go along
similar lines but instead I opt to use a wavelet representation for the functional/data
and this will be the subject matter of the next section.

2.6 A scaling medivm representation

The main purpose of this chapter is to define a mathematically consistent and physical
feasible representation for the constitutive “parameters”®” ruling the wave motion and

371 used the “” to anticipate to the observation that these parameters can not longer be considered
as parameters when displaying a wild and irregular behaviour as compared to the dynamic scale range
of the wave motion.
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that display a highly irregular behaviour. The two constitutive parameters being of
specific interest here are the density of mass, p, and the compressibility, . The derived
quantity delineating the local compressional wave speed, ¢,, is of interest as well. The
profiles for these quantities are all obtained from real well-log measurements. These
well-log measurements comprise of “in situ” measurements acquired along the vertical
direction, the borehole, and extend over a distance of approximately 3 km. In the sequel
of this section I will demonstrate that these well-log measurements are beautiful examples
of highly irregular processes, the scaling behaviour of which can be very nicely captured
by the quantification tools proposed earlier in this chapter.

In anticipation of the actual outcome of the multiscale analysis set to work on well-data I
have to make precautions concerning the actual representation I am going to use to rep-
resent this type of data in a proper way. I am sure that the discussion on the implication
of taking the wrong measures in the context of a multiscale analysis substantiated the
importance of selecting the proper representation. To cut things short the continuous
wavelet transform offers an excellent way of representing highly irregular data sets in a
responsible way. Such an approach not only facilitates an effective partitioning by means
of the wavelet transform modulus maxima, the WTMML, but also allows for a proper
definition for the order of magnitude estimates assessing complexity both physically and
mathematically.

The first feature, the effective partitioning, paves the way for the introduction of scal-
ing versions of macro/meso models that share the “sparseness”, think of blocky versions
of the macro/meso models, that display the proper scaling behaviour over a wide scale
range. The second feature is of equal importance because it refers to a mathemati-
cal classification being an indispensable prerequisite when one has certain mathematical
manipulations on the data in mind. Within the context of the solution methods for
the wave equation in its current formulation®® these manipulations comprise differenti-
ation, integration and multiplications®®. In the sequel I will show that the operations
of differentiation and integration can be given a meaning even though for cases where
these operations are strictly speaking not not defined. This proposed procedure defines
these operations in a weak sense and that goes at the expense of introducing a scale
dependence. For the multiplication operation carrying, for example, the interaction be-
tween the medium and the wavefield, there possibly remains a problem when singularities
emerge in the constitutive parameters. In the epilogue I will pay attention to the ques-
tion of the added value of the multiscale analysis in relation to the current wave theory
in complex media.

Bringing the above observations on the proper representation into the perspective on how

38 Acoustic wave motion is ruled by a second order hyperbolic system of two coupled first order partial
differential equations containing temporal, spatial derivatives and multiplications by the constitutive
parameters.

3%0r other type of analytical operations, e.g. divisions.
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people treat erratic data sets such as well-data one may draw the conclusion that these
notions are generally not contemplated in the sense that the discretized well measure-
ments are treated as discretized functions and being manipulated as such. The reader
may suspect that the representation I am about to introduce claims to provide the correct
framework. The setup of this section is as follows. First I will introduce the representa-
tion. Then I discus its merits followed by applying it to real well data. The application in
itself is intended to demonstrate that well-logs indeed display a behaviour that is within a
certain scale range comparable with the highly erratic behaviour yielded by the singular
models reviewed in section 2.4.3. I will conclude this section by proposing definitions for
a generalized multiscale reflectors and a generalized multiscale version for the concept of
the macro/meso model.

2.6.1 The representation

What do I intend to accomplish when proposing a scaling medium representation? The
answer lies in the conjecture I presented in the introduction where I hold, on empirical
phenomenological grounds, two types of averaging processes responsible for the behaviour
of wave interactions in complex media such as the earth’s subsurface. These averaging
processes comprise of

e a local averaging process linked to a local scattering mechanism taking its effect
over the gauge of the wavefield. It is expected that the reflection dynamics are
related to this local type of averaging. Note, however, that the definition of the
latter gauge forms one of the most intricate questions (le Méhauté, 1991; Nottale,
1992; le Méhauté, 1995; Nottale, 1995) in this area of research.

® a global spatial self-averaging over a gauge proportional to the propagation distance.
It is expected that this averaging process is responsible for the apparent static
anisotropy and dynamic dispersion induced by the irregular heterogeneity displayed
by the medium being probed. The self-averaging refers to the notion that the
coherent part of the propagating wavefield, not the coda, is relatively insensitive
to the details of the local features it encountered on its propagation path. With
other words some “law of large numbers” might apply.

Given these two physical constraints is it now possible to come up with a representation
that

¢ only makes sense when a separation of scales seems futile.

e is mathematical consistent in the sense that it regularizes the infrared and ultravio-
let catastrophes, that is to say it is able to deal with the apparent non-integrability
and non-differentiability displayed by the data.
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e provides a representation that captures the complexity and that allows for a recon-
struction/inversion.

e features a sparse representation by means of an effective partitioning.

e features an effective quantification that on the one hand provides an effective pa-
rameterization while on the other hand it supplies a mathematical characterization.

Taking all these considerations in retrospective it is evident that the continuous wavelet
transform constitutes the suitable candidate to do the job. Simply speaking the major
argument favouring this choice can be reduced to the observation that a separation of
scales is futile for well measurements within the scale range of interest. This cbservation
is substantiated judged by the displayed behaviour in figure 2.1, where I included the
consecutive smoothings and details yielded by a real well-log Moreover, the multiscale
analysis results to be presented later in this chapter shows there is no evidence of a
break/transition in the scaling. The well-data maintain their typical scaling behaviour
across the spatial scale range believed to be inhabited by the seismic wave interactions.
Remark, however, that in my opinion it is difficult, with the current wave theory, to
come up with a specific estimate for this scale range in the sense that it is difficult to
define the spatial gauge. The reason for this dilemma is, in my opinion, to be found in
the observation that the main candidate, the apparent spatial wavelength, for the spatial
gauge to be assigned to the wavefield in itself depends on the local velocity while this
same velocity depends on the local scale/gauge as welll See the epilogue for a discussion
on this interesting issue.

Separation of scales

Let me for the time being assume the seismic scale range to be proportional to the
dominant spatial wavelength. Than it is possible to come up with a criterion that sub-
stantiates whether a separation of scale is feasible or not. Given the continuous wavelet
transform it is easy to come up with such a criterion because this transform computes
the scale derivative and therefore expresses the change in the signal, f, as the result of an
infinitesimal scale change. Evidently, in those cases where the scale derivative is small,
i.e. where

W{ﬁi/)}((f’ w)%ae[al,az] S Ca (255)

with C some sort of threshold being small or zero, one caun neglect contributions from
that particular scale range o € [01,03]. So, for those cases where the criterion of equa-
tion (2.55) holds one is allowed to invoke the separation of scales because, apparently,
there are two distinct scale regimes namely, o € [0i,,01] and 0 € [09, 04u] With o4, and
oout referring to the inner and outer scale respectively, that may be treated separately.
However, when one is unable to locate an interval where the scale derivative is negligible

small it is pointless to advocate a separation. In that case the trend - the coarse-grained
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part of f, containing information over the scale range o € [0sep, Oout] With 04y € [07,09]
delineating the scale at which the separation is effectuated - and the remaining detasl
would drastically change as a function of the scale of separation, osep. In that respect
the trend is not being insensitive to scale changes, an observation in sharp contrast with
the concept of a trend that is generally considered as being insensitive to scale changes.
With other words the whole issue of defining a macro/meso model® is that it reflects an
anticipated independency with respect to the scale, a notion that can not be reconciled
with the apparent scaling. Finally notice that the criterion laid down in equation (2.55)
bears a relationship with the criterion set by homogenization theory that determines
whether the method of homogenization is expected to hold. Following Auriault (1991)
this criterion reads

—.z- =e K1, (2.56)
with L denoting the macroscopic length scale of the excitation and I the characteristic
length scale of the clementary representative volume. This ratio refers to the small
parameter facilitating an asymptotic expansion. In the language of multiscale analysis
this type of a,symptotic approximation would be valid when the ratio of the scale indicator
endpoints o1 and o3, Z- becomes small. In the epilogue I will pay more attention to the
important issue of a poqmble separation of scales.

Representation by the continuous wavelet transform

Judged by the behaviour displayed by the continuous wavelet transform conducted on a
real well-log measurement as depicted in figures 2.1 and 2.15 it is clear that the criteria
of equations (2.55) and (2.56) are almost certainly not met. The well data contains
structures of all sizes and a separation of scales seems futile. Therefore one has to come
up with & representation truly supporting the notion of scale.

In sections 2.2 and 2.3 of this chapter and in chapter & I showed that the continuous
wavelet transform exactly offers such a representation for which also an inverse exists
when the wavelets adhere to the admissibility condition. To be more specific the repre-
sentation 1 opt for reads

F(o,2) = W{f,9}0,2) = (£, ¥0,0) (2.57)

and exactly corresponds to the continuous wavelet transform. Here the symbol f refers
to the medium properties. In the sequel I will browse through a series of arguments that
favour this choice of representation in terms of the wavelet coefficients.

A proper mathematical representation

Perhaps the most important feature favouring the above choice lies in the ability of
the wavelet transform to “absorb” divergences occurring in f. This regularization is

4®Here I mean the definition of a macro/meso model from well-log data, not the, estimation of a
macro/meso velocity model from the seismic data.
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effectuated by either selecting a sufficient regular wavelet counter balancing the possible
ultraviolet divergence, |F(k)] — oc as k — o0, for the spectrum and caused by the
occurrence of negative singularities or by setting the number of vanishing moments in
such a way that the infrared divergence, |F'(k)| — co as k | 0, is regularized in the sense
of Hadamard’s finite part, see chapter 5. This latter divergence is caused by an apparent
non-integrability.

To put it differently the singularities in the data act as fractional differentiators, for
a < —1, or as fractional integrators for o > 0, and the analyzing wavelet has to be
set to undergo the action of these singularities. Now the interesting point is that the
wavelet transform undergoes this action in exactly the same fashion as is being done in
distribution theory. There the singular behavior of f is carried over to the appropriate
test function via the method of testing. Therefore it is fair to say that within the wavelet
theory f can be considered to be a functional, a rule that assigns a number to a proper
vector space of test functions, rather than a ordinary function.

Suppose the singularities in the signal, f, range over the interval @ € [Qmin, Qmax] With
Omin < —1 and amax > 0. Then the wavelet will cast the singularities that lie outside
the interval ~1 < a < 0 towards the inside of this interval while the wavelet undergoes
the action that is attributed to invoking the shift, i.e.

(fa "/)cr) = Um(fregazm?po->* (258)

The value for m are those values that implement the map, ¢ = o = o — m with
a € (—1,0) and where m is found by taking the upper entier of o, m = [af for all
singularities a in f. The T™ denotes the m*-order derivative operator for m < 0, the
identity operator for m = 0 and the m®-order primitive operator for m > 0. Obviously
as a consequence of the above action the wavelet has to comply to sufficient regularity
conditions as well as integrability conditions depending on the minimum and maximum
values of m and the result will be that f,., only contains singularities, ranging from —1
to 0, that can be accommodated by the inner product and by the Fourier transform. The
reader interested in more technical detail is referred to chapters 5 and 8. To conclude I
like to remark that, to the author’s opinion, the just described procedure constitutes the
underlying principle for detecting events in signals and coincides with the way in which,
for instance, humans visually detect events (Marr, 1982).

Reconstruction

By virtue of selecting wavelets that adhere to the admissibility condition one can recon-
struct — via the resolution of identity — the original functional via

i) -/+°°] Fo, 2"

which has to be interpreted in the sense of distributions. Here the symbol f refers to an
ordinary function as well as to a generalized function, a possibly singular functional.

(2.59)
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Regularization by the continuous wavelet transform

In those cases where a certain smoothness is required or where f contains singularities
which are Holder o with o < —1, one has to regularize the functional f with a test
function. Such a procedure exactly corresponds to only partially reconstructing f via
equation (2.59), i.e. via

son= [ [T

- do’

o )d:l)’*“(;,“, (260)
with f representing the bare/undressed physical quantity with a finite outer scale, oy <
o0, to underline the physical situation. It can be demonstrated that equation (2.60)

implies a regularization, see chapter 5, by a test function (Zemanian, 1965), an operation
defined by

f(G', .’E) = (f * ¢<T)(x) o >0, (261)

with ¢, being a smoothing kernel leaving the DC component untouched. The fact
that this equation can be regarded as a regularization is important because the pro-
cess of regularization by a test function (Zemanian, 1965) affirms a certain smooth-
ness/differentiability on the quantity f(o,z).

It is not hard to reconcile these two equations (2.60) and (2.61) since they can shown to
be equivalent formulations. To understand this remember that the smoothed function,
f(o,z) contains all details up fo the scale o while the reconstruction integral of equa-
tion (2.60) runs over the details containing the information a¢ the scales ranging from o
t0 Oout- 1t has to be remarked, however, that there is an important difference between
these two types of regularizations. By way of its construction equation (2.60) is able to
host a larger class of objects that are not necessarily integrable. As demonstrated this
non-integrability is absorbed by the analyzing wavelet a notion that can not be attributed
to equation (2.61) where specific integrability conditions have to be imposed on f, see
theorem 5.1. A distributional interpretation of this equation, however, boils down to an
equivalent formulation as laid down in equation (2.60).

The final point I like to make is that the index of the test functions used to define
operations such as differentiation and integration in a weak sense, by means of Cauchy
sequences, finds its direct equivalent in the scale index. So the way of thinking behind
wavelet theory is very similar to the founding concepts of distribution theory where,

. for example, the Dirac delta distribution.is given a meaning in the sense of a delta

convergent sequence (Schwartz, 1957; Gel’fand and Shilov, 1964). This sequence is a
Cauchy sequence of test functions, read wavelets, of decreasing support and this type of
construction is very similar to the resolution of identity, see chapter 8, that comes down
to the same thing.
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Differentiation and integration

Let me in this subsection make some more specific remarks on the question how to
differentiate or integrate functionals that are non-differentiable or non-integrable or al-
ternatively that can not be discerned from being non-differentiable or non-integrable
within a certain scale range. Provided with the representation in the wavelet domain the
answer is simple: one just has to impose one additional vanishing moment in case one
wants to integrate, to the first order, or to increase the regularity by one in case one
wants to differentiate to the first order. In this way the partially reconstructed function,
f(o,x), becomes integrable or differentiable but this goes at the expense of a insertion
of a explicit scale dependence.

Finally remark that these measures, mathematically speaking implying regularizations,
exactly correspond to the representation proposed by Nottale {1995). The prime reason
why Nottale (1995) introduces such a formulation is that it affirms the invocation of a
certain smoothness making f(o, z) differentiable for the scales smaller than o under the
condition that ¢ > 0 while f(o,z) maintains its irregularity for the scales exceeding o.
Then Nottale (1995) continues to consider the scale derivative of the smoothed quantity
f(o,z) and that exactly corresponds to the continuous wavelet transform.

Sparse representation by the WTMML

The wavelet transform modulus maxima formalism offers the necessary efficient parti-
tioning of the space-scale plane. This partitioning is based on the property that the
singularities in f are directly reflected into the behaviour for the extrema of the wavelet
coefficients. Moreover Mallat and Hwang (1992) showed that the representation in terms
of the WrMML can be inverted although not uniquely and at the expense of some accu-
racy.

2.6.2 Application to well-log data

In the previous section I stepped through the main arguments and properties substan-
tiating the choice of using the continuous wavelet transform domain as the multiscale
representation. It is now time to reflect on this choice a little bit more in the context of
applying these ideas to real well-log measurements. I will start by showing that the “con-
ventional” quantities — the variogram and power spectrum, reflecting the second order
two point statistics — display a power law type of behaviour. As input for the analysis I
took the compressional wave speed profile I depicted already in figure 2.1. Despite the
hiatuses inherent in these methods, see the preceding discussion, one can find estimates
for the slopes of these quantities that provide information on the degree of fractional in-
tegration H. I continue the discussion by applying the proposed multiscale analysis and
quantification to the same well-data. This concerns an evaluation of the local analysis of
the scaling as well as an unraveling of the global scaling all conducted within the sparse
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Figure 2.12 [lustration of the power law behaviour displayed by the structure function (middle
plot which is a log-log wersion of the left plot, the structure function) and the
power spectrum (right), obtained from a real well-log measurement. The log-log
plots are depicted together with linear fits the slope of which is related to the
monofractal scaling exponent H.

partitioning provided by the WTMML. Then I will show that the universal multifractal
cascade model not only offers an effective parameterization for the singularity structure
but also a way to generate synthetic well-data, the statistical properties of which display
a singularity structure that bears a great similarity with the evidenced scaling complexity
yielded by the well-data.

A conventional “scaling” look at a well-log

The most simplified models within the scaling concept are formed by monofractals, e.g.
H-indexed fractional Brownian motions (Mandelbrot and Wallis, 1969; Tartarskii, 1971;
Yaglom, 1987; Walden and Hosken, 1985; Todoeschuck and Jensen, 1989; Herrmann,
1991; Herrmann and Wapenaar, 1992, 1993, 1994) or non-conservative densities, the
behaviour of which is quantified by the scaling exponent H expressing the degree of frac-
tional integration. The scaling for these type of processes entails a powerlaw behaviour
for the second order statistics as expressed in the following relations for the power density
spectrum, see figure 2.12 on the right,

1

S() ~ 75

(2.62)

where (3 refers to the slope of the power spectrum, S(k), with 8 = 2H + 1, and for the
structure function or variogram, see figure 2.12, left and middle,

D(o) = {If (= +0) = f(=)*) ~ > (2.63)

Despite the fact that this approach has been successful in the characterization for the
second order statistics, ¢ = 2, of the medium fluctuations, it fails to give an adequate
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Figure 2.13 Comparison between the compressional wave speeds and acoustic normal incident
reflection coefficients yielded by a real well-log measurement (left column) and
their moncfractal counterparts (right column). The monofractal parameters were
set according to estimates obtained from the well-log measurement. Notice the
absence of outliers on the right.

description for the properties of the higher order statistics. This shortcoming mani-
fests itself particularly when highly intermittent signals*’, signals with distinct active
bursts and passive regions and large outliers, are concerned. The degree of intermit-
tency expresses the ratio between the relative active and passive regions in a signal and
unfortunately monofractals, such as fBm, are not well equipped to effectively capture
this property. This observation is illustrated in figure 2.13, where a comparison is made
between plots for the compressional wave speeds and the corresponding reflection co-
efficients of a real well-log measurement, left column, and similar plots for a synthetic
monofractal simulation, right column. These acoustic normal incidence reflection coeffi-
cients were computed using the definition for the reflection coefficients at a discontinuity
obtained by supplementing boundary conditions on the pressure and normal component
of the particle velocity. The reflection coefficient for the pressure and for a constant
density medium reads r = (c; —cp)/ (ci) + ¢,) where ¢}, and c# denote the compressional
wave speeds in the lower and upper layer. The simulation was obtained after running
a monofractal random generator with its parameters set according to estimates for the

41 Well-logs are amongst them.
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monofractal parameters, the variance and slope of the power spectrum 8 = 2H + 1. It
is clear, especially for the reflection coefficients, that the monofractal characterization
misses the large outliers, the large “macro” reflectors. In order to overcome this appar-
ent deviancy I need to come up with a more general approach, the one I proposed in the
preceding part of this chapter.

2.6.3 A local representation and quantification by the WTMML

Provided with the wrMML partitioning I am able to locate and quantify incipient sin-
gularities via zooms guided along the wTMML. In figure 2.14 I included an example of
the local multiscale analysis and quantification procedure set to work on the well-log
measurements I already depicted in figure 2.1. As expected the WTMML’s emanate at
the abscissa where the well-log behaves singular or singular in its derivatives. The ampli-
tudes along the WIMML’s provide information on the local scaling of the singular regions
and is used as input to the local Hélder exponent estimation scheme. This latter action
leads to an effective linearized parameterization for the scaling behaviour to be associated
with the abscissa where the WTMML’s emerge. Moreover, it also leads to a mathematical
characterization of the measurement’s regularity, differentiability, within the prescribed
scale range.

The well-log measurement under consideration is a measurement of the compressional
wave speed. It was measured at a resolution of 15 cm. Afterwards it was smoothed
to a resolution of 60 cm to remove the part of the spectrum contaminated by the well-
logging tool. After that I took a subset of the measurement to obtain a convenient data
set of 4096 samples. It occupies about 2.5 km of data. The analysis was done with
the second derivative of a Gaussian, so with a wavelet which is €' and which has two
vanishing moments. In figure 2.14 I included an example of the proposed local multiscale
representation and quantification/parameterization applied to the well-log.  One can
very nicely see that there are indeed “regions” the singularity strength of which varies
significantly, an observation consistent with a multifractal behaviour. Finally, remark
that the original signal can be reconstructed (Mallat and Hwang, 1992). Alternatively
one can also try to reconstruct the signal when only information over a limited scale
range is available, i.e. in the seismic scale range. This opens a way to define a multiscale
representation, a generalized scaling macro model, characterizing the edges and allowing
for a reconstruction. The reader who is interested in a explorative survey of using the
WTMML method to conduct multiscale analysis on seismic data is referred to Staal (1995),
Hoekstra (1996) and Dessing (1997).

A global multiscale representation and parameterization

As an initial ansatz I conjectured the effects of wave propagation, induced by hetero-

. geneity, to be ruled by some sort of spatial self-averaging process over the propagation

distance. This prompted me to come up with a global multiscale analysis scheme that
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Figure 2.14

Ezample of the local analysis and subsequent parameterization conducted on a
real well-log measurement. The sample interval is 60 cm and the total length of
the data set is 2.4 km. On the top is the well-log displayed, i.e. a compressional
wave speed profile. In the middle the WrMML’s are displayed. On the bottom
it is shown how to estimaie the local Hélder exponents for a selected number
of WTMML’s. Notice that positive, edge like, as well as negative, needle like,
singularities occur.
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captures the scaling of the statistical moments.

unravels the singularity structure
e determines the generalized fractal dimensions.

» assesses the global differentiability and integrability.

Given the outcome of such a global multiscale analysis, conducted on real well-data, one
is set to determine the degree of non-stationarity, H, the amount of intermittency, Cy and
the universal multifractal parameter oy from the mass exponent function and singularity
spectrum. These parameters not only provide a classification for the type of multifractal
best suited to describe well-data but also offer a way to generate synthetic data sets with
preset multifractal properties.

Computation of the global multiscale analysis

In figure 2.15 I included an example of the partitioning of a real well-log, figure 2.15 (a),
by the continuous wavelet transform modulus maxima lines, figure 2.15 (b). I calculated
the corresponding partition function Z,{-,4}(g), depicted in figure 2.15 (c), with the
wavelet’s scale ranging from 5 m to 160 m. The mass exponent function 7(g) is plotted
in figure 2.15 (d) with the g € [-10,12] while the f(a) spectrum is on display in fig-
ure 2.15 (e). Figure 2.15 clearly demonstrates that within the scale range 5 m o 160 m
the well-log reveals a hierarchy of singularities with different scaling exponents.

The estimation of the weakest singularity, describing the maximum smoothness, shows
that, cf. equation (2.47),

Omax > 1.6.

The strongest singularity, describing the minimum smoothness is found to be, cf. equa-
tion (2.47),

Gmin ™ """0-187
and the integrability is given by, cf. equation (2.46),
H ~0.21.

These estimates show clearly that in the seismic scale range the well-log measurement
can not be distinguished from a multifractal. This multifractal contains singularities with
scaling exponents that correspond to singular “points”, @ < 0, non-differentiable but
Holder continuous “points” 0 < a < 1 and “points that are singular in their higher
derivatives. The value for the H refers to a non-conservation of the mean and that cor-
responds to a stochastic non-stationarity. This latter property entails a non-integrability
that becomes evident in the notion that the mean and/or variance diverge(s).
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Figure 2.15 (a) A well-log measurement of the compressional wave speed. The sample intervel

i5 60 em and the totol length of the data set is 2.4 km. (b) The wavelet transform
modulus mazime lines of (a). The wavelet used is the second derivative of a
Gaussian, so it is infinitely smooth and it has two venishing moments. The
scale of the wavelet ranged from 5 m to 160 m. On the fine scales the modulus
mazima lines start af every point, indicating that the second derivative of the
well-log is singular everywhere. Via the partition function Z(o,q) of (c) it is
possible to compute the mass ezponent 7(g) of (d). This function in turn allows
for the computation of the singularity spectrum f(a) which is depicted in {e).
The weakest singularity is found to be 1.6, showing indeed thai the signal is
singular everywhere in its second derivative. The strongest singularity equals
----- 0.18. Finally the degree of non-conservation equals H = 0.21.




Chapter 2: A scaling medium representation 65

16 08
14 0.7
12 0.6
. 05
o8 04
—~ 0 —
= L 03
X 06 T y
y 02 y
04 P 0.1
02 o
0 81
-02 -52
0 1 2 3 4 5 6 7 8 0.1 -005 0 005 01 015 02 025 03
q v

Figure 2.16 Estimation procedure for the universal multifractal parameters applied to a real
well-log measurement. On the left the second characteristic function K(q) is
depicted together with its fit given by equation (2.30) whereas on the right the co-
dimension function for the singularities c(v) is displayed, also accompanied by
its fit given by equation (2.31). The estimated parameters used for the fits equal,
C1 =~ 0.056 and oy = 1.83 and yield the estimation of the universal parameters.
The g range used in the nonlinesr fitting procedure, for the a;, was taken to be
q € [0,3.5].

Determination of the multifractal model parameters

What remains for me to do is to come up with a model that characterizes the singularity
spectrum. Keep in mind that such an effort will not explain the actual local specifics
of certain a data set; it merely characterizes the scaling complexity as a whole. The
continuous universal multifractal cascade model constitutes a process with a singularity
structure, within the a-range corresponding to positive ¢, that is comparable with the
observed spectra. In this way the universal multifractals capture the intermittency and
non-stationarity. They also adhere to the condition of strict positiveness, a notion not
supported by additive Brownian motions and their generalizations, fractional Brownian
motions.

In figure 2.16 I included an example where the universal multifractal parameters are
estimated, via a non-linear curve fitting procedure, from the estimated*? K (g) and c{y)
functions. The obtained parameters equal, see equations (2.30) and (2.31), Cy = 0.056
and a; = 1.83. The ¢ range in the non-linear estimation procedure, see below, for the
was taken to be ¢ € [0, 3.5]. Let me briefly explain the procedure I used to come up with
estimates for the universal multifractal parameters oy, Cy and H from the sample K (@)
and/or ¢(7) functions. The procedure amounts to

42Via the estimated 7(g) and () of figure 2.15.
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H 01 (0]

Well T (comp. velo.) | 0.21 | 0.034 | 1.55
Well 1T (comp. velo.) | 0.22 | 0.049 | 1.67
Well 11 (density) 0.23 | 0.048 | 1.38
Well 11 (kappa) 023 10027 | 1.68
Well TIT (comp. velo) | 0.11 | 0.044 | 1.64
Well 11T (shear velo) | 0.14 | 0.043 | 1.61
Well TII (density) 0.14 | 0.044 | 1.72
Well TII (gamma ray) | 0.21 | 0.031 | 1.66

Table 2.1 This table displays the estimation results for the multifractal parameters Ci, o and
H from real well-log measurements.

e estimation of the K(g) and () functions from the Z{o,¢) function.
e using the relation H = {K(q) — qH }4=1 to estimate the H from the K (g) function.

e using the relation C; £ {;%(K (g) ~ gH)}4=1 to estimate the Cy from the derivative
towards q of the K (g) function.

e conducting a non-linear fit, using the closed form expressions for the stochastic
expectation of the K (g) and/or ¢(7y) functions on the sample K (q) or ¢(7y) functions,
i.e. finding an a; which minimizes the error (in a least squares sense) between the
parametric and sample curves.

Figure 2.16 displays the result of this estimation procedure set to work on the ¢(v)
function obtained from the f{a) spectrum depicted in the figure 2.15. Comparing the
sample curves, denoted by the solid line, with the parametric curves, denoted by the
dashed line and defined in terms of the non-linear estimates, shows a good agreement
up to values of ¢ = 3.5. Notice that the limited g-range is not surprising since only one
realization, the well-log, is considered.

In table 2.1 I included a list of estimates for the universal multifractal parameters ob-
tained from a series of different well-logs acquired at different locations around the world.
These estimates indicate that the three parameters do not vary substantially from one
well-log to the other®®. Even estimates obtained by analysing other physical quantities,
such as the gamma ray, show a similar kind of behaviour. The same applies to the
compressibility in well II, which was obtained by using the relation between the density,

compressional wave speed and the compressibility, i.c.
1
£(2) = === (2.64)
B = e

43The values for the H of well I seem to be an exception to that.
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The reason for this latter property to exist lies in the fact that the multiplicative mul-
tifractals are, beyond a renormalization constant, insensitive to fractional powers. The
explanation for the apparent “universality” for the estimated values of the coefficients per-
taining to well-logs is, however, less obvious. This insensitivity might be understood by
taking into account that the universal multifractal parameterization merely captures the
overall scaling, i.e. the “scaling structure” of the unknown underlying physical process**
which is responsible for the sedimentation process. Evidently this process is, amongst
others, driven by the dynamics of the hydrodynamic turbulence in the atmosphere.

Finally remark that the concept of multifractals has already received quite a substantial
attention in the literature (Muller et al., 1992; Saucier and Muller, 1993). Recently,
interesting results on the scaling of the Ice-Core of Greenland (Schmitt et al., 1994),
have been added to this yielding estimates for the multifractal parameters close to the
estimates obtained for the well data. The underlying reason for this coincidence may lie
in the idea that well-logs as well as Ice-Pack measurements reflect the turbulent changes
in the weather/climate on a geologic time scale.

A synthetic well-log simulation

With the estimated values for the multifractal parameters it is possible to generate a
realistic synthetic multifractal with its parameters set according the estimated values
summarized in table 2.1. In figure 2.17 such an example is given for the well-log 1.
Jomparing both the compressional wave speeds and reflection coefficients of the original
well and the corresponding random multifractal simulation shows that the generalized
approach captures the intermittency as well as the texture better than the monofractal
example depicted in figure 2.13.

2.7 Review of the conventional approaches

Let me now bring the multiscale approach as proposed in this chapter in the perspective
of the conventional approaches being applied — predominantly in the field of waves in
finely layered media ~ to represent the complexity of the constitutive parameters as
they are being observed in well-log measurements. Probably the first thing that comes
to mind is to represent the well-log measurements as a stack of thin®® layers defined
in terms of the consecutive discretization points offered by the well-log measurement.
Clearly such an approach is a special case of a piecewise continuous representation that is
perceived as being the proper choice for the representation. Provided with the estimated
singularity spectrum, acquired from real well-log measurements, it is difficult to reconcile
the piecewise continuous representation — where the spectrum would have consisted of

44An exception to this forms the non-linear Navier-Stokes equation which, on theoretical grounds,
gives rise to a H = % (Schertzer and Lovejoy, 1987a,b) for fully developed turbulence (Kolmogorov’s
Law, see Kolmogorov (1941)).

45Small compared to the dominant wavelength.
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Figure 2.17 Comparison between the compressional wove speeds and acoustic reflection coeffi-
cients yielded by a real well-log measurement (left column) and their multifractal
counterparts (right column). The multifracial parometers were set according to
estimates obtained from the well-log measurement. Remark that the simulation
only captures the global characteristics not the specifics.

smooth part — with the evidenced distribution of singularities in the singularity spectrum.

As a second choice — more with an effective representation for the wave dynamics on
the seismic scale range in mind — people base their approaches on & separation of scales.
This separation either refers to the invocation of some kind of smooth/trend background
model with possibly discontinuous fluctuations superimposed on it or to a blocked version
of the well-log. This blocking operation often occurs without any theoretical®® justifi-
cation although the work of Vermeer (1992) forms an exception to this. He already
introduces the continuous wavelet transform to allocate the singularities at the different
scales but then he continues to assign discontinuities to the abscissa where the well-log
is singular. This is understandable with his geological application in mind but it misses
the characterization of the singularity strength and may influence the wave interactions.

The main idea behind the invocation of a separation of scales is the conjecture that the

48Remark that the blocking can be brought into the perspective of multiscale analysis by using the
box-car/indicator function as the smoothing kernel. However, in that case one is bound to an observable
detection range for the singularities of & € (-1, 0), 3 notion effecting the coarse-graining operation.
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smooth trend model can be held responsible for the propagation effects experienced by
the probing wavefield while the reflection is attributed to the remaining fine-scale detail.
This conjecture is perceived quite differently in the field of finely layered media where
the fine-scale fluctuations are seen as thin layers the scattering at which are designated
as being responsible for an apparent dispersion mechanism. But still the main idea, is to
think of the complexity to consist of some well separable trend defining a macro/meso
model with a possibly random perturbation superimposed on it.

Perhaps unnecessarily let me mention again that the multiscale analysis and quantifi-
cation on real well-data have demonstrated that a separation of scales might be futile.
The data displays a powerlaw type of behaviour over a wide scale range and in that case
I think it is unlikely to expect satisfactory results in a quest, based on a separation of
scales, for a better integration of well and surface seismic data, a problem of scales. Dur-
ing the integration a better treatment of the dynamics is essential and one can not longer
be satisfied by treating the kinematical aspects solely. Here I mean with kinematics the
predictions for the traveltimes given by ray-asymptotic methods.

Concerning the separation of scales I like to add that certainly the well-logging tool
implements some kind of averaging (Hsu and Burridge, 1991) yielding a break in the
scaling at about a scale range of 1.5 to 2.5 meter. The occurrence of this break, how-
ever, does, in my opinion, not justify the use of an exponential decaying covariance
function, the correlation length of which exactly matches the smoothing interval of the
tool. In that respect I, frankly speaking, differ from the opinion that the highly erratic
complexity displayed by the well-data can appropriately be characterized by a random
process parameterized by a single parameter, the correlation length. This correlation
length delineates the transition from a white noise type of behaviour for the low spatial
frequencies, S(k) x C k < (7' with C a constant and (., the correlation length, to a
Brownian motion type of behaviour for the high frequencies, S(k) x k™%, k> (1.

Inspection of the literature shows that the majority of papers dealing with waves in
finely layered media utilize a random process for the medium fluctuation with an expo-
nential decaying covariance function. There exist several alternatives to define such a
process. Banik et al. (1985b) and Baluni (1985) started the discussion by introducing
the random telegraph model comprising of alternating layers with two different acoustic
impedances and Poisson distributed layer thicknesses. Burridge and Chang (1989) fol-
lowed by Kerner (1992) and Shapiro and Zien (1993) use a first order Markov process
to generate a random sequence for the fluctuations. This type of process also results in
an exponentially decaying correlation function but having equidistant layers rather than
Poisson distributed layer thicknesses.

Herrmann (1991) interrupted the series of papers based on the exponential type of cor-
relation function by proposing the use of the fractional Brownian motion*” as a model —

471t were Walden and Hosken (1985) followed by Todoeschuck and Jensen (1989) who first suggested
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with infinite correlation length and powerlaw type of behaviour for the energy spectrum
and structure function — for the medium fluctuations evidenced from well-log measure-
ments (Herrmann and Wapenaar, 1992, 1993). This approach followed by Burridge
et al. (1993) provided a characterization of the “blueness” for the power spectrum of
the reflection coefficient sequence and found its way into the O’Doherty-Anstey formula
(O'Doherty and Anstey, 1971). This formula approximately describes, in terms of the
power spectrum of the reflectivity, the propagation of waves in media that vary weakly
in one dimension. It appeared that this combination yields interesting results since the
transmitted wavefield strongly depends on the blueness, the degree of anticorrelation
displayed by the reflection coefficient sequence {Herrmann, 1991). Unfortunately the
weakness condition, imposing a scaling behaviour for the reflectivity corresponding to
that of Brownian motion, possibly withstands a proper application of this method given
the observation H ~ 0.21. In the epilogue I will discuss waves in relation to scaling.
Besides this fundamental observation it also fails in the following two ways:

e it does not handle the intermittency, a striking characteristic of well data where
erratically occurring catastrophic events seem to be all important.

e it is not strictly positive, it is not a density, so it can not be used to sensibly
characterize the constitutive parameters which are void of a physical meaning when
negative.

On the other hand remember that the intrinsic scale-invariance and the roughness char-
acterization certainly had their merits.

This review has not been intended to be all inclusive but it shows that the multiscale
approach as being presented in this chapter has not yet found its way in wave theory
dealing with highly erratic, non-differentiable media. On the other hand there has been
a recent upraise in the use of multiscale models to characterize the well-log’s complexity
in a more general context (Vermeer, 1992; Saucier and Muller, 1993; Collier, 1993; Li and
Haury, 1995; Painter, 1995). Unfortunately, until now, a discussion on the implication
of the finding on wave dynamics is lacking.

I like to conclude this section by stating that I did not pay attention to periodic and
hence infinitely smooth perturbations. The reason for this lies in the outcome of the
multiscale analysis and in the fact that the periodic structures give rise to a stop-band
type of behaviour for the wavefield, an observation not empirically substantiated. Despite
this argument against the use of periodic perturbation Jannane et al. (1989) and a very
large group of co-authors published a short note where they claim - based on synthetic
modelling — a separation of scales in relation to what kind of structures can be resolved

to use fractional Brownian motion to characterize the “red” power spectra for the fluctuations experi-
enced from well-log measurements and fractional Gaussian noise to describe the “blue” spectrum for the
reflectivity.
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from seismic data synthetically. Given the multiscale analysis presented in this chapter 1
would be very reluctant to make such a statement from the medium’s complexity point
of view. Of course the statement of Jannane et al. (1989) refers to the seismic data where
they used the wave equation to conduct the mapping.

2.8 Concluding remarks

In the introduction of this chapter I conjectured that that there are two fundamental
averaging processes, a global self-averaging over the propagation distance and a local
averaging process over the effective gauge. These averaging processes can be associated
with wave interactions, with the transmissivity and reflectivity, and become important in
media with a complex structure on the scale range inhabited by the transient wavefield.
Despite the current lack of a true understanding and theoretical basis of this conjecture
it still forms a worthwhile point of departure for the introduction of a multiscale medium
representation in the context of wave dynamics. In this representation the propagation
and reflection are associated to the afore mentioned averaging processes. It is this view
that inspired the two ways of looking at the displayed scaling within the multiscale
representation for the mediutu. The multiscale representation in itself can be thought
of as an abandoning of the rather restrained and perhaps unphysical representation of
the medium’s complexity by functions in favour of a representation by means of the
continuous wavelet transform. In this wavelet representation one defines the proper
functional, assigning a value to a proper space of test functions, an action striding well
with the way in which physical interactions are perceived to take place.

The scaling medium representation

To summarize the proposed scaling medium representation provides

e a true invocation of scale in the sense that the wavelet representation refers to the
details in the function at a specific scale.

e an efficient partitioning in terms of the wTMML delineating the information carrying
singularities that can be associated with the occurrence of reflections.

e 3 reconstruction mechanism yielding scale-indexed coarse-grained and hence reg-
ularized approximations of the bare, possibly singular, physical quantity. Notice
that this smoothing operation has, because of the proper choice for the wavelet,
been done in a mathematical proper way.

e a local and global multiscale analysis and quantification. The first is aimed at
capturing localized estimates for the regularity to be associated to local reflection
while the latter captures the more general scaling behaviour by unraveling the
intertwined singularity structure.
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e the possibility for a representation in terms of the multiresolution analysis defined
in terms of the orthogonal discrete wavelet transform as proposed by Mallat (1989).
Via selection of the proper family of discrete wavelets is possible to span a Sobolev
space of choice.

To recapitulate the whole idea of the scaling medium representation and its partitioning I
included figure 2.18. In this picture I show that the wavelet representation clearly reveals
the scaling complexity across the different scales. Moreover the wrMML’s delineate the
singularities. In the conventional way of representing this type of data sets, namely as
ordinary functions, the notion of scaling would have been obscured by the sole way in
which the data is represented. The remaining question is whether this type of represen-
tation becomes manifest in the way in which physical models are being devised. I wilt
address this question in the epilogue.

A multiscale reflector

Since the multiscale analysis corresponds to a local averaging procedure triggering on
the regions of rapid variation, one can associate it with an anticipated scattering to
occur at the singularities. The sheer elegance of the wrMML formalism happens to be
the property that the WTMML’s exactly point to the regions where the medium acts as
if being singular. Generally speaking I expect the existence of an intrinsic relationship
between occurrence of local scattering and the emergence of a wrMML. Therefore I like
to propose with the following definition for a local specular multiscale reflector:

Definition 2.3: A multiscale reflector
A multiscale reflector constitutes the set of points delineated by a WIMML,

under the restriction that the decay/growth rate for magnitude of the WTMML’s has an
Hélder exponent associated to it that lies within the “observable®” range of the wave
dynamics. For me personally it remains to be shown what that range really is. At
least for a > 1 1 do not expect specular reflections anymore but instead turning ray
type of reflections. The recent work by Wapenaar (1996a) has shown interesting results
on solving the local scattering problem at singularities of the above algebraic type. In
that approach boundary conditions are imposed while the accessible range for the Holder
exponents is restricted to @ > —1. However, these results do in my opinion not preclude
a discussion on the role of the notion of scale in relation to wave dynamics, see the
epilogue.

Generalized scaling macro/meso model

Given the definition for the multiscale reflector it is not hard to imagine a generalized
type of macro/meso model that represents a sparse?® representation of the scaling over

48Tn the sense that the wave theory may loose its meaning or may not specularly scatter at it.
49fere [ mean with sparse the notion that for the coarse scales the number of WTMML’s decrease.
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Figure 2.18 Illustration on how to “look” at a scaling measurement. On the top the contin-
uous wavelet transform, conducted on a selected well-log interval, is on display.
The scale decreases while going out of the plane. At the boltom I included the
WTMML s that delineate the location of the singularities.

a specified scale range. This generalization has been one of the goals of this chapter and
indeed the wTMML formalism provides all necessary prerequisites. Clearly the approach
extends the conventional way of representing a transition — by the invocation of a jump
discontinuity that generates a specular reflection - to a more general type of singular
behaviour captured by the wavelet coefficients along the wrMML. It was shown that
the singular behaviour can be quantified by the Holder scaling exponent. For a jump
discontinuity this exponent equals o = 0 and hence represents a special case. Despite
the findings of Wapenaar (1996a) who solves the wave interaction at these algebraic
singularities it remains, for me, an open question how to come up with a formulation,
preferably from first principles and in terms of the wavelet coefficients or equivalently
in terms of the wrMML’s, for the specular wave dynamics induced by the singularities.
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Only then one has an apparatus at hand that integrates the seismic and well-log data.

To summarize

In this chapter I committed myself to come up with a proper representation and charac-
terization for the complexity as being displayed by the constitutive parameters evidenced
from well-log measurements. The main point I wanted to make is that a representation
for the discretized well-log measurements in terms of ordinary functions is full of pitfalls
and better be circumvented. For that reason I proposed a representation that is math-
ematically sound and which does not mystify the all important notion of scale. In that
respect it is worthwhile to mention that the introduction of a macro/meso model derived
from a well-log is futile when the magnitude of the scale derivative or equivalently the
wavelet coefficients can not be neglected. However, the WTMML partitioning offers a
powerful alternative because it provides a sparse representation of the space-scale plane
aiming at the singularities. By anticipating the notion that the scattering is expected to
occur at these singularities the WTMML partitioning is seen as a generalized multiscale
“macro/meso model”.

Give the proposed multiscale representation I am also able to demonstrate that certain
mathematical operations that are normally not allowed on the data can be given mean-
ing in the new representation. This can only be done at the expense of adding one
fundamental parameter namely the scale index. On the other hand I was able with the
proposed representation to come up with a characterization and even a parameterization
for the complexity by means of local regularity estimates in the form of Holder exponents
and global regularity estimates with the help of the singularity spectrum. These Holder
exponents may well prove to be indicators, delineating certain geological features and or
transitions, while the singularity spectrum entails an unraveling of the hierarchical scaling
structure. Moreover this spectrum provides information on the data’s non-stationarity
annex integrability, intermittency and generalized fractal dimensions.

But above all, the complexity displayed by the well-data withstand a separation of scales.
This becomes, for instance, manifest in the notion that it is difficult to still speak of
the earth’s subsurface as being composed of well separated layers as an onion. These
observations deserve in my opinion a careful rethinking of the underlying assumptions
that yielded the wave equation, see the epilogue.
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Chapter 3

Operators

In this chapter I lay down an eperator formalism pertaining to the shift and di-
latation operations required to set up the multiscale analysis and representation pre-
sented in chapter 2 and chapter 8. The purpose of this chapter is fourfold. First it is
intended to substantiate the shift and dilatation operation by linking these operations
to the spatial derivative and scale derivative operator. Secondly I will demonstrate
that the Fourier and Mellin/scale transform represent unitary transformations being
defined in terms of the generalized eigenfunctions associated with these two differ-
ential operators. Thirdly I will make exploratory remarks on the link between the
spectral scale representation and (multi)fractals. Finally this chapter serves as a
preparation for the discussion on wave dynamics to be presented in chapter 4 and
the epilogue.

key words: self-adjoint/Hermitian operators, eigenvalue problems, spectral repre-
sentations, commutation relations, Fourier Transforms, Mellin/scale transforms,
fractals, singularity spectra.

3.1 Introduction

Finding a suitable representation for a detected signal plays an important role in inferring
information. The reason for this lies in the fact that a representation constitutes an
expansion of the signal onto a basis of expansion functions. These expansion functions
are found by solving the eigenvalue problem connected to the operator that is held
responsible for the detected signal. Obviously such an expansion can only be successful
when expansion functions are used that behave natural towards the signal. Now how can
one find these expansion functions? To answer this question one enters in the realm of
physics where one commits oneself to find the proper physical model explaining for the
observed physical phenomenon. In those cases where the predicted data by the physical
model can be reconciled with the actual measured data one is hopefully! in the position

11t may either occur that the measurement process is interfered — e.g. by the inevitable smooth-
ing/coarse-graining of the instrument or by the lack of data - or that the physical model was incorrect
despite that it may have given acceptable results. Unfortunately none of these artifacts can be ruled out
in the physical setting.
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to infer information.

Since the advent of Quantum Mechanics physicists have found a very elegant way, by
means of operator theory, to find the suitable representation for measured signals (Mes-
siah, 1958; Reed and Simon, 1978, 1979; Dautray and Lions, 1990; Cohen, 1995). This
representation occurs in terms of basis functions that solve the eigenvalue problem per-
taining to the operator which is responsible for the emanated signal. For example, the
physical variable frequency emerges when the operator concerns the spatial frequency
operator — containing the spatial derivative — and the pertaining Fourier transform es-
tablishes the spectral representation. Here the frequencies correspond to the eigenvalues
while the complex exponentials represent the eigenfunctions. This type of approach can
be applied to arbitrary operators whose attributed solution to the eigenvalue problem
yields a way to analyze, manipulate and construct signals that are believed to be con-
nected to this operator. In this chapter I will pay primarily attention to the substantiation
of the shift and dilatation operation that represent the two operations on which the mul-
tiscale analysis presented in chapters 2 and 8 is based. This corresponds to reviewing the
space and scale representations pertaining to the frequency operator, that allows for the
formal definition of the shift operation, and the scale operator establishing the dilatation
operation. At first I will introduce the concept of operators, their Hermitism and their
unitarian behaviour. Then I will solve the eigenvalue problem and observe that when the
operator is Hermitian one automatically gets real eigenvalues while the eigenfunctions
constitute an orthogonal and complete set of basis functions enabling a proper spectral
representation. Given this spectral representation one can demonstrate that functions
of operators can readily be given a proper meaning and this makes it possible to issue
statements on the average values that are cognate to the operator. The joint behaviour
of physical quantities is addressed next and leads to the introduction of commutator re-
lations expressing the fact that when two operators do not commute one cannot resolve
their associated physical quantities up to arbitrary accuracy in the L?(R) sense. That is
to say that the “variance”, the “bandwidth”, of one variable cannot be improved inde-
pendently of the other, a notion one is all to aware of given the Heisenberg uncertainty
relation, expressing the uncertainty between the Fourier pair momentum and position in
Quantum Mechanics while Gabor (1946) showed its counterpart for simultaneous time
and frequency analysis. The discussion is continued by paying explicit attention to the
space and scale representations followed by a section numerically elucidating the shift
and dilatation operations. I will conclude this chapter by bringing the concepts of fractals
and the scale representation in relation with each other.

3.2 Operators

Strictly speaking operators refer to constructs whose action alters functions or function-
als. They comprise actions such as differentiation, integration or squaring. Within the
physical context these constructs generally refer to operators of the Hermitian type. For

e
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two functions, f(z) and g(z) one can write

(Af,q) = (f, ATq), (3.1)

where the angular brackets refer to the inner product defined as

(fg) 2 / f@)g" (z)da (3.2)

and where the calligraphic symbol is reserved to denote the operator and where the
adjoint of the operator A is denoted by Af. In those cases where the adjoint of the
operator, Al equals itself, i.e. 4 = A!, one speaks of a self-adjoint or Hermitian operator
and this corresponds to an operator whose action forces the identity

(Af,9) = (f, Ag) (3.3)

to hold. In that case equation (3.1) becomes the definition for a self-adjoint operator.
An operator is unitary when its adjoint equals its inverse, i.e.

U =ut, (3.4)

where I{ is an unitary operator. Notice that the inverse of an operator is an operator
that makes the following identity to hold

A A= AL =T, (3.5)

where 7 is the identity or unit operator.

The importance of the unitary type of operators lies in the fact that they do not alter
the norm of the function they are acting upon, i.e. ||flla = (f, f) = |{Uf]l2- For operators
to posses such a property they have to be of the form (Cohen, 1995)

U=eh (3.6)
with 4 being Hermitian. To understand the unitary property one has to prove that
Ut = emA (3.7)

To do this one can use a Taylor expansion for the exponent,

Ut = (CM)T —_ (i %ﬁA‘n)f
n=0 '

o \n
= = i
n! ’
n==0

and then it becomes straightforward to show that

UUt = i he™IAT = eHideiA = T, (3.8)
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implying Ut = U~! and defining the unitary operator. Finally remark that unitary
operators are not Hermitian but they obey

Uf,g) 2 (f,Ulg) = (f,u1g). (3.9)

Now let me go back to how one can interpret equation (3.6). Indeed by expanding it
into a Taylor expansion one can give the operator exponential e/ a meaning. Strictly
speaking such an approach is allowed but it is often not well tractable. In the sequel I will
show that when solving the eigenvalue problem it becomes rather straightforward to give
functions of operators, such as the operator exponential, a meaning. Besides this evident
advantage one also obtains information on the nature of the spectrum of the eigenvalues
and a way to expand arbitrary functions into a basis yielded by the eigenfunctions. In
this manner one can readily represent the operator and the functions they are acting on
in the spectral domain.

3.2.1 The eigenvalue problem
Suppose one has a Hermitian operator then the solution to the eigenvalue problem entails
Av(a, z) = av{a, z), (3.10)

where attaining the expression for the double-indexed functions, v(a, ), that equate
the above relation, is referred to as solving the eigenvalue problem. This family of
functions is denoted as the eigenfunctions being indexed by the a’s, the corresponding
scalar eigenvalues. Because of the imposed Hermiticity the eigenfunctions are complete,
orthogonal and the eigenvalues are real. The orthonormality of the eigenfunctions is
expressed by

(vd',-),v(a,")) = 6(a’ — a), (3.11)
while their completeness becomes manifest by
(v('7$l)7v('7 l’)) = 6(;5[ - 37) (312)

These two properties facilitate the expansion of an arbitrary f into
@) = / F(a)(a, z)da (3.13)

with v(a,z) playing the role of the transformation "matrix” also known as the basis
kernel {Cohen, 1995) whereas the quantity F'(a) delineates the spectral representation
for f(z) in the a-domain?. The spectral representation is obtained via

F(a) = (f,v(a,-)). (3.14)

?Notice that I refrained in this discussion to make remarks on the specific nature of the spectral
measure. IHere [ assume the spectral measure to be absolutely continuous and I also neglect the possibility
that the eigenfunctions do not strictly lie in L2(R).
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Again remark that in case of a Hermitian operator the eigenvalues are real, a property
shared by all observable physical quantities, and they may attain an (in)finite range
of values or they may even be discrete. The effective range for the eigenvalues becomes

" apparent when the eigenvalue problem is solved. Given this solution one is able to predict

the attainable values for the physical quantity a. This range is known as the spectrum
of a, o A), and hopefully matches the experiment. Unfortunately this prediction can be
wrong implying that the operator, representing the physical model, does not represent
the physical process correctly; the eigenvalue problem might have been solved wrongly or
the measurement was erroneous (Cohen, 1995). However, keep in mind that the solution
of the eigenvalue problem only gives the attainable eigenvalues to be associated with the
operator. When particular measurements are under consideration one has, of course, to
do with the actual values that are incorporated in the function F'(a) whose range may or

* may not extend over all possible values of a. But again solving the eigenvalue problem has

nothing to do with the particularities of the measurement. It is merely the expansion of
the operator onto the basis of eigenfunctions that counts and that has to be constructed
for the different measurements yielding different outcomes for the {density) ”spectrum”
F(a). Unfortunately the term spectrum has an ambiguous meaning in the (physical)
literature since it refers both to the attainable eigenvalues, the set o(A) being defined
by the set of eigenvalues such that (4 — a) is not invertible as a bounded operator, as
well as to the expansion coefficients, F'{a}, expressing the rate of occurrence of a certain
eigenvalue, e.g. a frequency for the Fourier transform. Hopefully the meaning of the
spectrum becomes clear from the pertaining context. The reader is referred to chapter 4
where I will pay attention to the nature of the spectrum and the accompanying physical
states in the context of acoustic wave motion.

