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SUMMARY

In acoustic exploration and monitoring imaging plays a critical role in uncovering struc-
ture and minute changes therein. It is, however, often hampered by unfulfilled assump-
tions. One such assumption in the context of reflection imaging is that estimated incident
and reflected wavefields at a reflector travel in opposite directions with respect to the re-
flector surface-normal vector. In Reverse Time Migration (RTM) this is often not the case
due to the common use of modelling operators that implicitly account for scattering to
estimate incident and reflected wavefields at an interface. This results in artefacts in the
output RTM image.

A partial remedy to these artefacts is to directionally decompose wavefields during
the RTM imaging step. This allows for the decomposition of the incident wavefield at
a horizontal interface into a down-going wavefield, which in conjunction with the up-
going reflected wavefield can be used to estimate the reflectivity at the interface. This
effectively removes the possibility of using a down-going incident wavefield with a down-
going reflected wavefield to estimate reflectivity, which is not physical.

Directional wavefield decomposition classically decomposes multicomponent wave-
fields recorded along a horizontal surface into up- and down-going wavefields. For
acoustics this is a solved problem. However, not all techniques implicitly use wavefields
recorded along flat surfaces. RTM, for example, commonly works on snapshots of a
wavefield, hence the classical decomposition techniques are hardly applicable. Other
techniques have been developed to solve this problem, but still only decompose into up-
and down-going wavefields as it is assumed that the media of interest only vary in the
vertical direction. None allow for an elegant decomposition of a wavefield according to
all possible travel directions. In this thesis (Chapter 2) we develop a snapshot acoustic
directional wavefield decomposition technique with an emphasis on the fact that the
method works on snapshots of wavefields in time and that the direction with respect to
which the decomposition occurs is arbitrary, and not simply the vertical direction as in
up-down decomposition. Like other decomposition techniques it is effectuated through
the scaled addition of two wavefield components, in this case the pressure and its time
derivative. We demonstrate how to directionally decompose an acoustic wavefield ac-
cording to the directions of propagation of its constituent plane waves by showing how to
separate a wavefield into its constituent plane waves. This allows for approximate wave-
field decomposition in arbitrary media, even normal to interfaces. This is an obvious
boon for imaging complex structures, as imaging should occur normal to surfaces and
not only in the vertical direction. This method is designed for wavefields that exist in one
or more spatial dimensions and the locally varying decomposition directions must be
prescribed by the user.

As this method is fundamentally new, we relate it to well established decomposition
techniques (Chapter 3). We compare Poynting decomposition, plane-wave decompo-
sition, analytic decomposition and conventional surface-normal decomposition to our

xi



Xii SUMMARY

snapshot wavefield decomposition and mathematically derive the other techniques in
terms of acoustic snapshot directional wavefield decomposition. This underpins the va-
lidity of snapshot directional wavefield decomposition as a proper decomposition tech-
nique and allows for the exposure of the limitations, advantages and disadvantages of
each of the discussed techniques.

The preceding discussion is complemented by looking at directionally decomposing
simple plane-wave examples (Chapter 4). In the first example two interfering propagating
plane waves that travel in opposite vertical directions are considered and are promptly
separated by decomposing the wavefield into up- and down-going waves using our pro-
posed decomposition operators. The second example is more challenging as spatially
evanescent waves are considered. Such waves are diffusive in one or more spatial dimen-
sions. In this case our proposed decomposition operators break down and we are not
able to correctly decompose the wavefield.

As already stated the newly developed decomposition scheme can be used for im-
proving imaging in RTM (Chapter 5). By directionally decomposing wavefields normal to
interfaces the concept of a reflection coefficient is honoured. Conventionally wavefields
are decomposed into up- and down-going waves before imaging, which stems from the
assumption that the Earth is horizontally layered. This removes backscatter artefacts
from RTM images that are caused by the use of modelling operators that implicitly ac-
count for scattering when the medium only varies in the vertical direction. The Earth,
however, is rarely horizontally layered. Most interesting structures like salt flanks or
faults are commonly more vertical than horizontal. Imaging using decomposed up- and
down-going wavefields performs poorly for these. Imaging using wavefields decomposed
according to interface normals is the key here. It is expensive but effective for all dips.

As part of this work field data were acquired and processed along a transect in the
Danube near Novi Sad, Serbia. Although these data were not initially shot for showing
the newly developed decomposition method, we applied it successfully to these field
data (Appendix A). This demonstrates that the operators perform well under real field
conditions with ample of noise present.



SAMENVATTING

Bij akoestische exploratie en monitoring speelt beeldvorming een cruciale rol voor het
ontdekken van structuren en de minuscule veranderingen in deze structuren. Deze waar-
nemingen worden echter vaak bemoeilijkt vanwege onvervulde aannames. Een van zulke
aannames in de context van het afbeelden van reflecties is dat de geschatte inkomende
en gereflecteerde golfvelden bij een reflector in tegengestelde richting bewegen ten op-
zichte van de vector die loodrecht op het oppervlak van de reflector staat. Bij Reverse
Time Migration (RTM) is dit vaak niet het geval omdat de inkomende en gereflecteerde
golfvelden bij een grensvlak over het algemeen geschat worden met behulp van modelle-
ringsoperatoren gebaseerd op verstrooiing. Dit resulteert in fouten in het RTM-gevormde
beeld.

Het ontbinden van het golfveld in afzonderlijke richtingen tijdens het vormen van
het RTM-beeld kan deze fouten voor een deel verminderen. Door toe te staan dat het
inkomende golfveld bij het grensvlak ontbonden wordt in een neergaand veld, kan deze
richtingsafhankelijke ontbinding gebruikt worden in combinatie met het opgaande ge-
reflecteerde veld om de reflectiviteit aan het grensvlak te bepalen. Hierdoor wordt de
mogelijkheid verwijderd dat het neergaande inkomende veld en het neergaande gereflec-
teerde veld worden gebruikt om de reflectiviteit te schatten, wat niet-fysisch is.

Historisch gezien wordt richtingsafhankelijk ontbinding van het golfveld gebruikt
om golfvelden die via verschillende componenten gemeten zijn langs een horizontaal
oppervlak, om te zetten in op- en neergaande golfvelden. Voor akoestische golfvelden
is dit een opgelost probleem. Echter, niet alle technieken maken impliciet gebruik van
golfvelden die gemeten zijn langs platte oppervlakken. RTM maakt bijvoorbeeld gebruik
van momentopnames van het golfveld, waardoor conventionele technieken voor ont-
binding van het golfveld nauwelijks toepasbaar zijn. Andere technieken zijn ontwikkeld
om dit probleem op te lossen, maar deze maken nog steeds enkel gebruik van op- en
neergaande golfvelden omdat ze aannemen dat de media van belang alleen verande-
ren in de verticale richting. Geen van deze technieken maakt gebruik van een elegante
ontbinding in alle mogelijke richtingen. In dit proefschrift (Hoofdstuk 2) ontwikkelen
we een methode om momentopnames van akoestische golfvelden te ontbinden in ver-
schillende richtingen, met nadruk op het feit dat de methode werkt op momentopnames
in tijd en dat de richting waarin de ontbinding plaatsvindt arbitrair is en niet alleen in
verticale richting. Zoals in andere decompositietechnieken wordt dit geeffectueerd via
een geschaalde optelling van twee componenten van het golfveld, in dit geval de druk en
zijn tijdafgeleid. We laten zien hoe een akoestisch golfveld ontbonden kan worden in de
richting van de voortplanting van de bijbehorende vlakke golven door te laten zien hoe
het golfveld gescheiden kan worden in zijn bijbehorende vlakke golven. Dit laat een bena-
dering in golfveldontbinding toe voor ieder type media, zelfs als de ontbindingsrichting

Vertaald door: J.A. Brackenhoff & G.G. Drijkoningen.
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loodrecht op de grensvlakken staat. Dit is een duidelijk voordeel voor de beeldvorming
van complexe structuren aangezien beeldvorming loodrecht op de vlakken zou moeten
plaatsvinden en niet alleen in de verticale richting. Deze methode is ontwropen voor
geolfvelden die in éen of meer spatiele dimensies bestaan, en de lokaal vari erende de-
compositierichting moet voorgeschreven worden door de gebruiker.

Aangezien deze methode fundamenteel nieuw is, wordt het gerelateerd aan goed-
vastgestelde ontbindingstechnieken (Hoofdstuk 3). De zogenaamde Poynting ontbin-
ding, een vlakke-golf ontbinding, een ontbinding in termen van (complexe) analytische
functies en een conventionele ontbinding loodrecht op het oppervlak worden vergele-
ken met de ontbinding van die van ons, die met momentopnames van het golfveld, en
we leiden deze andere technieken af in termen van richtingsafhankelijke ontbinding van
akoestische golfvelden via momentopnames. Dit laat zien dat deze methode de juiste ma-
nier van ontbinden is en laat de beperkingen, voordelen en nadelen van de verschillende
technieken zien.

De voorafgaande discussie wordt aangevuld door te kijken naar het richtingsathan-
kelijk ontbinden van simpele vlakke-golf voorbeelden (Hoofdstuk 4). In het eerste voor-
beeld worden twee interfererende golven beschouwd die in tegengestelde verticale rich-
tingen bewegen en die ontbonden worden in op- en neergaande golven, gebruik ma-
kende van onze ontbindingsoperatoren. Het tweede voorbeeld is uitdagender aangezien
ze spatieel uitdovend, ofwel “evanescent’, zijn. Deze golven zijn diffusief in een of meer
ruimtelijke dimensies. In dit geval werken onze ontbindingsoperatoren niet langer en
moeten ze uitgebreid worden voor complexe golfgetallen. Gebruik makende van de uit-
gebreidere ontbindingsoperatoren kan het golfveld ook op de juiste manier ontbonden
worden.

Zoals eerder aangegeven kan het nieuw-ontwikkelde ontbindingsschema gebruikt
worden om beeldvorming met RTM te verbeteren (Hoofdstuk 5). Door golfvelden rich-
tingsafthankelijk te ontbinden loodrecht op de grensvlakken, wordt het concept van een
reflectiecoéfficiént gehonoreerd. Conventioneel worden golfvelden ontbonden in op- en
neergaande golven voordat de beeldvorming plaatsvindt, waarin de aanname ligt dat de
aarde horizontaal gelaagd is. Dit verwijdert teruggekaatste artefacten uit RTM beelden
die veroorzaakt worden door het gebruik van gemodelleerde verstrooiingsoperatoren
in het geval dat het medium alleen in de verticale richting verandert. De aarde is ech-
ter zelden horizontaal gelaagd. De meest interessante structuren, zoals de flanken van
zoutdiapieren of breuken, zijn normaliter meer verticaal dan horizontaal. Beeldvorming
met behulp van ontbinding in op- en neergaande golfvelden doen het slecht in zulke
gevallen. Daarom is het gebruik van golfvelden die zijn ontbonden in een richting die
loodrecht op de grensvlakken staat, in dit geval de sleutel. Het is duur maar effectief voor
alle hellingen.

Als gedeelte van dit werk zijn veldgegevens opgenomen langs een traject in de ri-
vier de Donau, vlakbij Novi Sad in Servié, en deze gegevens zijn later bewerkt. Alhoe-
wel deze gegevens aanvankelijk niet werden gemeten voor het valideren van de nieuw-
ontwikkelde ontbindingsmethode, hebben wij deze methode met succes toegepast op
deze gegevens (Bijlage A). Hiermee tonen we aan dat de operatoren ook goed werken op
gegevens onder werkelijke veldcondities, onder de aanwezigheid van veel ruis.



INTRODUCTION

1.1. WHAT IS EXPLORATION SEISMOLOGY?

Understanding our planet is becoming quintessential to humanity. The rapid changes
of our planet, like those brought about by climate change and humanity’s unending
thirst for resources to sustain its population growth and living standards, make it more
important than ever to understand what is below our feet.

Geophysics is the study of just that. It aims to physically explain the processes and
material distribution inside planets, with a focus on finding subsurface resources and
understanding planetary threats, like earthquakes. As this is still a very large field of study
it is often further broken down into two large groups: 1) the study of processes, like the
geodynamo that generates the Earth’s magnetic field, and 2) the study of techniques to
better understand the planet and the processes that go on inside.

Seismology, which is the umbrella under which this thesis falls, is part of the latter. It
relates to listening to acoustic and elastic waves that travel in a planet and from them to
gain information on the planet’s internal structure and composition.

In seismology a distinction is made between exploration seismology and classical
seismology. Classical seismology is mainly concerned with using a limited number of
spatially fixed highly sophisticated sensors to evaluate the structure and composition of
a planet using natural and/or anthropogenic sources, like earthquakes or the detonation
of explosives.

In exploration seismology, which is a minimally invasive testing technique, vast ar-
rays of sensors are used in conjunction with controlled sources, like dynamite blasts, to
explore the structure of the upper crust of our planet. This is mostly done for the explo-
ration for and later exploitation of fossil fuel reserves. As such, exploration seismology
has been heavily industrialized to the point where the current largest man-made objects
by spatial extent are seismic acquisition vessels that have deployed their towed streamers.
The spatial extend of the vessel and towed streamers can cover an area of up to 17.6 km?
(Bizley, 2016).

Although many of the concepts explained in this thesis apply to both conventional
seismology and seismic exploration, the assumed dense sampling of recorded wavefields
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Figure 1.1: Simplified workflow of a seismic exploration campaign on the left. On the right is a simplified
processing workflow. Circular arrows indicate stages with a circular feedback to update seismic results. This
thesis fits into the migration/imaging part of the processing flow.

Planning

Interpretation

is akin to that found in exploration seismology. This places most of this work pertaining
to imaging in exploration seismic settings. The application of concepts to synthetic data,
however, has merits in both fields.

1.2. THE EXPLORATION-SEISMIC WORKFLOW

The general workflow of a seismic exploration campaign is shown in Figure 1.1, and is
exposed in greater detail in Yilmaz (2001). First the campaign is planned, this involves
detailing where, when and how the data will be acquired, but also entails communication
with stakeholders and permitting. Then the actual seismic acquisition campaign begins.

During acquisition a controlled source, often an impulsive source, is used to generate
acoustic/elastic wavefields. Common sources include dynamite blasts, vibroseis, and air
guns. Vibroseis affix sufficiently massive base plates to a surface and vibrate these to gen-
erate elastic waves, while air guns inject pressurized gas into a fluid to generate a bubble
which subsequently collapses and generates acoustic waves in the fluid. Sources range
in size from centimeter-scale piezoelectric transducers (commonly used in borehole geo-
physics or laboratory settings), which function similar to conventional audio speakers,
up to atomic blasts, as were used by the Soviet Union (Scheimer and Borg, 1984).

The wavefields resulting from the source propagate into the target medium under
investigation and undergo scattering due to changes in medium properties. The scattered
wavefields are then sensed by sensors, whose outputs are digitized and recorded. These
sensors are often a mix of particle velocity and acoustic pressure sensors. Such recordings
are commonly repeated for many sources to acquire sufficient data.

The resultant data are then processed to estimate the internal structure of the volume
under investigation. If not already done during acquisition, this processing step begins
with the aggregation of metadata regarding the acquisition campaign. This often entails
applying location data to the recorded data in a step known as geometry setting. During
this stage the data are also often normalized and regularized onto processable spatial
grids. At various stages throughout processing the data are also denoised using a range
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of filtering techniques to enhance the signal to noise ratio.

Following this the data are used to estimate a wavespeed model of the medium of in-
terest. For this commonly tomographic approaches, which only consider traveltimes,
or more advanced techniques like full waveform inversion are used. The generated
wavespeed model is then used in conjunction with the preprocessed data in a technique
known as migration to form structural images of the medium.

Further processing steps aim at either improving the estimation of medium param-
eters like the wave speed, elastic coefficients and the density or to improve the struc-
tural image. The final structural image then forms the basis of geological models, which
are generated by interpreting the images.These are then used to better understand the
medium of interest, often with the intent of exploring for and later exploitation of re-
sources.

1.3. THE THESIS IN CONTEXT

This work fits into the context of constructing structural images using acoustic wave
theory, see migration in Figure 1.1. Traditionally seismic exploration experiments were
simple reflection experiments. This means that it is assumed that only the direct wave
from the source to reflectors and the associated reflected waves from the medium are
recorded. Multiply reflected waves are disregarded by assuming that the recorded data
does not contain them.

Figure 1.2 shows an example of a typical simplified acquisition. A source, denoted by
the black dot, excites a wavefield, which we choose to denote using rays. The rays indi-
cate the surface normals to the wavefronts the source produces. The rays and associated
wavefronts then propagate downwards into the medium where they are reflected at inter-
faces and propagate back up to the receivers. During migration this propagation process
is undone using a process known as redatuming (Wapenaar and Berkhout, 1989), which
moves sources and receivers onto the interface while homogenizing the medium above.
Note that these redatumed sources and receivers are not actual sources and receivers;
they are virtual. The reflection amplitude of the virtual receivers due to the virtual source
on the interface is then used to estimate the reflectivity of the interface during the imag-
ing step. Commonly only coincident virtual sources and receivers are used to estimate
reflectivity.

A major challenge here is the redatuming step because mathematical assumptions
that rarely hold in reality are used to simplify the problem. A common assumption is
the Born approximation which assumes that wavefield scattering is purely defined by the
incident wavefield due to the source at a scatterer and not by the total wavefield, which
also contains the scattered wavefields due to other scatterers. This simplification leads
to incorrect reflection strength estimates when using the redatumed virtual sources and
receivers.

An associated problem is the choice of the redatuming operator which can be formu-
lated in terms of either spatial- or temporal-extrapolation operators. Depth-extrapolation
operators, which are spatial-extrapolation operators, extrapolate a wavefield recorded
on one depth level to another depth level. This generally does not include scattering,
but transmission effects are commonly accounted for. Alternatively time-extrapolation
operators can be used to estimate wavefields at retarded or advanced times. Approximate




4 1. INTRODUCTION

.Acquisition \V4 \V4 \V4 \V4

Interface 1

Interface 2 e Source V Receiver
— Reflection — Head Wave Multiple

Figure 1.2: Ray diagram of single-source acoustic acquisition at the surface above two interfaces between layers
with different medium properties, where at the first interface velocity increases with depth while at the second
it decreases with depth.

redatuming can be achieved with these operators by back-injecting recorded wavefields
into an estimated model of the medium, extrapolating the wavefield forward or backward
in time and recording the resultant wavefield at a target depth level. The redatuming is
approximate because the temporal-extrapolation operators tend to include scattering. In
migration schemes using these operators, the source wavefield is extrapolated forward
in time while the receiver wavefield is extrapolated backwards in time. For the receiver
wavefield the backwards-in-time extrapolation means that the wavefield propagation is
undone and that reflections collapse onto their corresponding interfaces.

For a homogeneous medium the redatumed wavefields using spatial- and temporal-
extrapolation operators are identical. For inhomogeneous media they are not. The in-
homogeneity results in additional non-physical events in the redatumed wavefield, con-
structed using temporal-extrapolation operators, which are generally considered to be
artefacts. For that reason often only sufficiently smooth velocity models are considered,
such that the scattering during temporal extrapolation is negligible.

In general these artefacts are not negligible. During the imaging step these artefacts
can lead to errors due to the crosstalk between physical and non-physical, and non-
physical and non-physical events. This problem is exasperated when using temporal-
extrapolation operators as the wavefields can travel in all directions. When using spatial-
extrapolation operators it is guaranteed that the extrapolated wavefield travels in the ex-
trapolation direction. For a forward-in-depth extrapolated source wavefield that means
that the wavefield is travelling downwards, while the corresponding receiver wavefield is
travelling upwards. Using these two wavefields it is possible to estimate the reflectivity at
a depth level. For the time-extrapolated wavefields this is hampered by the fact that both
the receiver and the source wavefields can be up- and down-going. During the imaging
step this can lead to crosstalk between wavefields that are both down or up going, which
is indicative of transmissivity rather than reflectivity.

This problem particularly plagues Reverse Time Migration (RTM) (Hemon, 1978;
Baysal et al., 1983; McMechan, 1983; Whitmore, 1983), and is expanded on in Diaz and
Sava (2015). Directional wavefield decomposition can alleviate this problem as already
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been noted by many, see for example Fei et al. (2010) or Liu et al. (2011). Directional
wavefield decomposition at a horizontal interface allows for the separation of up- and
down-going waves such that only down-going source wavefields are used in conjunc-
tion with up-going receiver wavefields to estimate the reflectivity at the interface. This
does not remove all artefacts from the redatumed wavefields using time-extrapolation
operators, but allows for an improvement in the estimation of reflectivity.

In this work a novel acoustic wavefield decomposition scheme is developed. Wave-
field decomposition schemes already exist, see for example White (1965), Frasier (1970),
Ursin (1983), Kennett (1984), Dankbaar (1985), Suprajitno and Greenhalgh (1985), and
Wapenaar et al. (1990). Novel about the scheme developed in this thesis is that it sepa-
rates the waves according to their propagation direction using knowledge of the wavefield
everywhere in space at a given instance in time, i.e. a snapshot of a wavefield. This is in
contrast to the other methods mentioned previously, which need to know the wavefield
partially in space, but for all times. Our proposed scheme, as discussed in great detail
in Chapter 2, is related to other common schemes in Chapter 3, is demonstrated using
simple plane-wave examples in Chapter 4, and applied to imaging schemes to improve
the imaging results by suppressing artefacts in Chapter 5.

Building upon the fact that the decomposition operates on snapshots of a wavefield,
the decomposition direction is arbitrary. This is in stark contrast to traditional schemes
(White, 1965; Frasier, 1970; Ursin, 1983; Kennett, 1984; Dankbaar, 1985; Wapenaar et
al., 1990), which decompose wavefields along flat surfaces only according to the normal
direction. For traditional schemes operating on wavefields recorded for all times on a
horizontal surface this means that the decomposition can only result in up- and down-
going wavefields. Our proposed method though can separate freely between up- and
down-going, or right- and left-going, or forwards- and backwards-going wavefields. The
choice of the decomposition direction is arbitrary, especially if one considers that the
coordinate system can be rotated freely in space. One can even decompose an already
decomposed wavefield again to find the wavefield that is for example up-and-left going.

This flexibility of snapshot decomposition allows for the decomposition of wavefields
even in spatially varying directions. This enables the adaptation of the decomposition
direction based on expected reflector orientations such that wavefield decomposition
occurs normal to reflectors, and not simply in the vertical direction. This can result in a
better estimation of reflection coefficients of reflective surfaces that are not horizontal.

As another part of this work field data were acquired and conventionally processed,
as described above, along a transect in the Danube river near Novi Sad, Serbia. The idea
was to explore head-wave-based imaging techniques using the expected Scholte waves
in the data. These waves have a very similar behaviour to head waves but only occur at
water-solid interfaces. Unfortunately Scholte waves were absent from the data. The data,
however, were still suitable for conventional P-wave processing into interpretable mi-
grated P-wave sections. These sections along with a detailed summary of the processing
are presented in Appendix A.







ACOUSTIC DIRECTIONAL
SNAPSHOT WAVEFIELD
DECOMPOSITION

Acoustic Up-down wavefield decomposition is effectuated by a scaled addition or sub-
traction of the pressure and vertical particle velocity, generally on horizontal or vertical
surfaces, and works well for data given on such surfaces. The method, however, is not appli-
cable to decomposing a wavefield when it is given at one instance in time, i.e., on snapshots.
Such situations occur when a wavefield is modelled with methods like finite-difference
techniques, for the purpose of, for example, Reverse Time Migration (RTM), where the en-
tire wavefield is determined per time instance. We present an alternative decomposition
method that is exact when working on snapshots of an acoustic wavefield in a homoge-
neous medium, but can easily be approximated to heterogeneous media, and allows the
wavefield to be decomposed in arbitrary directions. Such a directional snapshot wavefield
decomposition is achieved by recasting the acoustic system in terms of the time derivative
of the pressure and the vertical particle velocity, as opposed to the vertical derivative in up-
down decomposition for data given on a horizontal surface. As in up-down decomposition
of data given at a horizontal surface, the system can be eigenvalue decomposed and the
inverse of the eigenvector matrix decomposes the wavefield snapshot into fields of opposite
directions, including up-down decomposition. As the vertical particle velocity can be ro-
tated at will, this allows for decomposition of the wavefield into any spatial direction; even
spatially varying directions are possible. We show the power and efficacy of the method by
synthetic examples and models of increasing complexity.

This chapter was adapted from Holicki et al. (2019), based on work in Holicki et al. (2016, 2017).
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2.1. INTRODUCTION

Multicomponent acoustic directional wavefield decomposition separates acoustic wave-
fields according to their direction of propagation. This is useful when distinguishing
between waves entering a medium from above, like surface-related multiples from above
the acquisition surface, and waves leaving the medium from below, like the reflection
data geophysicists are often interested in. In marine seismology, acoustic wavefield de-
composition using arrays of receivers below the water surface allows for the removal of
the receiver ghost, an event caused by the reflection of a recorded up-going wavefield
at the sea-surface that is then recorded as a time-delayed down-going wavefield. This
process is known as receiver de-ghosting (Barr and Sanders, 1989). The removed receiver
ghost can then be used as an additional source wavefield in processing, see Lu et al.
(2015). Wavefield decomposition is also an important tool in acoustic imaging, where it
is either a pre-requisite step before being able to image the subsurface (Wapenaar et al.,
1990) or directly part of the imaging condition (Diaz and Sava, 2015).

Historically, multi-component wavefield decomposition is as old as the Poynting vec-
tor (Poynting, 1884), introduced to exploration geophysics for the acoustic case by Yoon
and Marfurt (2006). Acoustic decomposition began in the 1960s when White (1965) de-
veloped the data-driven particle-velocity to pressure filter matching in P-Z summation.
This, however, was inexact and was followed by the development of up-down decompo-
sition for acoustic and elastic waves along horizontal recording surfaces by the likes of
Frasier (1970), Ursin (1983), Kennett (1984), Dankbaar (1985), Wapenaar et al. (1990), and
Aki and Richards (2002). At the same time plane-wave up-down decomposition along a
vertical array of receivers was developed by Suprajitno and Greenhalgh (1985) for homo-
geneous vertical seismic profiles in wells, shortly followed by parametric decomposition
by Leaney and Schlumberger (1990). More recent work has focused on the use of analytic
wavefields in the directional decomposition of wavefields, which only requires spatial
Hilbert transforms in the direction of decomposition but comes at the cost of having to
model an additional wavefield, see Shen and Albertin (2015).

Although most of the above techniques operate in the horizontal wavenumber—fre-
quency domain for a constant depth, we propose to decompose acoustic wavefields in
the full-wavenumber domain for a constant time, i.e., on snapshots of the wavefield.
Since the decomposition is in the full-wavenumber domain, we call it a directional de-
composition. So we directionally decompose snapshots of an acoustic wavefield as op-
posed to decomposing a wavefield recorded on a horizontal interface into up- and down-
going fields. To achieve this we assume the components of the wavefield are known
everywhere, like in modelling. As in Ursin (1983), our alternative method works by scal-
ing a component of the particle-velocity vector to the scalar pressure, and subsequently
adding or subtracting the two to effectuate the directional decomposition.

We will begin this work by discussing the scalar acoustic system for homogeneous
time-invariant media in the wavenumber domain. To derive purely spatial acoustic de-
composition operators we will reformulate the acoustic system in terms of two inde-
pendent linear equations. The eigenvalue decomposition of this system will then yield
eigenvectors that allow us to directionally decompose the system.

