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SUMMARY

Induced seismicity, referring to earthquakes triggered by human activities, has become a
pressing concern, particularly in regions with extensive subsurface resource extraction,
such as the Groningen gas field in the Netherlands. Decades of natural gas production
have altered regional subsurface stress and pressure, reactivating faults and leading to
frequent earthquakes, which pose significant structural and societal concerns. To better
understand the nucleation and mechanisms behind these earthquakes, source charac-
terization has become a fundamental scientific approach. Accurate characterization not
only provides insights into earthquake dynamics but also plays a crucial role in estimat-
ing subsurface models, optimizing extraction techniques, and helping mitigate future
seismic risks.

In this thesis, we delve into the characterization methods that is by developing an
efficient probabilistic workflow for estimating induced earthquake source parameters
along with its validation and extensive application. By integrating advanced probabilis-
tic inversion techniques with geological knowledge, the workflow aims to improve char-
acterization accuracy while reducing computational costs. To establish a foundation for
this work, we leverage a variant of the Hamiltonian Monte Carlo (HMC) algorithms into
the workflow. This algorithm offers significant advantages over traditional Markov Chain
Monte Carlo (MCMC) techniques, particularly in handling high-dimensional parameter
spaces. The workflow is designed to estimate key earthquake source parameters, includ-
ing the centroid, moment tensor, and origin time, even in cases where prior information
on those parameters is limited or imprecise. The effectiveness of this approach is first
demonstrated through a synthetic earthquake scenario, confirming its ability to recover
source characteristics with high confidence.

Following the synthetic validation, the study explores how modeling assumptions in-
fluence inversion accuracy, including its application to real events in Groningen. First, a
geomechanical simulation of the 2018 ML 3.4 Zeerijp event, is used to investigate whether
the commonly applied point source assumption sufficiently represents induced earth-
quakes or if more complex finite fault models are necessary. Despite the simplifications
involved in point source modeling, the results indicate that the estimated earthquake
parameters remain robust, even when using simplified velocity models. This suggests
that computationally expensive finite fault assumptions may not always be necessary
for reliable earthquake characterization. Building on this, the workflow is then applied
to real earthquake data from the 2019 ML 3.4 event below Westerwijtwerd village, where
geological prior knowledge is incorporated to enhance computational efficiency. Instead
of using a uniform prior distribution for the earthquake’s location, fault-based prior in-
formation is employed, significantly reducing computational time while maintaining es-
timation accuracy. This highlights the practical benefits of integrating geological knowl-
edge into probabilistic inversion frameworks.

Expanding the scope of the workflow applicability, the study then examines multi-
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10 SUMMARY

ple earthquakes in Groningen, which are ten additional events with magnitudes exceed-
ing ML 2. Here, the analysis of the workflow outputs is paired with rupture directivity
analysis to provide deeper insights into the rupture dynamics of these earthquakes. The
findings show that the seismic events are predominantly governed by normal faulting
mechanisms, aligning with Groningen’s geological structures. Meanwhile, the rupture
directivity effects, although minor, show a small correlated trend with known fault ori-
entations. The research concludes with a discussion of the broader implications of these
findings and the challenges encountered throughout the study.

While the proposed workflow proves to be both efficient and accurate, two key ar-
eas for future improvement are identified. First, incorporating S-wave analysis into the
inversion process could enhance the resolution of earthquake parameter estimation, as
S-waves carry stronger seismic signals than P-waves. However, this comes with compu-
tational challenges due to the complex velocity structure of the Groningen subsurface.
Second, a more rigorous treatment of uncertainty is recommended, particularly in both
observed and synthetic seismograms. Accounting for these uncertainties would pro-
vide more robust and reliable probabilistic estimates, improving the overall accuracy of
induced earthquake characterization. By addressing these aspects, this research con-
tributes to the ongoing development of advanced seismic inversion techniques, offering
valuable tools for assessing and mitigating the risks associated with induced seismicity.
The proposed workflow provides a framework that can be applied beyond Groningen,
aiding in the characterization of induced earthquakes in other regions with significant
subsurface activities.



SAMENVATTING

Geïnduceerde seismiciteit, oftewel seismiciteit als gevolg van menselijke activiteiten, is
een urgent probleem geworden. Dit is onder andere het geval in regio’s met uitgebreide
olie of gasproductie, zoals het Groningen-gasveld in Nederland. Decennia van aardgas-
productie hebben de ondergrondse spanningen en druk in de regio veranderd, waardoor
breuken opnieuw zijn geactiveerd en er frequent aardbevingen optreden. Dit brengt
aanzienlijke structurele en maatschappelijke zorgen met zich mee. Om de nucleatie van,
en mechanismen achter deze aardbevingen beter te begrijpen, is bronkarakterisering
een fundamentele wetenschappelijke benadering geworden. Deze karakterisering biedt
niet alleen inzicht in de dynamiek van aardbevingen, maar speelt ook een cruciale rol bij
het verbeteren van ondergrondmodellen, het optimaliseren van winningstechnieken en
het beperken van toekomstige seismische risico’s.

In dit thesis richten we ons op het ontwikkelen van een efficiënte probabilistische
workflow voor het schatten van bronparameters van geïnduceerde aardbevingen, samen
met validatie en uitgebreide toepassing ervan. Door geavanceerde probabilistische in-
versietechnieken te integreren met geologische kennis, is het doel van de workflow om
de nauwkeurigheid van de karakterisering te verbeteren en tegelijkertijd de rekentijd te
verminderen. De basis voor dit werk is een variant van het Hamiltonian Monte Carlo
(HMC) algoritme. Dit algoritme biedt aanzienlijke voordelen ten opzichte van traditio-
nele Markov Chain Monte Carlo (MCMC) technieken, met name als het gaat om hoog-
dimensionale parameter ruimten. De workflow is ontworpen om belangrijke aardbe-
vingsbronparameters te schatten, waaronder het hypocentrum, het haardmechanisme
en de oorsprongstijd, zelfs in gevallen waarin a priori informatie over deze parameters
beperkt of onnauwkeurig is. De effectiviteit van deze aanpak wordt eerst aangetoond
aan de hand van een synthetisch aardbevingsscenario, waarbij wordt bevestigd dat de
bronkenmerken met hoge betrouwbaarheid kunnen worden verkregen.

Na de synthetische validatie onderzoeken we hoe bepaalde aannames de nauwkeu-
righeid van de inversie beïnvloeden. In dit geval specifiek voor de toepassing op bevin-
gen in Groningen. Eerst wordt een geomechanische simulatie van de ML 3,4 Zeerijp-
aardbeving in 2018 gebruikt om te onderzoeken of de gangbare puntbron-aanname vol-
doende representatief is voor de geïnduceerde aardbevingen in Groningen, of dat com-
plexere, eindige bronmodellen nodig zijn. Ondanks de vereenvoudigingen in puntbron-
modellering, geven de resultaten aan dat de geschatte aardbevingsparameters robuust
blijven, zelfs bij gebruik van vereenvoudigde snelheidsmodellen. Dit suggereert dat (re-
kenkundig dure) eindige bronmodellen niet altijd nodig zijn voor betrouwbare bronka-
rakterisering. Vervolgens wordt de workflow toegepast op gegevens van de ML 3,4 aard-
beving in 2019 onder het dorp Westerwijtwerd, waarbij bestaande geologische kennis
wordt geïntegreerd in de workflow om de efficiëntie hiervan te verhogen. In plaats van
een uniforme (a priori) verdeling voor de locatie van de aardbeving, wordt op breuken
gebaseerde voorkennis gebruikt, wat de rekentijd aanzienlijk vermindert zonder afbreuk
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12 SAMENVATTING

te doen aan de nauwkeurigheid van de schattingen. Dit benadrukt de praktische voor-
delen van het integreren van geologische (a priori) kennis in probabilistische inversies.

Om de toepasbaarheid van de workflow verder aan te tonen, wordt de studie vervol-
gens toegepast op meerdere aardbevingen in Groningen; namelijk tien additionele gein-
duceerde bevingen met een magnitude groter dan ML 2. De analyse van de workflow-
resultaten wordt gecombineerd met eenanalyse van de voortplantingsrichting langs de
breuk om diepgaander inzicht te verkrijgen in de dynamiek van deze aardbevingen. De
bevindingen tonen aan dat de geinduceerde aardbevingen in Groningen worden gedo-
mineerd door afschuivingen, in overeenstemming met zowel de geologische structuren
in Groningen als de drukverlaging in het reservoir. De gereconstrueerde voortplantings-
richtingen van de bevingen vertonen, hoewel klein, een lichte correlatie met de reeds be-
kende breukoriëntaties. De studie eindigt met een bespreking van de bredere implicaties
van de bevindingen en de uitdagingen die tijdens het onderzoek zijn ondervonden.

Hoewel de voorgestelde workflow zowel efficiënt als nauwkeurig blijkt te zijn, worden
twee belangrijke verbeterpunten voor toekomstig onderzoek geïdentificeerd. Ten eerste
zou het opnemen van S-golven in het inversieproces de resolutie van de parameterbe-
paling kunnen verbeteren, aangezien S-golven sterkere seismische signalen dragen dan
P-golven. Dit brengt echter rekenkundige uitdagingen met zich mee vanwege de com-
plexe snelheidsstructuur van de Groningse ondergrond. Ten tweede wordt een stren-
gere behandeling van onzekerheid aanbevolen, zowel in geobserveerde als synthetische
seismogrammen. Het meenemen van deze onzekerheden zou robuustere en betrouw-
baardere probabilistische schattingen opleveren, wat de algemene nauwkeurigheid van
de karakterisering van geïnduceerde aardbevingen ten goede zou komen. Door deze as-
pecten aan te pakken, draagt dit onderzoek bij aan de verdere ontwikkeling van geavan-
ceerde seismische inversietechnieken en biedt het waardevolle instrumenten voor het
beoordelen en beperken van de risico’s van geïnduceerde seismiciteit. De voorgestelde
workflow biedt een raamwerk dat niet alleen toepasbaar is op Groningen, maar ook op
andere regio’s met significante ondergrondse seismische activiteit.



1
INTRODUCTION

Induced seismicity, a term continually used to describe earthquakes that result from hu-
man activities, contrasts with natural earthquakes (Cesca et al., 2013). These human-
induced earthquakes are commonly linked with various industrial practices. Among the
practices are mining operations. For example, when a mine collapses, it can cause seis-
mic disturbances in the surrounding areas (Caputa et al., 2021). Another example is the
impoundment of large dams, which is often categorized as reservoir-induced seismicity
(RIS) (Basbous et al., 2022; Ruiz-Barajas et al., 2019). Lastly, hydrocarbon exploitation
might alter in-situ stress conditions, affecting the stability of nearby faults and increas-
ing the possibility of triggering earthquakes.

In the context of the oil and gas industry, hydraulic fracturing is intentionally used to
induce small-scale seismicity by creating fractures in low-permeability rock formations
to enhance hydrocarbon extraction (Hui et al., 2022). While this microseismic activity is
a desired outcome of the process, concerns arise when hydraulic fracturing unintention-
ally triggers larger seismic events, such as fault reactivations or felt earthquakes. Simi-
larly, hydrocarbon extraction can also lead to fault reactivation. The depletion in the
reservoir may also result in observed subsidence that, in extreme conditions, can alter
the landscape significantly. This subsidence occurs due to the compaction of the reser-
voir rock as fluids are extracted, reducing the pore pressure that supports the overlying
strata. Over time, this compaction can potentially cause the ground surface to sink, lead-
ing to regional subsidence (van Thienen-Visser and Fokker, 2017). Another recent trend
in the oil and gas industry is carbon capture and storage (CCS). CCS involves capturing
CO2 emissions produced by industrial activities and depositing it underground in rock
formations so it won’t enter the atmosphere. However, without proper monitoring and
mitigation efforts, this activity could also lead to induced seismicity (White and Foxall,
2016).

All in all, the underlying mechanism of induced seismicity involves altering stress
conditions in the subsurface and is directly attributed to human activities. These alter-
ations can destabilize existing faults or create new pathways for seismic energy release,
ultimately resulting in earthquakes (Candela et al., 2019). Although these induced seis-
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mic events are often less powerful than their natural counterparts, they can still have
substantial impacts. This is particularly true in regions not typically prone to seismic
activity, where infrastructure and populations are unprepared for such events. As such,
understanding induced seismicity and mitigating its risks is becoming increasingly im-
portant.

In this thesis, we focus on understanding induced seismicity by estimating source
characteristics of induced earthquakes due to gas extraction. Specifically, we present
case studies from the Groningen gas field in the Netherlands. Further down, we begin by
summarizing induced seismicity from the area, including efforts that have been made
to mitigate such seismicity. We then continue to show the general formulation of what
we refer to as the "forward problem,” which connects the field observation with an ideal
representation of the earthquake sources. Following that, we explain the concept of "in-
verse problems,” which allows us to estimate source characteristics given field observa-
tions. Finally, we lay down our objectives and the outline of this thesis, summarizing
each following chapter.

1.1. GRONINGEN INDUCED SEISMICITY
Groningen, a province in the Netherlands, has become a notable case study for induced
seismicity due to natural gas extraction. The Groningen gas field is located in the north-
east part of the province, discovered in 1959, and is regarded as the largest natural gas
field in mainland Europe (van Thienen-Visser and Breunese, 2015). Initially, gas extrac-
tion was seen as a boon for the Dutch economy, but by the 1980s, small earthquake
events were observed in the area. The intensity and frequency of the events then es-
calated over the years. The year 2012 was a turning point when a 3.6 magnitude earth-
quake occurred near the town of Huizinge in August of that year. This led to widespread
attention to the issue and prompted significant scientific research and policy responses
(Jansen and Herber, 2017).

Multifaceted effects have resulted from induced seismicity in Groningen. The most
direct effects are physical damage to buildings and infrastructure. Thousands of homes
and historical buildings have experienced structural impairment, ultimately introduc-
ing safety concerns and decreasing the values of property. Beyond the physical damage,
there are also considerable social and psychological effects on the local population, in-
cluding stress and anxiety due to the unpredictability of earthquakes. To address the
effects, the Dutch government has made several efforts to support and reassure the af-
fected communities. This includes not only financial compensation for damages but
also initiatives aimed at improving the mental well-being of residents (Vlek, 2019).

Beyond financial, social, and policy aid, the government has also established several
research initiatives. These initiatives include strengthening the capability of the national
seismological agency, KNMI, which stands for "Koninklijk Nederlands Meteorologisch
Instituut” to monitor earthquakes in the area. That is by collaborating with NAM, "Ned-
erlandse Aardolie Maatschappij", a major oil and gas operator in the Netherlands, which
provided the extension of the seismology network array installed in the gas field. This ex-
tension enables more accurate field monitoring, effectively reducing the uncertainty in
estimating the induced earthquake characteristics (Dost et al., 2017). Furthermore, the
government established a research program named DeepNL, funded by NWO ("Neder-
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landse Organisatie voor Wetenschappelijk”), which is the Dutch national research coun-
cil. The initial main focus of DeepNL pertains to studying the subsurface of the Gronin-
gen area. The sub-focus of the projects includes investigating the response of the shallow
part of the Groningen subsurface to earthquakes (Sen et al., 2013), modeling fault occur-
rences (Ruan et al., 2023) in the area, and estimating surface subsidence for different gas
extraction scenarios (Kim et al., 2020).

Under the DeepNL program, this thesis falls under the project of Deep Image, with
one of the main focuses on developing new techniques to monitor the gas field. More
specifically, we seek to design a workflow to estimate earthquake characteristics in an ef-
ficient but probabilistic manner. Beyond that, we try to incorporate available geological
information into the estimation. And ultimately applying the workflow in both synthetic
and field datasets to showcase its capability.

1.2. INDUCED SEISMICITY CHARACTERIZATION
Earthquake characterization requires understanding various parameters of earthquake
sources, such as their magnitude, depth, and epicenter. This process is essential in as-
sessing the potential impact and developing appropriate response strategies. In order
to estimate those parameters, seismologists use seismic networks to measure ground
vibrations due to the seismic waves generated by the induced earthquakes. The analy-
sis of the seismograms typically requires the application of inversion algorithms. These
algorithms help find optimum earthquake parameters that allow forward-modeled seis-
mograms to fit observed seismograms.

In general, induced earthquakes exhibit different characteristics compared to natu-
ral earthquakes. In particular, the magnitude of induced earthquakes is relatively smaller
than that of natural earthquakes. These low-magnitude earthquakes can then exacer-
bate the characterization process, thus adding uncertainty to the estimation. Because
of the low magnitudes, the frequency content of the induced earthquake seismograms
shifts towards higher frequencies. In that sense, in order to accurately forward-model
field-observed seismograms, more detailed subsurface models are required, in turn im-
plying higher computational costs.

In the context of the Groningen gas field, much research has been conducted to char-
acterize events in the area. The researchers used different parts of the recorded seismo-
grams and paired them with different types of algorithms and subsurface models de-
pending on the sought-for parameters. For estimating hypocenters, for example, the
first arrival of field-observed seismograms is adequate. The study by Spetzler and Dost
(2017) uses a deterministic algorithm paired with 1D velocity models, whereas Smith
et al. (2020) utilize a probabilistic algorithm paired with 3D velocity models, respectively.
In order to include magnitude in the estimation, first arrival information is inadequate,
and the seismograms/waveforms themselves need to be utilized. In that case, Willacy
et al. (2019) make use of a deterministic algorithm paired with 3D velocity models, while
Dost et al. (2020) utilize a probabilistic algorithm paired with 1D velocity models.