3.2.2 Spectral representation of operators

When the eigenvalue problem is solved one is able to expand an arbitrary function into

" a basis formed by the eigenfunctions,

flz) = /F(a)v(a,z)da (3.15)

and this expansion is also known as the spectral representation of f in the domain defined
by the eigenfunctions of the operator A. In a similar fashion one can acquire a spectral

- representation for the operator or functions of the operator. By these constructs I mean

operators that are defined by expanding the function Q(y) into a Taylor series and
subsequently replacing the ordinary dependent variable y by the operator A,

Q) =Y cay” — QA) = caA™ (3.16)

When A is Hermitian it can be shown that Q(A) will share this Hermitian property in

. case the Taylor expansion coefficients, ¢,,, are real.
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What is the action of Q(A) on the eigenfunctions of A? To answer this regard

Q(A)v(a,z) = ch./l v(a,z) = cha v{a,z), (3.17)

from which one can recognize that the following relation holds
Q(A(a,z) = Qla)v(a, ). (3.18)

Using this result it becomes rather straightforward to define the action of the operator

Q(A) on an arbitrary function, f(x), via the spectral representations of the function and
the operator. So write,

QAN f = AN {F} (=) = O(A) / o(a,2)da
= /F(Q)Q(A)'u(a,x)da

which becomes
A)f = / F(2)Q(a)v(a, z)da, (3.19)

where the equality of equation (3.18) is applied. Remark that in this case one no longer
requires to expand Q(A) into a Taylor series expansion because one has ordinary calculus
at hand when the scalar eigenvalues are concerned.

3.2.3 Commutators

Up to this point the discussion primarily focussed on the examination of one single
physical quantity and its associated operator. What happens when one is dealing with
two operators A and B. To follow Cohen (1995): Generally the order of operations is
not interchangeable, as, for example, putting on socks and shoes. In that case the order
clearly matters and the operators are said to be non-commutative. In cases where the
order of the operations is irrelevant the operators are said to commute. To check whether
operators commute forms an important aspect of physics and the method comes down
to evaluating the possible difference between the operator combinations AB and BA
both acting on a suitable function. The operator expressing this difference is called the
commutator of A and B and is denoted by

[A,B] = AB ~ BA. (3.20)

This operator plays a central role for the uncertainty principle for arbitrary variables and
the reader is referred to the pertaining discussion below.

oo
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 3.2.4  An example

To illustrate some of the aspects of operators reviewed so far I would like to discuss

. one example. Consider the space operator in the space representation, X, that equals a

multiplication by x in the space representation. The eigenvalue problem associated with
this operator reads

Xu(z',z) = 2'v(2’, 2), (3.21)

. where the z'’s refer to the eigenvalues whereas the solution for the eigenvalue problem

are given by the Dirac distribution,
v(z',z) =8z ~2") Vi'eR (3.22)

Since the operator is Hermitian it follows that these eigenfunctions are complete and
orthonormal while the eigenvalues are continuous and real. However, care should be
taken in the sense that the Dirac distribution does not constitute an ordinary function, it
is a so-called generalized function that can only be given a meaning in the distributional

sense. Please, when the reader is unfamiliar with the concepts of distribution theory,

s

consult chapter 5.

3.2.5 Averages and the characteristic function for operators

One of the main advantages of the operator method lies in the fact that it is relatively
straightforward to calculate averages and characteristic functions that are associated with
the operators. Following Cohen (1995) I adapt to take |F(a)|® for the density, a natural
choice when the energy in a signal is concerned. The reason why F{a) does not lend itself
to be a density lies in the fact that it is a complex quantity so it is impossible to connect
a norm to it. Remark that as an alternative choice one can take |F'(a)|. Finally notice
that the densities here bear a fundamental similarity with the distribution functions.
When these latter density functions are supplemented with an additional normalization
yielding [|F'(a)il2 = 1 one can rightfully interpret them as probability density functions.

The average of a function g living in the spectral domain a can be written as

0) = [ s@IP@Pda (3.23)

where F'(a) denotes the spectral representation of the function f(z) in the domain per-
taining to the operator 4. In the operator domain this definition is equivalent to

<mx/erMﬂmm. (3.24)
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The characteristic function

The characteristic function is defined in a similar way
M(a) = (¢99) = / ¢1%% P(q)da, (3.25)

where P(a) = |F(a)|? is the distribution (Cohen, 1993, 1995). The distribution P(a) can
be shown to be related to the characteristic function according to

P(a) = % / M(a)e™%%da. (3.26)

Clearly the distribution P(a) and the characteristic function M(«) form a Fourier pair.
In the operator domain equation (3.25) reads

M(@) = / £ (@) f(z)dz. (3.27)

Mean and variance

For later purposes it is necessary to introduce quantities that express the mean and
variance of a physical quantity. The mean of the physical quantity ¢ pertaining to the
operator A is given by

(A) = / F@)" Af(z)dg = / o|F(a)2da (3.28)

while its variance is given by
A= 07 = () - (A7 = [ £ (A~ ()2 (3.29)
= / (0 — (@) F(a)da. (3.30)

Ezamples

Anticipating on the discussion on the space representation let me apply the above aver-
ages.

mean space and spatial extent:

The mean space is defined as

(X) = / FRY*XF(k)dk = / z|f(x)Ade, (3.31)

with F(k) representing the spectral representation of f(z) where k refers to the spatial
frequency.

)
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The mean spatial extent is defined as
X =02 = (A2) — (X)? = / F(R) (X — (X)) F(k)dk (3.32)

- [@- @Pirere. (3.33)

mean frequency and bandwidth:
The mean frequency® is given by

(K = / F@) K f(2)dz = / K| F (k)| dk. (3.34)

The mean bandwidth is defined as
K =0} = (%) = () = [ )"0~ (01 flo)ae (3.35)
- / (k — (&))2| P (k) [2dk. (3.36)

3.2.6 Uncertainty principle for two operators

= As soon as two operators associated with two physical quantities do not commute the

.........

uncertainty principle enters into the game. This principle expresses the fundamental
disability to obtain “localized” information on the two variables concurrently, e.g. it is
impossible to obtain, at the same instant, information on the velocity and momentum of
a particle or to acquire optimal localization in the space and spatial frequency domain
(Gabor, 1946; Cohen, 1995). This apparent ambiguity can be estimated, a notion laid
down in the Heisenberg/Gabor uncertainty relation

o202 > %{[A, 8], (3.37)

where A and B constitute the operators corresponding to the physical variables a and b
and where the variances are defined using the results of the previous section, i.e.

o = (A%) - (A)® and o} = (B*) — (B)%. (3.38)
3.3 The space representation

In chapters 2 and 8 it was shown that the multiscale analysis is based on two fundamental
operations namely translations and dilatations. In this section ample attention is paid

. to the translation or shift operation constituting the map

s

S¢o flz) = flz+ (), (3.39)

38ee below for the definition of K.
4Localized in the sense that the variance associated with the physical quantity becomes small.
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where ( refers to either a spatial or temporal shift depending on whether z refers to space
or time. Now the question is can one find an operator that conducts the translation
operation? If it exists what are its properties, which eigenvalue problem is involved and
what kind of other properties can one associate with it?

Intuitively speaking one can argue that the shift operator must be unitary because the
norm is conserved while shifting, i.e. ||f(z){l2 = ||f(z + {)|la. Moreover an inverse must
exist, mapping the shifted function back to its original location. Clearly such an inverse
operation exists because

i flo+0)— fa), (3.40)

will certainly hold by invoking the proper substitution of variables. What remains now

is to find a Hermitian operator whose action in the exponent yields the required shift,
ie.

Sct @) e (@) = flz+ ) (3.41)

To find this unknown operator A one can use the Taylor series, as proposed in sec-
tion 3.2.2, to expand the operator as well as the function f{z + (). Then via comparison
one can easily show that the operator A has to equal

A= (K (3.42)
with
K= % Ei— (3.43)
jdz

This operator, K, is known as the spatial frequency operator and it equates

oo

@) =3 L arpia) =3 @) = fle o)

dm"
o v =

where this specific choice for the spatial frequency operator becomes manifest since it
equates the Taylor expansion of the operator exponential with the Taylor expansion of
f{z 4+ (). Notice that the function f(z) is assumed to live in the proper functional
space, a notion amounting to demanding that f € D or f € &, i.e. being infinitely
differentiable and of compact support or of rapid descent, see chapter 5. Of course this
condition can be relaxed but still the above operator only refers to regular functions and
requires a distributional interpretation when f(z) is a generalized function such as the
delta distribution.

To summarize, the shift operation is defined as

Sci fl@) > Scfla) = flz+ () (3.44)

s
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with S¢ = /X, while its inverse is found via
S¢: fla+Q— S fla+() = fx), (3.45)

; . . s 1d
where S_¢ = (8)™' = e %X, Finally notice that it is not too strange that the i

operator acts as a shift operator in the exponent since it expresses the infinitesimal change

. of a function induced by an infinitesimal shift operation, an infinitesimal displacement.

3.3.1 The eigenvalue problem

" To find the spectral representation for functions of operators, Q(A), one has to solve the

eigenvalue problem for the operator occurring as the dependent “variable”. In this case
this is the frequency operator, K. It is known that K is Hermitian so the eigenvalues,
k, are real and the eigenfunctions complete and orthonormal. The eigenvalue problem
reads

Ku(k,z) = ku(k, ), (3.46)
for which the eigenfunctions, u(k, r), equating this relation are of the form
1.
ulk, z) = —=elk®, 3.47
(k,2) = o= (3.47)
The eigenvalues, k, are referred to as the physical variable spatial frequency. It is clear

that the above eigenfunctions adhere to equations (3.11) and (3.12).

3.3.2 The spectral representation

. Since the eigenvalue problem is solved one can now define the expansion of the function

f onto its spectral representation that reads

)= L [ poee
Fo) = ﬂ;/ Fk)ei*= dk, (3.48)

where
F(R) = (/@) ulk, ) = (F(2), =), (3.49)

Here the quantity F'(k) refers to the spatial Fourier transform of f(z) and can also be
written as

F(k) = F{f, u(k,2)}(k) = (£, u(k, ). (3.50)

Given the basis functions, yielded by the solution of the eigenvalue problem, one can find
the Fourier spectral representation of the shift operator that is of the form

Sei f(z) — Sef(z) = eIK / F(k)u(k, z)dk (3.51)

- / F(k)e*u(k, z)dk = f(z + ()
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which can be seen as

Scf(@) = Flef* Ff(z) = f(a +0), (3.52)

where the symbols F and F~! refer to the forward and inverse Fourier transforms and
ek to the spectral representation of the shift operator. Finally the reader is referred
to chapter 5 where I list some more properties of the Fourier transform especially in the
context of tempered distributions.

3.3.3 Some properties of the space and spatial frequency operator

In this section I will review a selection of properties and introduce a number of useful
quantities which emerge in the space and its dual, spatial frequency, representation.

Uncertainty principle for space and spatial frequency

For the specific case where ambiguity between the space and spatial frequency are are
concerned the uncertainty relation of equation (3.37) becomes

i

olal > % or XK > 57 (3.53)
where use is made of
XKl =7
with
1d 1d
=-=a% and K e (3.54)

denoting the space operator in the frequency representation, and the spatial frequency
operator respectively.

To summarize the uncertainty principle expresses the fact that when two operators com-
mute one can not simultaneously resolve both quantities up to arbitrary small effective
“bandwidth”.

Linear shift invariant systems

The spatial derivative operator 0, or equivalently the spatial frequency operator K = %chaE
and their spectral representations are intimately related to the shift operator as became
clear from the preceding sections. This observation has an important implication when
systems are concerned that display an invariance with respect to this shift operation.
If these systems indeed display a shift-invariance then one can find, via the principle of
superposition, a link between the system’s in- and output explicitly formulated in terms
of the system’s impulse response. Formally this relation boils down to an expression of
the form

Ly = L{u}(z) = f(z), (3.55)

s
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" where u refers to the systems input and f to the output and £ to the linear system

operator of the form £ =}, (%a‘—i;)’ The impulse response is defined as

L{6}(z) = hiz) (3.56)
and the system is denoted as shift invariant if for any 2’
LS 0 }z) = Sy h(z) Vz' € R (3.57)

In that circumstance the output can be written in terms of a continuous superposition
which becomes manifest in the convolution integral,

ﬁ@x/ﬁ@wfmwmﬂ:w*m@y (3.58)

- Using the spectral representation for the shift operator, equation (3.51), one can easily

derive that the convolution product of equation (3.58) becomes a simple multiplication
in the spectral domain

F(k) = H(k)U (k) (3.59)

where F'(k), H(k) and U(k) represent the system’s output, impulse response and input

. respectively. Finally notice that the convolution is invariant under shifts,

((Deh) * u)(z) = (h* (Dew))(z) = D¢ (h* u)(z), (3.60)

and that it already emerged in the definition of the forward and inverse wavelet transform,
see chapters 2 and 8.

3.4 The scale representation

Besides the translation operation the multiscale analysis of chapter 2 is based on the

. operation of dilation, also known as an affine transformation. Therefore I will, in a

similar fashion as I did for the shift operation, review the predominant features related
to the dilatation operation constituting the map

Dy : f(z) = Vo f(ox) o> 0, (3.61)

where o refers to an arbitrary dilatation, i.e. a compression when o > 1 or a stretching

.+ when o < 1. The question arising concerns whether one can find an operator which does

the job and what the properties are of the pertaining eigenvalue problem and the spectral
representation?

From the definition of the dilatation operation one can see that it conserves energy since
1 f(@)l2 = l|v/of(ox)||2 while on the other hand there must exist an inverse since the
dilatation can be counterbalanced by the inverse operation

Dy : Vo floz) +— f(z) o> 0. (3.62)
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This again leads one to conclude that the ruling operator must be unitary®, i.e. it must

be of the type e/ where A is the unknown but Hermitian operator. How can one find
this operator?

As with the shift operation the Taylor expansion comes at hand to find the operator
A in the exponent. The difference here lies that one has to solve a repeated eigenvalue
problem in order to match

> D% 1@) = Vo fom) (3.63)

n=0 n

Following Cohen (1995) one can show that the operator

A=InoC, (3.64)
equates the above equation when
1 1 .
C$:§(X1C+ICX)z §[X,Kj+ (3.65)
with [+, -]+ denoting the anti-commutator. In the space domain this operator is given by
1, d d

or, alternatively, using the commutator relation for space and spatial frequency [X, K| =
J, by
1. 1. .
Cw:XIC-%J':ICXJrig (3.67)
while in the spatial frequency domain the scale operator equals
1, d d

Cy = 5}‘(?6(’1"’; + ik

k). (3.68)
Why does this ansatz for C,, defining the map

Dy : f(a) — /™ f(z) = \/5 f(02), (3.69)

work? To prove this one has to recognize that the scale operator solves the eigenvalue
problem

Cot™ = —j(n + ;m (3.70)

5The careful reader may be puzzled here because 1 opted to define the dilatation operation along the
lines of equation (3.61) rather than via the map Do : f{z) +r e f(e”z) where D_, would have yielded
the inverse. The reason for this it that the wavelet transform has been defined with dilatation operator
of the type 1 opted to use.

s
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while the same applies to the repeated invocation of Cg, i.e.
k. n Nk 1 k.n .
Coz" = (—5)*(n+ 5) z". (3.71)
Now going back to equation (3.63) one can, using equations (3.70) and (3.71), write

o0 - k o0 . k
noCe jlne jlno . 1 o
e]la C“’Z’ — Z ( Y ) Cffl)n - Z (J k!_l_ —'j}k(n‘i' _z_)kxn
k=0 k=0
- e(n+%)1naxn

while expanding f(z), around the origin, yields for the operator’s action

0 )
. , . 1
e]lnaczf(x) — e]lnacw § :anmn - ezlno E :anenlnaxn

720 n=0
) )
= ez Y "a,(0n)" = /o f(02),
=0

which proves the ansatz.

To summarize, the dilatation operation is defined as follows
Dy : f(z) = D, f(z) = Vo floz) Yo >0 (3.72)
with D, £ e/129C= and its inverse is found via D! £ e=J9C> yielding,
Dy : Vo foz) — D o f(ox) = f(z) Vo> 0. (3.73)
Finally I would like to remark that intuitively speaking it is not that surprising that

the C, operator emerges when deriving the dilatation operator. This scale operator was
namely also used to express the difference induced by invoking an infinitesimal change

« in the scale indicator of the smoothing function of chapter 2 and led to the definition of

the wavelet transform (Holschneider, 1995). Moreover the scale operator forms the basis
in the Renormalization Group theory where one is interested in solving equations of the
kind (Wilson, 1983; Nottale, 1995, 1996)

0, f(z) = B(f(z)) -+ initial conditions. (3.74)

In the pertaining sections I will review the basic properties of the scale operator. After
that in the final section of this chapter I will bring the scale operator not only in the
context of the multiscale analysis presented in chapter 2 being substantiated in chapter 8
but also in the context of fractals.
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3.4.1 The eigenvalue problem

By solving the eigenvalue problem for the scale operator one opens the way for a spectral
representation for this operator. This representation provides a better insight into the
action of the scale operator and the action of functions of this operator, such as the
dilatation operator given by the generator (Reed and Simon, 1978; Pearson, 1988) which
is defined by the operator exponent. Furthermore the spectral representation offers a way
to unravel the scale content of a signal by expanding the function into the orthonormal
basis yielded by the eigenfunctions.

The cigenvalue problem for the scale operator® reads

Cy{e, ) = cy(e, ), (3.75)
the solution of which is obtained by choosing the eigenfunctions as (Cohen, 1993, 1995)

1 ejclna:

’Y(C: 3)) ““““ m ““:/?a z 2 07 (3?6)
where the ¢’s refer to the eigenvalues, to the physical quantity scale and where I used
a new symbol (¢, z) to denote the scale eigenfunctions. It is easily verified that the
above eigenfunctions adhere to equations (3.11) and (3.12). So they form a complete and
orthonormal basis for > 0. This latter condition on the space x can be understood by
taking into consideration that the dilatations inducing the compressions or expansions
are obtained by multiplying the space z by a positive number & while the logarithm
emerges quite naturally because it puts an equal footing on the range from zero to one,
linked to an enlargement, and from one to infinity, linked to a reduction (Cohen, 1993,
1995; Nottale, 1995). Before I discuss the spectral representation in terms of the basis
of eigenfunctions defined in equation (3.76) I would like to compare some of their main
properties compared to the eigenfunctions found for the frequency operator, i.e. the ones
defined in equation (3.47).

3.4.2 The spectral representation

Given the solution of the eigenvalue problem one is now set to expand arbitrary but
proper’ functions onto the orthogonal and complete basis of eigenfunctions that belong
to the scale operator C. The expansion of the function f onto its spectral representation
reads

chlnn:

1

SFor convenience I dropped the subscript z in the scale operator.
"1 will refrain from issuing precise statements on the nature of the functional space in which these
function have to live in order to make the expansion valid.

B )
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Scale kernel: (¢, z) Frequency kernel: u(k;z)

ﬁ/(ca zz') = ’V(Ca 33)7(6755;} ’U.(k,:ﬁ +a') = u(k,a:)u(k, ')
v(e,z/z') = y(e,x)yv* (e, ") | ulk,z — ') = u(k, z)u*(k,z')

e+ x) =v(e,2)v(d ) | ulk+k, )= ulk z)ulk )

Ocy(c, ) = jlnzy(c, z) Opulk,z) = jzu(k, )
Opy(c,z) = 19—"%@-7((:,3:) Opulk,z) = jhu(k, x)

el7y(c,z) = e”/*vy(c, e’ ) e u(k,z) = ulk + 0, 2)

Table 3.1 Table with the properties of the kernels defined by the eigenfunctions of the scale
and frequency operator.

where

1 chln.z

F(e) = (f(®),7(c, 7)) = (f (=), T (3.78)

with the inner product running over the interval z € [0, 00). Here the quantity F(c) refers

_ to the spatial Mellin transform (Dautray and Lions, 1988; Cohen, 1993; Holschneider,

1995; Cohen, 1995) of f(z) and can also be written as

1 eicine 1 eichne
wﬁ;““\/“fx‘“}(c) ={/, \7?7;7>

Given the spectral representation one can find an alternative proof that substantiates

Fle) = M{f, (3.79)

- the action of the dilatation operator by using the scale-invariance property displayed by

the eigenfunctions of the scale operator, see table 3.1,
&7 y(c,z) = e *y(c, e’ z)
or
¥e, o) = ajc"lfzfy(c, z).

In chapters 2 and 7 the notion of scale-invariance displayed by homogeneous distributions

- and monofractals was already observed. Using this property one can easily prove the

R
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action of the dilatation operator to be
eI oC f(g) = edInoC / F(c)y(e,x)de
= /F(c)ej mocy (e z)de
= [ Fovor(e on)de = Var(on)
The spectral representation for the dilatation operator becomes
D,: f(&)— D, f(z) = einoC / F(O)(c, z)de (3.80)
= ]F(c)ej nocn (e, z)de = /o f(ox)
which can be seen as

D, f(z) = M~ "7 Mf(z) = Vo f (o), (3.81)

where the symbols M and M™! refer to the forward and inverse Mellin transforms and
e91n9¢ refers to the spectral representation of the dilatation operator. Now let me list
some of the important properties connected o the scale transformation.

3.4.3 Some properties of the scale operator
Commautation relations

One of the most important observations to me made concerning the scale operator lies
in the fact that it does neot commute with space, i.e.

X, 0l =j4&x (3.82)
in space and

[K,C] = jK (3.83)
in spatial frequency. This means that one can not solve the eigenvalue problem for scale

and space/spatial frequency operators concurrently. When the logarithm of space versus
scale is concerned one finds

InX,Cl=j (3.84)

whose outcome exactly matches the commutation relation for space and spatial frequency.
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© Linear scale invariant systems

In a similar fashion as with the linear shift invariant systems one can find a formulation
referring to scale invariant systems that are intimately related to the scale operator C.
The invariance now concerns itself with respect to the dilatation operation and makes it
possible, via the principle of superposition, to establish a connection between the system’s
in- and output explicitly formulated in terms of the system’s impulse response. Formally
the relation between the input and output can be written as

Lu = L{u}(z) = f(z), (3-85)

where u refers to the systems input and f to the output and £ to the linear system
operator. The impulse response is now defined as

L{(z - 1)}z) = h(x) (3.86)
and the system is denoted as linear scale invariant if for any z'
L{S. 410} (x) = D1y h(z) ve' e R (3.87)
or equivalently
L6 — 7))} (@) = %n(%) Vo' € R, (3.88)

In that circumstance the output can be written in terms of a continuous superposition
which becomes manifest in the scale convolution integral,

1@ = [ W) = 1S =@, 68

with *; denoting the scale convolution. This scale convolution, also known as a logarith-
mic convolution®, becomes a simple multiplication in the domain given by the spectral
representation of the scale operator, the Mellin/scale domain, i.e.

M{FHe) = M{Rh}(c)M{u}(c) (3.90)

or

F(c) = H(c)U(c), (3.91)

- where M{f}{(c), M{h}(c) and M{u}(c) represent, in the Mellin domain, the system’s

output, impulse response and input respectively. Finally notice that the scale convolution
is invariant under dilatations

((Doh) 1 u)(z) = (hxi (Dou))(z) = Do (h % u)(a). (3.92)

and that it already emerged in the definition of the inverse wavelet transform, see chap-
ter 8.

* ®By setting y = Inz one obtains an ordinary convolution (Holschneider, 1995).
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3.5 Numerical implementation

In this section I will review the relevant aspects related to the actual numerical imple-
mentation that goes with the space and scale representation. While doing so I will limit
myself to a discussion of the eigenvalue problems for the frequency and scale operators,
K and C, and their associated actions of the generators, /X and /€ invoking the
shift and dilation operations.

3.5.1 Discretization of the operator

The action of an operator runs via its kernel in the following fashion

+00
o@) =A@ = [ Alwa) s, (3.99)
OO
where A(xz,z’) denotes the kernel of the operator over which the generalized convolution
integral runs while f(z) refers to a proper function undergoing the action of the oper-
ator. This convolution integral finds its discretized counterpart in the following matriz
multiplication

g = Af. (3.94)

Here the symbols g and f refer to the vectors representing the discretized versions of the
functions g(z), f(z), i.e.

g(x1) fx)
g{x2) f(xa)

g = glxs) and f= | f(xa) (3.95)
glxn) 7o),

with x denoting the discretization of z, i.e. x; = ({ —1)Az, 4 = 1.--n, where Az is
the discretization interval and n the number of grid points, the size of the discretization.
From now on I set, unless stated otherwise, the discretization interval to Az = 1. After
discretization the kernel A is represented by a n X n matrix

A(X1?X1) R A(X1,Xn)
A(Xnaxl) A(Xnaxn)
This matrix constitutes an approximation of the actual operator. In cases where one

has to deal with a singular operation, such as differentiation, one has to interpret the
discretization of the operator in the sense that it corresponds to the discretization of
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- an finite indexed element of the Cauchy sequence. This Cauchy sequence embodies the

sequence that in the limit defines the derivative operator, see chapter 5. To cut things
short one has to interpret the approximation in the sense of distributions. Before going

* into the specific examples let me first go through the numerical solution of the eigenvalue

problem.

3.5.2 Numerical solution of the eigenvalue problem

After discretization of the operator it is now time to set up the numerical solution to
the eigenvalue problem pertaining to the matrix that approximates the operator’s action.
Let me write the eigenvalue problem in the following form

Avi = A4V, (397)

where the v;’s denote the discretized eigenfunctions, now eigenvectors, labeled by the
index i and pertaining to the i*? eigenvalue a;. The discretized eigenvectors are of the

* form

vi(x1)
(o (Xz)
v; = | vilxs) | . (3.98)
U4 (Xn)
Notice that equation (3.97) corresponds to the discretized version of
Au(a, z) = au(a, z). (3.99)

Since the eigenvalue problems being considered here are Hermitian one knows that

A= Al a property carried over by the matrix A which shares this property, this self-

adjointness, stating that
A=AH (3.100)

with # indicating the concurrent transposition and complex conjugation. This means
that one interchanges the elements of A together with a complex conjugation, i.e. A;; =
Aj; Vi, j €[1---n], to obtain the transposition and complex conjugation ¥.

As a consequence of the Hermitism the eigenvalues a; are real while the set of cigenvec-
tors vs, Vi € [1---m], can be shown to be complete and orthogonal (Golub and van
Loan, 1984). Let me now recast the eigenvalue problem of equation (3.97) into a matrix
formalism

AV = VU (3.101)
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where the eigenvectors v; are combined in the matrix

Vi (X;) o VUn (Xl)
V=l o (3102) =
vi(Xn) o+ UnlXn) '

while the eigenvalues, a;, find their way into a diagonal matrix,

E

a 0 0 -+ 0
0 a 0 -~ 0

u=10 0 a - 0}, (3.103)
0 0 0 an

3.5.3 The spectral representation

By way of how the numerical implementation of the eigenvalue problem has been set up ==
it is straightforward to derive the spectral representation for the operator and its cognate
operator functions such as the operator exponential.

The spectral representation corresponding to "

Af = /F(a)(w{a, z)da, (3.104)
see section 3.2.2, reads
Af = VUV, (3.105)

where use is made of equation (3.100) and the property that, after the proper normal-
ization®, the eigenvector matrices adhere to the unitary relation V™! = V¥ Similarly

one can write for the spectral representation for functions of operators, i.e. o
(Av(a, z) = Q(a)v(a, z), (3.106)
Qf = VQ(U)VH§ (3.107)

with @Q(U) is being defined as

Q(a1) 0 0 0
0 Q(az) O 0
QU) = 0 0 Qas) - 0 (3.108) o
O 0 0 - Q@

9The power flux normalization since I am working in L#(R).
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Figure 3.1 Numerical implementation of the first order derivative operator. In the top row I
displayed the approzimations for the number of vanishing moments set to M = 1,
M =2 and M = 8. In the boltom row I displayed their spectral representation in
the spatial Fourier domain.

and where Q{z) is an ordinary function.

Given this set of tools I am now set to numerically implement the shift and dilasation
operators. Hereby I would like to mention that the spectrum of these operators is purely
continuous so I do not expect problems there.

3.5.4 Example shift operator

In this section I would like to quickly review the numerical implementation of the shift
operator that is defined in terms of the operator exponent
S¢ = eitk (3.109)

with

e mer, (3.110)
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Inspection of this equation shows that one requires the numerical implementation of the
first order derivative operator whose kernel can be written as

K(z,z') = jdzé(w z'). (3.111)

Following Beylkin et al. (1991), section VII, it is possible to find numerical approxima-
tions to the first order derivative operator by expanding the kernel of equation (3.111)
into a non-standard form for the discrete wavelet transform (Beylkin, 1992; Beylkin
et al., 1992). The “free parameter” in his approach refers to the number of vanishing
moments to be imposed on the discrete wavelets that are used to obtain the approxima-
tion. The higher this number the more regular the wavelets become. This gives rise to
longer operators that display a linear behaviour persisting to higher frequencies in the
Fourier domain'?, see figure 3.1. In the sequel I will make use of these coefficients which
are symmetrically’® put on the first ! off-diagonals where { refers to the length of the
approximated derivative operator.

With the help of figures 3.2 and 3.3 I make an attempt to elucidate the action of the
shift operator. At first I depict the matrices'? with the eigenvectors and the sandwiched
spectral representation for the shift operator. The latter matrix is of course diagonal while
the eigenvector matrices can be seen as matrices containing the numerical implementation
of the unitary forward and inverse Fourier transform. So the kernel of the shift operator
consists of the following entities

S¢ = VUVH = F'UF, (3.112)
where the matrices V and VH are interpreted as the inverse and forward Fourier trans-
forms, i.e. F~! and F, and where the diagonal of U is given by e/**. In figure 3.3 I actually

included the numerical implementation of the kernel which is simply obtained by rais-
ing the the matrix jCK to the exponent. The K is set with the belp of the numerical

1
implementation of the spatial derivative operator multiplied by ; Hence one finds

Sc = eI (3.113)

Clearly this matrix exponential has to be interpreted in the sense of equation (3.109).

10The derivative operator corresponds to multiplying by jk in the spatial Fourier domain.

11Notice that the matrix itself is not symmetrical only the values are symmetrically located around
the diagonal. The matrix itself is anti-symmetric.

12fp this I calculated the eigenfunctions and the spectral representation for the shift operator using
equations (3.47) and (3.51). In figure 3.3 I directly compute the matrix exponential by numerically
solving the eigenvalue problem.
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Figure 3.2 Hlustration of the different matrices involved in the spectral representation of the
® shift operator, see equations (3.51) and (3.112) for the numerical implementation.
On the top row (a)-(c) one finds the real part of the matrices F™', S¢ and F,
containing the approzimate inverse Fourier transform, the spectral representation
of the shift operator and the forward Fourier transform respectively. In the second
row, (d)-(f) I depicted o selection of traces of the matrices of (a) and {c} in the
top row while in the middle one finds the diagonal of (b). Remark that in the lower
row both the real and imaginary parts are on display.

Figure 3.3 In this figure the kernel of the shift operator is on display together with the resull
of its action on o Gaussian bell-shaped function f.
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3.5.5 Example dilatation operator

In a similar fashion as in the previous section 3.5.4 I will discuss the numerical imple-
mentation of the dilatation operator being defined in terms of the operator exponent

D, = el noC (3.114)
with
1. d d

Inspection of this equation shows that one requires the numerical implementation of the
first order derivative operator whose kernel can be written as
1, d d
C(z, ") = —(z—b6{(z — 2') + —b6(z — 2')a’). 3.116

(@.2') = g (o g0 — ') + ola ~a')a) (3.116)
With the help of figures 3.4 and 3.5 T make an attempt to elucidate the action of the
dilatation operator. At first I depict the matrices'?® with the eigenvectors and the sand-
wiched spectral representation for the shift operator. The latter matrix is of course
diagonal while the eigenvector matrices can be seen as matrices containing the numerical
implementation of the unitary forward and inverse Mellin transform. So the kernel of
the dilatation operator consists of the following entities

D, = VUV? = M~1um, (3.117)

where the matrices V and V¥ are interpreted as the inverse and forward Mellin trans-
forms, i.e. M~! and M, and where the diagonal of U is given by &/*7¢. In figure 3.5
I actually included the numerical implementation of the kernel. This kernel is simply
obtained by raising the matrix j In 0C — with C set by means of the numerical implemen-
tation of the spatial scale derivative operator jlnoC — to the exponent, ie.

D, = e/oC, (3.118)

Clearly this matrix exponential has to be interpreted in the sense of equation (3.114).

3.6 The scale representation versus fractals and multiscale analysis

I would like to conclude this chapter by clarifying the relevance of the scale representa-
tion with respect to the central concepts of fractals and the multiscale analysis. Indeed
the motivation of this chapter primarily was to establish a robust framework for the shift

13 Again 1 calculated the eigenfunctions and the spectral representation for the shift operator using
equations (3.76) and (3.80). TIn figure 3.5 I directly compute the matrix exponential by numerically
solving the eigenvalue problem.
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I

Figure 3.4 Illustration of the different matrices involved in the spectral representation of the
dilatation operator, see equations (3.80) and (3.117) for the numerical implemen-
tation. On the top row (a)-(c) one finds the real part of the matrices M}, D, and
M, containing the approzimate inverse Mellin transform, the spectral representa-
tion of the dilatation operator and the forward Mellin transform respectively. In
the second row, (d)-(f) I depicted a selection of iraces of the matrices of (a) and
(¢) in the top row while in the middle one finds the diagonal of (b). Remark that
in the lower row both the real and imaginary parts are on display.

" Figure 3.5 In this figure the kernel of the dilatation operator is on display together with the

result of its action on the first derivative of the Gaussian function, f. Notice that
the dilatation actually took place.
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and dilatation operations which form the heart of the multiscale analysis and the charac-
terization. But if one looks back to the contents of this chapter it is not hard to imagine
that there must be a more fundamental correspondence between the scale representation
and its cognate properties on the one hand and the fractal /singular representation, with
the pertaining multiscale analysis, on the other. The reason for this observation lies in
the fact that the scaling exponents constitute eigenvalues of the scale operator. It is this
observation which inspired me to write this section.

I will start by establishing a link between the continuous wavelet transform of a homo-
geneous distribution, a distribution containing an isolated algebraic singularity, and the
Mellin transform, the transform yielded by the basis of eigenfunctions acquired by soly-
ing the eigenvalue problem for the scale operator. Then I will continue the discussion by
mentioning that the homogeneous scale-invariance displayed by monofractals must in one
way or another be related to linear scale invariant systems while the heterogeneous mul-
tifractals can be associated to systems that no longer display a trivial scale-invariance.
In that case the interesting question emerges on the relation between the convex sin-
gularity spectrum, from which one knows that it expresses the Hausdorff dimension to
be associated with the set of points with scaling exponents on the infinitesimal interval
la, a + da], and the spectral c-domain associated with the scale operator.

3.6.1 Homogeneous distributions and the Mellin transform

Inspection of the relations pertaining to the local analysis by means of the continuous
wavelet transform on homogeneous distributions — distributions containing isolated alge-
braic singularities — shows that one can establish the following connection (Holschneider,
1995)

z—z

WAFE ¥

“Iea) e oM - DG+ 1/2),

(3.119)

where f¢ = z¢ denotes the homogeneous distribution I introduced in chapter 5 and where

To see this I made use of

*1 a3 = gotl/2 = A :
L \/57,/1( p Yz*dx /ﬂ V(z o)x dx (3.120)
and
1 ejclna:
M{f} ) =(f, 75«;7;—) (3.121)

Notice that the above definition by Cohen (1995) of the forward Mellin transform deviates
from the definitions given by Dautray and Lions (1988) and Holschueider (1995) in the
sense that the exponents are complex rather than real.
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Given the above observation a direct connection is made between the local scaling analysis

by the continuous wavelet transform of the onset functions, distributions containing

isolated algebraic singularities, and the Mellin transform. In fact it appears that the
onset functions act as members of the Mellin transform kernel and therefore the outcome
of the local analysis can be interpreted as a single component for the Mellin of the
analyzing wavelet. This result is not surprising when one takes into consideration that
homogeneous distributions constitute solutions to the eigenvalue problem,

d
mg;x” = az?®, (3.122)
which can be associated with
ejclna: ejclna:

=0 (3.123)

C
v NG
in the formulation used throughout this chapter and where ¢ plays a similar role as
the scaling exponent «. It is interesting to remark that these peculiarities point in the
direction of the notion that the onset functions can be seen as functions with a large scale
content(Cohen, 1993, 1995). This can be judged by the fact that the above eigenfunctions

F(c) = M{f}(0) =d(c~¢) when [(z)= e (3.124)

On the other hand for signals with the lowest scale content one may refer to
1 edc Inz’
Vor i

the inverse Mellin transform of which correspond to

flz) = Vo's(z — o). (3.126)

F(c) = (3.125)

Notice that this latter property is shared with the spatial Fourier representation where the
Dirac’s delta distributions produces a flat spectrum indicating a low frequency content.

3.6.2 Fractails and the scale operator

In the previous section the intricate relationship between the continuous wavelet trans-
form of homogeneous distributions and the Mellin transform was revealed. Distributions

= of this type can be seen as eigenfunctions belonging to the scale operator where the

scale exponents play the role of the eigenvalues. Now what can one say when fractals
are concerned? It is known that fractal structures are composed of singularities. For
monofractals the singularity structure is simple since they consist of singularities all of
the same strength. For that reason the class of monofractals display a homogeneous
scaling behaviour boiling down to a scale-invariance of the type

floz) 0% f (:5)7 (3.127)
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where o is the scaling exponent of the monofractal, f, and where the sign < refers to
equality in distribution. That is to say that the probability density functions on either
side of the & sign are the same yielding,

(f@)T) =07(f(o2)?). . (3.128)

In the language of this chapter these relations correspond to

Dyf = o®f (3.129)

and

(Do )7) = el ote(f9). (3.130)

Clearly this type of behaviour suggest that when dealing with monofractals one can
think of them as linear scale invariant systems in a way that the monofractals act, in a
stochastic sense, as processes that are invariant in the scale direction. This observation
is quite natural since it strides well with the notion that there is only a single scaling
exponent present in monofractals.

In the chapters dealing with multifractals, heterogeneous scaling, it was demonstrated
that the scaling behaviour displayed by these constructs becomes much more involved
because

(Do )Y) = nomlo(f9), (3.131)

where the behaviour of the mass exponent function 7(g) is not longer linear in . Moreover
it was shown that the 7(q) function describes the scaling of the moments,

(Do £)7) o e om(@), (3.132)

and that it is related to the singularity spectrum f(«). This singularity spectrum unravels
the singularity structure of the multifractal and expresses the scaling displayed by the
probability density for the scaling exponents, i.e. the probability to find a particular
scaling exponent «. Its formal definition reads

fla) = dimg{zo € Rlafzo) = a}, {3.133)

where dimy denotes the Hausdorfl dimension. To put it simple this definition is equiv-
alent to expressing the following scaling for the probability to find a singularity with an
strength in the interval (o, a + da), i.e.

Prlo® < f < 0%F99] o e~ 10 o) (3.134)

where f(o,2) = W{f, ¥, }0,2) = {f,%s,2). It can be shown that the singularity spec-
trum is related, via the Legendre transform, to the mass exponent function 7(g). In

ey
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- fact what happened to arrive at this result is that the Mellin transform, relating the
statistical moments to the probability density, has been approximated by a saddle point
approximation. This was done by using the following proportionalities, valid within a
slowly varying factor, D, (f, ¢z) o< €% Pr(Dy(f, ¢.)) x e~ o) where ¢, denotes
an appropriate smoothing kernel with a scale normalized to unity. For notational con-
venience I will replace (f,¢,) by f. The saddle point approximation now boils down to
minimizing the exponent in

(@) = [ (Do a0, ) (3.135)
- / nolaa—f(a)) 4, (3.136)

yielding
(@) = min{ga - f(a)}. (3.137)

. Be aware that the quantities f(z) and f(a) represent different things! Now how does

this finding relate to the scale representation? To start with it is clear that the Mellin
transform also comes into play when the spectral representation pertaining to the scale
operator is concerned. This spectral representation reads

F(e) = (f,7(c, x))- (3.138)

It is known that this spectral quantity, when properly normalized, expresses the amount

- of information belonging to a specific value for the scale parameter and present in the

signal f(z). This interpretation is very close in line with the meaning of the singularity
spectrurm that expresses the relative rate of occurrence of a certain scaling exponent c.
For that reason one can come forward with the argument that there has to be a direct
relationship between the scale representation of the signal and its characterization by
the singularity spectrum. At this point it would be too involved to robustly derive the
mutual relation. Therefore I limit myself to postulate the conjecture that the following
correspondences ought to hold

Flc) <= e "™ and ce= a. (3.139)

From this conjecture one can easily infer that the scale eigenvalues ¢ play a similar role as
the scaling exponents a. Finally T would like to remark that by way of its definition the

- singularity spectrum and its dependent variable « are mdependent of the scale indicator

s

o while the ¢ depends on the scale indicator range.

3.6.3 Muitiscale analysis and the scale operator

'Io conclude the discussion on the relevance of the scale representation in comparison
to the concept of scaling used so far I like to spend a few more words on the mutual
relationship between multiscale analysis and the scale representation.
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Evidently there exists a close interrelation between the multiscale analysis and the scale
operator judged by the fact that a slightly deviant version of the scale derivative was
used to define the continuous wavelet transform or to define the family of double-indexed
analyzing wavelets by means of the affine transformation. Besides the dilatation oper-
ation the wavelets required the shift operation. Therefore it is natural to think along
the lines of a joint space-scale representation to be associated with a multiscale analysis
based on the continuous wavelet transform. To establish this relationship consider the
continuous wavelet transform as I introduced in chapter 2

W{f,’lﬁ}((f, 1:) = —cr&,f(cr, :B), (3140)

where f(o,z) was obtained via

f(z,0) 2 (f * ¢0)(2). (3.141)

How does this definition relate to the scale representation? To see this rewrite equa-
tion {3.140) into

W{f,¥}o,2) £ ~00, f(z,0)
= —00,¢ 7 "7 (f + ¢)(z)
= e IICC(f + ¢)(x)
= (f *90)(2),

where the scale operator maps the smoothing kernel to the wavelet according to

P(z) = jCé(x) (3.142)

with o set to unity. Notice that in the Mellin domain this mapping becomes a multipli-
cation by ¢ an observation well reconcilable with the notion that the wavelet transform
is the result of the action of the scale derivative on the coarse grained function f(o,z).

Remark that Cohen (1993) also mentions that such a relationship exists. To this I
would like to add that the continuous wavelet transform can be seen as a windowed scale
transform allowing for the local assessment of the scale parameter annex scale exponent.
One may also observe that these estimates can not be localized at will because scale and
space do not commute. Concerning the global multiscale analysis the wavelet transform
offered a definition of a partition function from which the singularity spectrum can readily
be obtained which on its turn can be associated with the spectral scale representation.
But more importantly I believe that that the wavelets provide a proper functional space
on which the local/global scale analysis can safely be given a meaning especially when
singular constructs such as multifractals are subject of investigation.

3.7 Concluding remarks

In this chapter I made an attempt to concisely lay down the apparatus required by
the basis operations that make the multiscale analysis work. The operators responsible

2
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" for the shift and dilatation operation were derived and were given a meaning via their

spectral representation. This spectral representation is found by solving the eigenvalue
problem belonging to the operators. Moreover these eigenfunctions define the basis for
the unitary spectral Fourier and Mellin/scale transform.

Given the spectral representation one is set to analyze and manipulate the information
content of functions/signals submitted to a transform to the spectral domain. In the cases
examined in this chapter the spectral domain referred to the spatial frequency and scale
pertaining to the frequency and scale operators. The subsequent spectral analysis of the
two physical quantities is, however, restricted because the space and scale operators do
not commute withstanding a simultaneous resolution of these physical quantities up to
arbitrary accuracy. The contents of this chapter will also facilitate the discussion on the
spectral problem pertaining to the evolution operator ruling the acoustic wave motion.

The final goal of this chapter was, at least at the conceptual level, to reveal the possible
link between scaling — as evidenced from multifractals and the local/global multiscale
analysis on real well-data — and the scale representation. It is this association that will
also be of assistance in the discussion on the role of the wave equation in relation to the
notion of scale, the subject matter of the concluding of the epilogue.
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Chapter 4

The current model for acoustic wave motion

In this chapter the very basic framework describing acoustic wave motion is pre-
sented. This framework is generally being used to describe the wave interactions in
heterogeneous media. The acoustic model consists of a hyperbolic coupled system
of first order partial differential equations in which the medium parameters occur
as coefficients. The aim of the model is to quantitatively describe acoustic wave
" motion and this is done by solving the system of equations given certain profiles
for the medium coefficients. One of the ways to do that is to solve the pertaining
time evolution problem which comes down to solving the eigenvalue problem for a
Hamiltonian. The nature of the spectrum of this Hamiltonian plays an important
role and it appears that the spectrum becomes dense pure point in case the medium
varies randomly along one direction with a rapid enough decaying correlation func-
tion. In that case the Lyapunov exponents become larger than zero and one can
obtain global information on the dispersion via the Lyapunov spectrum. On its turn
this information may be linked to the medium’s complezity.
key words: self-adjoint operators, spectral problem, localization theory, Lyapunov
exponents, inversion.

4.1 introduction

As a wave propagates in a medium the heterogeneity of which is given, for example,
by a well-log measurement, an extremely intricate wave interference mechanism comes
into effect. This interaction mechanism yields a dispersion — evidenced by the wave as it
propagates deeper and deeper into the heterogeneity — and specular reflections. Because
of the irregularity, reflections occur at almost every depth level and these reflections
may eventually lead to a complete back scattering of the probing wave. The aim of this
chapter is to give a short review on what the current physical comprehension, based on the
acoustic wave equation, has to offer when faced with the problem to say something on the
time evolution of solutions to the one-dimensional acoustic wave problem where well-log
measurements are used to define the medium coefficients. Given a good understanding of
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this problem it is hoped that one is able on the one hand to come up with predictions for
the time evolution of the wavefield given a well-log measurement, and on the other that

one is able to come up with information on the medium complexity given the seismic
data.

The setup of this chapter is as follows. I will start with a section in which I discuss a
qualitative analysis conducted on a Vertical Seismic Profile (VSP). Then 1 will briefly
intrcduce the ruling equations and cast them into a time evolution problem for the
Cauchy data. In this time evolution problem a Hamiltonian emerges in which the medium
properties occur as coefficients. Finding the solution to the eigenvalue problem pertaining
to the Hamiltonian is the next topic. It is striking that solving this eigenvalue problem
remains very difficult and up to today only relatively little is known on the existence
and properties of the solutions. It appears, given recent results by localization theory
(Souillard, 1986; Pastur and Figotin, 1991; Pastur, 1994; Carmona and Lacroix, 1990;
Faris, 1995), that the spectrum pertaining to the Hamiltonian is dense pure point in
cases of a one-dimensional medium that displays a moderate type of randomness in
the scattering potential. This potential is, under specific conditions properly related to
the acoustic medium parameters. At that point the Lyapunov exponents come in as
estimates for the frequency dependent localization length, describing the attenuation,
and as indicators for the emergence of the pure point spectrum. The theory proving this
is very involved and it is beyond the scope of this thesis to go into detail. Besides the
aforementioned information it may be postulated that the Lyapunov spectrum carries
more global information, hopefully to be linked to the nature of the medium’s complexity.
It is that conjecture that coined me to propose an inversion type of scheme at the end
of this chapter. This inversion scheme aims to capture a scaling exponent bearing the
potential to be linked to the scaling of the medium. The interesting point about the
powerlaw ansatz for the Lyapunov spectrum, is that it is directly related to the work of
le Méhauté (1995) who proposes to replace the time derivative in the Maxwell equations
by a fractional time derivative. The degree of this fractional derivative is related to the
fractal dimension. And in this way he introduces a powerlaw behaviour for the Lyapunov
spectrum.

4.2 A first look at some data

The best way to improve one’s understanding on what happens when an acoustic wave
impinges the earth’s subsurface is to have a look at seismic data. For the problem at
hand a Vertical Seismic Profile (VSP) serves this purpose well. Such a VSP data set
refers to a measurement of the particle velocity induced by a source at the surface and
detected along the borehole in the vertical direction. Consequently a VSP constitutes a
measurement that is a function of the vertical offset, and the time coordinate, depicted
horizontally, see figure 4.1.

e




Chapter 4: The current model for acoustic wave motion 111

Real Vertical Seismic Profile
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Figure 4.1 This figure contains o real VSP. In this figure the particle velocity is depicted as a
Junction of the time, horizontally, and depth, vertically. Remark that as the wave
travels down its “impulsive” nature gradually diminishes.

= What comes to mind first when examining this real VSP data set? First of all one

evidences a wave travelling downward. On its way down this wave is reflected resulting

in the “V” shaped events. What also becomes apparent is that the wave gradually
«« disperses as its propagation distance increases. This notion becomes even more manifest
~ in a simulated VSP measurement, see figure 4.2, obtained via a numerical modelling code
that uses the well-log as input and that, in this case, comes up with a prediction for the
normal incident plane wave constituent. The modelling is based on a so-called layercode
scheme, constituting a transfer matrix type of approach in the sense of Redheffer (1961)
and Kennet and Kerry (1978).

"The observation that the “impulsive” character of the probing wavefield gradually dis-
perses as the wave travels downward becomes also apparent in figure 4.3. This figure
clearly shows the apparent! dispersion experienced by the transmitted wavefield and
induced by the heterogeneities. In this figure I included a time-frequency analysis con-
ducted on the bottom and top most traces taken from the real VSP and the simulated
normal incident plane wave impulse response?, computed using the layercode. The time-
frequency analysis consists of the computation of the joint time-frequency distribution,

1The term apparent dispersion is used to discern between this type of dispersion and the one induced
by relaxation effects. The first is due t0 a conjectured redistribution of the energy due to multiple
s« reverberations while the latter corresponds to an actual viscous loss of acoustic energy into heat.
2Not really the impulse response but a coarse-grained approximation of it.
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Synthetic Vertical Seismic Profile
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Figure 4.2 This figure contains a synthetic VSP. In this figure the acoustic pressure is depicted
as a function of the time, horizontally, and depth, vertically. Remark thai as the
wave travels down its “impulsive” nature gradually diminishes. Remaork that o
different type of source signature used as the one in the real VSP, while the vertical
offset does not ezactly match to the one in the real VSP, see figure 4.1

see the middle gray-scale plot with horizontally the time and vertically the frequency,
and the amplitude spectrum. The envelope of the time trace can be viewed upon as the
marginals of the time-frequency distribution, see Cohen (1995). Inspection of this figure
clearly shows that the frequency is confined to a specific band for the real data while the
simulated data show a very irregular behaviour over the whole frequency range. This is
because of the different source signatures. From both pictures it is clear that the higher
frequencies are more severely attenuated, a notion corresponding to dispersion.

At this point the question is, can one account for the evidenced dispersion effects believed®
to be caused by the heterogeneity using the current wave theory? Quite obviously this
will not be a straightforward exercise because there is no clear mechanism, in a relaxation
free formulation for the acoustic wave motion, that explains the apparent dispersion. So
let me first briefly introduce the current formulation for the acoustic wave motion that
forms the basis for the theory that tries to explain the aforementioned quantitative effects.