Next we will demonstrate that decomposition is not limited to one global decomposi-
tion direction and that the wavefield can be decomposed at arbitrary points in arbitrary
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directions by rotating the decomposition operator. We will finish by illustrating these
operations on models with increasing complexity. Let us begin by reviewing the funda-
mentals of acoustic wavefield decomposition for homogeneous time-invariant media.

2.2. ACOUSTIC DIRECTIONAL SNAPSHOT WAVEFIELD

DECOMPOSITION
The three-dimensional (3D) source-free acoustic system for time-invariant homogeneous
media is governed by the linearized equations of continuity and motion respectively
(Wapenaar and Berkhout, 1989):

d,p=-pc*V-v, 2.1

1
atv:—;Vp, 2.2)

where 0, is the temporal derivative along time t, p(x, t) is the acoustic pressure difference
to the time- and space-independent background pressure, c is the time-independent
acoustic velocity, p is the time-independent bulk density, V is the del, or nabla, operator
differentiating along all spatial dimensions with spatial coordinates x, - denotes the vec-
tor dot product and v(x;, ) is the particle velocity vector. Note that vectors are denoted
using bold lower-case symbols, while matrices are upper-case and bold.

Equations 2.1 and 2.2 are written in Cartesian coordinates with no preferential di-
rection prescribed. For the following directional decomposition of acoustic waves, a
preferential direction must be chosen; in geophysics this is often the vertical. We will
denote this preferential direction with a subscript z, denoting an arbitrary direction.

We will now transform Equations 2.1 and 2.2 to the 3D-wavenumber-time domain.
To this end we define the 3D-wavenumber Fourier transform as the Fourier transform
over all spatial dimensions of a function f(x, t) as:

fle,t)= f fx,ne™*dx =, fx,1), (2.3)
R3

where k is the vector of wavenumbers, or Fourier parameters, corresponding to the spa-
tial coordinates x, RS is the set of real 3D coordinates, and i = v/—1 is the imaginary unit.
Z x denotes the forward Fourier transform operator. Note that tildes are used to denote
quantities in the 3D wavenumber-time domain.

With these assumptions we transform the source-free acoustic system, Equations
2.1 and 2.2, to the wavenumber-time domain, in which the system is decomposed into
spatial plane waves:

8:p=pc’ik- v, (2.4)
ik

0:0=—p. 2.5)
T

The corresponding acoustic pressure wave equation, found by inserting Equation 2.5 into
2.4, 1is:
0?p=—c’k-kp. (2.6)
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We now wish to decompose the wavefield into a specific direction and its opposite
direction. Usually this is accomplished by writing the acoustic system in terms of the
pressure and the particle velocity in the direction of decomposition, the z direction. To
express Equation 2.4 in terms of 7, we back substitute 7, from Equation 2.5 into Equa-
tion 2.6 and integrate over time for a zero constant of integration:

8,p=pc?

k v, fork,#0. 2.7
k;
Note that in this paper we do not use Einstein’s summation convention for repeated
subscripts.

Equation 2.7 only holds for k, # 0; for k, = 0 waves are travelling orthogonally to the z
direction and are not accounted for in 7,. To resolve this undefined behaviour for k, =0
we have two options. We can zero the fraction for k, = 0, which implicitly assumes the
absence of waves travelling orthogonally to the z direction as all k are assumed to be zero
for all k, = 0, which is generally not the case. Alternatively, we can express the fraction for
k; = 0 in terms of orthogonal wavenumber components. For the moment we assume the
former, however, in Section 2.2.3 we will discuss how to include orthogonal wavenumber
components.

We can now combine Equation 2.7 with Equation 2.5 to find the following system in
terms of p and 7;:

PY_(0 PEEE) (5
0| = |1=1 ik, =1 . (2.8)
Uz ry 0 Uz
In matrix-vector notation we can write this as:
0:G.=A.q,, (2.9)
where:
Gz = (f) (2.10)
Z
- 0 c2 Kk
Az =\ ik, P O_lkz), (2.11)
o

where the subscripts indicate to which particle velocity component g and A are related
to.

Equation 2.9 represents a different starting point for directional decomposition than
conventional up-down decomposition, see Ursin (1983) for example. In conventional
decomposition the system is written with 0,4, on the left-hand side, whereas here we
have d,q,.

2.2.1. EIGENVALUE DECOMPOSITION
Decomposing A into an eigenvalue matrix A and eigenvector matrix L we have:

0,4.=LAL'q,, (2.12)
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where we have for a judicial choice of the z direction as the principal direction and pres-
sure normalization of the eigenvectors:

. . 1 0
Az =cisgn(k;)|k| (0 _1), (2.13)
B 1 1
Lpz= (Lﬁ _LM)‘ (2.14)
pc 1kl pc 1kl

where sgn() is the signum function corresponding to a quantity divided by its magni-
tude | |. Note that the subscript z indicates that the signs of the eigenvalues were chosen
according to the sign of k. The subscript p is used to denote pressure-normalized eigen-
vectors, as opposed to the particle-velocity normalized eigenvectors which are shown
later in Section 2.2.4.

We now define the decomposed fields d as the result of a general eigenvector matrix
inverse L™! acting on §:

d=1"1g, (2.15)

where for the pressure-normalized z-direction case:

1K
= 1(1 pc
L.=3 e |- (2.16)
T2\ ey

Rearranging Equation 2.12 with the help of Equation 2.15 and the assumption that the
medium parameters are time invariant we find:

d,d=Ad. (2.17)

We have now decomposed the acoustic wave equation into two first-order-in-time in-
dependent equations. Note that in Equation 2.17 we have not specified a direction or
normalization.

To better understand Equation 2.17 let us look at its components in more detail for
the case of choosing the signs according to the z direction. We can rewrite Equation 2.13
as the following by expressing |k| in terms of | k,| and the acute angle §, between them:

- c 1 0
A, =ik —~( ) (2.18)
P eos@,) 0 -1
where:
ik,
isgn(k,)| k| = ——, (2.19)
gtz cos(0;)
and:

S

0, =arctan3(ky, |k;|) where — g <0, < > (2.20)
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We define arctan3(), which is similar to the common arctan2() variant, to be the following
variant of the arctangent:

arctan(%) ifz>0,
arctan(3) +n ifz<0and x>0,

arctan3(x, z) = arctan(f) —n ifz<0and x <0, (2.21)
+7 ifz=0and x #0,

undefined ifz=0and x=0.

Again care must be taken for waves travelling in the orthogonal directions, as for these
cos(éi) = 0 or undefined at the origin in the wavenumber domain, where the pressure
and particle velocity must be zero. The pressure p must be zero since we assumed that it
is measured with respect to the homogeneous time-invariant background pressure and
the particle velocity must be zero such that the system as a whole is at rest, as this was
assumed when deriving the acoustic wave equation (Aki and Richards, 2002). We again
zero the operation, like for Equation 2.7, for k; = 0.

Based on Equation 2.18, A corresponds to a modified derivative in the space domain
in the z direction, due to the ik,, however via Equation 2.17 the action of A is also equiv-
alent to the time derivative. A evidently expresses the time derivative in terms of spatial
derivatives.

With the judicious choice of normalization for i,,, 2 in Equation 2.16, the decomposed
fields d), -, Equation 2.15, can be interpreted as pressure wavefields:

~ kLY , ~
zizz(’f%)zl boPCE (f’). 2.22)
P |7 211 —pcllk—zl| Uz
Because the pressure-normalized form of the eigenvectors is used we denote the de-

composed fields in terms of the pressure wavefields p} and p;. We can further express
Equation 2.22 in terms of 8; via Equation 2.19 as:

. pc _
(’fi) = % (i _°°§,(§z)) (f) 2.23)
Pz cos(@y) z

To better understand Equation 2.23 consider Figure 2.1, which shows how the scale
factor of the decomposition depends on the angle 6. For waves travelling at small angles
to the z direction the scale factor is dominated by the local specific acoustic impedance,
however as the wave begins to travel more and more obliquely to the z direction the scale
factor grows asymptotically to infinity.

This asymptotic behaviour is due to the fact that we chose to approximate the acoustic
system in terms of one component of the particle velocity. We can however recast the
system in a more stable form that accounts for the asymptotic scaling by writing the
system in terms of the magnitude of the full particle-velocity vector.

2.2.2. FORMULATION IN TERMS OF THE FULL PARTICLE-VELOC-
ITY VECTOR

The asymptotic behaviour and the associated singularities in Figure 2.1 are due to the

fraction in Equation 2.22. We now wish to write the action of the wavenumber fraction on
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Figure 2.1: Acoustic wavefield decomposition scale factor for the z component of the particle velocity to the
pressure with respect to the angle the corresponding plane wave makes with the z direction. To aid the reader
the scale factors of 1.125, 1.25, 1.5, 2, 3, 5 and 9 times the specific acoustic impedance pc are indicated in grey.

7, in terms of the magnitude of the particle-velocity vector. To do so we write the scaled
z component of the particle velocity in Equation 2.22 in terms of its sign and absolute
value:
|kl -
—Tg|.

kel k-
Note that the signum of a complex quantity is that quantity divided by its magnitude.
To interpret the magnitude term we return to the linearized equation of motion, Equa-
tion 2.5, and solve for the pressure in terms of the j™ and k™ components of the particle
velocity:

=sgn(v;) (2.24)

p
ik;
Note that the second term in Equation 2.25 is not valid for k; = 0, while the last term is
not valid for kj = 0. Evidently different particle-velocity components, which are not nec-
essarily orthogonal, can account for wavenumber components that another component
cannot account for and vice versa.

We can use Equation 2.25 to write the particle-velocity vector in terms of the z com-
ponent:

p= atﬁjzéatﬁk for k; #0 and ky #0. 2.25)

k
V= e v, fork;#0. (2.26)

Z
Based on the above it becomes evident that the magnitude term in Equation 2.24 corre-
sponds to the magnitude of the particle velocity vector:

k
uﬂz = sgn(7,)| vl (2.27)
k|

With this equation we can remove the asymptotic behaviour from Equation 2.22 by writ-
ing it in terms of the magnitude of the particle velocity:

25 2o
(ﬁ;)_z 1 —pcf\sgn(@)lvl) (2.28)

Equation 2.28 now does not show any singular behaviour and is unconditionally stable.
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2.2.3. ACCOUNTING FOR k; =0

Recall that for Equation 2.7 we chose to zero the operator for k, = 0. This implicitly
excludes the part of the wavefield where k, = 0 but k # 0, where 0 is the null vector.
The consequence of this is that the eigenvalue decomposition does not hold for k, =0,
because our sign choice for the eigenvalues is incomplete. Furthermore the elements in
the second column of the matrix in Equation 2.16 are zero, causing wavefields travelling
orthogonally to the z direction to be equally split between the decomposed fields for
k; = 0. This remains a problem in Equation 2.28 as 7, = 0 where k; = 0. We will now
correct for this by including the absent orthogonal information in Equation 2.7.

To introduce the orthogonal wavefield information into Equation 2.7, we recall from
Equation 2.25 that although no individual component of the particle velocity can properly
account for the total pressure field, an orthogonal set of particle-velocity components
can. Noting that the equation of motion, Equation 2.5, dictates that any component of
the particle velocity is zero where its corresponding wavenumber is zero, we now seek an
equivalent to the z component of the particle velocity that where k, = 0 is equal to the
other components of the particle velocity.

To do so we must make a choice on how to order the dimensions. We introduce a
generalized particle velocity ¥, that is equal to 7, everywhere where k, # 0. When k, =0
v, is equal to the first orthogonal component 7, as long as k, # 0, at which point v, is
equal to 7y. At the origin in the wavenumber domain the generalized particle velocity
is zero as each component of the particle velocity at the origin must be zero such that
the acoustic system as a whole is at rest. The choice of how to order the particle velocity
components where k, = 0 is important because it defines how orthogonally travelling
waves are mapped into the decomposed fields. Note that we should indicate either in the
subscript or superscript of ¥, how the dimensions are ordered; we will assume that the
ordering is always chosen using the same system and hence will not indicate the order of
dimensions.

We now define the generalized particle velocity ¥, in three orthogonal dimensions
(x,y,2) as:

b, ifky #0,
b ifky#£0&ky =0,
g,={0x Hhe#0&K 2.29)
Uy ifky#0&k;=ky=0,
0 ifk=0.

The wavenumber « ; associated with this generalized particle velocity that accounts
for the orthogonal components we define as:

k, ifk,#0
ky ifky#0& k=0,
k= vx Tk 0&K, 2.30)
ky ifky#0 &k, =ke=0,
0 ifk=0.

Note that division by «; is still poorly defined at the origin in the wavenumber domain.
When either the pressure or a particle-velocity component is divided by « , the result at
the origin is assumed to be zero. This comes from our definition of the pressure being



2.2. AcoUSTIC DIRECTIONAL SNAPSHOT WAVEFIELD DECOMPOSITION 15

measured with respect to the time- and space-invariant background pressure. The parti-
cle velocity on the other hand must be zero at the origin in the wavenumber domain such
that the acoustic system is globally at rest and not travelling as a whole in some direction,
which would invalidate the original derivation of the acoustic system.

We can now, analogously to Equation 2.26, fully express any particle-velocity compo-
nent in terms of this generalized particle velocity v, and its associated wavenumber « ,
via:

__k_
v=—%WV,. (2.31)
Kz

In order to find the acoustic system in terms of the generalized particle velocity v, we

insert Equation 2.31 into Equations 2.4 and 2.5:

k-k

0:p=pct——W,, (2.32)
i,

0,7, = ZKTZ p. 2.33)

Note that Equation 2.32 is now well defined everywhere.

From here the derivation of wavefield decomposition is identical to the earlier deriva-
tion in terms of 7, and will not be repeated here. The only difference is that we replace
7, with ¥, and k, with x ;.

In terms of the generalized particle-velocity vector, the pressure-normalized decom-
position, Equation 2.22, reads:

. ] Kl ~
(’fi) S e (P). (2.34)
bz 211 -pc Vz

Kzl

The decomposition operator is now no longer undefined where k, = 0.
We can remove the wavenumber scaling from Equation 2.34 by writing it in terms of
the magnitude of the particle-velocity vector:

Pz _1(1 96)( p )
(ﬁ;)_z 1 —pc)isgn(@)|vl)’ (2.35)

This form of the decomposition is unconditionally stable and fully satisfies Equation 2.17
with the eigenvalue matrix from Equation 2.13, but now in terms of x ;, where the eigen-
values additionally account for orthogonally travelling waves.

The only major difference between decomposition in terms of 7, and ¥ is how or-
thogonally travelling waves are decomposed, which occur where k, = 0. These are de-
composed according to the orthogonal directions. This means that if z corresponds to
the vertical direction, then the orthogonally travelling waves are for example left-right
decomposed, instead of being neglected and equally split up between the decomposed
fields, as occurs in the previous derivation, see Figure 2.2.

This warrants a new nomenclature for the decomposition operators as the notion
of up-down decomposition is inherently non-unique for k, = 0. We choose to speak of
(up-left)-(down-right) decomposition as opposed to simple up-down decomposition. In
(up-left)-(down-right) decomposition we would map the purely left-going waves to the
“up-going” decomposed field, while purely right going waves get mapped to the “down-
going” field, or vice versa for (up-right)-(down-left) decomposition.
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Figure 2.2: a) (z,x) and (b) (¢, x) gathers of a three-dimensional wavefield, for ¢ = 0 and z = 0 respectively.
Arrows indicate local propagation direction, and the dashed lines indicate their intersection. c) and (d) are (a)
and (b) up-down decomposed without properly taking into account horizontally travelling waves. e) and (f) are
properly (up-left)-(down-right) decomposed versions of (a) and (b). Note how the horizontally travelling plane
waves are both included with half amplitude in (c) and (d) and have unknown propagation directions, indicated
by ?%s. In (e) and (f), however, only the right-going plane wave is included and has a known propagation direction.
Note that data at the spatial origin have been muted and that the coordinate system displayed in (e) applies to
(a, ¢, and e) and the coordinate system in (f) applies to (b, d, and f).

2.2.4. PARTICLE-VELOCITY-NORMALIZED DECOMPOSITION

When we applied eigenvalue decomposition to Equation 2.9 in Section 2.2.1 we chose
to normalize the eigenvectors such that the inverse of the eigenvector matrix scaled the
particle velocity to the pressure, hence the name pressure-normalized decomposition. It
is also possible to choose the eigenvectors such that the pressure is scaled to the parti-
cle velocity. The resulting decomposition is known as the particle-velocity-normalized

decomposition:
~ 1 kgl ~
= 'V+ 1 - |k| 1 p
vz = (175) =3 (_EM ) (2.36)
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Note that Equation 2.36 in conjunction with Equation 2.22 implicitly means that we can
change between pressure- and particle-velocity-normalized decomposed wavefields:

(VE) - e (1 0 )(”%) (2.37)
Vv,) pclkl\0 -1J\p;

These normalizations play an important role later in Figure 2.7, where they are indirectly
used to decompose already decomposed fields along another direction.

2.2.5. ROTATING THE DECOMPOSITION DIRECTION

So far decomposition only occurred along the arbitrary z direction, along which the
particle velocity was also recorded. We now wish to decompose the wavefield in some
other direction defined by the angle vector ¢’ with respect to the z direction. We have
two options to achieve this: (1) We rotate the coordinate system such that the z direction
points in the desired direction, which means that we also rotate the particle-velocity
vector, and apply the same decomposition operator again, but in the new coordinate
system. Or, (2) we can rotate the decomposition operator to decompose in the desired
direction.

For the first option we need to rotate the wavefield vector g,, with generalized particle
velocity component v, to point in the rotated z’ direction. We recall that Equation 2.25
allowed us to express not necessarily orthogonal components of the particle velocity
in terms of each other. We can also use it to rotate the generalized particle velocity as
follows:

Vp=—"—Vg, (2.38)

where we chose to rotate k by ¢' to find k. and the associated x /. Rotating g to . then

1S:
_ (pY_(1 O P\ 5
Gy = (‘72’) = (0 K ) (v ) =Rg,. (2.39)

Kz Z
Note that if Equation 2.39 is transformed back to the space domain it simply corresponds
to only rotating the particle-velocity vector, leaving the pressure untouched as it is direc-
tion independent.

When we decompose the acoustic system again using the new coordinate system
and sign the magnitude of the particle-velocity vector according to k. instead of «,
then we decompose along the z’ direction. Mathematically we write the decomposition,
analogously to Equation 2.15, in the rotated coordinate system as:

dy=1"q,. (2.40)

z

To rotate the decomposition operator instead of the particle velocity we back substi-
tute Equation 2.39 into 2.40 to find:

d,=L}Rq,. (2.41)

We can now include the rotation operator into the decomposition operator to find the
rotated decomposition operator, which is a function of the angle vector ¢ as it works for
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any angle. For the pressure normalized case, Equation 2.16, it would be:

1(1 pcsgn(K(tb))\kl
7-1 _7-1 p_ sgn(xz)|xz|
Ly =L, R=7 (1 Sk ) (2.42)

2 sgn(kz)|Kg|

where x(¢p) is the rotated x; in the new coordinate system. We have now rotated the
decomposition operator such that it uses a particle-velocity component pointing in one
direction but directionally decomposes the wavefield along another.

Equation 2.42 also demonstrates that the decomposition direction is purely deter-
mined by the sign choice for |k|, and not by the chosen particle-velocity component,
which is accounted for in the denominators.

We can also use Equation 2.42 to make the a priori choice of the decomposition
direction a posterior choice by extending the dimensionality of the operator output to
additionally depend on the decomposition direction:

dike,t,¢) =L (k,$) Gk, 1). (2.43)

Now the decomposed wavefields d are decomposed along all possible directions. We
effectively treat the inherent directional ambiguity of the decomposition in terms of ad-
ditional dimensions and at the cost of associated work. Note that this does not fully treat
the ambiguity in sign choice for |k ;| as we only deal with the subset of sign choices that
leads to directionally decomposed wavefields. Furthermore for each ¢ the decomposi-
tion is still a global operation in space. In the next section we discuss spatially varying
decomposition directions.

2.2.6. SPATIALLY VARYING DECOMPOSITION DIRECTIONS

To have spatially varying decomposition directions we need to transform the decompo-
sition back to the space domain and then choose a different decomposition direction
at each point in the space domain. Note that this also means that the decomposition
direction can change in time.

This is trivial with Equation 2.43. One can transform the decomposed results back to
the space domain and then choose a different decomposition direction for every point
in space and time. Mathematically this corresponds to extracting a ¢ = ¢’ (x, ) surface
from the decomposed result of Equation 2.43 in the space domain.

Taking things step by step we first need to transform Equation 2.43 back to the space
domain:

dx,t,¢) = F5 'L (k, ) Frq:(x, 1). (2.44)
To be able to extract a ¢’ surface from Equation 2.44 we need to make the decom-
position direction a function of space and time. A simple static-in-time 2D directional

surface could be the radial direction away from some point, the origin for simplicity:

¢’ (x,z) = arctan2(x, z), (2.45)
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where arctan? is the following variant of the arctangent:

arctan(z) ifz>0,
arctan(f) +m1 ifz<0andx=0,

arctan(2) -7 ifz<0and x<0,
arctan2(x, z) = { z (2.46)

+5 ifz=0and x>0,
—% ifz=0and x<0,

undefined ifz=0and x=0.

Note that at the wavenumber-domain origin, where ¢’ is undefined, we are free to define
¢’ to point in any direction, for example the z direction.

Note that any other conceivable, not necessarily smooth, surface is also acceptable.
This particular choice of directional surface is of interest though, because it decomposes
wavefields into a wavefield collapsing towards a point and a wavefield expanding away
from said point. If we now extract this surface from Equation 2.44 we find:

dy (x,1) =d(x,1,¢' (x,1). (2.47)

Note that depending on how orthogonal directions are treated in the decomposition,
waves travelling at a given point tangential to the clockwise direction around the centre
belong to the outward-going wavefield, while waves travelling counter-clockwise belong
to the inward-going wavefield. Notice that we no longer speak of down- and up-going
waves; we now have to speak of waves going inwards and waves going outwards due to
our choice of decomposition direction.

This example is demonstrated in Figure 2.3, in which an expanding and a collapsing
wavefield (Figure 2.3a) are separated by decomposing the wavefield into a wavefield
travelling towards the centre and one travelling away from it (Figure 2.3c). To aid in the
visual inspection of the decomposition, the impedance-scaled particle velocity pcvy,
measured in the directions defined by ¢, is also included in Figure 2.3b. The associated
desired decomposition angles are shown in Figure 2.3d.

The workflow for decomposing snapshots of an acoustic wavefield using spatially and
possibly temporally varying wavefields is illustrated in Figure 2.4. The basic idea is to
decompose snapshots of a wavefield everywhere in space for all desired decomposition
directions, and then from the result to extract the desired decomposed fields in space
and time. Note that extraction in other domains, like the wavenumber and/or frequency
domains, may be fruitful, although the results may no longer be perfectly directionally
decomposed.

2.2.7. APPROXIMATION FOR LOCALLY HOMOGENEOUS MEDIA

Now that we have derived the decomposition for globally homogeneous media we extend
it, in an approximate sense, to locally homogeneous media. To do this we apply the
wavenumber scaling of the decomposition in the wavenumber domain and multiply
with the local specific acoustic impedance in the space domain. We achieve this by
transforming the decomposition operator in Equation 2.34 back to the space domain.
As the medium parameters are assumed to be globally homogeneous we can pull the
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Figure 2.3: Directional decomposition of a pressure snapshot (a), consisting of an expanding wavefield (inner
circle) and a collapsing wavefield (outer circle), by scaling the radial particle velocity (b) to (a), according to the
desired decomposition direction (d), and adding the two to find the expanding pressure wavefield (c). Note that
at the centre the wavefields were (up-left)-(down-right) decomposed and that the coordinate system displayed
in (c) applies to all panels.

Inputs
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Decompose
for all ¢:
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Figure 2.4: Concept behind having locally different decomposition directions.

Fourier transforms into the decomposition operator, Equation 2.34, where they cancel
for the first column and sandwich the wavenumber fraction in the second:

[Kz|

1
Ly.=~
L) (1 —pcg Mk gz

Kzl

! pcg"_ll_mgx) (2.48)
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We can now let pc = p(x)c(x) vary spatially in an approximation to decomposition in
heterogeneous media. The decomposition is then as follows:

(p;):l 1 pweF; ! E 7, (p)
vz 211 —p(x)c(x)?;lﬁgx vz)®

Kzl

(2.49)

This approximation seems to be a relatively accurate decomposition that mimics plane-
wave decomposition for heterogeneous media, as will be shown using synthetic examples
later. It, however, does not take scattering properly into account, nevertheless it works
very well for locally homogeneous media as we will demonstrate using synthetic exam-
ples in Section 2.4.

2.2.8. STEERING THE DECOMPOSITION DIRECTION ACCORDING
TO THE MEDIUM

Allowing medium parameters to vary locally suggests that the decomposition direction

could, in conjunction with Section 2.2.6, be tied to medium parameter variations. This

for example would allow the decomposition direction to be normal to medium interfaces.

This has ramifications for many acoustic processing techniques like imaging.

Given a snapshot of a wavefield in a known medium and Section 2.2.6, it is now pos-
sible to steer the decomposition direction based on local medium-parameter gradients
at a point to ensure that the decomposition direction is always parallel to variations in
medium parameters. To do so one computes the gradients of the acoustic velocity and
the density, from which one derives two normalized direction maps by dividing by the
magnitude of the respective gradients. These direction maps can then be used to steer
the decomposition, however, the direction based on these two maps may be multivalued
as the gradients in the bulk density and medium velocity are not necessarily aligned. This
can approximately be accounted for by calculating specific-acoustic-impedance-based
directions as follows:

Vpc
n= )
IVpcl

(2.50)

where the vector n is the normalized local specific-acoustic-impedance-based direction
that can be expressed in terms of angles. Note that the decomposition direction is ill-
defined where the gradient is zero. In this case the decomposition direction must be
explicitly chosen.

Let us illustrate the concept with an example. Figure 2.5a shows the constant-density
Marmousi velocity model (Brougois et al., 1990), and below it a smoothed version to
avoid discontinuous decomposition directions (Figure 2.5b), based on which ideal de-
composition directions may be readily computed (Figure 2.5c). Note that wherever the
gradient was zero the decomposition direction was chosen to point downwards. The
vector field in Figure 2.5b shows coarsely the decomposition directions in Figure 2.5¢c,
demonstrating that they are quasi-normal to velocity interfaces.

By tying the decomposition direction to local variations in medium parameters we
can now approximately ensure that wavefields are decomposed into in- and out-going
wavefields at interfaces. This can improve acoustic processing techniques, like imaging,
by ensuring that decomposition is always normal to medium interfaces.
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Figure 2.5: a) Marmousi velocity model smoothed using a 10x10 gridpoints moving-average filter (b) with
associated downwards-pointing gradient-direction vectors, taken from decomposition direction map (c) used
to steer directional wavefield decomposition.
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2.3. NUMERICAL IMPLEMENTATION

Implementation of snapshot wavefield decomposition for homogeneous media is sim-
ple in the wavenumber domain and can be used as an approximation for heteroge-
neous media. The general decomposition workflow for multicomponent data in a ho-
mogeneous three-dimensional (3D) volume begins with transforming the data to the
3D-wavenumber-time domain, see Figure 2.6. Then for each desired decomposition di-
rection, not all decomposition directions as in Section 2.2.6, the wavefield is iteratively
decomposed and the decomposed results are transformed back to the space domain. At
the end of each iteration only those points at which the current decomposition direction
matches the desired decomposition at said point are kept. Thus the desired decomposed
fields corresponding to the spatially varying decomposition direction are built up. This
requires two forward spatial Fourier transforms, followed for each iteration by multipli-
cation of the pressure and particle velocity with large diagonal operations to scale the
transformed fields to each other for decomposition, depending on normalization, and
two inverse Fourier transforms, followed by extracting the desired decomposed points.
Based on Figure 2.6 this seems simple to implement, there are, however, some caveats.