Comparing deterministic and probabilistic algorithms, the main benefit of proba-
bilistic algorithms is that they provide the uncertainty of the estimation despite having
higher computational costs. In terms of models, 1D velocity suffers from inaccuracies
compared to 3D models. However, 1D models are relatively easy to utilize, particularly
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when using them to generate forward-modeled seismograms with low computational
resources. Given the benefits and drawbacks of performing earthquake characterization
using different techniques and models, this thesis will focus on developing an efficient
probabilistic inversion workflow while making use of 3D velocity models. This efficiency
will be discussed in detail in the following chapter of this thesis, including a compari-
son with a generic probabilistic algorithm. The workflow will then be tested on one of
the largest events in the Groningen gas field, and its estimates will be compared against
available research results. Also, integration with available geological knowledge will be
linked to the workflow to increase its efficiency and accuracy. Finally, we apply the work-
flow to more available earthquake datasets and use its output to analyze further rupture
propagation along the faults where those earthquakes were predicted to nucleate.

1.3. THE FORWARD PROBLEM
In order to obtain earthquake characteristics, we first have to define a mathematical ex-
pression of our forward problem. This mathematical expression links observed seismo-
grams with earthquake source parameters. In this case, the moment tensor source is
the earthquake source, representing the point-source equivalent of fault movement in
the subsurface. Both observed and synthetic seismograms used in this thesis are in the
form of displacements. Assuming that the earthquake source is small enough that it can
be represented as a point source, the mathematical expression to compute the synthetic
seismograms can be written as (Aki and Richards, 2002):

ui
(
x(r), t

)= 3∑
j=1

3∑
k=1

M j k
(
t ,T0;x(a))∗Gi j ,k

(
x(r), t ;x(a)) , (1.1)

with ui denoting the displacement u along direction i observed at point x(r), and consid-
ering the source at x(a) and the propagation beginning at T0. East, north, and downward
displacements are represented by u1, u2, and u3, respectively. M j k is an element of the
moment tensor, a symmetric 3x3 matrix with six independent components. Here, j and
k signify the force’s action and orientation direction. The Green’s function, denoted as
G , involves components i and j , indicating the recording components and the direction
of the moment tensor force’s action, respectively. The notation of a comma following
the second subscript implies a spatial derivative in the k direction. Finally, the symbol
∗ signifies a time-domain convolution. In essence, displacement u is a result of earth-
quake parameters encoded in moment tensor source M located at x(a), and which starts
to propagate (or ‘nucleates’) at T0. Estimating the value of those parameters such that
the resulting displacement fits the observed seismograms requires inversion algorithms.
In this thesis, we will explore the use of probabilistic inversion algorithms.

1.4. INVERSE PROBLEMS
The probabilistic inversion algorithm used in this study relies on Bayes’ theorem. In
general, the theorem describes how the probability of a model that explains the data or
the "posterior” ρ(m|dobs) can be obtained by combining the "prior knowledge” of the
model ρ(m) with the likelihood of the data given that model ρ(dobs|m). Mathematically,
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the theorem can be written as:

ρ(m|dobs) ∝ ρ(dobs|m)ρ(m). (1.2)

Linking equation 1.1 to equation 1.2, the displacement u is represented as dobs. Hence,
m represents the earthquake parameters: moment tensors (M) , hypocenter (x(a)), and
origin time (T0). In order to calculate the left-hand side of equation 1.2, multiple prob-
abilistic algorithms can be employed. Among them are the Hamiltonian Monte Carlo
(HMC) algorithms. The algorithms are known to be efficient in exploring multi-dimensional
model spaces, which, in our case, contain the solution or the estimates of our earthquake
parameters. Because of this efficiency, HMC algorithms could estimate our posterior
with less computational burden and without compromising the accuracy of the estima-
tion compared to more generic probabilistic algorithms.

1.5. RESEARCH QUESTIONS AND OUTLINE
In this thesis, we focus on developing a workflow capable of efficiently estimating in-
duced earthquake parameters in the Groningen gas field in the Netherlands. Specifically,
we integrate existing HMC algorithms into the workflow and aim to answer the following
research questions:

1. How can we modify existing efficient HMC probabilistic algorithms to estimate in-
duced earthquake parameters without hampering the accuracy of the estimation?

2. What geological information can be incorporated to speed up the workflow/algorithm?

3. Can the modified algorithm be applied to real observed seismograms?

4. What information can we draw in regard to the estimated parameters and the ge-
ological knowledge in the area (e.g., reservoir layer and major geological faults)?

To answer the above questions, we divided this thesis into the following chapters:

• Chapter 2 : An efficient probabilistic inversion for induced earthquake parame-
ters in 3D heterogeneous media

In this chapter, we discuss our modification to the existing variant of the HMC al-
gorithm for the purpose of estimating induced earthquake parameters. We merely
use synthetic earthquake data. Specifically, we exploit the HMC algorithm that
has been successfully tested on natural earthquakes with larger magnitudes and
at greater depths. The algorithm is then integrated into a workflow, which we use
in conjunction with 3D subsurface models of the Groningen gas field.

• Chapter 3 : Probabilistic centroid-moment tensor inversions of geomechanically
simulated waveforms

After the successful application of the workflow on the synthetic data in Chapter 2,
we now apply it to synthetic data resulting from a geomechanical simulation. The
simulation emulates dynamic rupture at a finite fault in both space and time. The
resulting waveform from this simulation is more realistic since it does not limit
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the source to just the point source as referred to in equation 1.1. In the end, this
chapter will validate the use of the point source assumptions we use in our work-
flow in estimating earthquake parameters, given dynamic rupture simulation data
as the simulated "observed” data. In addition, our workflow output can then be
used to validate and benchmark geomechanical simulation for real events in the
Groningen gas field.

• Chapter 4: Hamiltonian Monte Carlo to characterize induced earthquakes: appli-
cation to a ML 3.4 event in the Groningen gas field and the role of prior

Here, we test our workflow to one of the largest events ever recorded in the Gronin-
gen gas field. That is, the 2018 earthquake below the village of Westerwijtwerd with
a magnitude of ML 3.4. Furthermore, we detail the comparison of our workflow
with a generic probabilistic algorithm in terms of computational efficiency. In ad-
dition to that, we investigate the use of geological prior knowledge of the area to
obtain our estimated parameters and reduce the required computation resources.
Finally, we compare our estimated values with the results from available research
in the area.

• Chapter 5: Moment tensor and rupture directivity analysis of induced earthquakes
in Groningen gas field, the Netherlands

In this chapter, we focus on applying the workflow to more events in Groningen.
Specifically, we apply it to ten earthquakes with local magnitudes higher than 2.
We then continue by investigating the rupture propagation of these earthquakes.
That is, by deriving a quantity commonly referred to as "fault directivity" using the
Empirical Green’s function (EGF) method.

• Chapter 6 : Conclusions and recommendations

In this chapter, the conclusions from each of the preceding chapters (Chapters 2
to 5) are summarized, highlighting how the research questions posed at the begin-
ning of the thesis have been addressed. A detailed reflection on the key findings
and insights from each chapter is provided, linking the theoretical developments,
algorithm modifications, and practical applications. In the end, we add a discus-
sion regarding the challenges we faced, followed by recommendations for future
relevant research.
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2
AN EFFICIENT PROBABILISTIC

INVERSION FOR INDUCED

EARTHQUAKE PARAMETERS IN 3D
HETEROGENEOUS MEDIA

We present an efficient probabilistic workflow for the estimation of source parameters of
induced seismic events in three-dimensional heterogeneous media. Our workflow exploits
a linearized variant of the Hamiltonian Monte Carlo (HMC) algorithm. Compared to
traditional Markov-Chain Monte Carlo (MCMC) algorithms, HMC is highly efficient in
sampling high-dimensional model spaces. Through a linearization of the forward prob-
lem around the prior mean (i.e., the "best" initial model), this efficiency can be further
improved. We show, however, that this linearization leads to a performance in which the
output of an HMC chain strongly depends on the quality of the prior, in particular, because
not all (induced) earthquake model parameters have a linear relationship with the record-
ings observed at the surface. To mitigate the importance of an accurate prior, we integrate
the linearized HMC scheme into a workflow that (i) allows for a weak prior through lin-
earization around various (initial) centroid locations, (ii) is able to converge to the mode
containing the model with the (global) minimum misfit by means of an iterative HMC ap-
proach, and (iii) uses variance reduction as a criterion to include the output of individual
Markov chains in the estimation of the posterior probability. Using a three-dimensional
heterogeneous subsurface model of the Groningen gas field, we simulate an induced earth-
quake to test our workflow. We then demonstrate the virtue of our workflow by estimating

Parts of this chapter have been previously published as :

Masfara, L. O. M., Cullison, T., and Weemstra, C. (2022). An efficient probabilistic workflow for estimating
induced earthquake parameters in 3D heterogeneous media. Solid Earth, 13(8):1309–1325.

The text has been extended and modified in several ways to ensure consistency within this thesis.
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the event’s centroid (three parameters), moment tensor (six parameters), and the earth-
quake’s origin time. Using the synthetic case, we find that our proposed workflow is able
to recover the posterior probability of these source parameters rather well, even when the
prior model information is inaccurate, imprecise, or both inaccurate and imprecise.

2.1. INTRODUCTION
The need to understand earthquake source mechanisms is an essential aspect in fields
as diverse as global seismology (Ekström et al., 2005), oil and gas exploration (Gu et al.,
2018), hazard mitigation (Pinar et al., 2003) and space exploration (Brinkman et al., 2021).
In its simplest form, an earthquake source can be described, from a physics point of view,
by means of a moment tensor (MT) (Aki and Richards, 2002). An MT captures displace-
ment, (potential) fault orientation, and the energy released during an earthquake. In
a regional seismology context, MT inversions can provide insight into seismic afterslip
patterns of megathrust earthquakes (e.g., Agurto et al., 2012). In the case that seismic ac-
tivity is induced by anthropogenic subsurface operations, characterizing seismic sources
may also prove essential (e.g., Sen et al., 2013; Langenbruch et al., 2018). With regard to
oil and gas exploration, earthquake source mechanisms are often monitored when hy-
drocarbons are extracted or when fluids are injected into the subsurface (e.g., for frack-
ing). In fact, such monitoring can be used to assess and mitigate the risk of ongoing
injection processes activating existing faults (Clarke et al., 2019).

For the purpose of monitoring induced seismicity, arrays of seismometers can be in-
stalled over the exploration area. The waveforms recorded by these seismometers can
subsequently be exploited to characterize the induced events. For example, the time of
the first-arrival (typically the direct P-wave) is sensitive to the earthquake hypocenter
and origin time. There are many inversion algorithms that exploit first-arrivals to obtain
estimates of earthquake hypocenters and origin times, such as the double-difference
(Waldhauser and Ellsworth, 2000) and equal differential time (EDT) (Lomax, 2005) algo-
rithms. However, to estimate MTs, it is insufficient to use only (first-arrival) travel times.
In this study, we then develop a workflow that utilizes full waveforms as input. Impor-
tantly, we pair the workflow with a probabilistic inversion algorithm.

In terms of computational efficiency, each combination of a specific inversion al-
gorithm and a specific subsurface model has both its advantages and disadvantages. In
general, the main advantage of using a probabilistic approach is that the output does not
consist of a single set of (source) model parameters that minimizes an objective func-
tion, but the posterior distribution (see, e.g., Tarantola, 2006) of the desired earthquake
parameters. Probabilistic approaches, however, are computationally significantly more
expensive than deterministic ones. One way to reduce the computational expense is
using 1D subsurface models instead of 3D velocity models to model seismograms. Un-
fortunately, this can adversely affect the reliability of the obtained posterior because part
of the heterogeneity of the subsurface is not accounted for (Hingee et al., 2011; Hejrani
et al., 2017). In our workflow, we, therefore, deploy a computationally efficient proba-
bilistic algorithm to invert for centroid (three coordinate components), origin time, and
MT (six independent MT components) while at the same time utilizing a detailed 3D
subsurface model.

The algorithm used in our workflow is the Hamiltonian Monte Carlo (HMC) algo-
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rithm, which, for sampling high-dimensional posterior distributions, has shown to be
significantly more efficient than the conventional probabilistic Metropolis-Hasting fam-
ily of algorithms (Betancourt, 2017). Using frequencies lower than 0.1 Hz and avail-
able prior information, Fichtner and Simutė (2018) developed a variant of the HMC and
demonstrated its efficiency to invert for the source parameters of a tectonic earthquake.
More recently, Simute et al. (2022) demonstrated the variant’s ability to estimate earth-
quake parameters of tectonic earthquakes while employing 3D subsurface models of the
Japanese islands. In contrast to tectonic earthquakes, where prior information regard-
ing the event’s MT, centroid, and origin time is often available, such prior information
is usually absent for induced earthquakes. An insufficiently constrained prior reduces
the ability and efficiency of sampling algorithms to properly sample the posterior dis-
tribution and increases the chance of the sampler getting trapped in local minima (Sen
and Stoffa, 2013). In addition, compared to tectonic events, the frequency content of
induced earthquake waveforms is usually significantly higher. This is because tectonic
events usually occur at greater depths than induced events, and hence, the higher fre-
quencies have been attenuated more. Also, most of the studied induced events are of
lower magnitudes than tectonic events (e.g., below Mw 3) and, therefore, do not excite
frequencies below 1 Hz that effectively.

Due to the higher frequencies present in recordings of induced events, the wave-
lengths are significantly shorter. Layers of sediment/basin infill close to the Earth’s sur-
face may exacerbate this since velocities usually decrease rapidly in this case. The pres-
ence of shorter wavelengths matters because other things are equal and therefore in-
creases non-linearity. In essence, however, the degree to which the relation between
the source parameters and the recorded waveforms is non-linear depends on the ratio
between the nominal event-receiver separation and the wavelength. For example, con-
sider (i) an induced seismic event at 3 km depth, an average P-wave velocity of 2.5 km/s,
periods that range between 1 and 0.33 seconds, and event-receiver distances of 4 to 11
km (this study), and (ii) a tectonic event at 50 km depth, an average P-wave velocity
of 5 km/s, periods between 100 and 15 seconds, and event-receiver distances of 200 to
1100 km (e.g., Fichtner and Simutė, 2018). These values correspond to ratios between
event-receiver separation and wavelength that vary (approximately) between 2 and 14
(this study), and 1 to 14 (Fichtner and Simutė, 2018). As soon as shear waves are used to
perform centroid-moment tensor inversions, however, the non-linearity in the induced
seismic setting considered in this study increases relative to the tectonic case consid-
ered. This is due to the fact that Vp/Vs ratios are typically significantly higher in the
near-surface (i.e., the top 1 to 2 km) than at greater depth. This is particularly the case in
Groningen (e.g., Spetzler and Dost, 2017).

In this study, the absence of a well-constrained prior and an increase in non-linearity
receives significant attention. First, the challenge of a weaker prior is met by means of a
workflow in which the initial prior is updated before running the HMC algorithm. In ad-
dition, multiple chains of the HMC variant are run sequentially, where the results of the
current chain serve as priors for the next chain. This iterative HMC is meant to provide
improved prior information resulting in an adequate linear approximation. We demon-
strate the validity of our workflow using data from a synthetically generated induced
earthquake, which was simulated using the velocity model of the Groningen subsurface.
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It should be understood that the proposed workflow is of interest for the characteriza-
tion of induced seismic events in general. The Groningen case is merely chosen because
of the quality and density at which the induced wavefields are sampled and the relatively
high resolution of the available velocity model.

The Groningen gas field is one of the largest gas reservoirs in Europe. Since pro-
duction began in 1963, more than 2115 billion cubic meters of natural gas have been
produced from the field (van Thienen-Visser and Breunese, 2015). Due to this gas pro-
duction, the reservoir layer has compacted over time, causing earthquakes that have,
in some cases, caused damage to buildings in the Groningen province (van Eck et al.,
2006) and led to several protests against further gas extraction in the area (Verdoes and
Boin, 2021). To investigate these earthquakes, an extensive seismometer array was in-
stalled, which is operated by the KNMI (The Royal Netherlands Meteorological Institute)
on behalf of Nederlandse Aardolie Maatschappij (NAM) (Ntinalexis et al., 2019). Event
recordings collected over the Groningen field have been used as input for several in-
version algorithms. Spetzler and Dost (2017) use the EDT algorithm to invert for the
hypocenters of many Groningen earthquakes. They invert arrival times of 87 events and
found that all earthquakes occurred within a depth interval of 2300 to 3500 m, with most
of the events originating from the reservoir layer (approximately 3000 m depth). These
findings are in line with the results of Smith et al. (2020), who use the envelopes of the
seismic arrivals as input to their probabilistic algorithm. To invert for both hypocenter
(or centroid) and MT, Willacy et al. (2018) take a different approach. Contrary to Spetzler
and Dost (2017), who use a 1D model to represent Groningen’s subsurface, they utilize
a 3D heterogeneous model similar to Smith et al. (2020), and use the model to generate
synthetic waveforms to perform a full-waveform deterministic MT inversion. The re-
sults of Willacy et al. (2018), however, only focus on pure double-couple sources, which
might not capture the true source dynamics. In fact, Dost et al. (2020) recently follow a
probabilistic approach to invert event centroids and MTs of a selected number of events
and consistently found the (non double-couple) isotropic component of the MT to be
dominant and negative. The latter is in agreement with expectations for a compacting
medium. Similar to Willacy et al. (2018), they invert waveforms but employ 1D local
subsurface models to generate the modeled seismograms.

In what follows, we first introduce the forward problem of obtaining surface dis-
placements (recorded wavefields) due to induced seismic source activity, including the
description of a seismic source in terms of elementary moment tensors. Subsequently,
we introduce the Bayesian formulation and detail the linearized HMC algorithm. After-
wards, we proceed with the description and implementation of our workflow, which in-
volves several steps that are specific to the characterization of induced seismic sources.
We then test the proposed workflow using synthetic recordings of an induced earth-
quake source. We end by giving a perspective discussion of our results, including an
outlook of applying our workflow to actual field recordings of induced earthquakes from
the Groningen gas field.