3] am tempted to more or less rule out the intrinsic dispersion induced by a viscous relaxation
mechanism for the temporal frequency range inhabited by seismic waves. I realize that by assuming a
relaxation one may explain for the observations. However, there is no direct evidence supporting this
explanation.
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Figure 4.3 In this figure I illustrate the time-frequency behaviour displayed by z;he" bottomn and
top most traces taken from the VSP’s depicted in figures 4.1 (thé real VSP) and 4.2
(the simulated VSP). On the top the time-frequency analysis on the still “mpul-
sive” source signatures are depicted for the true (Ieft) and simulated (right) VSP’s.
At the bottom one sees the dispersed traces. The time-frequency analysis itself con-
sists of the joint time-frequency distribution in the middle and its marginals, for
the frequency, on the left and for the time at the bottom. Notice that the frequency
is confined to a specific band for the real data while the simulated data shows a very
irregular behaviour over the whole frequency range. From both pictures it is clear
that the higher frequencies are more severely attenuated a notion corresponding to
dispersion. Moreover the modelled data shows a very irregular behaviour for the
higher frequencies judged by the spurious peaks in the amplitude spectrum.
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4.3 Basics of acoustodynamics

4.3.1 The equations of acoustics

The acoustodynamics of a fluid are determined by the combined effect of two mechanisms:
first it constitutes a reaction of the wave motion — the dynamical state of matter that
is superimposed on a static equilibrium state (Fokkema and van den Berg, 1993) — to a
force given the inertia and, secondly, the reaction of the wave motion to a deformation
given the compliance. In this discourse it is assumed that it suffices to consider the first
order terms only to describe the acoustic wave motion. Since seismic waves propagate
at relative low temporal frequencies the constitutive parameters are considered to be
relazation free and moreover the spatial distribution of the mediuvm heterogeneities is
assumed to be “frozen” during the characteristic time scale on which the transient wave
phenomenon takes place. For a much more elaborate discussion on the derivation of the
acoustic wave equation I like to refer to the epilogue.

The equation of motion

Application of Newton’s law of motion to a representative elementary domain® of the
fluid leads to the formulation of the local equation of motion {de Hoop; 1995) being
given by

Op + Pk = fi (4.1)
with
P acoustic pressure [Pa],
®;, = mass-flow density rate [kg/m?*s?],
Ir volume source density of force [N/m?]

and where the mags-flow density rate is a function of space-time
$r(x, 1) = p(x)Dyvg(x, t). (4.2

Here I use the summation convention for repeated subscripts. In accordance to the
seismic conventions the position is defined by the boldfaced vector, x, the coordinates
{z1, 2,23} of which are taken with respect to a Cartesian reference frame with its origin
O located at the surface and where the vector {0,0,z3} points downward. In cases
where the medium varies in one direction the medium is assumed to extend to infinity
in the other directions, i.e. the medium is shift invariant in the x; and z,-directions. In
equation (4.2) one also finds

p = volume density of mass [kg/m3],
vy = particle velocity [m/s],

and the co-moving time derivative,

D = 0; +v0y,

4The notion of elementary volumes will be extensively addressed in the epilogue.
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denoting the derivative experienced by an observer travelling in a co-moving frame of
reference.

The deformation rate equation

The local temporal changes in the volume and/or shape of a portion of the fluid are
characterized by the deformation equation reading

Opv = O = q (4.4)
with
©° = induced part of the cubic dilatation rate [s™1,
g = volume source density of injection rate [s™1].

The cubic dilatation rate is given by
O (x,t) = —k(x)Dyp(x,t) (4.5)

with

k = compressibility [Pa~!].
As I stated before the fluid is assumed to be void of relazation effects. It is also supposed
to be passive, linear®, time invariant and locally reacting. This latter presupposition
refers to the fact that the values for the pair {®;, '} at position x depend strict locally

on the values of the field {v, p} at that same location x, as is expressed by equations (4.2)
and (4.5).

Finally 1 like to remark that when the fluid displays a shift-invariance within a bounded
domain it is designated to be homogeneous while it is denoted as inhomogeneous in case
the shift-invariance does not hold in that domain.

4.3.2 Linearization by a low-velocity approximation

Close inspection of the equation of motion, the deformation rate equation and the consti-
tutive relations shows that the particle velocity, v,, occurs non-linearly because it appears
in the Lagrangian time derivative D,. For seismic applications, however, one can on phys-
ical grounds® neglect the particle velocity’s contribution in the time derivative. So the
accuracy of the equations is maintained despite the replacement

Dt — Bt . (46)

7o be understood in the Lagrangian sense since the constitutive relations refer to a specific region
of the fluid, the representative volume (Fokkema and van den Berg, 1993; de Hoop, 1995).
6The variations in the quantities that are induced by the wave motion have small-amplitudes. .
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o

Now the basic equations of acoustics become, respectively, the familiar second law of
Newton and Hooke’s law, i.e.

i

Ohp  +  pOyvg Tk e

(4.7)
Ove + kKOp = gq.

This coupled system of first order partial differential equations, pde’s, will serve as point =
of departure for defining the proper representation for the solution of the acoustic wave
motion.

4.4 Operator formalism for acoustic wave motion

Wave theory constitutes a large branch of physics. For that reason there exists a large =
suite of different approaches to come up with solutions for the wave equation. However, ,
if one takes a closer look there does not exist a large body of literature addressing the
issue on the existence and asymptotic completeness of solutions, an important aspect
given the nature of the problem central in this thesis. Therefore it is in my opinion
beneficial to make reference, when possible, to some of the findings yielded by the rather
abstract approaches developed within the fields of scaitering theory and spectral theory
belonging to the Schrddinger and or wave equation (Reed and Simon, 1979; Pearson,
1988; Carmona and Lacroix, 1990). The books by Reed and Simon (1979) form standard
works in mathematical physics. In fact they come up with a number of theorems proving
the existence and asymptotic completeness of the wave operators — under strict conditions
to be imposed on the variability of the coeflicients — that describe the time evolution of
the acoustical states that occur in heterogeneous media. These states refer to the Cauchy
data, the pressure and its time derivative. o

s

The discussion starts by briefly setting up the self-adjoint system that can be associated
with the wave equation defined by the coupled system of equations (4.7). Then I will .,
briefly mention the relevance of proving the eristence and asymptotic completeness of
the wave operators. These proofs have to do with the fact that scattering theory is
considered as a special branch of perturbation theory where one tries to interlink the
“free” states, associated with a wave equation for the homogeneous medium, with the
asymptotic given/actual states occuring in the heterogeneous environment as time goes
to infinity. Read for these states vectors containing the Cauchy data. Hence the wave
operators can be seen as operators that carry these vector functions, living in the proper
Hilbert space, from one time instant to the other. Although I am aware of the fact that
scattering theory entails an asymptotic theory, regarding the long time behaviour, it is a
theory relatively well equipped with a mathematical apparatus that increases the insight.
However, there remains a discussion on its applicability within the seismic context but
it will certainly be of use due to its strong ties with spectral theory (Reed and Simon,
1978, 1979) — in the sense that the asymptotic completeness proofs exclude the existence
of the singular continuous spectrum - and localization theory.
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© 4.4.1 The self-adjoint system

Given the system defined in equation (4.7) one is set to prove the existence and asymp-
totic completeness for the solution of the wave operators. These proofs rely on the
existence of a proper functional space, the space of square integrable functions, hosting
the wave operators that act on the proper initial conditions, Cauchy data, and that be-
long to the given system, the actual physical system, as well as to the “free” state that
corresponds to the unperturbed situation where the wave motion is free. Following Reed
and Simon (1979) there are two different approaches to recast the coupled system into

. self-adjoint “free” and given systems. The first approach, see Reed and Simon (1979)

p.g. 366 by Schulenberg-Wilcox, deals with an initial value problem for a self-adjoint
first order system of partial differential equations. Reed and Simon (1979), Wilcox (1984)
and Carmona and Lacroix (1990), on the other hand, reformulate the above system of
equations (4.7) into an initial value problem? of the form

du(x,t) = ~jAu(x,t)
{ u(x,0) = ug £ {f,9}7, (4.8)

where the vector u(x,t) contains the proper Cauchy data. The system matrix operator
is given by

.4:j(~%2 g) (4.9)

in which the second order operator H, emerges being given by

’ 1
Hy = —A(x)p(x)V - (mv) 4.10
_ and where the acoustic wavefield vector is now defined by the Cauchy data
umﬂ:(p)&ﬁ. (4.11)
\G:p

The medium is parameterized by the density of mass, p, and the local compressional wave
speed, ¢, which is related to the density and compressibility according to ¢ = (pi)~/2.

. These parameters are allowed to vary with position in all coordinate directions. Notice

ot

that the operator in equation (4.10) only becomes valid in case p € C1.
The system in equation (4.8) represents a wave equation of the type
1
9p(x,8) = (p)Y - (S5 0tx,0)) = Flx (12

"Note that this initial value problem can be supplemented with a source distribution, see for example
Dautray and Lions (1992).




118 4.4 Operator formalism for acoustic wave motion

with p(x, t) being considered as the unknown pressure wavefield while F'(x, t) is the known
source distribution. This equation is known as the “ordinary” acoustic wave equation
describing the transient space-time characteristics of the pressure fluctuations around
the equilibrium pressure and induced by a causal source. As before, one of the ways to
infer information on this system is to recast equation (4.12) into an initial value problem
of the form

1
2 — 2 . et e
Gep(x,1) = x)plx)V (p Xy VP t)) 0 (4.13)

p(x,0) = f(x) 9p(x,0) = g(x).
Following Reed and Simon (1979), Wilcox (1984) and Carmona and Lacroix (1990) 1

supplement this initial value problem with the condition that the compressional velocity
and density of mass converge rapid® enough to the values yielded by the embedding

space, i.e.
e(x) e p(x) - po, (4.14)

as |x| = oco. Additionally one has to impose conditions on the boundedness of these two
parameters. This implies that the conditions

0<pr<p(x)<pe <0 (4.15)

0<e <e(x)<ey <0 (4.16)

have to hold for all x € R® and for the constants py, ps, ¢; and cp, all bounded. Only

when all these conditions are met the operator Hs is proper on C§° (Reed and Simon,
1979).

By way of its construction the matrix operator A, the infinitesimal generator, is self-
adjoint on its domain®, a prerequisite for finding the corresponding spectral representa-
tion, while its solution is formally given by

u(t) = Wug (4.17)
with
SV U cos Hit (H1)tsinHyt
W=em= (“('H])”l sin Ht cos Hit (4.18)

being the wave operator, also known as the propagator, governing the time evolution
while

Hi=+Hs (4.19)

8For precise conditions the reader is referred to the references frequently occuring in the text.
9Remarks on the domains and other mathematical technicalities pertaining to the operators can be
found in (Reed and Simon, 1979).
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refers to the square root of .

One of the ways to give the square root operator a meaning is to solve the eigenvalue
problem belonging to the H; operator. In this way one can relative straightforwardly
compute the square root in the spectral domain. Before paying attention to the spectral
problem let me first go into a little more detail on setting up a scattering formalism
in order to touch a little on the requirements for proving the existence and asymptotic
completeness of the wave operators.

4.4.2 Existence and asymptotic completeness of the wave operators

Up to this point the discussion on the construction of a scattering mechanism for acoustic
wave motion has not yet been supplied with the mathematical rigour it requires to issue
statements on the existence and asymptotic completeness of the wave operators. Such
an aim is beyond the scope of this thesis but I will make an effort to convey, in words,
some of the ideas behind setting up the proper conditions to prove the existence and
agymptotic completeness pertaining to the wave operators associated with the “free”
and given dynamics for the acoustic wave motion. I do not intend to prove it and I
like to refer the curious reader to the work by Reed and Simon (1979), Pearson (1988),
Carmona and Lacroix (1990) and Weder (1991). In this discussion I will limit myself
to which conditions one has to impose on the density of mass and local compressional
wave speed distributions, in order to prove the existence and asymptotic completeness
for the wave operators pertaining to the Hamiltonian defined in equation (4.10). Given
this proof one can say that the wave operators converge, in the strong sense, but only in
the energy norm, for those cases where the medium distributions live up to the required
conditions.

As I mentioned scattering theory constitutes a special branch of perturbation theory and
therefore it is not surprising that it intrinsically deals with the dynamics of two types of
systems for the same system: the given dynamics and “free” dynamics (Reed and Simon,
1979). The basic idea behind this is that the free dynamics generally refers to those cases
which are simpler than the given dynamics but sharing the same physical principles. To
summarize, the main arguments favouring the use of some aspects of scattering theory
lie in the fact that

e it provides the necessary theorems proving the existence and asymptotic complete-
ness of wave operators by imposing certain condition on the coefficients occuring
in the wave equation.

e it is closely related to the pertaining spectral problem (Reed and Simon, 1979) in
the sense that a proof of the existence and asymptotic completeness corresponds
to ruling out the existence of a singular continuous part of the spectrum.

The main point while proving the existence and asymptotic completeness of wave opera-
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tors in a Hilbert space is that one can demonstrate that there exist given wave operators
that can be proven to be asymptotically free at ¢ — —co (Reed and Simon, 1979) and
that converge, as time progresses to infinity, again to the “free” dynamics. In that case
one only has states that are not bound, i.e not localized, see section 4.6.

Reed and Simon (1979) are able to prove the existence and asymptotic completeness, see
theorems X1.75-X1.77, for the My by supposing that c(x) and p(x) are twice continuously
differentiable functions with bounded derivatives satisfying (4.15), (4.16) and (4.14).
Moreover they suppose that ¢?(x) — 2, p(x) — po, D%(x), D¥p(x), 0 # |a] < 2, are all!®
in L2(R®)'1. Then the wave operators associated with the given and free systems exist
and are complete. Given these theorems Reed and Simon {1979) prove the completeness
in the sense of generalized wave operators. Furthermore they say that it can be proven
that the solution of equations (4.8) and (4.13) is asymptotic to a free solution as time
progresses. In fact they have proven that A has no singular continuous spectrum, see
also section 6 on pg. 112 (Reed and Simon, 1979).

Then they proceed by saying that the decay condition on ¢2(x) ~c2 and p(x)— po, D*p(x)
and D%c(x) are not very stringent in the sense that they will hold for any reasonable
physical situation. On the other hand they say that the regularity conditions on the
medium parameters may jeopardize the applicability of the scattering formalism and
they claim that these requirements can be removed. Unfortunately this is where their
elaborate treatise comes to a hold and it is beyond the scope of this thesis to come up
with the proofs. Despite this deviance the results of this section will be useful since
the singular continuous spectrum has been excluded. At this point it is interesting to
feedback the asymptotic completeness to the empirical observations. These observations
indicated that the waves in the earth disperse, a notion also found from the numerical
modelling example. That means that one may have to do with a situation where there
is no longer asymptotic completeness because certain physical states may be trapped in
the complexity of the medium heterogeneity. In fact this is a possible indication that
the wave phenomenon can not longer be treated as a perturbation with respect to the
free system. It is possibly perturbed too much as a consequence of which it looses its
hyperbolic behaviour. It becomes a standing kind of wave (Faris, 1995). In the epilogue I
will pay some attention how one can use the findings of the multiscale analysis in relation
to the above conditions for the medium.

4.5 The eigenvalue problem and the spectral representation

One way to come up with solutions, wave operators, to the initial value problem -
defined by the system in equation (4.8) and belonging to the wave equation (4.13) with
the Hamiltonian, Ha, given by equation (4.10) — is to represent the operators in the

10Note that the D is defined as D f £ 8%1822958 f with a = {o1, 02,03} and la| = o1 +as + as.
1 G970 J
1172(R3) is the set of f such that || flls = [|(1 + 22)%/2 f(z)|| 2 < oo.
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spectral domain pertaining to the operator Ha. As I showed in chapter 3 it is relatively
straightforward to give analytical functions — such as the square root and exponentiation
- a meaning in the spectral domain because these functions on operators become simple
functions on scelars, the eigenvalues. In chapter 3 I reviewed a relative simple class of
operators all having an absolutely continuous spectrum for the eigenvalues. Moreover
the eigenvalues are real and the eigenfunctions!? are complete and orthogonal. Not to
blur the basic principle I refrained in that chapter from issuing specific conditions on
functional spaces to be attributed to the eigenfunction and the functions undergoing the
action of the operator. In case of the operator Hs I can not longer do that because a lot
of the physics depends on the nature of the spectrum.

Indeed the situation for the operator Hs is much more involved. The elaborate proofs in
the literature on the existence and asymptotic completeness, associated with the wave
operators, constituted already a precursor on the difficulties that emerge when solving the
spectral problem for the Ha2. The spectral representation allows for the computation of
the square root, H; = /Hs, and the subsequent exponentiation, yielding the expression
for the propagator operator W. Being aware of the limited scope of this treatise I like
to mention that in my opinion many of the efforts focus on proving the absence of the
singular continuous spectrum (Reed and Simon, 1978, 1979; Pastur and Figotin, 1991;
Pastur, 1994). This singular continuous part of the spectrum refers to that part of the
spectrum that is singuler with respect to the Lebesgue measure. This terminology comes
from theorems in abstract measure theory, see Reed and Simon (1980) pg. 22, that tells
one that any measure, p, on R has a canonical decomposition p = ppp + pac + Hsing
where ppp is pure point, pgc absolutely continuous and Psing 18 continuous and singular
relative to the Lebesgue measure. Before I will pay attention to the physical interpretation
of this decomposition and the nature of the associated (generalized) eigenfunctions let
me present the spectral representation of Hy first.

The spectral representation (Wilcox, 1984; Souillard, 1986; Pearson, 1988; Carmona and
Lacroix, 1990; Dautray and Lions, 1990) of the H2 operator is given by

+00
Hy = / AE,y, (4.20)
—oo :
where {E)| — 00 < A < +00} denotes the spectral projection over the pure point part
of the measure via a summation while the continuous part of the spectral measure is
covered by the integral. Given this spectral representation it is rather straightforward
to compute the square root operation acted upon the Ho and yielding the H;. This
computation runs, in the spectral domain, along the lines of the following representation

+00
Hi=Hy = / VAdE;. (4.21)

12Care should be taken because the eigenfunctions do not always represent physical states in the sense
that they do not lie in a proper Hilbert space and are therefore referred to as generalized eigenfunctions.
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This spectral representation, also known as a modal decomposition, is not only applicable
to represent operators but can also be used to decompose arbitrary functions.

Before elaborating on some specific situations and examples let me define the spectrum
and subsequently describe the physical nature of the states that belong to the different
parts of the spectrum.

4.5.1 The spectrum, resolvent and (physical) states

Mathematically speaking the spectrum of the operator, Hs, is the set, 0(72) of real X’s
such that the operator (Hz — A) is not invertible as a bounded operator. It defines, as
such, the set of eigenvalues, say frequencies, allowed to the physical system, say the wave
motion, that is governed by the operator Hs. In fact this definition exactly corresponds
to the definition for the resolvent of the operator'® H,. This resolvent operator relates,
when using the proper initial conditions, the operator M, and its eigenvalues to the
superposition integral operator whose action is defined by the Green kernel (Wilcox,
1984). Notice that by way of its construction the spectrum of Hy, o(Hz), is generally a
larger set than the set yielded by the eigenvalue problem solution of

Hatp (A, x) = Ap(X, x). (4.22)

The eigenfunctions lie in the Sobolev space W*?2. This latter category of eigenfunctions
are denoted as generalized eigenfunctions.

The reason why these eigenfunctions have to adhere to these conditions lies in the fact
that physically speaking one is only interested in those states/solutions, 9, that represent
physical plausible solutions to the eigenvalue problem. Finally notice that the operator
may yield solutions that are exponentially decaying but that implies that exponentially
growing solutions are also solutions which are certainly not physical. Finally notice that
from the physical point of view the spectrum must, by convention (Souillard, 1986), be
considered as a coarse-grained quantity'® because it is hard to disjoin those eigenvalues
that are arbitrarily close located with respect to each other.

4,5.2 Nature of the spectrum and the associated physical states

So far T only talked about the physical states without being too specific on the physical
significance of the eigenvalues and their corresponding physical states. Conform the afore
mentioned canonical decomposition I propose a subdivision of the spectral measure and
the corresponding eigenvectors, spanning the Hilbert space or a subset of it, into three
parts

0(Ha) 2 app(Ha) U ose(Ha) U oac(Ha), (4.23)

13The resolvent defines the integral operator (Ha — A)~ 1 f(x) = f GOux,x" ) F(x' )™ 2(x")p~t (x")dx/,
where G is a Green kernel (Wilcox, 1984).
14The resolution of identity Ey will never be reached, i.e. one will never resolve a “delta” functional.

)
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where the subspaces are orthogonal and span the whole space. The subscripts of the
different parts refer to pure point for pp; singular continuous for sc and absolutely con-
tinuous for ac. The combinations o,(Hz) 2 opp(Ha)Uosc(Ha) are referred to as singular
whereas o.(Hz) £ 05.(Ha) U 04c(Hz) is referred to as continuous. Notice that these
spaces may be zero but not alll

The presented subdivision is not void of any physical meaning because it reflects the
presence of different physical states. On their turn these states are subdivided into

o [ocalized states, states that are ezponentially decaying. These localized states match
the pure point spectrum and the corresponding physical states, ¢, are all of finite
energy, 1.e. square integrable.

e erolic states, states that are to be associated with the singular continuous spec-
trum. These states display a complicated hierarchy of structures that adhere to
some kind of scale-invariance (Souillard, 1986). Finally notice that these states are
not square integrable.

e extended states, states that are essentially extended over the whole system certainly
for the low temporal frequencies, the 1arge spatial wavelengths, These states share
the property of being not square integrable with the singular continuous part of
the spectrurm.

Inspection of the above subdivision shows that the singular continuous part of the spec-
trum causes difficulties in the sense that this part of the spectrum can be attributed to
either the continuous, 0.(Hs), or singular, o,(H2), part of the spectrum while it shows
a complicated structure. Moreover it will appear that the eigenvalues of the pure point
may be dense, a notion that also complicates matters. Probably that is why Souillard
(1986) included the statement, see the end of his section 1.5 page 314 “there is no general
theorem proving the above dichotomny and it is possible that all conjectures turn out to be

= false due to particular counter examples.”

4.5.3 Examples

The two numerical'® examples included in this section are aimed to qualitatively reveal
the difference in appearance of the (generalized) eigenfunctions pertaining to a homoge-
neous and varying medium. The latter varying medium is defined in terms of the com-
pressional wavespeeds and densities from a selected region obtained from a real well-log
measurement, see figure 2.1. Inspection of figure 4.4 in relation to figure 4.5 shows quite
a drastic difference, especially in the behaviour for the larger eigenvalues. Indeed the
homogeneous medium displays the expected behaviour for the generalized eigenfunctions
where the eigenvalues are of multiplicity two. For the heterogeneous situation, however,
one observes eigenfunctions being somewhat intermittently distributed in space.

15Remark that within the numerical implementation, based on the first order approximation to the
derivative operator, the #3 operator is not longer self-adjoint because of lack of symmetry.
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Figure 4.4

Eigenvalue decomposition of the Ha for a constant velocity and density medium.
(a) welocity profile; (b) density profile; {c) the eigenvalues; (d) eigenfunction cor-
responding to the first eigenvalue; (e) eigenfunciions corresponding to the second
eigenvalue with multiplicity two; (f) eigenfunctioné corresponding to the sizth
eigenvalue with multiplicity two; (g) eigenfunctions corresponding to the 26th
eigenvalue with multiplicity two.
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Figure 4.5 Figenvalue decomposition of the Hz for a part of the well-log of figure 2.1 ranging
from 12bm depth to 275m depth. (a) velocity profile; (b) density profile; (c) the
eigenvalues (d) eigenfunction corresponding to the first eigenvalue; (e)-(g) other
esgenfunctions.
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4.6 Localization theory

In this section I will make use of the opportunity to lay down some of the concepts of
localization theory, as initially coined by Anderson (1958), that are useful in the discus-
sion surrounding acoustic wave interactions in media that display a complex behaviour.
As far as I know localization theory is the most advanced!® theory dealing with wave
interactions in media that contain many irregularities (Faris, 1995). These irregulari-
ties give rise to an intricate interference mechanism effecting the waves as they probe
the medium. This interference mechanism leads either to a constructive mechanism,
allowing wave functions to persist over long distances, or to a destructive mechanism
completely destroying the coherency of the wave function. As will become clear below
these properties of the waves depend on the spatial dimension in which the wave phe-
nomena take place. One of the most surprising findings of localization theory is that
it predicts certain situations where the wave functions completely loose their wave like
behaviour. This manifests itself not only in the fact that waves do not longer propagate
at all - the wave carrying medium acts as an isolator rather than a conductor (Souillard,
1986; Faris, 1995) — but also in the fact that the wave function’s time evolution depends
on the degree of coarse-graining effectuated on the spectrum (Souillard, 1986).

The process being responsible for the interference mechanisimn is, however, not yet fully
understood and this is partly due to the fact that scattering theory does not suffice since:
“Iocalization is not a simple perturbative phenomenon” (Souillard, 1986). Moreover, for
me personally, it also remains a question whether localization theory works for media
containing structures on every length scale. In that case namely the “random” hetero-
geneity is correlated over long spatial distances so one can not exclude the existence of
the singular continuous spectrum.

Originally localization theory found its roots in the field of random Schrédinger operators
where the potential constitutes a random process'’ (Souillard, 1986; Siebesma, 1989;
Carmona and Lacroix, 1990; Pastur, 1994). The conditions on the random process are
quite severe in the sense that the correlation length must be finite (Pastur and Figotin,
1991; Pastur, 1994; Faris, 18985). The success of localization theory, as coined by Anderson
(1958), sparked the application of this concept, describing the emergence of standing
waves being constrained to confined spatial regions, to many different fields of research
amongst which the field of seismic exploration. In this latter application the ideas were fed
into the discussion on the amplitude behaviour of the seismic wavefield as it interacts with

18 Advanced in the sense that there is a growing body of theorems substantiating the insights. The
theory in itself does not impose too restrained conditions on the medium. This goes, however, at the
expense of issuing specific statements on, say, the local nature of the wave interactions.

"Here 1 follow Souillard (1986) who argues: “f the random medium is ergodic, then the Lyapunov
ezponent is nonzero {for almost every energy/frequency) as soon as the poiential is non-deterministic;
non-deterministic means here that one can not determine it completely by knowing i only on some
interval, in contrast, e.g. io a guasi- periodic potential.”
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the highly heterogeneous earth’s subsurface (Baluni, 1985; Sheng et al., 1986; Sheng, 1995;
Asch et al., 1990, 1991; Papanicolaou et al., 1990; Burridge and Chang, 1989; Burridge
et al., 1992; Lawecki et al., 1994; Lawecki and Papanicolaou, 1994). However, the theory
in itself is still under development judged by the fact that still there is not very much
known on localization theory in spatial dimensions higher than one and therefore the
rigourous results are, predominantly, limited to the one-dimensional situations pertaining
to the Schrédinger operator or to the acoustic'® wave equation (Faris, 1995; Pastur, 1994).

For the one-dimensional situation there exists a very important result that proves that,
irrespective of the amount of the disorder, the waves are exponentially localized (Souillard,
1986; Pastur and Figotin, 1991; Pastur, 1994; Carmona and Lacroix, 1990; Faris, 1995).
In higher spatial dimensions this is not the case and in three dimensional systems one may
even, for a not too strong disorder, observe phase transitions, when lowering the temporal
frequency beyond a critical frequency, the mobility edge, delineating a transgression from
localized to extended states.

For the actual application of certain aspects of localization theory I will limit myself
in this chapter to considering the one-dimensional situation only. The reason for this
choice, despite the fact that this one-dimensionality is certainly not shared by the earth’s
subsurface, is three-fold:

¢ detailed information on the medium properties is only available in one dimension,
namely along the vertical well-log profiles.

s computationally the one-dimensional case is much easicr to comprehend and better
tractable.

e theoretically the rigorous results are predominantly constrained to the one-dimen-
sional situation.

I will commence the discussion by first paying some more attention to the spectrum and
other quantities related to localization theory. Then I will introduce the important notion
of localization length, the value of which governs the exponential decay for the localized
waves that are proven to exist always, irrespective of the disorder, in one-dimensional
media with a certain randomness. Then 1 will introduce the so-called Lyapunov expo-
nents, that can be shown to be positive (Delyon et al., 1985; Souillard, 1986; Carmona
and Lacroix, 1990; Pastur and Figotin, 1991; Pastur, 1994) and to be related to the lo-
calization length. Both these quantities characterize the behaviour of the localized waves
and can be given an explicit meaning in the one-dimensional systems, consisting of an
identically independent distributed (scattering) potential, yielding a random multiplica-
tive chain of harmonic matrices'®. The norm for the product of these random matrices

18Quite recently there has been work done on the elastic wave equation (Kohler et al., 1996).
19 Also known in the seismic literature as propagator matrices (Gilbert and Backus, 1966; Ursin, 1983;
Berkhout, 1987; Wapenaar and Berkhout, 1989).
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can be shown to be a self-averaged quantity for which the Lyapunov exponent constitutes
a frequency dependent estimate (Baluni, 1985; Souillard, 1986; Carmona and Lacroix,
1990; Pastur and Figotin, 1991; Pastur, 1994). It was shown by Osoledec (1980) that, for
the above situation, the Lyapunov exponents are directly related to the reciprocal of the
localization length and this opens the way to a direct quantitative analysis by inspecting
the wavefield. I will postpone this discussion to section 4.7.

4,6.1 More on the nature of the spectrum

Before going into detail on the behaviour of products of transfer matrices I like to re-
address certain important aspects related to the nature of the spectrum. This concerns,
specifically, the singular continuous part of the spectrum. This singular part yields
chaotic waves. Unfortunately this type of spectrum is very difficult to comprehend and
as far as the author’s knowledge is concerned there is still little known, besides certain
deterministic situations described by Pearson (1988) and possibly random situations
(Pastur and Figotin, 1991), on its emergence. At least it is striking that an important
part of the scattering, localization and spectral theory is aimed at proving the absence of
this singular continuous part of the spectrum. For example Reed and Simon (1980) write
on the canonical decomposition: “This decomposition will recur in a quantum-mechanical
context where any state will be a sum of bound states (pyp), scattering states (jac), and
states with no physical interpretation (one of our hardest jobs will be to show that this
last type (singular continuous) state does not occur; that is, that certain measures have
pse = 0)7. Indeed the proofs of asymptotic completeness suggest exactly this absence!
The difficulty surrounding the singular continuous spectrum refer to the notion that it
belongs to the continuous part but it is singular with respect to the Lebesgue measure.
Think for example of the Cantor set I introduced in chapter 6. This Cantor set is
continuous but it lives on a complete different set than the Lebesgue measure, see Reed
and Simon (1980) pg. 21.

Now, what if localization theory exactly derives its mere existence from the notion that
spectral measures being singular with respect to the Lebesgue measure are the ruler of
the game? Unfortunately this appears to be exactly the case (Faris, 1995) and there are
only two types of spectra which have this property, namely the singular continuocus part
and the pure point part. I find the underlying reason for this necessity very difficult
to comprehend. Faris (1995) gives in his overview paper a relative simple explanation
which goes along the following lines. He starts with the observation that the solutions
to the eigenvalue problem for waves in random media give indication of exponential
growth in both space directions. Physically speaking there is a problem here. On first
sight this problem may appear to be simple. Just supplement a set of proper random
initial conditions at infinity, drawn from the absolute continuous part of the spectrum,
counterbalancing the exponential growth behaviour. Given the random nature of the
problem at hand this is unfortunately impossible because the probability that the two
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initial conditions, at the two endpoints towards oo, are the same is zero. In that case
one has to resort to other means and it is beyond the scope of this thesis to go into detail
one how this is exactly done. T will limit myself to stating that, with probability one,
one can find a set of eigenfunctions that are suitable. The condition for the pertaining
eigenvalues is that they have to belong to the singular continuous or pure point part of
the spectrum.

For ‘obvious reasons the pure point part of the spectrum is preferred since it excludes
the emergence of chaotic type of wave functions that are attributed to the singular
continuous part of the spectrum (Faris, 1995). This implies that one wants to rule out,
as in scattering theory, the singular continuous spectrum. Within the random context
this corresponds to imposing a condition for a sufficient degree of independence, locality,
for the random fluctuations, i.e ruling out media with long range correlations. For the
one-dimensional situation it appears to be sufficient to demand an exponential decaying
correlation function for the heterogeneity. Think for example of the Ohrnstein-Uhlenbeck
process or the random telegraph model, see chapter 2. In that case it can be proven that
the wave interferences give rise to a pure point spectrum where the eigenvalues are
countable and lie dense (Souillard, 1986; Pastur and Figotin, 1991; Pastur, 1994; Faris,
1995). The latter property is very interesting because in that situation the wave packet’s
time evolution will strongly depend on the degree of coarse graining of the spectrum, an
observation not in contradiction with the observed dispersion. In this case the dispersion
relation will not longer display a trivial linear relationship. This excludes the existence
of a single velocity connecting space and time. Moreover, at this point the argument of
Pastur (1994) can be used proving that the absolute continuous part of the spectrum is
empty in case the Lyapunov exponent is larger than zero, see below.

Let me stress again that the theoretical body surrounding this theory is very difficult and
abstract and is still in development. That may explain the possible lack of theoretical
insight on the relation between the nature of the material properties or equivalently the
scattering potential and the nature of the spectrum. However, that does not withstand
an analysis of the physical states with the aim to issue statements on the nature of the
spectrum, and subsequently possibly feeding this back to the nature of the medium.

4.6.2 Lyapunov exponents and localization length

If one assumes the acoustic waves to be exponentially localized then one is able to des-
ignate an exponent that expresses the exponential decay. This exponent is called the
localization length, &(w), which is a function®® of the temporal frequency and which

20The careful reader may have noticed that the author tacitly switched from evaluating the time
evolution to the space evolution. In the one-dimensional situation this can be done without causing a
problem.
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s

governs the decay of the wave functions
_ =3
|PE(z3,w)| ~ e 8T 25 >0, (4.24)

as a function of the vertical travel distance z3. It was proven by Osoledec (1980), see for
detail (Carmona and Lacroix, 1990), that the frequency dependent localization length is
directly related — under certain assumptions on the randomness such as a finite correlation
length for the potential/medium parameters and a translation-invariance for the mean
(Pastur, 1994) - to the Lyapunov exponents (Baluni, 1985; Souillard, 1986; Siebesma,
1989). These Lyapunov exponents are self-averaged cocfficients and are positive when
the medium is random enough. They emerge in the study of products of random matrices
and beyond. The relationship between these Lyapunov exponents and the localization
length reads

o

where v(w) is the Lyapunov exponent or the Lyapunov spectrum.

4.6.3 Systems of random transfer matrices

What can be said on the limiting behaviour of the transmitted wavefield in case it is the
result of a cumulative multiplicative action invoked by the random transfer/propagator
matrices?’? These transfer matrices relate the acoustic wavefield?? at either side of an
interval. Scattering matrices perform a similar task by relating the up- and downward
travelling wave constituents across the interval. Only in that case the ordinary matrix
multiplication is replaced by Redheffer’s starproduct (Redheffer, 1961). To answer the
question on the limiting behaviour of the random transfer matrix products one has to
go back to Anderson’s tight-binding model. In that model the behaviour of an electron
in a random onec-dimensional potential field is described. This problem corresponds
to the evaluation of a so-called disordered harmonic chain (Souillard, 1986; Siebesma,
1989; Baluni, 1985) of random transfer matrices. It can be shown that the norm for
the product of the constitutive random transfer matrices grows exponentially with the
number of layers, N,

rEn

o

) 1 -
Jim I ITTN_ M, 0] = v(w) > 0. (4.26)

In this result, proven by Fiirstenberg (1963), the symbol y(w) refers to the strict posi- =
tive Lyapunov exponent. The symbols M, and ug refer to the consecutive propagator

211n the seismic context think of the propagator method (Gilbert and Backus, 1966) or of the so-called
layercode schemes (Kennet and Kerry, 1978). All these matrix methods bear in common that they ensure s
continuity of the pressure and of the (normal component of the) particle velocity across the interfaces .
separating the consecutive layers. '

221t does not matter whether one looks at the one- or two-way wavelields since it is assumed that
the medium is homogeneous beyond the level z3. So one only has to do with the downgoing pressure =
constituent. -
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matrices and the initial conditions for the wavefield respectively. Since the harmonic
transfer matrices depend on the temporal frequency it is clear that the Lyapunov expo-
nents themselves will also depend on the frequency. It was proved by Fiirstenberg (1963)
that the above result holds for almost every realization and that expresses the notion
that the Lyapunov exponents refer to a spatial self-averaging process. With other words,
the outcome of equation (4.26) does not depend on the specific details of one realiza-
tion. Hence, the definition of the Lyapunov exponent does not require an indispensable
ensemble averaging. Now how can one use this result to one’s advantage? At this point
the theorem of Osoledec (1980) comes at hand since it relates the Lyapunov exponent
to the localization length and the latter can readily be obtained from wavefield data. In
case the Lyapunov exponent is positive one has to do with exponentially decaying eigen-
modes, while the corresponding eigenvalues lie, under the condition of sufficient locality
of the randomness, dense in the purc point part of the spectrum. This implies that in
this situation one no longer has to do with ordinary extended wave modes which are the
solution of the wave equation with constant or almost constant coeflicients. Note again
that the possible emergence of chaotic type of waves can only be circumvented by exclud-
ing the singular continuous part of the spectrum and hence imposing conditions on the
correlation displayed by the medium fluctuations. Finally remark that in a disordered
medium ad infinttum under these conditions the one-dimensional “waves” will always be
exponentially localized irrespective of the amount of disorder. Only the weaker disorder
the longer the localization length becomes for a fixed frequency.

4.6.4 Asymptotic behaviour

Given the above relationships and observations one is now set to issue some statements
on the qualitative behaviour of the frequency dependent localization. Following Baluni
(1985) one can assess the asymptotic behaviour for two regimes namely the high and low
temporal frequency regimes. According to Baluni (1985) these two regimes refer to the
weak and strong disorder regimes. A system in its weak order regime is a system where
the fluctuations in the quantity k;(w)Azs are regarded as being small. The variances of
the fluctuations, with respect to the mean, become small in case the temporal frequency
becomes small. This is because the fluctuations consist of the product between randomly
arying layer thicknesses, Axs, and the alternating® wavenumbers k3 (w), which are fixed
and deterministic. For weak disorder, ((k3(w)Az3)*) < 1, Baluni (1985) shows that the
frequency dependent Lyapunov exponents converge to a frequency squared dependency,
Y(w) ~ w? for w —» 0. For the strong disorder regime on the other hand, {(ks(w)Az3)?) >
1, the Lyapunov exponent becomes a constant, y(w) ~ C for w — oo, an observation
striding well with the fact that in the geometrical optical regime the “wave” only sees
the consecutive transmission coefficients. The multiplicative action of these transmission

23Baluni (1985) uses an alternating sequence of layers consisting of two different vertical wave numbers
and with randomly distributed layer thicknesses. Notice that this is exactly the random telegraph model.
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coefficients results in a frequency independent exponential decay as a function of the
propagation distance.

To interpret the above results it helps to take into consideration that the primary cnergy
of the wavefront becomes, in the course of the propagation, completely redistributed due
to the scattering induced by the heterogencities. Eventually this mechanism kills the
primary wavefront, the w — oo “contribution”, because the magnitude of the product
of the consecutive transmission coeflicients tends to zero as the number of encountered
layer transitions increases. Now the common conjecture is that it is still possible to
have a coherent pulse propagating in case of a constructive interference between the even
multiple reflection events and the vanishing primary (Banik et al., 1985a,b; Resnick et al.,
1986; Burridge et al., 1988; Herrmann, 1991; Herrmann and Wapenaar, 1992, 1993). To
better understand this complex mechanism many attempts have been made to recognize
—e.g. via approximate descriptions for the wave motion — the ruling quantities responsible
for this intricate interference mechanism.

The interesting point of the above analysis, is that it delivers the same asymptotes as
obtained for the O’Doherty-Anstey formula in combined action with the random tele-
graph model (Banik et al., 1985b). This random telegraph model yields an exponential
decay for the correlation of the medium fluctuations and this behaviour is shared by most
random processes that are being used to characterize the randomness in the context of
wave interactions (Burridge and Chang, 1989; Banik et al., 1985a,b).

From my experience, see chapter 2, I do not expect to find an exponential decay for
the correlation function. This would namely imply a break in the scaling, a notion not
substantiated by the scaling displayed by the well-log data. On its turn this may suggest
that the singular continuous part of the spectrum can not be excluded!

4.7 An alternative approach

Even though one can probably not rule out the existence of the singular continuous part
of the spectrum, one can postulate equations (4.24)-(4.26) to hold. In that case one can
try to infer information on the general properties displayed by the Lyapunov spectrum.
To start the discussion I included figure 4.6 where I depicted the amplitude and Lyapunov
spectrum for the bottom most traces of the real and synthetic VSP data sets depicted
in figures 4.1 and 4.2. From these plots it is clear that these spectra display an irregular
behaviour, an observation certainly applying to the synthetic VSP, generated using a
transfer matrix modelling scheme. At this point let me postulate the ansatz that the
Lyapunov spectrum potentially displays a powerlaw type of frequency behaviour. This

conjecture is mainly based on two motivations.

The first refers to the existence of a relative large body of seismic literature describing
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Figure 4.6 This figure contains the two bottom most traces taken from the VSP’s depicted in
figure 4.1 and 4.2. From these traces I computed the amplitude spectrum, middle
row and the Lyapunov spectrum, bottom row. The real VSP related quantities are
depicted in the left column. The simulated quantities in the right column.

a (quasi) constant-@ type®* of behaviour for the dispersion. In case the Q factor is
independent of frequency one has, inevitably, to do with a powerlaw type of frequency
dependent attenuation, or in other words a powerlaw for the Lyapunov spectrum. Al-
though this type of behaviour is generally attributed to a powerlaw type of behaviour
for Boltzmann’s stress-strain relations, yielding a viscous relaxation mechanism, it is an
important statement. It refers namely to the empirical observations concerning seis-
mic data and beyond, reported on by Kjartansson (1981). He demonstrates that the

HHere @ is defined as Q = g%b%, where (¥) is the mean energy stored in on period (T = %’) and
(AE) the energy loss during one cycle.
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Q) is related to the exponent a,s. This ags rules the stress-strain relation according to
@' = tanma,,. Moreover he already mentions: “The empirical observations that @ in
solids varies much slower than even the square root of frequency, is thus an expression
of the statistical nature of the heterogeneities.”*>.

The second motivation refers to the findings of the multiscale analysis and characteriza-
tion reported on in chapter 2. From this analysis it became clear that a large number
of scaling exponents are required to capture the scaling. However, one can speculatively
imagine that the scaling of the Lyapunov spectrum is dominated by one of the scaling
exponents. Of course, if so, it remains to be shown which one. In the current literature
there are already some references towards a scaling type of behaviour (Alexander, 1989;
le Méhauté, 1991; Lapidus and Pomerance, 1993; le Méhauté, 1995), displayed by the
Lyapunov spectrum and its via the Hilbert transform related integrated density of states
(Souillard, 1986; Carmona and Lacroix, 1990; Pastur, 1994). First of all le Méhauté
(1991) proposes to replace the time derivative by a fractional differentiation, the degree
of which is related to the fractal dimension. This replacement implies a powerlaw be-
haviour for the Lyapunov spectrum and yields a generalized type of diffusion as coined
by Mandelbrot (1982). In that case the space-time behaviour of the field that is given
by

P(zs,w) ~ e~ 0 <a, <2, (4.27)

where aq is, for obvious reasons, related to the conjectured scaling for the Lyapunov
spectrum. It is interesting to note that equation (4.27) can also be recognized as being
generated by a generalized Laplacian, yielding a Hamiltonian of the type # = F(~jV) =
Ip|, 0 < a < 2, where p is the momentum. In this context this momentum can
be interpreted as the temporal frequency. Finally it was Bickel (1993), followed by
Hargreaves (1992), who introduced this type of solution, the functional form of which
corresponds to the stable?® and infinitely divisible Levy distribution®” (Samarodnitsky
and Taqgqu, 1994; Carmona and Lacroix, 1990; Reed and Simon, 1979). Remark that the
solution of this generalized type of diffusion are not longer hyperbolic; the time becomes
irreversible and the solutions are smooth. With other words, the solutions do not longer
constitute a group, but form a semi-group instead. Moreover the solutions do not longer
propagate but dilatate (le Méhauté, 1995).

25K jartanson argues that: “in materials with sharply defined helerogeneities {e.g. grain boundaries or
pores), absorption controlled by diffusion, such as phase transformations or thermal relazation, leads to
a Q proportional to w? and w“% at high and low frequencies, even for uniform distributions of identical
pores or crystals.”

26Gtable under the operation of convolution.

27 Also known as Pareto-Levy distribution.
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4.7.1 The proposed method

The aim of this section is to introduce a way to infer information on the nature of the
Lyapunov spectrum. The idea is to capture the scaling exponent which is conjectured
to rule the Lyapunov spectrum and that is potentially related to the scaling displayed
by the medium fluctuations. Let me remark again that the anticipated scaling exponent
derives its mere existence from the scaling ansatz.

From the multiscale analysis presented in chapters 2 and 8 it became clear that the
continuous wavelet transform constitutes a perfect vehicle to locally estimate the Holder
exponents. Given this notion together with the fact that the powerlaw shaped Lyapunov
spectrum maps to a singularity at the origin one is able to set up an “inversion scheme”
for this exponent. The main advantage of this type of approach is that the Lyapunov
spectrum itself displays a very erratic behaviour while its inverse Fourier transform, see
figure 4.7, behaves rather “smoothly”, displaying a nice singularity around the origin.
The scaling ansatz for the Lyapunov exponents yields the following behaviour

Y(w) ~ W, (4.28)
which translates to the following behaviour in the “time” domain
Ve (r) ~ et (4.29)
yielding the following behaviour for the maximum of the wavelet coeflicients
max [W{yr, ¥ }(@,0)| ~ o (@3, (4.30)
The procedure I propose comprises the following main steps:

» a Vertical Seismic Profile (VSP) - gather with the propagated pressure wavefield
as a function of depth - are Fourier transformed followed by taking the logarithm
of the real part and a subsequent inverse Fourier transform. With these operations
the Lyapunov exponents v, (7) are obtained for each depth level, i.e. v, (r;x3).

o these v, (7;x3)-gathers are wavelet transformed.
e the maxima of the wavelet transform are picked for a selection of scales.

¢ linear regressions are computed, for all traces, on the logarithm of the maxima
versus the logarithm of the scale indicator ¢. The slope of these regressions is
related to localization scaling expounent a4 for the vertical offset x3.

4.8 Concluding remarks

In this chapter an attempt has been made to briefly sketch the current state of science
concerning wave propagation phenomena in media with a large amount of heterogeneity.




136

4.8 Concluding remarks

Top Trace Real VSP

Top Trace Synthetic VSP

)

15 0.2 !
0.15
10
0.1 )
-
& s L 005
-0.05
-5 -0.1
~0:45 0.1 -005 0 005 © 00 015 -015  -01 005 0 005 01 0I5
T , T, .
Middle Trace Real VSP Middle Trace Synthetic VSP
15
2
10 1.5
i
1N
&3 < 05
0 0 W\N\A—A«MMW
-0.5
-5 N
~0.15 =01 -0.05 0 005 01 015  -015 ~0.1 005 0 0.05 01 0I5
T ) 7, .
Bottom Trace Real VSP Bottom Trace Synthetic VSP
15
2
10 L5
1
3 3
& 3 © g5
0 o~ ¢ M‘W»w J\INW
-0.5 .
-5 1
-0.15  -0.1 -0.15  -01 005 0 005 01 015

-0.05 0 0.05 0.1 0.15
T

Figure 4.7 This figure contains the inverse Fourier transform of the Lyapunov spectrum.
Again the traces are taken from the real and simulated VSP’s of figures 4.1 and 4.2
but now they concern the top, middle and lower traces. On the left the real data
15 depicted while on the right simulated data is depicted.

It was mentioned that there exists a rigorous but very involved theory that predicts expo-
nential localization to occur in one-dimensional media and for one-dimensional acoustic
waves. The proof for this result is based on the assumption that the correlation func- ...
tion displays a rapid enough decay. This implies that the medium fluctuations must be
independently distributed or the correlation function must at least be exponentially de-
caying. When this condition is not met, the singular continuous spectrum can not longer
be excluded and this may give rise to a type of wave functions being void of a physical
meaning. However, when sufficient independence for the fluctuation is guaranteed then
the spectrum becomes pure point with its eigenvalues lying dense. Physically speaking
this corresponds to exponentially localized waves which are strictly speaking not longer
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waves. At this point it is interesting to link up with the Anstey-Q’Doherty formula which
predicts a similar kind of exponential localization. This approximate Anstey-O'Doherty
formula is expressed in terms of the correlation function of the reflectivity and is only
accurate, when applied properly, in its description of the generalized®® primary in a co-
moving frame of reference. This co-moving frame is defined in terms of the specifics of a
realization while the generalized primary refers to the coherent part of the transmitted
signal. This coherent part consists of a mutual interference of the vanishing primary with
the multiple reflections. Given this aim of the Anstey-O’Doherty formula it is not sur-
prising that its predictions combine well with the findings of localization theory because
the short range correlations rule the behaviour of the generalized primary.

Despite the fact that — due to the empirically found long tailed correlations, exhibited
by well-log measurements - the singular continuous part of the spectrum can not be
excluded, the Lyapunov spectrum may carry information on the scaling of the medium.
Indeed the example discussed in his chapter gives at least some indication of scaling and
possibly exponential localization. The actual value of the estimated exponent, however,
does not match with the value found for the synthetic VSP. The explanation for this
difference remains open. However, qualitatively one can say that the real VSP data
indeed disperse. But they do not disperse as strongly as a generalized diffusion predicts.
In that case namely waves do not propagate at all and that observation does not combine
well with the evidenced behaviour. This leaves me to postulate that there must be some
kind of combined effect. This combination consists of a wave like hyperbolic behaviour
and a non-hyperbolic diffusion kind of behaviour.

To summarize: only a very limited view on waves interactions with complex media is
presented in this chapter. The local wave interaction responsible for the reflections has
not been addressed at all. For the interested reader I present in the Epilogus some
specular reflections concerning my own premature ideas on how one can possibly lock at
waves in scaling media.

?8The term generalized primary was coined by Resnick et al. (1986). The term pseudo primary is also
used and was first coined by Burridge et al. (1988).
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Chapter 5

Selected topics on distribution theory

5.1 Introduction

One of the main motivations for this thesis is formed by Schwartz’s distribution theory
(Schwartz, 1957; Gel’fand and Shilov, 1964; Zemanian, 1965; Griffel, 1981; Dautray and
Lions, 1988; Strichartz, 1994). Besides the fact that this theory provides a formal jus-
tification - within the realm of functional analysis — of the original ideas on a symbolic
calculus coined by Heaviside and Dirac, it also draws a transparent parallel between the
detection of a physical event, a shock or a pulse, and the detection of a singulerity. Both
these mathematical and physical mechanisms bear in common that they are based on a
non-linear averaging - over a non-vanishing interval — by an instrument or test function.
From the mathematical point of view this method boils down to generalizing the concept
of a function, which locally assigns a value to its independent parameters, to that of a
Junctional. A functional is a rule that assigns a value to each function in a set of so-called
test functions of non-vanishing support!. In this treatise a special type of functionals will
be treated solely, namely that of the distributions. These distributions — being obtained
after imposing the additional constraints of continuity and linearity on the functional ~
provide a powerful framework to analyze, synthesize and characterize physical processes.
Such a framework not only refers to the formal definition of operators in terms of dis-
tributions, capturing the dynamics of the phenomenon, e.g. the impulse response of a
system, but it also provides the fundamental basis for the multiscale analysis techniques?
presented in this thesis. '

The common denominator of this treatise is to select and define a proper vector space of
test/analyzing functions on which the multiscale analyzing technique is given a meaning

With a non-vanishing support is meant that the support of the function can not become of measure
zero. .

2The multiscale analysis techniques are introduced in chapter 8 and are based on the continuous
wavelet transform. This scale transformation conducts the multiscale decomposition and adheres to the
conditions imposed by the distribution theory discussed in this chapter.
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by the mathematical method of testing, i.e. measuring them in the proper functional
space. Obviously, the proposed testing procedure, the mapping of the test function to
an observable, a finite number, by the functional introduces an inevitable uncertainty
being a direct reflection of the intrinsic boundedness in the experiment’s resolution or
the non-vanishing condition imposed on the test function’s support.

In the sequel I convey the basic ideas behind distribution theory and the associated
concepts such as observables and uncertainty. I will commence the discussion by formally
defining distributions and the associated test functions. Then I will review a special
type of singular distributions, Hadamard’s pseudo functions or functions with algebraic
singularities (Gel’fand and Shilov, 1964; Zemanian, 1965), followed by a discussion on
how to regularize them. Then I will show that it is possible, via the concept of the adjoint
identity, to define certain operations on these distributions. Amongst these operations
there is also the operation of convolution that plays an all important role in capturing the
spatial-temporal dynamics of physical phenomena. This convolution performs an equally
important role in distribution theory where it allows for the method of regularization,
the spatial-temporal smoothing process by the instrument.

So in the pertaining sections I will briefly touch upon the method of regularization,
fractional integration/differentiation as examples of operations based on convolution. In
the end [ will conclude this chapter by providing a number of definitions allowing for
the characterization of the degree of differentiability annex regularity by means of the
so-called Hdlder exponents.