In Section 2.2.6 we described how to achieve spatially varying decomposition direc-
tions. This required decomposing the wavefield according to all possible decomposition
directions. This is numerically expensive. Hence, we suggest to precompute a list of
desired decomposition directions, based on an impedance model for example. This list,
if the decomposition direction angles are not strictly acute, is then scanned to eliminate
decomposition directions pointing in opposite directions, as these can be computed si-
multaneously. To further reduce the workload the list of decomposition directions can
be binned; later the decomposition results are then interpolated between their nearest
bin centres.

It should be noted here that Equation 2.50 can become numerically unstable if the
gradient is very small due to the inherent limited numerical precision of floating point
numbers on computers. For the case where the medium is homogeneous we suggest
to define a desired direction. For regions where the direction may be numerically im-
precise we suggest to either increase the floating point precision of the computation or
to interpolate these values based on neighbours to at least ensure a smoothly varying
decomposition direction. For our examples the used models were stored using 32-bit
IEEE 754 floating-point numbers, while the gradient computations were done by increas-
ing the precision of these numbers to double-precision 64-bit IEEE 754 floating-point
numbers. This avoided numerical precision problems in computing the gradient.

For the interpretation of decomposed snapshots we suggest that the decomposition-
direction map is spatially smooth. The employed algorithm, however, can handle both
smooth and non-smooth decomposition-direction maps. Using smooth decomposition-
direction maps avoids sharp contrasts in decomposed amplitudes, while decomposed
events remain continuous. This aids greatly in the visual inspection and interpretation
of decomposed snapshots. Smooth decomposition direction maps can be computed
with Equation 2.50 by either using a smooth impedance model, as we have done in our
examples, or by smoothing the direction map after computing it.

Note that the decompositions require Fourier transforms, which for discrete data
are generally formulated as finite dense circulant matrices acting on the whole domain
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Figure 2.6: Workflow of directionally steered snapshot wavefield decomposition.

under the assumption that the domain is periodic. This is generally inaccurate as it is
implicitly assumed that the signal is periodic in space, suggesting the need for tapering
at domain edges to avoid step discontinuities at model boundaries in the space domain
and associated aliasing in the wavenumber domain. As we will demonstrate with the
synthetic examples in Section 2.4 this is not strictly necessary but may improve results. In
contrast to the Fourier transform the rotation and scaling operators are diagonal matrices
and only suffer from incorrectly scaling spatially aliased signals.

Furthermore, for discrete data when the wavefield components do not lie on the same
space-time grid it is imperative for best results that the two components are interpolated
to lie on the same grid. This ensures that the associated temporal and spatial phase shifts
between the signals do not contaminate the decomposition. We found for our synthetic
finite-difference examples that it was often acceptable to have the fields not on the same
time grid, but they had to be on the same space grid. This is a function of the signal
bandwidth in the wavenumber and frequency domains. The wider the bandwidth and
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the closer these were to modelling limits, like the Courant number, the larger the error
grew.

For all the figures in this work we shifted the particle velocities onto the pressure
grid in the wavenumber domain by multiplying in two spatial dimensions the horizontal
particle velocity by exp(—ik,Ax/2), where Ax is the horizontal grid spacing, and the
vertical particle velocity by exp(—ik;Az/2), where Az is the vertical grid spacing. We
also found that it was often also acceptable to simply linearly interpolate the particle
velocities onto the pressure grid. This can be significantly faster and does not suffer
from the inherent wrap-around effect of most discrete Fourier transforms, the resulting
amplitudes however are often less accurate. To interpolate the particle velocity to the
same time grid we used half the time derivative of the particle velocity at every time
instance, which is a by-product of using a staggered finite difference scheme to step
wavefields forward in time. As we often found that this is unnecessary for acceptable
results in practice, all figures in this work show decomposed results without interpolating
either the pressure or particle velocities onto the same time grid. Note that we do not
suggest to shift staggered wavefields onto the same time grid in the frequency domain as
this removes the advantage of this method of being able to act exclusively on snapshots
of a wavefield.

For waves travelling at near-right angles to the decomposition direction, the wave-
number scaling in, for example, Equation 2.22 may become numerically unstable. In
this case it is advantageous to cast the problem in terms of the magnitude of the particle-
velocity vector, Equation 2.28. Using the magnitude of the particle velocity in 2D comes
at the cost of requiring an additional spatial Fourier transform over the other component
of the particle velocity.

We would like to conclude this section with a discussion on the numerical aspects
of the decomposition algorithm, which is dominated by the Fourier transforms. In our
case these were implemented through the FFTW 3.3.6-pl2 library (Frigo and Johnson,
2005). The compute time of the Fast Fourier Transforms (FFT) are expected to scale
with nlog(n), where n is the number of data points to be Fourier transformed. As such,
we expect the compute time of the decomposition algorithm, when decomposing along
one direction, to scale in the same fashion. When decomposing along many directions
the compute time is expected to linearly increase with the number of directions to de-
compose along, as an additional Fourier transform is needed per additional direction.
Although all examples in this work are in two spatial dimensions, decomposition in three
spatial dimensions is also feasible. This comes at the cost that the algorithm’s compute
time is expected to increases approximately proportionally to n3, the number of ele-
ments in the third spatial dimension, with respect to a two dimensional model that has
the same size in the first two dimensions. When decomposing while modelling in a
high-performance computing setting, the decomposition step can be offloaded to other
compute nodes or dedicated FFT hardware to reduce the impact of the decomposition
on the modelling time. Alternatively the decomposition operator can be reduced in size,
written in the space domain and then iteratively convolved with the snapshot to decom-
pose it. This reduces accuracy, especially for waves travelling nearly perpendicular to the
decomposition direction.

In order to compare compute times, the average decomposition times for 100 1D, 2D
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and 3D snapshots were determined, where each dimension had a size of 1000 points.
We used a single thread without vectorization on a stock Xeon E5-2680 v3 central pro-
cessing unit. The system’s random access memory consisted of eight 32 GB Samsung
M393A4K40BB1-CRC modules at 2,133 MHz with default settings in a dual channel con-
figuration. The average compute times for the 1D, 2D and 3D snapshots are 6 us, 15 ms
and 29 s respectively. Between the 1D and 2D cases we expected a 2,000 fold increase,
while between the 2D and 3D cases we expected a 1,500 fold increase. The above tests
were assuming only one decomposition direction, but when 99 additional decomposi-
tion directions are also included, the compute times increase accordingly. Assuming we
take 100 different directions, requiring 101 Fourier transforms, the average compute time
of the 2D snapshots increased to 754 ms. For the 3D case the average compute time was
1460 s. Note that these values are only indicative and can vary between compute systems.

2.4. SYNTHETIC EXAMPLES

We now show synthetic examples to illustrate the theory and concepts discussed ear-
lier. We begin with a constant-density constant-acoustic-velocity example and move on
from there to a layered model with velocity and density variations and from there to the
heterogeneous-velocity Marmousi model. We demonstrate on these models the various
decompositions and their characteristics.

2.4.1. CONSTANT-PARAMETER MODEL

To illustrate the simplest case of decomposition, we choose a model where the density is
constant at 1000 kg m~2 and the medium velocity is 1 km s~!. The grid is 500 m-by-500 m
discretized with a 1 m sampling rate and a 60 Hz peak-frequency Ricker wavelet, sampled
every 0.5 ms, is injected as a volume injection source at the centre of the model with a
0.0175 s time delay. Figure 2.7 displays snapshots of said wavefield. Figures 2.7a-d show
advancing snapshots of the wavefield, decomposed into down-going wavefields below.
Figure 2.7e shows on the left a snapshot between Figures 2.7c and 2.7d in time. Now,
however, the snapshot has not only been up-down decomposed but also left-right, as
indicated by the arrows in the different panels. To the right of the decomposed snapshots
are the corresponding amplitudes of the snapshots around the origin in the wavenumber
domain.

The total wavefields, the central panels in Figures 2.7e and 2.7f, were first decom-
posed using Equation 2.23, zeroing the horizontal or vertical wavenumbers as applicable.
To compute the wavefields travelling in quadrants the total wavefield was also decom-
posed into up- and down-going particle-velocity-normalized wavefields. These were
rotated using Equation 2.26 to find the up- and down-going horizontal particle velocities.
These in turn were then used in conjunction with the up- and down-going pressure to
decompose the wavefields again into left- and right-going wavefields.

Consider the wavenumber spectrum of the total field, central panel of Figure 2.7f,
which has a jittery amplitude behaviour due to the interfering waves in the central pane
of Figure 2.7e. Wavefields propagating in opposite directions are destructively interfering,
causing the amplitude of the total wavefield to be smaller than that of the decomposed
fields. Furthermore, the amplitude distribution in the total field around the origin is not
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a) 0.1250 s b) 0.2500 s c) 0.3750 s d) 0.5000 s

Total

N\ 4

e) 0.4375s

Figure 2.7: Homogeneous acoustic wavefield decomposition on a 500m-by-500m 1 km s~! homogeneous
model. The top row of (a)-(d) shows the total pressure snapshots decomposed into down-going snapshots
below. e) shows a snapshot of the total pressure at 1.75 s directionally decomposed into quadrants. f) displays
the corresponding wavenumber spectra, with the images centred on the origin. Note that the wavefields were
decomposed in the wavenumber domain, and therefore low-wavenumber decomposition artefacts can be
observed as vertical and horizontal bands. Furthermore the displayed coordinate systems in (a) also applies to
(b), (c), (d) and the left side of (e), while the coordinate systems in the upper left panel on the right of (e) applies
to the adjacent panels).

as clear as for the decomposed fields. After decomposition it is much clearer, however,
that edge-related artefacts and artefacts due to the asymptotic scaling of the particle ve-
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locity are also boosted. The amplitude spectra of the decomposed fields appear identical,
however, the dominant difference between the decomposed fields is in the phase (not
shown). This is expected as the wavefield radiated spherically away from the source at
the centre. Further decomposing the wavefield corresponds to a simple quadrant mute
in the wavenumber domain. Note that the decomposition order is highlighted by the
horizontal erroneous bands due to asymptotic scaling. These bands would have been
vertical if the wavefield had been first left-right decomposed and then up-down.

2.4.2. CONSTANT PARAMETER MODEL: COMPARISON OF DIFFER-
ENT SCALINGS

To illustrate the possible numerical errors introduced by using the wavenumber-based
scaling of Equation 2.22, as opposed to the magnitude of the particle-velocity vector,
Equation 2.28, see Figure 2.8. Figures 2.8a and 2.8b show the pressure and specific-
acoustic-impedance-scaled vertical particle velocity due to a sum of unit-amplitude
Ricker wavelet plane waves travelling from left to right with increasing obliquity to the
vertical axis. Figures 2.8c and 2.8d show the corresponding amplitudes around the origin
(centre of panel) in the wavenumber-time domain. Note that the vertical particle velocity
(Figure 2.8d) is missing the horizontally travelling wave corresponding to the horizontal
red line segment in Figure 2.8c, see black ellipse.

We now scale the vertical particle velocity to the pressure using Equations 2.22 and
2.28, resulting in Figures 2.8e and 2.8f. Note that the scaled vertical particle velocity is set
to zero for k; = 0. When comparing Figures 2.8e and 2.8f to 2.8c and 2.8d the amplitudes
of Figures 2.8c and 2.8f are very similar, except where k, = 0, while the amplitudes of
Figure 2.8e diverge from those in Figure 2.8f away from the origin as one approaches
k; = 0. The reason for this divergence is twofold: 1) numerical accuracy of the asymptotic
wavenumber scaling in Equation 2.22 degrades as one approaches k; = 0, resulting in
horizontal artefacts as can be seen in the dashed circles in Figures 2.8g and 2.8h, and 2)
aliasing due to the finite size of the domain causes wrap-around artefacts due to the cyclic
nature of the employed Fourier transform, as can be seen in the spy-glasses in Figures
2.8g and 2.8h. The aliasing causes high wavenumbers to map to lower wavenumbers, and
vice versa, which are subsequently incorrectly scaled. It is suspected that one does not see
this effect in Figure 2.8h because the aliasing in the horizontal and vertical wavenumber
for a given point in the wavenumber-time domain, when used to calculate the magnitude
of the particle velocity, is equal/similar to the aliasing for the pressure at said point. It
appears that using the magnitude of the particle velocity for decomposition on finite non-
periodic domains is less corrupted by aliasing artefacts, suggesting that Equation 2.28
should be used over Equation 2.22 whenever possible.

2.4.3. FOUR-LAYER MODEL

In the previous examples, we did not show the effect of variations in medium parameters
on the model. Figure 2.9 shows up-down decomposed wavefields for a four-layer model,
with a density increase, velocity increase and constant specific-acoustic-impedance inter-
face from top to bottom, as shown in Figure 2.9a. Figure 2.9b shows a pressure snapshot
due to a volume injection source at the origin injecting a 50 Hz-peak-frequency Ricker
wavelet with a time delay of 0.1 s. Figure 2.9f shows the corresponding recorded wavefield
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Figure 2.8: a) Superposition of pressure plane waves at 0°, 15°, 30°, 45°, 60°, 75° and 90° to the vertical with
the (b) associated specific-acoustic-impedance-scaled vertical particle velocity. (c) and (d) are extracts around
the origin of the magnitude of the wavenumber transforms of (a) and (b) respectively. (e) and (f) show scaled
version of (c) and (d) according to Equations 2.22 and 2.28 respectively. The fields were muted where k; = 0.
(g) and (h) show the corresponding decomposed wavefields in the space domain. Please note that in all panels
the origin is at the centre of the image and that the coordinate system displayed in (a) applies to (a, b, g and h),
while the coordinate system shown in (c) applies to (c-f).

at a depth of 150 m, indicated by the dashed line in Figures 2.9b-d. Note that the top
and bottom boundaries are both free surfaces while the left and right boundaries are ab-
sorbing, more precisely they are 500-element-wide perfectly matched layer boundaries
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Figure 2.9: Pressure snapshot (b) from a four-layer model (a) decomposed into down-going waves by either
scaling the vertical particle velocity in the wavenumber domain according to Equation 2.23 (c), or by using the
magnitude of the particle-velocity vector according to Equation 2.35 (d). (f-h) show the corresponding wave-
fields recorded on the dashed surfaces in (b-d), while (e) shows the up-going wavefield found by subtracting (g)
from (f) and dividing by two.

(Chew and Liu, 1996).

The wavefields in Figures 2.9b and 2.9f were then decomposed, using Equations
2.23 and 2.28, into down-going waves in Figures 2.9c and 2.9g, and Figures 2.9d and
2.9h respectively. Figure 2.9e shows the up-going pressure wavefield based on Equa-
tion 2.23. Note that all panels were tapered at the edges to avoid the Gibbs-Wilbraham
phenomenon. Please also note that the amplitudes have been clipped at 5% of the maxi-
mum to illustrate that the errors are generally smaller than 1%.
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Comparing Figures 2.9b-d, the large vertical artefacts in Figure 2.9c are immediately
evident. These are caused by the incorrect scaling of small vertical wavenumbers due
to aliasing artefacts because of the implicit fast Fourier transform jump-discontinuity
at the surface. These artefacts are much smaller in Figure 2.9d. However, small arte-
facts associated to small vertical wavenumbers are visible throughout Figure 2.9c. It is
suspected that these are caused by the interaction of the aliasing of the horizontal and
vertical particle velocities, among other possible errors. These errors are also in part due
to the heterogeneous medium.

We can see the same artefacts in Figures 2.9¢, 2.9g and 2.9h, where the vertical bands
in Figure 2.9c now appear as an erroneous event in Figures 2.9e and 2.9¢g that resembles
a conventional direct wave when the source is at the same depth level as the acquisition
surface, see shaded green area. When comparing Figures 2.9g and 2.9f there is another
event that arrives in Figure 2.9g before the direct wave in Figure 2.9f, see yellow area.
This event is associated with the erroneous vertical bands that arise due to the amplitude
discontinuity when the wavefield reflects at the first interface, similar to the two vertical
artefacts due to the tapered edge discontinuity at the top of the model causing two erro-
neous vertical events in Figure 2.9c. These errors are mostly absent from Figure 2.9h, they
are only visible in time from about 0.1 s to 0.3 s, the cyan area, along with other noise, in
the form of high-frequency noise. This noise is most evident inside the black box. Evi-
dently decomposition in terms of the magnitude of the particle velocity, Equation 2.28,
is not as sensitive to these errors as decomposition in terms of Equation 2.23.

Figure 2.9h, however, also suffers from other errors. Between 0.1 s and 0.3 s there
appears the afore mentioned high-frequency noise, see cyan area. This noise is again
due to the interaction of artefacts in both the horizontal and vertical particle velocities. If
the model domain is made larger the errors become smaller, but they do not completely
vanish as they are also partially due to the variations in medium parameters, which are
quite strong for this model. Qualitatively decomposing in terms of the magnitude of
the particle-velocity vector, Figure 2.9h, appears to perform better than only scaling the
vertical component of the particle velocity in the decomposition, Figure 2.9g, when com-
pared to conventional surface-normal decomposition, which is ideal for this scenario.
The errors are more concentrated in Figure 2.9g though.

Note that both Figures 2.9h and 2.9g, as well as conventional decomposition, show
errors around the source if the source is not explicitly included in the decomposition
scheme. This can be seen in the spyglass in Figure 2.9h. In this case these errors have two
components, the source itself, which was not properly accounted for, and the fact that the
data were modelled using a staggered-grid finite-difference scheme, where the wavefield
mismatch in space and time between the pressure and particle velocity is largest around
source locations.

2.4.4. MARMOUSI MODEL: (UP-LEFT)-(DOWN-RIGHT) DE-
COMPOSITION

We have demonstrated that snapshot decomposition performs well on layered models.

Let us now relax the lateral-homogeneity condition and consider fully heterogeneous ve-

locity models. Figure 2.10 shows in the upper right the Marmousi velocity model (Figure

2.10b), with the source location marked using a red cross. In this case a 50 Hz Ricker
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wavelet was injected. Figure 2.10c shows the total pressure wavefield for a snapshot
at 0.9 s. The other two panels shows the pressure wavefield decomposed into up- and
right-going waves, Figures 2.10a and 2.10d respectively. In this case the wavefields were
decomposed using Equation 2.23, including the use of the horizontal particle velocity to
account for horizontally travelling waves. Interesting here is to look at the curvature of
the dominant events, and to see that they are well decomposed. The unexpected vertical
and horizontal events in Figures 2.10a and 2.10d respectively are caused by the incorrect
scaling due to the asymptotic nature of Equation 2.23 and the inherent incorrect scaling
of aliased waves due to the heterogeneous nature of the model. As there is no reference
decomposition for a model of this complexity it is difficult to grade the accuracy of the
decomposition. Overall and when seen from one snapshot to another the decomposition
appears to do well.

Figure 2.11 allows us to compare decomposed common-shot gathers at the source
depth level, which were decomposed using Equation 2.35 at every time sample. We can
see that we are able to nicely decompose the wavefield. Comparing the down-going
wavefield to the plane-wave down-going reference response, one finds they are nearly
identical, except at the bottom of the panels, because the plane-wave decomposed panel
was tapered at the top and bottom to avoid wraparound artefacts. Note that for very early
times the wavefield was not decomposed, as source artefacts were too dominant, due to
the fact that the source was not taken into account in the decomposition.

2.4.5. MARMOUSI MODEL: IMPEDANCE-BASED DECOMPOSI-
TION-DIRECTION STEERING

We have demonstrated that wavefields propagating in the Marmousi model can be easily
decomposed along spatially invariant directions. We can take the decomposition a step
further by decomposing in the direction normal to medium interfaces, as discussed in
Section 2.2.8. Figure 2.12 shows the decomposition results, found using Equation 2.47,
associated to the proposed decomposition directions in Figure 2.5, which were computed
using Equation 2.50. Figure 2.12c shows the down-going interface-normal decomposed
pressure-normalized wavefield. This decomposed wavefield, although very similar to
the normal down-going pressure wavefield, is important for imaging with acoustic wave-
fields.

As Figure 2.12c is difficult to interpret with respect to the prescribed decomposition
direction, Figure 2.12d shows desired decomposition directions radiating away from the
source location. Using these directions we would then decompose the wavefield into
waves travelling away from and towards the source. If one follows the curvature of the
wavefronts in Figure 2.12¢e one can clearly see that they suggest the wavefield is propagat-
ing away from the source, with the exception of the dominant wave travelling upwards.
This wave, however, is also travelling away from the source, its propagation angle is just
nearly at a right angle to the decomposition direction. This wave, however, vanishes right
below the source as there it is propagating towards the source.
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Figure 2.10: Pressure snapshot (c), from the constant-density Marmousi model (b), directionally decomposed
into up- (a) and right-going (d) pressure-normalized wavefields. The source location is indicated by a red cross.
Amplitudes are normalized to the unit amplitude Ricker source wavelet.

2.5. DISCUSSION & CONCLUSION

Conventional up-down wavefield decomposition is applied to wavefields recorded on
horizontal surfaces to decompose into wavefields propagating up and down. This study
took a different approach to conventional wavefield decomposition and derived opera-
tors that decompose wavefields at one instance in time that are known everywhere in
space, effectively using a temporal surface instead of a spatial surface. This has advan-
tages and disadvantages when compared to conventional decomposition.

Its biggest disadvantage is that the decomposition does not correspond to how acous-
tic data is generally acquired, which is on a single surface and not everywhere in space
for one instance in time. This implies that this method is better suited for other ap-
plications, like decomposing wavefields as they are being modelled, for example using
finite-difference schemes, to improve RTM imaging results, see Diaz and Sava (2015).
This is where the proposed approach excels as the wavefield is known everywhere from
one time step to the next, allowing for directional wavefield decomposition at every time
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Figure 2.11: Directionally decomposed common-shot gathers, from the Marmousi model, through the source
depth level, indicated on Figure 2.10. On the far right is the down-going resampled plane-wave decomposed
reference response, see Suprajitno and Greenhalgh (1985), which was tapered at the top and bottom.

step, as opposed to having to record the wavefield and then later decompose it using
conventional decomposition along some surface.

Another advantage over conventional decomposition is that in conventional decom-
position the decomposition direction is always normal to the surface along which the
decomposition occurs, whereas for the proposed scheme the wavefield can be decom-
posed into any direction. The same is achievable using conventional decomposition if
the wavefield is known everywhere in space and time. Hence the proposed scheme is
ideal for any algorithms based on snapshots of a wavefield like RTM, which would benefit
from the ability to locally decompose wavefields normal to interfaces, not just between
in- and out-going wavefields but also according to the quadrant from which the wave
arrives using sub-decomposition.
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Figure 2.12: Acoustic wavefield propagated from the center of the Marmousi model, see Figure 2.5 for the
velocity model, decomposed along variations in the impedance and radially away from the source. a) shows
the total pressure wavefield 0.9 s after source excitation; the source location is indicated by a red cross. b) and
d) show the decomposition angles parallel to impedance variations and radially away from the source location.
c) and e) show the corresponding decomposed pressure-normalized wavefields according to the angles in b)
and d) respectively. Note that for e) the wavefield at the source location was not decomposed as any wavefield
at the source location must propagate away from it. Note that amplitudes are normalized to the unit amplitude
Ricker source wavelet.






ACOUSTIC SNAPSHOT
DIRECTIONAL WAVEFIELD
DECOMPOSITION IN
RELATION TO OTHER
DECOMPOSITION
TECHNIQUES

In the previous chapter we demonstrated the efficacy of acoustic snapshot directional wave-
field decomposition. However, it is not the only directional wavefield decomposition, many
have been published in the literature. In this chapter we will discuss prominent direc-
tional wavefield decomposition techniques and derive them in terms of acoustic snapshot
directional wavefield decomposition. This will allow us to demonstrate that these decom-
position schemes are mutually related.

37
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3.1. INTRODUCTION

In the previous chapter we presented acoustic snapshot directional wavefield decom-
position with little attention to the relation to other common wavefield-decomposition
techniques. We will now relate them. We begin by discussing and deriving Poynting
decomposition. From there onward, more complex schemes like plane-wave and ana-
lytic decomposition are discussed. Finally surface-normal decomposition on horizontal
surfaces is discussed as the progenitor of acoustic snapshot directional wavefield decom-
position.

3.2. POYNTING DECOMPOSITION

Poynting decomposition is a single-event space-time-domain labelling scheme. Poynt-
ing decomposition, named after Poynting (1884), uses local Poynting vectors, which are
directional energy-flux-density vectors, to determine the direction a wave is travelling in.
For an acoustic wavefield the Poynting vector is simply the product of the pressure p and
particle velocity vector v (Yoon and Marfurt, 2006). In a locally homogeneous medium
the Poynting vector indicates the wave-travel direction at a given point under the con-
dition that the wavefield at that point is only travelling in one direction, i.e. there is no
interference of waves at the point. This is often approximately the case for the direct wave
in the vicinity of its source, and, as such, this decomposition finds use in reverse-time
migration in low-reflectivity media, see e.g. Yoon and Marfurt (2006).

Note that when we speak of interfering wavefields in this section we mean a super-
position of wavefields that at a given point in space and time travel in more than one
direction. If the wavefield at a given space-time point only travels in one direction then it
is interference free.

Components of interference-free Poynting vectors pv are positive if the wavefield
is travelling in the positive direction along the corresponding axis and negative if the
wavefield is travelling in the opposite direction. Where a component is zero the wavefield
is travelling orthogonally to said axis. This can be used to label non-interfering wavefields
according to their direction of propagation:

pH\ _(h( pv)
(p;) - (h(—pl/z)) P 3.1)

where h() is the Heaviside step function, and p™ is the pressure field travelling in the
positive z direction, while p~ travels in the negative z direction. Equation 3.1 also holds

for the particle velocity:
vy)_ (h( pr2)
[o2) = rpun) v o2

where ®y denotes the Kronecker product.

The advantage of decomposing acoustic wavefields with Equation 3.1 or 3.2 is that
the decomposition is both local in space and time and is trivial to implement. However, it
fails for interfering waves as the local Poynting vector is then rotated to point somewhere,
depending on the relative magnitudes between the interfering waves, possibly in an
orthogonal direction. This means that Equation 3.1 or 3.2 will only hold in the limit as
the wave to be decomposed has a much larger amplitude than that of the interfering
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wavefield; this is often the case for the direct wavefield in acoustics. As such, Poynting
decomposition is more of a labelling scheme based on the dominant local wave travel
direction than an actual decomposition scheme.

EQUIVALENCE BETWEEN POYNTING & SNAPSHOT DECOMPOSITION

To demonstrate the equivalence of Poynting decomposition to acoustic snapshot direc-
tional wavefield decomposition in a homogeneous medium for non-interfering waves
we return to Equation 2.23, repeated here for convenience:

oc
ﬁ; _1 1 cos(05) p
ot e e

N Cos(@z)

where 0, is defined according to Equation 2.20 and we neglect to consider waves travel-
ling orthogonally to the desired decomposition direction z.

We now consider three cases. In the first case we consider that at a given point ky
in the wavenumber domain the wave is only travelling in the positive z direction, i.e.
P, (ko, t) = 0. In the second case we assume that the wavefield is only travelling in the
negative z direction, i.e. p} (ko, ) = 0. In the third case we take the situation that the pres-
sure field at ky corresponds to the sum of two wavefields travelling in opposite directions,
i.e. p;(ky, ). Note that the following derivation will be in the wavenumber-time domain,
as was done in the previous chapter.