2.2. FORWARD PROBLEM
As with all Markov Chain Monte Carlo algorithms, HMC involves an evaluation of forward-
modeled data against observed data. In our case, this evaluation is between (forward)
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modeled surface displacement and observed displacement. Specifically, we compute
synthetic displacement seismograms u due to a moment tensor source M (with each of
their components denoted as u and M) (Aki and Richards, 2002)

ui (xr , t ) =
∑
j ,k

M j k (xa , t )∗Gi j ,k (xr ;xa , t ) (2.1)

with xr the location at which u is recorded, xa the source location, and ∗ representing
temporal convolution. Subscripts i , j , and k take on values 1,2 and 3 such that a vector
can be decomposed in three Cartesian components, associated with the x1, x2, and x3

axis, respectively. G is the Green’s function, and its first subscript represents its recorded
component. The second subscript indicates the direction in which an impulsive (delta
function) force couple is acting. The comma after the second subscript represents a
spatial derivative at xa with respect to the direction represented by the subscript after the
comma. Each component of M represents the strength of a force couple. Together, the 9
constants M j k constitute the second order seismic moment tensor M. The MT effectively
approximates a seismic source by collapsing it into a single point. Furthermore, due to
the conservation of angular momentum, the MT has only six independent components
(e.g., Aki and Richards, 2002; Jost and Herrmann, 1989).

Instead of repeatedly computing u for each source-receiver pair location, it is conve-
nient to exploit source-receiver reciprocity. That is, we exploit the fact that Gi j (xr ;xa , t ) =
G j i (xa ;xr , t ) (Aki and Richards, 2002; Wapenaar and Fokkema, 2006), which yields

ui (xr , t ) =
∑
j ,k

M j k (xa , t )∗G j i ,k (xa ;xr , t ) . (2.2)

To facilitate the computation of seismograms for a specific M, we follow the work of
Mustać and Tkalčić (2016) who use six independent tensors that they call elementary
moment tensors as decomposed by Kikuchi and Kanamori (1991)

M1 =
 0 1 0

1 0 0
0 0 0

 M2 =
 0 0 1

0 0 0
1 0 0

 M3 =
 0 0 0

0 0 −1
0 −1 0



M4 =
 −1 0 0

0 0 0
0 0 1

 M5 =
 0 0 0

0 −1 0
0 0 1

 M6 =
 1 0 0

0 1 0
0 0 1


. (2.3)

Under the assumption that each of these elementary moment tensors have the same
time dependence (e.g., in case of pure shear, this would imply faulting to occur along
a straight "trajectory"), a specific M can be described as a linear combination of these
elementary moment tensors, i.e.,

M =
6∑

n=1
an Mn =

 −a4 +a6 a1 a2

a1 −a5 +a6 −a3

a2 −a3 a4 +a5 +a6

 . (2.4)
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where the coefficients an (n = 1,2, ...,6) are usually referred to as expansion coefficients.
In this study, we assume instantaneous rupturing of the source. This is not an uncom-
mon assumption for (relatively small) induced seismic events. This assumption implies
that the time dependence of an MT is modeled using a Heaviside function. Using the
decomposition above and source-receiver reciprocity, we compute elementary seismo-
grams Sn

i
Sn

i (xr ;xa , t ) =
∑
j ,k

G j i ,k (xa ;xr , t )∗M n
j k (t ). (2.5)

Consequently, we obtain

ui (xr ;xa , t ) =
6∑

n=1
anSn

i (xr ;xa , t ) . (2.6)

In practice, all Sn
i (xr ;xa , t ) are computed for a finite number of xa on a predetermined

subsurface grid with a specific grid spacing. We detail the numerical implementation of
computing the Sn

i (xr ;xa , t ) further below.

2.3. HAMILTONIAN MONTE CARLO
The HMC algorithm originated from the field of classical mechanics and its application
to statistical mechanics (Betancourt, 2017). It is known to be one of the most efficient
probabilistic algorithms within the Markov Chain Monte Carlo (MCMC) family. For our
workflow, we apply a variant of the HMC algorithm that utilizes a linearization of the
forward problem. Therefore, we include several initial steps in our workflow to obtain
priors that enable meaningful linearization. In total, our workflow estimates ten source
parameters. These are the centroid xa (three components), the origin time T0, and the
MT (6 independent MT components).

Similar to other probabilistic algorithms, HMC is deployed in the context of Bayesian
inference. The objective of Bayesian inference is to obtain an estimate of the posterior
probability distribution ρ(m|d) that approaches the true posterior probability distribu-
tion (from here on, we will refer to ρ(m|d) as being "the posterior"). This approach
combines the likelihood ρ(d|m) of the observed data given the modeled data with the
simultaneous assimilation of the distribution of prior knowledge ρ(m), i.e.,

ρ(m|d) ∝ ρ(d|m)ρ(m), (2.7)

where m is a vector that contains model parameters and d a vector containing the ob-
served data. The likelihood evaluates a model m against the observed data d by evaluat-
ing the misfit between the latter and forward modeled data associated with m.

The HMC algorithm relies on the sequential calculation of two quantities. These
are the potential energy U, which explicitly quantifies ρ(m|d), and the kinetic energy K,
which is a function of momentum vector p. Together, they make up the Hamiltonian
H(m,p), which represents the total energy of a system (Neal, 2011), and is written as
follows:

H = K (p)+U (m), with U (m) =− lnρ(m | d) and K (p) = pT M−1p/2. (2.8)
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A model m can be interpreted as the position of a particle within phase space. The
phase space has a dimension that is twice the dimension of the model space (i.e., this
dimension coincides with the length of the vector m multiplied by two). By having the
same dimension as m, the elements of the auxiliary momentum vector p are therefore
needed to complement each dimension of the model space (Betancourt, 2017). The
movement of the particle is highly dependent on the mass matrix M , which therefore
often acts as a tuning parameter (Fichtner et al., 2019, 2021). The mass matrix affects
the "distance" a particle travels and ideally coincides with the posterior covariance ma-
trix. Given a certain initial momentum p drawn from exp(pT M−1p/2), the particle is
allowed to travel for a certain (artificial) time τ while in conjunction fulfilling Hamilton’s
equations:

dm

dτ
= ∂K

∂p
,

dp

dτ
=− ∂U

∂m
. (2.9)

We parenthetically coined τ an artificial time because is shouldn’t be confused with
physical time t . It is this artificial time with which the model moves through phase space:
at time τ, the particle arrives at a new location representing a new model m(τ). The
new model and momentum vectors are associated with updated potential and kinetic
energies, respectively, and hence a higher or lower Hamiltonian H(p(τ),m(τ)). Given the
probability θ, that the particle will stay at the new location, the acceptance probability is
given by,

θ = min

[
1,

exp[−H(p(τ),m(τ))]

exp[−H(p,m)]

]
. (2.10)

By sequentially evaluating Equations (2.8) to (2.10) in an iterative manner, we col-
lect all locations (models) visited by the particle, except for a number of initial models
(representing the burn-in period). The density of the collected models asymptotically
approaches the posterior probability distribution.

In Figure 2.1, we visualize the sampling behavior of both the Metropolis algorithm (a)
and the HMC algorithm (b) for a 2D joint probability distribution. Note that he metropo-
lis algorithm is a special case of the Metropolis-Hastings algorithm in the sense that the
proposal distribution is symmetric (Hoff, 2009). Both algorithms start with the same
starting model, which is represented by the red ball. The low a posteriori probability of
this initial model corresponds to a high U . The question marks in Figure 2.1(a) repre-
sent randomly selected models by the Metropolis algorithm, which were not accepted
due to their relatively low acceptance probability. Hence, each of these question marks
involves a (computationally expensive) solution to the forward problem. Instead of us-
ing random sampling, in the HMC algorithm, the particle within phase space moves
along trajectories obtained by solving Equation (2.9) leading the particle being exerted
towards areas with low U , as illustrated in Figure 2.1(b). Furthermore, in Figure 2.1(b),
the result of solving Equation (2.9) (i.e., the HMC trajectory) is represented by the brown
dashed lines, and the pointing finger represents the momentum vector p. For both the
HMC and Metropolis algorithms, an accepted model serves as starting model for the next
sample. Although being probabilistic in terms of acceptance probabilities, the trajecto-
ries of the HMC algorithm are deterministically guided by ∂U /∂m as shown in Equation
(2.9). Therefore, the algorithm is also known as the Hybrid Monte Carlo algorithm (Du-
ane et al., 1987). Thus, after proper tuning, the HMC algorithm requires less sampling
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than the Metropolis algorithm to converge, which makes the HMC algorithm computa-
tionally more efficient.

Figure 2.1: Comparison between the sampling strategy of (a) Metropolis algorithm and (b) Hamiltonian Monte
Carlo algorithm .

Assuming Gaussian distributed, uncorrelated, and coinciding data variance σ2
d , we

can write U as (Fichtner and Simutė, 2018)

U (m) = 1

2T

Nr∑
r=1

3∑
i=1

∫ T

0
σ−2

d

[
ui (xr , t ;m)−uobs

i (xr , t )
]2

dt + 1

2Nm

(
m−m0)⊺ C−1

m

(
m−m0) .

(2.11)
In our context, the xr are the locations of the Nr three-component KNMI seismome-
ters (r = 1,2,3, .., Nr ). Furthermore, T is the length of observed and forward modeled
seismograms in time, Nm the number of model parameters (ten in our case), m0 a vec-
tor containing prior means, and Cm the prior covariance matrix. In application to field
data, the uobs

i would be field recordings by seismometers, but in this study, we restrict
ourselves to a numerically simulated induced event.

2.4. LINEARIZATION OF THE FORWARD PROBLEM
In our workflow, most of the computational burden in running HMC involves the eval-
uation of Equation (2.9). This is because for each dτ we have to evaluate ∂U /∂m. To
speed up the process, we use a variant of the HMC algorithm introduced by Fichtner and
Simutė (2018), in which u (xr , t ;m) is approximated by means of an expansion around
the prior mean, i.e., around m0:

ui (xr , t ;m) = ui
(
xr , t ;m0)+ Nm∑

p=1

∂

∂mp
ui

(
xr , t ;m0)(mp −m0

p

)
. (2.12)

Substituting this linearized expression in Equation (2.11) gives,

U (m) = 1

2

Nm∑
p,q=1

(
mp −m0

p

)
Apq

(
mq −m0

q

)
+

Nm∑
p=1

bp

(
mp −m0

p

)
+ 1

2
c (2.13)
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where Apq , bp , and c , given model uncertainty σ2
m read

Apq = 1

Tσ2
d

Nr∑
r=1

3∑
i=1

∫ T

0
[
∂

∂mp
ui

(
xr , t ;m0) ∂

∂mq
ui

(
xr , t ;m0)]dt + 1

Nmσ
2
m

, (2.14)

bp = 1

Tσ2
d

Nr∑
r=1

3∑
i=1

∫ T

0

[
ui

(
xr , t ;m0)−uobs

i (xr , t )
] ∂

∂mp
ui

(
xr , t ;m0)dt , (2.15)

and

c = 1

Tσ2
d

Nr∑
r=1

3∑
i=1

∫ T

0

[
ui

(
xr , t ;m0)−uobs

i (xr , t )
]2

dt . (2.16)

Differentiating Equation (2.13) with respect to mp , we have (Fichtner and Simutė,
2018)

∂U

∂mp
=

Nm∑
q=1

Apq

(
mq −m0

q

)
+bp , (2.17)

which, together with the random momentum vector, determines the HMC trajectory.
Because the displacement depends linearly on the moment tensor components (see

Equations (2.5) and (2.6)), Equation (2.12) is exact with respect to these parameters. The
dependence on the other parameters is non-linear, and this non-linearity increases as
the frequency of the input data increases. Therefore, in the case of induced events, which
usually generate higher frequencies than stronger, regional events, the non-linearity is
considerably higher. Hence, to have a tolerable linearization, accurate priors are re-
quired when it comes to the centroid and origin time. Without sufficiently accurate
priors, the above HMC variant will struggle to sample the mode containing the global
minimum of the potential energy. Therefore, we propose an approach that involves an
initial estimation of the prior mean in order to permit this linearization. This is detailed
further below.

2.5. NUMERICAL IMPLEMENTATION
In practice, the elementary seismograms discussed in Section 2.2 are computed for a
finite number of possible centroid locations. That is, prior to our probabilistic inver-
sion, we generate a database of these seismograms. This database contains, for each
possible source location xa and receiver location xr (r=1,...,Nr ), a total of 3 x 6 = 18 el-
ementary seismograms (three components for each of the six elementary moment ten-
sors). In our case, each xr corresponds to a (KNMI) seismometer location that recorded
the induced event. The elementary seismograms are computed using the spectral ele-
ment software SPECFEM3D-Cartesian (Komatitsch and Tromp, 2002) and we exploited
source-receiver reciprocity while doing so. We use an existing detailed Groningen ve-
locity model (Romijn, 2017) for this purpose from which we construct a regular grid of
the model using gnam and PyAspect Python packages that are available at https://
github.com/code-cullison/gnam and https://github.com/code-cullison/pyaspect.

To confirm the successful implementation of source-receiver reciprocity, we simu-
late a scenario of an induced event in the Groningen gas reservoir (Figure 2.2). The
centroid is indicated with a red star, and the receivers are depicted as white triangles.

https://github.com/code-cullison/gnam
https://github.com/code-cullison/gnam
https://github.com/code-cullison/pyaspect
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At each location, the wavefield is "recorded" at 200 meters depth by the deepest of a
series of four borehole geophones (Ruigrok and Dost, 2019). The elementary seismo-
grams computed at the location of KNMI station G094 are shown in Figure 2.3 (green),
and superimposed on top (yellow) are the waveforms resulting from the application of
source-receiver reciprocity. All seismograms are bandpass filtered between 1 and 3 Hz,
similar to the passband used by Dost et al. (2020).

We integrate the above HMC variant into our workflow by implementing a leapfrog
algorithm for evaluating Equation (2.9). Furthermore, we define dτ as suggested by Neal
(2011) to ensure numerical stability and set a fixed value for τ for all chains. The con-
struction of the mass matrix M is discussed in the next section.

2.6. AN ITERATIVE APPROACH
The performance of the linearized HMC variant strongly depends on the prior means
(see Equation (2.12)). For that reason, we propose a workflow in which the algorithm
is run iteratively, with each iteration involving an update of the priors to allow for an
updated linearization. Specifically, instead of evaluating Equation (2.14) - (2.16) once,
we run a sequence of HMC chains. For each successive chain, the posterior means and
standard deviations from the previous chain act as prior means and entries for M in
the new chain (i.e., the next iteration). For the first chain in the sequence, the "initial"
prior means (i.e., m0) are obtained via a specific scheme integrated into the workflow. In
what follows, we will first introduce the setup of our synthetic earthquake, followed by
an approach to estimate required prior means before wrapping up by summarizing the
full workflow, which runs iteratively.

2.6.1. SYNTHETIC EXPERIMENT SETUP

We test our workflow for an induced event shown in Figure 2.2. We set the MT compo-
nents to 9×1013 Nm, -1×1013 Nm, -3×1013 Nm, 8×1013 Nm, 5×1013 Nm, and 4×1013 Nm
for M11, M22, M33, M12, M13, and M23, respectively. Using the moment-magnitude rela-
tion given by Gutenberg (1956) and Kanamori (1977), this moment tensor can be shown
to correspond to an earthquake of magnitude 3.28 Mw. We also add noise to our syn-
thetic seismograms in order to make our experiment more realistic. This noise is added
in the frequency domain by multiplying the (complex) spectrum of each synthetic seis-
mogram with a bivariate normal distribution that has a zero mean and a standard devi-
ation of 15% of the amplitude of the seismogram at the dominant frequency. As a result,
this noise will not only give amplitude variations but also varying time-shifts with re-
spect to the true synthetic seismograms. When running the Markov chains, we assume
the square root of the data variance (σd ) to be 30% of the maximum amplitude of each
seismogram. Admittedly, this is rather arbitrary, and in the application to field data, the
data uncertainty has to be estimated from the obtained seismograms themselves. Fi-
nally, we set the origin time to 14 s.

2.6.2. PRIOR MEAN ESTIMATION

Before running the first HMC chain, we need to estimate the initial prior means and vari-
ances. In short, we propose an approach in which a first-arrival based algorithm is used
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Figure 2.2: Scenario of an induced earthquake in Groningen area. a. Horizontal slice of the Groningen P-wave
velocity model. b. Zoom of the area indicated by the green rectangle in a. ’Inverted triangles indicate locations
of KNMI stations (i.e., the xr )’. c. Vertical slice along the blue line in b. d. Vertical slice along the red line in b.
Spatial coordinates in the images are given in the Rijksdriehoekscoördinaten (RD) coordinate system.

to estimate the centroid. Subsequently, the origin time can be estimated, after which
Equation (2.17) can be used to compute the prior means for the individual moment ten-
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Figure 2.3: Comparison between elementary seismograms due to a source at the actual location (red star) and the
receiver at G094 (green) and the elementary seismograms resulting from the implementation of source-receiver
reciprocity (yellow). The equality of the traces confirms the successful numerical implementation of source-
receiver reciprocity. Along the vertical axis, all six (independent) elementary seismograms are depicted. Left,
center, and right plots show particle displacement in the x1, x2, and x3 direction, respectively.

sor components. Each of these steps is now discussed in more detail.

Numerous algorithms exist that allow one to estimate an earthquake’s hypocenter
and/or centroid. Here we propose using first-arrival based algorithms for this purpose
since these are computationally more efficient than waveform-based algorithms. First-
arrival based algorithms only require the computation of the P and S-wave arrival times,
and by adopting a high-frequency approximation (e.g., Aki and Richards, 2002), these
arrivals can be found by running one of the various Eikonal solvers (e.g., Noble et al.,
2014). For example, the EDT method detailed in Lomax (2005) can be used for this pur-
pose (Masfara and Weemstra, 2021).

As an alternative to using a first-arrival based algorithm, the prior means of the cen-
troid can instead be retrieved from existing literature if it exists. For example, in the case
of the induced seismicity in the Groningen field, Smith et al. (2020) have shown that they
could resolve hypocenters with maximum uncertainties of 150 m and 300 m for epicen-
ter and depth, respectively. Their results could be considered as priors. Another option
is to use the epicenters from the KNMI earthquake database, which by default has all
depths set to 3 km.