5.2 Measuring, test functions and distributions

The theory of distributions is a reflection of the observation that the concept of a function
f(x) — locally assigning a value to a physical variable at a point x - is difficult to compre-
hend. This difficulty arises from the fact that, without exception, the measuring process
is being intervened by an inevitable bound on the obtainable resolution in space-time.
With other words, there is always an intrinsic uncertainty being a direct consequence
of the fundamental inability of the measuring device to come up with an instantaneous
and/or strict spatially confined measurement in space-time. For example, consider mea-
suring the transient temperature distribution at varying positions z, z € [zg, 1] and
over a temporal interval ¢ € [tg,t;]. From physical arguments it is clear that in this
situation the perception of a function fails since the space-time localizing capabilities of
the thermometer are constrained by the physical size of its bulb and by its inertial char-
acteristics. So in effect, it can be stated that a measurement in a physical experiment
is always the result of some sort of averaging procedure mapping the unknown physical
quantity to an observable. This mapping, the measuring process, corresponds mathemat-
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ically to evaluating the following scalar product®, when only the spatial characteristics
are concerned,

+0o0
(f,o) & / f(@)o(x)da, (5.1)
o X0

where f symbolizes the unknown, locally integrable physical quantity, f € Li ., whereas
@(x) symbolizes the characteristics of the measuring device which is assumed to be of
non-vanishing support, the diameter of its bulb is finite, and with, ¢(z) > 0 AVz € R
and [ pdz = 1. By repeating this measuring procedure at different locations, i.e. using
shifted versions of ¢, it is possible to obtain a finite-resolution spatial profile for the
temperature distribution. '

Given the above cousiderations it is evident that the rather limited conjecture of a fune-
tion needs to be replaced by that of a functional, a rule that assigns a number to each
function in a set of so-called test functions (Zemanian, 1965). Such a formalism allows for
the mathematical justification of the measuring procedure as depicted in equation (5.1)
and leads, after imposing the additional technical conditions of linearity and continuity
to the concept of a distribution. These distributions constitute the mapping of a suitable
test function of non-vanishing support to a number,

Yoo <fa @)v (52)

where the physical entity has beeu represented by the distribution which calculates the
“average” over the test function’s support.

By way of the above construction, the duality of the test function and the entity f, the
distribution, facilitates a much larger class of entities to be associated with the symbol f
than the conventional class of functions can. Of course, such an extension of the function
entity to the entity of a distribution or generalized function, entails the vector space of
test functions - by imposing specific conditions on it — depending on the “smoothness”
of the distribution annex generalized function. '

5.2.1 The space D of test functions

In preparation to the introduction of distributions it will be necessary to define a linear
vector space of test functions on which these distributions are going to operate mean-
ingfully. Consider for this purpose the set D of complex valued functions ¢ which are
of compact support and which are infinitely smooth on their support as well as on their
endpoints, i.e. D C C§° (other alternatives will be considered later). It was Schwartz

3Note the use of the word scalar. This is to make a distinction between equation (5.1) and inner
products, where complex conjugates are used. However, since equation (5.1) symbolizes a measurement,
the use of complex conjugates is not necessary and therefore the equation will be referred to as scalar
product.
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(1957) who proposed this class of test functions D of which the function,

(}_le for |z] < 1,

p(z) = { (5.3)

0 otherwise,

is a well known member with all its derivatives vanishing at the endpoints and beyond,
lz] > 1.

At this point it can be stated, following Zemanian (1965), that any complex valued
function f(z) that is continvous, not necessarily differentiable, for all x. and zero outside
a finite interval can be approzimated uniformly by test functions. This corresponds to
the existence of a test function, f, € D, for which given an ¢ > 0, |f(z) ~ f.(z)] < e
Let me illustrate how such an uniform approximation can be obtained. First, construct
a set of properly normalized test functions, [ ¢, (2)dz = 1,

o> 0. (5.4)

Subsequently, use this sequence, the sequence of test functions of decreasing support (for
o { 0), to uniformly approximate the function f(z) by means of the following integral
representation,

oS24
o

+co
falx) é/ f(@ (o — 2")da'. (5.5)
—00

Clearly, this integral can be recognized as a convolution, an important concept in the
mathematical formulation of the spatial-temporal dynamics in a physical measuring pro-
cedure. In sections 5.5 and 5.7 I will come back to this important issue.

Taking the limit o | 0 in the integral on the right hand side in equation (5.5) leads to the
exact recovery of the function f(2) but this limiting procedure is not irivial and requires
the introduction of the Dirac §-distribution, an example of a singulor distribution.

5.3 Regular distributions

Before going into detail on the properties of singular distributions I would like to provide
the formal definition for a functional and quickly touch upon issues related to linearity
and continuity. First let me restate that a functional is a rule that assigns a number to
every member of a set of functions, in this case the space D. The functional is denoted by
the symbol f and the number it assigns to ¢ € D is given by (f, v). Now a distribution
can formally be defined:

Definition 5.1: Distributions
A continuous linear functional on the space D is called a distribution.

s

s
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In this definition the linearity refers to the property, (f,a1¢1 + aspa) = a({f, 1) +
az{f,2), where @1,02 € D and aj,az € C and the continuity refers to the notion

_ that, for any sequence of test functions {p,(2)}52, that converges in D to (), the

sequence of numbers {{f, vn)}5%, converges to the number (f,¢) (Zemanian, 1965).
The convergence of the ¢, to ¢ means that the supports of the ¢, are in a fixed interval

... and that the ¢,, and all their derivatives converge uniformly to ¢ and all its derivatives.

The space of these distributions is indicated D', the dual or conjugate space of D.

Before elaborating more extensively on the mathematical aspects of distributions let me
briefly review the concept of a distribution, its linearity, continuity and its convergence,
in the physical context of the thermometer experiment. In this experiment the actual
spatial-temporal temperature distribution is the subject measurement and this, of course,
exactly corresponds to the role of the functional when, for example, the spatial charac-
teristics of the temperature distribution are of interest. In this case the linearity refers to
the notion that it is possible, in most cases, to combine two separate measurements into
one by means of taking the average of the two measurements obtained from two locations
with not necessarily the same thermometers. In that case the following expression,

+oo +oe Foo
a / J(@)e1(2)dz + ay / f(@)p2(a)de = / f@)arer(@) + azpy()lde
..... 0 o 00 00 (56)

The continuity, on the other hand, refers to the notion that measurements taken at
one spot but with different thermometers will not differ much in case the thermometers
do not deviate too much. This latter property opens the way to refer to the concept of
convergence, the convergence of the measured temperature distribution to the actual one,
as the spatial accuracy of the thermometer is being increased, in terms of a sequence of
test functions. In order to illustrate this conjecture let me first define again the integral,
under the afore mentioned conditions and the condition of local integrability, in the

] . 1
Lebesgue sense, f € L, .,

,.i, o0 )

(fo) & [ f@ela)ds, (5.7)

where the limits in the integral can be replaced by finite values since ¢ is of finite support.

Clearly, the above integral defines a linear functional and its continuity can be made
explicit by consideration of the sequence {,};2 that converges to ¢(z) in D. This
convergence refers to the fact that for a given ¢ > 0 one can find a N € N such that, for
alln > N, |o(z) — pn(z)] <e. On its turn this property leads to the observation

lim Kfa (,0) - <fa QonH = 0. (58)

n—ro0
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since

+o0
10— Fron)| = | [ sl - i

.

IA

b
j F@)lole) - on(e)lde

IA

b
e | |f(x)|dz. (5.9)

Remark that the identity in equation (5.8) is made possible by selecting the bounds s,
of integration in equation (5.9) in accordance to the supports of p(x), p,(z) and by
invoking the local integrability condition, f € L ., yielding a finiteness of the quantity -
jj |7 (z)ldz. So as a consequence of the two- afore mentioned properties it can be stated s
that the integral in equation (5.7) defines a type of distribution which is called regular.
The identity for this type of distribution states that the distributions f,¢g € D differ
at most on a set of measure zero in case (f,p) = (g,¢) and this corresponds to one
of the basic properties of Lebesgue integration theory where sets of measure zero are
unimportant. But, on the other hand, it can be stated that in case f, g differ on a set
not of measure zero, then (f, ) # (g,¢) for at least one test function, ¢ € D. From
this argument it is deduced that each test function of D uniquely determines a regular
distribution of D' and this corresponds to D C D' (Zemanian, 1965).

e

Besides the fact that the space of distributions D’ contains the space of test functions, ==
D ¢ D', it may also contain a much wider class of distributions which are not necessarily
regular. However, this extension, the accommodation of a much “wilder” class of objects,
goes, in certain cases, at the expense of loosing operations such as f(x)g(x) or f(g(x)). =+
But fortunately most other operations, such as integration/differentiation, can be given .
a meaning via a limiting procedure, they are to be defined in the weak sense or in the
sense of distributions, a notion to be clarified below.

5.4 Singular distributions
The Dirac é-distribution serves as an excellent example of a distribution that is not
regular, that is not confined to the class of ordinary regular functions, but instead it is
a member of the class of generalized functions (Gel’fand and Shilov, 1964). This Dirac
d-distribution is implicitly defined by the linear functional on D,

s

(6,9) = ¢(0), (5.10)

where the quantity on the left hand side has only been given a meaning by virtue of
the right hand side. A close inspection of this definition reveals that this functional is
continuous {Zemanian, 1965). It is also evident that it is impossible to link the definition
in equation (5.10) to that of a locally integrable function. Because, in that case the Dirac
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d-distribution would have to comply to the local integrability condition and this would
have yielded - as a consequence Lebesgue’s integration theory — a convergence to zero
everywhere as the support of the test function is approaching zero, o | 0. Evidently
this observation is in contradiction with the behaviour for the §-distribution as defined
in equation (5.10) and therefore it is argued that the §-distribution is mot a regular
distribution. To summarize it is stated that all distributions that are not regular are
singular distributions or generalized functions, where the term generalized refers to the
notion that D' can accommodate a wider class of objects than the class of conventional
functions can (Schwartz, 1957; Gel'fand and Shilov, 1964; Zemanian, 1965; Strichartz,
1994).

The best way to illustrate the rather peculiar properties of the Dirac d-distribution and
its derivatives® is to regard their construction by means of a limiting procedure generated
by a sequence of regular functions that converges, in the sense of distributions, to the
-distribution, or its derivatives, as the limit o | 0 is being taken. While composing such
a converging sequence, also known as a delta convergent sequence, there are only two
conditions to be met. Following Gel’fand and Shilov (1964) these conditions are

o For any A > 0 and |a| < M and [b] < M, the quantity
b
[ folaraa

must be bounded by a constant independent of a,b or ¢, only depending on M.

¢ For any fixed non-vanishing a and b one must have

b N
. 0 for a<b<0 A O0<a<hb
E?ol/a f(,(.x)dxm{ 1 for a<0<b.

Obviously, the examples

L for0 <z <o,
filz,o) = {© (5.11)
0 otherwise,
1 &x
falz,0) = ;F(m)e""?, z>0 (5.12)
1sin(L)
filw,0) = e (5.13)
1 =y
filz,0) = S (), (5.14)

4Later to be defined in a more formal manner in section 5.5.
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where I'(z) is the gamma function defined by

“+o0
/ y ey for x>0,
[{z) =& Jo

0 otherwise,
meet these requirements. Indeed it can be shown that - irrespective of the details of the =
regular functions — the following limit holds, lim, o fi{x) = 0(z) Vi=1...4. ‘

Invocation of a delta convergent sequence, see the examples in equation (5.11)-(5.14) into
the definition of a regular distribution,
00
(filz,0),p(x)) = / filz, 0)p()de, (5.16)

— 00

while taking the limit of ¢ towards zero finally yields

>

+oo o
lim (fi(z, o), ¢(x)) = lim / 6i(z, oYo(x)dx = p(0). (5.17) o

o—0 o0 J o
By way of this limiting procedure one has been able to define the Dirac §-distribution
as a limiting form of a regular distribution. This method - based on the construction of
a converging sequence — is not limited to the é-distribution but also allows for a similar
definition for its derivatives via the differentiation of the elements in the Delta conver-
gence sequence towards x. Since this approach has not been trivial it is understandable
that reversing the argument of equation (5.10) to

o0 s
©(0) = / §a)ypl(x)de. (5.18)
—00
cannot be assigned any meaning in the conventional sense of functions since the right-
hand side constitutes an improper integral. With other words the d-distribution can not
be considered as an ordinary function, a regular distribution. On the contrary it should
be interpreted either symbolically or as a limiting procedure converging, in a weak sense
or in the sense of distribution, to the é-distribution. So, in a way, this type of definition
opens the way to define certain manipulations on these constructs that are formally only
valid for ordinary functions.

e

)

To conclude this rather informal section on the definition of singular distributions I would
like to express another way of looking at the non triviality of the J-distribution and its
derivatives. This can be done in the context of Lebesgue integration theory which states
that it can not discern “functions” of measure zero, functions the support of which is
confined to a single point. So, in effect, the singular distribution has to be measured by a
proper test function. This observation corresponds to the operation of effectively blurring
(thickening) the singularity and thereby giving it a meaning, making it an observable.

e
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Of course, certain conditions, such as continuity in case of the d-distribution, has to be
imposed on the test functions in order to give the singular distributions a meaning. Such
an observation calls for the definition of functional spaces which admit a certain irregular
behaviour of the distribution. Before going into detail on these aspects I would like to
review a somewhat larger class of singularities first, followed by a discussion on how to
formally define operations on them.

5.4.1 Algebraic singularities, Hadamard’s finite part and regularization

One of the main motivations of distribution theory is that it allows one to deal with
“functions” containing singularities. In words: “e singularity can be defined as a point
at which the derivative of a given function of .a complex variable does not exist but every
neighbourhood of which contains points for which the derivative exists” (Webster, 1988).
A function is singular when it contains a singular point and this results in a breakdown
of the expansion into a Taylor series, i.e. the function contains an “edge”, a point of rapid
variation.

The only singular distributions (functionals) - a terminology more appropriate than
that of singular functions — reviewed so far were the d-distribution and its derivatives.
In this section I will present another type of singular distributions namely “functions”
with algebraic singularities or distributions generated by Hadamard’s “finite part” of an
algebraically®, divergent integral, the so-called pseudo functions (Zemanian, 1965).

Consider the category of functions the derivative of which contains a singularity that
does not grow faster — when the singular point is being approached — as the reciprocal
of a polynomial of arbitrary order. Due to Hadamard it is then possible to associate a
singular distribution to these non-integrable singularities®, singularities which cause the
integral,

+00
/’ F@ple)dz,

to diverge as x approaches the singular point of f in supp . The crux of this method,
also called a regularization by Gel’fand and Shilov (1964), is simple. It just defines a
distribution f € D’ such that for all ¢ € D, vanishing in the neighbourhood of the
singularity, f coincides with f(z) everywhere except at the abscissa of the singularity, as

« will be explained later.

The afore mentioned algebraic type of singularities naturally arises when the derivatives

of

0 z2<0

PP ~-1<a<0 (5.19)

ﬂmzmgz{

5Notice that the pseudo functions are generally not limited to this algebraic type of singularities.
%S0, in effect, this is a reflection of the divergence for the derivative of the original function.
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are carefully analyzed. Despite the fact that this function is locally integrable, f(z) €
Li,., its ordinary first derivative, f'(x) = az®!, is not. In this case the now divergent
integral,

+-00
/ az® Lo(r)d {(5.20)
0

needs to be regularized and that can be accomplished by Hadamard’s definition, see
Gel'fand and Shilov (1964), Zemanian (1963), of the “finite part”, or the “principal

value” (Dautray and Lions, 1988; Duistermaat, 1993),

00

(Prs.0) 2P

400
ax® ty(r)dr £ / azx® Ho(x) - o(0)]dz,
0 0

(5.21)

where Pff refers to the pseudofunction f rather than to the ordinary function f(x)
and FP refers to taking the “finite part”. Equation (5.21) actually defines the desired
rule giving the divergent integral in equation (5.20) a meaning. In fact this rule, this
functional, boils down to replacing ¢(x) by ¢(z) — p(0) where ¢(0) compensates for the
divergence at = = 0, without affecting its behaviour at infinity.

In short, the proposed method allows for the definition of a functional, f' = (,vxi‘f"l,
to be associated with the diverging integral yielded by the ordinary derivative of the
function f(z). So, in a way, it extends the admissible range for « in equation (5.19) to
—2 < a < —1. This extension can readily be pushed even further leading to,

wnﬂl

@ﬁwéAmWWW“WM”W“F@_U

"1 (0)]de, (5.22)

where the allowable range for the o is now —n —~ 1 < a < —n.

Let me conclude this section by defining the important normalized generalized functions
fas

1
———g% @ non-integer
2= Tla+1) F (5.23)
S0 o =1, [ integer
with
0 2<90
o = 5.24
L { 2% >0 () )

and where the 5 refers to the [*"-order derivative of the é-distribution taken in the
sense of distributions. Finally note that the Pf has been omitted for convenience.

g,
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5.5 Definition of some elementary operations on distributions

Up-to this point two fundamentally different convergence mechanisms have been used.
First of all it was shown that it is possible to construct a sequence of test functions
untformly converging to a test function that approximates a continuous compact support
function, an ordinary function, up to arbitrary accuracy. On the other hand it was also
shown that it is possible to construct a sequence of test functions point wise converging
to a singular distribution, a generalized function, f. This latter convergence refers to the
notion that the distribution f is being constructed as a lmiting procedure on a sequence
{0n 3., yielding the sequence” {{p,, $) 13, converging to (f, #), with both ¢, ¢ € D.

The afore mentioned point wise convergence to a singular distribution has the advantage
that it allows for an elegant definition of certain elementary operations on these singular

* distributions. Such an approach necessitates the introduction of the adjoint identity

relating two operators 7 and I in the following way

00 +o0

Tz = [ s@Upiads  (6529)

o =00 -0

where ¢, ¢ € D and where T symbolizes the operator of interest whereas its adjoint, U,

~ is an operator equalizing the left and right hand sides of equation (5.25).

In this way one has, via the proxy of the adjoint operator, circumvented the definition
of the operations directly on the distribution f itself. But instead it is implicitly defined
by means of the adjoint operator I{, acting on the vector space of test functions ¢ € D.
Of course, in the formulation it is tacitly assumed that the operator If exists and has a
meaning. So the whole procedure corresponds to finding the adjoint operator satisfying
the identity (T{f}, ) = (f,U{w}), where the functional f has to be interpreted as the
result of a limiting sequence converging to f, i.e.

Jim (T{pn}, ) = lim (pn,U{e}), (5.26)
or
(T{r} o) = (£,U{e}). (5.27)

A careful examination of the definition of the operator 7 via the proxy I reveals the
important implication that the adjoint operator’s action must yield a solution being an
element of D too, hence U{p} € D! Otherwise, it will not be possible to define the
operator 7 consistently and meaningfully. Despite this constraint, restricting the scope
for the permissible operations, it is still possible to define certain operations although no
standard recipe exists to find the adjoint operator U/ in terms of 7. If it is possible to

"Note that a direct relation exists between this sequence and the delta convergent sequence discussed
in section 5.4.
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find U, then the operation 7{f} is defined by equation (5.27).
As a first example take 7 to be the translation operator, i.e. Toih(z) = (z — a)b.
Substitution into equation (5.25) yields

400 +00 '
Tds@eede = [ i - aele)

—00 - 00

+o00
= [ @+

too
= [ | (@) T ~afp(z)}da. (5.28)
So U, =T _, and from this
(flz —a), p(2)) = (f(2), oz + a)) (5.29)

is obtained. As a second example take 7 to be the derivative operator d/dz, T {1 }{(z) =
dep(z)/de. Again substitution in equation (5.25) gives

/m C p(@)) el /mmd (2)d (5.30)
e YN e ) —— . . .

. da:?/ x) ) ele)de . T d:cL'D z)dz, 5]

yvielding, & = —T. This last equation is easily checked by partial integration and taking

into account that the stock term vanishes since both ¢ and ¢ are of compact support and
infinitely smooth, also at the endpoints of the support, hence v, ¢ € D. So the derivative
of a distribution is given by

d . d -
<a;f7 @)y = ~(/, é;@)- (5.31)
Now by taking again for f the §-distribution one finds

d d
<&}j‘5, @) = —{9, a‘;@) = - (0), (5.32)

where (1) stands for the first derivative and where 8, 8(1) € 7', This operation can readily
be extended to the k™ derivative of a distribution and equation (5.31) generalizes in that
case to

d* oy dF (
(ag;f; ) = (=1, a}/‘,;@f (5.33)

As a next example consider the multiplication of a distribution by a function ¢{z). From
equation (5.25) it is obvious that 7 = U/ = ¢(z). However, care must be taken that

81 use here 7 for the translation operator rather than S as defined in chapter 3 to avoid confusion
with the Schwartz class S.

i)

i
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" g(a)p(x) € D whenever ¢ € D. This means that q(z) should be infinitely differentiable®.
If g(x) satisfies this condition then

(af, ) = {f,q9)- (5.34)

Note that if ¢ would be discontinuous at & = 0 and if f is the é-distribution, then the
product ¢ is not defined. This is because (¢é, ¢} = (4, gp) is not defined since qp & D.

" Take g € C*° and f = 6, then

(@0, 0) = (81U, qp)
—{8, (qp)™M)
= —(6,¢We + ')
= —¢"(0)p(0) - ¢(0)' " (0)
= (~q"(0)d + q(0)6, ). (5.35)

So g6 = ¢!V (0)6+¢(0)6") and not ¢'1(0)d as one would maybe expect at first glance.
" As a last example of this section, before going into Fourier transforms, the convolution of
two distributions is considered. It must be noted that the convolution of two distributions
of D', is only possible if at least one of the distributions is of bounded support, or if both
" distributions have supports bounded on the left, or if both distributions have supports
bounded on the right.

For two continuous and integrable functions f and ¢ the convolution produces a new

" function h{x), which is defined by

-+00

W) = (frg)@) = [ 1@gta - ) (5.36)

—00

Now, letting ¢ € D and f and g still continuous functions, consider

+oc pt-o00
(h,o)y ={(fxg,p) = /_ / fz"glz — 2" Yda' o(x)dz. (5.37)

Change of variables yields

+oc +ao
(fxg,0) = / / (x)g(z" Yo(x + 2')dz'dz
= (f(z),{g(z"), p(x + 2))). (5.38)

Under the restrictions for the distributions made above, equation (5.38) can be used to
define the convolution of two distributions. Taking g = § gives

(fx8,0) = (f(2),{6(2"), oz +2"))) = (f(2), p(2))- (5.39)

9This is the case when a test function ¢ € D is used and can, to certain extent, be relaxed by choosing

« a veclor space of test functions being at least one time differentiable. That will imply that ¢ has to be

one time differentiable also.
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So the convolution of a distribution with the d-distribution gives the distribution again,
Taking g = 6%, s0 g is the k'™ derivative of the d-distribution, gives a very interesting
result,

(f8®,0) = (f(@), (W (), p(x +2)))
= {f(2), (0(2"), (=)W (5 + 2')))
(S (=)
= (f™ o). (5.40)

So taking the k™ derivative of a distribution is the same as convolving the distribution
with the &*® derivative of the é-distribution.

i
i

i

5.6 The Schwartz class S

It is not possible to define the Fourier transform for all distributions of D', but it is
possible to do this for a subset of the distributions of 7. This subset is called the
space of tempered distributions or distributions of slow growth and is denoted by &'.
Associated with &' is a class of test functions which are called test functions of rapid
descent. This space of test functions is dencted by S and is called the Schwartz class.
The test functions of S are called of rapid descent because they must satisfy

o) < Mpiz|™™ as z— o0 5.41
()| || ;

with M,, a constant which may depend onn and n = 1,2,3,.... So the test functions of
& do not necessarily have to be of compact support. A test function ¢ is said to belong
to S if ¢ € C°° and if it and all its derivatives are of rapid descent. The test functions
of D clearly belong to S, so D C 8. On the other hand, the distributions which are in
S’ are certainly in D' and so 8’ C D'. Therefore the operations on distributions of D',
which were defined in the previous section, can also be defined for the distributions of
S

An example of a test function of the Schwartz class is the Gaussian
Pa) = —me™ = fy(x,1). (5.42)

The é-distribution is an example of a distribution which belongs to &'. And e*” is an
example of a distribution belonging to D' but not to &'. The reason why & is useful
in studying the Fourier transform, is that the Fourier transform maps S onto itself, i.e.
¢ € SY whenever p € S and vice versa. This will not be proved, and for proofs the
reader is referred to Zemanian (1965) and Schwartz (1959).

101y this chapter 1 denote the Fourier transform by a hat above the variable. Furthermore, for the
frequency I will use w since the independent variables do not correspond to physical quantities here, i.e.
x does not necessarily mean a spatial coordinate

s

o

sy
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7" 5.6.1 The Fourier transform of tempered distributions

As was already mentioned, if ¢ € & then ¢ € S and vice versa. So using the adjoint

- identity of equation (5.25),

o

+00 +o0
[ Tw@ewis = [ s@ue)e)s, (5.43)
and taking T = F,
+oo 400 :
[ e = [ ueute)eis, (549

+00
" ig obtained. Substituting P{w) = / P(x)e "“*dz and interchanging the order of

oo
integration gives Parseval’s equation

00 +00 . ptoo )
/ Pwiplw)dw = / P(x)e " dre(w)dw

p(w)e T dwdz

+00
_ / b(a)p(a)dz. (5.45)

i
—
g *

2
<
=
P
8

This shows that I/ = F. It is clear that whenever ¢ € S, then U{p} = ¢ € S. So this
allows to define the Fourier transform of any distribution of slow growth as

(f,0) = (£,0). (5.46)

Using the same arguments it is also possible to define the inverse Fourier transform of
distributions f € & as

(F7Yrhe) = (7 e}, (5.47)

which makes again sense because if ¢ € S, then F~'{p} € S.

A remark must be made why it is not possible to define the Fourier transform for all
distributions of 7. This is because the Fourier transform of the test functions ¢ of D are
not in D, i.e. the Fourier transform of a infinitely smooth function of compact support
is not an infinitely smooth function of compact support. The only test function of D
that has a Fourier transform in D is the test function ¢ = 0. Since F{p} ¢ D and
F ¢} ¢ D when ¢ € D, it is not possible to give a sense to the right hand sides of
equations (5.46) and (5.47) for distributions of D’ (Zemanian, 1965).

This section is concluded with a few examples. Consider the Fourier transform of the
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kth derivative of the shifted 8-distribution F{6®)(x — a)}. This yields

(F{IoW (@ - a)}w), pw) = (M@ ~a), ()
= (0@ —a), (-1 ¢" () .
- (3@ (-1 z + )
= (-1f"(a), (5.48) =
where (%) means the k' derivative of ¢ and not the Fourier transform of the k" deriva-
tive of p, so P = (F{p})® and not F{p'®'}. The last term of equation (5.48) becomes ...
koa(k) 8 dk oo —wr
(=D (@) = (-1) [ai;‘z: -/~30 plw)e™ " dw . n
oo ok )
= / (iw)" plw)e "dw.
—o0
= ((w)fe ™% p(w)). (5.49) ==
This shows that
FW (@ - a)} = (iw)Fe ™, (5.50)
which has the following special cascs s
Fi} = 1, (5.51)
F{d(x —a)} = e ™, (5.52) e
FLEWY = (iw)h, (5.53)
In a similar way it can be shown that ™
F{1} = 2ué(w), (5.54)
FleTi} = 2x6(w+a), (5.55) 2
Flan)¥t = (~1)F2m6W (), (5.56)
F{iz)e @} = (=DF2r6™(w + a). (5.57)

e

It is a well known fact that the convolution of two functions is a multiplication in the
Fourier domain. This is a property which also holds for two distributions if at least one

of them is of compact support. So if at least one of the distributions f, g is of compact
support, then

F{f =g} =F{F}1F{g}- (5.58)
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"7 5.7 Regularization

s

5.7.1 Regularization by convolution

~ In the example of section 5.2, the temperature in a room was measured with a thermome-

7

ter. This was done by placing the bulb-of the thermometer at the “point” x. Suppose
now that the temperature depending on the space variable z is of interest and not just
the temperature at one point. Obviously, the way to follow is to measure the temperature
at every point z. This gives the measured temperature as a function of . By placing
the bulb of the thermometer at every point x, what is actually done is a convolution of

" the temperature distribution f with the test function . So the measured temperature

—

in the room is given by
W) = (F)pta =N = [ f@eta o', (5.5

Here h represents the measured quantity as function of z, f is the unknown process and
 is the measuring device, which is shifted along the spatial coordinate. It is possible
to prove that the function h(z) of equation (5.59) is an infinitely smooth function, so
it has infinitely many derivatives. This results in the next theorem which is taken from

“* Zemanian (1965):

Theorem 5.1: Regularization with a test function (Zemanian, 1965)

- Let f bein D’ and let ¢ be in D. Then h = f ¢ is an ordinary function which is given

by
h(z) = {f(z"), p(z — 2')). (5.60)
Moreover, h(z) is infinitely smooth and
dk ' ak i .
—eh(@) = (&), pppla — o). (5.61)

A gimilar theorem can be given for f € & and ¢ € S. Theorem 5.1 shows that a
convolution is a smoothing process and so describing measuring in terms of distributions
and test functions shows that a measurement is a smoothed representation of the quantity
under investigation. Regularizing the §-distribution yields

hi(z) = (8(z"), p(z — 2)) = p(x), (5.62)

where the property (8(z — a), ¢(z)) = (§(z), ¢(z + a)) = ¢(a) has been used. Here ¢(z)
can be the Gaussian or the test function defined by equation (5.3) or any other test
function. These functions can be regarded as a smoothed version or an approximation of

. the d-distribution. In fact, they provide a measurement of the §-distribution by giving

the distribution of support zerc a thickness. Note that the d-distribution acts as a
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unity operator for convolution. Analogously, the derivative of the d-distribution can be _

regularized, giving
ha(z) = (OW(), ez —2")
9 ,
= (5(97’),‘““53"37 (@ —2'))

(5(&), ol — ) = 1 o). (5.6

So hy = hgl), which was already expected, since equation (5.40) showed that taking
the derivative is the same as a convolution with the derivative of the §-distribution.

Equation (5.63) shows that a smoothed version of the derivative of the §-distribution is .

given by the derivative of the Gaussian. So, in a sense, the derivative of the Gaussian

can be seen as an approximation of the derivative of the §-distribution. But before going o

further into this matter, the meaning of regularization by convolution is viewed in the ‘

Fourier domain.

5.7.2 Smoothness and rapid descent

Consider an integrable function f(z) which has also an integrable derivative. This func-
tion can be written as

+oo )
flz) = 51%1]; f(w)e *dw. (5.64)

The requirements on f(z) demand that f(z) is bounded. This means that

|f(2)] < M < co. (5.65)

When substituting this in equation (5.64), it is seen that equation (5.65) is certainly
satisfied if

/ ™ Fw)ldw < oo, (5.66)

00

This last equation will only hold if f(w) goes fast enough to zero when w — Foo.

Similarly, if f(z) has N continuous derivatives, which are all integrable, then

+00
/ lw? f(w)|dw < oo, (5.67)
-0

which only holds when w¥ f(w) goes fast enough to zerc for w — oo. This shows
that there is a connection between the differentiability of a function and the decay of its
Fourier transform. And vice versa, there is a connection between the decay of a function
snd the smoothness of its Fourier transform. As is seen above, the more continuous

st
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~ derivatives f(z) has, the faster the decay of its Fourier transform. More precisely, if f

has derivatives up to IV that are all integrable, then f decreases at infinity as w™N. And
of course, if f has derivatives up to N that are all integrable, then f decreases at infinity

" as ™V, expressing the intrinsic duality of the Fourier transform. Note, however, that

the reverse of these arguments need not to be true. In fact, it can be proved that if f (f)
decreases at infinity like 27N (w™N) then f (f) has continuous and bounded derivatives

~ of all orders up to N — 1 (Strichartz, 1994).

s

Because the Fourier transform of distributions has been defined, it is also possible that
the Fourier transform does not decrease at infinity, but increases. An example is the
Nt derivative of the d-distribution, which equals (jw)V (sec equation (5.53)). This
can be interpreted that the N*® derivative of the J-distribution has no smoothness at
all. So when the Fourier transform of a function increases for w — oo, it is not
smooth. Knowing that smoothness in the place domain corresponds to decay in the
Fourier domain, consider again the process of convolution. The test functions of D
and S are infinitely smooth, so their Fourier transforms decay faster than any inverse

- polynomial. This means that multiplying ¢, when ¢ € S or ¢ € D, with the Fourier

transform f of any distribution of &', gives a function in the Fourier domain which
still decays faster than any inverse polynomial. This means that the inverse Fourier
transform of f  is infinitely smooth, or f*y is infinitely smooth, what was already stated
in theorem 5.1. The convolution of a distribution with a test function can therefore be
viewed as making a band-limited approximation of the distribution. Of course, the higher

“ the cut-off frequency of ¢(w), i.e. the frequency where @(w) is going to decay fast, the

better the approximation becomes. The higher the cut-off frequency of @(w) means that
@(x) becomes more concentrated.

* Take for example the Gaussian function fi(z, o) of equation (5.14). If o — 0 then fi(z, o)

approximates the §-distribution. The function fi(z, o) becomes concentrated around 0
when o — 0, but its Fourier transform is spread out over the frequency axis, and it ap-
proximates a flat spectrum. How well does the Gaussian approximate the §-distribution?
Well, it depends on the scale where it is examined. In the next chapter it will be shown
that a Gaussian of a certain scale oy behaves as an infinitely smooth function if it is
examined for scales smaller than g, but that it behaves as a d-distribution for scales
larger than og. So for large scales this Gaussian behaves as a singular distribution.

5.8 Fractional integration and differentiation

Before shifting attention to providing definitions allowing for a categorization of the
degree of regularity of a functional it is beneficial to quickly review the operation of
fractional integration and differentiation. This generalized operation coined by Riesz

_and others (Mandelbrot, 1982; le Méhauté, 1991; Duistermaat, 1993) will come at hand

since it naturally emerges in fractal theory. For example it is used in chapter 7 to define
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fractional Brownian motion'! or fractional Levy motion and in chapter 7 where the
fractional integration is used to smooth the universal multifractal density.

Consider, following Duistermaat (1993), the space of distributions bounded from the left,
i.e. the space D'(IR),. This space consists of those distributions the support of which is |
given by supp [z, 0), with # € R and # # —oo. Given this condition the convolution for
u,v € D'(R); can be given a meaning yielding (u * v)(z) € D'(R) (Zemanian, 1965).
Define L

L (frage (5.68)

0 = DA =T @ 2 5 | -

For o > 0 A « # Z+ D*{-} denotes the ot order fractional derivative, whereas for ==
a <0 A a#Z I %} denotes the a'® order fractional integration. For a = 0,

S

operators D*{-} and Z7*{-} become ordinary N*" order derivatives or primitives when
N =a € ZT or when N = o € Z~ respectively. Also note that the convolution kernel
in the definition of these operations is strongly related to the singular distributions with
algebraic singularities defined in section 5.4.1. In fact the type of generalized functions
generated by these algebraic singularities are known as homogeneous functions of degree
«a and they adhere to the dilatation equation

f(o2) = 0° () (5.60)

or equivalently
(F@)p(2)) = o™ (f (@), (). (5:10) =

The order o homogeneous functions, also known as the order a tempered distributions,

constitute a group since they support the identity operator, the inverse operator and a ==

. . 3 3
“chain” rule, i.e. ¢ * 2, = :z:f” and where

d . e
'ggﬂl+‘ Lo .’L’ﬁ_ (571) G
So for example,
_ d d .
S i (5:72)

s

where 8 is the Heaviside function being a homogeneous function of order 0 and where
the §-distribution is a homogeneous function of order —1.

11 Note that in this definition the fractional integration/differentiation is done in the sense of distribu- e
tions, via the first increment or a test function of mean zero, because the measure d B(z) is non-integrable.

]
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5.9 Categorizing singularities

Generalized functions, functions containing a singularity, can be categorized by their

" (ir)regularity. The degree of regularity is expressed by the Lipschitz or Hoélder exponent!?
g

which characterizes either the local regularity, the Holder exponent at a point, z = xq, or
the global regularity, uniform regularity, denoted by the dominating, the smallest, Holder
exponent to be associated with the closed interval z € (a,b). The discussion will start
by considering functionals which are positive Hoélder, a > 0, followed by an extension
to generalized functions, the tempered distributions, to which negative, a < 0, Holder
exponents can be associated.

Now what does it mean when a function is Holder @ with & > 07 It means that when
n < a <+ 1 the function is n times differentiable but not {(n + 1) times differentiable,

" ie. the (n+ 1) does not exist because it is not bounded. In that case the function

is singular in its n'" derivative and the derivative can be only be taken in the sense of

distributions. Now let me reiterate the formal definition for Holder regularity.

)

s

s

Definition 5.2: Regularity (Mallat and Hwang, 1992)

e Let n be a positive integer such that n < a < n+ 1. A function f(z) has a local
Hélder exponent « at xo if and only if there exist two constants C' and hg > 0 and
a polynomial of order n, P, (z), such that for h < hg

[f(zo + h) — P, (R)| < C|h|*. (5.73)

o The function f(z) has a global Holder exponent « on the interval (a, b) if and only
if there is a constant C and there is a polynomial of order n, P,(h), such that
equation (5.73) is satisfied if xo + h € (a,b).

o The Holder regularity of f(z) at xq is the superior bound of all values a such that
f(z) is Hélder o at zg.

o The function f(z) is singular at xq if it has a Holder exponent o < 1 at xg.

From the last item of this definition it is clear that the n**-order derivative of a functional

being Hélder o, with n < a < n+ 1, is singular because the (n + 1)'" derivative diverges
but when this derivative is bounded then is the n'® derivative of f is regular.

Integrating the function f(z) increases the Holder exponent by 1, i.e.

O Hf(x): am-a+l at z=um , (5.74)

2n literature either one of these two names are used but it may be fair to say that the Lipschitz
exponent refers to integer values whereas the Hélder exponent refers to non-integer values. In this thesis
I will use the Holder exponent.
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where 07! denotes the anti-derivative. However, the opposite, differentiating f, does not i
necessarily lead to a decrease by one of the local Holder exponent, see Mallat and Hwang *
(1992), where the authors attribute this observation to oscillatory phenomena that can
also yield the emergence of a singularity.

On the other hand, in case a > 1 and non-integer, it is possible to appoint a global Holder '
exponent a to the non-vanishing open interval = € (a, b), if and only if its derivative is
uniformly Holder o — 1 on the same interval. As a consequence of the “if and only if” it
is possible to reverse the argument and that results in the formulation of definition 5.3
where the range of Hlder exponents is extended to negative values.

Definition 5.3: Negative Holder exponents(Mallat and Hwang, 1992)

Let f(x) be a distribution of finite order, a tempered distribution see sections 5.6 and 5.8.
Let « be a real non-integer number and [a, b] a compact interval of R. The distribution
f(z) is said to have a global Holder exponent « on (a, b), if and only if its primitive has
a global Holder exponent « -+ 1 on (a, b).

In this definition the term function has intendedly been replaced by that of a distribution
because for a < 0 the concept of a function is not longer valid because of the divergence ...
at the singular point z = 2. In fact the distribution refers to Hadamard’s finite part
as introduced in section 5.4.1. Unfortunately it is not possible to provide a similar
definition for local negative Holder exponents or to functionals of integer order. This
latter category necessitates a more sophisticated theory as proposed by Bony (1983) and =
Jaffard (1991) who are able to make an extension to point wise negative Holder exponents o
using microlocalization theory. This advanced theory is, however, beyond the scope of
this thesis. Despite this deviancy it is possible to come up with an alternative definition
for isolated singularities with negative exponents.

Definition 5.4: Isolated negative Hoélder exponents
A distribution f(x) is said to have an isolated singularity with Holder exponent « at zo,
if and only if f(x) has a global Hélder exponent « over an interval {a, b}, with xo € (a,b),

and if f(z) has a global Hélder exponent 1 over any open subinterval (a,b) that does not
include xg.

Application of definitions 5.2 and 5.4 to generalized function .'Jz:jr'1 , i.e. to the ¢-distribution
leads to the reasoning that the second primitive of m;l is of global Holder o = 1 in the

one can then, in the neighbourhood of z = 0, appoint a @ = —1 as a uniform Holder o
exponent to the d-distribution. In chapter 8 I will pay extensively attention to the actual
measurement, of Holder exponents by means of the continuous wavelet transform. Finally
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note that there exists a direct relationship between the order of a homogeneous function,
see section 5.8, and the Holder regularity.

510 Concluding remarks

In this chapter an attempt has been made to lay down the basic framework of distri-

" butions. This attempt is, however, unfortunately limited in scope. The most important

action taken was the replacement of the conventional concept of a function by that of a
functional. This latter concept is, by way of its construction, not only capable to relate

“ mathematical operations to physical measurements but it also provides the formalism

in which solutions of particular systems of (partial) differential equations can be given
a meaning (Zemanian, 1965). The hyperbolic system of first order partial differential

™ equations denoting the wave equation forms an example.

)

The established link between the mathematics and the physics can at best be summarized
in the following way

functional <> physical variable
test function <> measurement device

tested functional <« outcome measurement.

where the inevitable physical bound on the obtainable spatial-dynamic scale range is

* incorporated by the concept of the test function.

But above all distribution theory postulates a methodology on how to deal with certain
objects that do not have a meaning in the classical mathematical sense. The distribu-
tional interpretation roughly boils down to interpreting mathematical operations in the
sense of sequences which embody successive approximations, without ever reaching the
“exact” approximation, to the operation which originally had an exact meaning in the

conventional mathematics. It is this way of “sequence thinking” that also reveals the

intrinsic duality existing in the distribution theory. This duality refers to the notion that
the test function themselves can, depending on how far they proceeded down the line
of the pointwise converging sequence, also be interpreted as singular distributions. This
far reaching observation is a direct consequence of the intrinsic ambiguity suffered by
the obgerving test function, which, by way of its definition, must have of larger support,

“ Le. it must have proceeded less far in the sequence so that it “sees” the “singular” other

test function, i.e. it sees it as being of measure zero. In this way the observing test
function can not discern the other “test” function from say the singular d-distribution.

" This latter observation can be attributed to the fact that for example a Gaussian shaped

test function can be seen as an element of the Delta convergent sequence, it constitutes
a coarse approximation to the §-distribution.
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Chapter 6

Selected topics on deterministic mono- and
multifractals

6.1 Introduction

In order to understand the basic ideas behind the concept of mono- /multifractals T will
start the discussion by reviewing the iterative construction and properties of two simple
deterministic fractal sets. At first the triadic Cantor Set will be examined followed by a
discussion on a binomial multifractal. The first set is an example of a monofractal - a
homogeneous fractal characterized by one single scaling exponent (Mandelbrot, 1982)
whereas the latter constitutes a generalization to a multifractal set, being inhomogeneous
and consisting of a hierarchy of scaling exponents, to be captured by the singularity spec-
trum (Mandelbrot, 1974; Siebesma, 1989; le Méhauté, 1991; Lichtenberg and Lieberman,
1992; Bacry et al., 1993; Holschneider, 1995).

6.2 A monofractal example, definition of the fractal dimension

The first example of generating a fractal set is depicted in figure 6.1 where I included the
construction mechanism for the triadic Cantor Set (Mandelbrot, 1982; Siebesma, 1989).
The iteration starts with an initiator — a closed interval Cp = [0, 1] in this case — which
is cut! into three equal pieces and where the middle part is deleted. This first iteration

" Cy ~ the generator - is then repeated on the two remaining pieces. While proceeding the

iteration procedure each line segment will be divided by two as a consequence of the action
of the generator and finally, after repeating the reductions ad infinitum, the triadic Cantor
set is being defined as the limit C' = limy_,o Cg. Now clearly, by construction, each piece
of the set C can be acquired from the set C; after applying the proper enlargement, when
I > k, or reduction, when I < k, to this set C;. This apparent invariance to dilatations, the

! Note that this is a singular operation.
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Figure 6.1 FEzample of the iterative generation of the triadic Cantor Set. Below I depicted the
“running” sum over the singular measure on which I supplemented a unit density,
i.€. fow dp(z) where the support of the measure is given by the above Cantor sei.

invariance to scale transformations, is known as the self-simiélarity property expressing a
scale-invariance which is in one way or another characteristic for all fractal structures.

As a result of the above construction mechanism, see figure 6.1, also known as a cascade
process, one obtains an irregular, singular, set of points from the initial regular, smooth,
one-dimensional unit length line segment. The number of points — the length of the
segments vanishes in the limit — is infinite and they seem to span a structure that has
a dimension somewhere in between that of a line and that of a point. This intuitive
observation has been given a more precise meaning by the introduction of the fractal
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dimension — a generalization of the metric dimension being used to characterize smooth
structures — which can at best characterize complex sets such as the Cantor set.

Definition 6.1: Fractal box-dimension or capacity (Kolmogorov, 1941; Mandelbrot,

1974, 1982)
The box dimension of a set A C R? is given by,
. logN,
A Jim ——Z% 1
Dp 210 logo—1’ (6.1)

where N, is the minimum number of p-dimensional o-sized neighbourhoods needed to
cover the set A. The parameter o refers to the size of the boxes, the length of their
{4 3
‘gauge”.

Application of this definition to smooth objects such as lines in R, surfaces in R? and

. volumes in R? leads to trivial values for the dimension Dg = 1,2,3 which exactly cor-

respond to the Euclidean dimension because the number N, is inversely proportional to
the o to the power 1,2,3, ie. N, x 67', N, « 0%, N, « o2, On the contrary,

.. application of this definition to the Cantor set reveals the interesting property that the

dimension is of non-integer value. This observation follows from the fact that one needs
N, = 27 line segments of size ¢ = (3)? to fully cover the set, resulting in a box-dimension
for the Cantor set that is given by,
log2' log2
Dp = lim —22 = 282 - 06309 .

i—oo logd?  log3d
In fact the box-dimension can be interpreted as an exponent expressing the amount of
information required to specify the set up-to a scale o, i.e. its complezity. The box-
dimension is a simplified form of the Hausdorff dimension.

Definition 6.2: Hausdorff dimension and Hausdorfl measure (Hausdorff, 1918; Man-

" delbrot, 1974, 1982)

Consider a covering of the subset A C RP by p-dimensional neighbourhoods of linear
size a;. The Hausdorff dimension dimy is the critical dimension for which the Hausdorff

= measure Hy(o) takes a finite value,

0 d> dimH,
Hy(o) 2 21113 infz of = finite d= d?mH, (6.2)
i () d < dimg,

. and where the infimum extends over all possible coverings subject to the constraint that

ag; < 0.
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Following (le Méhauté, 1991) one can, from the practical point of view issue the state-
ment: “ ..

proaches infinity that determines the fractal dimension, a property we shall meet when
studying physical problems ... 7, a statement with which I wholeheartedly agree.

So by this definition the integral

deimH(A) :Hd(o'), (6'3) ‘

. It is of course the way in which this upper-bound (in equation (6.2)) ap- s

has been given a meaning by the Hausdorff dimension dimp, i.e. it represents a finite

length.

6.3 A multifractal example, definition of the partition function, generalized dimen-
sions and the singularity spectrum

At this point it is beneficial to generalize the class of homogeneous monofractals to the

S

much richer class of multifractals which display a highly irregular, intermittent behaviour

(Mandelbrot, 1974; Parisi and Frisch, 1985). Again start with the interval [0 1] but now
with a density p(z) superimposed on it, yielding a total mass fo (z)dx = jg dp(r) =1,

where u(z) is the measure. Let the generator consist of a division of the unit interval into

two segments, followed by a redistribution of the mass — under the condition that the e

total mass is preserved [du(z) = 1 — across the two reduced line segments, according
to pr = 0.25 for the first and p; = 0.75 for the second and with the normalization,
p1 + pp = 1. On its turn this procedure is also repeated ad infinitum to finally yield a
binomial multifractal measure?. By construction such a iterative process can be seen as
a multiplicative cascade in which the weights at the (k + 1)t iteration are the result of
successive multiplications by the multiplicative increments (by either p; or pp).

As for the initial definition of the box-dimension, describing monofractals such as the
triadic Cantor set, the above multifractal can also be characterized but now by an infinite
set of generalized dimensions.

Definition 6.3: Generalized or Renyi dimensions D, (Renyi, 1970; Mandelbrot, 1974;
Hentschel and Procaccia, 1983; Parisi and Frisch, 1985)

To define the generalized dimensions D, partition the measure using a grid with a lattice
constant o and subsequently introduce the multiscale partition function as

Zo(g) 2 Y uBs@) = ) pif, (6.4)

V€A Vz;CA

where p; = p[ B, (2:)] & J5, (e:) d1(%) is the total measure within the it box, at position

2These multifractals are examples of a so-called Baker’s map (Bacry et al., 1993; Holschneider, 1995).
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x; and of linear size . The set of generalized dimensions D, is then defined by,

. log Z, (‘1)
0D, 2 4 oTed) 5
(¢=1)Dy = 7(g) =lim logo (6.5)
implying a scaling behaviour for the partition function Z,(q), for small o,
Zy(g) o< ™ (6.6)

and where T{q) is the mass exponent function.

For the binomial multifractal — 1 = 1,2, see for its construction figure 6.2 — the partition
function for the &*" iteration is simply given by

Z g (q) = (0 + PD* = x(9)%, (6.7)

with x(g) being the generator, the partition function after the first iteration. Application

- of definition 6.3, yields for the generalized dimensions Dy,

(g~ 1)D, = —log, x(q) = —log,(p] + 1f), (6.8)

" which are ~ by nature of the self-similar construction ~ fully determined by the generator.

More generally — beyond the binomial case and optionally p-dimensional — a generator,
composed of b” boxes of linear size 5~ can be constructed where,

bp
X)) =>_pf, (6.9)

g1

and defines a generalized Cantor set embedded in p dimensions. Comparing the triadic
Cantor set with the binomial multifractal, see figure 6.2, shows that the latter displays a

“ highly intermittent, non-stationary, behaviour, a characteristic property of multifractal

measures where the scaling properties vary from location to location. This heterogeneity
makes it necessary to define a pointwise dimension or singularity ezponent a.

Definition 6.4: Local scaling exponent of a measure {Collet, 1986; Siebesma, 1989;
Bacry et al., 1993; Holschneider, 1995)

. The local scaling exponent or local fractal dimension of a measure u is defined as

log p( By (20))

on s (6.10)

alzg) & ﬁi% inf
T

where B, (xg) is a o-box centered at zy.

.. Now the interesting question arises whether the generalized dimensions provide informa-

tion on the distribution of the scaling exponents a.
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Figure 6.2 FEzample of the iterative generation of a binomial multifractal with the measures
set to p; = 0.25 and py = 0.75.

ey

Theorem 6.1: Singularity spectrum and generalized dimensions {Collet, 1986; Hol-
schneider, 1995)

The singularity spectrum and the generalized fractal dimensions are related via a Leg-
endre transform

L@ =0, 7@ =00-f0) ©11) -

For the proof of this theorem I would like to refer to Collet et al. (87) but instead I |
will follow Parisi and Frisch (1985) who give a rather intuitive derivation which links the
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singularity spectrum?® — expressing the distribution of the singularities - to the generalized
dimensions D, or mass exponent function 7(g).

For this purpose regard the distribution of a measure A by boxes of size 0. Let N,{a) be
the number of boxes the local scaling exponent of which corresponds to u[Bs{z)] o o
and where the scaling exponent varies over the range a to a + da. In this way Hausdorff
dimensions f{a) can be associated with the subsets A, C A according to

~log N, (a)

2 lim —2 L .
fe) ;fg logo (6.12)

" which is equivalent to the following scaling behaviour

N,(a) x o) o (6.13)

- Rewrite the partition function, see equation (6.4), in terms of the local scaling exponent

« and the singularity spectrum f(a) by summing over the subsets A, rather than over
A,

Zo@) =3 3 ulBa(@)) o [ 09 da, (6.14)

& $€Aa

i.e. summing over all boxes with singularities within the interval (o, @ + da) for varying
«. Using equation (6.5) and taking the limit for small o one can approximate the integral
of equation (6.14) by a saddle point approzimation. In this approximation the integral
is assumed to be dominated for small o by the singularities o for which the exponent
ga — f(a) is minimal, i.e.

Z,(q) x 09 H) = 57(@) (6.15)
... The minimal value of ga — {(a) is attained for those « for which ¢ — 8,f(a) = 0, conse-
quently '
g = qa—f(a)
6.16
A (6:16)
and conversely,
fle) = qa—7(qg)
6.17
o Z oo (617

“ These equations establish the relationship — via the Legendre transform - between the

generalized or Renyi dimensions D, to the singularity spectrum f{a). The singularity
spectrum can be formally defined by

3Also known as the scaling exponent function (Lichtenberg and Lieberman, 1992).
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Definition 6.5: Singularity spectrum of a measure {Collet, 1986; Parisi and Frisch,
1985; Bacry et al., 1993; Holschneider, 1995)
The singularity spectrum of a measure p(z) is the function f(a) such that

f(a) £ dimpg{z | p[Bs(2)] < 0|, o}, (6.18)

where dimy denotes the Hausdorff dimension and B, (z) is a o-box centered at x.

s

The parameter ¢ acts as a selector for the different singularities. For ¢ > 0 it hunts

for the strong singularities, i.e. the high density boxes, whereas for ¢ < 0 the weak
singularities, the boxes with low density, are emphasized. So in effect the set A, consisting
of intertwined fractal subsets A,, has been decomposed by this partition function.