CASE L:p (ko, 1) =0
If we consider that at a given point ky in the wavenumber domain the corresponding
plane wave in the space domain is only travelling in the positive z direction then for that
point ko we have that g (ko, t) = 0 and 7, (ko, t) = 0. Effectively this means that at kp the
wavefield is only travelling in one direction. Using this assumption the bottom row of
Equation 2.23 gives:

pc

p(ko, t) = — D, (ky, 1). 3.3
pko, 1) COS(Bz)v(ko ) 3.3)

The fraction in Equation 3.3 is always positive since pc = 0 and cos(d,) > 0, as —7/2 <
0, < /2, for waves not travelling orthogonally to the desired decomposition direction. In
the absence of waves travelling in the negative z direction the following must then hold:

sgn(py) =sgn(v}), (3.4)

for waves travelling in the positive z direction. Furthermore the amplitude of the pressure
and particle velocity are related:

5l=—" 15 3.5)
P cos(@,) '
CASE 1L:pf (ko, 1) =0

We now consider the case where p} (ko, t) = 0 and 7} (ko, £) = 0. In this case the top row

of Equation 2.23 gives:

_ pc
ko, 1) =— — U, (ko, 1). 3.6
plko, t) cos(Gz)U (ko, 1) (3.6
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From this we can gather that for all wavefields travelling in the negative z direction the
following must hold:
sgn(p,) = —sgn(v,). (3.7)

Furthermore Equation 3.5 also holds in this case.

CASE I11:pf (ko) #0 & p7 (ko) #0

In this case we consider interfering waves so that we have waves travelling in opposite
directions at a point ky in the wavenumber domain. In this case we cannot further
simplify Equation 2.23 and break it down to signum and amplitude relations. This means
that Equations 3.4-3.7 do not hold when a point in the wavenumber domain corresponds
to plane waves travelling in opposite directions.

TRANSFORMING BACK TO THE SPACE DOMAIN

We now have the necessary ingredients to derive Poynting decomposition. We write the
pressure wavefield 7 as a sum of wavefields j} and j;, which are travelling in opposite
z directions. Transforming this back to the space domain we find for the pressure and
particle velocity in the z direction:

- 1 ~ —ik-x _ 1 f ~+ | =—\ _—ikx

p_(zn)"fnpe Ak = Gy Jgn Pz HP2)e Tk (3.8)
_ 1 - ik 1 e ik

vz_(zm"fw pee” " dle = (zmnfw“’z +oz)e Nk, (3.9)

where 7 is the spatial dimensionality of the system and R denotes the set of real numbers.
Using Equations 3.4, 3.5 and 3.7 we can rewrite Equation 3.9 as:

1 cos(@)  _,  __. _ikx

v, = -p,le dk. 3.10

z @mn jl;e'l pc (P pz) ( )

We are only interested in the wavefield at a given spatial location xp. p in relation to
p(xp, t) consists of two components:

ﬁ=ﬁ0+ﬁ1. (3.11)

Here po and p; are defined such that the effective contributing component of 7 at x; is py,
as opposed to p1, which does not contribute. Hence the inverse wavenumber transform
of g1 at xo is zero:
Lf pre”F¥dg =0, (3.12)
2m)" Jmn
The associated particle velocity is zero as well. This indirectly implies that py may have
wavenumber components in it that do not contribute to p(xy, t), but contribute to to
vz(xp, ) and vice versa. The subscript 1 only denotes those components that do not
contribute to either field.
We can now write p = Py in Equations 3.8 and 3.9, which comprises of the effective
contributing components of p7 and p, ﬁ;o and p, , respectively:

. 1 )
fw poe” *xdE = fw(ﬁzo+ﬁ;0)e_’k'x0dk, (3.13)

p(xo, 1) oan

~emn
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We now need to assume that waves do not interfere at xy, i.e. there is only a single event
at xp. This means two things:

1. All waves at xp travel with the angle 8, with respect to the z direction.
2. All waves at x; travel either in the positive z direction or the negative z direction.

These assumptions effectively mean that in the space-time domain the wavefield at a
given point only corresponds to a single event, which, as such, is free of interference.
Additionally note that these assumptions are needed to guarantee that the Poynting vec-
tor points in the wave-travel direction. If either assumption is invalidated, the Poynting
vector may well point in a totally different direction.

The first assumption allows us to pull the fraction in Equation 3.14 out of the integral:

cos(@g) 1
pc (2m)"

v (%o, 1) = fR vz0e” F Mk = fR (Pio—Prpe F Rk (3.15)

@2m)"

The second assumption means that either 5} = 0 or p; = 0. This leads to the following.
For p7 (xp) = 0 Equation 3.15 becomes:

cos(@y) 1 ik

cos(fp)
= e P (x0),

(3.16)

where p;' is the inverse Fourier transform ﬁ; (x0).
Equivalently for p (xp) = 0:

_ cos(fp) 1 ik
Vot 0 == pc Wf[ﬂenpz,oel ®dk,

__cos(@o) - (x0)
= pc Pz (Xp).

(3.17)

Since the fractions in Equations 3.16 and 3.17 are always positive we can find the
same wavenumber-domain signum and amplitude relations in the space domain, under
the two assumptions above, i.e.:

sgn(p;o) = sgn(vy ), (3.18)

sgn(pgo) =- sgn(v;O), (3.19)
Cc

= . 3.20

[pol cos(90)|yz’0| (3.20)

FORMULATING POYNTING DECOMPOSITION
From our definition of p as the sum of p} and p7, see Equation 3.8, which we can write
mathematically as:

p=ps+ps, (3.21)
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and our definition of v;, see Equation 3.15, as the sum of v} and v, it follows using our
single-angle assumption, using Equations 3.18-3.20, that:
_ _cos(0)

ve=v; +; o (pz -pz) (3.22)

where 0 now represents the local unique travel-direction angle. Solving Equations 3.21
and 3.22 for p} and p; in matrix-vector we find:

R
(PZ 2\t -1\ EGve) 829

We can use Equations 3.18-3.20 to rewrite Equation 3.23 as:

N1
(pi) _1 (sgn(p) +sgn(vz)) ol (3.24)
p.] 2\sgn(p)—sgn(v;)
1(1+ sgn(vz)
=_(1_ B | p. (3.25)
sgn(p)

To further simplify this we need to additionally assume that the wavefields are all real in
the space domain, an acceptable assumption as all physical acoustic wavefields are real
in the space-time domain. This allows us to use:

1 (1 N sgn(a)
sgn(b)

5 ) = h(xab) forb#0, (3.26)
where a, b are real, to write Equation 3.24 as Equation 3.1, completing the derivation.

We have now derived Equation 3.1 in the context of acoustic snapshot directional
wavefield decomposition. In order to get there, we needed the two assumptions stated
before. If either of these assumptions are invalidated the decomposition is no longer
guaranteed to be exact. The method nevertheless often works correctly for labelling the
wavefield according to the travel direction of the locally dominant wavefield. In acoustics
this is often the direct wave close to the source when it is present.

Note that this decomposition can be formulated in terms of piecewise-continuous
media allowing this decomposition to still be valid in heterogeneous media, something
that is not properly treated in the current formulation of snapshot acoustic directional
wavefield decomposition.

3.3. PLANE-WAVE DECOMPOSITION

Plane-wave decomposition is a significant improvement over Poynting decomposition,
however, this comes at the cost that the decomposition is no longer local as it has to be
computed in the wavenumber-frequency domain. It was originally developed as contour-
slicing by Suprajitno and Greenhalgh (1985) to decompose vertical borehole data from
Vertical Seismic Profiles (VSP). Given a vertical array of receivers one can transform the
recorded wavefield to the vertical wavenumber-angular frequency domain. Although
technically only a vertical Fourier transform is necessary for this directional decompo-
sition technique the following derivation will be in the full wavenumber domain for
consistent notation.
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As this directional decomposition occurs in the frequency domain, it is pertinent to
define the forward temporal Fourier transform from the time domain (#) to the angular-
frequency domain (w):

flx,w) = f flx, ne @tdr, (3.27)
R

where quantities in the angular-frequency domain are indicated by caret, or circumflex,
hats. The corresponding inverse temporal Fourier transform is defined as:

flx, 0= % f fx,w)e dw. (3.28)
R

Suprajitno and Greenhalgh (1985) found for a homogeneous medium that waves
that travelled in the positive vertical direction mapped to the quadrants where wk, >0
and waves travelling in the opposite direction mapped to wk, < 0. Waves travelling
orthogonally to the recording surface map to where wk, = 0.

Suprajitno and Greenhalgh (1985) then proposed to decompose interfering waves
inside a homogeneous medium by muting the undesired quadrants as follows:

2, .
(;_) = (ZE_Z],Z;) f (3.29)

where f is a wavefield, not necessarily the pressure, as this method works for any wave
equation. Note that orthogonally travelling waves are again separated in equal parts
between the + and — fields. To extend this to directional decomposition one simply
rotates the recording surface to record along the desired decomposition direction.

The major advantage of plane-wave decomposition is that it only requires one com-
ponent of a wavefield. Furthermore, this method can decompose interfering wavefields
according to their direction of propagation along a given flat surface. However, due to
the involved Fourier transforms, it is more complex than Poynting decomposition and is
still only strictly valid for homogeneous media, although it also works reasonably well for
heterogeneous media.

We now want to derive this decomposition technique in terms of acoustic snapshot
directional wavefield decomposition. To do this we return to Equation 2.7 and transform
it to the angular-frequency domain:

w?p=c’k-kp. (3.30)
A non-trivial solution for w to this equation is the acoustic dispersion relation:
lw| = clk|. (3.31)

We judicially choose here to use the positive version of this equation. If the negative
version is used then the decomposition directions would be negated, i.e. + would become
— and vice versa for —. We now insert the positive version of Equation 3.31 into the
temporal Fourier transforms of Equations 2.15 and 2.16 to find:

24 1/(1 lol 5
(gi) -1 (1 _p'ﬁ) (f) (3.32)
z Pk ) \72
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Noting that we can write the magnitude of a quantity in terms of its sign times the quan-
tity itself we can rearrange Equation 3.32 to find:

a sgn(w) 2

PR _L[1 sy p

po)7 2| @ |{pes,) (3.33)
z TSgnlky )\ ke TF

To rewrite this we transform Equation 2.5 to the frequency domain and solve for the
pressure in terms of the vertical particle velocity:

T

» )
pP=p—Vz (3.34)
k.

where again horizontally travelling waves, corresponding to k, = 0, are not treated prop-
erly.

Inserting Equation 3.34 into 3.33 and multiplying the denominators and numerators
by their corresponding denominators, noting that we do not properly treat the case where
the denominator is zero, we find:

PHY_1(1  sgn@)sgn(k)) (1) ~_1(1  sgnkz))(1) s
(ﬁ;)‘z(l —sgn(w)sgn(kz))(l)’”‘z(l —sgn(wkz))(l)”' (3.35)

Solving the vector matrix multiplication and using Equation 3.26 we then find:

b

) _ 1 (1 +sgn(wkz)) 5 (h( wkz)) 2 (3.36)
P ' |

2 \1-sgnwk,) | P~ \h(~wky) P

We have now derived plane-wave decomposition in the context of acoustic snapshot
directional wavefield decomposition and have shown that they are the same, except
for waves travelling orthogonally to the z direction. These two decomposition schemes
achieve the same result but in different domains. Plane-wave decomposition works in
the (w, k;) domain while snapshot decomposition works in the wavenumber domain.
Note that the derivation in terms of particle-velocity normalized directional wavefield
decomposition is nearly identical and will not be repeated here.

Finally note that this method can only decompose wavefields according to the direc-
tion in which the Fourier transform is taken. If the Fourier transform is taken in the z
direction, decomposition can only be in the z direction. If decomposition in another
direction is desired, either the spatial Fourier transform has to be taken in that direction
or additional wavefield components, like a component of the particle velocity vector, are
necessary.

3.4. ANALYTIC DECOMPOSITION

An inherent limitation of plane-wave decomposition is the fact that it operates in the
frequency domain. This is a major problem for decomposition while modelling using
time-stepping operators. To accomodate for this, alternatives were sought that would
work on snapshots of a wavefield. An effective option for real wavefields is to use analytic
sources, as was originally proposed by Shen and Albertin (2015). The basic idea is to
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rewrite Equation 3.35 as:
530 -l s
pz) 21 —isgn(k,))\~isgn(w)
The —isgn(w) p corresponds to the temporal Hilbert transform of the pressure. This can
be computed by forward modelling the Hilbert transform of the source signature. Multi-

plying with isgn(k;) in the wavenumber domain corresponds to the z Hilbert transform
in the space domain. This allows us to write Equation 3.37 in the space-time domain as:

pry _1(1 A\ ( 1

)=zl e 5

where /, and /#; are the z and temporal Hilbert transform operators respectively. This
decomposition operation can be made to work on snapshots of wavefields as #; p can be
computed by forward modelling the temporal Hilbert transforms of the source signatures.
We are, however, not yet talking about analytic wavefields. We now assume that the
wavefields are real. Knowing that the acoustic wave equation also supports complex
wavefields and does so by independently treating the real and imaginary components,
we are left with a zero imaginary component of the wavefield at our disposal. If we use
the zero imaginary component to store the temporal Hilbert transform of our wavefield,

which is always real given a real source signature, we construct analytic wavefields, de-
noted with a bar over the symbol:

(3.37)

e

p=p+if:p. (3.39)

p is now an analytic wavefield that can be found using analytic sources. Casting Equa-

tion 3.38 in terms of it we find:
* 1(1 S\ (R) _
)=l —%)(s) 040

where R and Q are the real and imaginary operators that return the real and imaginary
components of a complex number respectively.

We have now established an alternative method to decompose wavefields at an in-
stance in time based on analytic wavefields, due to analytic sources. The disadvantage
with this method is that it only works for purely real, or purely imaginary, original wave-
fields. Furthermore the analytic wavefield must be modelled based on analytic sources.
As the acoustic wave equation can be used to forward model the real and imaginary com-
ponents of a wavefield independently, this effectively corresponds to twice the amount
of work as modelling a real wavefield. Computing two wavefields, or a complex wavefield,
requires twice the amount of memory required to forward model one real, or one imagin-
ray, component of a wavefield. The z Hilbert transform, however, is more compute time
efficient when compared to snapshot directional wavefield decomposition as it is faster
than a full wavenumber domain Fourier transform. This advantage is lost if the direc-
tional decomposition occurs in many different directions as one Hilbert transform per
direction of interest is then necessary. At this point computing the transform to the full
wavenumber domain is often faster. When numerically implementing complex acoustic
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wave-equation modelling software on current compute hardware, care needs to be taken
to ensure that the modelling is as fast, if not faster, than modelling the real and imaginary
components separately.

This type of decomposition is also less flexible than snapshot directional wavefield
decomposition when decomposing snapshots during acoustic modelling, as the choice
has to be made at the start of modelling whether to compute the analytic wavefield.
Snapshot directional wavefield decomposition can be used at any time, even after a
modelling job is finished, given sufficient wavefield snapshots.

3.5. SURFACE-NORMAL DIRECTIONAL WAVEFIELD

DECOMPOSITION

Surface-normal decomposition is a direct alternative to snapshot directional wavefield
decomposition. It is intended for decomposing wavefields recorded on a surface, gen-
erally horizontal, into waves leaving this surface and waves entering this surface. It is
the prototype decomposition on which snapshot directional wavefield decomposition is
based. For a good overview of the technique see Ursin (1983).

Like snapshot directional wavefield decomposition this method is effectuated by the
scaled addition of wavefield components. The difference is the form the acoustic wave
equation takes after decomposition. For acoustic snapshot wavefield decomposition we
rewrite the acoustic wave equation in terms of the time derivative of the wavefields on
the left-hand side, see Equation 2.17. For surface-normal directional wavefield decom-
position the acoustic wave equation is written in terms of the derivative in the decom-
position direction. Furthermore the decomposition occurs in the domain defined by the
frequency and the wavenumbers orthogonal to the decomposition direction, not the full
wavenumber domain.

To interrelate acoustic snapshot directional wavefield decomposition and surface-
normal directional wavefield decomposition we need to invoke the square of the acoustic
dispersion relation, Equation 3.31:

w? =Pk k. (3.41)

Ikz|=‘\/(%)2—k0'ko

where % is the square root of the Helmholtz operator in the ko-plane. It is defined
according to Wapenaar and Berkhout (1989) as:

- sgn(w) v/ (%)2 —ko-ko if (%)2 >ko-koandw,c, ko ko €R, (3.43)
‘ —i{/ko-ko—(%)z if(%)2<k0'koandw,c,ko-kO€IR€. '

Solving this for |k;| we find:

=| Al (3.42)

where ko is the vector of orthogonal wavenumbers to k, and the + superscript of the
square root indicates that the positive branch of the square root is chosen, i.e. the positive
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root. Note that in Wapenaar and Berkhout (1989) only postive angular frequencies are
considered, hence in their expressions the sgn(w) is omitted.

We must now note that the derivations in Chapter 2 only hold for propagating waves,
they are not correct for evanescent waves. To properly account for evanescent waves we
need to realize that Chapter 2 only considered real values of k. As such, all the |k,| in
Chapter 2 should be mathematically rigorously written as:

kol =/ k2 (3.44)

The dispersion relation, Equation 3.41, however, also admits complex values of k.. Equa-
tion 3.43 restricts itself to real and imaginary values of k.. More generally, if the quantity
under the square root is complex then the root should be chosen to lie in the negative k,
complex plane.

With the correct extension of | k| to the complex k plane in the frequency-wavenum-
ber domain we find:

Ikl = \/ k% = sgn(w) Z,. (3.45)
Inserting Equation 3.45 into 3.32 we find:

pry 11 L\ (B

(’Zi):— P (f), (3.46)

pz) 2\l —pz J\Uz

which is the expression given in Wapenaar and Berkhout (1989).

As the matrix in Equation 3.46 is now independent of k, the equation can be inverse
Fourier transformed along the k, direction to find a decomposition operator that works in
the z domain. This is why this type of decomposition is used to directionally decompose
recorded data on a horizontal surface into up- and down-going waves.

Like plane-wave decomposition this method is suboptimal for decomposing acoustic
wavefields at a given instance in time. It is, however, ideal for decomposing recorded data
due to the common practice of acquiring data using arrays of recording instruments on
a surface that record a wavefield over time. Furthermore, it is very mature and standard
practice in the seismic industry when directionally decomposing recorded data. It is also
exact for media with variations in medium parameters in the z direction, and can be
extended to take into account laterally varying media, see Grimbergen et al. (1998).

As a final note recall that Equation 3.46 correctly decomposes both propagating and
evanescent waves. Snapshot wavefield decomposition, like the other presented methods,
does not, it only correctly decomposes propagating waves. More generally, snapshot de-
composition needs to be extended to properly take into account evanescent waves. This
is done in Chapter 4 for a theoretical example. Snapshot wavefield decomposition, how-
ever, is the only method to properly handle propagating waves travelling orthogonally to
the z direction.

3.6. TwWo LAYER MODEL: COMPARISON OF METHODS
To illustrate snapshot wavefield decomposition in the context of the other snapshot de-
composition schemes consider a medium with one interface, with a source above it,
as shown in Figure 3.1. Figure 3.1 compares the various decomposition schemes for
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down-going waves. Figure 3.1c) shows four summed pressure snapshots at 0.1 to 0.4 s of
an acoustic wavefield due to a 50 Hz-peak-frequency Ricker-wavelet volume-injection
source at the surface, 250 m above an interface at which the velocity increases from 1
to 2 km s, in a 500 by 500 m acoustic model, discretized every meter, with absorbing
boundaries on all sides. The wavefield corresponding to Figure 3.1c) was decomposed
using Poynting decomposition (a), plane wave decomposition (b), surface-normal (d)
and snapshot decomposition (e).

Figure 3.1a) shows that Poynting decomposition fails for the interfering waves just
above the interface, visible inside the green spyglass. Figure 3.1b), corresponding to
plane wave decomposition (Suprajitno and Greenhalgh, 1985), is not completely correct
either. Where the wavefield interacts with the interface or model boundaries, vertical
stripes form over the entire panel with diminishing amplitudes. These are due to aliasing
in the wavenumber domain as the employed discrete Fourier transform is circular and
the wavefield is not sufficiently well sampled to resolve the resultant sharp contrasts in
pressure amplitude. This necessitated double sided tapering in time and the vertical
space dimension using a 51-point sine-squared taper from 0 to 1, before applying the
necessary two-dimensional Fourier transforms. Figure 3.1d) shows the surface-normal
decomposed result, which is a considerable improvement over plane-wave decomposi-
tion. There is some visible leakage of the up-going wavefield above the interface though
and as the wavefield operates in the Fourier domain it also required tapering. Figure
3.1e) shows the snapshot decomposed result, which features improved event continuity,
compare especially the green spyglasses, at the cost of slightly anomalous amplitudes
just below the interface, the difference to the exact amplitudes however is so small that
it cannot be perceivably captured by the employed colourmap. The additional cyan
spyglass in Figures 3.1b), 3.1d) and 3.1e) shows that decomposition methods do not per-
fectly decompose interfering waves, but that they also do not suffer from the plane-wave
striping artefacts in the plane-wave decomposed result, Figure 3.1b). Overall snapshot
decomposition performs the best in this example.

3.7. DISCUSSION & CONCLUSIONS

We have related acoustic snapshot directional wavefield decomposition to common
wavefield decomposition schemes and derived them in the context of snapshot direc-
tional wavefield decomposition. As all of these schemes can be derived in terms of each
other and are thus mutually related. They are just different ways of expressing the same
operation. This is important as it allows us to choose the scheme tailored to our problem,
see Table 3.1. If we only have the pressure and the particle velocity in our desired decom-
position direction, then we can use Poynting decomposition to approximately determine
the travel direction of the wavefield. If we had an array of time recordings in our desired
decomposition direction we would use plane-wave decomposition. If instead the array
of recordings was normal to our desired recording direction then we would use surface-
normal decomposition. And finally snapshot directional wavefield decomposition can
be used for any decomposition direction as long as the wavefield is known everywhere
in space. We have now demonstrated acoustic snapshot directional wavefield decom-
position in the context of existing directional wavefield decomposition schemes and its
ability to surpass other schemes in its ideal area of application, i.e., on snapshots.
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Figure 3.1: Comparison of different wavefield decomposition techniques applicable to RTM for the down-going
wavefield. The right-hand-side amplitudes of each figure are exaggerated by a factor of four.
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Decomposition . . Surface
Method Poynting Plane-Wave Analytic Snapshot Normal
Decomposition | no, labelling yes yes yes yes
Domain (x,y21) (x,y, kz, 0) (x, ¥, kz, 1) (kx, ky kz, ) | (kx, ky, 2,0)
Dec9mp9s1t1on arbitrary z direction z direction arbitrary z direction
direction
Required p and p and
d I d A
components pandz onlyp pan tipl vz 0rdsp vz 0rdzp
Additional no no es no no
wavefield Y
Medium -x -x x x t
assumption invariant invariant invariant invariant invariant
Classical de-ghosting,
seismic RTM VSP RTM RTM redatuming,
applications migration

Table 3.1: Comparison of the different decomposition techniques according to: (1) whether they actually di-
rectionally decompose the wavefield, (2) their domain of operation, (3) the decomposition direction, (4) which
wavefield components are needed, (5) whether additional wavefields need to be modelled, (6) assumptions
about the medium and (7) what are the classical domains of application in seismology. Note VSP stands for
Vertical Seismic Profile and de-ghosting is a processing step by which wavefields that enter a medium of interest
from outside are removed from the data.

It should be noted that this is not a complete discussion of the various decompo-
sition techniques in the literature. A noteworthy space-time technique that is explic-
itly designed for wavefields modelled using finite-difference techniques is presented in
Amundsen and Robertsson (2014) and Robertsson et al. (2015). Through the use or ab-
sence of perfectly reflecting surfaces above recording depth levels in conjunction with
the injection of recorded wavefields at the depth the directional separation of wavefields
at the injection surface can be achieved achieved. Under the right configurations this al-
lows for the injection of a purely down-going wavefields that, for example, either include
or exclude sea-surface-related multiple reflections.

This technique is very interesting as it is the only technique to properly decompose
wavefields in the time-space domain in a finite-difference sense. This makes it relevant
for many imaging applications, like reverse time migration, see Amundsen and Roberts-
son (2014), or the decomposition of elastic wavefields, Robertsson et al. (2015). A more
thorough investigation of this technique, however, was beyond the scope of this work.



DIRECTIONAL
DECOMPOSITION APPLIED TO
PLANE WAVES

Here we will demonstrate with two simple plane-wave examples how the snapsot di-
rectional wavefield decomposition proposed in Chapter 2 behaves for propagating and
evanescent waves, where the decomposition breaks down for evanescent waves without
the proper extension of the decomposition operator into the complex wavenumber plane.
This chapter differs from the previous two in that concrete examples will be considered
here. We will begin by looking at two interfering propagating waves that travel in oppo-
site z directions and use directional wavefield decomposition to separate them. Then we
consider an evanescent wavefield due to a flat source plane, which exhibits exponentially
decaying amplitudes normal to the source plane. We decompose the wavefield according to
the direction of amplitude decay by correctly accounting for its non-analytic behaviour in
the complex wavenumber domain. This wavefield in the context of the acoustic dispersion
relation has complex wavenumbers.

51
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4.1. INTRODUCTION TO PLANE WAVES

Before directionally decomposing plane waves we will first formally introduce them. We
consider how unit-amplitude plane-wave solutions to the acoustic wave equation in a
homogeneous medium in three spatial dimensions, (x, y, z) and one temporal dimension
(#) behave. For convenience we insert the linearised equation of motion, Equation 2.2,
into the linearised equation of continuity, Equation 2.1, and assume that the medium is
lossless, isotropic and homogeneous to find the pressure acoustic wave equation:

0%p = *Ap. (4.1)

where A = V-V denotes the Laplacian. Monochromatic plane-wave pressure solutions to
the acoustic wave equation, Equation 4.1, can be written as:

p(x,y,2,1) = e oU=s0), 4.2)

where wy is the real time- and space-invariant scalar angular frequency of the wave and
s is the vector of time- and space-invariant scalar slowness of the plane wave in the x, y,
and z directions:

s=|sy|. (4.3)
Sz

Inserting Equation 4.2 into 4.1 and solving for the pressure on the left-hand side we
find:

p= c*(s- s)p. 4.4)
The non-trivial solution to this states:
1 2, 2,2
s~s—g—sx+sy+sz. (4.5)

This equation is satisfied for both real and imaginary values of s. Since we only consider
real values for wp, as complex values of wg lead to temporal evanescence, which is not
considered, s cannot be purely imaginary.

Purely propagating waves occur when s is purely real, while spatially evanescent
waves occur when one or more components of s are imaginary. The wavefield is then
said to be evanescent in these components. Propagating and evanescent waves behave
fundamentally different. The amplitude of propagating plane waves in a homogeneous
medium is constant, while the amplitudes of evanescent waves in the evanescent direc-
tions decay exponentially.

4.,2. DECOMPOSITION OF TWO PROPAGATING PLANE

WAVES

In this section we aim to directionally separate two real propagating and interfering
pressure plane waves along the z axis in the wavenumber-frequency domain. For this
we transform the decomposition operator, Equation 2.22, to the wavenumber-frequency

domain: Ik\
pty 11 Cied 5
(’i’i):— p i (f) (4.6)
Pz) 2\1 —pci)\Vz
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Note that this expression was derived assuming real wavenumbers.