Given a centroid prior mean that was either calculated or acquired from literature,
the prior mean of the origin time can be estimated by computing the P-wave traveltimes
from a centroid prior to each of the receivers. These travel times can be computed using
the same Eikonal solver that was used to obtain the centroid prior (e.g., the Fast March-
ing Method; Sethian and Popovici, 1999). By subtracting the computed travel times from
the observed (picked) first-arrival times and averaging across receivers, an initial origin
time prior mean can be obtained.

To refine the initial origin time prior estimate, we cross-correlate the envelope of the
observed seismograms env[uobs

i (xr , t )] with the envelope of the forward modeled seis-
mograms env[u(xr , t ,m0)]. We do this for each component of each receiver location in-
dividually. The forward-modeled seismograms are computed using full-waveform mod-
eling (detailed in Section 2.5) using the initial prior means for centroid and origin time,
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and given arbitrary MT components. Specifically, we compute

T0shi f t = argmax
t

Nr∑
r=1

3∑
i=1

env[ui (xr , t ;m0)]⋆env[uobs
i (xr , t )], (2.18)

where T0shi f t is the additional time shift that needs to be added to the initial origin time
prior mean to obtain the refined origin time prior.

We test Equation (2.18) using the synthetic earthquake shown in Figure 2.2. For this
test, we add 600 m to the true x1, x2, and x3 centroid components, and we impose a
(rather aggressive) 9 s time shift with respect to the true origin time. Note, this implies
that we did not employ the aforementioned procedure to obtain initial centroid and ori-
gin time priors because this would result in a centroid and origin time estimate that
would be too close to the true centroid and origin time – essentially rendering the use
of Equation (2.18) unnecessary. In other words, we deliberately impose large deviations
from the true values to show the merit of using Equation (2.18).

Given arbitrary MT components, we show in Figure 2.4 the result of applying Equa-
tion (2.18) to vertical surface displacements. In Figure 2.4(a), we depict the envelopes of
modeled seismograms given available prior means (i.e., 600 m deviation from the true
x1, x2, and x3 values, and 9 s from the true T0). Figure 2.4(b) shows the noisy synthetic
"observed" seismograms and Figure 2.4(c) is the result of applying Equation (2.18) to
each of the displacement envelopes. In Figure 2.4(d), we show the result of stacking all
signals in Figure 2.4(c). The vertical blue line indicates the time at which the stack of the
cross-correlated envelopes attains its maximum value, i.e., T0shi f t ; the vertical red line
represents the deviation of the initial origin time prior from the true origin time (i.e., 9
seconds in this example).

Having sufficiently accurate prior means for the centroid and origin time, we then es-
timate the prior mean of the MT. For this purpose, we keep the centroid and origin time
constant but solve for the remaining six parameters (the independent MT elements). In
Section 2.4, we showed that because equation (2.13) is a quadratic function of m, its
derivative is linear in m (see Equation (2.17)). This first derivative hence coincides with
zero for that model for which U (m) attains its (global) minimum value. As such, set-
ting this derivative to zero allows us to obtain a first estimate (i.e., prior means) of the
moment tensor components. Setting the left-hand side of Equation (2.17) to zero yields

m = A−1
(
Am0 −b

)
= m0 −A−1b. (2.19)

It should be understood that Equation (2.19) is implemented with T0 and centroid
fixed. Hence, the model vector has only six elements, and A is a six by six matrix. The
quadratic nature of U in Equation (2.13) furthermore implies that arbitrary values can be
chosen for the initial moment tensor components in m0. In fact, in the absence of noise
and the correct prior means for the centroid and origin time, the MT priors estimated
using Equation (2.19) will coincide with the true MT components.

In practice, the prior means resulting from Equation (2.19) may still deviate signifi-
cantly from the true values due to the inaccuracy of the initial centroid and origin time
priors. Solving Equation (2.19) nevertheless provides sufficiently accurate prior infor-
mation regarding the magnitude of the induced event. Finally, it is useful to draw a par-
allel with typical least-squares optimization problems (e.g., Virieux and Operto, 2009).
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Figure 2.4: The results of estimating the prior mean of origin time using Equation (2.18) (d), given the envelopes
of modeled displacements (a), noisy synthetic "observed" seismograms (b), and the convolution between (a) and
(b) in (c).

In such context, A is analogous to the Hessian and the difference between m and m0 in
Equation (2.19) can be considered the model update vector.

2.6.3. FULL WORKFLOW
In Figure 2.5, we illustrate our entire workflow. The main component of the workflow is
the iterative HMC procedure, which is preceded by the (just-described) determination
of the initial prior and succeeded by the evaluation of the posteriors.
The determination of the initial prior consist of the following four steps:

1. Estimate the initial prior mean for the centroid, either by running a first-arrival
based probabilistic inversion algorithm or by extracting it from existing literature.

2. Estimate the initial prior mean of the origin time using (P-wave) travel times from
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the centroid obtained in step 1 to the receiver locations. This estimate is refined
by evaluating Equation (2.18) using an arbitrary MT.

3. Estimate the initial prior mean of the MT by fixing centroid and origin time to their
prior means (steps 1 & 2) and solving Equation (2.19). The sought-after MT prior
means are contained in m upon substitution of arbitrary MT components in m0.

4. Determine the standard deviation for each of the ten model parameters: centroid
(3), origin time, and moment tensor (6). These standard deviations are needed to
construct our first mass matrix M . Ideally, M is the posterior covariance matrix.
Here we approximate it by a (10x10) diagonal matrix with the following entries for
the diagonal. For the first three entries (representing the centroid), we take the
standard deviation of the centroid prior mean obtained in step 1. For the entry
representing origin time, we use half the period of the dominant frequency in the
recordings. For the MT components, we use 5% of the minimum absolute value of
the MT prior means obtained by solving Equation (2.19).

Now that the (initial) prior means and standard deviations are determined, the HMC
variant is run iteratively up to n chains (yellow box in Figure 2.5). A test for chain con-
vergence might be required to determine the number of chains needed, and it is highly
dependent on the quality of the prior means, data uncertainty, model uncertainty, initial
model, and the dominant frequency of the observed recordings. In our example (de-
tailed below), approximately ten chains are sufficient when the distance between the
initial estimation of the centroid and the true centroid is less than 700 m. The separate
steps of the iterative HMC procedure are:

5. Collect the prior means and associated standard deviations, and construct the
mass matrix M . For the first chain, the output from steps 1 to 4 is used as input.
In subsequent chains, they are extracted from the posterior of the previous HMC
chain. In this step, also A (Equation (2.14)), b (Equation (2.15)) and c (Equation
(2.16)) are recomputed.

6. Run a new HMC chain with a preset number of iterations and burn-in period.
Note, that for each chain, the results are stored for latter use.

7. Collect the results. The means and standard deviations will serve as input of for
the next iteration (see step 5).

After a total of n HMC chains, we evaluate the posteriors (dark blue box in Figure 2.5).
This involves:

8. For each of the n posteriors, compute the means ms (s = 1, ...,n). We use these
means to generate synthetic recordings and evaluate them against the observed
data through determination of the variance reduction (VR)

V R = 1−

√√√√√∑Nr
r=1

∑3
i=1

(
ui (xr , t ;ms )−uobs

i (xr , t )
)2∑Nr

r=1

∑3
i=1

(
uobs

i (xr , t )
)2 (2.20)
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9. Define a V R threshold. Posteriors associated with a ms for which the V R exceeds
this threshold are used to compute the final posterior distribution.

Figure 2.5: Full workflow of our iterative HMC scheme.

We use the above workflow to estimate the parameters of the synthetic event shown
in Figure 2.2. In step 1, we assume a suitable prior of the centroid can be retrieved from
literature (e.g., from Smith et al. (2020) in case of the seismicity in Groningen). To sim-
ulate the fact that this prior may well deviate from the true centroid, we shift this initial
centroid prior mean by 600 m in all directions (i.e., with respect to the correct event lo-
cation). Having the prior mean for the centroid, we follow steps 2 and 3 in the workflow
to obtain the other prior means. To encode for a state of ignorance, we set the standard
deviation σm of each model parameter to infinity, which implies that the last term of
Equation (2.14) evaluates to 0. The elements of our initial mass matrix are taken from
the results of steps 1-3 as explained in the full workflow (step 4), except for those ele-
ments that correspond to the centroid; these we set to 300 m. Using the initial prior
means and the initial mass matrix, we run 20 chains of the HMC variant. Furthermore,
we run 2500 iterations (step 6) for every chain, with the first 500 samples discarded as
burn-in samples. After finishing all iterations, the results of each current chain are then
used to update the prior means and mass matrix for the next HMC chain (the actual it-
erative HMC procedure). For each of the ten model parameters, all 40,000 samples (20
iterations × 200 samples) are depicted in Figure 2.6. To obtain our final posterior, we take
the results of chains for which the means are associated with seismograms yielding a VR
≥ 85% of the maximum VR. In detail, the samples from all chains (black dots) and the
selected chains (green dots) are depicted in Figure 2.7. For the samples of the selected
chains, the one-dimensional marginal probability distributions of each of the ten source
parameters are shown in Figure 2.8. In Figure 2.9, we show the synthetic (observed) seis-
mograms (green), seismograms generated from the final posterior means (blue), and the
true noise-free seismograms (red). With the use of a database containing pre-computed
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elementary seismograms and using the python code we developed, the entire workflow
takes approximately one minute to finish on a single-core CPU system.

Figure 2.6: Results of our iterative HMC scheme for a total of 20 chains, each involving 2500 steps of which the
first 500 are discarded as burn-in samples (not shown). The red lines are the true values.

Figure 2.7: Ten two-dimensional marginal probability densities of the inverted model parameters. Black dots
are all the samples given the results from all chains (Figure 2.6), whereas the green dots represent the samples
from chains that give VR≥ 85% of the maximum VR, which then represent our final posterior. The red lines are
the true values.

2.7. THE IMPORTANCE OF THE PRIOR
The above workflow might not be optimal if the initial prior information is "weak" in the
sense that the initial centroid prior mean deviates significantly from the true value. This
is due to the fact that our forward problem is in essence a non-linear problem, whereas
the adopted linearization (Section 2.4) relies on the assumption of it being only weakly
non-linear. In other words, poor initial centroid priors imply linearization around a lo-
cation x that deviates too much from the true source location xa , which may result in
the HMC algorithm "getting stuck" in local minima. This problem can be mitigated by
running the workflow with multiple initial prior means. Depending on how close each of
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Figure 2.8: The final marginal posterior distributions (green samples in Figure 2.7). The means are represented
by the blue lines and the gray lines are the standard deviations. Red lines are the true values.

Figure 2.9: Comparison between the true seismograms (red), observed (true+noise) seismograms (green), and
seismograms generated using the final posterior mean (blue).

the initial prior means is to the true values, some chains might get stuck in a local (mini-
mum) mode while others correctly sample the mode containing the global minimum (or
global maximum if one considers ρ(m|d)). In the end, the final posterior can be drawn
by combining the results of all chains given multiple initial prior means.

To showcase the effect of weak prior information in the context of induced seismicity
in the Groningen gas field, we re-use the synthetic earthquake in Figure 2.2. However, in-
stead of shifting the initial centroid prior mean by 600 m for all coordinate components,
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we rigorously shift it by 1 km for each horizontal coordinate. Meanwhile, the depth is set
to 3 km, corresponding to the default depth in the KNMI database because this database
will be our primary source to obtain our priors. To get additional initial centroid prior
means, we construct a 2.8 x 2.8 km 2D grid, at a depth of 3 km, with a spacing of 700
m, centered around the initial centroid prior mean. A pre-test can help in determining
the grid spacing. We previously demonstrated that our workflow performs well when
the centroid prior means are shifted by 600 m (in all directions) from their true values.
This shift corresponds to an absolute deviation of about 1 km. Given the spacing of the
constructed grid, assuming that the depth could be around ± 500 m, the maximum total
distance is about 700 m, which is then considered safe for the HMC algorithm to sample
the mode containing the global minimum.

Overall, given our 5x5 horizontal grid, we have 25 initial centroid prior means, each
of them being subjected to our workflow. For each workflow run, we use the same model
and data uncertainty as in the initial synthetic case. The same applies to the number of
chains (20), samples per chain (2500), and burn-in period (500 samples). To reduce the
computational time, we run the 25 workflows (associated with 25 initial centroid prior
mean) simultaneously by parallelizing our code. We subsequently collect the results of
each workflow to obtain an estimate of our posterior distribution. The results of this
parallelization are summarized in Figure 2.10, which highlights the effect of the separa-
tion between the centroid prior mean and the true centroid. Using the same threshold
as in our initial experiment (VR≥ 85% of maximum VR), in Figure 2.11, we show all (non
burn-in) samples associated with the selected chains and samples from all chains given
the calculated VR. For the selected chains, the marginal probability distribution of each
parameter is presented in Figure 2.12. As expected, chains with an initial centroid prior
mean relatively close to the true centroid converge to the true mode (containing the
global minimum). At the same time, chains starting from a centroid further away from
the true centroid, "get stuck" in a local mode. Fortunately, our VR strategy is still suc-
cessful in picking appropriate chains, allowing us to obtain an estimate of the posterior
distributions.

2.8. DISCUSSION AND CONCLUSIONS
Using synthetic events, we demonstrate that the proposed probabilistic workflow is able
to efficiently estimate the posterior probability of the various parameters describing in-
duced seismic events. A number of caveats need to be made though. First, the syn-
thetic recordings used to test our probabilistic workflow are the result of propagating a
wavefield through the very same velocity model as the one used to estimate the poste-
rior (i.e., the velocity model in our probabilistic workflow). In application to field data,
this would obviously not be the case. Part of the misfit between modeled recordings
and observed recordings would then be the result of discrepancies between the true
velocity model and the employed numerical velocity model. Second, and in the same
vein, we employed the same code (SPECFEM3D-Cartesian) for generating the synthetic
recordings as for modelling the wavefield in the probabilistic workflow. And although
this code is known to be rather accurate (Komatitsch and Tromp, 2002), undoubtedly
some of the physics describing the actual wavefield propagation is not fully captured by
SPECFEM3D-Cartesian. Third, this study does not include an application to field data.
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Figure 2.10: Summary of running the workflow using the 25 initial prior means. The distance between each
of the initial centroid prior means and the true centroid is indicated on top. Below, we show for each of these
initial prior means the VR as a function of chain number (vertical axis). Chains associated with a VR≥ 85% of
the maximum VR (0.4) are labeled with green dots, whereas chains with a posterior mean yielding seismograms
for which the VR does not exceed 85%, are labeled with black dots.

This is intentional as our objective is to present a stand-alone workflow that can be ap-
plied in any induced seismic setting. Applying a methodology to field recordings of in-
duced seismic events (e.g., in Groningen) would require numerous processing details,
which we consider to be beyond the scope of this chapter.

The aforementioned deviation of the available numerical velocity model from the
true subsurface velocities will pose a number of challenges. First, the estimated poste-
rior probability would give a lower bound in terms of the variability of the source pa-
rameters: inaccuracies in the velocity model necessarily imply broader posterior prob-
abilities. Second, in the presence of strong anisotropy, the posterior could be adversely
affected. In particular, in the case of non-pure shear mechanisms, this effect could be
significant (Ma et al., 2022). Third, cycle skipping will be particularly hard to tackle in
case the velocity model is rather inaccurate.
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Figure 2.11: Same ten two-dimensional marginal probability densities as in Figure 2.7. Note that scales on hori-
zontal and vertical axes differ. Black dots represent the samples from all chains, whereas the green dots represent
the samples from chains with a posterior mean that yields a VR that is higher than 85% of the maximum VR (the
detail of the chain can be seen in Figure 2.10). The red lines represent the true values.

Figure 2.12: Marginal posterior distributions for each model parameter given the selected chains (depicted as
green dots in Figure 2.10). The blue lines represent the means, and the standard deviations are represented by the
grey lines. The red lines represent the true values.

Our workflow includes a systematic approach to obtain meaningful initial priors,
which is particularly important for the employed HMC variant: the linearization of the
forward problem around the prior mean requires the initial priors to be sufficiently close
to the true event location. Furthermore, we show that by using an iterative scheme, we
can update the prior mean such that convergence is obtained to a centroid location that
allows the estimation of a meaningful posterior. The iterative scheme involves sequen-
tially updating the prior mean of each new HMC chain using the posterior estimate ob-
tained from the previous HMC chain. This approach is based on the suggestion of Ficht-
ner and Simutė (2018) to repeat the Taylor expansion (of the forward problem) for each
new sample of the Markov chain. However, we (only) do this every 2500 samples in our
case. A brute-force approach to perform the expansion at each step of every chain would
render computational costs prohibitively large.

Prior to executing the workflow, one needs to compile a database of the elementary
seismograms, which often requires significant computing power. In our case, it took
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about one day to generate the database using one node of our computer cluster that
consists of 24 CPU cores (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz) with a total ram
of 503GiB. Once compiled, our workflow can be run efficiently. Using a single-core CPU
system, a single run of our workflow with 20 sequential HMC chains takes about one
minute to finish, where each chain consists of 2500 iterations. In contrast, the computa-
tional costs of the Metropolis algorithm (to get the same results) would be much higher,
as previously shown by Fichtner and Simutė (2018); Fichtner et al. (2019). Furthermore,
various modifications could be applied to the workflow, such as adding simulated an-
nealing and tempering (Tarantola, 2006), including a step to quantify the error in the
input seismograms (Mustać and Tkalčić, 2016), and/or applying a scheme that is able
to tune dτ and τ for each HMC run (Hoffman and Gelman, 2014). These modifications
could be beneficial, especially when dealing with field observations, which is the sub-
ject of the next chapters. We also show that the workflow can be adapted to account for
scenarios in which the initial centroid prior mean is rather inaccurate and/or the initial
prior is weak. If that is the case, an approach can be adopted in which various iterative
HMC workflows, each using a different centroid prior mean as a starting point, are run.
Subsequently, using the variance reduction associated with the posterior means of the
individual chains as a binary criterion for selecting a chain’s samples, a final estimate of
the posterior probability can be obtained.