For the rather simplistic example of the binomial multifractal it is straightforward to
derive an analytical expression for the mass exponent 7(g), the generalized dimensions
D, and the singularity spectrum f(a). The expression for the 7(¢) reads (recall (6.8))

. @)

7(q) = ~logo[p{ +p3l, Dy = =7 (6.19) —
and the singularity spectrum reads
f(a) = ~c(a) log; c(e) — (1 — c{a)) log, (1 — c()), (6.20)
with ¢(a) = (0 ~ omin)/(Cmax — Qmin) a0d Gmin = — 1082 P1, Omax = — 108y P2.

In figure 6.3 I have depicted plots of the generalized dimensions Dy, the mass exponent
7(g) and the corresponding singularity spectrum f(a) for the binomial fractal with py ==
0.25 and ps = 0.75. Inspection of the 7(¢) and D, curves shows that the (g — —o0)-
and (g — oo)-asymptotes correspond to the end points of the singularity spectrum f(a),

B

min = ~{0y7(@) }g—r00 = Doo and omax = ~0g{T(@) }gr~00 = D_oo for the strongest L

and weakest singularity respectively. The maximum for the f(a) spectrum is given by

f(a(g = 0)) = Dy and equals unity. This value corresponds to the fact that all boxes .
contain a singularity as the limit o | 0 is being approached, i.e. the probability of a box e

containing a singularity is one. As a consequence of the normalization, Jdu(z) =1, the
mass exponent for ¢ = 1 becomes, 7(1) = 0 and that allows one to find the information
dimension which is defined by D; £ f(a(q = 1)) = a(g = 1). The information dimension
specifies the subset, Ay(g=1) on which the measure is concentrated, carrying the measure.

6.4 Estimation of the 7(¢) function and the singularity spectrum f(a) by the method
of box-counting

Several different alternatives exist to estimate the mass exponent 7(¢) and the singularity

spectrum f(a) from sampled data. In this chapter I will only review the box-counting f
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Figure 6.3 The generalized dimensions Dy (left), the 7(q) function (middle) and singularity
spectrum f(a) (right) for a binomial multifractal measure with p1 = 0.25 and
p2 = 0.75 as displayed in figure 6.2.

analysis technique, while the superior technique based on the continuous wavelet trans-
form will be treated in chapter 8. This box-counting technique is, in fact, the direct

embodiment of the definition of the Hausdorff dimension. The following main steps can
be recognized.

Procedure 6.1: Measurement of the singularity spectrum f()
The procedure to measure the mass exponent function 7(g) and the singularity spectrum
= {(a) from singular measures.

1. Partition the measure into an uniform grid with step size o, conduct a coarse
— graining, and subsequently compute the mass in all segments,

u(Ba @) = [

@it3o o o
dp(z) = / dp(z) = p(z; + =) — plz; — =) Vz; € 4,
B, () a1 2 2

=30 (6.21)

where x; are the grid points. This action can be interpreted as a convolution where
the smoothing kernel is given by the indicator function, the box-car function

‘/JFOO I(z ~ 2')dp(z), (6.22)

where I,(z) = 1 on the interval (z — %a,x + %a) and zero otherwise.

2. Compute the partition function

ZATHg) = Y uBo(@:)]? ~ 0™ |50 ' (6.23)
Yi

and conduct a linear regression in the log(o)-log[Z,(q)] space, exploiting the prop-
erty that a powerlaw becomes linear in log-log space.
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Figure 6.4 Ezample of the estimation of the mass density functions 7(q) and singularity spec-
trum (o) via the method of boz-counting. (a) the binomiel multifractal. (b) the
logarithmically down-grained, with the boz-car, binomial multifractal. (c} the par-
tition function Z,(q). (d) the estimated mass density function (g} obtained from
the linear fits conducted on the partition function displayed in (c). (d) the singu-
larity spectrum f{a) obtained from the 7{q) function via the Legendre transform.

3. Compute the Legendre transform to acquire the estimate for the singularity spec-
trum,

0,7(q)
aq —71(g)

iy
Q
P

o) (6.24)

o
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== TFor the purpose of validating the successive steps of the proposed box-counting method
yielding sample estimates for the mass density function 7(¢) and singularity spectrum
f(a) T included figure 6.4. In figure 6.4 (b) the successive smoothings, partitionings of

=~ the measure, acquired by smoothing the data with a box-car function of varying support,
while in figure 6.4 (c) the partition function Z,(g) plotted on log-log scale. Figure 6.4 (d)
contains the estimated 7(q) function being obtained via linear regressions for every g on

« the partition function. These estimated values for the 7(¢) function are subsequently used
as input for the Legendre transform in order to compute the estimate for the singularity
spectrum f(a). Both estimates for the 7(g) and f(a) are plotted jointly with the expected

« curves for the 7(¢)’s and f(a)’s, given by equations (6.19) and (6.20). It is clear that

- the proposed estimation procedure gives the correct answers. The method is, however,
limited in its application since it requires densities as input and moreover its singularity

. detection range is bounded, due to the poor regularity and integrability properties of the
box-car.

~+ 6.5 Concluding remarks

This section has been written with the intention to provide the reader with a preliminary
. introduction on the concepts that will play an important role in capturing the complexity
displayed by certain types of geophysical measurements. Amongst these rather super-
ficially reviewed concepts the notion of scaling is prominent. It was shown that the
complexity — for instance, the complexity generated by the multiplicative cascades defin-
ing the binomial multifractals — can elegantly be unraveled by inspection of the scaling
behaviour displayed by a partition function. For the binomial multifractals this partition
. function can explicitly be defined in terms of the generator that was used to create the
fractal set. In fact the scaling characteristics of the partition function are completely
expressed by the mass exponent function from which then the singularity spectrum can
_ readily be derived. This latter quantity expresses the relative occurrence of the differ-
ent scaling exponents - that are appointed to the different singularities appearing in the
measure — in terms of a Hausdorff dimension. So in a way the singularity spectrum delin-
_ eates the hierarchy of scaling exponents to be associated with the singularities emerging
" in the measure as a result of the singular construction mechanism that is responsible for
the generation of the binomial multifractals. To illustrate the mutual intertwinement of
the yielded complexity with respect to the specific choices made in the construction of
the measure I separate, following Siebesma (1989), the constructed measures into the
following classes:

¢ A non-fractal/regular measure. In that case the singularity spectrum reduces to
one point because one can appoint one trivial scaling exponent, fla) = a = p, to all
points in the measure yielding, D(q) = p for the generalized dimensions and 7(g) =
(¢ — 1)p for the mass exponent function. Example: A uniform distribution on the
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unit interval in one dimension, p = 1. This corresponds to a generalized Cantor set
with a generator where all b boxes receive the same weight, p; = bt i=1,...,b

» A homogeneous/mono fractal measure: In that case a homogeneous measure is
defined on top of a fractal set with dimension D = dimg. This homogeneity refers
to the fact that the scaling characteristics do not vary with position. Consequently,
D = D, and f(a) = @ = D. Example: A generalized Cantor set with a generator
where the measure of n, n < b, boxes take the same non-zero value and where the
remaining 5% boxes are deleted, p; = %;, i=1,...,n.

e A inhomogeneous/multi fractal measure. In that case one has an inhomogeneous

e

measure defined where the scaling properties are varying with position. Conse-

quently one finds a curve for the generalized dimensions, D,, that change as a
function of ¢g. As a result of this is the associated singularity spectrum, () is of

a parabolic shape. Example: A generalized Cantor set with a generator where all - v

boxes receive different weights p;.

It is the extension to the inhomogeneous case that is of great importance and it isa

direct reflection of the method of curdling, as proposed by Mandelbrot (1974), that in-
troduces the required intermittency. Especially this intermittency — manifesting itself
by the occurrence of relative violent periods/regions superseded by relatively calm peri-
ods/regions in the system’s activity — that reflects a general property so characteristic
for many (geo)physical processes involving dissipation, e.g in hydrodynamic turbulence

(Mandelbrot, 1974; Parisi and Frisch, 1985; Schertzer and Lovejoy, 1987b; Schmitt et al., .

1992), and justifies the generalization to multifractals. In fact the multifractal formalism
stands for a decomposition of a fractal measure intc its constituents, that is into ifs in-

terwoven sets each of which is characterized by singularity strength* o and its Hausdorff

dimension f(c). It was shown that this singularity spectrum, f(a), is directly related
to the generalized or Renyi dimensions. These generalised dimensions can readily be

obtained from the asymptotic powerlaw behaviour displayed by the multiscale partition i

function and in this way yielding estimates for the mass exponent function a quantity

that is related to the generalised dimensions according to, Dy = %—q—%.

By way of the construction of the partition there exists an intrinsic analogy between
phenomenological /statistical thermodynamics and the multifractal formalism (Mandel-
brot, 1974, 1982; Hentschel and Procaccia, 1983; Parisi and Frisch, 1985; Schertzer and
Lovejoy, 1987b) annex the dynamical system theory (Lichtenberg and Lieberman, 1992).
This analogy becomes apparent because it can be shown® that the pair of quantities, g

and 7(q), play the same role as the inverse of the temperature and the Gibb’s free energy o

4In later chapters I will refer to the scaling exponent « as the Hélder exponent.

51 do not exactly know who established this relationship first but [ think I have to refer to (Collet,

1986; Mandelbrot, 1989).

e
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~ whereas their conjugates can be recognized as the quantities o and f(«) that can be
linked to the energy and the entropy respectively.

The author is aware of the fact that the concepts reviewed in this chapter are not amongst
the most common in the exploration geophysical world. However, they are indispensable
in the quest to characterize the complexity of well-log measurements for example. In
the pertaining chapters I will try to construct a more general framework in support of
these concepts. This framework will not only refer to how to measure a fractal construct
by means of a multiscale partitioning, eoarse graining, by a proper family of analyzing
functions, see chapter 5 where the basics of distribution theory was given and chapter 8

s

where wavelets are proposed as multiscale analyzing functions.
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Chapter 7

Selected topics on stochastic monofractals

7.1 Introduction

“* In one way or the other, scale invariant stochastic processes — processes whose statistical

= malization group property, is commonly encountered for irregular processes such as 7

behaviour is similar under judicious scaling operations on time and/or space, think of a
Brownian motion trajectory — play an important role in the characterization of irregular

“ processes {(Mandelbrot and Wallis, 1969; Tartarskii, 1971; Yaglom, 1987; Samarodnitsky

and Taqqu, 1994). This similarity under dilatations, scale transformations, is in case of
homogencous monofractal scaling indexed by the Hurst exponent! H and can directly be
associated to the fundamental renormalization group property stating that the random
process X (z) and its dilatated version o X (02) have the same stochastic properties,
i.e. they share the same probability density function. This type of behaviour, the renor-
1
noises, pink or “shot” noises and forms one of the important building blocks in statistical
mechanics (Wilson, 1983).

© A well known example of a self-similar random process is Brownian motion (Einstein,

1905). This process, also known as a Wiener process, is stochastically non-stationary,
a notion which corresponds to the infrared catastrophe, the divergence of the power

* gpectrum as the frequency tends to zero. The first increments, however, are stationary,

Gaussian and independent. Mandelbrot and Wallis (1969) refer to the non-stationarity
of Brownian motion as the “Joseph effect”, a biblical metaphor for the apparent long
tailed correlations which can be associated with the extensive periods of prosperity and
hardship experienced by Joseph. Besides this effect, there is the so-called “Noah effect”
which reflects the fact that Noah survived an exceptional high flood, which on its turn,
can be associated with a random process supporting very large outliers rather than having
the mass of its fluctuations concentrated around the mean. This latter effect constitutes

!Notice that numerous names exist for this scaling exponent. The choice 6f the name I will use will

" be context driven.

o
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an extension to the non Gaussian q; indexed Levy noises (Samarodnitsky and Taqqu,
1994; Schertzer and Lovejoy, 1987a; Montroll and Schlessinger, unknown) yielding a much
larger variability®.

At first a formal definition for homogeneous or monofractal scaling will be given, followed
by a discussion on the properties of Brownian motion, the classical non-differentiable
but continuous random process. Then, in section 7.3 Brownian motion is generalized
to index-H fractional Brownian motion, fBm, via the method of fractional integra-
tion/differentiation® allowing for a true invocation of the “Noah” effect, where either
periods of prosperity and hardship alternate on a limited time range, the process behaves
antipersistent, or where the periods of wealth and hardship persist over longer periods.
A similar generalization can be applied to the a; stable Levy motion (Samarodnitsky
and Tagqu, 1994; Schertzer and Lovejoy, 1987a; Montroll and Schlessinger, unknown)
yielding a process with both the “Joseph” and the “Noah” effects incorporated.

7.2 Brownian motion

Brownian motion (a special limiting case of the Wiener-Markov or Ohrnstein-Uhlenbeck
process (Priestley, 1981) is the most commonly known example of a non-differentiable,
self-similar and stochastic mon-stationary process being associated to the “classical”
diffusion process. This non-differentiability is a direct consequence of the fact that the
process diverges as the spatial and/or temporal resolution — spatial for the trajectory and
temporal for say the = coordinate of the trajectory as a function of time — is increased,

because the process reveals more and more spatial and temporal detail. This divergence

is known as the ultraviolet catastrophe, whereas on the other hand the non-stationarity of

Brownian motion can be linked to the non-integrability of the process, the non-integrable ==
pole, singularity, at origin of the frequency spectrum, yielding the so-called infrared

catastrophe. Despite, these apparent difficulties Brownian motion has the advantage over
the stationary Markov process that it does not display a break in its scaling behaviour.

There is no characteristic scale, a notion especially beneficial when complex phenomena
such as the ones being studied in this thesis are of interest. Because of divergences

Brownian motion has to be interpreted in the sense of distributions because only in

this way it can become an observable by measuring, testing the process with the proper .

test/analyzing function, i.e. mapping it to a finite scale/resolution o.

By setting the damping factor to zero of the Wiener process one finds the following first
order stochastic differential equation

dX(z)

*-—d;** = G(Z), (71) =

2See Klafter et al. {1996) for an informal discussion on the physical relevance and historical perspective
of this subject.
3Defined in the sense of distributions, see chapter 5.
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" the solution of which is given by

X(z) = /0 s with X(0)=0, (7.2)

and defines a record of Brownian motion, B(z) £ X (z), in case the driving force, €, is
white Gaussian noise or defining a Levy motion, a Levy flight, when ¢ is an oy stable
Levy noise?. As a consequence of the limit procedure on the correlation length annex
damping factor the process itself behaves as,

B(z) ~ 2% vz e RT (7.3)

where the symbol ~ has been used to indicate equality within a slowly varying factor,
whereas the variance behaves as,

0%(2) = (X%(2)) ~ 2 Vze RT (7.4)

== and this, on its turn, implies the following behaviour for the covariance function

s5(0,2) = (X (2 + 0) X (2)) ~ o (o] + |2]). (7.5)

" It is evident that all above quantities have become functions of the position z, they grow

i

with z, and that observation unfortunately leads to a divergence of these quantities as the
limit 2 - oo is being approached. So, strictly speaking, these quantities can not longer

" be considered as observables and in practical circumstances this refers, as le Méhauté

(1991) puts it, to the way in which, say, the variance approaches infinity as the length
of the sample record is increased. In fact it expresses a lack of convergence for, say, the

* sample estimates for the variance.

In order to circumvent the above problem of non-integrability, the divergence of the
variance and covariance as z — 00, one can introduce a new process, defined in terms of

" the first increments, AX(z,0) 2 X(z +0) — X(2). In such a definition the o plays the

role of an effective gauge delineating the scale/resolution range over which the original
function is being studied. In this way the long period diverging cycles are omitted and

~ the new process can shown to be stationary. Such an approach, a regularization, maps

the process onto an observable and finds its roots in distribution theory, see chapter 5,
and amounts, in case the second order statistics are of interest, to the definition of a
variogram /structure function analysis. From this one finds, by evaluation of the mean
square increments,

D(o) = (|AX(z,0)|") ~ o], (7.6)

that the variogram displays a normal shift invariant behaviour since the variogram only
depends on the scale indicator 0. Clearly this behaviour corresponds to the stochastic

4See Mandelbrot (1967, 1982), Tartarskii (1971) and Yaglom (1987) for a detailed discussion.
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process with stationary first increments, a notion exactly met by Brownian motion.

Another way of understanding the non-stationarity issue can be given by the argument
that the inverse Fourier transform of the power spectrum of Brownian motion,

is not defined, the integral diverges due to the infrared catasirophe at the origin, the
divergence for &£ | 0. This type of singularity at the origin — due to the fact that

stationarity yielded by the first increments. Summarizing one can say that the station-
arity constraints imposed by the structure function are less severe, it only demands a

the solution of equation (7.1) involves a division by —(jk)? in the frequency domain —

can easily be circumvented by considering the first increments rather than the process
itself. In this way the integral is made to converge since the Fourier transform of the
increment acts as a multiplication by § sin2(g~k), it regularizes the divergent inverse
Fourier transform of (7.7), i.e. limyjo F{AX }{k) ~ k2. This procedure is one example

of how to deal with the divergence of singularities, to deal with algebraic singularities in

the sense of distributions, see section 5.3.

7.3 Fractional Brownian motion

Mandelbrot and Wallis (1969) proposed to extend the ordinary Brownian motion process

to the index-H fractional Brownian motion, fBm, a process already recognized for H = % b

s

by Kolmogorov {1941). They accomplish this extension by applying a fractional integra-~ .

tion/differentiation to the ordinary Brownian motion process as defined in section 7.2,
ie.

Bu(z)21°(B}(2) a=H- LoocH< (7.8)

2

This operation 7% — see section 5.8 for a detailed discussion — acting on an arbitrary®
function f(z) is defined by,

N A

I)u—awl

f(z"hds' (7.9)

and performs a fractional integration for o > 0 or a fractional anti-integration {(differ-

entiation) for & < 0. Under similar arguments as for divergence of the Fourier inte-

gral, this procedure has to be regularized since Brownian motion is not strict differen-
tiable/integrable, yielding the following proposition

5When this function is not fractionally integrable/differentiable then this operation has to be inter-
preted in the sense of distributions.
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“ Proposition 7.1: Fractional Brownian motion (fBm) (Samarodnitsky and Taqqu,

1994)
Let 0 < H < 1. Then standard fractional Brownian motion {By(z), | € R} has the

“ integral representation

g

Bu(z) = —é—(—l—}f)- jm K(z,2)dB(2"), ze€R (7.10)

where the Schwartz’s kernel is given by
K(z,2') = [((z = 2) )"~ % = ((-2)4)" %]
and where
o0 - . i
o ={ [ ey P hPar )+ g
o 2H

When H = %, C(}) = 1 and the representation (7.10) is to be interpreted as the integral

. of white noise.

Notice that in this definition again an increment is being used to regularize the integral

__ of equation (7.9). As already mentioned the idea behind this is very important and the

reader is referred section 5.8 for a more elaborate discussion on this issue.

The generalization as coined in proposition 7.1 amounts for the variance and covariance

- 1O

)

o*(z) ~ 2?7 (7.11)

. and

C{Bu(n1), Bu(z2)}z, 22) ~ | PP + |22 — |21 = 2™ (7.12)

both obviously being non-stationary. As for ordinary Brownian motion the increments
behave stationary allowing for a sensible definition of the structure function

D(o) ~ o*H (7.13)
and the associated power spectrum

S(k)Nzlﬁ l<f=2H+1<3 (7.14)

7.4 Stochastic self-similarity, homogeneous scaling and some general properties

One of the main assets of Brownian motion and its generalization, fractional Brownian
motion, is that they adhere to the self-affine scaling relationship

By(oz) £ 0¥ By (2), (7.15)
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which can easily be understood for the Brownian case, H = é—, by reconciliation of the

renormalization property for the sum of random numbers as being given by the central .

limit theorem, see section 7.5. The above scaling relation is a clear example of stochastic
self-similarity® and is formally defined as

Definition 7.1: Self-similarity (Samarodnitsky and Taqqu, 1994)
The real valued process { X (z), z € R} is self-similar with index H > 0 if for all o > 0, the

)

finite-dimensional distributions of {X (0z2), z € R} are identical to the finite dimensional

distributions of {o" X (z), z € R}; i.e. if for any d > 1, 21,2y ... 24 and any o > 0,

(X(021), X (022),..., X(024)) & (0" X (21), 07 X (), ..., 0% X (2a)).
(7.16)

Notation:

{X(02), z € R} 4 {o"X(2), ze R} or X(o2) = o X(z) VzeR.

......

(rany

The different statistical moments of a homogeneous scaling process adhere to the scaling
relation

(|Br (o)) £ ot (|Bu(2)|%), (7.18)

where the angular brackets have to be interpreted as taking the stochastic expectation.

In order to conclude the discussion on the processes Brownian motion and its extension
to fBm I will briefly summarize their most important properties.

e Records of Brownian motion and fBm are singular “functions” in the sense that

they are not strictly differentiable. They are, however, differentiable in a weak .

sense, in the sense of distributions. To be more specific they belong to the Holder
continuous class of functions C¥, 0 < H < 1. On the other hand Brownian motion
and fBm are non-integrable a notion which corresponds to the stochastic non-
stationarity or non-conservation of the mean, see Schertzer and Lovejoy (1987a).
This non-integrability corresponds to the infrared divergence for the spectrum and

can be regularized by consideration of the first increments rather than the process

itself. So in fact the Hurst or Holder exponent H plays a kind of double role. On |

the one hand it describes the differentiability, index-H Brownian motion is “H”

times differentiable whereas on the other hand the H rules the divergence of the =

mean, (By(2) ~ z¥).

8The terms self-similarity and self-affinity are both used in literature. It is worthwhile to mention
that self-affine scaling is related to functions where the scaling of the dependent variable is deviant.



Chapter 7: Selected topics on stochastic monofractals 185

* -1 =1 - 3
H = Vi H = 3 H = 4

10 2 2

8 15

6 10

4 5
= >

2 0

0 -5

-2 -10

-4 ~15

4 5 46 20 0 20 40
z

o 1 1 1

08 08 08

g os § o6 § os
el = e}

S 4 S 04 S 04
[} @ [
& & £

g 02 g 02 g 02

0 Mm 0 0

-02 -02 -02

50 25 0 25 50 S0 <25 0 25 50 S0 25 0 2% 50
4 X xr

Figure 7.1 Ezamples of simulations of ordinary Brownian motion (middle column, top row)

and its extensions to antipersistent fBm (H < %) for H = % (first column, top

e row) and persistent fBm (H > %) for H = 3 (last column, top row). I also
included the covariance function of the increments (bottom row). '

e For H | 0 the process becomes increasingly antipersistent and the increments (also
known as fractional Gaussian noise (fGn)) become increasingly anticorrelated and
the “function”” will be discontinuous at every abscissa in the limit, i.e. a so-called
flicker noise S(k) ~ k™. But in the limit for H going to zero the process becomes
stationary! See figure 7.1 top row for an example of a simulated record of fBm
with the Hurst exponent H set to H = ;} and the corresponding covariance for the
stationary increments. Notice the anticorrelation being manifested in the negative
first lag terms®.

¢ For H = % the process becomes Brownian and the increments, independent uncor-
related® Gaussian white noise. See the middle column of figure 7.1 where I depicted

_— a simulated record of Brownian motion and the corresponding delta function shaped
covariance function. '

7Tt is not really a function in the limit but a so-called generalized function, see section 5.8.
s 8This covariance function is strictly speaking a tempered distribution, a fracticnal derivative of the
Dirac delta functional. ‘
9That is in fact how Gaussian white noise is defined.
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e For H 1 1 the process becomes increasingly persistent and the increments cor- =

related. In the limit the process will be smooth (one times differentiable), i.e.
Br(z) € C* H 1 1. See figure 7.1 right column where I depicted a simulation for
H= %. It is clear that the covariance functions displays a long term correlation.

Finally I would like to conclude this rather informal discussion on Brownian Motion and
fBm by stating that white Gaussian noise can also be seen as a homogeneous (one scaling

exponent) self-affine scaling functional but now with a value for & equal to H = — é and

similarly this white noise process can be extended to fractional Gaussian noise {the
increments of fBm) with —1 < H < 0. This process is, however, not continuous and not

differentiable, it is a singular signed measure, and can only be given a meaning by means

of a regularization.

7.5 Digression on o; Levy stable distributions, universality under addition

Now that the most essential tools for the description of a random variable have briefly
been introduced the question arises: How to characterize the joint behaviour of random
variables? In that respect the study of the limiting behaviour for sums of independently
identically distributed (i.i.d.) random variables becomes of great importance, especially

since it allows for a natural introduction of the Gaussian distribution. This study also .

serves as a point of departure for the extension of the central Limit theorem, with its
associated Gaussian distribution, to a more general version of the central limit theorem

yielding a comprehensive class of probability functions of which the Gaussian distribution =

is just a special case.

One has to go as far back as the 1930’s when Paul Levy and Aleksander Khinchine

wm

developed the theory of stable distributions (Feller, 1950; Samarodnitsky and Tagqu,
1994). This theory deals with the interesting and important question whether a universal

renormalization group!® property exists, the so-called stable fixed points, for the sum of

n, n > 2 iid. random vatiables, ie. the Y, . X; with X; £ X;, &: identical in

distribution. So the question is whether the real constants a,, and b, by > 0 exist for
which the following linear renormalization equation,

> X L b Xy +a, (7.19)

i=1,n
holds for the sum of the n random variables?

Indeed the well-known central limit theorem states that the sum for random variables

vy

with arbitrary probability functions, but with finite and equal first and second moment,

107 he reader is referred to (Wilson, 1983) who developed the framework for “multiple-scale-of-length”
approach (Nottale, 1995) in the field of statistical physics. Note, however, that the properties of the
stable distributions were derived before renormalization group theory.
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<X'l> < 00, <X1.2> <oo A (Xt) = (Xl): (XE) = (X‘%) V{Z €l,... 7”‘} with (X1)1 (X11>
being the preset values for the cumulants, approaches a limiting form for its probabilistic
behaviour. This limiting behaviour involves the property that the probability function

of X 1y

d . 1

X1 & lim [.Z X; - an]E;, (7.20)
i==1,n

has the same form as that of the renormalized sum, in case the renormalization factors

equal,

1
by = n2,

an = (n—VA)XL). (7.21)

_ Such an observation clearly marks the insensitivity of the sum, on the right hand side

of equation (7.20), for the details in the probability functions of the constituents and it
is this property which led to the well-known Gaussian probability distribution (Feller,

~ 1950). This Gaussian probability measure is defined by

dF(z) &

12 expl B D4, (7.22)

V2T 202
with its second characteristic function given by

2

K@) =% ¢ (7.23)

and 02 = (X?) — (X)2. From this kind of second characteristic it can easily be deduced
that the Gaussian is completely defined by its first two cumulants because only the first

two derivatives of equation (7.23) differ from zero.

Indeed the above renormalization property, the property that the random variables are
stable fixed points under the renormalized addition, equation (7.20), can be interpreted
as if the Gaussian distribution is acting as an universal aftractor for the sums of iid.
random numbers. More formally, ‘

Definition 7.2: Stable distribution (Samarodnitsky and Taqqu, 1994)
A random variable X is said to have a stable distribution if for any n > 2, there is a
positive number b, and a real number a,, (recentering term) such that

X3 +X2+"‘+Xngan+ana (7.24)

where X1, Xo,... ,X, are independent copies of X.

- The stability refers to the notion that the first characteristic function for the sum of say

two random variables — in this example the strict stable situation is assumed leading to
the omission of the recentering term,

bX = b X1 + b X, (7.25)
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where the constant b is related to the constants b; and by — can be written as
(eiqbX> — (eiquXl)(eiqbzXl) o= (eiq’{lel”’”bzXZ}). {7.26)
This enables one to write for the second characteristic function (West, 1990)
K(bg) = K(big) + K(ba9). (7.27)

Notice that the multiplicative property for the first characteristic function, see equa-
tion (7.26), points to an invariance of a stable probability function to the operation of

s

)

convolution; since multiplication in the Laplace/Fourier domain corresponds to convolu- 772
tion in the other domain. Consequently the behaviour for the sum of n random numbers . |

tends to the following limit for the second characteristic function

n E
K(g) = nl_lf)rgo Z Ki(bng) + an. (7.28)
(o)

At this point Levy asked the following question: What is the most general form for a

probability function which obeys a similar renormalization property as the Gaussian?

He showed that by relaxing the coundition on the finiteness of the mean and variance the
renormalization property of equation (7.21) can be generalized to
i
by = n= D<oy <2

N , (7.29)
R (X)) —(X) l<a <2,

fl

Qp

where the divergence, in case 0 < oy < 1, withstands a definition of the a, over this
interval.

These generalized renormalization factors lead to the definition of an extended class of

stable distributions, indexed by the Levy index o4, by means of the following theorem
and definition for the first characteristic function.

Theorem 7.1: Index of stability o (Samarodnitsky and Taqqu, 1994)
For any stable random variable X, there is a number a; € (0, 2] such that the number C
satisfies '

Co o=y X (7.30)
Vi
The number oy is called the index of stability or the characteristic exponent. See Feller
(1950), section V1.1 for the proof.

Definition 7.3: First characteristic function (Samarodnitsky and Tagqu, 1994)

A random variable X is said to have a stable distribution if there are parameters

s

s

s
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0<o <2, -—1< B <1, and p real such that its first characteristic function has the
following form

(X4 .
&) ing] a1,

exp [—olg|* (1 — ifsign(g) tan

(ein) A (731)

s 2 . '
exp [~olq|(1 + ifsign(q) —lnlgl) +ipg] =1

The parameter oy is the index of stability and sign the sign function. The parameters
ay, 3 and p are unique.

With this definition the second Fourier characteristic is found to be of the form
K(g) = log(e'®*) = —o(ig)™. (7.32)

It can be shown (Feller, 1950; Schertzer and Lovejoy, 1987a; West, 1990) that this
power law form — for the admissible range of the Levy index 0 < o < 2 - consti-

“ tutes the only functional form supporting both the renormalization behaviour as de-

picted in equation (7.28) as well as the technical conditions to be imposed on the inverse
Laplace/Fourier transform of the first characteristic function, the probability function.

Only for the special cases of ¢ = %, oy = 1 and a7 = 2 closed form expressions for prob-
ability function can be found. In the latter case the inverse Laplace/Fourier transform
yields the Gaussian which is extremely regular since all the moments ¢ > 2 exist. For the

" other situations, 0 < @y < 2 Aoy # 1,1, one is limited to information on the asymptotic

behaviour of the distribution solely (Montroll and Schlessinger, unknown; Feller, 1950;
Schertzer and Lovejoy, 1987a; West, 1990),

1
dF('I?) ~ Wdﬂ‘ z—00, 0<oy<2 (733)

> Random variables displaying this kind of behaviour are referred to as hyperbolic or fat-

tailed random variables due to the algebraic fall off of the probability function. A direct
consequence of this algebraic tail is that the Levy index o introduces a divergence for
the statistical moments exceeding the exponent, ¢ > ;. In case 1 < oy < 2 the variance
will diverge and this corresponds, in practical situations, to an absence of convergence
for the sample variance as the sample size becomes increasingly larger. In matter of fact

. this “divergence” refers to the way in which the variance approaches infinity and should

not be interpreted literally in practical circumstances because then one could argue that
this type of behaviour is irrelevant since all sample estimates are always finite! For the
situation where 0 < oy < 1 the mean diverges and that can be linked to sample data
records with (a) huge outlier(s). These outliers are connected to the long fat tail and
completely dominate the sample mean. For that reason the sample mean will be fully

.. governed by this sole outlier, irrespective of the other samples, and one can therefore not

longer talk in sensible way about the mean and the variance in these cases because these
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quantities do not give any information. Finally notice that this particular behaviour is
quite opposite to the behaviour of the Gaussian where the mass is mainly concentrated
around the mean.

7.6 Fractional Levy motion

In a similar fashion as for the Brownian motion, Levy motion (Levy flight) can be ob-
tained by replacing the Gaussian forcing term in equation (7.1) by a oy indexed stable
Levy process. There is, however, a substantial difference. The self-similarity exponent H
(scaling exponent) of the Levy flight equals (—117 rather than % for Brownian motion. This
difference is a direct consequence of the generalization of the central limit theorem as
coined by Paul Levy. The following self-affine scaling relation — being directly related to
the generalized renormalization group properties for the sum of stable random variables
— applies to a record of Levy motion

Lo, (02) & 031 Lo, (2), (7.34)

where Lg,(2) denotes the Levy flight. Clearly, the deviant behaviour of the Levy flight
restricts the possible degree of fractional integration/differentiation to

1
o<l = 0<H<—

as (7.35)
>l = 0<H<I,

yielding a similar generalization of the Levy flight as the generalization of Brownian
motion to fractional Brownian motion. The formal definition of fractional Levy motion
Loy, m reads,

Definition 7.4: Fractional Levy noise (Samarodnitsky and Tagqu, 1994)
If H complies to the ranges as indicated in equation (7.35) then standard fractional Levy
motion {Lq, n(z) has the integral representation
1T
Loy g(2) = e K(z,2)dLy, (2"), z€R (7.36)
) J oo

where the Schwartz’s kernel is given by

K(z,2) = [((z = #)+)" % = ((=2)1) 7771

and where

C(H) = {/:O (1+ )43 - (z')H-%)?dzf}% + 5%

P
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Chapter 8

Multiscale analysis by the continuous wavelet
transform

“ 8.1 Introduction

The recent advent of the continuous wavelet transform in the field of multiscale analysis

. (Morlet et al., 1982a,b; Holschneider, 1987, 1995; Jaffard, 1989; Mallat and Hwang, 1992;

Mallat and Zhong, 1992; Daubechies, 1992; Ghez and Vaienti, 1992; Bacry et al., 1993;
Farge et al., 1993) is not surprising since this scale transformation allows for a localized

. decomposition of mathematical objects — e.g functionals containing algebraic singular-

ities or fractals being singular everywhere — as well as physical objects — e.g. well-log
measurements! — into their multiscale constituents. From these multiscale constituents,
living in the space-scale space, it is possible to regain the original function by applying
the inverse wavelet transform.

Consequently the multiscale decomposition by means of the wavelet transform not only

« constitutes the perfect tool for conducting a scaling analysis focussing on certain local

features of the object but it also allows for an unraveling of scaling behaviour in a
global sense. These two different procedures boil down to either inspecting the local

« behaviour of certain relevant features in the space-scale space — via inspection of the

wavelet coefficients — or by defining a multiscale partition function unraveling the scaling
complexity of the total object.

“ By way of its construction the wavelet transform is very closely related to ideas behind

distribution theory, see chapter 5, because the sequences of test functions appearing in
that theory can be related to the family of analyzing wavelets, of decreasing supports,

» whereas the object under investigation can be identified with possibly singular distribu-

tions. In fact wavelets constitute a double indexed family of functions that are obtained
by the invocation of the shift and dilatation operation on an initial wavelet function.

1See chapter 2.
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The fact that the wavelets are constructed in this way makes them suitable to analyze,
by decomposition, scaling objects such as multifractals that contain a whole hierarchy
of different singularities that can be characterized by varying scaling exponents. There-
fore the wavelet transform is the proper choice for conducting the multiscale analysis.
These scaling exponents refer to linear estimates for the decay/growth rate displayed by
the logarithm of wavelet coefficients versus the logarithm of the scale indicator. These
estimates can either refer to the local scaling behaviour induced by one specific event or
to, say, the global average scaling behaviour to be interpreted in a more statistical sense,
in the sense that one speaks on the relative number of occurrences of a certain scaling
exponent.

By conducting the local analysis one is able to obtain information on the local degree of
differentiability by appointing a scaling exponent, also known as the Holder exponent, to
the local scaling behaviour of the wavelet coefficients (Holschneider, 1987; Jaffard, 1989;
Mallat and Hwang, 1992; Mallat and Zhong, 1992). Information on the global differentia-
bility, on the other hand, can be obtained by inspecting the endpoints of the singularity
spectrum. This singularity spectrum constitutes an unraveling of the emerging scaling
exponents intrinsic in the multifractal structure (Mandelbrot, 1974; Parisi and Frisch,
1985; Collet, 1986; Collet et al., 87; Schertzer and Lovejoy, 1987b; Mandelbrot, 1989;
Siebesma, 1989; Lichtenberg and Lieberman, 1992; Bacry et al., 1993) and is directly re-
lated to the generalized or Renyi dimensions (Renyi, 1970) that are readily obtained from
the multifractal partition function defined in terms of the wavelet transform (Arneodo
et al., 1988; Bacry et al., 1993).

The setup of this chapter is as follows. First of all I will start to define the wavelet
transform and provide a resume of some of its properties. Then I will show how the
wavelet transform can be used to reveal the scaling behaviour and to measure the degree
of differentiability. Since the space-scale space is highly redundant — it is the result of

s

)

a decomposition of a one-dimensional object into function living in a two-dimensional
space-scale space — it is beneficial to introduce an efficient partitioning for this space. This

partitioning has to act as a guide for the analysis delineating the essential features in the
space-scale plane. I will show that the wavelet transform modulus maxima formalism
as coined by Stephane Mallat provides such a mechanism (Mallat and Hwang, 1992;
Mallat and Zhong, 1992). He demonstrates that this optimal partitioning does not only
allow one to designate a local Holder exponent to a singularity, via inspection of the
space-scale plane along the wavelet transform modulus maxima lines, but it also serves
as the optimal covering required to define a partition function required to analyze the
multifractal scaling characteristics. Then I will continue this chapter by going into detail

s,

on the relation between the properties of analyzing wavelet and detectable range of

scaling exponents. Finally notice that this chapter serves as the theoretical basis for the
application of the multiscale ideas presented in chapter 2.
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15+ : :

05

Figure 8.1 The Mezican hat for various values of scale parameter o and translation parameter
z'. If lo| < 1 the wavelet is contracted, if |o| > 1 the wavelet is expanded. If
2’ < 0 the wavelet is shifted to the left, if ' > 0 the wavelet is shifted to the right,
assuming o > 0.

8.2 The continuous wavelet transform

. Given the fact that scaling plays a crucial role in this thesis it is a natural step to use

the continuous wavelet transform as a vehicle to conduct the multiscale analysis, i.e. the
multiscale decomposition, and the multiscale synthesis, i.e. the multiscale composition.

- Let ¥(z) be a complex valued function and define its dilatations as

bo(2) = |a|—mp(§) c£0 A p>0, (8.1)

where p is a suitable chosen normalization constant and o is the scale indicator. The
scale indicator rules the dilatations: the contractions, in case ¢ < 1, and stretchings,

.. in case o > 1, of the spatial variable z, see figure 8.1. Similarly the factor |o|~? rules

the dilatation in the vertical direction, the scaling of the dependent variable?. Choosing
the exponent p is arbitrary and depends on which norm one wants to fix under the scale
transformations. For example, by setting p = 1 the L*(R) norm?®, || ||2 = |[1]2, the
“energy” of the wavelet, will be unaffected by the dilatations. A double-indexed family

?Notice the similarity with the scaling displayed by the homogeneous functions of order p as defined

= in chapter 5.

3This L?(R) norm will predominantly be used in this thesis since it expresses the energy.
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of wavelets is formed via a combination of the affine scale transformations, as defined in
equation (8.1), with translations along the spatial coordinate, z +» & — ', yielding

7

) (@) €R, o #£0. (8.2)

o (2) 2 |o| Pp(Z

With this double-indexed family of wavelets one is able to obtain a decomposition of a
functional* f(z) € L*(R) onto its multiscale constituents via the transformation
+o0

5 x

flo,2') £ W{f,¢}(o,2") & f( )[ B W
This scale transformation was first introduced by Grossmann and Morlet (1985) and is
known as the continuous wavelet transform. This scale transformation has, in order to
allow for a reconstruction, to adhere to the following condition for the Fourier transform
of the wavelet,

(8.3)

0<Cy = / W’(’“ dk = / "”(k)izdw (8.4)

where k is the spatial frequency and 1,b the Fourier transform of 1. This condition is known
as the so-called admissibility condition. For the class of wavelets being used in this thesis
— namely those wavelets for which z¢(z) € L*(R), i.e. the wavelet ¢ decays faster than
z7! for z — o0, yielding continuity for z/?(k) — the admissibility condition boils down
to at least demanding that the mean of the wavelet has to be zero, jj:j Y(x)dz = 0,
or equivalently its DC component has to vanish, i.e. 1,/3(0) = 0. Remark that the zero
mean requirement implies that the sign of the wavelet has to change at least once along
the real line and it has been proclaimed that it is this property which coined the name
wavelet referring to constructs that live in a Hilbert space but that still display wave-like
behaviour within a limited spatial range.

By choosing the proper norm for the wavelet family, setting p = %, one can reformulate
the continuous wavelet transform in terms of the inner product, defined as

/ f(z)g" (z)dz, (8.5)

acting on a Hilbert space, of f and v, 7, hence

W{fv 1/)}(07 xl) é (fa d"o‘,w’>= (86)

s

When a symmetric and real wavelet is used one can recognize the wavelet transform as

a spatial convolution of the function f with the analyzing wavelet ¢,

WS, 9}Ho,2) 2 (f *90)(2), 8.7

4By way of its construction the wavelet transform is able to host a larger class of objects than
the conventional functions, the so-called generalized functions or distributions, see chapter 5 and the
references therein.
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where the x refers to the convolution product.

It is clear that the scale indicator o governs the effective support of the wavelet and

as such allows for observations of the functional f(z) at the different scales o. The

different wavelets act as a mathematical microscope zoomed in at scales o. In figure 8.1
I included an example of shifted and dilated members of the double-indexed continuous
wavelet family, in this case the second derivative of the Gaussian, the so-called Mexican
hat.

By way of its construction the wavelet transform can easily be extended to host a larger
class of objects, the so-called tempered distributions, and the reader is referred to chap-
ter 5 and the references therein. What does this extension imply for the wavelet? Fol-
lowing Mallat and Hwang (1992), for example, one can demonstrate that when f(z) is
a tempered distribution of order n then one just has to invoke the condition of n times
differentiability on the wavelet in order to regularize® the singular nature of the tempered
distribution and equations {8.3), (8.6) and (8.7) will make sense. For the é-distribution,

~ a zero order tempered distribution, see section 5.8 of chapter 5, this procedure implies

that one solely has to impose the condition of continuity on the analyzing wavelet. It is
this property of the wavelet transform that allows one to replace ordinary functions by
functionals as subject of investigation for the subsequent analysis.

At this point it is worthwhile to mention that the original functional f(z) can be recov-
ered from its space-scale representation via the inverse wavelet transform. This can be

. accomplished by resolving the identity, see (Daubechies, 1992) for the proof, which states

that for every f,g € L?(R), the following identity has to hold

/ T fomito 2y o tasds =yt g) ®8)

Here Cy, is defined as in equation (8.4). This explains why the admissibility was required
because in that case the resolution of identity will only makes sense. Define the inverse

- wavelet transform as follows

T -z

~1¢ F fay 1 *© +Oo' ! -3 1.7
1@ =W D)) £ - /0 [ o WEED e Sarde. (89)

ag

In the integral only the positive scales have to be considered because of the choice of
using real wavelets only. Finally notice that the equation (8.9) only holds in the weak
sense.

8.2.1 Properties of the continuous wavelet transform

In this section I will review the pfoperties of the continuous wavelet transform. I com-
mence by enumerating the basic properties of the continuous wavelet transform followed

5See chapter 5 for a theorem on regularization by a test function.




196 8.2 The continuous wavelet transform

by a discussion on its localization capabilities yielding a decomposition of the space-
spatial frequency plane. From now on I will, unless stated otherwise, work with the
L?(R)-norm for the wavelets, i.e. setting p = }

Basic properties

The continuous wavelet transform satisfies the following basic properties:
e Linearity

Wiaf + B9, 4}(0,2') = aW{f,$}(0,2') + BW{g,9}(0r2"), B €C.

(8.10)
e Shift-invariance
If f(z) = f(z -~ zf) then f(o,2') — f(o,2' — a}). (8.11)
s Dilation-invariance
If f(z) - V%f(%) then f(o,a") - f((fu %), o > 0.
(8.12)
s Conservation of energy
= [ iera=g [ [ e
- (8.13)

This equation is analogous to Plancherel’s equation.

The reproducing kernel

There is a danger hidden in the way the continuous wavelet transform has been set up.
This danger lies in the fact that the continuous wavelets are not mutually orthogonal, a
notion that becomes clear when one takes into consideration that the wavelet transform
constitutes a map of a one-dimensional function to the two-dimensional space-scale plane.
Therefore the space-scale plane is intrinsically redundant and the wavelet transform of
every function f(z) € L?(R) will only constitute a subset of all finite energy functions
living in the space-scale plane. Consequently one can not ensure that the following map

Fo,2) 5 1@ D (o, o) (8.14)

will yield the identity §(o,3") = f(0,2'). Remark that this identity will generally only

Eo

hold in case the wavelets used are orthogonal. On the other hand if one would start off
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“=with an arbitrary function f(z) € L?(R) then the use of equamons (8.6) and (8.9) will

always give rise to
w? : _
1) 2 fo,0) 5 — f(=). : (8.15)
Now can one come up with a condition that guarantees whether a function in the space-
. scale plane constitutes a wavelet transform? To accomplish this one has to define the area
of the space-scale plane that is inhabited by the wavelet transform of every f(z) € L*(R).
Grossmann et al. (1989) proves that this subset is exactly delineated by the reproducing

... kernel

7\ da. (8.16)

+oo .'
Ky(o,2') = E%[ P(z) %W(m

* Given this subset one can come up with the required condition, stating that a function
f(o,2") corresponds only to a continuous wavelet transform of f and with respect to ¥
~if and only if it satisfies for all points (0o, z) the equality

+o0  ptoo !
Fona) = [ [ K% BT foa) 5 (817)

Localization properties in the space-frequency plane

Despite the non-orthogonality of the family of continuous wavelets it is still possible to

"~ acquire a satisfactory — within the limits imposed by the uncertainty relation for space

and spatial frequency — decomposition of the space-spatial frequency plane. This decom-
position is inspired by the fact that the reproducing kernel in equation (8.17) is only
" significantly different from zero when the point (o, ') lies in the direct neighbourhood of
(00, 25). The spatial extent of this neighbourhood is, judged by the example depicted in
figure 8.2, dependent on the value of the scale indicator . This observation is substanti-

* ated when one examines the continuous wavelet transform of the Dirac delta distribution

as displayed in figure 8.3. Now let me go into more detail how ‘the wavelet transform
decomposes the space-spatial frequency plane.

" First I need to define the central locations and widths for the wavelet, ¢, in the two

domains. Define

= [ - were, (8.18)

hde el

expressing the spatial width and where (z) = x¢ is the mean location given by
o0 5
(x) = / z | (x)*de. (8.19)
oo ‘

" T assumed the following normalization |j¢)(z)|ls = ||4(k)||2 = 1.
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0 0.1 0.2 6.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 8.2 The reproducing kernel Ky(oo/o, (g — ') /o) for two different values of (oo, zp).
Note the logarithmic axis for o.

Figure 8.3 (a) The increasing width of the analyzing functions of the continuous wavelet trans-
férm: at high spatial frequencies, the anelyzing functions have small supports in
the spatial domain and et the low frequencies the analyzing functions almost com-
pletely cover the spatial domain. (b) Space-spatial frequency decomposition via =
dyadic scale indicator increments, i.e. 0 = o, j € Z A oo = 2. The coupling
between the width in the space and spatial frequency domain is evident.
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* Similarly, the bandwidth in the spatial Fourier domain is given by

e o]
o= [ k= 0 0P, (8.20)
where (k) = kg is the mean location defined by

(k) = [ " k[P, (8.21)

Not surprisingly these definitions are similar to the definitions for the averaged quantities,
the mean location and duration and the mean frequency and bandwidth, as presented in
chapter 3. Given these expressions one can come up with an estimate for the obtainable
localization in both domains via

1
Ta U _>_ §, (822)

known as the uncertainty principle for space and spatial frequency as coined by Gabor

. (1946) for the time-frequency ambiguity. Notice that this condition implies that the area

of the rectangles depicted in figure 8.3 is everywhere the same.
Using the above definitions the spatial localization corresponds to the interval

1 1
(“ana“l”‘édw)a . (823)

for a wavelet located at the origin while the localization in the spatial frequency domain

" extends over the interval

1 1
(ko — 50k ko + 5%)- (8.24)

What happens with the localization if one dilates or translates the wavelet ¥(z) to
compose the double-indexed family of analyzing wavelets? The translation is rather

.. simple to deal with and will be skipped. The dilation (z) — oy 1 2’4/)(:0 /o) will be dealt

with here. In that case the localization in the space domain becomes

1 1
(““500’2; 50'0:13) (825)

whereas the localization in the spatial frequency domain reduces to

ke 1 ko 1

0Tk 70y 2Tk (8.26)
Equation (8.25) and (8.26) describe the space-spatial frequency behavior of the wavelet
transform. One may now ask the following question. Which domain of the space-scale
plane is influenced by the value of the signal f(z) at an arbitrary spatial location z = z?
Using equation (8.25) one sees that this domain is given by the cone

1
|zo — 2] < 500 (8.27)
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This cone is referred to as the cone of influence. Let me continue to dwell upon a number
of interesting conclusions that can be drawn from these equations (8.25) - (8.27).

1. The product of the widths of the wavelets o, and o remains constant, which is to
be expected. A smaller localization in the space-domain corresponds to a larger
localization in the spatial frequency domain. This illustrates exactly the zooming
property of the wavelet transform: high frequency components can be analyzed at
a better space resolution than lower frequency components.

2. The translation paremeter should be adjusted to the scale o. An observation of the
cone of influence in the space domain is given in Figure 8.4. A small scale, i.e. a
small value of o, requires a fine sampling, whereas a coarse scale, i.e. a large value
of o, can deal with a coarser sampling.

3. Constant Q)-factor. Viewing the wavelet transform as the output of a filterbank
with bandfilters with a central frequency ko /o and bandwidth o7 /o, one sees that
the Q(uality) factor of the filters is constant.

m_ffk/ffmf“k_”
ka{)/d—kowc.

(8.28)

The constant behavior of the analyzing wavelets suggests a logarithmic behavior
of the scale-axis, as in Figure 8.4 (see section 8.4). In room acoustics the choice
o = 27 corresponds to octave filtering.

Types of wavelets

Two characteristics are important for any family of wavelets either continuous or discrete.
These properties refer to the number of vanishing moments possessed by the wavelet and
the regularity of the wavelet. The first property is defined as:

Definition 8.1: Number of vanishing moments (Mallat and Hwang, 1992)
A wavelet is said to have M wvanishing moments, if and only if for all positive integer
m < M, it satisfies

400
/ z™p(z)dz = 0. (8.29)

Definition 8.1 shows to which order of a polynomial the wavelets are orthogonal. I showed
that the admissibility condition requires at least one vanishing moment a notion being
reflected in the fact that the wavelet contains at least one zero-crossing. The number

g

of zero-crossings increases for increasing number of vanishing moments M. The number -

of vanishing moments is directly linked to the regularity of the Fourier transform of
the wavelet at the origin. Speaking about regularity, the second important property of

o
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“* the wavelet concerns the differentiability and this corresponds to the decay rate of the

Fourier coefficients as the frequency is being increased, i.e. as k — o0o. As will be shown
later the choice of the proper wavelet, choosing the right number of vanishing moments,

* constitutes a dominant factor in the process of setting up a proper multiscale analysis.

In section 8.6 I will illustrate, by means of a number of examples, what can go wrong
when erronecus wavelets are selected.

8.3 Local regularity analysis by the wavelet transform

= The main advantage of using the continuous wavelet transform to measure the regularity
of a functional lies in its localized focussing capability. This capability is in sharp con-
trast with the Fourier transform which is limited to offer information on the regularity
- of a functional, as showed in section 5.7.2 of chapter 5, in a delocalized way, i.e. the
Fourier transform delocalizes, withstanding a regularity analysis of the local features.
The continuous wavelet transform, on the other hand, is able to provide local regularity
- information, since the value of the wavelet coefficients depends on contributions from a
confined region, from the support of the wavelet. In case of analysis via the Fourier trans-
form, however, the Fourier coefficients depend on contributions from the whole real line,
. resulting in a decay of these coefficients which is dominated by the strongest singularity
in the signal on the line.

In the pertaining sections an attempt is made to give the reader a concise overview of the

* 1nain mathematical tools for the detection and measurements of singularities. At first a

relationship will be established between the decay/growth rate of the wavelet coefficients
and the Hélder exponents expressing the degree of regularity. Then the wavelet transform
© modulus mazima formalism will be introduced providing an optimal partitioning of the
space-scale plane.