The first plane wave we consider, denoted p;, has an amplitude a;, positive angular
frequency wy, and travels in the direction of s, which points in the positive z direction.
This means that the s, component is positive. The second plane wave, p, with amplitude
ap travels in the opposite direction. The sum of these two plane waves gives the total
pressure, p:

p=alcos(wo[t—s-x]z+agcos(wo[t+s'x]l. 4.7)

-

p1 p2

We now wish to separate p; and p», which travel in opposite z directions, using acoustic
directional wavefield decomposition.

We can do this in the wavenumber frequency domain using Equation 4.6. For that,
though, we need the particle velocity in the z direction, which we can find using the
linearised equation of motion, Equation 2.2, and Equation 4.2:

Sz
Ve =—(p1-p2). (4.8)
P
To be able to use Equation 4.6 in conjunction with Equations 4.7 and 4.8 to separate

p1 and p, we need to transform Equations 4.7 and 4.8 to the wavenumber frequency
domain. Transforming Equation 4.7 to the wavenumber frequency-domain we find:

p=p1+p2 (4.9)
where:
L @em!
p1= ay [6(w+w0,k+wos)+5(w—w0,k—w0s)], (4.10)
L @em!
P2 = az [0(w +wg, k—wos) +6(w—wg, k+wys)], (4.11)

where in this case the multidimensional Dirac delta functions are defined as:
O(wx wp, k+wos) = 6w+ wy)d(kyx + wosx)0(ky £ wysy)d(k; +wosz), (4.12)

where the signs associated with wy and wgs on the left- and right-hand sides correspond
to each other. The corresponding transform of the particle velocity in the z direction is:

V== (p1—P2). (4.13)

In preparation for inserting Equations 4.9 and 4.13 into Equation 4.6 we scale Equa-
tion 4.13 with the particle-velocity scale factor in Equation 4.6:

pc'—klﬁ =s,C L
kol 7 7 Ikl

(P1-P2). (4.14)

Noting that where Equation 4.14 is non-zero the following properties hold:

clk| =|wol, (4.15)
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lkz| =lwgsz|. (4.16)

Equation 4.15 follows from the acoustic dispersion relation w? = c¢?k - k, Equation 3.31.
Equation 4.16 is consequence of the fact that k; is only non-zero at +wgs,, see Equations
4.10-4.12. Since s, is real and positive, we can use Equations 4.15 and 4.16 to simplify the
right-hand side of Equation 4.14 to:

lkl ~ .~ 4

pC——0;=p1— P2. (4.17)
k|
Inserting Equations 4.9 and 4.17 into Equation 4.6 we are able to separate p; and p»
as ﬁ;’ and ﬁ; respectively:

(46 s
pz) 2\l -1J\p1-p2
Transforming the above back to the space-time domain we find p; and p», see Equa-
tion 4.7. We have now succeeded in separating the plane waves p; and p, using direc-

tional wavefield decomposition in the wavenumber-frequency domain. In the following,
we wish to do the same for spatially evanescent waves.

i
=12 |- 4.18
(Pz) ( )

4.3. DECOMPOSITION OF TwO SPATIALLY EVANES-

CENT WAVES
For spatially evanescent waves, the components of s in Equation 4.2 are complex. For
simplicity we assume that only the z component of the slowness vector s is imaginary:

S;=—105, (4.19)

where o, > 0 is defined according to:

1 1
0.=1/S0"50- = for s - so > = (4.20)

where s¢ is the vector of slownesses orthogonal to the z direction:

s
so= ( x). 4.21)
Sy
We consider the following evanescent plane wave whose amplitude decays exponen-
tially in the evanescent direction but is unitary in the orthogonal directions:

p = cos(wolf—so-x0]) e ¥4, (4.22)

where w is the real positive angular frequency of the wave and x is the location vector
orthogonal to the z direction, similar to sp. Furthermore we restrict ourselves to real
sx and sy. Itis also worth mentioning that formally Equation 4.22 is a solution to the
acoustic wave equation including sources, see Appendix B.
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For z > 0 Equation 4.22 is decaying in the positive z direction, while for z < 0 it is
decaying in the negative z direction. Following Wapenaar and Berkhout (1989), where
evanescent waves are decomposed according to the direction they decay in, we can
already identify the directionally decomposed wavefields we seek:

ps=h( 2)p, (4.23)
p. = h(=2)p. (4.24)

Although we can already identify the directionally decomposed wavefields, we want to
show that when we substitute the evanescent plane-wave solution, Equation 4.22, into
the decomposition equation, Equation 4.6, that these results will come out. So we aim to
derive this, which we will do in the following.

For the decomposition we additionally need the z-component of the particle velocity.
Inserting the vertically evanescent pressure plane wave, Equation 4.22, into the linearised
equation of motion, Equation 2.2, and solving for v, by integrating in time we find:

vz = %lazlzn sin(wol £ = s0-x01) e~ 7, (4.25)

where 8;|z|, which is undefined at z = 0, is to be considered in terms of the theory of
distributions.

There is something important to realize concerning Equation 4.25. When compar-
ing Equations 4.22 and 4.25 one can notice that they are out of phase in time and the
orthogonal spatial dimensions. In the absence of interfering wavefields this is a com-
mon property of evanescent wavefields. For non-interfering propagating wavefields the
propagating components of the particle velocity are in phase with each other and the
pressure. For evanescent waves the particle-velocity component in the evanescent di-
rection(s) is/are out of phase with respect to the other propagating component(s) of the
particle velocity.

Since the decomposition operation, Equation 4.6, is in the wavenumber-frequency
domain we need to transform p and v, Equations 4.22 and 4.25 respectively, also to that
domain:

. @md, 1 1
= 51w, k - ) 4.26
p ! 1@ O)(kz—iwoaz kz+iwoaz) ( )
5 @n)® o, ( 1 )
= ZE8y(w, k, ) 4.27
vz 2 p 2@, ko) k;—iwgo, * k;+iwgo, ( )
where for succinctness we defined:
01w, ko) = 6(w+wp)d(ky+wosx)d(ky +wpsy) 4.28)
+6(w_w0)6(kx_wosx)é(ky_wosy); '
02w, ko) = 6(w—wp)d(ky—wosy)0(ky —woSy)
2 (0] 0 X 09x ¥ 0%y (4.29)

=6 (w +w0)d (ky + wosx)b(ky + wosy).

We now want to directionally decompose the pressure wavefield, Equation 4.26, to
find the following Cauchy principle-value Fourier transforms of of Equations 4.23 and
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Figure 4.1: Plots of Equations 4.26, 4.27 and 4.30, (a—c) respectively, for w = wg and kg = wgsg forwg =1, sx =5,
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4.24 to the wavenumber-frequency domain:

2m)3 ; 51(w, ko)

pt , 4.30

z 2 k;+iwgo, ¢ )
. @m?, 61w ko)

=— ) 4.31

z 2 lkz —iwgo, (4.31)

Ifwe now plot p, i/, and p;, we see a problem. Both the pressure and the z component
of the particle velocity are real while the down-going pressue 5, is complex. With the
real particle-velocity scaling operations as presented in Chapter 2 it is impossible to add
a real pressure wavefield to a real scaled particle-velocity wavefield and get a complex
expression. Evidently snapshot directional wavefield decomposition as presented in
Chapter 2 breaks down for evanescent waves.
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4.4, NUMERICAL EXAMPLES

We can also numerically show that snapshot directional wavefield decomposition works
for evanescent waves. Figure 4.2 shows on the left a propagating wavefield, while on
the right it shows a vertically evanescent wavefield that is propagating in the positive
horizontal direction. The propagating wave on the left, like the evanescent wave in the
previous example, is due to a source plane at z = 0. The resultant propagating wavefield
can be described using:

p =cos(wolt—so-x0—szlzl]). (4.32)

The evanescent wavefield on the right of the figure is defined as in the preceding example.

Figures 4.2a and 4.2b show pressure and associated vertical particle-velocity wave-
fields. Of special interest here is that for the propagating wavefield the pressure and
vertical particle velocity are in phase, while for the evanescent wavefield they are out of
phase by a factor of 7/2 in the horizontal direction. This is important because it affects
the scaling.

If we now scale the vertical particle velocity, Figure 4.2b, to the pressure, Figure 4.2a,
using the operators as presented in Chapter 2 then we find Figure 4.2c. For the propagat-
ing wave it is trivial to see that if one adds the scaled particle velocity to the pressure that
the top half, i.e. z<0, of the pressure wavefield will cancel out, see Figure 4.2d1. For the
evanescent wave this is not the case. Figure 4.2d2 shows the desired result. However, the
addition of the pressure, Figure 4.2a2 and the scaled particle velocity, Figure 4.2¢c2 for the
evanescent wave could never result in this wavefield. For the evanescent wave the waves
do not properly destructively interfere and the wavefield is non-zero for z < 0, demon-
strating that snapshot directional wavefield decomposition as presented in Chapter 2
does not work for evanescent waves. We need to take the horizontal phase shift between
the pressure and vertical particle velocity into account.

4.5. SUMMARY

The operators as presented in Chapter 2 do not properly directionally decompose evanes-
cent waves. They are only valid for propagating plane waves. In this chapter we have
shown that to properly extend the decomposition to work for evanescent waves the phase
shift between the pressure and particle velocity needs to be taken into account. How to
do this is not understood yet. For that reason in the remainder of this work we will not
take evanescent waves into account when decomposing.
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Figure 4.2: Propagating (left column) and evanescent (right column) 2D pressure wavefields (a) and their
decomposed wavefields. a) shows the pressure wavefields and (b) shows the associated vertical component
of the particle velocity. c) shows the vertical particle velocity scaled to the pressure as used in directional
decomposition. d) shows the down-going pressure wavefield constructed from adding (a) to (c) and dividing
by two. The wavefields are constructed from the posed pressure solutions in Equations 4.32 and 4.22 using
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km™!, while for the evanescent waves sy = 0.75 s km™! and sy=0s km'!. s, and o are based on ¢ and s.



SNAPSHOT WAVEFIELD
DECOMPOSITION FOR
REVERSE TIME MIGRATION

Reverse Time Migration (RTM) is a two-way imaging algorithm that can handle all propa-
gation directions, including the imaging of overturned structures and imaging from below
based on multiple reflections. However, the created RTM images are not true reflection
images, but rather a combination of reflection and transmission images. This manifests
itself in low-wavenumber events in the image that obfuscate images of reflectors. As such,
these transmission images are generally considered as artefacts. By directionally decom-
posing the wavefields during imaging it is possible to decompose the RTM image into its
constituent reflection and transmission images, of which the reflection images generally
constitute the desired image. Various techniques exist to decompose wavefields, and recent
efforts have focused on directionally decomposing snapshots of a wavefield. In Chapter 2
we proposed a novel acoustic snapshot decomposition scheme to directionally decompose
snapshots based on the pressure and its time derivative. We will now apply it to decom-
posing wavefields in the context of reverse time migration. The advantage of using this
scheme in the context of RTM is that the method can account for horizontally travelling
waves when up-down decomposing and it works, as the name implies, on snapshots, the
native wavefield storage format of many time-stepping RTM schemes. We will illustrate
and compare the suggested method to the current state of the art on a single-interface
model, a complicated model and demonstrate it on real data.
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5.1.INTRODUCTION

Reverse Time Migration (RTM) is a wave-equation based imaging scheme, that is com-
monly implemented using two-way propagators, and hence is capable of dealing with
multi-path arrivals, the phase changes associated with caustics, and does not suffer from
the dip-limitations of one way—extrapolation migration schemes (Hemon, 1978; Baysal
et al,, 1983; McMechan, 1983; Whitmore, 1983). It works by zero-lag cross-correlating
two approximations of the subsurface wavefield during recording, which is the most
basic RTM imaging condition. These wavefields are constructed by forward-in-time
modelling the real-world source signature and backwards in time injecting and mod-
elling the recorded wavefield in an approximate model of the medium of interest. For
large problems with three spatial dimensions and one temporal, referred to hereafter as
3D, this is becoming increasingly feasible on modern compute architectures. As such,
finite-difference RTM is a current industry standard for high fidelity images and iterative
construction of approximate models of the medium of interest.

The employed zero-lag imaging condition between the forward-in-time modelled
source wavefield and the back-propagated receiver wavefield, aside from constructing
the subsurface image, also gives rise to what some consider artefacts, see for example
Diaz and Sava (2015). As an example, strong early-time source and receiver wavefields
traveling along the same ray path, causing their amplitudes during cross-correlation to
constructively add up, lead to low wavenumber transmission images, or artefacts in terms
of reflection imaging, in the final RTM images. It has been shown, by Fei et al. (2010) and
Diaz and Sava (2015) for example, that a large part of these artefacts can be removed by
directionally decomposing wavefields before imaging.

Many methods have been developed to decompose wavefields into up- and down-
going wavefields in the context of imaging, as the vertical direction is the dominant direc-
tion for variation in subsurface medium parameters for the Earth. Amundsen and Reitan
(1995) among others developed a technique to decompose wavefields normal to the sea
floor, i.e. the vertical direction, for homogeneous media. This wavefield-decomposition
technique, however, is prohibitively expensive in the context of RTM as it cannot work
on snapshots of wavefields, see Section 3.5. As such, faster and less resource-intensive
schemes were developed. Yoon and Marfurt (2006) introduced the Poynting vector to
acoustic imaging as an alternative, cheap and fast local approximation of the decompo-
sition based on the directional energy flux of the wavefield, see Section 3.2. This was
followed by Liu et al. (2011) who used plane-wave decomposition (Suprajitno and Green-
halgh, 1985), which is a more resource-intensive, but also a more accurate approximation,
see Section 3.3. In the same work Liu et al. (2011) go on to demonstrate that this decom-
position can be directly integrated into the imaging condition, making it once again local
in time, by zero-lag cross-correlating spatial analytic wavefields. These are found by mut-
ing the negative wavenumbers in the desired decomposition direction for imaging. Using
wavefields that are analytic along the vertical axis, instead of spatial and temporal Fourier
transforms, greatly improves the speed and reduces the memory requirements when
compared to conventional plane-wave—decomposition RTM, as only one-dimensional
spatial Fourier transforms are needed.

This comes at a cost though, as the wavefields during RTM are no longer truly decom-
posed, losing some of the flexibility that decomposition offers inside the RTM imaging
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condition. Therefore an alternative was sought, leading Shen and Albertin (2015) to de-
compose wavefields using the analytic-in-time form of wavefields. Analytic wavefields
are constructed by forward modelling analytic representations of the source signature.
To up-down decompose the real part of an analytic wavefield one simply takes the ver-
tical Hilbert transform of the imaginary part of the data and adds or subtracts it from
the real part to decompose the wavefield. However, this comes additional cost, since ei-
ther the imaginary component of the wavefield must be modelled separately or complex
modelling operators are needed to construct the required analytic wavefield.

We propose to use snapshot directional wavefield decomposition, see Chapter 2, to
directionally decompose wavefields before imaging as the method can be made to work
on wavefield snapshots and their time derivatives. Although snapshot wavefield decom-
position only strictly allows for the decomposition of wavefields in homogeneous media,
it also performing very well for heterogeneous media.

5.2. REVERSE TIME MIGRATION

Reverse Time Migration (RTM), originally proposed by Hemon (1978), Baysal et al. (1983),
McMechan (1983), and Whitmore (1983), is a prestack depth migration scheme that
works by zero-lag cross-correlating reconstructions of wavefields inside a medium of
interest, like many other acoustic migration schemes, see Claerbout (1985). What differ-
entiates RTM from other methods is the use of two-way scattering propagation operators
when constructing these wavefields.

In acoustic RTM, incident and out-going pressure wavefields travelling in opposite
directions inside the medium of interest are zero-lag cross-correlated to form a reflection
image of the medium of interest. For transmission images, which are often considered to
be artefacts when overprinting the desired reflection image (Fei et al., 2010), the incident
and out-going wavefields travel in the same direction. To approximately reconstruct
these wavefields inside the medium of interest, an approximate model of the medium is
required, which is at least kinematically correct.

The governing imaging condition for acoustic RTM is the following zero-lag cross-
correlation of the forward propagated' wavefield f(x, t), also known as the source wave-
field, with the backward propagated wavefield b(x, t), also known as the receiver wave-
field, see Liu et al. (2011) for example:

i(x)sz(x,t)b(x,t)dt (5.1)

where i(x) is the migration image and the wavefield f(x, t) and b(x, ) are assumed to be
real. For an overview of possible RTM imaging conditions we refer to Jones (2014).

The forward propagated wavefield f(x, f) is an estimate of the wavefield inside the
medium of interest during the time of recording based on the known source field used
to excite the wavefield inside the medium of interest. The wavefield is predicted by for-
ward modelling the source field in time using either non-scattering modelling operators,

INote that in this chapter propagation is assumed to also include evanescence as two-way modelling operators
are used throughout.
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when honouring the single-scattering approximation, or modelling operators that in-
clude scattering, from now on referred to as scattering modelling operators. We will be
using scattering modelling operators.

The backward propagated wavefield b(x, f) is another estimate of the wavefield inside
the medium of interest during the time of recording, but now based on the recorded data.
The wavefield is predicted via the back-injection of the recorded data at the receiver
locations, causing the wavefield to propagate backwards in time.

Fei et al. (2010) realized that directionally decomposing, or de-blending, the RTM
imaging condition, Equation 5.1, allows for the retrieval of the reflection and transmis-
sion images in the form of four separate imaging conditions. To do this we need to
directionally decompose wavefields, see Chapter 2.

If we now consider that the decomposition of a wavefield p into p* and p~, which
travel in opposite directions, occurred along the normal direction to some interface, then
p™ above the interface may correspond to the incident wavefield at the interface, while
p* below the interface would correspond to the transmitted wavefield. p~ above the
interface would then be the reflected wavefield. If we now apply the same concept to the
forward and backward modelled wavefields from Equation 5.1 and treat f(x, t) always
as the incident wavefield and b(x;, #) as the transmitted or reflected wavefield, then we
can image the inherent four separate terms in Equation 5.1. Fei et al. (2010) refer to this
as de-blending RTM. To better understand this we directionally decompose f(x, ) and
b(x, t) in Equation 5.1 to find:

iX)=tt@X)+r*@+r x)+1" (%), (5.2)

where the first and last term correspond to the two possible transmission images, 7, and
the middle terms correspond to the two possible reflection images r:

() = ]o [, nb" (x,ndt, (5.3)
rt(x)= 7f+(x, nb~ (x, ndt, (5.4)
rT(x) = 7 f~x,0b" (x,0)dr, (5.5)
77 (x) = ff(x, Hb~ (x, H)dt, (5.6)

where the superscript + and — for the images denote the direction in which the incident
wavefield f(x, t) travels.

It should be noted here that the efficacy of each of these imaging terms strongly de-
pends on the acquisition geometry used to record the data. For the dominant terms in
the reflection images, r* (x) and r~ (x) to be related to reflectors and not artefacts, the re-
flected wavefield needs to be well reconstructed. A perfect reconstruction of these wave-
fields in an acoustic setting is generally not possible as the underlying acoustic Kirchoff-
Helmholtz integrals (Wapenaar and Berkhout, 1989) require a recording surrounding the
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medium of interest that records the pressure and normal component of the particle ve-
locity. Furthermore perfect knowledge of the medium of interest and all sources inside
is required. In most seismic exploration settings at best approximately kinematically
correct velocity models in conjunction with open multicomponent recording surfaces
above the medium of interest are available. Back injecting the recorded wavefield under
these conditions only approximately reconstructs the traveltime and wavelet shape of
primary reflection events at their reflectors. Amplitudes of the reconstructed wavefield at
reflectors are wrong due to the inability to reconstruct the transmitted wavefield at the re-
flectors due to the one-sided acquisition, the incorrect velocity model and an often poor
understanding of the density model. This entails that the reflection images are approxi-
mately correct with respect to the locations of pronounced reflectors, but the amplitudes
of the reflection image are incorrect. This problem is exasperated for the transmission im-
ages as the transmitted wavefields generally cannot even be approximately reconstructed
in RTM due to the recording surface only being above the medium of interest. Hence,
the transmission images tend to be dominated by what are generally considered to be
artefacts (Yoon and Marfurt, 2006; Liu et al., 2011). This is nicely demonstrated in Diaz
and Sava (2015).

Historically conventional seismic exploration only used sources and receivers above
the medium of interest, hence Fei et al. (2010) suggested to use Equation 5.4 as a reflection
imaging condition, in the context that plus fields travel in the downwards direction, as
the reflection imaging condition. Others, like Yoon and Marfurt (2006), Liu et al. (2011),
and Diaz and Sava (2015) for example, have suggested to define the reflection image for
real wavefields based on the sum of the two reflection images, Equations 5.4 and 5.5:

r(x) = f [fYx, b (x, 0+ [ (x, )b (x,0)]dt, (5.7

This imaging condition has the advantage of being free of the transmission related im-
ages, while still accounting for reflections from both sides of an interface. We will now
tackle the problem of how to find the directionally decomposed wavefields necessary to
formulate the reflection image r(x) and the transmission image 7(x) = 7+ (x) + 7~ (x).

Historically the directionally decomposed f*, f~, b* and b~ fields were computed
using plane-wave decomposition, which cannot decompose snapshots of a wavefield.
This led Liu et al. (2011) to develop an imaging condition that does not require temporal
Fourier transforms, allowing it to work on snapshots of a wavefield. This was achieved by
rewriting the reflection imaging condition, Equation 5.7, in conjunction with the concept
of plane-wave decomposition, see Section 3.3, in terms of spatially analytic signals:

i(x)=2R ff:(x,t)bJr(x,t)dt , (5.8)

where R denotes the real part and the superscript * denotes the complex conjugation
for the cross-correlation of complex signals. The analytic signals f; and b., which follow
the notation of Liu et al. (2011), should not be confused with directionally decomposed
wavefields. They are spatially analytic signals and are defined in the wavenumber domain
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as follows:
f ifk,>0, b ifk,>0,
fe=31L itk =0, (5.9a) by =4% ifk,=0, (5.9b)
0 otherwise, 0 otherwise.

The problem with the above is that we are no longer actually directionally decompos-
ing the wavefield. To rectify this we can use wavefields that are also analytic in time, see
Section 3.4, at the cost of twice the modelling work, or snapshot directional wavefield
decomposition, which requires more spatial Fourier transforms but is also more flexible.

5.3. MONOCOMPONENT SNAPSHOT WAVEFIELD DE-

COMPOSITION FOR RTM
In time-stepping RTM we commonly only know one component of the wavefield and
its time derivative, such that we can step the wavefield forward in time. Many acoustic
RTM schemes are therefore implemented using time-stepping finite-difference or finite-
element schemes in which only the pressure, as a scalar quantity, is stepped forward from
one time step to the next. As such, the particle velocity, which is necessary to directionally
decompose the wavefield using the equations from Chapter 2, is not known.

If we relax the condition of the decomposition having to work on a multicomponent
wavefield at a given instance in time to working on a wavefield and its time derivative,
then the decomposition can be formulated in terms of a single component of the wave-
field. To do this for the pressure we solve Equation 2.32 for the generalized particle
velocity v,:

1 —ik, 0.5

— ———-0;P. 5.10
pc? k- k tP ( )

Vg, =
The denominator in this equation is only non-zero at the origin of the wavenumber
domain, corresponding to the space-invariant component of the time derivative of the
pressure. The generalized particle velocity must be zero at the origin in the wavenumber
domain due to its definition, hence it is set to zero at the origin in the wavenumber
domain for Equation 5.10.
Inserting Equation 5.10 into 2.34 and pulling the term in front of the time derivative
of the pressure into the matrix we can write:

pY)_L(1  (cisgnt)lkD N (1)
(ﬁ;)_z(l —(cisgn(x) kD)o, P (5.11)

where the fraction is set to zero for | k| = 0. This is acceptable because the time derivative
of the pressure at the origin in the wavenumber domain must be zero for the acoustic
wave equation to hold. The effect of doing this is that the static part of the pressure
wavefield is equally split up between the decomposed fields.

Appendix C contains an alternative derivation of Equation 5.11 straight from the
acoustic wave equation as well as an alternative formulation of the decomposition in
terms of the time integral of the pressure for a zero constant of integration, also known
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as the temporal primitive of the pressure:

Pz _1(1 cisgn(KZ)|k|)( p )
(ﬁ;)_Z 1 —cisgn(x,)lkl)\ [ pdt) (5.12)

The difference between Equations 5.11 and 5.12 is that in Equation 5.11 the spatial and
temporal operations are inverted with respect to each other.

The generalized particle-velocity-normalized directional decomposition is exactly
the same as for the pressure. The only difference is that the pressure has been replaced
with the generalized particle velocity in the decomposition direction. This can be found
by solving Equation 2.33 for the pressure and using the result to replace the pressure in
Equation 2.36 with the time derivative of the generalized particle velocity, followed by a
reorganization of the right-hand-side matrix-vector term.

Equation 5.11 has three advantages over the previously discussed snapshot wavefield
decompositon schemes. It does not depend on the mass density, which is often neglected
in RTM as it is more difficult to accurately estimate than the velocity. Furthermore Equa-
tion 5.11 is ideal for decomposing wavefields as they are modelled using time-stepping,
as from one time step to the next both the wavefield and its time derivative are known.
Additionaly the decomposition direction is not fixed and can vary spatially allowing for
the decomposition and imaging normal to expected variations in medium parameters.
Therefore snapshot directional wavefield decomposition is the ideal scheme for wavefield
decomposition in the context of RTM. This makes it ideal for acoustic imaging schemes
like RTM when implemented using time stepping, and it is this equation that is used to
generate the results for the remainder of this chapter, including decomposition normal
to variations in media.

5.4. NUMERICAL & REAL DATA EXAMPLES

In the following we will illustrate snapshot wavefield decomposition in comparison to
conventional RTM without wavefield decomposition, Equation 5.1, using Poynting de-
composition (Chen and He, 2014), using plane-wave decomposition according to Supra-
jitno and Greenhalgh (1985), and using a modified imaging condition based analytic
wavefields (Liu et al., 2011). From here on we will refer to RTM without wavefield de-
composition as conventional RTM, the other RTM types we will refer to according to
their decomposition type or imaging condition, i.e. Poynting, plane-wave, snapshot, and
analytic RTM.

We will not compare snapshot RTM to surface-normal decomposition, as it usually
operates in the wavenumber-frequency domain, which is not ideal for decomposing
snapshots of a wavefield for imaging with the conventional finite difference RTM. We will
also not discuss analytic source-signature-based directional-wavefield-decomposition
schemes, which are based on additionally injecting the temporal Hilbert transforms of
the source signatures and recorded data, as this usually requires additional wavefield
modelling steps. The interested reader is referred to Shen and Albertin (2015), or for
a recent approach that only requires modelling one wavefield see Revelo and Pestana
(2019).

To construct the following RTM images the recorded receiver wavefields were mod-
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elled using finite-difference techniques” using the exact model. The boundary conditions
were 50-element-wide perfectly matched layers (Chew and Liu, 1996) on all sides to avoid
boundary-related multiples. The direct wave in the receiver data was removed by mod-
elling it separately in a homogeneous medium and subtracting it from the receiver data
modelled using the exact model of the medium to be imaged. This way ideal RTM data,
devoid of surface-related multiples and the direct wave, were constructed.