We would like to emphasize that our workflow is, in principle, not limited to inver-
sions of the parameters we use here. We could extend our probabilistic inversion to
parameters such as stress drop, velocity, or to invert for finite fault source parameters.
Furthermore, it is important to mention that our workflow aims to invert seismic source
parameters using seismic surface recordings in a specific frequency range. That is, it
is specifically geared towards inverting for induced seismic events. We found that the
workflow works well when applied to data with frequencies between 1 and 3 Hz. For
higher frequencies, however, some testing might be needed because the non-linearity
between the input data and model parameters increases with increasing frequency.
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3
PROBABILISTIC

CENTROID-MOMENT TENSOR

INVERSIONS OF GEOMECHANICALLY

SIMULATED WAVEFORMS

Understanding earthquake processes often begins with estimating the source parameters
of the earthquake. This requires the use of inversion techniques in which the observed
field data is systematically compared with synthetic data. In the process, however, mul-
tiple simplifications are used to generate the synthetic, such as the used point source as-
sumption. A more realistic assumption is to use a finite fault assumption. Despite being
more realistic, this will significantly increase computational needs when performing the
inversion. To better understand how the point source assumption affects our inversion,
we perform a synthetic experiment where we generate noise-free and noisy synthetic data
by simulating the 2018 ML 3.4 Zeerijp event in the Groningen gas field, the Netherlands.
Specifically, we perform geomechanical simulations that consider the regional stress field
and the Groningen field 3D subsurface model. The simulation then mimics the earth-
quake nucleation process of the Zeerijp event, which also satisfies the finite fault assump-
tion. With the geomechanically generated synthetic observations, we use the inversion
algorithm we developed in Chapter 2 to estimate earthquake parameters that correspond
to the earthquake simulation. In the inversion, we compare both the noisy and noise-
free synthetic observations with other synthetically generated data from 1D generalized
Groningen´s velocity models computed with the point source assumption. With the aim
of understanding the limitation of the point source assumption and, in addition, the use
of subsurface model simplification (via 1D velocity models for generating synthetic data),
we find that the use of the point source assumption has little to no significant effect on

Parts of this chapter are currently being prepared for a journal article.
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the inversion results. The estimated parameters when inverting using noisy and noise-free
data are similar. We also compare those estimated parameters with what is observed dur-
ing the geomechanical simulation. For example, we showcase how the estimated centroid
locations match the distribution of displacements observed in the fault during the simu-
lation as well as the estimated moment tensor, which corresponds to the fault orientation
and movement that triggers the earthquake nucleation.

3.1. INTRODUCTION
Induced earthquakes, which occur due to human activities, usually receive less atten-
tion than natural earthquakes because of their smaller size and lower impact and be-
cause they are less frequently observed. In some cases, however, induced earthquakes
may have the same destructive impact as natural earthquakes (Foulger et al., 2018). Pri-
mary factors that drive induced earthquakes are the extraction of subsurface resources
(e.g., oil and gas) and the extraction of heat from the subsurface (i.e., geothermal energy
production). The Groningen gas field is a notorious example of an area where induced
earthquakes are triggered by fault reactivation driven by prolonged gas extraction. The
first detected earthquake in the area occurred in 1986, and a rapid increase in seismic-
ity was observed between 2002 and 2013 (Muntendam-Bos et al., 2022). Although seis-
mic reactivation continues to take place, seismic activity decreased recently NAM (2023).
The prolonged seismic activity has caused significant devastation, including the destruc-
tion of residences, which in turn had, and still has, profound effects on local communi-
ties (Bakema et al., 2018). Consequently, it is essential to study the mechanisms behind
induced seismicity to assess seismic risks thoroughly and devise efficient strategies for
mitigating these risks in impacted regions.

Geomechanical simulation is an indispensable tool while studying induced earth-
quakes. It leverages subsurface geological and physical properties such as fault geom-
etry, stress distribution, and extraction scenarios to understand how an earthquake nu-
cleates and propagates until it is observed at the surface (Van Wees et al., 2017; Bui-
jze et al., 2017). It is occasionally paired with earthquake source inversion algorithms,
which harness the observed seismic signals to estimate specific characteristics of (in-
duced) seismic sources. In this study, we integrate both tools, with geomechanical sim-
ulation being used to solve the forward problem and the source inversion algorithm to
solve the inverse problem. The application of earthquake source inversion algorithms is
often contingent on the validity of specific assumptions regarding the earthquake source
model and/or subsurface properties. A notable example is the frequently adopted point
source approximation, which parametrizes the displacement along the fault by means
of a nine-component tensor (the moment tensor; Aki and Richards, 2002). The approxi-
mation involves a simplification of the rupture process in the sense that an earthquake
is collapsed to an infinitesimal point (the centroid). Mathematically, however, a rupture
process may also be formulated to be a summation of multiple contributions, each as-
sociated with a different point on the fault plane and having its own displacement and
time history. Rupturing processes along a finite fault can be simulated by geomechani-
cal simulation. Seismograms obtained from such a simulation better represent true field
observations. In this study, we will exploit these more "realistic" synthetic observations
to test the validity of the point-source assumption as well as our inversion algorithm
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itself.
In this study, we perform a centroid-moment tensor inversion of simulated record-

ings (or synthetic recordings) resulting from geomechanical simulation of a finite rupture
represented by multiple, separately moving slip patches. The inversion itself is based on
a Hamiltonian Monte Carlo (HMC) algorithm tailored to induced earthquake sources,
which is explained in detail in Chapter 2. The geomechanical simulation, which uses the
Groningen reservoir models (NAM, 2020), is designed to simulate induced seismicity
below the village of Zeerijp. Specifically, the simulation aims to replicate the ML 3.4 in-
duced earthquake that rocked the village of Zeerijp in 2018. It is one of the largest events
recorded in the Groningen area (the largest being a ML 3.6 event near Huizinge in 2012).
Our simulation also incorporates the geometry of the seismological network operated by
the seismology division of the Royal Netherlands Meteorological Institute (KNMI) in the
sense that the locations of 7 KNMI borehole seismometers define the positions where the
waveforms generated by geomechanically simulated fault slip are modeled (see Figure
3.1).

Figure 3.1: Epicenter of the ML 3.4 Zeerijp earthquake estimated by KNMI (red star) with the top reservoir
and fault map of the Groningen gas field below it. Locations of 7 vertical borehole arrays consisting of three-
component geophones at depths of 50, 100, 150, and 200 meters are also depicted. Locations of local villages
are shown in grey boxes.

In what follows, we will start by explaining the methodology used in this chapter.
Particularly, we detail our approach for simulating an earthquake geomechanically. This
is then followed by a subsection detailing our technique to make use of the waveforms
from the simulation to obtain earthquake parameters corresponding to the simulated
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earthquake. The parameter estimation is made possible by applying the HMC-based in-
version algorithm to the modeled waveforms, which is discussed in the subsequent sub-
section. Finishing up the methodology, we delve into the result of the inversion given
two cases; the modeled recordings are (i) noise-free and (ii) noisy. We then compare
the results of the inversion for both scenarios with what has been observed in the ge-
omechanical simulation before proceeding with the final subsection, highlighting our
conclusions.

3.2. METHODOLOGY

We separately describe (i) the methodology associated with the (geomechanical) gen-
eration of the synthetic recordings and (ii) the methodology associated with the prob-
abilistic centroid-moment tensor inversion. These are described in Sections 3.2.1 and
3.2.2, respectively. The geomechanical simulation provides insight into the displace-
ment within our subsurface model, particularly along fault surfaces, enabling investi-
gation into the nucleation process of earthquakes. In addition, it generates synthetic
waveforms by propagating these displacements using waveform simulation techniques.
The theory and approach detailed in Section 3.2.2 describes how these synthetic record-
ings are subsequently inverted, resulting in a posterior probability density of both the
centroid and the moment tensor.

3.2.1. GEOMECHANCIAL MODELING

To generate synthetic recordings via geomechanical simulation, we first create, down to
a depth of 6 km, a 16 by 12 km one-dimensional finite difference subsurface model be-
low our area of interest (16 km east-west and 12 km north-south). The one-dimensional
velocity structure of this model coincides with the velocity structure of the NAM’s ve-
locity mode at the epicenter (Romijn, 2017). Within this subsurface model, a three-
dimensional block of 2×2×1 km surrounding the hypocenter is embedded. The latter
block is sliced from the larger reservoir model made available by the NAM (2020). This
block extends 1 km down from a depth of 2350 m and includes several major faults. The
block is discretized using a finite element mesh to capture the complexity of the included
faults. We depict the sliced 3D block in Figure 3.2. In (a), we show the map represent-
ing the top reservoir, including the fault delineation of our model. Also, we define and
mark four reference points to ease the interpretation. In (b), we show in 3D the delin-
eation of the major faults within the selected block. In (c), we depict the geometry of the
model/block, including the faults in (b), for a depth range of 1 km. Below, we summarize
the adopted approach. For details, we refer to Ruan et al. (2023).

We utilize the open-source finite-element package Defmod developed by Meng (2017)
to simulate the 2018 ML 3.4 Zeerijp event in the Groningen gas field in our 2×2×1 km fi-
nite element model. In detail, our model is divided into four vertical regions, each with
different distinct properties (i.e., P-wave velocity, S-wave velocity, and density). These
are the overburden, the top seal, the reservoir, and the underburden. We then follow the
work of Wentinck (2018) to define the materials and elastic parameters, as well as the
regional stress setting applied to each vertical region of our model. Once the material
properties are assigned, we initiate boundary reactions on the side and top walls, which
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Figure 3.2: a) Top reservoir map of the research area, which is located near the ML 3.4 Zeerijp event (see the
area near the red star in Figure 3.1). Given the research area, the corresponding fault geometry and reservoir
model extracted from NAM (2020) are shown in b) and c), respectively.

are based on the assigned regional stress regime. At the bottom, during initialization, we
apply the roller boundary condition to prevent the occurrence of vertical displacement
at the bottom of our model (similar to the approach used by Buijze et al. (2017, 2019) in
a 2D medium). We assume the pore pressure to be 35 MPa at a depth of 3000 m. The hy-
drostatic pressure in each material is then calculated based on the depth and the density
of gas and water. After initializing the model with pore pressure and boundary traction,
we calculate the initial stress on the faults. To simulate the gas extraction process, we
apply a uniform depletion scenario inside the reservoir until the nucleation of seismic
events. The depletion phase is implemented in a quasi-static way as we consider the
faults to remain stable. During the depletion, we calculate the incremental stresses and
evaluate these on the fault.

After each quasi-static time step, we simulate dynamic fault slip if the fault becomes
critical, that is, when the shear stress exceeds the friction. Friction at the fault is cal-
culated using the linear slip-weakening law, with an initial friction coefficient of 0.6, a
residual coefficient of 0.45, and a maximum weakening distance of 0.005 m. These val-
ues are slight modifications of those used in the 2D geomechanical simulations by Buijze
et al. (2017), optimized here for our 3D simulations to generate seismic events. Next, the
simulation outputs the fault slip until it is re-stabilized. During the dynamic simulation,
which lasts for 10 seconds, two outcomes are possible. If the simulated rupture expands
from the original slip patch as a self-sustained rupture, the simulated rupture is consid-
ered seismic; otherwise, it is aseismic.

When the depletion reaches 26 Mpa (i.e., at a pore fluid pressure of 9 Mpa), a seismic
event with a magnitude equivalent to ML 3.0 (assuming that Mw = ML (Dost et al., 2018))
nucleates at the main fault near the intersection with the secondary fault. The seismic
slip starts at the top of the reservoir juxtaposition and then propagates along the fault
in both strike and dip directions. In the end, the seismic slip patch is limited by the
juxtaposition with a size of approximately 200 m × 200 m. The maximum slip is located
in the middle of the reservoir interval.

To reduce the computational costs of propagating the resulting seismic wavefield,
we combine the geomechanical simulation mesh (finite-element) with the aforemen-
tioned coarser regular mesh that supports finite-difference computations (the 16x12x6
one-dimensional velocity model). The level of grid coarseness in the finite-difference
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Figure 3.3: Schematic of our forward simulations to geomechanically generate synthetic seismograms. It uses a
combination of geomechanical modeling taking place in the finite-element mesh (1) and then propagated into
the nearby finite-difference mesh (2), which is then further propagated through the entire medium discretized
with the finite-difference mesh until it gets recorded by our choice of receiver setup (3).

mesh is designed such that the recorded wavefield is not aliased at the maximum ex-
pected frequency. In figure 3.3, we illustrate the transition between the two meshes. The
geomechanical simulation takes place in the finite element mesh. This way, the structure
and shape of the fault can be better represented, as illustrated in Figure 3.3(1). When the
fault becomes reactivated (orange dots), the displacement on the finite element node(s)
is then assigned to adjacent finite difference nodes (yellow dots in Figure 3.3(2)) due to
the binding and overlapping of both meshes (details can be found in Meng and Wang
(2018)). Each of the yellow points will then act as a point source, which is then propa-
gated in the finite-difference mesh using waveform simulation code OpenSWPC devel-
oped by Maeda et al. (2017) as depicted in Figure 3.3(3). The propagated waveforms are
then recorded at specific locations, which, in our case, coincide with the coordinates of
our selected KNMI borehole seismometers situated at 200 m depth.

3.2.2. A PROBABILISTIC CENTROID-MOMENT TENSOR INVERSION
In this Section, we describe the methodology associated with the probabilistic centroid-
moment tensor inversion. Our inversion is based on a Hamiltonian Monte Carlo (HMC)
algorithm and is tailored to induced earthquake sources; the description here effectively
summarizes the theory detailed in Chapter 2.

THE FORWARD PROBLEM
The moment tensor is a point-source representation of an earthquake, where this point
is usually referred to as the centroid. In practice, it depends on the strength of the (finite)
seismic source (the strength of the earthquake being quantified by its seismic moment
in Newton meter), the fault’s strike and dip, and the rake describing the direction of rela-
tive rupture along the fault. Seismograms due to a point source described by a moment
tensor read (Aki and Richards, 2002),

ui (xr , t ) =
3∑

j=1

3∑
k=1

M j k (t ,xa ,T0)∗Gi j ,k (xr , t ;xa) . (3.1)

Here, ui represents the displacement u in the xi direction at the observation point xr ,
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given the source located at xa and with a rupture propagation starting at time T0. Axes x1,
x2, and x3 correspond to east, north, and vertical (positive downward), respectively. The
moment tensor M, which is a symmetric 3×3 matrix, has six independent components.
Each component M j k represents a moment due to the force in the x j direction and an
arm in the xk direction. The Green’s tensor, denoted by G, has indices i and j , where the
first index indicates the axis along which the displacement is recorded (i.e., it yields ui )
and the second index the direction in which the (moment tensor) force is acting. The
comma following the second subscript implies a spatial derivative in the xk direction
with respect to xa . The asterisk ∗ symbolizes convolution in the time domain.

It should be understood that the displacement at the left-hand side of Equation 3.1
is the displacement due to the activation of a single point (one orange dot) of our mesh
in Figure 3.3, whereas, in our geomechanical simulation, multiple points are of course
activated. The displacement at xr for such a (extended) source is effectively the result of
an integration over the different contributions along the fault plane and can be written
(Aki and Richards, 2002, ; equation 3.20)

ui (xr , t ) =
3∑

j=1

3∑
k=1

∫
A

M j k (t ;xa ,T0)∗Gi j ,k (xr , t ;xa)d A (3.2)

with ui now representing displacements due to a rupture along a fault plane with a sur-
face area A and xa the position on that fault plane; M j k (t ;xa ,T0) varies as a function of xa .
By using Equation 3.1 to invert the synthetic recordings due to geomechanical modeled
(finite) fault slip and comparing the obtained source characteristics to the geomechani-
cal parameters describing the rupture along the finite fault, we effectively investigate the
validity of replacing Equation 3.2 by Equation 3.1 in the inversion. The fact that, for the
inversion, Equation 3.1 is implemented assuming a simplified one-dimensional veloc-
ity model of the subsurface below Groningen, which lacks detail in comparison to the
3D model we use for the Geomechanical simulation (within the 2x2x1 km finite element
block), gives rise to some additional discrepancies between the recovered parameters
and the ones associated with the geomechanically simulated rupture.

INVERSE PROBLEM
Here, we summarize the approach we use to estimate the posterior probability density
of the centroid moment tensor using Bayesian inference (detailed in Chapter 2). The
posterior is obtained (up to a constant of proportionality) by multiplying two quantities:
the likelihood ρ(m|dobs) and the prior information ρ(m). When computing ρ(m|dobs),
we essentially quantify the discrepancy (misfit) between synthetic data resulting from
the geomechanical simulation (here being the observed recordings uobs

i ) and recordings
ui resulting from forward modeling using Equation 3.1 given parameters concatenated
in the vector m. Assuming that the noise on the synthetic recordings uobs

i is uncorrelated

and having a Gaussian distribution, ρ(m|dobs) can be formulated as

ρ(m|uobs ) = exp
[
− 1

2T

Nr∑
r=1

3∑
i=1

∫ T

0
σ−2

d

[
ui (xr , t ;m)−uobs

i (xr , t )
]2

dt
]

(3.3)

where Nr represents the number of receivers andσ2
d the data variance. Solving an in-

verse problem involves the identification of model parameters m that best approximate
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the source characteristics. In this case, the prior information of m can be computed as

ρ(m) = exp
[
− 1

2Nm
(m−m0)⊺C−1

m (m−m0)
]

(3.4)

where model vector m contains ten earthquake source parameters, with m0 the vector
containing the mean of the prior of those parameters, whereas Cm is their covariance
matrix. In search for the optimum m, inversion algorithms are employed, which could
be either deterministic or probabilistic. While deterministic algorithms offer lower com-
putational costs in comparison to probabilistic ones, probabilistic algorithms are known
for their ability to encode and output uncertainties of their estimation.