" 8.3.1 Regularity and the wavelet transform

In chapter 5 I already mentioned the existence of an intricate relationship between the
. smoothness of a functional and the growth/decay rate of its Fourier transform. Given
this relationship it is possible to come up with estimates for the degree of (ir)regularity
by taking the superior bound of all exponents a that satisfy the condition

/ TR + k) dk < oo. | (8.30)

-00

-« In this way one is able to attribute a global - because the Fourier transform delocalizes

- regularity estirnate in terms of the Holder or Lipschitz exponent o as introduced in
section 5.9 of chapter 5. Take, for example for f the d-distribution® then one finds that

5The reader is referred to chapter 5 for a detailed discussion on the distribution theory.
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equation (8.30) holds for Holder exponents a < —1. By taking the superior bound of
all these exponents one finds @ = ~1 for the §-distribution. Besides the disadvantage of
delocalization, allowing for a global estimate only, another disadvantage becomes appar-
ent in the sense that the condition of equation (8.30) only provides a sufficient but not
a necessary condition.

Following Mallat and Hwang (1992) it is possible to come with an alternative condition
for the wavelet coefficients that is sufficient as well as necessary(Jaffard, 1989; Holschnei-
der and Tchamitchian, 1990; Daubechies, 1992). This is possible because the wavelet
transform provides local information, while zooming in, o | 0, from which one can infer
information on the local regularity. To show this let me first restate a theorem that
comes up with a global estimate followed by a theorem enabling the local assessment of
the regularity.

Theorem 8.1: Wavelet transform and global regularity (Jaffard, 1989; Holschneider
and Tchamitchian, 1990; Daubechies, 1992; Mallat and Hwang, 1992)

Let f(z) € L*(R) and [a,b] be an interval of R. Let the wavelet 1) adhere to the
admissibility condition. Let 0 < a < 1. For any € > 0, f(z), is uniform/global Holder o
over (a + €,b— €), if and only if there exists a constant C such that for x € (a+€,b—¢)
and for o > 0

IW{S,$}(0,2)] < Co™+1/2. RS

The conditions laid down in equations (8.30) and (8.31) both provide a way to access the
global regularity. For the Fourier transform the sufficient condition implies that |f(k)]
decays ‘faster’ than k™% as k| — oo (Mallat and Hwang, 1992), whereas the condition
in equation (8.31) acts in a similar fashion. This is understood when the scale is locally
considered as the reciprocal of the frequency, i.e. k ~ ¢~'. The condition is now sufficient
and necessary. Besides this advantage the estimates are localized on intervals (a-+¢€,b—¢)
rather than over the whole real line. This latter property can be attributed to the fact
that the wavelet coefficients depend on the evaluation over a finite interval depending on
the scale indicator. To this interval one can associate a cone whose support diminishes
when the wavelet zooms in. In this way Jaffard (1989) was able to come up with a proof

)

o

of a theorem that allows one to come up with local estimates for the regularity at a point

z. Following Mallat and Hwang (1992) I will use this theorem without proving it.

Theorem 8.2: Wavelet transform and local Holder exponents (Jaffard, 1989; Mallat
and Hwang, 1992)
Suppose 1(x) has M vanishing moments and is M times differentiable. Let f(z) € L*(R)

it

and let a < M. If f(z) is Holder a at xo, then there exists a constant A, such that for

all z in a neighbourhood of zg and for any scale o,

IW{f, ¥} (@,0)| < Ao (0% + |z~ 20]*). (8.32)
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= Conversely, let & < M be a non-integer value. The functional f(z) is Hélder a at xg, if

P

the following two conditions hold:

e there exists some € > 0 and a constant A, such that for all points z in a neighbour-
hood of xg, and any scale o,

IW{f,¥}(z,0)] < Ao*+E. (8.33)
e there exists a constant B such that for all points z in a neighbourhood of x¢ and
any scale o
| — 20| ) |
W{f, vHz,0)| < Be? [ 0 + - . 8.34
WA DH o)) < Bo? (o + 2zl (834

. In this theorem the admissible range of positive Holder exponents o has been expanded

from 0 < a < 1t00 < a < M by imposing an additional constraint on the number of
vanishing moments, see definition 8.1, for the analyzing wavelet.

Given this definition together with definition 5.2, see chapter 5, for the regularity, it
is possible to extend the range of detectable positive Holder exponents by taking into
consideration that a wavelet with M vanishing moments can be written as the (M — 1)t
order derivative of a wavelet with one vanishing moment, ¢(z) = (). This latter
wavelet is defined as the first derivative of a smoothing function ¢(z), according to

¥ (2) = (). So

Ve = dd;l: ¥ (2) (8.35)
_ and therefore
W{f, oMo, z) = (o) M) W{d - 1f7¢ B -

- 'This means that wavelet transforming a function f(z) with respect to a wavelet ¥(z)

with M vanishing moments corresponds to taking the wavelet transform of the (M —1)th-
order derivative of f with respect to the wavelet 1), or to taking the smoothed version

.. of the M* -order derivative of f, i.e.

W{f,¥Ho,x) = (~0)(M)( f $){o, ). (8.37)

~ Here ¢(z) denotes a wavelet with M vanishing moments and from here on the superscript

M will be dropped when no confusion arises. Take 0 < a — (M —~ 1) < 1 and use
definition 5.3 of chapter 5 which stated that the function f is global Holder a on the
open interval (a,b) if and only if -4 W r f(x) is uniform Holder @ — (M — 1) on the same
interval. Then one finds, by using theorem 8.1, that

dM——i

e (G| el L (8.38)

IW{
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where C is an arbitrary constant and where ¥/(!) represents the wavelet with M = 1.

Substitution of equation (8.36) into equation (8.38) and choosing ¥/(z) as the (M — 1)t2-
order derivative of ¥ (z) one finds

IW{f,9}(o,2)| < Co®*3. (8.39)

This equation extends the effective range of permissible Holder exponents from 0 < oo < 1
in equations (8.31) and (8.33) to 0 < o < M. In this way one can come up with proper
regularity estimates referring to the (3 — 1)*-order derivatives of f.

Another way of explaining the condition on the number of vanishing moments is the
apparent relationship between this number and the regularity of the Fourier transform
at the origin. It is easy to show that the condition for a wavelet to have M vanishing
moments is equivalent to demanding a (M — 1)-fold zerc or (M — 1)-order regularity at
the origin, i.e. {8,?” —11[3(k)}k.___.0. In that way the Fourier transform of the function, f, is
allowed to contain a O(k~M) singularity at k = 0 which is then regularized, in the sense
of Hadamard’s finite part, see section 5.4.1 of chapter 5 by the O(k™) regularity of the
wavelet.

The main asset of theorem 8.2 is that it allows for the determination of the local Hélder
expounent at one isolated point. Notice, however, that this only goes at the expense of
trading off the sufficient or necessary condition for a necessary and sufficient condition
as can be seen from theorem 8.1. Moreover, from theorem 8.2 and equation (8.33) one
deduces that f is uniform, global Holder € in some neighbourhood of z¢ with € being
arbitrary small. To interpret the other two conditions depicted in theorem 8.2 and given
by equations (8.33) and (8.34) one has distinguish between regions of the scale-space
plane that lie in or outside the cone

1
|z — zp] < 5020 {8.40)

For the part of the scale-space plane lying inside the cone the |W{f,¢'}(o, )] behave
for o | 0 as O(0™"7), see equations (8.32) and (8.34). Outside this cone the necessary
and sufficient conditions have different bounds as o | 0 and in that situation the value
for |W{f,¥}(o,z)| is determined by the distance of z with respect to zg and has to be
treated separately for equations (8.32) and (8.34).

To summarize, theorem 8.1 supplemented with the condition on the number of vanish-
ing moments allows one to issue statements on the global regularity of the (M — 1)*-
order derivative of f via inspection of the asymptotic decay of the wavelet coefficients
WH{f,¢¥}(o,z). However, it does not allow one to draw conclusions on the regularity
of the M derivative of f. The same can be said about the capability of theorem 8.2
but now it provides a local estimate. Now what happens when 3 infinitely differentiable
functions is being considered? Take for example f(z) = cos(z). If ¢ has exactly M van-
ishing moments, it can be shown that W{cos, ¥}(o, ) decays as 0™ *2 on any interval

s

s




Chapter 8: Multiscale analysis by the continuous wavelet transform 205

" (a,b). But be careful this does not necessarily imply that cos(z) is of Holder & = M

on any interval (a,b). Since cos(z) is infinitely continuously differentiable, cos(z) € C™,
on any interval (a,b), it has a global Holder exponent @ = co on any interval (a, b).

* When taking the wavelet transform of the function f with respect to a wavelet with M

vanishing moments results in an estimate for the Holder exponent equal to the number of
vanishing moments M then one may safely conclude that the function is at least Holder

It was shown that by increasing the number of vanishing moments it is possible to extend
the range of detectable algebraic singularities in the direction of the positive Holder
exponents. Can this argument be “reversed” towards constructs with negative Holder
exponents, i.e. @ < 07 Yes, this can be done by choosing the wavelet smooth enough,
a notion corresponding to demanding a fast enough decay for the Fourier coefficients as
k — oc, and by making again use of definition 5.3 of chapter 5. It follows that in case
the function f(x) is global Holder —k — 1 < @ < —Fk, the wavelet must be at least be &
times differentiable, i.e. C* function.

Remark that for a singular distribution, a generalized function with only one isolated neg-
ative singularity, e.g the d-distribution, the wavelet only requires one vanishing moment
because of the admissibility condition”.

Finally, theorems 8.1 and 8.2 prove that the wavelet transform is a useful tool to perform
(localized) regularity estimations. From the numerical point of view, however, both the-

.. orems cause difficulties since they require, in case of isolated singularities, the evaluation

of a two-dimensional area defined by the cone |z — zo| < 20,0 “surrounding” zo. In the
next section an alternative approach will be reviewed. This alternative is based on an

. effective partitioning of the scale-space plane in terms of the extrema for the modulus

of the continuous wavelet transform and thereby reducing the number of calculations,
which are required to estimate the local regularity.

8.4 Measuring the Hélder regularity with the wavelet transform

.. In chapter 5 I already mentioned that the information in a measured signal or a mathe-

matical object, such as a distribution, is carried by its singularities. These singularities
are also known as essential points or as the regions of rapid variation. The observa-
tion that this information is confined to these localized “areas” naturally finds its way
into the wavelet framework where the singular behaviour is directly reflected into the
growth/decay rate for the wavelet coefficients. Why is this the case? The answer lies
in the theory presented in chapter 5 where the class of algebraic singularities, singular

~ distributions containing an isolated algebraic singularity lying in.a smooth environment,

"Notice that for assessing the regularity for negative Holder exponents one does not require vanish-

.. ing moments, i.e. it suffices to compute jj’;f’ f(m)cf)(w“”l Ydz, where ¢ stands for a smoothing kernel.

(=4
However, if one wants to reconstruct the function the admissibility condition must be supplemented.
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was shown to display an unboundedness for derivatives exceeding a certain finite order.

Judging by the fact that the wavelet transform, conducted with respect to a wavelet
with M vanishing moments, approximates the M*-order derivative, it can readily be
understood that the wavelet transform triggers on the singularities. With other words the
wavelet transform can be compared by taking the derivative in the sense of distributions
and that is the reason why the non-differentiable singularities show up as mazime for the
modulus of the wavelet transform. It is exactly this perception that probably inspired
Mallat and Hwang (1992) to introduce the wavelet transform modulus maxima formalism.
This formalism makes explicitly use of the property that a local irregularity maps to the
extrema for the modulus of the wavelet transform across the different scales. In this way
the extrema provide an optimal multiscale partitioning of the two-dimensional scale-space
plane.

In this way an effective covering of ‘the signal’s complexity is accomplished and this is
done by the so-called wavelet transform modulus mezima lines, the wrMML’s. These
lines interconnect the maxima for the modulus of the wavelet transform within the cone
of influence and across the scale-space plane. They emanate from the abscissa where the
singularities are located and proceed into the scale-space plane, in the direction of the
coarser scales, until they possibly arrive at a bifurcation. This bifurcation indicates the
point in the scale-space where the cones of influence of two WTMML’s start to overlap.

Given the effective partitioning the wTMML’s provide an efficient measurement procedure
- via the inspection of the amplitudes along the locations delineated by the WTMML’s
— of the local Holder exponents to be associated with the singularities detected by the
wavelet transform.

To summarize, Mallat and Hwang (1992) have shown that the WIMML representation
is adequate to estimate the local regularity by evaluating the asymptotic behaviour for
the amplitudes along the wrMML’s. Moreover they demonstrated that these WIMML’s
provide sufficient information to non-uniquely® reconstruct the original function f(x)
from the WTMML partitioning?. The treatise is commenced by providing a theorem that
assigns a WTMML to a non-oscillatory singularity. Then a theorem is reviewed enabling
the measurement of Holder exponent estimates for isolated non-oscillatory singularities
followed by a theorem paving the way for the detection and subsequent rneasurement of
non-isolated non-oscillatory singularities.

8.4.1 Partitioning by the WTMML

By definition a modulus maximum of the continuous wavelet transform is a strict local

maximum of the modulus at a fixed scale oo and either on the left- or right-hand side of

8See Meyer (1990).
9See the master’s thesis of Hoekstra (1996) who beautifully shows that the wrMML’s can be used to
reconstruct one- and two-dimensional objects.

e
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" @g. More formally, following Mallat and Hwang (1992):

Definition 8.2: Wavelet transform modulus maxima (Mallat and Hwang, 1992)
— Let W{f,4}(0,) be the wavelet transform of a function f(x).

e A local extremum is any point (og,x0) for which 9, W{f,¢}(0,x) has a zero-
crossing at © = g, when x varies.

e Call a wavelet transform modulus maximum, & WTMM, any point (o, xo) such that
IW{f, ¥} oo, )| < W{F,¥}{0o,z0)| when & belongs to either the right or the left
neighbourhood of o, and |W{f,¥}(00,2)| < [W{f,¥}(00,20)| when = belongs to
the other side of the neighbourhood of z.

¢ Call a wavelet transform modulus maxima line, a WTMML, any connected curve in
the scale space (o, ) along which all points are modulus maxima.

" Let me now present the first in a series of three theorems presented by Mallat and
Hwang (1992) and enabling the characterization of algebraic singularities. For the proof
the reader is referred to their work.

Theorem 8.3: Singularity detection (Mallat and Hwang, 1992)
Let M be a strict positive integer. Let 1, be a wavelet of compact support, M van ishing
" moments and M times continuously differentiable. Let f(x) € L*([a,b)).

o If there exists a scale 09 > 0 such that for all scales ¢ < o¢ and x € (a,b),
IW{f,4¥}(o,2)| has no local maxima, then for any ¢ > 0 and o < M, f(z) is
uniformly Holder a in (a + €,b — €).

e Ify(x) is the M*™ derivative of a smoothing function, then f(x) is uniformly Holder
M on any such interval (a + €,b — ¢).

« The crux of this theorem lies in the fact that it proves that a function is global Hélder o
with o < M in the closed interval (a, b) when there is no modulus maximum emerging in
the wavelet transform as the scale indicator is decreased, o | 0. Reversing the argument:

. & WTMML points to a singularity, is not necessary true in cases where the functional
contains oscillatory regions. However, when the functional is singular or singular in
one of its derivatives then a WTMML emerges under the condition of using the proper

. analyzing wavelet. In this case the WTMML points, as the scale is decreased, to the
abscissa where the functional is singular. It is this localization property — the WTMML
zooms in on the singularity — that makes it possible to come up with a theorem providing

.. estimates for the Holder exponent to be associated with an isolated singularity. Of course

the wrMML’s will guide the analysis in the scale-space plane.
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8.4.2 Isolated singularities

When a functional contains a single non-oscillating singularity it is possible to come up
with a measurement procedure aimed at capturing the Holder exponent. The analyzing
wavelet is assumed to have M vanishing moments and to be M times differentiable.

Theorem 8.4: Measuring isolated singularities (Mallat and Hwang, 1992)

Let f(z) be a tempered distribution'® whose wavelet transform is well defined over (a, b)
and let zo € (a,b). Suppose there exists a scale 6y > 0, and a constant C, such that
for z € {a,b) and 6 < 09, all the modulus maxima of W{f,y}(o, %) belong to the cone
defined by

|z — zo} < Co. (8.41)

Then, at all points z; € (a,b), x1 # ®o, f(z) is uniformly Lipschitz M in a neighbourhood
of ;. Let o < M be a non-integer. The function f{x) is Holder o at zo, if and only if
there exists a constant A such that each modulus maxima (o, %) in the cone defined in
equation (8.41)

WA, ¢} o, )] < Ao®. (8.42)

The proof of this theorem can be found in (Mallat and Hwang, 1992). The scaling
behaviour of the WTMML as depicted in equation (8.42) amounts in the log scale log
amplitude space to an expression equivalent to,

log [W{o,z}| <log A+ alogo. (8.43)

This equation, together with the conditions laid down in theorem 8.4, permit the esti-
mation of the singularity strength by taking the supremum for the slope obtained after
conducting a linear regression.

8.4.3 Non-isolated singularities

As a final step in the local characterization of the regularity of a functional it is of
interest to consider functionals containing non-isolated and non-oscillatory singularities.
Why is this type of configuration important? Because the objects of interest in this thesis
can be singular everywhere on their support. Think for example of the mono- and/or
multifractal measures presented in chapters 6 and 7. Keep, however, in mind that this
latter category of highly complicated signals make it difficult to assign a Holder exponent
to a singularity over a wide scale range. What it does is that it gives an effective estimate
for the Holder valid over a limited scale range. That is to say that it expresses the notion
that the function within that scale range can not be discerned from being Holder so and
S0.

108ee chapter 5 where I define the class of tempered distributions.




Chapter 8: Multiscale analysis by the continuous wavelet transform 209

10 i i L 1 i [ 1 1
~-10 -8 -6 -4 -2 0 2 4 6 8 10

10-2 T T T T T T T T T

10" F .

101 H 1 i i 3 i L
-10 -8 ~6 -4 ~2 0
(4 z

Figure 8.4 The cone of influence for o linear o-azis (a) and a logarithmic o-azxis (b).

To measure the singularity strength of non-isolated singularities (Mallat and Hwang,
1992), also known as incipient singularities (Schertzer and Lovejoy, 1987a), it is necessary
to introduce an additional concept, namely a cone of influence. Suppose a wavelet with
a symmetric support on the closed interval [—K, K] then the cone of influence in the

.. scale-space plane, is the set of points (o, z) that satisfy

|z — zo| < Ko. - (8.44)

~ It is this cone, delineating the points in the scale-space plane where the values of the

W{f,¥}(o,z) are influenced by the value of f at abscissa g, see figure 8.4. Now if one
assumes that the functional or signal does not contain oscillatory singularities than one

» can characterize the regularity of f at a point zo by examining the behaviour of any

line in the scale-space plane that belongs to a cone that is strictly smaller than the cone
of influence defined in equation (8.44). Suppose that the analyzing wavelet is real, is

- M times continuous differentiable and has a symmetric support confined to the interval

[~ K, K]. Furthermore the wavelet is assumed to be the M*t-order derivative of a strict
positive smoothing function ¢(z) having the same support on the same closed interval
[-K,K]. ' ’
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Theorem 8.5: Measuring non-isolated singularities

Let zo € R and let f(z) € L*(R). We suppose that there exists a neighbourhood (a, b)
of zy and a scale og > 0, such that the wavelet transform W{f,¥'}(o,z) has a constant
sign for 6 < vg and = € (a,b). Suppose now also that there exists a constant B and
€ > 0 such that for all points z € (a,b) and any scale o

WA f,¥}o,2)| < Bo“. (8.45)

Let x = X (o) be a curve in the scale space (0, ) such that |zo—X (0)| < Co, withC < K.
If there exists a constant A such that for any scale o < oy, the wavelet transform satisfies

IW{f, ¥}, X(0)| < Ao?,  with0 <~y <N, (8.46)

then f(x) is Holder a0 at g, for any a < .

The proof of this theorem can be found in Appendix C of Mallat and Hwang (1992).
This theorem proves that the regularity of f is governed by the behaviour of the wavelet
transform inside the cone of influence only if the M*t-order derivative does not have a
oscillatory behaviour as x approaches zq, e.g. f(z) # sin ((z — 29)™1).

As for theorem 8.4, valid for isolated singularities, theorem 8.5 can be used to find
estimates for the Holder regularity of singularities by inspection of the wTMML’s. Again
this is done by examining the amplitudes of |W{f,¢¥}(0,z)! along the wrmmL’s that
converge to the singular “points” as the resolution is decreased, i.e. o | 0.

For a discussion on the practical aspects, such as the selection of the proper family of
analyzing wavelets, the reader is referred to chapter 2 where also attention is paid to
placing the multiscale analysis and characterization techniques, presented so far, in a
more general context. The actual application of this concept to weli-log measurements
will also be treated in this chapter.

8.4.4 Measuring procedure for the local multiscale analysis

In this section the measurement procedures for the estimation of the Holder regularity
of signals containing isolated as well as non-isolated singularities is reviewed. The pre-
scription for the procedure is given followed by the actual application of the formalism
in a number of examples.

Measuring the local Hélder exponent for an isolated singularity
The following procedure is proposed to measure the local Holder exponent for an isolated

singularity.

Procedure 8.1: Measurement and detection of isolated singularities
The procedure to detect and subsequently measure the regularity of functionals con-

e

o
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taining an isolated and non-oscillatory singularity with Hélder estimates consists of the
following steps:

1. Select the proper family analyzing wavelet in accordance with the conditions sum-
marized in the theorems dealing with the detection and measurement of isolated
non-oscillatory singularities.

2. Compute the continuous wavelet transform of the signal f with respect to this
family of analyzing wavelets, see figure 8.5 (b) middle row, using equation (8.3).

3. Locate the WTMML’s in accordance to definition 8.2. Perform the WTMML partition-
ing: that is create a set L = {1,2,...,1} of | curves, parameterized by {X (0)}mer
on which the modulus of the continuous wavelet transform is maximum.

4. Study the behaviour of the function,

W{f, ¥} o, Xm(0)), (8.47)

on the curves parameterized by X,,(o) belonging to the set L, with an emphasis
on the behaviour for o approaching the resolution at which the measurement has
been taken.

5. Use the linear relationship in equation (8.43) to find the maximum slope of the
straight lines that remain above the logarithm of the amplitude of the modulus
maxima line, on a logarithmic scale, see figure 8.5 (c), bottom row.

« To elucidate the local multiscale measurement procedure I include a number of examples
- in Figure 8.5. The functional analyzed is of the following form

—t _  Va#leZ
fe={ T+ (8.48)
5(=9 Va=1¢17,

where I'(-) refers to the Gamma function and 6% to the I*" distributional derivative
of the delta distribution. This type of functionals are known as generalized functions
with algebraic singularities or as singular distributions generated by Hadamard’s “finite
part’ of an algebraically divergent, when o < —1, integral (Gel’fand and Shilov, 1964;
Zemanian, 1965). In case a becomes integer the distribution f¢ becomes the I*® primitive,

_ for 1 >0, or the |I|** derivative, [ < 0, of the d-distribution all taken in a distributional

sense. For the non-integer values of « this distribution’s action corresponds to fractional
differentiators or integrators again depending on the sign of a. It is this property that

. explains why the differentiability and integrability conditions are so important for the

analyzing wavelet. This has to be understood in the sense that the multiscale analysis is
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Figure 8.5 This figure contains the regularity analysis conducted on distributions defined in terms of equation (8.48) with the Hélder
exponent a set to the values a = —0.5,0.5,—1,0. In all plots: (b,e) The wavelet transform of (a,d) viewed from above.
The lines indicate the location of the modulus mazima. (c, f) The logarithm of the modulus mazima lines against logo.
The slopes together with the abscissa of the lines for the small scoles indicate that the distributions depicted in the (a,d)
have local Hélder exponents o that closely match the values with which the singular distributions have been constructed.

8.4 Measuring the Holder regularity with the wavelet transform

212



Chapter 8: Multiscale analysis by the continuous wavelet transform 213

doormed to fail in those circumstances where the analyzing wavelet is unable to “absorb”
the differential or integral action effectuated by the above distribution.

From the examples it becomes clear that the proposed method is able to capture the

" Hélder exponent accurately. It is also clear that this kind of singularities act as (frac-

tional) differentiators annex integrators, a notion that becomes clear when the generalized
functions with @ > 0 are being considered because in that case the number of WTMML
decreases by one due to the (fractional) integration.

Measuring the Hélder exponent for non-isolated singularities

" Now let me continue the discussion by proposing the following procedure to measure the

local Holder exponent for non-isolated singularities.

Procedure 8.2: Measurement and detection of non-isolated singularities

The procedure to detect and subsequently measure the regularity of functionals contain-
ing non-isolated and non-oscillatory singularities with Hélder estimates consists of the
following steps:

1. Select the proper family analyzing wavelet in accordance with the conditions sum-
marized in the theorems dealing with the detection and measurement of isolated
non-oscillatory singularities.

2. Compute the continuous wavelet transform of the signal f with respect to this
family of analyzing wavelets, see figure 8.6, using equation (8.3).

3. Locate the WrMML’s in accordance to definition 8.2. Perform the WTMML partition-
ing: that is create a set L = {1,2,...,1} of | curves, parameterized by {X (¢)}mer
on which the modulus of the continuous wavelet transform is maximum, i.e. apply
definition 8.2.

4. Check whether these WTMML’s lie inside the cone of influence defined in equa-
tion (8.44) and depicted in figure 8.4.

5. Study the behaviour of the function,

WA, ¥} o, z), (8.49)

on the curves parameterized by X, (o) and belonging to the set L, with an emphasis
on the behaviour for o approaching the resolution at which the measurement has
been taken.

6. Use the linear relationship in equation (8.43) to find the maximum slope of the
straight lines that remain above the logarithm of the amplitude of the modulus
. maxima line, on a logarithmic scale, see figure 8.6.
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Figure 8.6 This example illusirates the local scaling characteristics of two non-isolated sin-
gularities, discontinuities in this case. Clearly for the small scale range Hélder
ezponents are found consistent with the discontinuities. But as soon as the cones
of influence start to overlap a bifurcation sccurs having a drastic impact on the
amplitude behaviour along the middle and to o lesser extent for the outer WTMML’s.

For obvious reasons one is generally more interested in finding local estimates for the
Holder exponents yielded by signals containing more than one singularity. In that case
there will always be a scale range within which the wIMML’s start to interfere with
each other. With other words the cones of influence will start to overlap and this is
indicated by a bifurcation of the wTMML. Despite the apparent mutual influence by the
singularities it is still possible to come up with Holder exponent estimates. This, however,
requires a rather technical theorem, and for this reason I will limit myself to reviewing
the simple example of a box-car only. In Figure 8.6 I have included this box-car which
can, within the seismic context, be associated to a ‘thin’ layer sandwiched between two
homogeneous halfspaces. Inspection of the WTMML yielded by this box-car clearly shows
that two scale ranges, separated by a bifurcation, can be distinguished. These two scale
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ranges refer, on the one hand, to a scale range acting on scales smaller than the spatial
extent of the box-car, whereas on the other hand to a scale range exceeding the support
of the box-car. Inspection of the amplitude behaviour of the WTMML’s over the first scale

* range clearly shows that the estimates for the Holder exponent correspond to a Holder

exponent for an isolated discontinuity, i.e. @ = 0. But as soon as the WTMML’s start to
overlap, as soon as the bifurcation occurs, a completely different behaviour is evidenced.

= The Holder exponent to be associated to the decay rate of the WTMML equals, in this

scale range, a = —1. This means that for this scale range the box-car, layer, acts as a
functional that can not be discerned form a §-distribution for the scales exceeding the

== width of the box-car.

The lesson to be learned from this example is that the signal, the functional, can display
a different scaling behaviour for different scale ranges. However, this does not mean that
the concept of parameterization by the Holder exponents looses its meaning. It just tells
one that care should be taken with respect to the scale range one is interested in.

8.5 Measuring the singularity spectrum f(a) by the continuous wavelet transform

Given the successful development and numerical implementation of the wrmMI, formal-

* ism to estimate the local regularity of signals, functionals containing (non)isolated alge-

braic singularities suggest the application of this formalism to the multifractal framework
traditionally dominated by measure theory. This choice to unravel the complex scaling

* hierarchy of singularities, emanating from the multiplicative cascades'' by means of

wavelets acting as “smart boxes” opens the way to extend the theory for measuring the
multifractal singularity spectrum f{a) to the realm of singular functionals rather than

“ singular measures only. Besides this advantage — the global multiscale analysis procedure

becomes also insensitive to regular perturbations of the singular measure — the WTMM
formalism offers the advantage of providing an efficient multiscale partitioning of the

* signal by means of the WrMML’s. In fact the method can be seen as the most general

form of conducting a global multiscale analysis in accordance to the mathematical rules
set by distribution theory, see chapter 5 and the references therein. Given this multiscale

- analysis technique it is possible to measure the singularity spectrum, the mass exponent

function and generalized dimensions from a larger class of objects. The reader is referred
to chapter 6 for an introduction on the basic concepts related to multifractality.

~ In the pertaining sections an overview is given of the main results presented in the work

of Bacry et al. (1993). At first a partition function is introduced. This partition is used
to compute the mass exponent function 7(q) and is based on a multiscale partitioning,

™ covering, provided by the continuous wavelet transform (Holschneider, 1987; Arneodo

HNotice that these cascade models are widely used to model highly nonlinear phenomena such as

.. burbulence (Mandelbrot, 1974; Parisi and Frisch, 1985; Schertzer and Lovejoy, 1987a; Schmitt et al.,

1992).
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et al., 1988; Bacry et al., 1993; Muzy et al., 1993; Davis et al., 1994; Holschueider, 1995).
Then I proceed with the introduction of a multiscale partitioning/covering by means of
the wrMML followed by extending the theory to apply to singular signals, functionals
rather than to measures (Bacry et al., 1993; Muzy et al., 1993). Finally a theorem
is presented that puts a handle on how to deal with singular functionals composed of a
singular measure that is perturbed by a C™ oscillatory contribution. Such a perturbation
is not unimaginable in the context of this thesis and will result in phase transition, a non-
analyticity in the mass exponent function resulting in a breakdown for the right-hand
side of the singularity spectrum. I will conclude the discussion by testing the proposed
method on the monofractal singular functionals Gaussian white noise and Brownian
motion followed by a test on the binomial multifractal. For more practical considerations
on the actual application I like to refer the reader to chapter 2 where I set the local/global
multiscale analysis procedures to work on real well-log measurements.

8.5.1 Partitioning by the continuous wavelet transform

Let me start the discussion by defining the continuous wavelet transform for a measure
rather than for a functional, i.e.

x —

Wi whao) = [ u (e, (8.50)

SUpp g o

where the supp denotes the support of the measure g and p' = %%12. Concerning the
wavelet itself, it is assumed to be of compact support, to be smooth enough and to have
the proper number of vanishing moments M and, finally, the o~ % has been omitted so
that in equation (8.51) the normalization term: drops out. This is the same choice as
Bacry et al. (1993) made, whose notation I will follow here.

Using the above definition for the wavelet transform of a measure p(z) leads to the fol-
lowing relationship between the wavelet transform of a measure and that of a functional,
i.e.

W', ¢ Ho,z} = -W{f,¢'}o, ), (8.51)
where f(z) = f; dp(z) and where 9'(z) is the derivative of the wavelet 1)(z).
Now define a partition function for a measure'® as follows
+00
Ko i $},0) = 1o [ DV o)l (852)
~C0

with p € R, and ¢ the positive order of the “moment” or the reciprocal of the temperature
p

12This definition of u' is purely formal to remain consistent in notation.
137he measure considered by Bacry et al. (1993) is a Bernoulli measure, i.e. p € M, which is obtained
via iterative one-dimensional mappings known as “baker, cooky cutter” or Markov maps.

gl
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in the statistical mechanics nomenclature!*, ¢ > 1. Given this multiscale partition
function it is possible to estimate the 7(q) function (see chapter 6). For the details and
proves the reader is referred to (Holschneider, 1987; Ghez and Vaienti, 1992; Bacry et al.,
1993).

Theorem 8.6: Generalized fractal dimensions of a measure by the WT (Bacry et al.,

. 1993)

Let y € M. Let K, {u,¥}(p,q) be its corresponding partition function as defined in
equation (8.52) and let D, = EJL}% be its generalized fractal dimensions. Then, for ¢ > 1, -

. 7(q) is the transition exponent such that

p_1<7-(q_1) = }1]}'131{0'{’-1’1%/"}((]):0
p— 1> T((] — [) = hiIOlKa{,uﬁ 1/)}((1) = 00,

Inspection of this theorem clearly reveals the striking similarity between this formulation
and the original definition 6.3 for the generalized dimensions in section 6.3 of chapter 6.
Unfortunately this formalization is, contrary to definition 6.3, unable to allow for g < 1.
This is due to the limited restrain which can be imposed on the parts of the W{u, ¥} (o, x)
being close to zero, i.e. the parts leading to a divergence for the negative moments. Ghez
and Vaienti (1992) proposed the use of a strictly positive analyzing “wavelet” in order to
circumvent this flaw. However, this attempt leads to a formulation very much in line with
the box-counting and therefore it suffers from the same shortcoming. This shortcoming
refers to the limited detection range, for positive singularities, of an analyzing function
lacking vanishing moments, a notion one is all to aware off judging by the local scale
analysis and the examples to be shown in section 8.6. A way out of this dilemma is to
define an alternative partition function that is based on wavelets with the proper number
of vanishing moments but that circumvents the above divergence problem. In that way
the global multifractal analysis techniques are not longer limited to singular measures
solely.

8.5.2 Partitioning by the WTMML

Under the same arguments as stated in section 8.4.1 an alternative approach is proposed
which instead of using all values of the continuous wavelet transform at a specific scale,
the W{y',¢}(0,2), z € R, for 0 = 0y, it uses a partitioning in terms of the extrema,
i.e. the wrMML’s (Mallat and Hwang, 1992; Mallat and Zhong, 1992). In this way the
partition function becomes

ZoAm ¥} (p,@) = o] Y fsup {wrmmL, (m)})?, g€ R, (8.53)
meM

143ee chapter 6 where I make some remarks on the relation between the phase diagrams of statistical
mechanics and the 7(¢) or f{a) spectrum.
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where WTMML, (m) refers to a maximum, a WTMM, at scale o yielded by the m*® modulus
maxima line of the set L of curves parameterized by X,,(¢), m € L, on which the modulus
of the continuous wavelet transform is maximum, i.e. apply definition 8.2. The supremum,
sup, denotes the supremum of the WIMML yielding an extension of the permissible g
range, ¢ € R. It is this supremum necessary to circumvent the possible divergence
for negative powers ¢ in those cases where the values of the modulus maxima become
too small (Bacry et al., 1993; Muzy et al., 1993). Remark that the partitioning by the
WTMML’s is very close in line with the optimal multiscale covering of the singular support
of p maximizing, for ¢ > 0, or minimizing, for ¢ < 0, the partition function. Given the
partitioning defined in equation (8.53) Bacry et al. (1993) presents the following theorem:

Theorem 8.7: Generalized fractal dimensions of a measure by the wTMML (Bacry
et al., 1993)
Let p € M. Let Z,{u,}(p,q) be its corresponding partition function as defined in

equation (8.53) and let D, = L(_—Q be its generalized fractal dimensions. Then, for
g g—1 g

Vg € R, 7(g) is the transition exponent such that
p<7(e) = lmZ:{n¢}p,q) =0

p>T1(g) = {}ig Zo{p, ¥} (p,q) = oo.

This theorem allows for the estimation of the singularity spectrum, by conducting a
Legendre transform on the 7{g) function, for a singular measure, but now by means of
the wTMML’s and for all ¢ € R.

s,

As a final remark I would like, for clarity, to mention again that there is a fundamental ..

parallel hidden between the required optimal covering in the definition of the Haus-

dorff and generalized dimensions, see chapter 6 and the optimal covering obtained by

the WIMML method. In this comparison the wavelet can be seen as an optimal o-size
“box” whereas the WTMML’s act as navigators to optimally position the wavelets on the

measure. The additional supremum in equation (8.53) can be interpreted as a precon-

ditioner controlling the possible divergences, in case of ¢ < 0, for the small values of

IW{n, ¥}(a, z)].

8.5.3 Singularity spectrum of a function

Consider the class of functionals being defined by

f@ 2 [ aua) + Puta), (8.54)

where p(x) € M and P,(z) a polynomial of arbitrary but finite order n. This polynomial

perturbation will later be generalized to a O function, i.e. n — co. Let me first define

w

i)
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" the singularity spectrum f(a) for a functional®® as

Definition 8.3: Singularity spectrum of a function (Bacry et al., 1993; Holschneider,

v 1995)
A singularity spectrum of a function f(x) is the function f(«), o € Hy, the set of finite

Holder exponents of f, such that
f(Oé) = dimH{xO [ R!a(mo) = a}’ (855)

where dimpg denotes the Hausdorff dimension.

This definition is based on a slightly different definition for the local Holder exponent as
used so far.

Definition 8.4: Local scaling exponent of a function (Bacry et al., 1993; Mallat and

Hwang, 1992; Holschneider, 1995)
A function f is said to be of local Hblder exponent « at the point zo € R, if and only if

a(zg) is the largest exponent a such that there exists a constant A > 0 and a polynomial
P,(z) of order n such that for all z in the neighbourhood of g

[f (@) = Pulz — 20)| < Alz — @0]®. (8.56)

If f € C*°, then a(x) = oo for all 2y € R.

== Let me now restate without giving the proof the fundamental result by Bacry et al.
(1993) allowing for the estimation of the singularity spectrum for singular functions'®.

~ Theorem 8.8: Generalized fractal dimensions of a function by the wrmMmL (Bacry
et al., 1993)

Let i € M. Let P,(z) be a polynomial of the ordern and f(z) = [ du+Pn(z). Let 1 be

an analyzing wavelet with M > n vanishing moments, i.e. Vk,0 < k < n, [z*y(z)dz =

0. Let Zy{, ¢} (p,q) be the corresponding partition function as defined in equation (8.53)

ZoA £, 9} p, @) = ol Y [sup {wrmmL,(m)}]?, ¢ € R. (8.57)
P

s

Then, for all ¢ € R, 7(q) is the transition exponent such that
p<7le) = lmZ{f,9}pq)=0

p>71(q) = 101% Ze{f, v} P, q) = oo.

151 am aware of the deviant notation I opted to use for the singularity spectrum of a function. Bacry
et al. (1993) and others use D(h) and h for the singularity spectrum and the Hélder exponent while I
like to stick to the notation used for the corresponding quantities used for the multifractal measures.
e ‘SNote that I am discussing here the partition function of a measure perturbed by a polynomial where
- 1 before discussed the partition function of a measure solely
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By way of the formulation coined in theorem 8.8 it is clear that the computation of the =
7(g) function for a singular function is very similar to that of a singular measure. There
is, however, a profound difference. Namely when, for example, a constant is added to the
measure, i.e. a zero order polynomial, then the multifractal can dramatically be altered 22
by this regular perturbation in cases where a conventional coarse graining by means of
a smoothing kernel with a non-vanishing mean, say the box-car, is used. This major
difficulty can be attributed to the fact that the constant is completely dominating the 2
behaviour of the partition function. This partition function is defined for a conservative
measure, i.e. [ dps(z) < oo and independent of o whereas clearly y + C ¢ M leads to
an apparent non-integrability killing the behaviour of the partition function. However, =2
when WTMML method is used, one can overcome this flaw by choosing the appropriate
number of vanishing moments, M, yielding an analyzing wavelet that is orthogonael with :
respect to polynomials P, (z) with n < M. o

As to conclude the discussion on obtaining the singularity spectrum from a singular
function I would like to review the case where the perturbation is P(z) € C) i.e.
perturbing the measure with an infinitely differentiable function, e.g. sin(z). Such a ™
situation could be relevant in cases where, for example, a periodic disturbance, say a
seasonal contribution in the sedimentation process, is superimposed on the multifractal
measure. o

Again suppose a sufficiently smooth wavelet with M vanishing moments. Because of the
C® perturbation one has now to do with two distinct groups of WTMML’s: the first group
can be associated with the singular measure p and the second with the C® perturbation.
From previous experience one can say that the amplitudes along the wrMMmL’s for the
second category will all be of O(c™), a property already observed in the local regularity
analysis. Moreover it is known that the g acts a selector for the different singularities and =
it will therefore not be surprising that there will be a negativel? critical ¢ delineating a =
transition in the behaviour of the mass exponent function 7(g) due to the emergence of
the wrMML’s from the C* perturbation. This non-analyticity in the 7(g) function can ™~
be associated with a phase transition marking a break in the multifractal scaling induced
by the perturbation.

)

Without going into all details I would like to restate the following theorem which allows
for the determination of the critical exponent and the singularity spectrum for singular =
functions being perturbed by a C* functions.

)

Theorem 8.9: Critical exponent (Bacry et al., 1993)
There exists a qppj; < 0 such that

s

1. If ¢ > q.pjt, then 7(q) is the transition exponent such that
p< T(q) == E.]I:IOI th{f>¢}(p> Q) =0,

p>71(q) = {'11101 Ze{f, 9 Hp, q) = +oo.

}7Because the negative ¢’s hunt for the positive singularities.

s
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2. If ¢ < qpjt, then

p<qM = {}%Zo{fnﬂ}(p,q):ﬂ,

p>aM = lnZ,{f,9}(p.q) = +oo.

w The proof of this theorem can be found in Bacry et al. (1993). The critical moment gyt

marks two distinct domains for which either the 7(g) function can be recovered, in the
case g > g4, OF where no information can be inferred. The sudden change in behaviour
of the mass exponent function 7(q) at ¢ = g¢pj; can be associated with a first order
phase transition. This phase transition — where the linear curve switches to a nonlinear
one — marks a break of the heterogeneous scaling and manifests itself by a singularity in

.. its derivative, 8,7(q) at q¢ = ggpi. With other words, below the critical exponent qgp4

the “system” is in its regular phase whereas for ¢ > g, the system enters the singular
multifractal phase.

8.5.4 Measuring procedure for global multiscale analysis

Now that all essential tools necessary to recover the singularity spectrum have been

" introduced I would like to pay attention to actually determining the singularity spectrum.

The binomial multifractal of chapter 6 will serve as a test case since its f{a) is explicitly
known. In chapter 2 I will set this technique to work on a real data set, a well-log
measurement.

Procedure 8.3: Measurement of the singularity spectrum f{a)
The procedure to measure the mass exponent function 7(g) and singularity spectrum
f(a) from singular measures and functions consists of the following steps:

1. Select the proper family analyzing wavelets in accordance with the conditions sum-
marized in the theorems dealing with the estimation of the singularity spectrum
for singular measures and functions. This choice has a drastic effect on the de-

- tectable range of singularities as already stressed in the local multiscale analysis.
In section 8.6 I will pay ample attention to this important issue.

2. Compute the continuous wavelet transform of the signal f with respect to this
family of analyzing wavelets, see figure 8.8, using equation (8.3).

3. Locate the WIMML’s in accordance to definition 8.2. Perform the WTMML parti-
tioning: that is create a set L of curves, parameterized by X,,{c),m € L on which
the modulus of the continuous wavelet transform is maximum.

4. Study the behaviour of the partition function,
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as defined in equation (8.57) and with the emphasis on the behaviour for o ap-

proaching the resolution at which the measurement has been taken. This corre- =

sponds to stacking the g power of the WrMM’s along the spatial coordinate.

5. Compute the 7(g) function using the property

Ze(q) x o™ @, 510 (8.59) ...

ie.
_ i og Zs(q)
T(g) = Eﬁ)l 12)g0’ ) (8.60)

which corresponds to a linear behaviour in the log-log space:

log Z,{q) oc 7{(g)log 0. (8.61)

The 7(q) function is obtained by conducting, for each g-value, a linear regression
on the partition function.

6. Compute the f(a) spectrum'® by means of performing a Legendre transform on the
7(q) function, i.e.

(@) = minfga - ()}

(8.62) ™

fla) = mgn{mr'r(rz)}-

Given this procedure it is now time to test it on a number of examples, the outcome of

.

which is known beforehand, therefore acting as a check of confidence for the proposed

method.
Singularity spectrum of distributions with one singularity

Consider the distribution given by

x”3 if z>0
g(z) = L ’ (8.63)
(—z)"7 ifz<0.
This distribution has only one singularity of strength -—12-, so it is expected that its
singularity spectrum f(c) is zero everywhere except at a = -%, where it is negligible
small.

Figure 8.7 (a) on the left shows g;(¢). In figure 8.7 (b) the locations of the modulus

maxima lines are depicted. The wavelet used is the first derivative of the Gaussian.

18Notice that I use a deviant notation for the singularities of a function, « instead of h.
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" Figure 8.7 (c) gives the logarithm of Z,(q) against logo for various values of ¢. It can

be shown that 7(¢) must be
(q) = ~—g~. (8.64)

Figure 8.7 (d) shows the computed 7(g), which is in accordance with equation (8.64).

.. Finally, figure 8.7 (e) shows the singularity spectrum f{a), which is indeed zero except at

o= — % , where it is very small. The above procedure is repeated for a positive singularity
of strength o = +%,
+l . .
7z x>0
g2(z) = N (8.65)
0 otherwise,

It is of course expected that the same singularity spectrum is found as in the previous
example, but now shifted by +1. So f(a) is zero everywhere except at a = +1 where it
is negligible.

Figure 8.7 (a) on the right shows go and figure 8.7 (b) shows the location of the modulus
maxima line. For this singularity it can be shown that

r(g) = +3, (8.66)

which is confirmed by figure 8.7 (d). In figure 8.7 {e) the singularity spectrum is shown.

- Indeed it is zero everywhere, except at a = +%, where it is very small.

Singularity spectrum of white noise end Brownian motion

Gaussian white noise is a stochastic process, which is characterized by a probability
density function given by

(Empn2
e~ (57507,

F{z) =

8.67
2no ( )

Let the process e(z) symbolize a process which has a Gaussian probability density as in

. equation (8.67) with a mean y and a variance o?.

It can be shown that e(z) is singular everywhere and that its singularity strength o = —4
everywhere. This means that its singularity spectrum f{a) is zero everywhere except at

“ o = ~% where it is 1. Sinceé e(t) has singularities of strength w% everywhere, the

modulus maxima lines behave as ¢°, see equation (8.46), i.e. they behave in exactly

the same manner as in the first example of the previous section. However, there is one

. difference in the sense that white noise is singular everywhere a notion being reflected in

a somewhat different behaviour for the partition function which now reads (Muzy et al.,
1993)

Z.(q) x o739, (8.68)
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Figure 8.7 {a) The distributions of equations (8.63) and (8.65) are reviewed in this figure. These distributions have singularities of
strength o = F1. (b) The location of the modulus mazima lines of the wavelet transform of (a). The wavelet used is the
second derivative of the Gaussian, so it has two vanishing moments. (¢) The partition functions Z,(q) computed from
the modulus mazima lines. {d) The v(q) functions. The predicted function (dots) is plotied and the computed function is
plotted (solid). (e) The f(a) functions belonging to these distributions. They are zero everywhere except at o = F3 where
they are very small. This is expected since the dimension of a point is zero.
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yielding an offset by a one with respect to the behaviour of the partition function com-

puted for an isolated singularity. This offset bears the notion that the white noise is

~ singular everywhere which becomes apparent by the fact that the associated dimension
~ equals unity, i.e. f(—3) = 1. This is illustrated in figure 8.8 on the left. Figure 8.8 (a)

gives a realization of e(z). Figure 8.8 (b) shows the location of the modulus maxima
lines, which start at every abscissa in accordance with the fact that e(z) is singular ev-

~ erywhere. Figure 8.8 (c) shows Z,(g). Figure 8.8 (d) gives 7(g) which equals —¢/2. The

singularity spectrum f(a) is depicted in figure 8.8 (e) and is indeed 1 for & = —{ and

zero everywhere, Notice the differences and similarities with the first example of the

" previous section, see figure 8.7. The main difference is the number of modulus maxima

lines, which determine the value of f(a) at a = % As a second example of a process
which has singularities of the same strength everywhere, consider the process B(z) given

“ by

%B(m) =¢(z), B(0)=0, (8.69)

or

B(z) = /0 " e(a")da. (8.70)

This process is referred to as Brownian motion, see chapter 7 and the references therein,
and it describes the random movement of a particle through s liquid or a gas. The

. quantity B(z) is the velocity or momentum of a particle of unit mass and &(x) is the

random force acting upon the particle.

With the knowledge of the previous examples it is not hard to predict that B(z) has a

- singularity spectrum f(a) which equals 1 for & = § and is zero elsewhere. Figure 8.8 on

the right confirms this prediction, showing B(z), the WTMML’s, the partition function
Z4(q) and mass exponent 7(q), and finally the singularity spectrum f(a). The spectrum

= 18 indeed 1 for a = % and zero elsewhere while the mass exponent function equals

m(q) = 9 - 1.

White noise and its primitive, in the sense of distributions, Brownian motion are two spe-

= cific members of the class of fractional Gaussian noises and fractional Brownian motions

(Mandelbrot and Wallis, 1969; Mandelbrot, 1982; Montroll and Schlessinger, unknown;
Schertzer and Lovejoy, 1993; Samarodnitsky and Taqqu, 1994; Klafter et al., 1996). The

» fractional Brownian motion processes are indexed by the exponent H. This exponent

expresses the degree of fractional integration/differentiation with respect to Brownian
motion and determines the homogeneous/monofractal scaling. Moreover it provides es-

= timates for the powerlaw behaviour displayed by the stochastic quantities that can be

assimilated to these processes. For instance, the powerlaw decay rate for the energy
spectrum of fractional Brownian motion is given by

S(k) o 76% 8.71)
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Figure 8.8 (a) Realizations of Gaussian white noise (left) and Brownian motion (right). These signals have singularities of strength
a = Fi everywhere. (b) The location of the modulus mazima lines of the wavelet transform of {a). The wavelet used
is the first derivative of the Gaussion, so it has one vanishing moment. These plots show that on the finest scale the
modulus mazima lines start everywhere, which is a reflection of the fact that the signals are singulay everywhere. (c) The
partition functions Z,(q), computed from the wavelet modulus mazima lines. (d) The 7(q) functions, computed from the
partition functions. Both the theoretical expected functions (dots) as the computed functions (solid) are depicted. (e) The
(o) spectra, estimated from the computed 7(q) of (d). It is zero everywhere, ezcept al a = F%, where it is one. This is
because the signals have singularities of equal strength everywhere, i.e. they are monofracials.
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" with 1 < 8 < 3 with 8 =2H+1and 0 < H < 1. The partition function for this type of

process is given by
Z,(q) x 0?21 (8.72)

with a = H being the single singularity strength occurring. As I defined in chapter 2 the

« exponent H, for fractional Brownian motions, is related to the mass exponent function

according to

H2{{(@)}e=1 = {7()}g=1 + 1, (8.73)

where ((g) refers to the scaling displayed by the generalized structure function!?, i.e.
(|Br(z+0)~Bg(z)|) « 0$(9 with By (z) being the index-H Brownian motion (Schiitt,

" 1993; Muzy et al., 1993; Davis et al., 1994). Application of this definition, see figure 8.8,

to white noise yields H = ~3 for white noise and H = 1 for Brownian motion itself.
The fact that there is a difference of one between these two can be attributed to the fact

" that white noise is the derivative of Brownian motion to be understood in the sense of

distributions.

The singularity spectra considered so far are concentrated at one point. In the previous
section they were even nearly zero at that point. This is a reflection of the fact that the
signals of the previous sections are extremely sparse fractals, i.e. the dimension of their
support is zero. The examples reviewed in this section on the other hand have singularity
spectra equalizing 1 which corresponds to the notion that the dimension of the singular
support is one, i.e. these distributions are singular everywhere. Notice, however, that all
these f(«)’s share the property that they are concentrated at one point which means that
the signals are monofractal, they display a scale-invariance. In more intricate cases the
7(g) becomes nonlinear corresponding to a convex singularity spectrum which indicates
that the signal contains singularities with all kinds of strengths. In this latter case the

- signal becomes multifractal and not longer displays a trivial type of scale-invariance.
- Singularity spectrum of the binomial multifractal

- In order to validate the procedure introduced in the previous section it is tested on

a simple multifractal of which the singularity spectrum is known. For that reason a
binomial multifractal measure introduced in chapter 6 will be examined.

" In figure 8.9 (a) on the left the generated binomial multifractal measure is depicted

together with its partitioning by the wrMML’s in figure 8.9 (b). In the bottom row of

~ figure 8.9 the partition function Z,(q) is depicted, see figure 8.9 (c), computed from the

 WI'MML partitioning of the measure. The mass exponent function 7(q), figure 8.9 (d)

together with its expected values obtained from the equation 7(g) = log,[p! + pZ] (see

¥ Notice that this structure functions is only applicable for processes with stationary first increments
an observation limiting the observation range for the singularities to a € (0,1) (Muzy et al., 1993).
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Figure 8.9 (a) In this figure the binomial multifractal measure (left) and its density are reviewed (right). These two fractals contain
a hierarchy of singularities and are singular everywhere. With the choices made, p1 = 0.25 and p2 = 0.75 the predicted
values for the endpoints of the singularity spectrum are Omax = 2 and omin = 0.4 for the measure while the spectrum and
its endpoints is shifted one to the left for the density. (b} The location of the wavelet transform modulus mazima lines.
The wavelet used has three vanishing moments. Since the second derivative of this signal is singular everywhere, the
modulus mazima lines start on the finest scale everywhere. (c) The Z,(q) function, computed from the modulus mazima
lines of (b). The predicted (dois) and the computed (solid) 7(q) function. (e) The computed f(cr) spectrum (solid), which
matches fairly good with the predicted (dots) spectrum for the measure. The mazimum of f(a) is found to be one, in
accordance with the fact that the second derivative of this distribution is singular everywhere.
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Siebesma (1989)) with p; = 0.25 and po = 0.75 and finally, in figure 8.9 (e) the singularity
spectrum f(a) itself together with the expected values yielded by the equation f(a) =
—~c(a) logy(a) — (1 — ¢(a))logy (1 — e(a)) with ¢(a) = (@ ~ Qmin)/(Qmax — Omin) and
Omin = logy p1 and aunax = logy pa.