5.4.1. TwWO LAYER MODEL

We return to Figure 3.1 and migrate this model using the reflection imaging condition,
Equation 5.7, while decomposing with the previously mentioned techniques. The mi-
grated RTM results are due to the same source signature as for Figure 3.1 but placed
at increments of 1 m between -200 m and 200 m, while back-injecting only the wave-
field recorded at the top of the model, after removing the direct wave. In the conven-
tional migration result, see Figure 5.1c, when compared to the others we see dominant
low-wavenumber artefacts, which correspond to the transmitted image. These are intro-
duced, according to Diaz and Sava (2015), by the cross-correlation of the back-scattered
fields. Note that the model was not smoothed to avoid back-scatter. The result achieved
using Poynting decomposition, see Figure 5.1a, is a clear improvement over Figure 5.1c,
however, there are still errors in the interface around the horizontal origin (middle of
figure), compare the blue amplitudes above the interfaces in Figures 5.1a and 5.1b. These
are absent in the nearly identical Figures 5.1b and 5.1d which were decomposed using
plane-wave and snapshot decomposition. Evidently snapshot decomposition is compa-
rable in accuracy to plane-wave decomposition. As expected, analytic imaging (Liu et al.,
2011), Figure 5.1e, is equivalent to plane-wave imaging Figure 5.1b.

5.4.2. THREE-LAYER MODEL
To better illustrate the flexibility of actual wavefield decomposition when imaging in
RTM over using the analytic imaging condition by Liu et al. (2011), we consider a slightly
more complex three-layer model. The same setup as for Figure 3.1 is used, but now with
a velocity increase from 1 km/s to 1.5 km/s at a depth of 175 m and another increase
to 2 km/s at 350 m. We now wish to image the individual transmission and reflection
responses, Equations 5.3-5.6. This is not possible with analytic RTM, demonstrating the
superior flexibility of snapshot wavefield decomposition as an actual decomposition.
Figure 5.2 shows the four separate images. The diagonal images, Figures 5.2a and 5.2d,
show the transmitted imaging results for the zero-lag cross-correlation of down- with
down-going wavefields and up- with up-going wavefields respectively. The off-diagonal
images, Figures 5.2b and 5.2c, show the corresponding reflection images. Figure 5.2b is
formed by the cross-correlation of a down-going incident wavefield (full red ray) with an
up going—out going wavefield (full blue ray), and ideally vice versa for Figure 5.2c. Note
that the amplitudes in Figure 5.2c have been exaggerated by a factor of 10. Where the
red rays denote the estimated wavefield in the medium of interest based on the forward
propagated wavefield f(x, f), while the blue rays denote the predicted wavefield based
on the backward propagated wavefield b(x, ). For Figure 5.2b this would only image

2A variant of the wavefield modelling code by Thorbecke and Draganov (2011) was used.
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Figure 5.1: Pressure RTM results without decomposition, Equation 5.1, (c) for the same model as in Figure 3.1
compared to the reflection-only imaging condition, Equation 5.7, using various decomposition schemes (a, b,
d and e). All amplitudes are normalized with respect to the maximum amplitude in (c) and the right-hand-side

amplitudes of each figure are exaggerated by a factor of 4.
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above the interface, but we see a contribution below the interface. This stems from
the dashed contribution where the backward propagated wavefield below the interface
is cross-correlated with the forward propagated wavefield. In this case b(x, t) behaves
somewhat like an incident wavefield from below at the interface, while f(x,f) is the
out-going wavefield. Both these terms together constitute the reflection image of the
reflector. It should be noted that the blue dashed ray in this case is not physical as it
is an event arising from the fact that the reconstructed wavefield b(x;, ?) in this case is
based only on recordings at the top of the model. If the wavefield had been recorded
everywhere around the model, then after correct back-injection and back-propagation,
this transmitted response (dashed blue line) would have been cancelled by the back
propagated wavefield from below.

In Figure 5.2c the reflectors appear to be only imaged from above. This is because
in this case the dominant term is denoted by the dashed ray paths, where we are cross-
correlating the incident wavefield from above, reconstructed using scattering operators
from the recordings b(x, t), with the reflected wavefield, reconstructed from the source
distribution using scattering operators. If non-scattering operators had been used, this
contribution would be zero, hence the dashed ray paths. We, however, also have energy
below the reflectors, see the upper spy glass where the amplitudes are exaggerated hun-
dred fold, which is caused by the zero-lag cross-correlation of multiply scattered waves,
which corresponds to an incident wavefield from below and an out-going reflected wave-
field. This configuration is denoted in the full ray figure. It is this contribution that allows
RTM to image interfaces from below. We do not see this feature in the lower spyglass
because there is no reflector below that could multiply reflect the necessary waves to
construct this image as absorbing boundary conditions were used. Please also note that
when using single-sided illumination from above and non-scattering propagation opera-
tors, Figure 5.2¢ cannot be reconstructed.

If we sum Figures 5.2a and 5.2d we would find the transmission image 7, whereas
if we sum Figures 5.2b and 5.2c we find the reflection image r. Poynting, plane-wave
and snapshot decomposition are able to construct these images, analytic RTM can only
construct the sum of Figures 5.2a-d. This demonstrates the flexibility of actual wavefield
decomposition in RTM over analytic RTM, which, however, is numerically still the fastest
method. Note that in this case snapshot wavefield decomposition was used to construct
the image, even though any other directional wavefield decomposition could have been
used.

5.4.3. ANNERVEEN MODEL
Let us now consider a more complex model. The Annerveen model, first presented by
Almagro Vidal et al. (2014), is based on a vertical cross section near Annerveen, in The
Netherlands, and is dominated by salt-domes under which hydrocarbons are trapped.
The acoustic velocity model is shown in Figure 5.3a while the density model is shown in
Figure 5.3b. To properly image this model, far-offset data is needed to resolve features in
near-offset shadow zones, like the hydrocarbon-bearing antiform under the central salt
dome at a horizontal distance of 11 km and a depth of 3 km.

To model the recorded receiver wavefield 321 volume-injection sources were placed
every 50 m between 2 km and 18 km at the surface in the 5x5 m discretized model. The
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Figure 5.2: Decomposed migration images of a three layer model found by zero-lag cross-correlating wavefields
after up-down directional wavefield decomposition for a single volume injection source. All amplitudes have
been normalized with respect to the 97th percentile of (a). The amplitudes of (c) have been further exaggerated
by a factor of ten, while the amplitudes in the spy-glasses have been exaggerated by a factor of one hundred.

sources injected 22 Hz peak-frequency Ricker wavelets, linearly high-cut tapered in the
frequency domain from 70-75 Hz.

Figure 5.4 shows RTM results for one source at the surface at a lateral distance of two
kilometres using the exact subsurface model and source signature. This is not a generally
realizable subsurface model for real data but allows us to compare the methods without
effects due to an approximate subsurface model. Figure 5.4a shows the conventional
RTM image without decomposition with the expected strong low-wavenumber artefacts
due to the transmitted component of the image, which also highlights the dendritic ray
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Figure 5.3: Annerveen acoustic velocity (a) and density (b) model.

paths. Interestingly the low-wavenumber artefacts are much stronger in the wave guide
at a depth of 2 km between 4 and 12 km horizontal distance. A lot of energy is trapped in
this wave guide.

Using Poynting decomposition, Figure 5.4b, greatly improves the result. In the lower-
right black spyglass we can see that we have now managed to remove the transmitted
image, or red backscattered noise, present in the same spyglass in Figure 5.4a. However,
the method suffers from artefacts where wavefields interfere. This is especially evident
in the upper left corner, which shows extremely high-wavenumber artefacts due to the
interference of waves and associated incorrect wavefield decomposition. These artefacts
occur because the employed subsurface model invalidates the assumption that the for-
ward and backward propagation of the source and receiver wavefields is reflection-free.
Only when the source and receiver wavefields are nearly free of scattering is it guaranteed
that the direct wavefield is the strongest wavefield, ensuring that Poynting decomposition
works correctly. These artefacts are also responsible for the serrated look of the upper
reflector in the lower-left spyglass. This is especially visible in the magnified portion.

Using analytic or plane-wave RTM smooths out the Poynting decomposition results
as can be seen in Figure 5.4c. The results appear to contain more low-frequency noise
when compared to the Poynting decomposed results. This is because Poynting decom-
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position left out a large portion of the wavefield during imaging because it was not able
to decompose properly. Hence the analytic RTM results are actually better. Note though
that plane-wave decomposition does not properly decompose wavefields in an inho-
mogeneous medium, making the decomposed results imperfect in this inhomogeneous
setting. This RTM image is also not free of artefacts. At the bottom between 2 and 5 km
there are low-wavenumber edge-related artefacts, as can be seen in the bottom-most
spyglass. Even though the source and receiver wavefields were tapered before their an-
alytic fields were computed we still find edge-related artefacts where there were strong
horizontally scattered waves. These are also responsible for the unexpected artefacts on
the right side of the lower right spyglass when compared to the other methods.

Using snapshot decomposition, Figure 5.4d, improves on these results. The edge-
related artefacts are strongly diminished for two reasons: 1) because the horizontal
Fourier transform necessary to scale the time derivative of the pressure to the pressure
in Equation 5.11 is better at separating horizontally travelling waves than a single ver-
tical analytic transform and 2) because the scaled time derivative of the pressure was
high-cut tapered to zero from 100% to 120% of the Courant number of the employed
finite-difference scheme. This is why there are also no artefacts on the right side of the
spyglass when compared to Figure 5.4c. Using snapshot decomposition also better re-
solves the “sausage-like” effect, green boxes in Figures 5.4c and 5.4d, caused by the quasi
point scatterer at the top of the blue velocity layer, above the left salt dome. This effect
is also seen in Figure 5.4c, albeit not as pronounced. It should also be noted th that the
wavefields used to produce this image were not tapered at the edges before decomposi-
tion, hence there are non-zero amplitudes along the surface when compared to Figure
5.4c.

The decomposition direction map used for the directional decomposition of wave-
field snapshots in this example is based on smoothing the specific acoustic impedance
model using a 100x100 m moving average filter, followed by a normalized direction vector
estimation based on the gradient. The direction vector is then converted into an angle.
Given the angle map a down sampled list of 101 decomposition angles was established.
Based on these decomposition occurred. The results were then interpolated based on
the original angle map from the downsampled angle decomposition results.

Stacking all the migrated shots, or images, along the surface between 2 and 18 km
allows us to compare the final migrated sections in Figure 5.5. The low-wavenumber
back-scatter artefacts are again present in the final conventional image, see Figure 5.5a.
These artefacts, however, do significantly help to delineate the central salt dome, whose
reflections are relatively weak due to a weak impedance contrast with the surrounding
material. Please note that the amplitudes were divided by five for this migration result to
better compare the result to the decomposed images.

The Poynting decomposition results, Figure 5.5b, are free from these artefacts, pre-
dominantly only near-source artefacts remain near the top of the model, which in this
image were not tapered out. Most of the reflectors are now clearly visible, but the central
salt dome is nearly invisible; this is due to the aforementioned weak reflections. The
image also suffers from Poynting decomposition-induced artefacts, leading to a some-
times jittery behaviour along interfaces for the per-shot images, see spyglasses in Figure
5.4b. During stacking these artefacts often sufficiently stack out such that they can be
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Figure 5.4: Comparison of Annerveen migration results for one shot at the surface at a distance of 2 km using
conventional RTM (a), Poynting RTM (b), analytic RTM (c), and snapshot RTM (d). Amplitudes have been
normalized to the 99t percentile of (d).
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neglected for the purpose of structural interpretation.

Analytic RTM improves on the Poynting results, see Figure 5.5c. The reflector continu-
ity is improved, clearly delineating the hydrocarbons trapped below the central salt dome.
The Poynting decomposition results do appear to have a higher resolution along the top
salt interface, this is believed to be an artefact of Poynting decomposition. It should be
noted that this image is tapered at the top and bottom as the wavefields used to construct
this image were tapered at the top and bottom. The taper was necessary in this case to
avoid aliasing artefacts due to the circular nature of the employed discrete Fast Fourier
Transform (FFT) (Frigo and Johnson, 2005). This leads to artefacts at the top and bottom
of the image that manifest as a slightly blue tint.

The snapshot-decomposed results, Figure 5.5d, in which decomposition occurred
normal to interfaces, delineate the central salt dome the best and reflectors appear
sharper than in the other imaging results. The sharpness is, however, partially due to
using the exact velocity model during decomposition which overprints onto the final mi-
grated results. The improved imaging of the salt dome, however, is attributed to decom-
position directions normal to its flanks. The snapshot-decomposed results also exhibit
better positive amplitude continuity for the large red layers, which is expected as these
layers have a positive velocity gradient and as such are reflective throughout. One would
also expect that this image should have been tapered at the edges. This, however, was not
necessary as it would have only improved results marginally. The suspected reason for
this is that both the pressure and scaled time derivative of the pressure had the same or
sufficiently similar aliasing. Hence it was found that tapering did not noticeably improve
image quality in the non-tapered areas, while the non-tapered image was clearly better
than the tapered image in the tapered areas.

As a whole the analytic RTM image is the smoothest image and as a consequence
has the best reflector continuity. Whereas the snapshot-decomposed result has the best
reflector imaging and structural detail, see the central salt dome, which makes it difficult
to discern which is better. It should be noted that during the generation of these images
the inverse crime was committed as the same method was used to model the input
synthetic wavefields as was used to compute the RTM image.

5.4.4. ANNERVEEN MODEL: IMAGING WITH APPROXIMATE VE-
LOCITY MODEL

As the previous set-up of migrating with the exact velocity and density models is rarely
feasible in reality the velocity model was smoothed using a 500x500 m moving average
filter, see Figure 5.6, and the density model was set to a homogeneous 1000 kg/m?3, as it is
often much more difficult to construct approximate density models as opposed to veloc-
ity models. The data were migrated again using the smoothed approximate subsurface
model, which resulted in the single shot migrated data in Figure 5.7.

The images are now slightly blurred and reflectors are positioned slightly too deep.
The conventional image has lost its dendritic nature, but a large portion of the artefacts
related to the transmission image are now gone. Further note that although the model
has been significantly smoothed the image of the waveguide between 1 and 2 km remains.
In the left parts of Figure 5.7, from 0 to 2 km horizontal distance, there are additional spu-
rious curved events caused by the zero-lag cross-correlation of unrelated events. These
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Figure 5.5: Comparison of stacked Annerveen Migration results using conventional RTM (a), Poynting RTM (b),
analytic RTM (c), and snapshot RTM (d). Amplitudes have been normalized to the 97%h percentile of (d).
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Figure 5.6: Annerveen acoustic velocity model smoothed using a 500x500 m moving average filter. The corre-
sponding density model is 1 kg/m3.

events will remain in the decomposed results but become weaker where they are nearly
vertical. They are due to the incorrect velocity model aligning unrelated events to each
other during imaging.

Again decomposing the wavefield removes most of the transmission-image artefacts
as can be seen when comparing Figures 5.7b—d to 5.7a. Poynting RTM once more suffers
from the extremely inexact nature of the decomposition in the presence of interference,
which in this creates a hole in the image, see spyglass in Figure 5.7b. The analytic RTM
results, on the other hand, have again edge effects, see the diagonal event in the spy-
glass in Figure 5.7c. This event is easily recognizable when comparing to the snapshot-
decomposed result, see spyglass in Figure 5.7d. Nevertheless the three decompositions
produce very comparable results.

Note that the decomposition direction map for snapshot directional wavefield de-
composition is in this case only based on the smooth velocity model, see Figure 5.6, as
the density model is constant. This also means that it points more dominantly down and
that the flanks of the salt dome are now incorrectly estimated. The latter point, however,
does not account for why the alt dome is so poorly imaged. This is because the smooth
velocity model, compare Figure 5.7d with Figures 5.7b and 5.7c.

The final migrated sections are shown in Figure 5.8. Decomposing the wavefields
before imaging also significantly improves the imaging results. Interestingly the hydro-
carbon reservoir is more clearly imaged using a smooth model while the central salt dome
is not imaged at all, even when decomposing wavefields normal to its flanks based on the
smooth velocity model. This is probably due to the weak reflectivity of the salt and that
the decomposition directions were not completely correct. Overall, the smoothing has
blurred out the interfaces slightly and they are now at incorrect depths with respect to the
dotted reference. This makes it very difficult to determine which of the two decomposed
results is preferable and also highlights that the strengths of decomposing normal to
variations in medium parameters strongly depends on the accuracy of the used velocity
model. Only when the velocity model is very good, as in the earlier Annerveen examples,
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Figure 5.7: Smoothed Annerveen single-shot migration results using conventional RTM (a), Poynting RTM (b),
analytic RTM (c), and snapshot RTM (d). Amplitudes have been normalized to the ggth percentile of (d).
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can decomposing normal to expected variations in medium parameter help to image
interfaces with steep dip.

5.4.5. FIELD DATA EXAMPLE: VORING AREA

Snapshot decomposition was also applied while reverse time migrating data from the
Voring area in Norway. In this case decomposition only occurred in the vertical direc-
tion. The results are compared to conventional RTM in Figure 5.9. Figure 5.9a shows
the migrated data without decomposing the wavefield, and as expected it exhibits low-
wavenumber artefacts due to dominant back scatter occurring at a depth of 1.25 to 1.75
km. Decomposing the wavefield using snapshot decomposition removes these artefacts,
as can be seen in Figure 5.9b. Low vertical wavenumber events, however, remain. They
appear to be artefacts as they interfere with other clear reflectors, which they mask. These
events can be removed using a 0.0012 to 0.0024 m™! linear vertical low-cut filter, this
comes at the expense of losing vertical resolution and damage to surrounding events
when it is not certain if these events are actually undesirable. To avoid edge artefacts
associated with the filter, the edges were tapered using a 500 m sine squared taper.

5.5. NUMERICAL CONSIDERATIONS

Reverse time migrating data, at the time of writing, is an expensive task, both in compu-
tational load as well as storage requirements. As such, much effort is put into optimizing
the underlying algorithms. The following analysis directly pertains to the previously
discussed images, but is also more broadly valid for finite-difference-based implementa-
tions of RTM.

Conventional acoustic RTM zero-lag cross-correlates forward and backward mod-
elled pressure wavefields by multiplying snapshots, see Figure 5.10. To be able to do this
often either the forward or backward propagated snapshots are stored in memory, and
then multiplied with the backward or forward propagated snapshots in reverse order.
As such, memory usage increases during the modelling of the stored wavefield in time
and then decreases as the other required wavefield is modelled in time and its snapshots
are multiplied with the stored snapshots, after which the stored snapshots are deleted.
Figure 5.10 shows this for storing the forward propagated snapshots. Note that the top
two processes, top two rounded boxes, on either side of each method can be switched
without loss in generality.

When decomposing wavefields it is generally necessary to store additional wavefield
information. When decomposing using plane-wave decomposition it is necessary to
store snapshots of the pressure wavefield for all times for both the forward and backward
modelled wavefields, see Figure 5.10. This effectively means that the entire pressure
wavefields have to be stored everywhere in space for all times. After modelling both the
forward-modelled and the back-injected wavefields, and storing them, they are plane-
wave decomposed. This often involves expensive transposes and memory reordering,
hence the additional computation time with respect to conventional RTM in Figure 5.10.
This is circumvented using the analytic imaging condition, but comes at the cost of lost
decomposition flexibility.

If instead the wavefield is decomposed using snapshot wavefield decomposition, or
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Figure 5.8: Comparison of stacked smoothed Annerveen migration results using conventional RTM (a), Poynt-
ing RTM (b), analytic RTM (c), and snapshot decomposition (d). Amplitudes have been normalized to the ggth
percentile of (d).
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Figure 5.9: Comparison of the Voring area migration results for an excerpt of the image. a) shows the con-
ventional migration results with the typical back-scatter noise. b) shows the migration results after snapshot
decomposition.

crudely using Poynting decomposition, then one must additionally store either the time
derivative or the integral of the pressure, or the particle velocity in the direction of de-
composition, effectively doubling the acoustic storage cost with respect to conventional
acoustic RTM. If the time step between sequential snapshots is small enough then the
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temporal difference between the snapshots can be used to approximate the necessary
derivative. In this case the storage cost does not increase. Furthermore, when back-
propagating the wavefield, in comparison to plane-wave decomposition RTM, it is pos-
sible to decompose the wavefields while back-propagating, allowing one to multiply
decomposed snapshots for imaging while back-propagating wavefields, see Figure 5.10.
This can save computation time as expensive memory reorganization is not necessary.

In the previous paragraphs it was assumed that sufficient wavefield snapshots for
imaging can be stored in memory, where memory refers to any interfaceable system
capable of storing information, like Random Access Memory (RAM), solid-state drives
(SSD), Hard-Disk Drives (HDD) and tapes in order of decreasing cost per unit of memory
storage. For some problem sizes it is not possible to store all the wavefield snapshots in
their native format in RAM, the generally preferred storage medium due to fast access
times. In these cases snapshots can be compressed using a variety of techniques, see
for example the zfp package by Lindstrom (2014). Note that compressing and decom-
pressing data has a performance penalty and potentially reduces precision due to lossy
compression. If the problem size is still too large, data need to be stored using other
storage media. There are various techniques beyond the scope of this work to mitigate
performance impacts associated with this.

One can further reduce the necessary memory by only storing the forward modelled
source wavefield at the boundaries of the modelling domain. When back injecting the
recorded data, one back injects the boundary recorded data of the forward modelled
wavefield in a different model at the same time, see Figure 5.10. This allows one to mul-
tiply the two wavefields to generate the migration image while they are being backward
modelled. This greatly reduces memory usage as snapshots no longer need to be stored,
however, it comes at the cost of having to model three acoustic wavefields, the forward
wavefield, its back injection and the backward-modelled wavefield, which increases com-
putation time by a factor of one and a half. In Figure 5.10 the memory usage for this
form of RTM is depicted using dashed lines and is grossly exaggerated for large finite-
difference models. The exaggeration is necessary because for growing square models
with edge size x, the size required to store snapshots grows with x?, while the size to store
the boundaries only grows with x.

Lastly also note that for very large problem sizes it may be a good idea to distribute
the problem over many compute units as RTM is highly parallelisable. In terms of the
presented examples, each shot record can be migrated independently using different
compute units. This means that total compute time decreases linearly with the available
number of identical compute units. Parallelising individual RTM steps is not as fruitful
but still can save time, see Amdahl’s Law (Amdahl, 1967).

In terms of speed of the algorithms, conventional RTM is the fastest, closely followed
by RTM using Poynting decomposition, which predominantly requires additional mem-
ory but only very little additional actual compute time. Next fastest is analytic RTM which
only requires Fourier transforms in the direction of decomposition. This is significantly
slower than conventional RTM due to the Fourier transforms, but it requires nearly no
additional memory. Then comes snapshot wavefield decomposition, which is slower but
more flexible. This comes at the cost of having to Fourier transform all spatial dimensions.
By far the slowest methods are decompositions in the frequency domain, plane-wave de-
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compositon for example, as these require expensive numerical transposes to reorganize
the data for FFTs along the time axis. This discussion, however, is strongly machine and
algorithm dependent. In the future it could well be that higher dimensional Fourier trans-
forms become nearly as fast as one dimensional Fourier transforms due to advances in
computational hardware, consider Floating Point Gate Arrays (FPGA) Slade (2013). This
would narrow the computation time gap between analytic and snapshot RTM.

5.6. DISCUSSION

Snapshot wavefield decomposition is the ideal decomposition technique when oper-
ating on snapshots of a wavefield in time, where the wavefield is known everywhere
in space. Snapshot directional wavefield decomposition complements conventional
surface-normal wavefield decomposition, which generally works in the horizontal-wave-
number—frequency domain, i.e. one less spatial Fourier transform but an additional
temporal Fourier transform. Snapshot directional wavefield decomposition is ideally
suited for decomposing wavefields that are being stepped forward in time as they are
modelled, as opposed to forward in space when redatuming wavefields. It also allows for
the forward and backward directional propagation of wavefields via the eigenvalues of
the wave equation.

The snapshot wavefield decomposition operators, which were derived for homoge-
neous media, also work well for directionally decomposing wavefields in heterogeneous
media. Additionally we are free to choose any desired decomposition direction by simply
rotating the operation in the wavenumber domain around the origin. This is possible
because the method operates in the full wavenumber domain, where the Laplacian is
circularly symmetric around the origin. This is not possible for any other decomposition
scheme. In the case of conventional surface-normal decomposition, the decomposition
direction is restricted to being normal to the surface along which the decomposition
occurs. In the case of plane-wave decomposition the axis along which the spatial Fourier
transform occurs must be rotated to align it with the desired decomposition direction.
For discrete data this may be difficult due to the need for interpolation. If interpolation
is done in the wavenumber domain it requires Fourier transforms over all spatial dimen-
sions. In this case one may as well do snapshot wavefield decomposition, which would
save the temporal Fourier transform. The same holds for analytic RTM which, for de-
composition in a direction that does not correspond to an axis of the coordinate system,
should also be done in the full wavenumber domain.

Snapshot decomposition has several important beneficial implications for RTM. It
allows for wavefield decomposition on wavefield snapshots, the native wavefield format
when time stepping wavefields forward in time in many RTM schemes. This means that
for actual wavefield decomposition we no longer have to wait till the modelling of both
the forward- and backward-modelled wavefields is finished to decompose the wavefield,
or have to additionally model the Hilbert transform of the source and receiver data as
in analytic decomposition, see Shen and Albertin (2015). Hence snapshot directional
wavefield decomposition has the potential to considerably reduce storage requirements
of RTM and compute time, while at the same time keeping the flexibility of an actual
decomposition, as opposed to analytic RTM, which does not involve true directional
wavefield decomposition.
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A further important aspect of snapshot wavefield decomposition was already high-
lighted in Chapter 2. It can decompose wavefields normal to interfaces, this comes at a
much greater numerical cost when naively implemented, but has the potential to greatly
improve imaging results as it solves an inherent problem in conventional up-down de-
composition RTM. The problem with global up-down decomposition in RTM is the in-
trinsic assumption that all variations in media of interest are vertical. This is because the
reflected wavefields of dipping reflectors may be down-going, which in the case of up-
down decomposition would mean that the reflection responses are incorrectly mapped to
the transmitted image. When using the reflection-imaging condition these waves would
not contribute to the image, even though they should. Snapshot wavefield decomposi-
tion has the potential to correct for this by always decomposing normal to interfaces. This
allows snapshot-directional-wavefield-decomposition-based imagining to image vertical
interfaces, which up-down wavefield-decomposition-based imaging cannot achieve.

Snapshot decomposition, like the other mentioned decomposition schemes, still
suffers from the imposed cyclicity of any Fourier transform-based method, as it operates
in the wavenumber domain. This causes sharp contrasts in wavefield amplitude, for
example due to interfaces, to be aliased, which would lead to incorrect scaling in the
wavenumber domain. In the presented figures this effect, however, is very small. We
suspect that this is due to the fact that the pressure and its time derivative or integral
exhibit the same aliasing, which is similar enough after incorrect scaling to not contribute
significant artefacts.

As in Chapter 2 it is imperative that all quantities, like the pressure and particle ve-
locities, are on the same grid in time and space for the decomposition to work properly,
otherwise small phase-shifts between signals affect the decomposition results detrimen-
tally. This often requires interpolation of particle velocities onto the same grid as the
pressure, which can introduce artefacts. In this work we therefore opt to use the more
stable time derivative of the pressure as it is a side product of the forward modelling of
the wavefields in RTM. The time integral of the pressure can also be used, and is more sta-
ble for the high frequencies, but requires that running integrals of the wavefields during
decomposition are stored.