In the context of earthquake source inversion, a probabilistic algorithm (or sampler)
with relatively low computational requirements is the variant of the Hamiltonian Monte
Carlo (HMC) algorithm introduced by Fichtner and Simutė (2018), which involves a lin-
earization of the forward problem (about the model vector m0). This modified sam-
pler, however, requires a relatively accurate a priori estimate of this model vector, which
means that the m0 should be relatively close to the true m. This is typically the case for
(larger) natural earthquakes, which generate lower-frequency signals. When m0 is inac-
curate, however, the modified sampler would not only be efficient but also inaccurate in
its output. To overcome this, we make use of the inversion algorithm explained in Chap-
ter 2, which is (yet another) modification of the modified HMC variant. All in all, this
new algorithm aims to improve the efficiency of the inversion process without losing the
accuracy of the estimated posterior probability.

INVERSION PARAMETERS
Given the forward problem and the inverse problem described above, we will now detail
the setup and inversion parameters we use to estimate the earthquake parameters. In
general, we adopt a previously tested setup, which was validated using the Groningen
subsurface characteristics in Chapter 2. First, we adopt a frequency range similar to the
one used by Dost et al. (2020), which implies we apply a 1-4 Hz bandpass filter. We
also adhere to their tapering recommendations, leading us to select a 3 s measurement
window with both ends tapered for 0.9 seconds. This approach ensures we capture not
only the P-waves but also certain portions of the S-waves, especially from receivers in
close proximity to the initial epicenter estimate. This is vital because our S-wave velocity
model, used for generating point source waveforms ui , lacks accuracy compared to the
P-wave model (Romijn, 2017). The further the receiver, the higher the uncertainty of the
modeled S-wave segments and the more uncertain the posterior. Nevertheless, the S-
wave carries more energy associated with higher amplitude and higher signal-to-noise
ratio compared to the P-wave. Hence, having an accurately modeled S-wave will better
constrain the inversion when dealing with field data, which, in this synthetic study, is
captured by the taper exclusively to receivers near the epicenter.

When it comes to the synthetic recordings uobs
i (xr , t ), we distinguish between two

cases. One is noise-free, and the other has some additive random noise. This noise is
obtained by generating white noise with 10 % of the maximum amplitude of the noise-
free data for each receiver and each component in the frequency domain (later, these
values will also be used as entries for σd ). As such, the noise not only results in ampli-
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tude variations but also introduces (small) time shifts affecting the origin time and loca-
tion accuracy in the inversion process. For the model uncertainties, which are encoded
by Cm , we use several sources. For the hypocenter, we comprehend a study delivered
by Smith et al. (2020) regarding the probabilistic estimation of earthquake hypocenters.
Here, given 5% of velocity model error, they obtain ± 100 m of deviation in the hypocen-
ter. For the moment tensor, we set it to infinity to encode the state of ignorance. As for
the origin time, we use an arbitrary value of 0.1 s.

Another vital element is the choice of m0. In this study, similar to what is showcased
in Chapter 2, we generate multiple realizations of m0 surrounding the hypocenter esti-
mated by the KNMI. Specifically, we take the epicenter from KNMI (see the red star in
Figure 3.1) and draw a circle with a radius of 700 m. Fault segments that are captured in-
side this circle are then discretized laterally every 200 m. In total, we obtained 14 points,
leading to the generation of 14 sets m0. Each of the sets will have 10 entries representing
the parameters we seek to estimate. The entries of the epicenter (first two coordinates
of the centroid) will be taken from the discretized fault points. The depth of all m0 is
set to 3 km, and the origin time is set to 0 s. Finally, the entries to the moment tensor
are taken from the fault geometries at each discretized fault point. Specifically, we con-
vert the strike and dip at each point to the moment tensor with the assumption that the
earthquake is driven by pure normal fault movement (the rake is set to 90◦). Sampling
the posterior by means of multiple (multi-stage) HMC chains is described in detail in
Chapter 4.

3.3. RESULTS AND DISCUSSION
This section presents and discusses the results of our inversion. Specifically, we highlight
the differences between the estimated parameters of the inversions of the noise-free and
noisy synthetic seismograms. Our analysis is divided into three parts. First, we examine
the posterior distribution of our estimated earthquake parameters for these two differ-
ent datasets. We then convert those distributions to earthquake mechanisms and the
properties of the moving fault in terms of strike, dip, and rake. Second, we showcase
the seismograms generated using the estimated parameters (with the point-source as-
sumption) and compare them with the synthetic seismograms. Third, we compare the
estimated centroids with the (planar) locations where displacements occurred during
the geomechanical simulation.

We present the estimated posterior probability by means of (1D) marginal probabil-
ity density functions in Figure 3.4. For all ten parameters, the marginals associated with
the noisy and noise-free synthetic recordings pretty much coincide. In general, we find
no significant difference in both mean values and standard deviation. We then continue
with estimating the parameters of the simulated rupture by converting the six probabil-
ity distributions representing moment tensors in Figure 3.4 into probability densities of
strike, dip, and rake (Figure 3.5). Converting those, we obtain two sets of solutions. To
narrow down our analysis, we only select solutions that give strike values between 300
and 320◦ which is the range of strike from the closest fault segment given the mean value
of the estimated centroid locations. Obviously, such selection is justified only when prior
information regarding subsurface fault orientations is available. In addition, we decom-
pose the six moment tensor distributions into three (end-member) types, which are ISO
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(Isotropic), DC (Double-coupled), and CLVD (Compensated linear vector dipole) (e.g.,
Mustać and Tkalčić, 2016; Cesca et al., 2013; Vavryčuk, 2015). We display these earth-
quake mechanisms in two forms. First, we plot these as 1D marginal probability density,
and second, we project those densities in the Hudson plot to better see the distribution
of the source mechanism/type (Hudson et al., 1989); both are presented in Figure 3.5.
As depicted, the mean value of the strike is aligned with the strike of the nearby fault
segment (which was used for the geomechanical simulation). Similarly, for the dip, the
estimated mean value is 78◦, which is close to the dip of the closest fault segment, which
is in the range of 75◦ to 80◦. As for the rake, we found that both probabilistic inversion
results yield, on average, values close to 90◦.

Figure 3.4: Marginal probability densities of the HMC-derived posterior probability density based on both the
noise-free and noisy synthetic data (i.e., resulting from the geomechanical simulations).

Decomposing the recovered moment tensors, we find that the simulation is mainly
driven by DC mechanisms for both datasets. In the Hudson plot, this manifests itself
in the higher probability density at the center of the axis. The CLVD percentages, on
the other hand, are different for the noisy and noise-free recordings, with one slightly
positive and another slightly negative. Finally, the posterior means estimated from both
datasets indicate negative isotropic components. In the geomechanical calculation, we
do not allow for any volume changes, and hence, the found dominant DC is expected.
The presence of the ISO and CLVD components is the result of the workflow trying to
best fit the seismogram using multiple combinations of moment tensors (and other pa-
rameters). This includes adding slight ISO and CLVD components to the solutions. In
real events, the presence of ISO components could be the result of volume loss due to
reservoir depletion (negative ISO). As for the CLVD, this is often attributed to a complex
seismic process. The positive CLVD physically represents a situation where a portion of
the subsurface is being compressed along the vertical axis and expanding in the two lat-
eral axes, such as in the activation of ring fault (Shuler et al., 2013). Conversely, negative
CLVD represents the opposite, that is, where a portion of the subsurface is expanded in
the vertical axis but compressed in the two lateral axes, such as in the case of collapse
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mining (Rudziński et al., 2016). However, the presence of CLVD is sometimes also at-
tributed to the presence of noise in the data or high seismic anisotropy in the subsurface
(Stierle et al., 2014).

Figure 3.5: Results of converting and decomposing 1D probability functions of Moment tensor solutions in
Figure 3.4 (the first six density functions) into the strike, dip, rake solutions, and earthquake mechanisms which
are the Isotropic (ISO), Compensated linear vector dipole (CLVD), and Doubled-coupled (DC).

In Figure 3.6, we examine the fit of the synthetic data (i.e., resulting from the ge-
omechanical simulation described in Section 3.2.1) with synthetic recordings generated
using the mean of the estimated posterior probability density (associated with the noisy
synthetic dataset). Not surprisingly, the generated synthetic recordings match both sim-
ulated observed datasets. The match is preserved not only in the measured area where
the taper is being applied but also beyond it. Note that the green shaded area in Figure
3.6 is the part where all datasets are being measured fully (i.e., effectively the uobs

i and
ui serving as input to the probabilistic inversion) and the brown areas are where cosine
tapers are being applied. Despite the good match, we still observe significant discrep-
ancies between the generated synthetic data (using point source assumption) and the
noise-free synthetic datasets. These discrepancies are most likely not caused by inac-
curate source parameters; rather, they stem from differences in the underlying velocity
models used to generate the datasets and the fact that a centroid moment tensor source
yield deviates from rupture along a finite fault. The difference between the waveforms
essentially reflects the limitations inherent in simplifying complex physical systems into
idealized models. Focusing on the noisy recordings, we show that the introduction of fre-
quency domain noise not only varies the amplitude but also causes phase shifts, further
complicating the inversion process. This variation, however, is not enough to deviate
the estimated posteriors from the inversion using the noise-free dataset. This stability in
the inversion results indicates that the algorithm is robust against moderate noise levels,
and the variation is captured by the standard deviation fed in the inversion.

We now show the comparison of centroids against the observed displacement in the
fault plane in Figure 3.7. On the left side, we show the means and covariances of our es-
timated epicenter on top of the major fault map of the Groningen gas field. Note that the
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Figure 3.6: Comparison of seismograms. Green seismograms are generated using the point source assumption
given the mean values of the estimated posteriors using the noisy geomechanically generated synthetic data
(blue seismograms). Red seismograms are the noise-free geomechanically generated synthetic seismograms.
The shaded area represents the measuring window, with the green shade representing the fully measured area
(no taper) and the brown area representing the area where cosine tapers are applied to the seismograms.

fault is dipping towards the northeast, and as expected, the estimated values sit on the
simulated fault. In the right panels, we show the snapshot of the observed displacement
at 0.1, 0.29, and 0.8 s. The shown displacement is the projection of the along-fault dis-
placement on the x-axis. As presented, the estimated covariances encircle the location
with the maximum displacement. The mean origin time of the posterior probability den-
sity is 0.29; it is the same for both the noisy and noise-free synthetic recordings. These
values approximately coincide with the time of maximum displacement.

3.4. CONCLUSION
In this study, we estimate the posterior probability density of ten earthquake source pa-
rameters describing (a point-source approximation of) a geomechanically simulated in-
duced seismic rupture. That is, we effectively investigate the validity of using a point
source approximation for (induced) slip along a finite fault in the context of seismic
source inversion of recorded seismograms at the Earth’s surface. In addition, however,
the seismograms resulting from the solution of the forward model in the Hamiltonian
Monte Carlo sampler are generated using a more simplistic 1D model compared to the
velocity model used to propagate the geomechanically displacements along the finite
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Figure 3.7: Left: Estimated centroid means, and covariances overlaid with the Groningen fault map. the main
fault and the secondary faults are parts of the geomechanical simulation. Right panels: Seismic slip snapshot
during the geomechanical simulation on the main fault projected in the x-axis; from top to bottom: 0.1, 0.29,
and 0.8 s.

fault. Despite these differences, the inversion algorithm appears to be robust in the
sense that the centroid, the moment tensor, and the origin time well approximate the
(finite fault) rupture, even in the presence of moderate noise. Our inversion reveals that
the (geomechanically) simulated event is dominated by the DC component, with slight
variations in the CLVD, likely reflecting noise interference. In addition, we also observed
negative ISO components, which are the result of the workflow trying to fit the wave-
forms from simulated events with multiple combinations of moment tensors (hence
mechanisms). In application to field data, a significant negative ISO may comply with
scenarios involving volume loss, such as reservoir depletion. Next, the centroid location
estimations aligned well with the observed displacement on the fault plane, particularly
at the moment when maximum displacement is observed, providing further validation
of the accuracy of the inversion process. The ability of the inversion method to handle
noise and maintain accurate estimations underscores its potential application in real
seismic monitoring, where data is often contaminated with noise and other uncertain-
ties.
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4
HAMILTONIAN MONTE CARLO TO

CHARACTERIZE INDUCED

EARTHQUAKES: APPLICATION TO A

ML 3.4 EVENT IN THE GRONINGEN

GAS FIELD AND THE ROLE OF PRIOR

The Hamiltonian Monte Carlo (HMC) algorithm is known to be highly efficient when sam-
pling high-dimensional model spaces due to Hamilton’s equations guiding the sampling
process. For weakly non-linear problems, linearizing the forward problem enhances this
efficiency. This study integrates this linearization with geological prior knowledge for op-
timal results. We test this approach to estimate the source parameters of a 3.4 magnitude
induced event that originated in the Groningen gas field in 2019. The source parameters
are the event’s centroid (three components), its moment tensor (six components), and its
origin time. In terms of prior knowledge, we tested two sets of centroid priors. The first
set exploits the known fault geometry of the Groningen gas field, whereas the second set is
generated by placing initial centroid priors on a uniform horizontal grid at a depth of 3
km (the approximate depth of the gas reservoir). As for the forward problem linearization,
we use an approach in which the linearization is run iteratively in tandem with updates
of the centroid prior. We demonstrate that, in the absence of a sufficiently accurate initial
centroid prior, the linearization of the forward model necessitates multiple initial centroid

Parts of this chapter have been previously published as :

Masfara, L. O. M. and Weemstra, C. (2024). Hamiltonian Monte Carlo to characterize induced earthquakes:
Application to a ML 3.4 event in the Groningen gas field and the role of prior. Earth and Space Science,
11(1):e2023EA00318.
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priors. Eventually, both prior sets yield similar posteriors. Most importantly, however, they
agree with the geological knowledge of the area: the posterior peaks for model vectors con-
taining a centroid near a major fault and a moment tensor that corresponds to normal
faulting along a plane with a strike almost aligning with that of the major fault.

4.1. INTRODUCTION
Characterizing an earthquake is essential for a number of reasons. First, its source pa-
rameters (centroid, magnitude, slip direction, etc.) determine, to a large extent, the dam-
age it may cause (Lui et al., 2016). This is because the depth, size, and type of rupture all
affect the amount of shaking produced (Trippetta et al., 2019). Secondly, source char-
acterization may help to improve our understanding of an event’s nucleation, which is
essential for developing reliable earthquake hazard models (Ellsworth et al., 2015). In
addition, an increased understanding of source characteristics can potentially be used
to improve earthquake early warning systems by providing (additional) information that
can be used to generate alerts before strong shaking takes place (Peng et al., 2021).

Seismologists distinguish between ‘natural’ and ‘induced’ earthquakes. Induced earth-
quakes usually emit shorter period signals compared to tectonic earthquakes (Li et al.,
2020). This is because, on average, induced events have relatively low magnitudes com-
pared to (stronger) tectonic earthquakes, although some induced events are reported
to be as high as 5.8 (Foulger et al., 2018). In addition, induced events usually occur at
relatively shallow depths. Combined, shallower depths and higher frequencies imply
that induced events may still cause significant damage to buildings and infrastructure
(Vlek, 2018). In addition, ground motions are exacerbated by high amplification factors
in some areas (Bommer et al., 2017).

A notable example of induced seismicity is the events occurring in the Groningen
gas field, the Netherlands (Sarhosis et al., 2019). The Groningen gas field, located in the
northern part of the Netherlands, is the largest gas field in Europe. Since the first re-
ported induced earthquake in 1986, there has been a gradual increase in seismic activity
in the field (van Thienen-Visser and Breunese, 2015). Because of the societal unrest as-
sociated with the earthquakes (Nepveu et al., 2016), the Dutch government has recently
taken steps to reduce the extraction of natural gas from the Groningen gas field. The
field closed down permanently on October 1, 2024, with production halted on October 1,
2023. Concurrent with the production reduction, an extensive array of seismometers was
installed by the Dutch Meteorological Institute (KNMI, which stands for Koninklijk Ned-
erlands Meteorologisch Instituut), funded by NAM (Nederlandse Aardolie Maatschap-
pij), the major operator in the Groningen gas field (Ntinalexis et al., 2019). The array also
includes borehole seismometers, enabling improved source characterization in the area
(Smith et al., 2020), i.e., due to a significant increase of the signal-to-noise ratio (SNR) at
depth (Ruigrok and Dost, 2019).

An earthquake source can be parameterized in several ways (Aki and Richards, 2002).
In this study, we consider a moment tensor (MT) representation (Jost and Herrmann,
1989). This implies that the seismic event is collapsed to a single position (point-source
representation), which is usually referred to as ‘the centroid’. Such a representation is
justified in case the waveform data is analyzed at periods for which the seismic source
is effectively a point source (Aki and Richards, 2002). Additionally, assuming instanta-
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neous rupturing, we end up with ten source parameters. The first six are the moment
tensor components, where the MT’s magnitude is a measure of the amount of energy
released. This MT can be decomposed into isotropic (ISO), double-couple (DC), and
compensated linear vector dipole (CLVD) components (Jost and Herrmann, 1989). The
other four parameters are the event’s east, north, and depth coordinates and the origin
time.

Various datasets and techniques have been utilized to estimate the source charac-
teristics of Groningen earthquakes. Willacy et al. (2018) adopt a deterministic approach
to estimate moment tensors and centroids. These authors employ a detailed 3D sub-
surface model of Groningen but restrict the search space to DC sources. In contrast,
Dost et al. (2020) use a probabilistic approach to estimate the centroid and full moment
tensor (implying that they allowed for the ISO and CLVD components as well) but em-
ployed (locally) 1D models. Deterministic approaches often provide faster computations
compared to probabilistic approaches. However, probabilistic approaches quantify the
uncertainty of the different parameters; in this case, these are the uncertainties of the
ten earthquake source parameters. Also, the use of 3D subsurface models has a clear
advantage over 1D subsurface models. This is because 3D models take into account the
subsurface lateral heterogeneity that will affect the shape (amplitude and phase) of the
seismogram generated from simulating an earthquake event using those 3D models.