Inspection of both the mass exponent and the singularity spectrum shows that the
proposed analyzing technique accurately captures multifractal characteristics. The es-
timated values do not differ much from the theoretical curves and both asymptotes
(g — +o0) and (¢ = —o0), delineating amin and amax are also accurately recovered.
The maximum is located at ¢ = 0 and is approximately equal to one. This latter obser-
vation is consistent with the fact that the binomial multifractal is singular everywhere.

The example displayed in figure 8.9 on the right hand side illustrates the notion that
the singularity spectrum is shifted by one to the left when the multifractal measure is
differentiated®. Note, however, that these results only hold when the proper analyzing
wavelet is used. In the next section I will pay attention to the impact of choosing

~ erroneous analyzing wavelets.

Y

8.6 The significance of choosing the proper wavelet

In this section I will discuss by means of a number of examples the implication of selecting
an improper analyzing wavelet to conduct the global or local multiscale analysis and
characterization. It is shown that an erroneous choice limits the detectable range of
singularities. The two examples to be shown comprise

e the implication of using an insufficient number of vanishing moments in the context
of conducting a global multiscale analysis on an integrated binomial multifractal.

e the implication of using a wavelet that is not smooth enough in the context of
the local multiscale analysis conducted on a singular distribution containing one
isolated singularity. ‘

Notice that the observations to be made refer to the multiscale analysis as a whole. This
means that when something goes wrong in the local multiscale analysis it will also go
wrong in the global multiscale analysis and vice versa.

FErroneous number of vanishing moments

First order integration of a multifractal yields a shift of magnitude one to the right for
the singularity spectrum. However, this can only be observed when the analyzing wavelet
used to conduct the coarse-graining possesses an adequate number of vanishing moments.

20 Again to be interpreted in the distributional sense which corresponds to the fact that the derivative
is approximated at a scale corresponding to the scale towards which the multifractal is generated. The
derivative is taken at the inner scale of the coarse-grained binomial multifractal.
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Otherwise the analysis will be blind for the singularities the Hélder exponents of which
exceed the number of vanishing moments M. To illustrate this notion I included fig-
ure 8.10 where on the left a wavelet with the proper number for M was used while on the

right the number of vanishing moments was taken to be insufficiently high, namely M =2 =

oy

rather than the required M = 3. This wrong doing manifests itself in a breakdown of the =

singularity spectrum towards the ¢ — 0o asymptote, towards the aupmax endpoint. Notice
also that the singularity spectrum “saturates” for approximately a = 2, a value that,
as expected, exactly corresponds to the inadequate number of vanishing moments used,
M = 2. When the number of moments is increased by one the spectrum is completely
restored although it is shifted by one to the right as anticipated.

Insufficient regularity

Let me now examine the implication of selecting an analyzing wavelet with insufficient

regularity to conduct a proper local multiscale analysis on an isolated singularity. The

singularity opted for is the distributional derivative of the delta distribution, i.e. f(z) =
¢1), The analyzing wavelet used for the multiscale analysis is the Haar wavelet

«,b(m):{l a<i<n G

0 otherwise

o

and is depicted in figure 8.11. Using equation (8.6) the wavelet coeflicients are found via -

the inner product

(5(1)7¢< - !» - W(&w(l)(?_w}i)} {8.75)

which is nof defined for the wavelet of equation (8.74). To see this the reader is referred
to chapter 5 where I give a resume of distribution theory which formalizes the notion

that extreme care has to be taken when computing the inner product of two singular

distributions. Now how does this observation relate to approximate numerical experi-

ments where the notion of non-differentiability seems to be irrelevant in the light of the =

inherent coarse-graining? To put matters to the test I conducted the local multiscale

analysis with either the Haar wavelet which is clearly discontinuocus, i.e. 1 € C° or with -
the first derivative of the Gaussian being C°°. What happens is that the Holder exponent =

estimates differ for both cases, see figure 8.11. For the Haar wavelet the outcome equals
« = -1 while for the smooth, C*, first derivative of the Gaussian one finds —1.985,
which is close to —2. Clearly the analysis with the Haar wavelet came up with the wrong
answer, @ = —1, because the 6V is Holder a = —2, while the analysis with the smooth
wavelet gave the correct answer.

What happened is that the analysis by the Haar wavelet was completely dominated by the
regularity of the analyzing wavelet itself rather than by the regularity of the functional
under consideration.

o
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Figure 8.10 (a) In this figure the primitive of the binomial multifractal measure of figure 8.9 is submitted to the multifractal analysis.

On the left I depicted the WTMML partitioning yielded by a coarse-graining effectuated by a wavelet with M = 3 while
on the right a similar procedure is displayed but now with M = 2. On the left one can see that the spectrum is captured
and shifted by one to right as expected by the integration. The ezperiment on the right, where M = 2, shows o complete
different picture. Here the number of WTMML’s decreases drastically because the functional is not singular everywhere
in its second derivative and this leads to erroneous results for the 7{q) function and the singularity spectrum f{a). For
the left and right hand sides. (a) the primitive of the binomial multifractal measure. (b) The location of WTMML’s. (c)
The Z,(q) function, computed from the WTMML’s of (b). The predicted (dots) and the computed (solid) (g} function.
(e) The computed (o) spectrum (solid).
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Figure 8.11

This figure contains the reqularity analysis conducted on distributions defined in terms of equation (8.48) with the Holder
ezponent a set to the values & = —0.5,0.5,—1,0. In oll plots: (b,e) The wavelet transform of (a,d) viewed from above.
The lines indicate the location of the modulus mazima. (c, f) The logarithm of the modulus mazima lines against logo.
The slopes together with the abscissa of the lines for the small scales indicate that the distributions depicted in the (a,d)
have local Hélder ezponents o that closely match the values with which the singulor distributions have been constructed.




Chapter 8: Multiscale analysis by the continuous wavelet transform 233

" 8.7 Concluding remarks

ey

Tn this chapter the main tools required to conduct a proper local and global multiscale

* analysis have been presented. The validity of these two approaches have been verified by

a number of elucidating examples. The continuous wavelet transform supplemented with
the WrMML formalism certainly proved its added value in the sense that a larger class
of signals can be examined and the wrMML allowed one to keep better track of what
happens in space-scale plane. Given these multiscale analysis techniques one has a com-
prehensive vehicle at hand to assess the differentiability, integrability and the hierarchy of

- scaling exponents from sampled data sets as is demonstrated in chapter 2. In that chap-

ter the proposed method is set to work on actual well data where I also discuss the more
fundamental issues related to the estimates for the differentiability, integrability and the

. implication of the selection of the type of analyzing wavelet. The latter question on the

proper selection of the wavelet has been addressed, by means of a series of examples,
in this chapter as well. These examples unmistakably demonstrate that the theoretical
considerations on the wavelet’s regularity and orthogonality with respect to polynomials,
i.e. its number of vanishing moments, find a one to one correspondence in the actual
numerical implementation. That is to say that, for instance, the question of insufficient

. regularity for the wavelet leads to a complete domination of the multiscale measuring pro-

cess by the erroneous instrument, analyzing wavelet, while strictly speaking the notion of
differentiability is a non issue when coarse grained sampled data are concerned. One may
postulate, however, that the mathematical concepts, such as differentiability, maintain
their validity despite the fact that from the observational point of view no explicit con-
clusions can be drawn based on a “strict” mathematical interpretation of mathematics.
What matters is that one has to interpret these concepts within the physical context
and that is where the challenge lies. This line of thought leads, for instance, to issuing
statements like ‘a sample data set can not be discerned from being non-differentiable in
a certain scale range’ and as the reader may have noticed such observations are highly
relevant when mathematical operations on sampled data are concerned.




e

e




-

Part 111

Epilogus







sty

s

Epilogue

Specular reflections on acoustic wave motion in
scaling media

E.1 introduction

In this epilogue, I present my ideas on the implications of scaling with respect to wave
theory. These ideas constitute the basis for the work I am going to continue at Stanford
University, an opportunity I am offered by N.W.0.! in the form of a Talent Stipendium
Fellowship.

Although this epilogue is not an official part of my thesis, it forms the main motivation for
my research. This motivation is built upon a few observations. Firstly, the complexity of
many (geo)physical phenomena are, at this very moment, not very well understood. This
complexity is revealed when observing physical phenomena at a range of scales, a notion
accounted for by the scaling medium representation introduced in chapter 2. Secondly,
since in the derivation of the wave equation a separation of scales is assumed, no explicit
reference is made towards the scale and operators invoking scale changes. There are
indications that partial differential equations, which are derived at an infinitesimal scale,
can not be straightforwardly scaled up towards the physical scale range of interest in
cases where a separation of scales is meaningless. For that reason, the evaluation of the
potential role of scale and scale dynamics in relation to the wave motion deserves the
benefit of the doubt.

Given the above motivations, the purpose of this epilogue is two-fold. First of all 1
demonstrate the potential use of the multiscale characterization within the current for-
mulation of acoustic wave motion. Secondly, I like to convey a possible road towards an
alternative formulation for the wave motion which takes the scaling medium representa-
tion as a starting point. In this way I hope to better understand how the complexity of
the medimm is transferred to the wavefield.

!The Netherlands Organization for Scientific Research.
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I will commence the discussion by stating my working hypothesis, which results in the
prime motivation for the attempts towards a new formulation. Then I will proceed by
bringing the findings of the multiscale characterization in relation to the main presup-
positions surrounding solution techniques for acoustic wave motion.

ot

After this overview I will go back to the constitutive relations — ruling acoustic wave

motion — and re-evaluate them in the perspective of the scaling medium representation.

This re-evaluation leads to the conjecture that one has to intervene at the level of the =

constitutive relations by bringing in the scale derivative together with an explicit reference

to scale, both from first principles. The reason that I expect a scale derivative in the
wave equation is that this operator describes the rate of dilatation. So far, only time and
space derivatives have been considered, which describe the rate of translation in time
and space. This time-space translation describes, via the velocity, how time and space

are related. When 3 scale derivative comes in, one expects to be able to describe how the o

dilatation of time-space takes place or how translations may invoke dilatations (Nottale,
1996).

During the discussion I will point out that the homogenization theory (Auriault, 1991; |

)

Schoenberg and Muir, 1989; Gilbert and Backus, 1966) is based on the same first princi- .

ples as those underlying the wave equation itself. Therefore, one may better understand

the dilemma of the non-existence of a dynamic homogenization theory by observing that

spatial scale derivatives are absent.

In the literature there are other discussions on the possible unjustified neglection of scale

in certain problems in physics. Again, the wave equation is maybe one of these and this
raises the question how to generalize the wave theory and how to formulate a proper

“correspondence” principle?. This correspondence principle expresses a transition back
to the conventional equation in case there is no scale dependence.

I am convinced that the discussion in this epilogue will shed some new and original light
on wave interaction in complex media.

E.2 Working hypothesis

Recently the demands on the quality standards of the migration results have been in-
creased. This is because of a change of interest in the direction of a more production
oriented approach rather than focusing on the exploration aspects solely. This shift of

interest also sparked an increase in interest on acquiring more petrophysical information

via an inversion. When dealing with such a demand for information, the more dynamical
aspects of wave interaction come into play. That means that one has to invoke more
“physics” into the problem and so far the results have, to the author’s opinion, not been

2In theoretical physics such a principle expresses the transition from quantum physics to classical
physics.

P
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overwhelmingly successful to come up with good predictions for the wave motion.

Let me now, without being all inclusive, categorize some points that are of interest in
this discussion. From a practical point of view:

¢ the necessity of a sufficient® redundancy for the spatial frequency content of the
medium fluctuations. Generally this requirement is attributed to the apparent non-
linear way in which the coefficients occur in the wave equation. Unfortunately this
requirement withstands a practical formulation for the inverse problem.

o the apparent lack of a full understanding on why the current modelling techniques
do not in all cases come up with accurate predictions. These predictions comprise:

— the predictions for the first break traveltimes in a VSP setting (Gretener, 1961;
Kjartansson, 1981; Hsu et al., 1992; Burridge et al., 1993)

— the predictions for the apparent anisotropy (Esmersoy et al., 1989)

— the predictions for the apparent dispersion (Kjartansson, 1981; Hsu et al.,
1992; Folstad and Schoenberg, 1993)

— and possibly the predictions for the specular reflectivity (Folstad and Schoen-
berg, 1993).

From a wave theoretical point of view there is an apparent lack of a full understanding
of the mechanism responsible for the specular reflections, i.e. the local scattering. In my
opinion this observation is directly related to the question on the velocity experienced
by the wave packet. In cases the medium contains singularities, it is difficult to define
the velocity because the velocity becomes dependent on scale. Exactly in this situation
specular reflections are expected to occur and in case of isolated singularities progress
has been made on the local nature of the scattering process by supplementing boundary
conditions. For more complicated situations there is still a lot of progress to be made in
understanding wave interactions in media that strongly fluctuate on a scale range that
corresponds to the dominant wavelength?.

Maybe an even more important aspect is formed by the necessity of invoking a separation
of scales. This separation of scales is required within localization theory to exclude
“non-physical” chaotic waves. It is also required within homogenization theory to define
equivalent media and it is tacitly assumed in setting up the constitutive relations. The
recent advent of chaos and the accompanying fractal theory (Mandelbrot and Wallis,
1969; Mandelbrot, 1974, 1982; Hentschel and Procaccia, 1983; Parisi and Frisch, 1985;
Schertzer and Lovejoy, 1987b, 1993; le Méhauté, 1991; Bacry et al., 1993; Muzy et al.,
1993) and results coming from it at least deserve a discussion on some physical aspects

3 As far as I know, there exist no specific estimates delineating the required amount of spatial frequency

== content for the medium properties.

4“Whatever that may be, see the discussion below.
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of wave motion that occur in media where the assumption of a separation of scales might
be useless. Examples are media that are generated by some kind of chaotic process such ©
as the heterogeneities in the atmosphere yielded by hydrodynamic turbulence (Schertzer
and Lovejoy, 1987b; West, 1990; Tartarskii, 1971) or the subsurface’s heterogeneities 7
induced by a sedimentation process (Walden and Hosken, 1985; Leary, 1991; Saucier and L
Muller, 1993; Collier, 1993; Painter, 1995).

(Given the above observations I think it is interesting to explore the possibilities to extend
the current wave theory with the notion of scale and scale dynamics. Any such effort
requires a problem and an experiment. Therefore I assume as a working hypothesis that
the current formulation of the wave equation is unable to come up with good predictions
in case its coefficients do not exhibit a separation of scales. For that reason I opt for an
inclusion of the notion of scale and the decisive experiment will be the accomplishment
of a better integration of well-data and seismic data, a problem of scales. It is my
conviction that the data sets at disposal are unique in the sense that there is an excellent o
ratio between the scale range where the in situ well-log measurements are taken and the

scale range inhabited by the seismic waves. =

E.3 Multiscale characterization in relation to scattering and localization theory

To investigate the added value of multiscale analysis, let me reiterate the main findings |
which came up while conducting a local/global multiscale analysis on well data by means

of the continuous wavelet transform. It appeared that the multiscale analysis expresses
information on

e the local regularity in terms of local Holder exponents, see figure E.1 (c), (d}, (e)
and (f).

e the global scaling displayed by the partition function, see figure E.1 (g).

e the global regularity or the lack of it in terms of the w-axis of the singularity .
spectrum f{a), see figure E.1 (i).

e the Hausdorff dimensions® that can be assigned to the subset that scales according l }
to the scaling exponents ranging from « to a+da. In this way the definition of the b
Hausdorff measure becomes similar to the Lebesgue measure in case the Hausdorff
dimension becomes integer valued (le Méhauté, 1991).

e

Now how can the above information be of assistance within the fields of scattering and
localization theory? To answer this, let me briefly categorize the assumptions underlying
these theories. Without being all inclusive I refer to

5The reader is referred to chapter 6 for an introduction to the concept of multifractals while in
chapter 2 and chapter 8 I paid more attention to the actual application of this concept.
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Figure E.1  This plot illustrates the local/global multiscale analysis conducted on compressional
wavespeeds. (a) the well-log. (b) the multiscale partitioning by the WTMML s, (¢)-
(f) example of a local scale analysis by inspection of the log of the amplitudes
along the annotated WIMML’s and versus the log of the scale, i.e. WIMML, o o®.
(9)-(¢) ezample of a global multifractal analysis. (g) the partition function, i.e.
Zo(q) = 3 e e [SUD{WTMM, (M) }]? ox ™D (R) the mass ezponent 7(g) vs. ¢ (1)

the singularity spectrum f(a).
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a separation of scales. This generally refers to a finite correlation length®. This

assumption plays an important role in localization theory pertaining to random one- L

dimensional Schrodinger operators (Souillard, 1986; Carmona and Lacroix, 1990;
Pastur and Figotin, 1991; Faris, 1995).

o a sufficient regularity. This refers to differentiability conditions while, say, defining
the 4 operator, see chapter 4.

o

e a boundedness. This assumption plays a role in setting up a scattering, spectral =

and localization theory”.

e an integrability. This condition refers to the notion that the medium profiles have
to be locally or globally integrable.

Given this brief summary I am now able to issue in some more detail the previous
assumptions in relation to the empirical findings of the multiscale analysis. In this
discussion I will not come up with any definitive statements concerning the applicability
of certain theories. This is not to be expected, since it is virtually impossible to disprove
a theory with itself.

E.3.1 Separation of scales

The absence or presence of a break in the scaling, e.g. a break in the powerlaw behaviour

of the partition function, forms as far as I know the most important prerequisite when 77
dealing with wave phenomena. In the context of localization theory the separation of

scales generally refers to a finiteness of the correlation length. The most commonly used
random process displaying such a behaviour is the first order Markov process or the

random telegraph model, see chapter 2, both of which share the property of having an .

exponentially decaying covariance function despite the fact that the way in which they
obtain their randomness is quite different.

Judged by the findings of the global multiscale analysis it is difficult to reconcile the

displayed behaviour of the partition function with an exponential decay of the covari-
ance function. The evidenced powerlaw behaviour displayed by the partition function

e

points more in the direction of a highly intermitient and stochastically non-stationary

process. More specifically this means that the partition function does not behave like

Z{f, ¥}, 2)~(1 —e "%}, ie. as a stationary process with an exponentially decaying co- *

variance function and with a correlation length (. # co. Quite the contrary, the partition

function displays a powerlaw type of behaviour and it does this not only for ¢ = 2 but for
a whole range of ¢ values. In figure E.1 I included a summarizing plot of the local and

e

8The correlation function is assumed to be exponentially decreasing, the decay rate being character-

ized by the correlation length.
"Note that Wilcox (1984) remarks in his book that the boundedness condition can be removed,
without showing this rigorously.

o
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global multiscale analysis conducted on a compressional wavespeed profile assembled by
a well-logging tool. One can see from the partition function that there is at least for the
specified scale range no direct indication for an exponential behaviour and there is no
apparent break of the scaling evidenced over this interval.

It appears that the assumption of a separation of scales is of profound importance when
pursuing a better comprehension of wave dynamics. As I will show in the sequel this does
not only apply to localization theory, but also to homogenization theory and other types
of asymptotic approaches (Asch et al., 1991, 1990; Papanicolaou et al., 1990; Burridge and
Chang, 1989; Burridge et al., 1992; Pastur and Figotin, 1991; Lawecki et al., 1994; Lawecki
and Papanicolaou, 1994) based on a small parameter that expresses a possible separation
of scales. As a matter of fact, the required separation of scales applies to a condition on
the degree of stochastic stationarity. It happens to be that the degree of non-stationarity,
H, constitutes one of the ruling parameters in the multifractal parameterization, the value
of which was empirically found to be H ~ 0.21. From this empirical finding one may
conclude that

¢ the medium’s sample statistics are not translationally invariant (Pastur, 1994) in
the mean, i.e. the mean is not a conserved quantity.

e the correlation does not vanish at infinity (Pastur, 1994).

In case of long tailed correlation — as is evidenced during multiscale analysis — the ex-
istence of the singular continuous part of the spectrum can not be excluded (Pastur,
1994; Pastur and Figotin, 1991). These observations do not strive well with the supple-
mented conditions used to set up the theory for random Schrédinger or wave operators.
Apparently, one has in my case to do with a complexity in the medium properties on
which very little is known. Indeed there are already some precursors on the advent of a
more generalized theory amongst which the generalized Laplacian I treated in chapter 4
(le Méhauté, 1991). But still little is known about this type of operator (Carmona and
Lacroix, 1990). A

E.3.2 Regularity and boundedness

Differentiability and the congruent notion of rectifiability, see chapters 2 and 8, constitute
important preconditions for deriving laws of physics (le Méhauté, 1991, 1995; Nottale,
1992, 1995, 1996), see also section E.6. On first sight the notion of differentiability and
continuity seem to be void of a physical meaning. By this I mean that these conditions
apply to the mathematical construct of a function that strict locally assigns a number
to a point. This notion is difficult to reconcile with a physical interaction that can not
occur on an infinitely small scale. However, when interpreted properly within a physical
context, these concepts certainly have an important meaning.
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Within the realm of the current wave theory itself it is difficult and maybe even impossible
to put one’s finger on the exact spot where a possible regularity condition is jeopardized.
To put it simple, I believe one is already too late when worrying on the differentiability
within the representation of the wave equation itself. With this I mean that this type of
question can be better asked at the level of the constitutive relations, rather than at a
subsequent level of equations representing the wave motion.

As I will show later, the singularity spectrum contains more information but for the time

being let me assume that I have to do with one isolated singularity, so f{a) = 0, since

the dimension of the singular support is zero. The strength of this singularity is a. Now

what can one do when the wave dynamics are of concern in a medium containing onesuch

singularity, i.e. the medium is defined in terms of a homogeneous distribution? For o = 0,
a jump discontinuity, one can find a solution by imposing boundary conditions. These

boundary conditions refer to an imposed continuity of the wavefield constituents and give

rise to the definition of local specular reflection and transmission coeflicients. Recently
a similar road of attack has been followed by Wapenaar (1996a) who derives expressions
for the local reflection and transmission coefficients at a compressibility profile given by
a homogeneous distribution with a # 0, thereby assuming that boundary conditions can
be used in a similar manner when dealing with a jump discontinuity.

Another aspect which comes forward during the theory is the boundedness. Therefore

let me review the potential input delivered by the global multifractal characterization =

when applied to the notion of boundedness that comes with the theoretical treatments of
scattering, spectral theory and localization theory pertaining to the ?{y-operator. This

boundedness condition refers to the boundedness conditions of the medium properties,

the density of mass and compressional wavespeed in this case (Reed and Simon, 1978,
1979; Wilcox, 1984; Carmona and Lacroix, 1990; Dautray and Lions, 1992), i.e.

0<po<p(zs) <pL<oo, O0<c<celes)<ep <o, ¢p€ L)

Note that these “functions” p(z3) and c(z3) are obtained by coarse graining (see the =

discussion around equation (2.54)). On first sight these conditions seem not to be too
demanding but when having second thoughts one may come to the conclusion that the

multifractal behaviour with its generalized Hausdorff dimension exceeding zero, may

jeopardize this presupposition in the sense that the set exceeding a threshold lies dense
in the multifractal situation. This notion is illustrated in figure 2.7. Theoretically this

notion les in the fact that the probability of exceeding the threshold o® scales as, see

chapter 2 and equation (2.29) also,
Pr(f(o,") > 0%) ~ oV,

where f(o,-) denotes a coarse-grained quantity, f(«) the Hausdorff dimension and D the
embedding dimension.
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To put it simply, one may draw the conclusion that apparently the maximum value for
say the compressional wavespeeds depends on the scale and irrespectively of the value
for the threshold o®, this threshold will be surpassed infinitely many times. The set
transgressing the threshold lies dense and has a co-dimension that is non-zero, yielding
(o) > 0. As a matter of fact the coefficients are singular with respect to the Lebesgue
measure, as the monofractal Cantor set is, see chapter 6 and Reed and Simon (1980),

" since the Hausdorff measure does not equal the Lebesgue measure in case the dimension

is non-integer.

Another way of looking at the boundedness condition is to take into consideration that
the partition function and its scaling provide information on the L*-norm. To see this
remember that the partition function is defined along the lines

2{5, 40,0 = [ 1f(o,a0)l1dzs ~ o7,
whereas the Lé%norm for f is defined as

it =/ ;f(manamgf .

Clearly this suggests that a possible divergence for the partition function, depending on
the behaviour of I—(&@ as ¢ — oo and o — oo or ¢ | 0, may imply a lack of boundedness.

. To summarize, it is my opinion that it is fair to say that it is difficult to reconcile

the boundedness conditions with fractal scaling. That is to say that for example the
maximum value for the medium coefficient profiles, defined in terms of well data, depend

. on the scale at which they are observed. Of course at the finest grained scale level,

yielded by the measurement, one can always assign a maximum value but that value
potentially changes when the well-logging tool would have acquired the data at a finer

.. scale level. For that reason it is my conjecture that these empirical observations, always

s,

G

s

relating to finite scale ranges, already have a meaning. It is hard to prove this conjecture
but I am convinced it is a worthwhile observation in the discussion, certainly given
the experiences I had when conducting a multiscale analysis with erroneous analyzing
wavelets, see chapter 6 and &.

‘Let me conclude this discussion by posing the question on what happens in case the

boundedness violation is committed by a set that does not lie dense, say, an isolated sin-
gularity of the algebraic type. That is exactly the case for which Wapenaar (1996a) de-
rived closed form expressions for the induced local reflectivity and transmittivity. Clearly

. the dimension of the singular support is zero in this case. Consequently one can argue

that this notion offers a road of escape because the set violating the boundedness con-
ditions is of measure zero likewise the delta distribution. Now what happens when one
has to do with more than one singularity? Say two. In that case one has — as with the
singularities that lic dense — to do with mutual interferences of the singularities. This
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interference causes a drastic transition in the scaling behaviour as soon as the cones of

influence pertaining to the singularities start to overlap. In case of more singularities the
same observations can be made.

E.3.3 Intermezzo on the use of mathematics in relation to physics

What strikes me first, is that the knowledge and comprehension on waves in heteroge-

neous media is still relatively limited, see for instance Faris (1995). Besides this observa-

tion there is another observation which addresses the unavoidable controversy that comes
with issuing more mathematically oriented statements based on empirical findings, which
are obtained from real measurements. This controversy is due to the inherent ambiguity
surrounding the measurement process withstanding unambiguous statements on say the
data’s differentiability. At this point one enters the delicate issues physicists have to deal

with when selecting or deriving mathematical representations to be appointed to describe * v

“real” physical phenomena. While doing so, it is my opinion that the selection procedure

is preferably not void of an empirically driven input, hopefully yielding a good match =

between the representation and the data’s behaviour within the scale range of interest. « -

Eventually, when this choice is made then for mathematical consistence, one has, in my

opinion, to stick to the representation in the sense that the mathematics takes it from

there on, and one has to accept the possible consequences.

The multiscale analysis and subsequent characterization suffer from the same problem as
above. This is because of the finiteness of the scale range over which information about

the medium properties is available. On the other hand, the data suggest that the medium
properties display a highly irregular behaviour over a wide scale range being captured
elegantly by the singularity spectrum. This information can be put to one’s advantage
in two ways. First of all, it gives a handle to explore whether the current formulation
for the wave motion is equipped to deal with the medium’s heterogeneity. Secondly, the
observation of scaling and its implied scaling representation sparks a discussion on the

justifiability of the assumptions being made while deriving the constitutive relations and

using homogenizability.

E.4 The constitutive relations again

In chapter 4 of the Capita Prima I introduced the constitutive relations without paying o

ample attention to the assumptions under which they have been derived. The purpose

of this section lies in shedding some new light on this interesting but delicate issue. 1 7

have used the recent book by de Hoop (1995) as a primary source.

Let me first restate the two ruling constitutive relations that are essential for setting up

amman

s

the equations for acoustic wave motion. The first constitutive relationship expresses the £ ;3

st
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Figure E.2 A bounded domain D containing a collection of particles or heterogeneities. . is
a time and translation inveriant representative elementary volume thet conteins
many particles/small enough size heterogenesties.

mass flow density rate, in subscript notation,

Bp(x,1)

i

p(x)Dt’Uk (X> t)) (E.l)
whereas the seéond
0'(x,t) = —k(x)Dep(x, 1) (E.2)

delineates the induced cubic dilatation rate. The D; = 8; + v;0; denotes the co-moving
time derivative with v; being the macro averaged drift velocity. In the subsequent dis-
cussion [ will limit myself to the constitutive relation for the mass flow density rate and
I will assume the fluid to be linear, time invariant, isotropic® and relaxation free.

Now what are the main steps and basic assumptions that led to the local result depicted
in equation (E.1)? To answer this question I am obliged to go through some of the steps
I perceive as being important and that admitted the establishment of the counstitutive
relationship for the mass flow density rote.

What strikes me most in establishing the main results is the definition of a time and shift
invariant and co-moving representative elementary domain D, (x, t), see figure E.2, of size
g, with its center located at x and with a volume equal to V, = -[De dV. This representa-
tive elementary domain is assumed to be small compared to the characteristic macroscale
but large enough to contain many microscale heterogeneities/particles®. The notion of

81 assume the density fluctuations to vary stochastically isotropically in all coordinate directions.

91 see the heterogeneities as frozen turbulence like clusters of different sizes made of conglomerates of
particles. These clusters may on their turn, when small enough, be considered as particles as compared
to the size of the representative elementary domain.
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being small compared to the macroscale not only makes reference to the scale range cor-

responding to the geometrical dimensions of the macro system being studied, but also -

to the scale range at which the macroscopic transients show spatial variations (de Hoop,

1995)! The second presupposition — the representative elementary domain must be large
compared to the characteristic size of the heterogeneities in order to host very many of

them — makes reference to the fact that one is able to designate the appropriate averages.
These averages run over the characteristic size of the representative elementary domain

and yield the appropriate macroscopic quantities that are stationary'® in their mean on

the macroscale and that do not depend on:

e shifts over the characteristic size of the representative elementary domain.

o changes in the resolution/scale, i.e. changes in the characteristic size of the repre- .

sentative elementary domain.

Subsequently it is assumed that the macroscopic quantities vary piecewise continuously .

with position and this is called the continuum hypothesis, see de Hoop (1995). As to
live up to the continuum hypothesis there must be a distinct separation of scales, see

also Auriault (1991), in order to guarantee the required stationarity in the mean over

the macroscopic scale range. This latter notion constitutes the main prerequisite for the
continuum hypothesis. With this remark I am not implying that one has to drop the

notion of continuity. I only want to say that the continuum hypothesis of above may not
longer be universally applicable without making specific reference to the scale, for those
cases where a separation of scales is infeasible.

For the time being let me suppose that the required separation of scales is feasible, then
one can show that the following crucial identity holds (de Hoop, 1995)
d

—_— n(x,t)\D(x,t)dV::/ n(x,t) D, ¥ (x,t)dV, (E.3)
dt XeD(t)

xeh(t)

which represents an instance of Reynolds’ transport theorem (Pierce, 1981).

In this global equality the ID(t) denotes a bounded domain consisting of representative

e

elementary domains, D:, n(x,t) is the particle density and ¥(x, t) represents an arbitrary i

macroscopic associated quantity whose value is obtained via averaging over the elemen-
tary volumes ID,. By defining the bounded domain, de Hoop (1995) is able to compute
the total number of particles

N(t) = / n(x, H)dv, (E.4)
XGD(t)

105t atements with respect to the stationarity in this context do not refer to stationarity in the temporal
sense. They refer to stationarity for the spatial fluctuations in the statistical sense.
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where the integral runs over the different representative elementary subdomains I,
that are contained within the bounded domain ID(t). On their turn these representative
elementary subdomains define the macroscopic number density n(x,t) via

n(x,t) & Ne(,t) (x,2) (E.5)

Ve

with N,.(x,t) being the number of particles within a individual elementary representative
domain. Because of the elementary representative domains one is able to define the macro
quantity n(x, t) as a piecewise continuous function of x. Notice that de Hoop (1995) does
not make specific reference to the scale ratio between D, (x,¢) and IX(¢). This observation
applies also to the derivations supplied by Pierce (1981) and Wapenaar and Berkhout
(1989), who follow a Eulerian rather than a Lagrangian approach, i.ec. they keep the
elementary domain at a fixed location. Finally remark that de Hoop (1995) is able to
refer to macroscopic quantities that are either being obtained via averaging over . (x, t)
or (t) because of the assumed separation of scales underlying the continuum hypothesis.
That is the reason why the subscript £ has been dropped!

The importance of equation (E.3) lies in the notion that it relates the time rate of change
at time instant ¢ of the macroscopic/averaged quantity on the left to an expression where
the time rate of change is found via the action of the co-moving time derivative on the
associated macro quantity ¥(x, t) solely. So the local time change in the number density
does enter into the formulation. Now what are the consequences of the identity depicted
in equation (E.3)? Suppose the associated quantity represents the mass of the particles!
then one finds

d
— / p(x,6)dV =0 (E.6)
dt XG{D’(t)

where p(x,t) = n(x, f}m with m the mass of the particles. This identity is known as the
conservation law of mass (de Hoop, 1995) since &4 (x,t) £ p(x,t)v(x,t), the mass flow
density, and

~d—/ n(x, ) ¥(x,t)dV :/ Oe[n(x, 1) ¥(x,t)|dV
dt Jxeng) Xen(t)

(E.7)
+ / n(x, o (x, ) ¥(x, t)dA.
KedD(t)

Here the associated quantity is taken to be equal to the mass of the particles, while dID(¢)
and d Ay, refer to the boundary and a surface element of I(t) respectively. Equation (E.6)
is valid in the absence of annihilation and creation of particles and the conservation low
of mass becomes manifest

/ Sp(x,t)dV +/ Pp(x,t)dAy = (E.8)
XeXt) XedD(t)

Uyor now assume there is only one type of particle.
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which, after applying Gauss’ divergence theorem, can be defined in its local form as
Op+ Oh®p =0 (E.9)

and is known as the continuity equation of mass flow.

How did one arrive at this result? Or more importantly what was additionally required,
besides the absence of creation and annihilation, to arrive at this conservation law? The
answer to this lies in the continuity equation for particle flow which is required to derive
the Reynolds’ transport theorem for the particle density’?. This continuity equation
reads

On + Op{nvg) =0 (E.10)

and expresses the conservation of particles,

[ [&n + 6k(ﬁvk)]dv =0 (Ell)

XebD(t)

or
d ,
- n(x,t)dV =0 (E.12)
dt Jxem)

with (nv;) being spatially continuously differentiable in IX(t). Equation (E.11) is known :

as the conservation law of particle flow.

E.4.1 The “weak” spot?

Besides the smoothness condition, which is required by Gauss’ divergence theorem and

st

potentially may be removed, what else is assumed to arrive at equations (E.10) and (E.9)7 L

Or in other words, at which instance a crucial step is made which on second thought might
be the “weak” spot despite the fact that the derivation of the above conservation laws
has been perfectly compliant with the continuum hypothesis assumed at the beginning.
I suspect the approximate identity (de Hoop, 1995)

/ Byn(x, t)dV = yn(x, AV + o(1) (B.13)
JXED(t+AL) JXeD(t)

as At — 0 to be possibly the crucial step. It refers namely to the notion that the temporal

rate of change for the particle density is insensitive to an infinitesimal time step At made s

by the bounded domain D(¢). With other words the time rate of change in the number
density is independent of spatial changes in the bounded domain I)() that may occur
during the time interval A¢, hence the temporal and spatial changes are decoupled at
this level.

12Notice that the particle density can be replaced by the mass density.
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Figure E.3 During o time lapse At the domainD is not only allowed to translate but also to
dilatate.

This decoupling is effectuated despite the fact that the time interval At governs both
the time increment inducing the spatial increment of the bounded domain as well as the
time increment in the temporal derivative and in the end it led to the identity stated in
equation (E.3). Indeed the above identity is perfectly defendable when the continuum
hypothesis is adhered to by the bounded domain ID(¢). With this I mean that one can —
besides a translation by an amount vAt, see figure E.3 - also associate a dilatation to the
bounded domain, D, during the time step. But the implication of this dilatation seems to
be irrelevant when the continuum hypothesis is invoked at the scales that extend at least
the scale range separating D, and D(#). Finally remark that a similar line of reasoning
can be used for the Eulerian approach instead of the Lagrangian approach.

Now the question of course is whether the continuum hypothesis is defendable for this
prescribed scale range when one has to do with a medium exhibiting heterogeneities on
“all” scale ranges. Please let me perhaps superfluously mention that I do not imply to say,
when referring to the continuum hypothesis, that physical phenomena are not continuous.
By this T mean that I am convinced that a physical interaction must always go along
with a kind of coarse-graining, invoking the necessary regularization. This regularization
smoothes away the singular behaviour, i.e. the scale divergence, see chapter 2.
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Fractals, or more generally constructs'® displaying some type of scale divergence, are
mathematical entities, that display heterogeneities on all scale ranges. But as I mentioned
already elsewhere, this property does not imply that these constructs actually exist. They
only capture a certain behaviour empirically evidenced within a certain scale range and
are, consequently, used to mathematically represent this complexity. Ordinary smooth
functions do exactly the same thing in the sense that they do not either pretend to be
actually existing. They only provide an adequate representation for phenomena that
display a regular behaviour on the scale range of interest. Finally remark that the
implication of introducing constructs with a scale divergence is, that one is replacing
functions by functionals to represent the medium’s complexity, i.e. one is transgressing
to the scaling medium representation.

Suppose one deals with the interesting situation where there is a strong scale dependence,
i.e. there is no separation of scales. What is going to happen with the above line of
reasoning? That is to say, what are the implications when the stationarity condition for
the mean does not longer hold? In that case I expect specular reflections to emanate'?,
an observation one is all too familiar with given the emergence of reflections at jump
discontinuities occuring in the medium properties.

Specular scattering is generally understood via imposing boundary conditions. But would
it not be interesting to address the question what happens during an excursion out of
the continuum hypothesis? To put it simply, I believe one runs the risk of jeopardizing
the founding principles of the continuum hypothesis, that allowed for the identity in
equation (E.13). In case one permits an abundance of jump discontinuities and/or other
type of singularities to enter the macroscale, the risk is that the separation of scales no
longer holds. This may manifest itself in a scale dependence of the averaging process
that yields the macroscale quantities such as the number density. It may also have its
consequences on the averages over the bounded domain ID(¢) that may change in size
during the time step At. This latter observation applies to the fact that when adding
detail on the intermediate scale range, between the elementary representative volume size

e

and the spatial extent of the bounded domain, there is a possibility that the averages =
over this bounded domain start to depend on its size and that withstands the validity of

the identity in equation (E.13). Of course this would be the case when the supposed scale

dependence exceeds o(1). To summarize, detail on scales exceeding the characteristic size

of the representative elementary domain may endanger the assumptions that facilitated
the introduction of the scale independent averaging and its consequences.

13Remark that these constructs are generally generated by ordinary smooth functions in a delta conver-
gence series type of approach. This means that the scaling behaviour depends on the scale of observation,
see the discussion in chapters 2, 5 and 6.

11p that situation I expect the dependence on the size of the bounded domain to be dominating over
the o(1) in equation (E.13).

o
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E.4.2 A scale derivative comes in?

Why is the above discussion so important? The reason is that my main interest lies

. in improving my comprehension of the dynamics that come with the “local”'® wave

interaction process that occurs on the macroscopic scale range. This interaction pro-
cess, also known as a local scattering process, is responsible for the information transfer

~ from the medium heterogeneity to the probing wavefield. Now what happens when the

macroscopic averages start to depend on the scale in such a way that averages over the
bounded domain are going to share this property? Or alternatively what happens if one

. adds so much detail in the intermediate scale range between ID. and ID(#) that the latter

starts to depend on the scale? In this situation I like to postulate that the equality of
equation (E.13) needs a re-evaluation. This is because an effective decoupling has been
effectuated on what may happen during the time interval, At, with the temporal change
rates of the macroscopic quantity, say, the number density and a possible scale change of
the bounded domain ID(¢), all taking place during that same time interval and on equal
footing. For example one can envisage the elementary domain to translate or dilatate.
To illustrate what might happen during the dilatation let me maintain references to the
size of the representative elementary domains. I assume the macroscopic number density
as defined in equation (E.5) to explicitly depend on ¢. Then one may — during the time

~ lapse At, the temporal gauge — expect a contribution emanating from a possible dilata-

tion effectuated by the change from D(¢) to (¢ + At). To demonstrate this let me shift
to a notation more in line with the multiscale analysis. For simplicity I will treat the
equations as if I am dealing with one coordinate direction 2 only. Furthermore I will use
the familiar ¢ as the scale indicator referring to the size of the elementary interval in this
case. Now, let me first rewrite equation (E.13) as

(z‘:%n(ar, t), (ﬁa(tA-}"At),w) = (atn(a:’ t)y ¢a’(i),x) + 0(1)1 (E14)

where At — 0. In this identity I attributed the “size” of the bounded domain to o(t),
the spatial gauge which depends on #! The angular brackets denote an inner product by
a smoothing kernel. This smoothing kernel, indexed by the scale indicator a(t) £ D(¢), is

- an element of the affine family ¢, ,(2') = %a&{@%ﬁf-) and acts on the fine-grained number

density. To start with I choose the indicator function as the smoothing kernel ¢(z').

The question is now, how does this equality behave as a function of the temporal gauge?

* To answer this question one has to know the relation between the temporal gauge At and

the change in the spatial gauge, i.e Ao (t, At) = o(t + At) — o(t). For the time being let
me assume that Ao(t, At) — 0 when A¢ — 0. Under this assumption one can recognize

“ & scale derivative to enter into the formulation in a manner similar to the one I reviewed

in chapter 2. There it was shown that the difference between two consecutive smoothings
- obtained via two subsequent convolutions with two mutually infinitesimally dilatated

What the wave experiences as local.
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smoothing kernels with scale index ¢ — do and o — yielded a natural definition of the

continuous wavelet transform, i.e. under certain conditions for the smoother,

W{fw w}(U, '7:) = “Oaa(fv ¢cr,ac>
- (fy "pa,m)'

In order to preserve the mean, I use an L*-normalization for the smoothing kernel instead

P

(B.15)

of an L2-normalization. The wavelets are given by the self-affine family ¢y ,(z') =

D¢(z") = jCop(x') where, due to the L'-normalization, C, has been defined differently

compared to the definition in chapter 3.

Application of this definition to the approximate identity of equation (E.14) shows that

A
(Bn(2, 8), doreranye) — (Oen(e,1), oi0) = »—af‘—i’(f—ﬁ;;&atn(at),m(t),w).

am

(E.16)

What is the meaning of this equality? As in chapter 2 it represents the detail of O¢n(z,t)

at the scale o(t) whereas the quantity (9yn(z,t), ¢s,«) contains all details up to the scale

g.

What is the consequence of this observation for the conservation law of particle flow in
case the scale derivative exceeds o(1) in the limiting process for At — 07 Clearly this

will only happen in those situations where the wavelet coefficients, (0;n(2,1), ¥o(t),0), '

dominate over the o(1) term. So in my conjecture, equation (E.11), the conservation law
of particle flow, becomes for this situation

d Ao(t, A
a{(n(mv t)¢0(t),m> = Alirﬁo ~%ﬂ(ﬁm(w, Z})Q/Ig(t)ﬂ.). (E17)

The careful reader may have noticed that as a consequence of applying Gauss’ divergence

theorem one has to impose a differentiability condition on n(z,t)v,(z,t). This condition

e

e

can, however, be removed by selecting a proper smoothing kernel and differentiating in ol

the sense of distributions. More important is that in case of no scaling the right hand
side of equation (E.17) vanishes, yielding equation (E.11) again.

To conclude, let me emphasize again that this is not more than a premature conjecture,
but it is still worthwhile and interesting to explore its possible consequences. Before doing
that, I think it is better to first link up with the ideas and findings of homogenization

theory followed by postulating a candidate for the spatial gauge. Given this gauge it will '

be possible to reflect more on a possible dynamic homogenization which in my opinion is
more or less equivalent to setting up an alternative representation for the wave dynamics.



Epilogue: Specular reflections on acoustic wave motion in scaling media 255

E.5 Merits and limitations of the current formulation and its homogenization

In this section I will try to convey my comprehension on wave interactions in media

= that display a highly irregular behaviour in their medium properties. I am aware of

the reflective nature of the ideas I am about to share with the reader. They merely
serve as a starting point for a discussion on a potential alternative approach tackling the
wave problem for media that fluctuate erratically over a wide scale range. If in the end
this type of approach is failing then still T hope that this discussion will contribute to a
possibly better comprehension of wave interactions in these type of media.

One way of expressing the question I am asking myself, refers to the underlying reason for
the inexistence of a dynamic homogenization theory, that, from first principles, relates
the wave dynamics to the medium’s complexity. Indeed, it can be demonstrated that
only a static homogenization procedure'® exists that prescribes the way in which one
has to average the constitutive parameters in order to describe the behaviour of the
response to an excitation living on a macroscale. Unfortunately this approach can not
be extended to a dynamic one while preserving the original time-space structure of the
wave equation. Moreover, it is limited in its application, since it requires a separation
of scales. If this separation of scales is not being adhered to then, the homogenized
system yields a behaviour that is static at the first order of magnitude (Auriault, 1991).
This does not imply that there are no alternative methods — for example the O’Doherty-
Anstey formula (O’Doherty and Anstey, 1971; Banik et al., 1985a,b; Resnick et al., 1986;
Burridge et al., 1988; Burridge and Chang, 1989; Burridge et al., 1993; de Hoop et al.,
1991b,a; Shapiro and Zien, 1993; Shapiro et al., 1994) or the order O(1) approach by
Asch et al. (1990, 1991) and others (Papanicolaou et al., 1990; Burridge and Chang, 1989;
Burridge et al., 1992; Lawecki et al., 1994; Lawecki and Papanicolaou, 1994) - but these
are difficult, if not impossible, to link up with the wave equation in its original form.
Moreover these approaches presuppose either the medium contrasts to be small or the
pulse width to be large compared to the correlation length of the medium fluctuations and
small compared to the propagation distance. Needless to say these presuppositions are
difficult to reconcile with the multiscale findings. However, in an approximative manuer
links still can be established between the ’Doherty-Anstey framework and an acoustic
wave equation with an anisotropic viscous relaxation mechanism {Wapenaar et al., 1994).

The set up of this section will be as follows. I will commence by reviewing some of
the notions that come with homogenization theory. The similarity between the line
of reasoning within this theory and the one within the derivation of the constitutive
relations themselves is explained next. Then I will make an attempt to clarify what the
homogenized wave equation exactly describes. That brings me to a discussion on how I

®That is a formulation of the wave dynamics whose action is invoked on the same scale range as
where the wave interactions are believed to take place. As a matter of fact it is my personal view that
the formulation of the wave motion in itself deserves a similar interpretation, a notion I will pay ample
attention to later.
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interpret linear partial differential equations and that leads me back to a reflection on the :

possible modifications at the level of the constitutive relations in sections E.6 and K.7.

E.5.1 Basic idea of homogenization

As coined by Auriault (1991), one of the basic assumptions, when investigating a het-
erogeneous medium at the macroscale, refers to the existence of an equivalent medium.

Such an equivalent medium corresponds to a continuous replacement medium, yielding

the average behaviour of the medium when submitted to an excitation that lives on the "

magcroscopic scale. In this, the macroscale refers to a scale where the volume contains a

large number of microscale heterogeneities and the question of homogenization commits
itself to seek an answer to the question how the microscopic information on the medium’s

heterogeneity is transferred to the macroscopic scales.

Examination of homogenization theory reveals a strong semblance, but now on a differ-
ent level, with the line of reasoning behind the derivation of the constitutive relations.
Again the crux lies in designating a separation of scales allowing for the definition of
an elementary representative volume that is smell compared to the macroscale but that
is large enough to contain a large number of microscale heterogeneities. Obviously this
implies a constraint on the characteristic size of the heterogeneities.

To make it more explicit, let { denote the characteristic length scale attributed to the
elementary representative volume and L the characteristic macro length scale referring
to a separation of scales for both the medium fluctuations as well for the transient
phenomena under consideration, i.e. the spatial length scale induced by the excitation.
The separation of scales implies that

! .
7=e<l (E.18)

and forms a prerequisite in the construction of a homogenization process where the

two length scales allow for a double scale asymptotic development. This asymptotic =
development refers to an examination of the unknown field quantities, say the acoustic

pressure, in two different asymptotic spatial scale regimes namely

e

ﬁﬁ}l De-1p(x,t), (E.19)

delineating the macroscopic scale and

e

lim Dep(x, £ (B20)

delineating the microscale. The operator D, denotes the dilatation operator, acting on
the spatial coordinate, I introduced in chapter 3, but now with an L'-normalization. In
case a separation of scales exists, then one will find that the variations in the average
over the macroscale will tend to zero as € | 0. In other words, the averaged quantities
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~ are stationary in the sense that their average is stationary, i.e. it is invariant under local

translations of order | (Aurianlt, 1991). As a result of this acquired stationarity one can
set up a perturbative series expansion for the unknown field quantity in terms of the small

" parameter ¢, see for instance Asch et al. (1990) or Auriault (1991). During this process

one can consequently make use of the above stationarity properties by establishing a link
between the macro and micro variability. In this way one can solve the unknown field
' quantities asymptotically at the macroscale. At this point I will refrain from specific
techuicalities and I will limit myself to addressing the results of homogenization for
the acoustic wave equation in a one-dimensional varying media only. In the pertaining

“* gections I will put emphasis on the physical interpretation of the homogenized solutions

and on the question of homogenizability.

“ E.5.2 Homogenization for the acoustic wave equation

As I mentioned before, homogenization is feasible in case the spatial scale range inhabited

.. by the transient is well separated from that of the medium’s heterogeneity. Let me

designate, following Auriault (1991), the wavelength as a candidate for the macroscopic
scale I and [ the size of the periodic cell'” or the correlation length. For more details

_on quasi static equivalent medium theory the reader is referred to Gilbert and Backus

(1966), Schoenberg and Muir (1989), Asch et al. (1990) and Auriault (1991).

It appears that by setting up the homogenization procedure in the afore mentioned way,
. one is able to define an equivalent medium consisting of the proper averages effectuated on
- the micro structure. That is to say, that homogenization theory commits itself to describe
how a fine-grained medium ~ as compared to the macroscopic scale of the transient

- — has to be averaged in order to describe its response to an excitation living at the

macroscale. Let me consider the homogenization technique set to work on the acoustic
one-dimensional wave equation when casted in the (7-p)-domain, with p the horizontal

.. slowness and 7 the intercept traveltime. Consider the source free coupled system of

partial differential equations
dsu(zs,t;p) = ~A(zs; p)dru(zs, t;p), (F.21)

where the u(xs,t;p) stands for the wave vector,

utas,tip) = () (@) (6:22)
and where A(x3;p) represents the system matriz given by
0 p
A(z3;p) = (h ______ » 0) (@35 p)- (E.23)

171n case the microscale heterogeneities are taken to be periodic.
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For convenience I use ¢ rather than 7 to indicate the intercept traveltime.

The homogenization procedure boils down to invoking a smoothing operation on the o

system matrix. From the deliberations of chapter 2 it is known that care must be taken

o

while conducting such a coarse-graining operation, but for the time being assume that
the characteristic function suffices as a proper smoothing kernel. Then coarse-graining

gives rise to the following system

dsu(xs,t;p) = ~A(L, z3;p)0yu(zs, t; ). (B.24)

In this system the A(L,z3;p) is obtained via
A(L7$3;p) £ (Aa¢a,w3)‘a:L (EZE\)

with ¢, being the L'-normalized indicator function. Under the condition L =g € 1, the
smoothed system matrix will vary slowly on the macroscopic scale range, i.e. it will vary
slowly with respect to the wavelength |A| = 27/|k| which is being taken as the spatial
gauge. The vertical slownesses can be obtained from the coarse-grained system matrix

by applying an eigenvalue decomposition in which they will occur as the eigenvalues .