It was noted earlier that the modelling operators commonly used in RTM account for
both propagating an evanescent waves. From Chapter 4 it is known that snapshot direc-
tional wavefield decomposition does not correctly account for evanescent waves unless
their behaviour in the complex wavenumber plane is accounted for. In the presented
examples this was not done. As such, evanescent waves were incorrectly accounted for.
This is mainly only a problem very near to the source and receivers as the evanescent
waves related to deep reflectors are generally recorded below the ambient, in this case nu-
merical, noise floor. Due to the limited numerical precision of the employed modelling
operators this means that the RTM scheme cannot take them properly into account,
even for the presented examples where the medium was known perfectly. Therefore, the
decomposition does not need to be able to take them into account either.

5.7. CONCLUSIONS

We have presented a novel method to decompose wavefield snapshots during RTM imag-
ing. It has been demonstrated that, although it does not give the smoothest images, it
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leads to the best reflector imaging and structural detail, see for example the central salt
dome in Figure 5.5. In terms of speed it is the third fastest method. Poynting RTM is the
fastest by a considerable margin at the cost of also having the lowest image quality. Ana-
lytic RTM is the second fastest, only slightly faster than snapshot RTM, while being less
flexible. Snapshot-decomposition RTM is the third fastest, being considerably faster than
plane-wave RTM, which requires temporal Fourier transforms. Furthermore, snapshot-
decomposition RTM under ideal circumstances has the smallest memory footprint as
only the wavefield and its time derivative are needed, something naturally computed
during modelling. This means that due to its speed and flexibility along with high image
quality snapshot-decomposition RTM should be the RTM of choice.



CONCLUSIONS & OUTLOOK

6.1. CONCLUSIONS

The main foci of this thesis are (1) the presentation of a novel directional decomposition
scheme that works on snapshots of a wavefield and (2) the application of this scheme
during Reverse Time Migration (RTM). In Chapter 2 an innovative directional wavefield
decomposition method was presented that operates on wavefield snapshots. The nov-
elty here is that the decomposition occurs in the time domain. This makes it unique as
the other schemes in the literature work either in the frequency domain (Suprajitno and
Greenhalgh, 1985; Wapenaar and Berkhout, 1989) or require the modelling of two related
wavefields based on a source and its Hilbert transform in time (Shen and Albertin, 2015).
For acoustic wavefields the proposed decomposition, like many of its brethren, is effec-
tuated by the scaled addition of the pressure and the particle-velocity component in the
decomposition direction. Unlike the other techniques discussed in this thesis, where the
decomposition direction is determined by the problem configuration, the decomposition
direction of our method can be chosen freely. This includes varying the decomposition di-
rection spatially, which is made possible by spatially combining the decomposed results
from different decomposition directions. Waves travelling orthogonal to the decompo-
sition direction are also accounted for, which is important for correctly accounting for
head waves at their generating interfaces. In addition, already decomposed wavefields
can be further decomposed, such as decomposing the up-going field into up-left and
up-right going wavefields. This corresponds to muting quadrants in the wavenumber
domain. The benefit of decomposing wavefields into propagation-direction quadrants is
that it allows for finer control of the propagation direction during, for example, imaging.

It should be noted that the snapshot directional wavefield decomposition scheme,
as presented in Chapter 2, is in its current numerical implementation only strictly valid
for propagating waves in a homogeneous medium. However, it also works very well for
heterogeneous media like many of the conventional decomposition techniques. Evanes-
cent waves, however, cannot be taken into account properly yet due to their phase shifts
between the pressure and particle velocity in the directions orthogonal to the evanes-
cent directions. In Chapter 4 it was demonstrated that isolated evanescent plane waves
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can be correctly accounted for due to their pole behaviour in the complex wavenumber
plane, which necessitates the introduction of a phase shift. In more general situations
these waves cannot be correctly accounted for and hence the decomposition only yields
correct results for propagating waves.

As the decomposition method is to be applied to wavefields during modelling with
time-extrapolation operators, which results in theoretically noise-free wavefields (aside
from the potential algorithmic and numerical noise inherent in the use of numerical
modelling schemes), the decomposition does not suffer from noise in input data. How-
ever, noise present in the input data before the data is injected into a model will still result
in additional unwanted spurious wavefields during the temporal extrapolation. These
spurious wavefields will be correctly directionally decomposed by the scheme, but will
still degrade later processing steps that rely on the fact that the input data are noise free,
like for example, during the application of an imaging condition.

In Chapter 3 snapshot wavefield decomposition is compared to other techniques. It
was found that many schemes are fundamentally similar for propagating waves and only
differ in the domains in which they are defined. However, only conventional decomposi-
tion, as for example presented by Wapenaar and Berkhout (1989), explicitly accounts for
evanescent waves in the vertical direction. To extend snapshot wavefield decomposition
to account for evanescent waves it is hypothesized that the non-analytic contributions
from the complex wavenumber domain need to be taken into account during the decom-
position to allow for the separation of propagating and evanescent waves, such that both
can be properly decomposed.

Chapter 4 investigates snapshot directional wavefield decomposition using simple
theoretical examples, more precisely the decomposition of propagating and evanescent
waves. It is demonstrated that our proposed decomposition breaks down for evanes-
cent waves and needs a special phase rotation to account for these in the wavenumber
domain. How to exactly find this phase rotation is not completely understood at this
time, it is, however, related to the non-analytic behaviour of the functions in the complex
wavenumber plane.

In Chapter 5 snapshot wavefield decomposition is applied to imaging in the context
of RTM. RTM is commonly implemented using scattering wavefield modelling operators
that advance a wavefield from one time step to the next. Snapshot wavefield decom-
position is ideal in this context as it only requires the wavefield and its time derivative
everywhere in space at a given instance in time, see Appendix C. These parameters are
always present when modelling wavefields using time stepping. Compared to the other
decomposition schemes commonly used in the same context it demonstrates similar
qualities and often has better performance for nearly vertical structures when decompos-
ing normal to expected contrasts in medium parameters during imaging, see for example
the central salt dome in Figure 5.5. For horizontally layered media the performance is
equivalent to the conventional schemes used in RTM. It was also demonstrated that snap-
shot wavefield decomposition during imaging improves RTM results for real data, see
Figure 5.9. Snapshot decomposition in this case removed dominant low-wavenumber
artefacts. From an implementational point of view snapshot decomposition has memory-
requirement advantages and associated compute-time advantages over the other pre-
sented decomposition schemes in the context of RTM, see Figure 5.10. This should make
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our proposed decomposition scheme the scheme of choice for wavefield decomposition
during RTM.

During the work that culminated in this thesis, data were acquired for the imaging
of Scholte waves, one of the original goals of this Ph.D. project. Scholte waves, like head
waves, are interface bound and have a linear travel-time dependence on the source-
receiver distance parallel to the generating interface. It was hoped that some of the
head-wave imaging techniques that were to be developed as part of this Ph.D. project
could be applied to the recorded Scholte waves. However, they were hardly present in the
data. The data were still used for conventional imaging though, including the application
of snapshot decomposition during RTM. These results are presented in Appendix A.

6.2. OUTLOOK

The proposed snapshot directional wavefield decomposition scheme, as presented in
Chapter 2, does not work for evanescent waves. In Chapter 4 they could have been ex-
plicitly accounted for by horizontally phase shifting the data by 7/2 in the wavenumber
domain. However, it is still unknown how to generalisably incorporate evanescent waves
into the decomposition as evanescent components mix with propagating components
for all wavenumbers. It may have to do with the phase alignment between the pres-
sure and the particle velocity. There is still the need to better understand the behaviour
of evanescent waves during snapshot decomposition before we can generalize our pro-
posed theory for all types of scalar waves.

Snapshot wavefield decomposition also does not properly take variations in medium
parameters into account during decomposition, even when the medium parameters
can already be used to define the decomposition direction. Extending the scheme to
heterogeneous media would be a big improvement.

Currently the scheme only works for scalar wavefields. It would be interesting to ex-
tend it to vectorial wave equations like the elastic or electromagnetic wave equations. For
the elastic wave-equation the directional decomposition will most likely be a two step
process. First the elastic wavefield is decomposed into pressure and shear potentials,
which in an isotropic time- and space-invariant medium satisfy scalar wave equations,
followed by a directional decomposition of the potentials akin to the scalar decompo-
sition of acoustic wavefields in Chapter 2. From a purely mathematical point of view
it would also be desirable to generalize the concept to arbitrary second-order partial-
differential equations. Mathematical examples that may benefit are the Navier-Stokes
equations.

During snapshot directional wavefield decomposition the magnitude of the wave-
number vector is used. This term is strongly related to the square root of the Laplacian,
or Laplace operator, which is the sum of second order spatial derivatives. Often only
the positive principle square root of the Laplacian is considered (Caffarelli and Silvestre,
2007), which results in an integro-differential operator with infinite spatial support. It is,
however, suspected that if we choose the signs of the square root similarly to as was done
in this work the resulting operator will have quasi-pointwise support, like a conventional
differential operator. For our proposed decomposition this would mean that it could be
formulated using differential operators and could be done on a local multicomponent
receiver basis instead of requiring arrays of receivers for Fourier transforms, as is the case
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for traditional wavefield decomposition techniques. This would entail resource savings
when one is only interested in directionally decomposing wavefields to understand wave-
fields at a given location, as imaging and other Fourier domain processing techniques
still require dense arrays of receivers. Furthermore, if the decomposition could truly be
formulated as a local operation its dependence on medium parameters would simplify to
alocal dependence, potentially simplifying the decomposition in heterogeneous media.

For wavefield decomposition in RTM the current algorithmic implementation is ac-
ceptable, albeit slow, and currently only works for problems with two spatial dimensions.
To make the technique truly applicable to real world problems the algorithm has to be
extended to three spatial dimensions and sped up. The constraining factors here are
the employed Fast Fourier Transforms (FFT), which for sufficiently large problem sizes
are still prohibitively slow. A local decomposition operator in the space-time domain
should be sought such that the method scales better with increasing problem size and
distributed computational resources.

Concerning the original goals of this Ph.D. project, these are still worth chasing. Imag-
ing using head waves still has significant potential, especially because acoustic head-
wave amplitudes are direct indicators of the density ratios at their generating interfaces.
This is a special characteristic of head waves and could in the future aid in better con-
straining density models, a problematic topic in full waveform inversion for example.

With respect to the Danube survey it would be interesting to return to the site to un-
derstand why Scholte waves were hardly present in the recorded data. Shallow coring of
the sediments under the Danube could be very revealing as it would inform about the
composition of the mud at the bottom of the Danube, which might be responsible for
the very weak and slow Scholte waves that were discovered. Coring would also help to
better understand the near surface acoustic velocity structure below the Danube. Espe-
cially arrays of coring might bring to light why events in the common-midpoint (CMP)
gathers often had distinctly non-hyperbolic moveouts. Better understanding the sub-
surface would allow for an update in the acquisition configuration for a reshoot along
the river. Before a reshoot the water depth should be more thoroughly investigated as
in some instances acquisition occurred in less than two meters water depth. During a
reshoot measures should be put in place to mitigate the generation of tube waves along
the streamer and a more robust GPS setup should be sought. The setup in the presented
survey generated many tube waves where the streamers were connected and encoun-
tered GPS gaps sufficiently large to hamper processing.

All in all this work opens up exciting new possibilities and leaves behind some unan-
swered questions. We hope that the developed snapshot directional wavefield decom-
position scheme will find ample application in better understanding wavefields as they
evolve in complex models and in imaging according to expected variations in media,
instead of simply in the vertical direction.
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P*S- AND P-WAVE
ACQUISITION AND
PROCESSING OF RIVERINE
(DANUBE) DATA NEAR FRUSKA
GORA

Previous research by Allouche (2011) had demonstrated the presence of surface- and shear-
head-wave like waves along fluid-solid boundaries in recordings in the Danube. These
mode-converted waves travel along the river bottom due to an evanescent acoustic wave-
field, excited by an air-gun, in the flowing river. Their travel time varies linearly with
respect to their point of excitation. In the case of the Danube this point is below the airgun
on the river bottom where the evanescent acoustic wavefield in the water first mode con-
verts to a propagating wavefield. Due to these promising results an additional survey with
more channels, denser receiver spacing and longer offsets was conducted downriver in the
region around Fruska Gora, next to Novi Sad, Serbia. The survey had two primary aims,
the further investigation of the aforementioned mode-converted waves as well as gener-
ating interpretable P-wave migrated sections to better constrain the geology of the area.
During the survey, for unknown reasons, hardly any mode-converted waves were recorded.
This made the processing of the data in the context of imaging critically refracted S-wave
events impossible. The data, however, could still be processed to attain interpretable mi-
grated P-wave sections below the river. In this appendix we show how the P-wave data
were processed, including reverse time migration results using snapshot wavefield decom-
position, and present final transects for the whole survey. These sections are now available
for further geological interpretation.
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A.1. P*S WAVES & THE FRUSKA GORA SURVEY

This survey was meant to be a further validation of a method presented in the Ph.D.
thesis by Allouche (2011). Allouche worked on elastic mode conversions of evanescent
acoustic waves at fluid-solid interfaces, resulting in Scholte waves, a type of surface wave.
Allouche et al. (2011) demonstrated and described the existence of P*S waves, a special
type of mode converted wave. She also found them in real streamer data during surveys
on the Danube, see Drijkoningen et al. (2012). In classical earthquake seismology P-
waves correspond to the compressional wavefield after the decomposition of an elastic
wavefield into one P-wave and two shear-wave potentials, called SH for horizontal shear
and SV for vertical shear. The sum of the shear potentials corresponds to the shearing
component of the elastic wavefield and its waves are called shear-waves, or S-waves. With
respect to a single interface, PS-waves are used to refer to incident P-waves that mode-
convert at the interface to S-waves. Due to classical ray theory, see Aki and Richards
(2002) for example, this PS notation is only strictly valid for geometric waves, i.e. waves
that obey Snell’s law for real angles. The * denotes that the P-wave in question is an
evanescent wave, which obeys Snell’s law for complex angles, that mode-converts to a
propagating shear wave. The different possible conversion modes of a spherical acoustic
wavefield, in a homogeneous fluid medium, impinging on a solid medium are shown as
wavefronts in Figure A.1.

Of particular interest here are the mode-converted waves, the PS-waves in the lower
half of the figure. They can be categorized into three types: 1) head-wave-like geometric
PS waves, which propagate with a constant magnitude of the horizontal slowness, and
are denoted as fast and slow PS-Waves; 2) the geometric component of the PS-wavefield
whose traveltime is not linear with offset is denoted by the geometric wavefront in Fig-
ure A.1; and 3) the labelled non-geometric component of the PS-wavefield, drawn as
a dashed wavefront. This non-geometric wavefield decays exponentially with distance
away from the onset of geometric propagation along the ray path, see for example Al-
louche et al. (2011). At the interface this wavefield is related to the Scholte wave, drawn
approximately since its propagation speed slightly differs from the S-wave velocity, and
its associated leaky-wave mode, which is not shown. The Scholte wave is excited along
the fluid-solid interface by the incident wavefield, and travels radially away from the
source along the interface, similar to other surface waves like the Rayleigh or Stoneley
waves. The travel speed of the Scholte waves can be exactly determined for a stratified
medium using expressions given by de Hoop and van der Hijden (1984, 1985).

To be able to image with these non-geometric waves and the associated Scholte waves
a shallow riverine survey was designed and conducted north of Fruska Gora, Serbia. The
survey site was chosen due geological interest in Fruska Gora, one of the scattered island
mountains in the Pannonian basin, and because it is downstream of the previous suvery,
which was near Kulcs, Hungary. The new survey was therefore expected to occur under
similar circumstances, and indeed the river was only slightly wider and the river depth of
5-15 m was similar. The major expected geological difference was that locally near Fruska
Gora the rocks are metamorphic which could result in a different sediment composition.
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Figure A.1: Wavefronts of expected waves excited by a source, whose location is marked by a cross, in a solid-
fluid double half-space model. ¢y corresponds to the acoustic propagation speed in the fluid, while c¢; and cs
correspond to the P-wave and S-wave propagation speeds in the solid. The fluid and solid mass densities are
indicated by p r and p; respectively. Note that the Scholte-wave traveltimes are only approximate in relation to
the other traveltimes.

A.1.1. AIMS OF THE P*S SURVEY

The primary aim of the P*S portion of the survey was to acquire mode-converted waves.
As these strongly depend on the water depth a shallow river was needed for the survey.
After acquisition of these data, the data were to be processed into an image of the subsur-
face, see for example Drijkoningen et al. (2015), and further analysed.

This survey differed from the earlier Danube survey in Hungary by Allouche (2011)
in that a longer streamer configuration as well as a denser streamer configuration were
used to acquire mode-converted waves. The longer streamer would be used to find areas
with a good P*S/Scholte wave response. Note that both configurations made use of the
same three 24-channel 3.125 m-spacing monocomponent acoustic pressure streamers.

P*S- and associated Scholte waves at quasi-horizontal interfaces, when recorded us-
ing horizontal acquisition arrays, exhibit quasi-linear moveout on common shot gath-
ers. For this reason it was hoped to apply head-wave based imaging techniques to the
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Figure A.2: Map of the Fruska Gora survey area. The coloured lines represent the different seismic legs of the
survey. The letters denote the start and endpoints of segments of the legs. The black letters correspond to an
echo-sounder leg. The base map, including topography, water bodies and roads, was made by Thunderforest,
a project operated by Gravitystorm Limited, based on OpenStreetMap data. The actual map was made using
QGIS (QGIS Development Team, 2018).

P*S/Scholte waves, as they exhibit the same quasi-linear moveout, see Holicki and Dri-
jkoningen (2016).

A.1.2. ATMS OF THE P-WAVE SURVEY

The P*S survey would naturally also record P-waves, which are ideal for subsurface imag-
ing due to well established processes, see for example Yilmaz (2001).The survey site
around Fruska Gora, Serbia, was chosen due to its interesting geological history, see for
example Matenco and Radivojevi¢ (2012) and Tolji¢ et al. (2013). Fruska Gora is an in-
selberg, approximately 80 km long and 15 km wide at its widest. It can be seen as the
mountain south of Novi Sad, Serbia, south of the Danube as shown in Figure A.2. The
structure is oriented West to East, and is bounded on the north and east by the Danube.
It appears to extend further east under the Danube, possibly bending to the north-east.
This, however, is poorly constrained. As such, the target of the survey was to seismically
image under the Danube to better constrain the geology of the area. The final tracks used
for the geological part of the survey can be seen in Figure A.2.
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A.2. DATA ACQUISITION

The survey was conducted over a fourteen-day period, from 26/10/2015" to 08/11/2015.
During the first three days acquisition equipment was deployed on a rented vessel and
pontoon. The following five days were used to test the equipment and record data for the
geological part of the survey as P-wave data acquisition is robust and well understood.
The following three days were used to record P*S and associated Scholte waves with a
densely sampled streamer array at different offsets. We call this the converted leg of
the survey as opposed to the geological leg which was the first five days. The last two
survey days were used to acquire simultaneous-source data, where multiple sources fire
at different times during the recording of a shot record. On the last day the equipment
was disassembled and loaded off the vessel.

The survey acquisition equipment consisted of several 20 in® airguns, an airgun con-
troller, a compressor, a generator, three 75 m 24-channel streamers, two Global Position-
ing System (GPS) recorders, one dual-frequency-band echo-sounder and four acquisition
Personal Computers (PC) connected to an Uninterruptible Power Supply (UPS). Three
of these PCs were used to record the seismic data while the other was used to record the
echo-sounder data and the GPS position. The UPS was there to guarantee computer-side
data acquisition in the event of a power loss. An overview of the acquisition pontoon can
be seen in Figure A.3.

A.2.1. GPS DATA ACQUISITION

To accurately locate the seismic data the GPS location of the boat was tracked. Figure A.3
shows the relative positions of the two employed GPS recorders on the vessel. The echo-
sound GPS was used to calibrate the time of the echo-sound recordings while the seismic
GPS was used for positioning and time-synchronisation of the seismic data. The airgun
and streamer were towed behind the platform at the back of the pontoon. The back of
the platform had a 13m offset along the length of the pontoon with respect to the seismic
GPS (red in the figure).

The GPS data were recorded every second using 8-bit American Standard Code for
Information Interchange (ASCII, ISO/IEC 8859) via a serial link between the GPS and
computer. The recorded data is in the World Geodetic System (WGS) 1984 coordinate
system; the standard for many GPS devices that primarily use the GPS satellite network
of the United States of America (USA). The horizontal error of the civilian GPS is about 7.8
m at 95% confidence according to the USA government (Department of Defense, 2008).
Note that no satellite signal records were kept to later correct the GPS locations using
public synthetic base stations to improve accuracy.

A.2.2. ACQUISITION OF THE ECHO-SOUNDER DATA

The echo-sounder used during the survey was a dual-frequency-band KEL (Knudsen
Engineering Limited) 120179. Echo-sounders work like zero-offset seismic, i.e. a trans-
ducer emits an acoustic wavefield that is scattered back by surrounding reflectors and
is recorded by the transducer after a short transducer dead time, where the transducer
changes from being a source to being a receiver. The basic idea is that the recorded signal
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Figure A.3: Photograph of the pontoon and tugboat (top). Diagram of the pontoon (bottom) on which the
acquisition equipment was located during the survey. The boat during the survey was at the front of the
pontoon, while the streamers were dragged behind the pontoon.

is assumed to only come from the depth direction and, as such, is projected into the verti-
cal and converted to depth using a given acoustic velocity. The first major event per trace
is then assumed to be the water bottom, as it is expected to be the strongest reflector.

In this survey a chirp system was used that emits a chirp in two frequency bands with
central frequencies of 33 kHz and 210 kHz. This theoretically allows the system to image
below the water bottom. During the survey only the 33 kHz channel was used. The chirp
was corrected for by the device.

A.2.3. ACQUISITION OF THE SEISMIC DATA

Although three 75 m streamers were used in this survey, these were not dragged next to
each other behind the pontoon as is common in large scale 3D seismic surveys. During
the geological part of the survey they were placed behind each other to create one effec-
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tive streamer with a length of 225 m. This was done as seismic velocity analysis requires
larger offsets for longer recording times. These streamers had 24 channels each with a
receiver spacing of 3.125 m. For the converted leg of the survey denser streamer spacing
was desired, as such, the streamers were dragged directly next to each other and offset
by 1 m each in the streamer direction. Ideally this should have been one third of 3.125 m
such that an effective streamer is obtained with a length of 77.08 m and a receiver spacing
of 1.042 m.

The analogue streamer data were recorded using three 24-channel Geodes™, each
connected to its own PC. The Geode corresponding to the nearest offsets had no gain
applied while the other streamers had a 12 dB gain. Recording was triggered in parallel
via a signal from the airgun controller, the airgun would then fire a couple of milliseconds
later. Computer times were synchronized over an Ethernet-based local area network to
within one second.

Data were recorded for 2.5 s at a sampling rate of 0.5 ms, resulting in 5000 recorded
time samples for each shot record. The data were recorded using the SEG-D format, see
SEG-D, Rev 3.1 (2015) for the latest revision, to hard drives inside the computers.

A.3. PROCESSING OF THE ACQUIRED DATA

Preliminary data processing occurred in the field. This mostly consisted of quality control
of the data. Back in the Netherlands, data processing began in earnest. First the GPS data
were processed to locate the acquired seismic data. Then the seismic data were processed.
In tandem the echo-sounder data were processed to understand the water depths in the
region.

A.3.1. PROCESSING OF THE GPS DATA

During the survey GPS positioning was sometimes intermittent due to recording too
few GPS satellite signals. Sometimes only four satellites were available, which is the
minimum for GPS positioning on Earth. Thisled to intermittent GPS tracks which needed
post-processing.

The first processing step was to detect where the GPS location remained stationary,
as this is unexpected on a moving vessel, and the GPS was sufficiently sensitive to pick up
centimetre-scale relative changes in position. The gaps in the data were then corrected in
two phases. In the first phase gaps of less than ten seconds, equating to ten gps positions,
were algorithmically detected and interpolated. In the second phase larger gaps were
interpolated manually.

During the first phase the gaps were interpolated using a five-point weighted orthog-
onal least-squares fit of the neighbouring five points to either side of the gap. Orthogonal
regression is also known as total regression in statistics, or more specifically for the two
dimensional case as bilinear or Deming regression (Deming, 1943). The effect this has
is that the best fit line minimizes the distance of the line to the fitting points, whereas
simple linear regression only minimizes the error in terms of one of the coordinates. As
such orthogonal regression is better for the interpolation of GPS coordinates as errors
can occur in both latitude and longitude.

The used weights decreased linearly away from the gap, i.e. weight w =1-(i —1)/6,
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where i is the point index starting at one away from the gap. This allowed the fit to
perform better at the start and end of turns of the boat.

During the second correction phase the remaining gaps were interpolated using ei-
ther orthogonal regression, splines or Bezier curves. For bigger gaps the boat speed
before and after the gap was additionally estimated to constrain the arc length of the gap
for interpolation.

Special attention was given to leg four where the GPS coordinates were missing at
the start. This meant that the GPS location could not be interpolated, but had to be
extrapolated for this part of the survey. As such, the absolute location data are uncertain
by at least tens of meters, but the relative coordinates are certain to within five meters.

After correcting remaining gaps the GPS data were pruned for outliers, these often
occurred around gaps. Pruning was done using an iterative approach by moving an
eleven-point window over the location data. For each window the best-fit line was esti-
mated using weighted orthogonal least-squares excluding the centre of the window. If the
perpendicular distance of the point to the estimated line was at least twice as large as the
average perpendicular distance of the other points in the line then the point was flagged
as an outlier. In the next step, small groups of outliers with less than ten consecutive
members were fitted using the same bilinear regression technique. Larger groups were
interpolated using again either least-squares perpendicular offset line fitting, splines or
Bezier curves. To smooth out any remaining kinks in the data the same eleven-point-
window detection algorithm was used to interpolate their window centres over the entire
line. The final result was a smooth GPS track which could be used to interpolate location
data and apply geometries to the seismic data.

A.3.2. PROCESSING OF THE ECHO-SOUNDER DATA
The processing of the echo-sounder data began by converting the echo-sounder data,
which was stored in the proprietary “.keb” format to SEG-Y Rev. 0 files, see SEG-Y_r2.0:
SEG-Y revision 2.0 Data Exchange format (2017) for the latest revision, using the Knudsen
conversion tool in the PostSurvey™ software package”. The many datasets were then
concatenated and erroneous recordings were deleted to create long lines per survey day,
which were truncated to match the recorded seismic spatially.

An example of the processed Echo-sounder data can be seen in Figure A.4, which
shows the first kilometre of the seismic acquisition line from 29/10/2015. Note that
where the data are purely black no river bottom was detected and the data were muted.

A.4. SEISMIC PROCESSING

Workflow A.1 shows the P-wave processing workflow that resulted in geologically inter-
pretable migrated sections.