In this study, we investigate the combination of a probabilistic approach with 3D
subsurface models to estimate the source parameters of a real event in Groningen. To
mitigate the aforementioned “inefficiency" of probabilistic approaches, we modify the
workflow described in Chapter 2. This workflow relies on a variant of the Hamiltonian
Monte Carlo (HMC) algorithm and has previously been tested using synthetic record-
ings generated using the 3D Groningen subsurface velocity model. For this study, we
consider the 2019 3.4 local magnitude earthquake below the village of Westerwijtwerd
(Figure 4.1). Since we estimate the full moment tensor, our estimation does not limit
the search space to just DC components but includes the ISO and CLVD components.
Also, the inclusion of origin time in the estimation quantifies the trade-off between ori-
gin time and estimated depth. In what follows, we first describe the theory underlying
the workflow. We subsequently introduce and discuss the (retrieval of the) recordings
used to estimate the parameters, including the prior information that is used to increase
the computational efficiency of the workflow. Finally, we compare our results to results
obtained in other studies and draw conclusions, including the outlook of applying the
same approach to a larger set of events in the Groningen area.

4.2. METHODOLOGY

To enable source characterization, the formal relationship between the observed data
and the source (model) parameters is introduced and detailed in the first subchapter.
Subsequently, we introduce Bayes’ theorem and, assuming Gaussianity, cast it in a form
allowing us to utilize it. In Subchapter 4.2.3, we then introduce the HMC algorithm.
Finally, in Subchapters 4.2.4 and 4.2.5, we describe how the algorithm’s efficiency can
be enhanced via linearization of the forward problem and by choosing meaningful prior
information, respectively.
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Figure 4.1: Map of the research area. The inverted triangles indicate the location of the KNMI seismometers,
and the blue star is the epicenter of the 2019 Westerwijtwerd earthquake, as estimated by the KNMI. Axes
indicate location using the Dutch RD coordinate system. This specific coordinate system gives the geodetic
coordinates for European Netherlands and is used in official national maps. The inset at the bottom right
shows the location of the study area.

4.2.1. THE FORWARD PROBLEM
In this study, the posterior probability of the model parameters is estimated by means
of a Markov process. The generation of such a Markov chain is detailed further below
(Subchapter 4.2.3), but, at this point, it should be understood that for each sample in the
chain, forward-modeled data is compared against measured data. In the context of our
problem, a specific model m (or sample) implies assigning a specific value to each of the
ten aforementioned source parameters (MT, centroid, and origin time). The measured
data dobs consists of the induced event’s waveform data, which, in our case, are record-
ings of particle displacement recorded by KNMI instruments. Computation of the likeli-
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hood ρ(dobs|m) yields the probability of these recordings given a model m and involves
quantification of the misfit between the recorded particle displacements and numeri-
cally modeled particle displacements. The latter is computed by numerically solving the
wave equation, i.e., they are the result of solving (what is usually referred to as) ‘the for-
ward problem’. Mathematically, the forward problem can be written as

ui
(
x(r), t

)= 3∑
j=1

3∑
k=1

M j k (t ,T0)∗Gi j ,k
(
x(r), t ;x(a)) , (4.1)

where ui is the i th component of the particle displacement vector (u = (u1,u2,u3) where
1, 2, 3, correspond to the east, north, and down direction, respectively), M j k represent-
ing an element of the 3 × 3 moment tensor M at position x(a), i.e., the centroid. Note
that j and k indicate the axis along which the force is acting and the direction in which
the arm is pointing, respectively (Aki and Richards, 2002). Furthermore, x(r) denotes
the position where the displacement is recorded, Gi j ,k represents the elements of G, the
Green’s tensor with the first two subscripts representing its recorded component and the
direction in which the source force is pointing. Furthermore, the comma after the sec-
ond subscript implies a spatial derivative in the k direction with respect to x(a) and ∗
represents a temporal convolution, and T0 denotes the origin time. To make the compu-
tation of u

(
x(r), t

)
for a large number of potential centroids (i.e., a large number of x(a))

more efficient, we invoke reciprocity (Aki and Richards, 2002). In this study, the numeri-
cally modeled particle displacements are generated using SPECFEM3D (Komatitsch and
Tromp, 2002). For this purpose, we use the 3D subsurface models of the Groningen gas
field by Romijn (2017).

4.2.2. BAYES’ THEOREM

The probabilistic workflow used in this study relies on Bayes’ theorem (or rule). In gen-
eral, Bayes’ theorem describes how, in the presence of prior knowledge, the probability
of a hypothesis (or model) m depends on the available data dobs. The prior knowledge
is accounted for by the prior probability distribution (often simply referred to as ‘the
prior’). Ignoring the marginal probability (or ‘evidence’), Bayes’ theorem can be written
as

ρ(m|dobs) ∝ ρ(dobs|m)ρ(m), (4.2)

whereρ(m|dobs) is the posterior probability distribution (or simply ‘the posterior’), ρ(dobs|m)
the likelihood, and ρ(m) the prior probability distribution. The model vector m is a ten-
component vector containing the centroid x(a) (where a Cartesian east-north-down co-
ordinate system implies that x(a) = (x(a)

1 , x(a)
2 , x(a)

3 ); hence three model parameters), the
moment tensor M (six independent elements and hence six model parameters), and the
origin time T0 (one model parameter). This implies that ρ(m) represents the prior prob-
ability of these ten parameters.

Assuming Gaussian observational errors and a Gaussian distributed prior probabil-
ity, the posterior in Equation 4.2 can be written as (Fichtner and Simutė, 2018; Masfara
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et al., 2022):

ρ
(
m | dobs

)
∝ exp

(
−1

2

(
d(m)−dobs

)⊤
C−1

d

(
d(m)−dobs

)
− 1

2

(
m−m(0))⊤ C−1

m

(
m−m(0))) .

(4.3)
Here, d (m) contains the numerically modeled displacement recordings (solution of Equa-
tion 4.1) and dobs the observed ones. Explicitly, for a total of Nr three-component instru-
ments, d (m) is a concatenation of all 3×Nr modeled seismograms and dobs a concate-
nation of all 3× Nr recorded seismograms. Cd , Cm , and m(0) are the data covariance
matrix, prior covariance matrix, and prior mean, respectively. Evaluating Equation 4.3
results in the (a posteriori) probability of the model parameters, i.e., their probability
given observations and prior knowledge of the system (Tarantola, 2006).

4.2.3. HAMILTONIAN MONTE CARLO
Although Bayes’ theorem describes how the posterior probability distribution depends
on the available data dobs (through the likelihood) and prior knowledge ρ(m), that pos-
terior can usually not be estimated directly (Tarantola and Valette, 1981). In particular,
a large number of model parameters and non-linearity prohibit this. To overcome this,
we generate a sequence of specific models (often called ‘samples’) in what is referred to
as a ‘Markov chain.’ The density of these samples reflects the density of the posterior
distribution we seek to find.

Numerous sampling algorithms are available to estimate ρ(m|dobs), all with their
own advantages and disadvantages. In this study, we implement a workflow that re-
lies on the Hamiltonian Monte Carlo (HMC) algorithm. HMC was derived from classical
mechanics, applied to statistical mechanics (Betancourt, 2017), and considered one of
the most efficient probabilistic algorithms for exploring high-dimensional model spaces.
HMC relies on the sequential calculation of two quantities. These are the ‘potential en-
ergy’ U, which is a function of the model vector m, and the ‘kinetic energy’ K, which, in
our framework, is solely a function of the momentum vector p. This momentum vector
is an auxiliary vector that has the same dimension as m (ten in our case). Together, m
and p make up what is often referred to as the ‘phase space,’ and their joint probability
is described by the ‘canonical distribution’ ρ

(
p,m

)
.

The canonical distribution can be written in terms of an invariant function H
(
p,m

)
,

i.e.,
ρ

(
p,m

)= e−H(p,m). (4.4)

Here, H
(
p,m

)
is referred to as ‘the Hamiltonian,’ and its value in phase space is usually

called ‘the energy’ at that point (Neal, 2011). As such, a model m can be looked upon as
the position of a “particle" (Betancourt, 2017).

Rewriting Equation 4.4, and substituting the posterior probability (i.e., ρ
(
p,m

) →
ρ(p,m | dobs)), we have

H
(
p,m | dobs

)
≡ − ln

(
ρ

(
p,m | dobs

))
= − ln[ρ(p | m)]− ln

[
ρ

(
m | dobs

)]
= K (p,m)+U (m). (4.5)
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Here, U (m) ≡− lnρ(m | dobs).
Equation 4.5 describes the more general case; in our implementation, K

(
p,m

)
is

merely a function of the momentum vector and hence K
(
p,m

) → K
(
p
)
. Specifically,

it is given by (Fichtner and Simutė, 2018; Masfara et al., 2022)

K (p) = pT M−1p/2, (4.6)

where the mass matrix M acts as a tuning parameter (Fichtner et al., 2019, 2021), allow-
ing the particle to move through the desired areas of phase space with corresponding
potential and kinetic energy (Betancourt, 2017).

Starting from an initial estimate of m with some prescribed initial momentum, Hamil-
ton’s equations, which read

dm

dτ
= ∂K

∂p
,

dp

dτ
=− ∂U

∂m
, (4.7)

will efficiently explore areas with relatively low potential energies (corresponding to
the a posteriori more probable areas of the model space; see Equation 4.5). Here, the
quantity τ is the ‘artificial time’ that is used to propagate (the particle) from the ini-
tial model along trajectories of constant H . This propagation occurs for some (to-be-
determined) time τlp, where the subscript ‘lp’ stems from ‘leap’ as we use the leapfrog
algorithm to evaluate 4.7. The model reached at τlp, i.e., m(τlp), is subsequently accepted
with probability

θ = min

[
1,
ρ

(
p(τlp),m(τlp)

)
ρ

(
p,m

) ]
, (4.8)

which is usually referred to as the ‘metropolis rule’ (Tarantola, 2005). If the model m(τlp)
is not accepted, the process will be repeated by introducing a new (different) momentum
vector to the initial model. If accepted, the model m(τlp) will serve as the starting point
for a new deterministic trajectory after being endowed with momentum.

One of the main advantages of using HMC over generic probabilistic sampling algo-
rithms such as Metropolis-Hasting (MH) algorithms is its ability to sample the posterior
distribution more efficiently, which is illustrated in Figure 4.2. In MH (left figure), new
samples are randomly drawn based on specified proposal distributions. This behaviour
is represented by the red balls ‘around’ the current sample, which for the first iteration
are close to the starting model. In HMC (right figure), the iterative endowment with the
momentum of the current sample results in a combination of short and long trajectories,
reducing the correlation between samples. Furthermore, the inclusion of the gradient of
the target distribution via the computation of Hamilton’s equations enables HMC to stay
in the ‘typical set’, constituting areas where the posterior probability is elevated. There-
fore, with a combination of short and long trajectories, and the ability to slide along the
typical set, HMC can explore the posterior distribution more efficiently with fewer iter-
ations/samples. This type of exploration is particularly useful when sampling complex
posterior distributions in high-dimensional model spaces. Computationally, the main
burden of HMC is the computation of the derivatives of the potential energy with respect
to the model parameters. This computational burden increases as the number of model
parameters increases. To mitigate this, we adopt an approach in which we linearize the
forward problem, which we will now briefly describe.
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Figure 4.2: Illustration of model space exploration using Metropolis-Hastings (a) and Hamiltonian Monte Carlo
(b) algorithms. Note that with a similar number of accepted samples, HMC explores the distribution more
efficiently via a combination of iterative short and long trajectories. This is achieved by prescribing a different
momentum for each trajectory and iterative computation of Hamilton’s equations. Note that we only show the
rejected samples of the first two moves/accepted samples for both algorithms.

4.2.4. LINEARIZATION OF THE FORWARD PROBLEM

To ease the computation of the gradient of the potential energy in the model space,
Fichtner and Simutė (2018) linearize Equation 4.1 by means of a Taylor expansion around
the prior mean m(0) (see Appendix A). Simutė et al. (2022) use this same modification
and 3D Earth models to characterize tectonic earthquakes below the Japanese penin-
sula. In these studies, m(0) is obtained from an earthquake catalog, which is not always
directly available for induced earthquakes. Replacing, in d(m), the numerically modeled
displacements u(x(r), t ) by numerically modeled displacements resulting from a linear
approximation of Equation 4.1 implies that we assume m(0) to be “sufficiently close” to
the true model parameters. This merely applies for the centroid x(a) and origin time T0.
That is, since the particle displacement depends linearly on the moment tensor com-
ponents, the linearization does not impose an approximation when it comes to the mo-
ment tensor components. Importantly, “sufficiently close” means that the centroid x(a)

and origin time T0 should be at sub-wavelength and sub-period distance from the true
centroid and origin time, respectively.

In our case, the assumption that m(0) is sufficiently close to the true model param-
eters is usually not met. This will render the application of HMC ineffective (to state
the least). In order to apply HMC (including a linear approximation of Equation 4.1) to
induced earthquakes, two main challenges, therefore, need to be addressed. First, the
recorded seismograms are often dominated by high-frequency signals (>1 Hz), increas-
ing the non-linearity of the forward problem. Second, as mentioned earlier, the prior
information is often unavailable or rather inaccurate. To address these challenges, in
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this study, we use the multi-stage workflow introduced in Chapter 2. This means that we
iteratively update m(0), which is detailed in the remainder of this section. In addition,
we run this workflow multiple times (in parallel), each starting from a different m(0).
This is explained in Section 4.2.5. In the remainder of this chapter, we will refer to the
HMC variant that involves a linearization of the forward problems as ‘linearized HMC’. It
should be understood, however, that this does not involve a linearization of Hamilton’s
equations itself.

Figure 4.3: Illustration of linearized HMC embedded in the multi-stage workflow detailed in Chapter 2. Panels
(a) to (c) depict the sampling of a local posterior associated with different m(0). In (a), m(0) is the initial prior
mean. In the next stage (b), m(0) is updated using the results of the exploration of the local posterior associated
with this initial prior mean until m(0) (almost) coincides with the most likely model (c). The workflow’s pro-
gression up to five stages is shown in (d). (e) is the final posterior composed using variance reduction criterion,
which discriminates the first two stages from stages 2 to 5.

Figure 4.3 illustrates the embedding of linearized HMC in the proposed multi-stage
workflow. Iteratively updating m(0) partly overcomes deviations of the estimated poste-
rior from the true posterior, thus addressing the first challenge. Given a first m(0), the
three quantities in Equations 4.12-4.14 need to be computed only once in order to sam-
ple a “local posterior” around that m(0). These quantities are used to compute the gra-
dient of the potential energy and hence evaluate Hamilton’s equations and the Hamil-
tonian itself (Equations 4.7 and 4.5, respectively). Importantly, in the absence of a lin-
earization of the forward problem, the computation of Equations 4.7 and 4.5 requires the
forward problem to be evaluated during each deterministic trajectory. Linearization of
Equation 4.1, resulting in the three aforementioned quantities, renders this unnecessary
for each individual stage (Chapter 2).

When m(0) does not coincide with the true model parameters, the linearized HMC
algorithm will explore a “local posterior” that deviates from the true posterior distribu-
tion despite being computationally efficient. This is illustrated in Figure 4.3(a), where
the linearized HMC can only explore the area above the orange curve. To obtain a better
approximation of the posterior, the workflow uses the result of exploring the local pos-
terior in Figure 4.3(a) to obtain a new m(0) (essentially taking the mean of the local pos-
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terior and using that as m(0)). Linearization of the forward problem about the updated
m(0) and re-computation of the aforementioned quantities allows for a new exploration
of the model space in Figure 4.3(b) and (c). After five Taylor expansions about the new
m(0), six local posteriors are estimated. The associated distributions are, for each stage,
depicted in Figure 4.3(d). Having the results from all stages in (d), the workflow then
uses variance reduction (e.g., Mustać and Tkalčić, 2016; Masfara et al., 2022) as a crite-
rion to select stages that should be included in the estimate of the final posterior. This is
depicted in Figure 4.3(e).

4.2.5. THE IMPORTANCE OF THE PRIOR

Having an inaccurate m(0) can only partly be overcome by updating m(0) in progres-
sive stages. That is, the multi-stage workflow will still be ineffective when the initial
m(0) is located in a “local mode” of the posterior distribution (i.e., associated with a lo-
cal minimum of the potential energy). The chance of this happening increases with an
increase in the non-linearity between the model parameters and the observed displace-
ment recordings (i.e., higher frequencies). In practice, this happens when the centroid
x(a) and origin time T0 in m(0) are separated from the true centroid and true origin time
by more than (approximately) half a wavelength or half a period, respectively. To address
this, we additionally use multiple initial vectors m(0) concatenated in a list which we de-
note by m(0)

list (the list consists of m(0)
1 , m(0)

2 , .... m(0)
N with N being the total number of

vectors m(0)). These initial m(0)
i differ to the extent that the centroid position is different

for each of them. The use of m(0)
list is to ensure some of the individual m(0)

i are contained
in the global minimum. The same criterion is used to select which (local posterior) dis-
tributions can be included in the final posterior (i.e., which stages). That is, the variance
reduction is now computed for all stages associated with the individual (initial) m(0)

i in

m(0)
list. We illustrate the process of using multiple m(0) in Figure 4.4. We depict three initial

m(0), with one located in the “correct” lobe, that is, m(0)
2 . Each of the m(0) will then be up-

dated in a similar fashion as shown in Figure 4.3. While m(0)
1 and m(0)

3 end up sampling

the wrong lobe, the updated m(0)
2 enables the linearized HMC algorithm to sample the

correct lobe. In Figure 4.4(b), we detail the last stage of the multi-stage workflow that
started with m(0)

2 in the red circle.