(Wapenaar and Berkhout, 1989; Schoenberg and Muir, 1989; Folstad and Schoenberg,

1993; Kerner, 1992). It can be shown that the equivalent medium slownesses can directly

be expressed in terms of the coarse-grained vertical and horizontal velocities and are ™

given by

1 S —
Geq(L;x3,D) = mvl — 2 (L; z3)p?. (£.26)

The values for these coarse-grained velocities can be found explicitly via the inner prod-
ucts

P T
c2(L;x3) = PR P— (E.27)
and
1 1
ch(L;z3) = T br2) : (;7¢L,w3)- (E.28)

The question is now, what is gained and what is the physical interpretation to be given
to this exercise? The answer to the first question is simple, namely the medium is coarse-

i s

grained to the macroscopic scale range — under the condition of a separation of scales

—in a way that is consistent with the wave equation. The structure of this equation is
preserved, but it went at the expense of inducing anisotropy, i.e. the medium becomes
transversely isotropic — judged by the emergence of the two velocities — which in itself
is a manifestation of the microstructure in a static way. Moreover the medium has
been regularized in the sense that the coarse-grained medium inherits regularity from
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the smoothing kernel. This depends on the regularity of the smoothing kernel and the
singularity structure of the medium.

What else is gained? To answer this, one has to recognize that the equivalent slowness,
as defined in equation (E.26), characterizes the group velocity as it is being evidenced by
a wave packet'® with o dominant wavelength proportional to L. The general expression
for the group velocity in the zs-direction is (Borowitz, 1967; Messiah, 1958)

dw
(/g = -(T]‘C; (EZQ)
or equivalently by
de de
Cg = Cp — )\3&—){; or ¢y =¢p+ Icgﬂa_k%. (E.30)

sy

The group velocity expresses the velocity with which a wave packet of non-vanishing
support travels. In the case where the dispersion relation, equation (E.29), simplifies
to a constant or in the case where the support of the wave packet vanishes, the group
velocity becomes equal to the phase velocity which is given by

W

Cp

As T mentioned, the dominant wavelength is taken as the spatial gauge yielding the
following evaluation of the equation (E.29)

dw

CQ(L;:E-?;I)) =

dks b (E'32)

W= 2%
Lq(egip)

g(z3,p) = \/;5%@ - p? (E.33)

is the vertical slowness pertaining to the local fine-grained compressional wavespeed

c(xs) = \/1/p(zs)k(ws).

where

. { . . . .
- For those situations where — = ¢ <1, the macroscopic quantity geq(L; s, p) is station-

ary and one is “perfectly” able to propagate the wave packet over many wavelengths,
like in the geometrical optical regime, where the wavelength is much smaller than the
scale at which the local velocity varies. This is all possible in the absence of specular
scattering. The latter property is a direct consequence of the fact that one can not asso-
ciate specular reflections to occur in a smoothly varying medium and that brings me to

18 A wave packet delineates a group of waves whose mutual interference gives rise to a coherent structure
that, contrary to ordinary plane waves, extends over a limited region in space and/or time.
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the downside of the homogenization method. This downside points out the inability of

homogenization theory to capture the dynamics that manifest itself in the emergence of o

specular reflection and dispersion. To answer the question whether there is a profound

reason for this observation, I like to focus on those situations where homogenization is =

not, feasible.

E.5.3 Homogenizability

The question of homogenizability commits itself to posing the question whether a certain
system of pde’s, say the system depicted in equation (E.21), can be homogenized in a

proper way or not. It is shown by Auriault (1991) that homogenization is only feasiblein

those cases where there is a distinct separation of scales. For the acoustic wave motion
this corresponds to the fact that the square of the ratio microscale versus macroscale
must be of the same order as the square of the ratio microscale versus wavelength, i.e.

l2 0 0 l2
O(33) = O/IAF) = O35
P

where At is the characteristic time gauge being related to the wavelength |A] = ¢, At. ‘

By way of the self-consistent construction of the homogenization it appears that no other
choice, such as for instance |A| = O(L+/€) < L, can be made (Auriault, 1991). Clearly
this has profound consequences which can be interpreted in two different ways, namely

e in the opinion of Auriault (1991) it points to the fact that in cases where homoge-

nization is unfeasible, one violates the basic assumption under which one sets out
to probe the medium at the macroscale. This basically corresponds to a possi-

ble premature assumption on the existence of a separation of scales enabling the

definition of an equivalent medium.

e another opinion where one may draw the conclusion that apparently the homoge-

nization procedure only captures the static part of the wave problem and that one |

has to resort to other approaches in order to deal with the dynamics.

My opinion lies more in the line of Auriault (1991) in the sense that I experience diffi- |

culties associating induced dispersion and specular reflection to be governed by the wave

equation. Before going into detail on that issue, let me first describe what homogeniza- ==
tion does have to say even though it is being applied to cases where the homogenizability

condition is not met.

What comes to mind first is that one wants to circumvent the requirement of a separation

of scales. Or in other words how can one make sure that the condition - = ¢ < 1 always *

holds irrespective of a I, which is bounded from above? The answer is quite simple one
sets L — oo by setting At — oo or equivalently w — 0. In that infinitely long wavelength

e
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" regime the homogenization is always possible and this corresponds to replacing the inner

products of equation (E.25) by a spatial average that runs over the propagation distance

1 [
Ao(p)ég /0 A (z3,p)das. (E.34)

The propagation distance is measured with respect to the origin at 0 while the detector
is situated at z3. In this situation, the equivalent medium pertaining to this depth range
becomes homogeneous. It can be proven that this homogeneous replacement medium
describes the centroid for, say, the pressure wavefield detected at position 23 and induced
by a spatio-temporal Dirac distribution,
(oo}

tp(zs; t, p)dt
Teen(Z3;p) £ wf9<s<>—--~~-~~— = Teq(23;p) £ go(p)23, (E.35)

j() p(fﬂg,t,p)dt
with go{p) being obtained from the system depicted in equation (F.34) and p being a
solution to equation (E.21) with the fine-grained system. That is to say that the centroid

= belonging to the original system, equation (E.21), and the one obtained from the system

matrix in equation (E.34) are equivalent!® irrespective of the nature of the variability2°.
In effect, the homogenized system describes the behaviour that is static at the first order

« of magnitude (Auriault, 1991). Moreover, the centroid can be recognized as the average

time. This averaged time (t) is obtained by taking the expectation with respect to the
“probability” density p{zs, 1), i.e.

s Jo t'p(zs;t, p)dt!

@ fgoo pxs; ', p)dt’

(E.36)

* It expresses the average time required by the wave to travel a distance x3 and equals the

traveltime yielded by the reciprocal of the group velocity evaluated at k& — 0. Remark
that in an similar manner the spatial centroid,

+
ya [ ahp(ay;t, p)day
0 play;t,p)dal

can be defined. This spatial centroid travels with a speed given by the group velocity for
w > 0.

. Unfortunately the static situation is generally not of interest. So is there another physi-

cal interpretation possible? Yes there is, and to demonstrate that let me go back to the
Gaussian bell-shaped wave packet of characteristic width o = (z2) and location (z3), see
figure F2.4. For simplicity let me consider the normal incidence situation, p = 0. Further-
more let me suppose that I effectuated the coarse-graining as depicted in equation (¥.25)

197That is why I used the equivalent sign =.
260f course certain precautions concerning the smoothing kernel have to be taken if necessary, see
chapter 2.
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Figure E.4 Illustration of the envelopes of the temporal and spatial wave packets with thewr
average time and space coordinates given by the centroids. Their scales, i.e. their
temporal and spatiol extents, are given by their second moments.

with L = 0. Then, in fact, what homogenization theory is saying (Asch et al., 1990) is
that one is allowed to propagate the wave packet over a distance proportional to ¢ but
not further! Under that restriction the centroid is still described correctly and this is
equivalent to saying that the equivalent medium yields accurate predictions for the av-
erage time, (t), and space, (z3), behaviour of the wavefield up to propagation distances

being proportional to the scale 0. However, not much can be said on changes in the =
width (z2) of the wave packet after travelling such a distance. That implies that one can |

not repeat the above procedure — mapping the initial spatial width of the wave packet
onto the medium via the smoothing over o — because one looses track of this spatial
gauge. One does not know whether the spatial gauge changes or not. With other words,
one is limited to make one single step of a size proportional to the width o. Of course
one may wonder why not use the wavelength as the gauge? But then I run into trouble
because this wavelength itself depends on the equivalent velocity, i.e. the wave packet
travels with a group velocity obtained via the homogenization procedure with the initial
spatial gauge o, which on its turn strongly depends on the scale. So what is the velocity
after travelling a distance o? I believe one ends up here in a catch 22*'. This entrapment
points out the notion that one has to know the spatial gauge in order to determine the
velocity. But this is a rather unfortunate coincidence since on the one hand the main
candidate for the spatial gauge is the wavelength, which depends itself on the velocity
evidenced by the wave packet, while on the other hand the current formulation does, in
my opinion, not allow for a control over o. That is to say, there are no scale derivatives
that can act as infinitesimal generators invoking spatial dilatations, see chapter 3. At
this point one may of course argue that the local?? compressional wavespeed defines the
local wavelength As(zs) = cp(x3)At. But then the question is, what happens when the
compressional wavespeed displays a scaling behaviour? In that case namely, the local
compressional wavespeed depends heavily on the scale of observation and hence a similar
problem emerges. For me the question boils down to how to define the velocity in a
medium that scales and this is congruent to asking how to define a spatial gauge to mea-

21'Webster (1988): paradoxical rule found in the novel Catch-22 (1961) by Joseph Heller.
22L,0cal in the sense of being fine-grained not with respect to the spatial gauge of the wave packet
itself.
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" sure the velocity. Finally, notice that I expect, from physical grounds, namely linearity

in time, the temporal gauge to be invariant, because it is difficult to imagine that a wave
packet living at the infrared end of the temporal frequency spectrum turns into a wave

" packet living at ultraviolet end of the spectrum!

E.6 Towards an alternative formulation of wave dynamics?

I'must say that my ideas are heavily inspired by the lines of thought of le Méhauté (1995)
and Nottale (1995). In their work the role of the time and the time derivative are all
important, a notion one is well aware of when dealing with ray-asymptotics, At — 0, or
static long wavelength equivalent medium theory, At — oo.

Therefore I will conclude the Epilogus with two sections providing a rough sketch for

" an alternative representation for wave motion. In this representation I envisage scale

derivatives to emerge, that capture the scale dynamics as they did while setting up the
scaling medium representation to capture the well-log’s complexity. Such an alternative

" approach will by all means be void of a physical meaning when it does not adhere to some

sort of “correspondence principle”. This principle guarantees the generalized formulation
to match the results obtained by the conventional formulation in cases there is no longer

* a dominant scale dependence. There remains a possibility that the predictions of the

generalized theory correspond to those yielded by the conventional formulation. In that
case the alternative formulation has the advantage to be defined in terms of a scaling

* medium representation. This circumvents the required redundancy in spatial bandwidth.

Hence, one is better set to strive for inversion.

E.6.1 Some reflections on the role of scale in physics

One of the primary scientific motivations — the more technical one would have been the
integration of well and seismic data ~ for me to make an effort and try to initiate a
discussion on the current representation for acoustic wave motion can be found in the
work by Nottale (1995) and le Méhauté (1995). Therefore, I like to share two quotations
from the first author which inspired me and hopefully the reader. I think the problem
I feel myself confronted with has been paraphrased very nicely. The first quote drawn
from Nottale (1995) reads:

“Since the time of Newton and Leibniz, the founders of integro-differential calculus,
one basic hypothesis which is put forward in our description of physical phenomena
is that of differentiability. The strength of this hypothesis has been to allow physi-
cists to write the equations of physics in terms of differential equations. However,
there is 1o @ prior: principle which imposes the fundamental laws of physics to be
differentiable.

We shall make the opposite assumption: the elementary laws of physics are actu-
ally nondifferentioble. Under this conjecture, the successes of present differentiable
physics are understood as applying to domains where the approximation of differ-
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entiability (or integrability) was good enough, i.e. at scales such that the effects
of the nondifferentiability were smoothed out; but conversely, we expect its meth-
ods to fail when confronted by truly nondifferentiable or noniniegrable phenomena,
namely at very small and very large length scales, and, to a smaller extent, for
chaotic systems®®,

The new frontier is, in our opinion, to construct a continuous but nondifferentiable
physics (We stress the fact that giving up differentiability does not impose giving up
continuity). Set in such terms, the project may seem to be extracrdinarily difficult.
Fortunately, there is a fundamental key which will be of great help in this quest,
namely the concept of scale transformations”.

e

The second one I took from a more recent overview paper (Nottale, 1996) where he L
writes:

“In standard differentiable physics, it amounts to find differential equations implying
the derivatives of f, namely 8f/0z, 8% f/8x?, that describe the laws of displacement
and motion. The integro-differentiable method amounts to performing such a local
description, then integrating to get the global properties of the system under con-
sideration. Such a method has often been called “reductionist”, and it was indeed
adapted to most classical problems where no new information appears at different
scales.

But the situation is completely different for systems iraplying fractals and nondif-
ferentiability: very small and very large scales, but also chaotic and/or turbulent
systems in physics, and probably most living systems. In these cases, new, original
information exists at different scales, and the project to reduce the behaviour of a
system at one scale (in general, the large one) from its description at another scale
(in general, the smallest, dz — 0) seems to lose its meaning and to be hopeless.
Qur suggestion consists precisely of giving up such a hope, and of introducing a
new frame of thought where all scales co-exist simultanecusly as different worlds,
but are connected together via scale-differential equations.

Indeed, in non-differentiable physics, 8f(x)/0z = 8f(x,0)/0z does not exist any
longer®?. But the physics of the given process will be completely described if we
succeed in knowing f(z,e) for all values of €, which is differentiable when & # 0,
and can be the solution of differential equations involving 8f(z,€)/dz but also
Of(z,e)/81ne. More generally, if one seeks nonlinear laws, we expect the equations
of physics to take the form of second order differential equations, which will then
contain, in addition to the previous first derivatives, operators like 8%/8x? (laws of
motion), 8%/8(Ine)? (laws of scale), but also 8 f/0xd(In ¢), which corresponds to
a coupling between motion laws and scale laws.

23Note from the author: This latter category is of relevance for my problem, since the medium hetero-
geneity can be seen as “frozen” turbulence. That is to say, not temporally changing during the transient

wave phenomenon. :

24Note from the author: Here f(z,¢) denotes the regularized /smoothed version of a singular, showing

a scale divergence, functional f, see chapter 2 and chapter 5.
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What is the meaning of the new differential 8f(z,2)/81ne? This is nothing but
the variation of the quantity f under an infinitesimal scale transformation, i.c. a
dilatation of resolution.”

Needless to say that I took this work as a source of inspiration. Let me now categorize
how some of the aspects, coming forward in these quotes, found their way into the

" problem of waves in scaling media. In the first place Nottale’s line of thinking sparked
the impression at my side that the linear partial differential equations, denoting the wave
equation, play a double role:

o Firstly, they constitute, in a mathematical sense, a rule capturing the space-time
behaviour on an infinitesimally small scale range.

e Sccondly, they prescribe the way in which one has to average in order to provide a
phenomenological description on a coarser scale, the scale at which the interactions
one is interested in are believed to take place.

From these observations it is quite clear that differential calculus derives its power at the
infinitesimal scale range where functions are rules that assign numbers to points. In that
role the pde’s capture the relevant physical interactions under certain restraining assump-
tions. In the wave problem this assumption points to a separation of scales, enabling the
definition of macroscopic quantities for which subsequently constitutive relations can be
defined independent of the size of the elementary volume. This independence allowed
for the definition of local forms for the conservation laws and constituted the paramount
prerequisite for the derivation of the coupled system of pde’s denoting the wave equation.
So, in effect, the constitutive relations and the wave equation itself derive their universal-
ity from the basic assumptions that led to their derivation. That is why, in my opinion,
homogenization theory ~ the formalism prescribing the way in which a pde has to be
averaged — is for me so natural when one is interested in describing the wave motion at
the scaled up coarser scale. The reason for this is that the prerequisite assumption for a
separation of scales is shared within the framework that allowed for the derivation of the
~ wave equation as well as for setting up homogenization theory. Hence, homogenization
theory derives its applicability from the same first principles as the derivation of the wave
equation in itself does. That means that one is free to upscale — when the separation of
scales is guaranteed — the wave equation to a coarser scale level. In that process it is
even possible to allow for a singular behaviour of the constitutive parameters?® at the
small scales since they will be smoothed out!

s

* What if the homogenized system does not capture the physical wave phenomena being
observed? For instance one finds that the waves disperse and that specular reflections

@ 25There is a potential flaw in applying Gauss’ divergence theorem, but that can be resolved by giving
the integral a distributional interpretation, supplementing the proper conditions on the smoothing kernel.
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occur. Clearly one has then to do with a situation where the homogenization approach
fails. That raises the question whether the choice of the ruling system of pde’s has beena

proper one in the sense that, say, relaxation may erroneously have been ignored. On the

other hand, this observation may also point in the direction that the founding principles .

and assumptions under which the wave equation has been derived can not withstand the

touchstone of criticism within their realm of application. With this I mean the potential

danger that is hidden in the upscaling operation from the infinitesimal domain to the

scale range where the actual dynamics are believed to conduct their actions. This danger =

lies in the risk one runs in jeopardizing the founding principles under which the wave
equation has been derived and this brings me to the second observation I borrowed from
Nottale. That is the one which makes reference to the notion that it may be meaningless
to apply the “reductionist” approach when dealing with a problem of scales — e.g. the
integration of fine-grained well-log and coarse-grained seismic data — with a theory that
does not make explicit reference to scale and scale dynamics.

The final theme, besides the role of the time derivative, see below, I took from the work of

le Méhauté (1995) and Nottale (1995), are the important notions of scale divergence and
its appropriate counter measure regularization. These are the two congruent concepts

that form major ingredients motivating me to introduce a scaling medium representation
in the continuous wavelet domain. This scaling medium representation is accompanied
by a multiscale analysis and characterization for the medium’s heterogeneities as, for in-
stance, is being displayed by well-log measurements of the earth’s sedimentary deposits.

tures can be seen as solutions of linearized renormalization group equations, equations
that contain scale derivatives. In chapter 3, I made an effort to substantiate the main
ingredient of the scale representation namely the scale derivative operator.

Indeed, the empirical findings of the multiscale analysis conducted upon real well-data
demonstrate that the medium fluctuations contain structures of “all” sizes, certainly

In the characterization the fractal concept emerged and it appears that the fractal strue- *

within the scale range seismic waves are believed to interact. That is why the scal-

ing medium representation and its characterization, by means of scaling exponents, are
heavily based on the scale derivative operator in the sense that these exponents represent
eigenvalues of the scale operator. It is this observation that brings me to the question
whether it is possible to come up with o wave theory that contains a scele derivative

that carries the scale information, e.g. the singularities, from the medium to the probing
wavefield?

E.6.2 Some remarks on dynamics and scaling

At this point I arrived at the crucial question whether scale derivatives enter into the
formulation of the wave dynamics or not? To answer this question let me first briefly
review what I believe is known within the conventional context and what the conditions

ey
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" are to be imposed on a potential alternative formulation. First of all T impose that

this generalized. formulation has to comply with a certain “correspondence principle”
guaranteeing a transition back to the “conventional” forimulation in those cases where
the scale derivative does not detect a change, i.e. when the regularization is insensitive to
infinitesimal dilatations in the smoothing kernel. What are those situations? Certainly
the static equivalent medium is a candidate, because in that case the spatial gauge tends
to infinity and infinitesimal changes at infinity do not make sense. On the other hand
one can think of a situation where the medium is assumed to become smooth at the small
scale range. In that case the geometrxcai optzcai Iegnne is another candidate.

" What do these two extreme cases have in common? They refer to asymptotic values for

the temporal gauge, At, namely At — 0 for the geometrical optics and At — oo for the
statics. Both cases are well inderstood, but, unfortunately, their applicability is limited

~ in cases where the dynamics are of interest, i.e. in the intermediate regime. Notice,

however, that in the geometrical optical approach one can induce specular reflections
by allowing jump discontinuities to occur at which one can solve the local scattering by
supplementing appropriate boundary conditions on the wave field.

To summarize, I like to argue that in the two afore mentioned limiting cases, I expect
to obtain results that become asymptotically equal for both the conventional and the
extended formulation. For other situations I do not know. I do know, however, that
the possible scale contribution vanishes in the two above situations. For the geometrical
optical situation that is the case, because I assumed the medium to be void of singular-
ities. When these singularities do occur, then they will be isolated because the spatial
gauge goes to zero. In that case I demand the solution of the alternative formulation

~ to converge, preferably pointwise, to the solution obtained by supplementing boundary

conditions within the conventional formulation. Notice, however, that the solution of
the alternative formulation will only approximate the latter solution because the spatial
gauge is not allowed to go to zero! In other words, the solution obtained by using bound-
ary conditions represents the closure for the alternative solutions as At — 0. When one is
not in the geometrical optical regime, then I believe that care must be taken concerning
the mutual interference of the singularities that can not longer be considered as being

" isolated in all cases! Finally, T like to remark that the same line of reasoning proba-

bly holds for the solution of isolated singularities of the homogeneous type (Wapenaar,
1996h).

Now what else do these two situations, At — 0 and At — o0, tell the reader? They both
make reference on how time acts as a kind of spatial gauge. This brings me to the heart

.., Of the matter in the sense that both Nottale (1995) and le Méhauté (1995) intervene in

the role played by the time when the physical dynamics at constructs displaying a scale
divergence; e.g. fractals, are of concern. Their claim is that this type of singular behaviour
induces irreversibility of the time, implying a break in the space-time symmetry. It
introduces dispersion. This may link back to the notion that the solutions of the wave
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equation in the absence of the pure point and possible singular continucus part of the

spectrum constitute a group whereas in the case of irreversibility the solutions belong to |

a semi-group, see for instance Dautray and Lions (1992) or Ziedler (1991).

It is le Méhauté (1995) who argues that the time must be used to regularize the spatial
scale divergence and hence establishing an inherent link between space and time that
is not longer independent of the spatial gauge as it is in a regular environment where
only one velocity connects space and time. This let him to coin a replacement of the
time derivative to a fractional time derivative, the degree of which is directly related to
the Hausdorff dimension of the fractal at which electromagnetic wave interactions take

place (le Méhauté, 1995). Another approach is followed by Nottale (1996, 1995, 1992)

who argues that space-time is fractal. As a consequence he replaces the co-moving time
derivative by a generalized version containing a complex velocity and a reference to the
time gauge At. As will become clear later, the temporal gauge occurs in a generalized
scale dependent “diffusion” coefficient that is found in the “fractal source term” in the
conservation laws. Let me now quickly illustrate the concept of time in relation to fractal
scaling before going back to the constitutive relations.

E.6.3 The role of time in relation to fractals: le Méhauté’s approach

In Euclidean/Minkowskian space-time (Nottale, 1995) there exists a trivial scale invariant
relationship between space and time. This relationship is expressed by the notion of

velocity. In this section it is argued that in fractal space-time such a relationship does

e

not have a meaning, i.e. a scale invariant velocity does not exist. In order to illustrate this o

fundamental observation I will give a simple example on a race between a mouse and an
elephant. First the mouse and the elephant will run along a line, i.e. a smooth Euclidean

trajectory in space-time. After that they will run along a non-Euclidean monofractal b

curve.

But before regarding their race, a recipe will be given on how to construct a simple fractal |

curve, followed by how to associate the notion of a generalized fractal dimension to it.

Fractal dimension

The monofractal curve along which the mouse and the elephant are going to race is the
Von Koch curve. It is constructed in the following way. Start with a straight line of unit
length, see figure E.5 (a), and proceed by dividing it into three equal parts. Replace the
middle part with an equilateral triangle and throw its base away, figure E.5 (b). Repeat-
ing this procedure on every line segment of the new curve, the curve in figure E.5 (c) is
obtained and iterating once more yields figure E.5 (d). Figure E.5 (e) is obtained after a
few more iterations. Now by taking the number of iterations to infinity one defines the
Von Koch curve. It is clear that the (Euclidean) length of the curve after n iterations

emn
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Figure E.5 The construction of the Von Koch curve.

becomes

Ln= (%)n (F.38)

yielding a divergence as the limit n — oo is taken. Is a diverging length realistic? Yes,
it is indeed. The problem of diverging lengths was coined by Mandelbrot (1967), who
wondered how long the coast-line of Great Britain is. He showed that when the coast-line
of Great Britain is measured with gauges of length ), the number of gauges N needed

follows a power law

N~ XD alo, (E.39)

. where the exponent D is called the fractal dimension of the curve. Here, as le Méhauté

(1991, 1995) points out, the limit of A towards zero must be taken in a relative sense. It
is the way in which the number of gauges increases or decreases that determines the rate
of fractality in a scale range. Equation (E.39) gives the rate of change of the number of
gauges with respect to the resolution. On the other hand, in case the curve is a straight
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Figure E.6 The coust-line of Great Britain.

line or a smooth curve, then the number of gauges needed is only doubled when the
length of the gauges is halved. This means that the dimension of a line D = 1. However,
when this procedure is repeated for the highly irregular coast-line of Great Britain the
exponent D is found to be greater than one, indicating that the number of gauges is more
than doubled when the length of the sticks is halved, see also figure E.6.

Since the total length of the curve is given by the number of sticks multiplied with the
length of the stick, the total length is

L) = AN(A) ~ AP, (E.40)

It is clear that when D > 1, the length of the curve diverges if the gauges are taken : 3:

smaller and smaller. In other words, if the resolution of the measurement is taken finer,
the outcome of the measurement of the length increases. This shows that the outcome

2

)

sy

e,

of the measurement depends on the scale at which the measurement is made. If the L

dimension D = 1, i.e. the curve behaves as a line, then equation (E.40) shows that the

outcome of the measurement is independent of the scale. Now, return to the Von Koch 72

curve. It is not hard to show that the fractal dimension of this curve is given by

_logN(A) _log4

D=——ex = log3

=1.2618..., (E.41)

which is indeed larger than one. This confirms the observation that the length of this
curve diverges when it is viewed on increasingly finer scales.

The race of the mouse and the elephant

As 1 already briefly mentioned in the beginning of section E.6.3, I will try to convey the
implications of fractal space-time by considering a race between a mouse and an elephant.

s

s

e

P
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" This race consists of traversing a trajectory between two points in Fuclidean space-time,

the start and finish. Now suppose that it took them both exactly the same time T to
cover the distance. Then, from the Euclidean standpoint, everyone would agree that
both participants must have travelled with the same average speed, despite the fact that
the mouse and the elephant live on a different scale. So clearly they should both earn
the gold medal, because it took them exactly the same time 7" to cover the track.

" As already mentioned, the mouse and the elephant live on a different resolution, i.e. their

step size is different, or, with other words, their gauges are of different size. Suppose
that the size of the step Az, of the mouse is ¢ times smaller than the size of the step
Az, of the elephant, ¢ > 1, ie.
JANC . n
=q ", .42
Az, (£.42)

As a consequence of the smoothness of the track, think, e.g., of a cinder track, the number
of steps they have to make is inversely proportional to the size of their steps,

Ne(Aze) ~ Az.”' and Np(Azy) ~ Azt (E.43)

The total time 7" they have walked is now of course the number of steps multiplied by

~ the average time to take a step

T = No(Az)Ate = Ny (Azm ) Aty, (E.44)

or

-1
At  N.(Az.) (Awe) = gL, (E.45)

At.  Np(Az.)  \Azn,

. BEquation (E.45) shows that when the gauge of space is made a times smaller, then the

gauge of time has to be made a times smaller. Now clearly both the mouse and the
elephant have walked the same distance. This distance is independent of both space and
time and this is a mere reflection of the fact that the cinder track lives in Euclidean
space.

Now let me consider a second battle. Again the mouse and the elephant are the two sole
competitors. But now they will have to cover a fractal trajectory, such as the Von Koch
curve, from start to finish. As a shear coincidence they finish again at exactly the same
time and one might wonder who has won? The elephant will say that both have won,
but the mouse will argue that he covered a larger distance than the elephant in the same
amount of time, so that he has beaten the elephant. This shows that in the fractal case
it will require some careful deliberations by the jury to decide who has won the race.

Let me state some arguments the jury must take into account. Running along a monofrac-
tal trajectory with fractal dimension D, the number of steps the mouse and the elephant
had to make is proportional with, cf. equation (E.39),

Ne(Az,) ~ Az.”P and Np{Azy) ~ Az, -, (E.46)
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Hence, the ratio of the times of their steps becomes

Atm  No(Az,) Az NP
== ~ =a .
At,  Nm(Aze) ~ \Azm

So, making the gauge of the space a times smaller induces that the gauge of the time

has to be made aP times smaller. This means that the relation between space and time

is not longer a linear one as it was in case of the Euclidean trajectory. Hence, there does '

not longer exist a unique scale invariant velocity. In fact the relation between time and
space is found to be

(E.47)

T 5 }
or
Az ~ AtD. (E49)

The scaling of the time is caused by the broken dimension of the space. Equation (E.43) 7
implies immediately that it is impossible to define a scale invariant speed as soon as

D > 1, since this speed would be given by

i 22 o fim AfE (E.50)

At-0 At At-0

which diverges as soon as D > 1. Notice that Brownian motion has a fractal dimension

D = 2 (le Méhauté, 1991). With equation (E.49) this shows indeed that «(t) has sin-

in space yields singulerities in time. Notice that it is possible to define a generalized
velocity

L
D
T

ob !
o)) = o), (E.51)

which reduces to the usual notion of velocity as D =1,

As a final remark I would like to state, following Mandelbrot (1982) and le Méhauté

(1991, 1995), that the afore mentioned fractal space-time behaviour can be associated

with a generalized diffusion of the form

. Y
pla,t) ~ Fi{el-dwmno)Pey (E.52)

where 7y is a constant depending on a reference scale. It is clear that in the Euclidean case,
D = 1, this equation obtains the form of a wave, whereas in case D = 2 it obtains the form
of a diffusion. For other values of D the equation becomes the solution of a generalized
diffusion (le Méhauté, 1991). Notice the constant @ behaviour of equation (E.52) (Bickel,
1993; Hargreaves, 1992; Kjartansson, 1981).

2
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Finally notice that in this example the self-similar situation has been considered solely.
For the self-affine situation, where the track is a fractal “function” f(z) of the coordinate
z, one has to do with a spatial gauge

Ax ~ At (E.53)
rather than

Az ~ AtH, (E.54)

" see le Méhauté (1991).

E.7 A possible conjecture

E.7.1 The story of the mouse and the elephant continued

In the previous story on the race between mouse and the elephant one had to do with
a coast-line that was homogeneous in its scaling behaviour. This assumption allowed
for an establishment of a non-trivial relationship between space and time governed by
one single fractal dimension. As a consequence of the non-triviality it was observed
that a dispersion entered into the match, which made it harder for the mouse to win.
Clearly, high and low frequencies correspond to “mouseness” or “elephantness” and this
led Mandelbrot (1982), le Méhauté (1991) and Hargreaves (1992) to coin a generalized
diffusion process to be associated with wave motion in monofractal media.

Of course, the underlying assumption of monofractality withstands a full comprehension
of the dynarmics of waves in media that display a heterogeneous type of scaling behaviour.
Furthermore, I find it difficult to still assimilate translation as a means of transportation,
because dilatation has taken over, and to comprehend specular “reflections”. 1 attribute

... these reflections to the existence of dominating singularities. Theréfore, I would like

to postulate a generalized version for the tale of the elephant and the mouse. As a
basic assumption I take the number of steps per time interval to be constant for all
“creatures” participating in the race. 1 used the quotes around creatures to indicate
that, as a consequence of spatial dilatations, the participants may transform from one
species to the other. That is to say that the spatial gauges, the spatial step size being
linked to the characteristic size of the creatures, are allowed to change during the race,
so a mouse may turn into an elephant and vice versa. These changes in the spatial gauge
are induced when crossing singularities appearing in the coast-line.

« '1The physical interpretation to be given to the above metaphor is that I perceive wave

packets to dilate when encountering singularities in the medium properties. On the other
hand, the temporal gauge is taken to be constant. It is interesting to note that in this
approach I do not longer think of the wave problem in terms of individual geodesics
but rather in terms of the congruent behaviour of possibly infinitely many geodesics,
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which can not be determined individually. To continue the above metaphor, one may

think of a geodesic as being the solution to a “classical” Lagrangian, i.e. the eikonal =

equation, defined in terms of the conventional wave equation. This solution is obtained
by attributing the elementary volume to, say, the characteristic size of a single cell

e

amoeba. And if on this scale the environment is assumed to be non-scaling, then the

amoeba and its “dilated” counterpart will not experience the consequences of scaling,
because its environment is ruled by functions. However, an ant, a mouse or an elephant,
which are conglomerates of cells, certainly live through the effects induced by the scaling.
Their environments are formed by scale indexed functionals, i.e. the scaling medium
representation.

Now the question is, how must waves physically be embodied? Are they amoebae, or are
they multicellular?

E.7.2 A starting point?

As a consequence of the above line of reasoning the time has been set as a fixed gauge with
which space is going to be measured. Since I am dealing with a self-affine situation, the
medium profiles depend on the vertical coordinate, the spatial gauge is simply, following
le Méhauté (1991), proportional to the time, o(t) ~ ¢. It is this choice which potentially
solves the problem of how to define the spatial gauge which has to be related to the
time in one way or another. Let me now demonstrate what the implications are of this
choice on the role of the time and the time derivative in conjunction with the constitutive
relations.

In the current formulation one was able to replace, by virtue of Reynolds’ transport
theorem, the time derivative acting on, say, the functional expressing the observed mass
flow density ®, = pug, i.e. $(Ps,Po(),0)> DY & partial®® time derivative sandwiched
between the mass density, p, and the field quantity, v, ad;(fﬁm, Bo(t),2) = (PO, Do) ,a)-
This identity holds since there exists a relation expressing the conservation of mass for
the elementary volume. This conservation law states that the time derivative of the
functional (p, ¢, (1),z) equals zero, i.e. %(p, $o(t),e) = 0, in the absence of annihilation
and creation of mass {(de Hoop, 1995). To summarize, the derivation of the constitutive
relations manifests the material properties, {p,x}, with respect to the observed field
quantities {v,, p}. In order to establish a physical meaning to these constitutive relations
I demand passivity, following de Hoop (1995), implying that %({Qm, O}, bo(t),2) — 0 as
a%({vva}:(ba(t),m) - 0.

In equation (E.17) I postulated that, in case of a scaling number density, one may have
to alter the form of the pertaining conservation law. For the conservation of mass this

28] linearized the co-moving time derivative, i.e. Dy v 9t.
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" alteration implies a recast of the conservation law into

d

dr (p>¢a(i),w> = {Osp, "!’n(t),w) At —0 (E.55)

rather than

d
a’i(;@ ¢U(t),x> =0 At — 0. (E56)

The implication of this postulate is that the source free equation of motion,

d
(0zp, ¢tf(t),fﬂ) + a‘i(q)my ¢a(t),m) =0 (E.57)

.. —being, as a consequence of equation (E.56) and Reynolds’ transport theorem, equivalent

to

(0ep, ¢a(t),w> + (pDyvs, ¢a(t),w> =0, ‘ (E.58)

— becomes a system of equations reading

d
(02, Got),a) + 5 (%o Po()a) =0 (E.59)
d . Ao,
335('0’ Pott)e) = M —=(0up, Yo (s),) (E.60)

In the modified situation the functionals can not, as in the current formulation, be
dropped in order to obtain a local form for the equation of motion

Ozp + pByv, =0, (Eﬁl)

. where I linearized the co-moving time derivative towards an ordinary partial time deriva-

tive. Instead I ended up with a functional relationship in which explicit reference is made
to the spatial scale and indirectly to the temporal gauge, At. Moreover, an additional
functional emerged expressing a contribution due to an infinitesimal dilatation induced
during the time step, Af.

What is to be learned from the additional equation (E.60)? First of all it refers to a

. change in the time rate of change in the density of mass, effectuated by an change in the

e

resolution of the elementary volume during the time step A¢. This change is measured in
terms of the wavelet coeflicient (8;p, VYo(t),2) and, as a consequence, it becomes interesting
to study the behaviour as a function of the temporal gauge, At. Let me first note that
while taking At -+ oo one obtains the static behaviour in which the density must be
conserved a notion becoming manifest in the sense that the scale contribution drops out.
Moreover, this scaling contribution becomes zero in case the density becomes smooth at
the small scale range or anywhere else. Of course these are the two situations I am not
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strictly interested in and let me therefore review what may occur during the time step
At in case the density is taken as

plz,t) ~ x®. (E.62)

Then it may be expected that equation (E.55) would yield a behaviour like

d
a’i (pv ¢a(t),$> = (atpa "l)a(t),m) (E63)
~ Gyt*
This, on its turn, may imply a dissipation since
F{e ) ~ (jw)™, (E.64)

o

yielding an srreversibility of the time. In this expression I made use of the fundamental

property of the Fourier transform that maps powerlaws onto powerlaws and that leaves
scale operator of the type z0, untouched, i.e. 29, + 1 > kO (le Méhauté, 1991; Hol-

schneider, 1995). The irreversibility implies that the time has only one direction, a notion .

well reconcilable with the fact that the real and imaginary parts of (jw)*?" form a Hilbert
transform pair under certain conditions for the « and that implies a causality. There is

even a more important observation to make, that concerns the conjectured ability of this .

formulation to transport spatial singularities from the medium to temporal singularities '

of the wavefield. At this point I can not prove this, but I know that something similar »»

occured for the situation described in the previous section where the scale divergence of

the “coast-line” mapped to singularities in the time. Another point favouring this idea

is the fact that the algebraic singularities constitute eigenfunctions of the scale operator, =

1.e.

2, z% = az®. (E.65)

In this way the scaling remains intact. This notion is in my opinion not shared by, for

instance, operators of the form

1

where the logarithmic derivative, appearing in the reflectivity®®, seems to absorb the
scaling! For me this observation is difficult to reconcile with the empirical findings
concerning the measured seismic data.

In section E.4 I mentioned that the scale contribution would only matter in those cases

where it exceeds the o(1) term. If the scaling becomes important then the system depicted

27This can be associated with constant @ behaviour.
28] am aware that care must be taken while differentiating z®.

1_ 1 N i
S0P~ —0a2% = a~ (E.66)

)

o
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in equations (E.59) and (E.60) comes into action. At this stage I do not oversee what the

exact consequences would be. However, given the global/local Holder exponent estimates
it is relative straightforward to determine this transition, marking the point at which the

™ scaling becomes important. As far I can judge, I expect the transition to occur at a = 1.

So for a < 1 the scale contribution comes in. For a = 0 one obtains a frequency
independence, a property which may well be consistent with the fact that the Holder

™ exponent of a jump discontinuity equals zero while the pertaining reflection coefficient is

frequency independent. Finally, if the scaling of the density is broken at the large or small
scales®®, i.e. there is a transition from scale divergent behaviour to regular behaviour, see
chapter 2, then the additional scaling contribution will drop out! Hopefully the future
expressions for the reflectivity induced by isolated algebraic singularities will yield the
same behaviour as found via the method of imposing boundary conditions.

~ Indeed the scaling medium representation I introduced in chapter 2 fits very well in the

above picture. But again the presented conjecture is still in a very premature state
of development. On the other hand, I would be surprised when the scaling medium

™ representation I proposed will not find its way into the current formulation of the wave

theory. ‘The reason for this is that the scale derivative’s role proved to be essential in
unraveling the complexity displayed by the medium and that sparks the question why it
is lacking in the current wave theory? This wave theory is namely used to describe how
this complexity is carried to the space-time behaviour of the wavefield!

At this point I ask to myself whether the basic assumptions within the idealization of

~ . the continuum mechanics can be matched with the multiscale findings in this thesis. In

this context I like to quote Sedov (1971)

@&

. in particular, such an idealization is necessary, because one wants to employ
the apparatus of continuous functions, differential and integral calculus in the study
of the motion of deformable bodies.”

" Let me stress that I refrain from rejecting differential and integral calculus, because 1

~ believe that these concepts are still deployable when the appropriate measures are taken

to deal with the complexity. For me, these measures boil down to replace functions by
functionals and to consider scale derivatives. Of course, the notions of displacement and
dilatation are crucial concepts in describing physical phenomena, only in my opinion they
should not be applied without a reference to scale, i.e. they should refer to functionals
instead of functions. For me the prerequisite of applying functions solely hinders a true
comprehension of complexity. The scaling medium representation may be a last remedy
to unravel and deal with the complexity, given the above integro-differential theoretical

“ framework.

Falling back on the metaphor, what is happening with the “embodied” wave packet as it

~ hits a singularity? As I mentioned, spatial dilatations were allowed to take place. These

29May even be at the intermediate scales.
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dilatations are in my opinion necessary to transgress a singularity. In fact what happens, .

e

is that the singularity is regularized by a stretching of the wave packet, counterbalancing : i

a densification in the medium. Because of the dissymmetry in space-time that goes
with this action I expect dissipation. Breaking the complexity by the regularization may

cause a loss of energy®°. Instead of dissipating energy into heat® one may envisage the i

energy to go into an increase of complexity in the time behavicur of the wavefield. The
wave started of as a single event in time and as time passes the complexity is gradually

built in to the signal due to the singular scattering®®. Scattering is not well understood

and maybe the above deliberations will shed some new light on this difficult mechanism.

Furthermore allow me to remark that I find it difficult to understand how it is possible to 77

=

pick up information on the medium’s heterogeneities without some form of dissipation, |

i.e. I do not understand how a wave packet may interact with a singularity without a

loss of energy. I can not prove that, but again it is a consequence of the dissymmetry, =2

and of the general rule of thumb that almost nothing goes for nothing.

Let me now consider the case where a scale derivative enters into the formulation. [
expect it to detect the singularities in the constitutive parameters. This detection is

then followed by a congruent action of this scale derivative invoking not only a spatial |

dilatation, on the spatial gauge, but also a transfer of the singularities from space to time.

In this, the scale operator acts as the infinitesimal generator for the dilatations. Pleaselet ™7

me stress again, that I am fully aware of the speculative nature of this discussion. Still, I
am convinced that as soon as a scale derivative enters into the current formulation for the

space-time structure of the wave equation, one experiences an intricate scale/space/time 7
coupling. I only do not have the answers yet what this structure exactly looks like. But

what I do know, is that this succession of events strives well with the wave interactions
at a discontinuity®®, which give rise to a congruent spatial dilatation of the wave packet
and the emergence of an additional event in time, all caused by the spatial singularity.

It is interesting to note that I believe it is possible to associate the additional “fractal
source” term in equation (E.60) to the “generalized scale dependent diffusion” coefficient

appearing in the generalized co-moving/convective time derivative as coined by Nottale . |

(1992, 1995, 1996)

d d d .
a ¥ T *a*i + V-V~ jD(x,1, ADA. (E.67)

In this operator one finds a generalized complex velocity V, to be attributed to the fractal

30This observation does not imply that the conservation law of energy no longer holds. It merely states
that the wave’s energy transforms into complexity rather than into heat.

311 do not expect heat dissipation at the seismic temporal frequency range. This does not apply to
ultrasonic wave interaction.

32That is to say, specular scattering rather than the scattering referred to in scattering theory, where

the spectral measure is taken to be absolutely continuous. This continuity precludes a dispersion.
33This is done via supplementing boundary conditions, which in my opinion work well in case the
singularities can be regarded as being isolated.
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= nature of space-time, and a additional complex term corresponding to a diffusion type
of behaviour. The coefficient D3* represents the generalized scale dependent diffusion
coefficient.

" In the proposed approach presented in this epilogue I only paid attention to the fractal
source term. Whether the velocity, defining the co-moving derivative, requires a general-
ization, has not been investigated. Because the time behaviour is supposed to be linear,

“* 1 think this approach is justifiable. Concerning the diffusion term, with its Laplacian,
I like to mention that it can be associated with a scale derivative. This is because the
Gaussian and its derivatives constitute solutions to the diffusion equation, i.e.

o, & 1 a2

= ol h x == ;7.
60( (‘);r‘la with G e

.. That may explain the possible link between the scale derivative in equation (E.60) and
the term containing the Laplacian in equation (E.67). To be — speculatively — more
specific, I associate the diffusion coefficient D(z, ¢, At) with my spatial gauge o(z, ¢, At).
This may imply that the recipe that replaces the time derivative by a generalized one as
a consequence of the scaling, becomes

% - % = -(-?—i - cr(,}—i— evaluated at o = o(z,1, At), (E.68)
where I tacitly invoked a “linearization” by neglecting the velocity term. Now of course
the crucial question is, what is the behaviour as a function of the temporal gauge? Clearly

= for an isolated discontinuity one may expect no temporal frequency dependence, because
the Holder exponent equals zero. In “all” other cases, where there is a scale dependence

exceeding the o(1), I expect a dissipation type of behaviour.

Perhaps superfluously let me stress again that within the above deliberations no physical
assumptions have been made whatsoever concerning scale ranges that lie outside the scale
range of observation. Ounly during the conversion to the “language” of mathematics, one
#* may get the impression that such assumptions have been made. But notice that exactly
a similar type of assumption is made by representing the data in terms of - continuous —
functions. Given the empirical findings it appeared that tempered distributions are more
== appropriate to represent the observed data. The implication of this latter choice is that a
reference to scale is made and that may yield different predictions for the wave motion in
cases where the medium heterogeneities behave as tempered distributions. Of course the
= formulation has to comply with the “correspondence” principle I mentioned earlier. To
summarize, I think it has been useful to come up with the preceding discussion because
it coing an initial discussion on a formulation that

o replaces functions by functionals, thereby explicitly referring to the notion of scale.

e does something with the time in relation to space. In that sense the discussion
goes along similar lines as the work presented by Nottale (1995) and le Méhauté

34Remark that this D does not refer to the dilatation operator.
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(1995), who argue that the time becomes irreversible as a consequence of dissipation =

induced by the scale divergence and its counter action regularization. In their work .

this yields a replacement of the ordinary time derivative by a generalized one,
breaking the space-time symmetry. Hence, it is argued that the time plays a key

role in measuring the spatial complexity, yielding, as a consequence, a velocity that
is not longer unique.

e allows for a hopefully more suitable statement of the inverse problem. It is my con-

Jecture that it is perhaps better to aim, during the inversion, for an achievement of
information on the nature of the singularities occuring in the time. That is to say,

that I envisage an inversion scheme yielding estimates for the local scaling expo-

nents, that characterize the main singularities occurring in the medium properties.

Since these singularities express the complexity, it is to be expected that the charac-

terization of the singularities serves the purpose of obtaining a litho-stratigraphical
indicator.

¥

At this point I may have over fed the reader and left him or her puzzled with the question

why does seismic exploration work? Indeed, from the kinematical point of view it is -

quite understandable why it works. The reason is that during the forward modelling,
it only concerns itself with a mapping of the location pertaining to a singularity in

space to the location of the singularity in time, while the reverse process is strived

for during migration. This means that for cases where one has a general idea on the
average space-time behaviour one is all set, a notion striding well with the inherent

redundancy of seismic measurements. For the second dynamic part perceived by me to

be responsible for the wave interactions I experience much more difficulties in coming to
terms with the intricate mechanism being responsible for the apparent dispersion and
specular reflections.

I like to conclude this thesis by quoting Pierce (1981), who makes the following remark

concerning the use of the acoustic wave equation as a model

“Although this model is approximate and gives no account of sound absorption, its
predictions are often good an approximation to reality. Because of its simplicity, it is
the one most often used unless there is some positive indication that the refinements
contained in more complicated models are necessary for the problem at hand.”

It may be clear that for me the notion of scaling is an indication, while the working

hypothesis gave me motivation to look for a more complicated model. Note, however, -

that the aim was not to make things more complicated as they are but that the ultimate
goal was and still is to invoke the complexity at the level of the constitutive relations

rather than trying to deal with it at the level of the wave equation itself. Adding the

complexity at a later stage may be much more complicated, judged, for instance, by the

current findings of localization theory (Faris, 1995), where people try to come to terms
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* with a certain randomness in the wave or Schrodinger equation. Therefore I am reluctant

in adding complexity at levels transgressing the level of the founding first principles,
because of the possible mathematical implications. If one does not keep this in mind,

" one may end up solving problems that lost their bearings with the problem one initially

set out to solve. It might very well be, that adding a large amount of complexity to
the coefficients of the wave equation is an example of such a situation. Hopefully the

== observations made in this thesis trigger a re-evaluation of the founding principles behind

the derivation of the wave equation.
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- Samenvatting

Een schalende-mediumrepresentatie:
een discussie over boorgatmetingen,
fractalen en golven

Recente ontwikkelingen in de seismische technologie hebben laten zien dat er een toene-

_ mende vraag bestaat naar de specifieke eigenschappen van het gesteente waarin zich de

olie- en/of gasreserves bevinden. Om aan deze vraag te voldoen probeert men data die
op verschillende manieren en op verschillende schalen zijn verkregen, met elkaar te ver-
enigen. Binnen dit proefschrift betreft dit de grofschalige Verticale Seismische Profielen
en seismische opperviakte data aan de ene kant en de fijnschalige boorgatmetingen aan
de andere kant. Het blijkt dat er nog veel vragen zijn omtrent de integratie van deze
twee typen metingen. Het doel van dit proefschrift is een beter inzicht te verkrijgen in

- deze vragen.

De wijze van aanpak is de volgende. Allercerst heb ik een uitgebreide schaalanalyse

.. gedaan op boorgatmetingen met behulp van de wavelet transformatie. Deze bestaat zo-

wel uit een locale als een globale schaalanalyse; de locale schaalanalyse levert Holder
exponenten als afschattingen van de locale mate van differentieerbaarheid; de globale
schaalanalyse geeft informatie omtrent de gegeneraliseerde fractale dimensies, de statis-
tische momenten en het singulariteitenspectrum. Dit singulariteitenspectrum drukt de
hiérarchie van globale Holder exponenten uit. Toepassing van deze schaalanalyse op
boorgatmetingen laat zien dat deze zich multifractaal gedragen. Dit betekent dat ze niet
langer als ordinaire functies gerepresenteerd kunnen worden, maar dat men zijn toevlucht
moet nemen tot een representatie in termen van functionalen. Functionalen kunnen een
betekenis gegeven worden met behulp van een continue wavelet representatie. Door een
juiste keuze voor het wavelet te maken kan het divergerende karakter van de boorgat-
metingen geregulariseerd worden en kunnen bepaalde operaties weer betekenis gegeven
worden, ook al moet hiervoor een afhankelijke parameter worden toegevoegd, namelijk
de schaal.
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Om de multi-schaalanalyse een beter theoretisch raamwerk te geven besteed ik vervol-

gens aandacht aan de spectrale representatie behorende bij de operatoren dic de infini-

tesimale generator vormen voor de schuif- en dilatatie-operatie. Deze twee operaties zijn
verantwoordelijk voor de vorming van de familie van continue wavelets. Deze operator
benadering vormt ook de basis van het hoofdstuk dat gaat over akoestische golfbeweging.

Hier is de Hamiltoniaan de belangrijkste operator in de zelf-geadjungeerde infinitesimale

generator die de tijdevolutie van de Cauchy-data beschrijft. Het blijkt dat het lastig is ==

om het singulier continue deel van de spectrale maat uit te sluiten, aangezien boorgat-
metingen een schalend gedrag vertonen over een zeer groot schaalgebied. Merk op dat

er aan de cigenfuncties behorende bij het singulier continue deel van het spectrum geen o

fysische betekenis gegeven kan worden. Deze observatie is lastig, zo niet onmogelijk, te
rijmen met de noodzakelijke localiteit van de verstoringen die wordt verondersteld bij

localisatietheorie. Localisatietheorie is binnen de conventionele golfvergelijking de enige ..
robuuste theorie, dic dispersie geinduceerd door complexiteit beschrijft. De toepasbaar-
heid van deze theorie zou men in twijfel kunnen trekken gezien de complexiteit en het

schalingsgedrag van de boorgatmetingen.

Om de lezer enig inzicht te verschaffen omtrent de schalingsanalyse en de bijbehorende

fractale karakterisatie heb ik cen aantal hoofdstukken opgenomen in het deel Capita Se-
lecta. Deze hoofdstukken presenteren geselectecrde onderwerpen uit de distributietheorie
en geselecteerde onderwerpen omtrent deterministische mono- en multifractalen, omtrent

stochastische monofractalen en omtrent locale en globale multi-schaalanalyse door middel o

van de wavelet transformatie.

In de epiloog die geen officieel onderdeel van dit proefschrift vormt, schets ik mijn prema-

ture ideeén omtrent de mogelijke implicatie van schaal en schaaldynamica op akoestische
golfbeweging. Dit inzicht wordt voornamelijk gevoed door het feit dat boorgatmetingen
een separatie van schalen niet rechtvaardigen. Deze separatie van schalen is één van de
belangrijkste pijlers van de continuum mechanica, maar daarin wordt in het algemeen
geen referentie naar schaal gemaakt. Derhalve denk ik dat de vraag interessant is hoe

aan de bestaande theorie volgens het correspondentieprincipe wel een referentie naar

schaal en schaaldynamica toegevoegd kan worden. Dit correspondentieprincipe brengt
tot uitdrukking dat de gegeneraliseerde theorie overgaat in de conventionele theorie in

geval de constitutieve parameters geen schaalgedrag meer vertonen. De epiloog is een

ecrste aanzet voor de ontwikkeling van een gegeneraliseerde theorie.
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