A.4.1. DATA CONVERSION & EDITING

Processing the seismic data began with converting the seismic data, stored in the SEG-D
format, see SEG-D, Rev 3.1 (2015) for the latest revision, to seismic unix files using the
“segdread” function from the seismic unix package (Cohen and Stockwell, 2008). After

2https:/ /knudseneng.com/software/postsurvey (Accessed: 04/12/2018)
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P-Wave Processing Workflow
. Data Conversion & Editing
* Converting SEG-D to SEG-Y to SU
* Concatenating streamer data sets

* Pruning for mistriggered and missing shots
* Approximately time correcting for mistriggered shots on the first streamer

. Geometry Construction & Assignment

* Retrieving recorded shot times

* Constructing distance metric based on boat path

¢ Interpolating source, receiver & CMP locations based on shot times
 Estimating streamer slip and offset correcting data

* Assigning geometry

. Polarity Reversal, Trace Kill & Source Trigger-Time Differences

* Reversing inconsistent trace polarities

* Removing 50 Hz-dominated traces

* Sorting to common-offset gathers

 Picking and aligning first breaks and correcting for mistriggers or delayed
triggers

. Filtering, Gaining & Temporal Truncation

* Filtering using a cos® bandpass filter 50-100-150-200 Hz
* Gaining in offset and time
* Truncating Datato1ls

. NMO Velocity Analysis & Velocity Model Building

* Sorting to CMP-Offset
* Semblance analysis & constant velocity panels
* NMO velocity picking & model interpolation per CMP

. NMO Correction, Mute & Stack

* NMO correction, stretch muting & stacking
¢ Alpha trim during stacking for 02/11/2015

. Pre-Stack Time Migration & Image Stack

* NMO velocity model interpolation
¢ Kirchhoff pre-stack time migration
* Stacking images

. Pre-Stack Depth Migration (RTM) with Snapshot Decomposition & Image Stack

* Converting RMS velocity model to depth (Dix’s equation)
* Smoothing velocity model in time & space
* Reverse-time migrating with snapshot decomposition

. Image Post-Processing
 FKfiltering & trace balancing

Workflow A.1: P-wave processing workflow.




102 A. RIVERINE P*S- & P-WAVE SURVEY NEAR FRUSKA GORA, SERBIA
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Figure A.4: Example of echo-sounder data from 29/10/2015. For the start and the end of the section see
Figure A.2.

that the data were edited for misfired shots. If no data were recorded, i.e. only noise was
recorded, the data pertaining to that field record number were deleted. Because of the
fact that the survey used three streamers, hooked up to three different computers for data
recording, mismatches in field record number were frequent. These were accounted for
based on the trigger time. After editing the data the three datasets were concatenated
into one effective streamer.

A.4.2. GEOMETRY CONSTRUCTION & ASSIGNMENT

The next processing step was to set the location information in the trace headers of the
data. To this end the shot times of the trace headers needed to be extracted. These
were then used to interpolate the source location based on the known source offset with
respect to the back of the boat, whose GPS location was known. As this survey was 2D
and the boat was moving up-stream it is acceptable to assume that the airgun, the source
for this survey, was dragged behind in the wake of the boat, and thus followed the same
GPS track. Given the source location, and the known offsets of the start of the streamers it
was then also possible to interpolate the individual receiver locations inside the streamer,
which had a receiver spacing of 3.125 m. Based on the interpolated source and receiver
locations Common-Mid Points (CMPs) were calculated.

Having computed the acquisition geometry it was assigned to the seismic metadata,
the SEG-Y trace headers. During this process it was noticed that some of the streamer
offsets with respect to the pontoon were inconsistent with recorded shots. The actual
offsets were determined by Linear MoveOut (LMO) correcting the data with a constant
velocity of 1,500 m/s. It was found that the error was generally around a multiple of 3.1
m, which is approximately the streamer spacing. For the third leg this meant that four
offsets were duplicated, see Figure A.5.

It was also found out later during processing that during the third leg the streamer
started to slip at some point as common offset traveltimes started to increase from shot
to shot. This streamer slip was manually corrected for earlier in the processing flow, Step
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A.4.3. POLARITY REVERSAL, TRACE KILL & SOURCE TRIGGER-

TIME DIFFERENCES

Another acquisition-related processing step was to correct source timing for individual
shots as the airgun firing time was inconsistent with respect to the trigger time. Fig-
ure A.6a shows a Common-Offset Gather (COG) with inconsistent direct-wave arrival
times. Correcting for this was a two-step process. First the traveltime differences were
corrected in the following way. The waveform of the direct wave was estimated for each
trace, under the constraint that the waveform is not allowed to vary significantly from one
trace to another in the nearest-offset COG to the source. This allowed for automatic time
shifting of the traces. The method, however, was not perfect and sometimes the picked
times were not accurate, requiring manual adjustment as the second step. Correcting for
the variable airgun firing delay in Figure A.6a) resulted in Figure A.6b).

Figure A.6 clearly shows a multiple with a period of 0.05 s, corresponding to a one-way
distance of 37.5 m in water with an acoustic velocity of 1,500 m s™!. This is unlikely to
be a river bottom multiple, as the river bottom depth ranged from 4 to 16 m, nor is it
riverbank multiple, as the river was about 600 m wide. This is further corroborated by the
fact that the source-to-riverbank distance was not constant, which would have resulted
in multiples with a non-constant first arrival and period. The most likely candidate to
explain this phenomenon is the inherent bubble pulse of airguns, with common periods
in the order of 10-100 ms (Zhang et al., 2017), which fits the 50 ms period of the multiple.
The 50 ms period does seem too long for the high-frequency airgun used in this survey
though. Another possible option is a resonance induced inside the streamer.

As this event did not seem to contaminate the later produced stacks it was not re-
moved. Initially attempts were made to remove it using gapped Wiener filtering, which
due to the lower-frequency content of the event did not work well. Multiple estimation
and removal was also attempted but did not work well for the same reason.

Figure A.6 shows that the first event arrived at about 0.026 s. Since the panels are
approximately zero-offset there is a 0.026 s trigger time delay before the airgun fires.
This was accounted for later in the processing flow, just before velocity analysis, by time
shifting all traces by 0.026 s.

A.4.4. NOISE & ABSENT P*S/SCHOLTE WAVES
The data were now essentially ready for P- and P*S-wave processing. Sadly though, P*S-
waves were scarce. We do not know why this was the case. A part of the reason could be
due to the strong low-frequency noise in the data. Figure A.7 shows a low-pass filtered
record using a cos? taper from 50-100 Hz. The low frequency wave, indicated as a Scholte
wave, exhibits the typical dispersive behaviour of surface waves while travelling at a speed
of 60 to 70 m s~!. For our data near Frugka Gora it is only clearly visible on the second
streamer and only in this frequency band. It is much weaker at higher frequencies. On
the first streamer it is obscured by noise, while it is only partially recorded at the end of
the section on the third streamer.

The absence of P*S waves and associated Scholte waves from practically all shots in
the survey came as quite a surprise. An earlier survey further up the Danube in Hungary
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Figure A.5: Common shot gathers of the first shot from the third leg (31/10/2015). A) shows an uncorrected
gather while B) shows the same gather after offset, polarity and LMO correction.
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Figure A.6: Nearest common-offset gather from 31/10/2015 with uncorrected (a) and corrected (b) direct-wave
arrival times.
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had very clear records of Scholte waves (Drijkoningen et al., 2012). They were directly
visible and dominant on the raw records, as can be seen in Figure A.8. Apart from the
greatly diminished amplitudes in the newer survey, the Scholte waves in the newer survey
has a much stronger dispersive behaviour than the Scholte waves recorded in the past.

The dominant noise source in Figure A.7 below 50 Hz is also indicated in the figure
as a tube wave. Tube waves are waves that travel along cylindrical bodies, like streamers.
They have a linear moveout. On the first streamer they generally travelled towards the
source, as seen in Figure A.7, while on the third streamer they tended to travel away from
the source. On the second streamer they travelled in both directions. During the survey it
was noted these were predominantly generated where, due to water drag, the streamers
were slapping against each other.

Tube-wave removal was attempted by filtering individual streamers in the wavenum-
ber-frequency domain, but 24 channels per streamer were not sufficient to do this well.
For this reason, and the difficulty of finding good Scholte-wave recordings, P*S-wave
imaging as a processing goal was abandoned. The data were further P-wave processed
into geologically relevant sections.

A.4.5. FILTERING, GAINING & TEMPORAL TRUNCATION

As most of the noise sources were dominant in the low-frequency band, see Figure A.7,
the data were low-cut filtered using a cosine-squared taper from 50 Hz to 100 Hz. This
filter removed a lot of the noise while not affecting the P-wave signal too harshly. The
desired S-waves and/or Scholte waves, should they have been present, would have been
filtered out by such a filter. In Figure A.9 are the frequency spectra of ten consecutive
shots, suggesting that the airgun did not produce significant energy above 500 Hz. This
is in line with the rest of the dataset and, as such, the data were high-cut filtered using
a cosine-squared taper from 500 Hz to 600 Hz. Additionally for the final stacks it was
found that a frequency range of 50-100-150-200 Hz produced the best results. Higher
frequencies did not stack well after NMO.

Beyond tube-wave removal, the horizontal-wavenumber-frequency domain was also
investigated for the removal of shear waves, like Scholte waves, based on their apparent
velocity. Due to the limited number of channels and irregular receiver spacing between
streamers, this was not further pursued.

Before velocity analysis of the binned data the data were gained. An offset-dependent
amplitude gain was applied to approximately account for geometrical spreading while an
exponential gain, exp(at), with a being the gain constant, was applied to account for am-
plitude decay due to absorption over time. Finally the traces were trace balanced based
on the RMS of their amplitudes for better event detection in the upcoming semblance
analysis. Then the data were reduced to 1 second as no primary reflections were seen
beyond this time in the data.

A.4.6. NMO VELOCITY ANALYSIS & VELOCITY MODEL BUILD-
ING

The data were now binned into 6.25 m CMP bins. 6.25 m bin spacing ensured that there

were generally at least 48 traces per bin and more than 100 m offset for the first three legs,

which improved the stacking power of the CMPs. For the fourth leg only one streamer
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Figure A.7: High-cut filtered (50 Hz to 100 Hz) shot record showing tube-wave noise (one event marked in red)
especially observable on the first streamer, channels 1 to 24. Additionally there is an event (marked in blue)
travelling at about 60-70 m s—1 which is interpreted as a Scholte wave.
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Figure A.8: Example of clear Scholte waves on three consecutive raw shot records from an earlier survey further
up the Danube in Hungary (Drijkoningen et al., 2012).They are the two visible low-frequency events on the
section (marked in red), one faster than the other.
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was used due to waterway regulations. However, the bin size of 6.25 m was retained even
though this meant that NMO velocity analysis was severely limited.

NMO velocity analysis was now performed on the CMP-binned data. It was found
that best results were obtained using very simple velocity models and only with offsets
less than 75 m. Figure A.10 shows a typical CMP gather and associated weighted sem-
blance. The weighted semblance was computed according to Luo and Hale (2012). In
the CMP gather on the left it is very difficult to discern individual reflections. There are
weak reflections with an acoustic water velocity of 1,500 m s~! around 0.25 s. These are
suspected to be two out-of-plane riverside reflections, with a rough riverside-to-boat
distance of 150 m to 200 m. As can be seen for this CMP gather, picking velocities was
very difficult due to the significant amount of undesired non-inline events on the panels,
as well as the fact that many of the P-wave events did not seem to have a hyperbolic
moveout.

A.4.7. NMO CORRECTION, MUTE & STACK

After picking smooth RMS velocity models for the legs the data were NMO corrected,
stretch muted and stacked to generate geologically interpretable quasi-zero-offset sec-
tions. NMO stacking was done using a cosine-squared NMO-stretch mute window based
on the stretch factor of NMO times. Here the stretch factor S is defined as:

2
2 Xcm
tO + (Crms(l;o))
S=———"—"—-1 (A.1)
14

+

where 1y is the zero-offset arrival time, xcnp is the source-receiver distance inside the
CMP gather and cyms(fo) is the RMS velocity as a function of the zero-offset arrival time.
Tapering began for stretch factors greater than 0.45 and ended for stretch factors greater
than 0.55, past which all events were muted. For the data from 29/10/2015 an alpha trim
of 0.2 was additionally used during stacking to remove outliers. To denoise the resultant
stacks the data were again filtered using the same 50-100-150-200 Hz cosine-squared
taper and trace-balanced over the entire stack.

A.4.8. PRE-STACK TIME MIGRATION & IMAGE STACK

Stacking NMO-corrected traces is only approximately correct. More correct is to migrate
the data. As such, the picked velocity model was used to apply pre-stack Kirchhoff time
migration to the data. This was done using the CREWES Matlab™ function “kirkshot”
(Margrave and Lamoureux, 2019). After migration the image gathers were stacked with
an alpha trim of 0.2. The resultant images were filtered using the same 50-100-150-200
Hz taper and trace balanced.

A.4.9. PRE-STACK DEPTH MIGRATION (RTM) WITH SNAPSHOT

DECOMPOSITION & IMAGE STACK
In order to see whether the wavefield decomposition as developed in Chapter 5 would
improve the imaging, the data were also reverse-time migrated. The picked NMO velocity
model, however, is in time. To convert it into a depth velocity model Dix’s equation
(Yilmaz, 2001) was used to first compute interval velocities.
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Figure A.9: Amplitude spectra of the first ten shots from the third leg. The densely dashed lines indicate the the
outer bounds of the applied cos? taper, while the coarsely dashed lines indicate the inner bounds.
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Figure A.10: CMP gather from 31/10/2015 (left) and its NMO semblance (right). The two reflections below 0.2 s
are probably two cross-line reflections from the riversides, roughly 150 m to 200 m to either side of the boat.
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A point of attention with Dix’s equation is that where the RMS velocity gradient de-
creases the interval velocity also decreases, leading to possibly unintentional low veloc-
ities. To convert the interpolated RMS velocity model to interval velocities, each time
sample was individually converted. The resultant interval velocity model in time was
smoothed before it was converted, in a one dimensional sense, to a depth velocity model.
The resultant model was smoothed again and was then interpolated to a one-meter spac-
ing for reverse-time migration with snapshot wavefield decomposition as described in
Chapter 5.

A.5. RESULTS

In Figure A.11 the resultant sections from the processing described above are shown. It
compares a generated NMO stack to its time and depth migrated images respectively.
The Kirchoff Pre-Stack Time Migrated (PSTM) image and the NMO stack in this figure
have qualitatively similar event continuity and slightly out perform each other in different
parts of the sections. For example event continuity is superior on the NMO stack between
0.1-0.2 s and 3.0-4.5 km. The RTM image has generally worse event continuity and overall
slightly more noise due to the aliased source sampling. Its vertical axis, however, is depth,
not time.

In the end the NMO stacks were chosen to be the best for structural interpretation.
They have the best overall event continuity and more distinct events can be seen on the
NMO stacks than in the migrated images. Therefore we will only give the NMO stacks for
all the other tracks for geological interpretation. Due to the less coherent nature of the
depth image we do not consider it to be the best for structural interpretation, the Kirchoff
images on the other hand are acceptable.

For a comparison on whether snapshot directional wavefield decomposition, as dis-
cussed in Chapters 2 and 5, improved imaging we consider Figure A.12. It shows in the
left panel the RTM image for the shot without snapshot decomposition before imaging.
The centre panel shows the RTM with snapshot decomposition and the right panel shows
the difference between the two. Note that the data were gained using a linear gain from
zero to one hundred at the bottom. We can see that the two RTM images are very similar.
Wavefield decomposition did not significantly improve the image in this case. The dif-
ference panel shows that there is a difference resulting in a possible improvement of the
image. Note though that amplitudes were further boosted by a factor of three to make
them comparable. The same structures are visible in all three panels, suggesting that
the decomposition mostly affected amplitudes, although some phase effects are present.
This makes sense considering the smoothness of the velocity model in Figure A.11. The
only back-scattered events that could occur were diving waves. For the very-near-offset
data these would predominantly occur at the top of the panels. This is also where we see
the largest difference in results. Hence these panels show that for the interpretability of
the sections the decomposition in this instance made little difference.

We now present the other legs beginning with the first NMO stacked section from
29/10/2015. This section was processed by Vani¢ (2016) as part of his M.Sc. thesis, as
such the processing flow deviates slightly from the one described here. Note that the data
were not further pre-stack time migrated nor depth migrated.

Figure A.13 represents the best generated stacks, based on the best quality data from
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the survey. Initially the same processing flow as for this stack was applied to the rest of
the data. The results, however, were not comparable in quality. As such, adjustments
were made to the processing flow. The NMO stacked result for 30/10/2015 can be seen
in Figure A.14. The stack has overall a lower quality than the former stacked section,
Figure A.13. The stacked sections for the other tracks can be seen in Figures A.15 and
A.16.

A.6. DISCUSSION

This survey was fraught with many challenges. Originally it was designed for detecting
and recording P*S/Scholte waves, but for unknown reasons these are hardly present in the
data. They were either masked by the strong low-frequency noise in the data, although
the noise was not as strong for all channels, or the P*S/Scholte waves were not sufficiently
generated in the subsurface. A possible explanation, see Vanic (2016), is a thick mud layer
on top of the river bottom with a very low S-wave velocity. Very slowly travelling waves,
interpreted as P*S-waves were found during the survey, see Figure A.7, however, no direct
proof of a thick mud layer was found. Evidence of dragging the streamer through the
mud at the bottom of the river was found though, suggesting the presence of a mud layer
at the bottom of the river for a part of the survey. This is not conclusive though, and as
such we do not know why P*S/Scholte waves were not consistently recorded during the
survey. They were present every day during an earlier 200 km Danube survey in Hungary
(Drijkoningen et al., 2012), as can be seen in Figure A.8. The interpreted Scholte waves
for this survey travelled considerably faster than those found in the current survey.

The aforementioned low-frequency noise below 100 Hz, like the tube waves, was also
a challenge for processing the P-wave data. Seismic energy was clearly present in this
frequency range, however, it was not possible to separate it from other coherent noise.
A plausible cause for the noise is a potential flaw with the streamer design, in which
the three streamers were towed next to each other at different offsets in the streamer
direction with the idea to combine them into one effective streamer later. To keep off-
sets consistent the streamers were right next to each other at the back of the acquisition
pontoon. This close proximity caused the streamers to slap against each other every-
where along the streamers during acquisition. This was observed directly behind the
platform on the pontoon and also supported by the tube waves generated where the
streamers were attached to each other. This effect started nearly immediately after the
first shots were fired. The streamers slapping against each other around channels 24
and 48 predominantly caused tube waves to propagate along the streamer. For the first
streamer they propagated towards the acquisition vessel, a direction which could have
been muted in the frequency-wavenumber domain; however, 24 channels per streamer
were not sufficient for good filtering in such a way.

A challenge with this dataset was the boat speed. On average the boat travelled at
4.5 m s~! upstream along the Danube. Due to regulations, vessels are not allowed to
manoeuvre so slowly as to appear stationary. The Danube flow speed during the survey
was about 1.5-2.0 m s~!. This caused drag along the streamers, pulling them off the end
of the boat. This resulted in offsets of the far-offset streamers to slowly increase from shot
to shot. This could only be approximately accounted for during later processing.

A related issue was that the source spacing was quite large due to the boat speed
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Figure A.11: Comparison of subsurface images from 02/11/2015. For the location of the cross-sections see
Figure A.2; axis-border colour corresponds to track colour.
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Figure A.12: Comparison of single-shot reverse time migrated data without (a) and with (b) snapshot decompo-
sition before imaging. c) shows the difference between (a) and (b).

and airgun-recharge time, ~4 s. This led to near-surface artefacts during reverse-time
migration where insufficient source and receiver sampling could not cancel out artefacts.
As such, the near surface image looks the best on the NMO stacks.

If this survey were to be repeated a couple of things should be changed. First a single
streamer should be used, the setup of three different streamers combined into one, in
the way that it was implemented, did not work well. If the streamers were kept further
apart and were not connected to each other at 75 m and 150 m, respectively, some of the
tube waves might have been avoidable. The challenge then would be to ensure correct
offsets of the streamers with respect to each other. Alternatively the streamers could have
been attached everywhere along their length; this would not give parts of the streamers
sufficient space to generate a lot of slapping momentum, and, as such, would hopefully
reduce tube-wave noise. It should be noted though that the concept of using multiple
streamers does allow for unprecedented flexibility with respect to receiver spacing. It
also allows for having the streamers in parallel, as in 3D surveys. This is limited by river
width, but would allow for the detection of cross-line events from the river sides.

With respect to the absent P*S/Scholte-waves, it might have been an idea to extend
the survey further South, better spots for P*S/Scholte-waves may have been found there
(although the seismic may have been less geologically relevant). Going further west was
not possible due to the border between Serbia and Croatia. It would also be interesting to
go back and sample the mud at the bottom of the river, as a possible cause for the absent
P*S and associated Scholte waves is a very viscous mud layer at the bottom of the river,
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Figure A.13: RMS-amplitude-trace-balanced NMO stacks for 29/10/2015 by Vani¢ (2016). Same colour bar as
in Figure A.11. For the location of the cross-sections see Figure A.2; axis-border colour indicates track.
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Figure A.14: RMS-amplitude-trace-balanced NMO stacks for 30/10/2015. Same colour bar as in Figure A.11.
For the location of the cross-sections see Figure A.2; axis-border colour corresponds to track colour.
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Figure A.15: RMS-amplitude-trace-balanced NMO stacks for 31/10/2015. Same colour bar as in Figure A.11.
For the location of the cross-sections see Figure A.2; axis-border colour corresponds to track colour.



A.6. DISCUSSION 117

Time [s]

Time [s]

Time [s]

Time [s]

Time [s]

0.4

| | i

! ! !
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Horizontal Distance [km]

Figure A.16: RMS-amplitude-trace-balanced NMO stacks for the 02/11/2015. Same colour bar as in Figure A.11.
For the location of the cross-sections see Figure A.2; axis-border colour corresponds to track colour.
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as discussed in Vanié (2016).

A.7. CONCLUSION

Processing the Danube data was a challenge due to the noisy environment and the main
goal of imaging P*S/Scholte waves could not be met, as only sparse P*S/Scholte waves
could be found. On the other hand the P-wave processing did give good final stacks.
These are interpretable with some caution as some high-frequency events in them may be
cross-line riverbank reflections for example. This survey, however, was the first survey of
its kind in the area and should help to constrain the geology of the FruSka Gora mountain.



EQUATION 4.22 IS A
SOLUTION TO THE ACOUSTIC
WAVE EQUATION WITH
SOURCE TERMS

We here wish to demonstrate that Equation 4.22:
p =cos(wolt—so-xp]) e @074, (4.22)

is a solution to the acoustic wave equation with source terms. For this we introduce,
following Wapenaar and Berkhout (1989), the acoustic wave equation as:

1
(EO%—A)psz%im (B.1)

where i, denotes the volume-injection source distribution. We assume there are no force
sources.

Equation 4.22 is generated by a plane of volume-injection sources at z = 0 that inject
a plane cosine wave. We can write the responsible volume injection source as:

Oz
iy, =—-2——0(z)cos(wylt— so-x0]). (B.2)
wop

We now want to check that Equation 4.22 satisfies Equation B.1 for this source distri-
bution, Equation B.2. Inserting Equation 4.22 into the left-hand side of Equation B.1 we
Oz

1
(so-so— ?) - [az|z|]zo§+2w—06(z) p. (B.3)

1
(E(?%—A)p:wg

To further simplify this expression we need to discuss the behaviour of [0,]2]]12. Forz #0
[0,]2]1% = 1, for z = 0 [8,]|z|]? is undefined. Recall that we would treat this function as a
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distribution, which means that we can define the value in terms of limits. If we take the
limit as we approach either side of z = 0 then the double sided limit of [8,]z]]? is one. As
such we define that:

(0,]2]]* = 1. (B.4)

With this and the help of Equation 4.20, which defines the evanescent slowness o ; as the
term inside the parentheses in Equation B.3, we can simplify Equation B.3 to:

(é@% - A) p =2w(0 ;6 (z) cos(wo[t — so - x0]). (B.5)

Inserting the volume injection source, Equation B.2, into the right-hand side of Equa-
tion B.1 we find:

p0%i, =200 ;8(2) cos(wolt — S0 - X0)). (B.6)

This is equal to the right-hand side of Equation B.5, and hence Equation 4.22 satisfies
the acoustic wave equation, Equation B.1, for the z = 0 volume-injection source plane as
defined in Equation B.2.



ALTERNATIVE DERIVATION OF
DIRECTIONAL ACOUSTIC
SNAPSHOT WAVEFIELD
DECOMPOSITION FOR RTM

To directionally decompose snapshots of an acoustic wavefield in homogeneous media,
following Holicki et al. (2019), under the relaxed condition of operating on a snapshot
and its time derivative or integral, consider the source-free linearized acoustic pressure

wave equation:
0%p = c*Ap, (C.1)

where A denotes the Laplacian, or sum of second order spatial derivatives. To simplify
the following derivation we transform Equation C.1 to the full wavenumber domain:

0?p=—c’k-kp, (C.2)

We can combine the identity 8, p = 0;p with Equation C.2 to formulate the following

linear system:
1) . 0 (1) .
or=lcn olla) <3

which we can write in matrix notation as:
0:G=A4g, (C.4)

where:

~ (1)
qG= (at) D, (C.5)



122 C. ALTERNATIVE DERIVATION OF SNAPSHOT DECOMPOSITION

~ 0 1
= l) s
If we now apply eigenvalue decomposition to this system we find:

0,§=LAL'g, (C.7)

where the eigenvector and eigenvalue matrices, L and A respectively, are defined as:

- 1 1
L= (a-m —ci\/ﬂ)’ €8
~ (civk-k 0
A=Y v (©9)

In Chapter 2 it was found, among other normalizations of the eigenvectors, that
choosing the signs of the square roots according to the vertical wavenumber leads to
up-down wavefield decomposition. Hence we choose to sign the wavenumber square
root according to x ; from Equation 2.30:

krz=Vik-k=sign(x;) |kl (C.10)

We can now define the directionally decomposed wavefields d in terms of Equa-
tion C.7 as:

d=1"13, (C.11)
where the inverse of the eigenvector matrix is:
| k)"
i LGOI ) (C.12)
2\1 —(cikrz)

The decomposed fields then read:

- . -1
(;3):1(1 (Cl'kr,z)_l)(l)ﬁ‘ 13
p 2\1 —(cikrz) 0t
Comparing Equations C.13 to 2.34 we no longer have the numerator. Instead we now
divide by the magnitude of the wavenumber vector signed according to «x ;. This means
that low-wavenumber noise is amplified while high-wavenumber noise is suppressed.
We also divide by the acoustic wave speed instead of multiplying with the specific acoustic
impedance. This form of decomposition is evidently also mass density independent, only
the medium velocity needs to be known. This has important implications for wavefield
decomposition as often the density in real media is not known, even in the vicinity of
recording devices. With this type of decomposition it is not necessary to know the density.
Note that if one wants to cast the decomposition in terms of cik; ; instead of its in-
verse one needs to use the temporal primitive of the pressure instead of the time deriva-
tive. To convert from one normalization to the other we rewrite the full wavenumber-
domain acoustic pressure wave equation as:

0:p=—c’k-ko;' p=(cik,)*0;'p, (C.14)
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where 6;1 should be understood as a temporal primitive, or indefinite temporal integra-
tion with a zero constant of integration. With this transform the decomposition reads:

pTy 11 cik:\( 1) .
B)-4 )
Decomposition of acoustic single-component wavefields as they are forward or back-
ward modelled in time using, for example, finite-difference techniques, has turned out
to be a simple wavenumber-domain operation. Although the described method only
works in homogeneous media, it can be easily approximated to heterogeneous media by
allowing the propagation velocity to vary spatially, ¢ = c(x), and transforming —i k,@;l p
back to the space domain before multiplying with the spatially varying wave speed c(x).
In finite-difference RTM it is often easier to use Equation C.13 than Equation C.15 as
the time derivative is implicitly computed by the employed finite-difference operators.
However, Equation C.15 is less sensitive to numerical errors in the time derivative, but am-
plifies high-wavenumber artefacts, whereas Equation C.13 amplifies low-wavenumber
artefacts.
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