We end this section by emphasizing that although being very efficient in sampling
the posterior distribution (through the potential energy), the proposed multi-stage work-
flow (including the use of multiple initial priors m(0)

i ) ultimately only results in an ap-
proximate posterior distribution. This is because the true observational errors are not
necessarily Gaussian and uncorrelated (which we assume in this study) and because we
linearized the relation between observed particle displacement and model parameters.
In addition, the 3D velocity model used to model (numerically) displacement recordings
(according to Equation 4.1) is assumed to coincide with the true velocity model. Since
this will not be the case, another “source of error" is introduced, which in practice will
result in a deviation of the estimated posterior from the true posterior. Moreover, since
a Markov process only approaches the true posterior asymptotically, a Markov-chain-
based estimate of the posterior is, by definition, an approximation. Whereas the latter
two cannot be circumvented (we don’t have the exact subsurface model and also cannot
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Figure 4.4: (a) Illustration of using multiple initial m(0) while sampling a complex/multimodal posterior distri-
bution using linearized HMC. (b) zoom of the last stage of the multiple stages associated with the initial model

prior m(0)
2 .

run a Markov chain for an infinite amount of time), the linearization is, in principle, not
necessary, and also Gaussian observational errors do not need to be assumed. Not doing
so, however, would make the computational demands prohibitively large.

4.3. DATA

In this study, dobs contains the 3 × Nr recordings of displacements (uobs) due to an in-
duced event that occurred close to the village of Westerwijtwerd in 2019, the province
of Groningen (see Figure 4.1). The KNMI estimates the magnitude of the earthquake
to be 3.4 local magnitude. We collected uobs from ten G-network seismometers. These
seismometers are selected based on their distance and azimuthal coverage with respect
to the estimated epicenter. In Figure 4.5(a), we depict the ten seismometers as white
inverted triangles and the location of the KNMI-estimated epicenter by a blue star. The
seismometers are part of the KNMI borehole network: each borehole contains four vertically-
separated seismometers. The number at the end of their ID indicates their depth, i.e.,
their IDs run from ..1 to ..4, with the instruments numbered ..1 being at 50 m depth and
the instruments numbered ..4 being at 200 m depth. We illustrate the configuration of a
string of borehole seismometers in Figure 4.5(b).

From the four seismometers in each borehole, we solely use the seismograms recorded
by the deepest seismometers: they have a higher signal-to-noise ratio than the shallower
seismometers (Dost et al., 2012). Furthermore, all seismometers experience a horizontal
rotation while lowering them in the borehole. Consequently, a rotation needs to be car-
ried out for projecting the horizontal recordings to specific preferred orientations, which
in our case are to the east-west(x1-axis) and north-south(x2-axis) orientations, respec-
tively. In Figure 4.5(b), we illustrate the orientation of the deepest borehole seismome-
ter. The axes H1 and H2 are proxies of east and north. We then rotate the data to the
true east and north using the angles given in Ruigrok et al. (2019). We depict the origi-
nal seismograms (obtained from the KNMI) and the rotated seismograms of the selected
seismometers in Figure 4.6.
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Figure 4.5: (a) Depth of top Rotliegend (reservoir) in area of interest. Solid black dots delineate mapped faults
(Bourne and Oates, 2017). The inset at the bottom right shows the location of the study area. (b) Illustration of
borehole seismometers in the G-network.

Figure 4.6: Observed seismograms before (green) and after rotation/polarity switch (black). Recordings are
normalized (individually) with respect to maximum particle displacement (written in blue).
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Dost et al. (2020) have used the same recordings to characterize the Westerwijtwerd
event probabilistically. These authors, however, use local 1D velocity models to solve
the forward problem. Furthermore, they separately use 0.5 and 1 s windows of P and
S waves, respectively, where the P-wave is given more weight and evaluated at higher
frequencies (i.e., 2-4 Hz for P and 1-3 Hz for S-wave). The P-wave waveform is given
a higher weight because of the higher accuracy of the employed P-wave velocity models
(compared to the S-wave velocity models). Also, these authors only use the vertical com-
ponents of the recorded P-wave and the transverse component of the recorded S-waves.
To account for inaccuracy in the velocity models, they allow individual, station-specific
shifts of 0.1 s for both wave types. Another study in the area is by Smith et al. (2020),
which uses a coherence method. This study focuses on determining the hypocenter.
They find most Groningen earthquakes to systematically originate approximately 200 m
above the reservoir layer. In this study, we exclusively use P-wave seismograms due to the
significantly higher accuracy of the P-wave model. Furthermore, we use both the vertical
and horizontal components and filter the recordings using a passband of 1-4 Hz, similar
to the frequency range used by Dost et al. (2020). As for the length of the measurement
window, we use 2.5 s for all components and taper both ends with a 0.5 s cosine taper.
For the data covariance, we use a diagonal matrix representing uncorrelated noise and
estimate this to be 5% of each component’s maximum amplitude. By taking a certain
fraction of the maximum amplitude, we overestimate the ‘true noise’. The reason for this
is that we want to account for (part) of the waveform misfit arising from the deviation
of the employed velocity model (Romijn, 2017) from the true (unknown) velocity model.
Before applying it to the field data, we perform a synthetic experiment, detailed in the
next section.

4.4. SYNTHETIC EXPERIMENT

In this section, we test the validity of the proposed workflow and data processing pa-
rameters (i.e., frequency band, length of the measurement window, and noise criteria)
on a synthetic event. For this, we first generate synthetic data using the KNMI-estimated
hypocenter as the centroid of our synthetic earthquake. We then set T0 to 3 s, and for
the MT, we use the values of 0.2×1013 Nm, 2.86×1013 Nm, -3.07×1013 Nm, 0.76×1013

Nm, -0.45×1013 Nm, -1.71×1013 Nm for Mnn , Mee Mdd , Mne , Mnd , and Med respec-
tively. These values represent pure shear normal faulting (rake of -90°) along a geological
fault with a strike of 165°, a dip of 60°, and a moment magnitude of 3. We then corrupt
the data in the frequency domain to simulate the presence of uncorrelated noise. This
is implemented using the same approach as Mustać and Tkalčić (2016). In the time do-
main, the uncorrelated noise results in amplitude variations that affect the estimation of
our centroid and MT, and shift the observed recordings in time (resulting in uncertainty
in T0). To effectively test the workflow, we first choose a (single) m(0) that significantly
deviates from the actual value (i.e., the synthetic earthquake parameters). For the cen-
troid, we impose a shift of 200 m along each axis, i.e., the centroid in m(0) deviates 200
m from x(a)

east , x(a)
nor th , and x(a)

depth . For the MT, we simply assign a uniform value to each

MT component, and for T0, we impose a shift of 0.5 s. We then run our workflow for 20
stages (i.e., the prior mean m(0) is updated twenty times). The results are presented in
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Figure 4.7.

Figure 4.7: Marginal posterior probabilities obtained through applying the proposed linearized HMC workflow
to synthetic recordings. The stars represent the initial m(0). The black and green dots represent all accepted
samples from all 20 stages and samples from selected stages (i.e., the VR-score exceeds 0.95) used to compose
the final posterior, respectively. The red lines represent the true (synthetic) model parameters, and the red dots
are the samples generated running the generic (non-linearized) HMC algorithm.

The yellow stars represent the initial m(0), and the red lines represent the true syn-
thetic earthquake parameters. The black dots are the samples generated from all 20
stages, which are equivalent to samples used to build all the histograms from explor-
ing local posteriors in Figure 4.3(d). The green dots are the samples from selected stages
based on a VR criterion, equivalent to the samples from the selected stages in Figure
4.3(e). The red dots represent samples resulting from a generic HMC run (i.e., HMC with-
out linearizing the forward problem). This run was terminated as soon as the number of
times for which the forward problem needed to be solved coincided with the number of
times the forward problem was solved while running the multi-stage workflow in which
the forward problem was linearized. Note that each solution of the forward problem
involves the computation of 3×10 seismograms (recall from Section 4.3 that Nr = 10).

Let us demonstrate the computational benefit of the multi-stage workflow (in con-
junction with a linearization of the forward problem) over generic HMC (which does not
involve this linearization). The number of times the forward problem needs to be solved
in order to generate four model samples using generic HMC (represented by the star and
the red dots in Figure 4.7) is 404. Here, each ‘solution of the forward problem’ in prac-
tice involves a separate computation of the ui

(
x(r), t

)
in Equation 4.1. We arrive at 404 as

follows: it depends on the number of generated samples Ns (4 in this case), the number
of leaps Nl p to arrive at m(τl p ) (here we use 5), and the number of model parameters
Nm (10 in our case). First, with the prescribed five leaps to arrive at a new model started
from the current model, we evaluate Equation 4.7 five times. Second, the evaluation of
Equation 4.7 requires the computation of ∂U

∂m . For that, we use a central difference ap-
proximation, which means that for each of the ten parameters in m, we must evaluate U
twice. Additionally, after the five leaps, we still have to compute ρ

(
p(τlp),m(τlp)

)
to eval-
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uate Equation 4.8, which requires one additional solution of the forward problem per
sample. Consequently, the total number of forward problem solutions coincides with
Ns × Nl p × 2Nm + Ns = 404. Linearization of the forward problem reduces this number
dramatically. In fact, for every stage of the multi-stage workflow, the number of samples
that can be generated is unlimited in the sense that it does not require additional solu-
tions to the forward problem. The forward problem just needs to be run 2× Nm = 20
times per stage. This number stems from the (one-time) computation of the derivatives
of U . These derivatives are included in the Apq , bp , and c (Equations 4.12, 4.13, and 4.14
in appendix 4.7, respectively). Therefore, to generate all samples for a total of 20 stages
(i.e., 20 updates of m(0)), the number of times the solution to the forward problem needs
to be computed is just 400. We use the mean of the approximate posterior resulting from

Figure 4.8: Seismograms modeled using the posterior mean (gray) compared to the modeled observed record-
ings with noise added (brown) and the modeled observed recordings without noise (green).

our multi-stage workflow to generate displacement recordings. In Figure 4.8, we com-
pare these recordings with the observed (synthetic) recordings. The observed recordings
are depicted in brown (recall that noise is added to these seismograms). The recordings
associated with the mean values of our estimated posterior are depicted in grey and align
well with the noise-free recordings associated with the true source parameters (depicted
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in green).

4.5. PRIOR KNOWLEDGE

In Subchapter 4.2.5, we discussed the importance of using m(0)
list to avoid getting trapped

in a local mode. For the purpose of generating m(0)
list, we make use of the available fault

map of Groningen’s subsurface by Bourne and Oates (2017). This is inspired by research
that reveals a strong correlation between hypocenters and major faults in Groningen’s
subsurface (Pickering, 2015; Spetzler and Dost, 2017; Willacy et al., 2018). In this context,
we also evaluate the importance of the displacement along the horizontal components
for the estimated posterior. The reason for this is potential errors arising from possi-
ble incorrect rotations of the horizontal displacements (see Section 4.3). Combined, we,
therefore, investigate three different cases: two centroid prior configurations (i.e., with
different m(0)

list) of which one is used in conjunction with both the vertical component
recordings and the three-component recordings. The configuration that uses known
faults in the reservoir as a basis to generate the m(0)

list, in conjunction with the vertical
component recordings only, is referred to as ‘1C-fault’. The same configuration, but used
to estimate the posterior based on the recordings by all three components, is referred to
as ‘3C-fault’. The other centroid prior configuration we consider consists of a square grid
that covers not just the fault but also the surrounding area. This configuration of m(0)

list is
only used in conjunction with the recordings by all three components and is referred to
as the ‘3C-grid’. This centroid prior configuration is considered to evaluate whether the
recovered posterior might peak at a centroid position that deviates from the known fault
geometry. The two different centroid prior configurations are depicted in Figure 4.9.

To generate the entries (individual m(0)) in m(0)
list of the two considered prior config-

urations, we first draw a circle with a 1 km radius around the epicenter estimated by
the KNMI. The enclosed area is colored dark green in Figure 4.9. Next, we discretize the
fault inside the circle using a spatial sampling criterion based on the approximate seis-
mic P-wave velocity within the circle and the highest frequency we use while fitting the
waveforms. This criterion provides a rough estimate of the minimum “wavelength" of
the posterior distribution. By discretizing the fault such that the individual centroids
(associated with individual m(0)

i ) in m(0)
list are separated by less than half this wavelength,

we therefore, ensure that at least one of the initial priors is located in the “correct" lobe,
i.e., similar to what we have illustrated in Figure 4.4. Given the P-wave velocities at reser-
voir depth and a maximum frequency of 4 Hz (recall that we filter the recordings using
a passband of 1-4 Hz), we arrive at a value of 200 m for this criterion. This is hence the
separation along the fault at which individual centroid priors are placed. We depict these
initial centroid priors in Figure 4.9 as yellow stars. At the same time, the fault orientations
at these positions are used to determine the six moment tensor entries in the initial pri-
ors. As for the depth and origin time T0 in the m(0)

i , we use the values estimated by the
KNMI for both configurations (i.e., 3 km for the depth and 2019-05-22T03:49:00.075s for
the origin time). In total, 19 individual vectors m(0) are concatenated in m(0)

list for 1C-fault
and 3C-fault. For the third case, we consider a centroid prior configuration consisting
of a square grid of 2 km × 2 km, with the center again being the epicenter estimated by
the KNMI. We use the same criterion (200 m) to determine the horizontal spacing be-
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Figure 4.9: Horizontal positions of the different centroid priors for the two different prior configurations con-
sidered. The first configuration is guided by the known fault geometry inside the green circle and is represented
by the yellow stars. This circle has a 1km radius and is centered at the epicenter estimated by the KNMI (blue
star). The second centroid prior configuration uses a 2 km x 2 km grid with the KNMI-estimated epicenter at
its center. These centroid priors are depicted as green stars.

tween the individual centroid priors. In Figure 4.9, we depict these as green stars. For
the depth and origin time, we use identical values. Furthermore, for the MT, we assign
a uniform value to each MT component for each individual m(0). In total, we obtain 121
initial vectors m(0) for this configuration.

4.6. APPLICATION TO FIELD DATA
For all cases described above (1C-fault, 3C-fault, 3C-grid), our multi-stage workflow con-
sists of 20 stages. For the centroid prior configuration derived from the geometry of the
known faults within the reservoir, m(0)

list contains N = 19 m(0), which implies a total of
380 stages. For the 3C-grid, a total of 121 initial priors serve as the starting model of
the 121 multi-stage workflows (see Figure 4.9), resulting in a total of 2420 stages for this
configuration. For each stage, we then compute the VR score based on the recordings
u

(
x(r), t ;m

)
associated with the mean model m of all 3000 individual models within that

stage. Stages for which the VR score exceeds 0.95 are subsequently used to build our final
posterior distribution. For each of the three cases considered, and for each of the initial
centroid prior means, we show in Figure 4.10 the VR score associated with that m(0)

i of

the 20 m(0) in m(0)
list for which the VR score attains its maximum. Note that this model’s

centroid is usually not at the location of the initial centroid prior mean (i.e., the centroid



4

68 4.6. APPLICATION TO FIELD DATA

in m(0)
0 ) because the models for which the waveforms best fit the observed recordings are

often found in one of the later stages; see also Figure 4.3. For all three cases considered
here, the highest VR scores are obtained in those chains for which the initial centroid
prior mean is close to a fault.

Figure 4.10: Maximum VR score in each of the chains associated with the different initial m(0) for the three
different cases considered (from left to right: 1C-fault, 3C-fault, and 3C-grid, respectively). Note that here we
represent them by plotting the initial prior means (of the lateral positions) of the centroid.

4.6.1. ESTIMATED POSTERIOR
In Figure 4.11, we display the 1D marginal posterior distributions obtained from the se-
lected stages of each configuration. In general, the mean value of these posteriors is
fairly consistent across configurations, especially for 3C-fault and 3C-grid. For the 1C-
fault case, the mean of the posteriors slightly deviates while at the same time having a
slightly broader distribution compared to the other two cases. We attribute this to the
fact that, for 3C-fault and 3C-grid, the additional data reduces the uncertainty of the es-
timates. In Figure 4.12, and for 3C-fault, we also plot the progression of the different
stages associated with one of the individual centroid priors included in one of the m(0)

in m(0)
list. Specifically, we show the progression of that workflow (i.e., starting from that

m(0)
i ) that contains the stage that results in the overall maximum VR score. The vertical

lines represent the start of different stages, and the red horizontal lines are the posterior
means computed using the selected stages (after evaluating the VR scores for all stages).
The progression follows a trend identical to the illustration in Figure 4.3(d), especially for
the origin time T0 with a slight variation for some others, such as for the depth and Mnd

that shift monotonically to lower values. It is important to add that an initial estimate of
T0 was obtained using the envelope of the traces. This is described in detail in Section
2.6.2.

4.6.2. TRACES ASSOCIATED WITH THE POSTERIOR DISTRIBUTION
Using the posterior mean in Figure 4.11, we generate synthetic data and compare these
with the observed data in Figure 4.13. In our workflow, the misfit in Equation 4.9 is based
on 2.5 seconds of the observed particle displacement, bandpass filtered between 1 and
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Figure 4.11: 1D marginal posterior distributions for the three different cases considered. ’1C-fault’: initial
centroid prior configuration derived from the geometry of the known faults within the reservoir, and only the
vertical particle displacement recordings are used. ’3C-fault’: initial centroid prior configuration derived from
the geometry of the known faults within the reservoir, but both horizontal and vertical particle displacement
recordings are used. ’3C-grid’: initial centroid prior located on a regular grid in a horizontal plane at the ap-
proximate (expected) depth of the event, and both horizontal and vertical particle displacement recordings are
again used.

Figure 4.12: Progression of 20 stages from using one of the m(0) in the 3C-fault configuration. The vertical lines
represent different stages, whereas the red lines are the posterior mean (i.e., the mean of the green distributions
in Figure 4.11) obtained from the selected stages based on the VR criteria for 3C-fault configuration.

4 Hz. Here, for consistency, we adopted the same values for these parameters. Addition-
ally, we show in Figure 4.13 the maximum and minimum bounds using synthetic data
generated from 1000 models drawn from the posterior distribution. We depict those
bounds as a shaded area in Figure 4.13.
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Figure 4.13: The comparison between observed and numerically modeled seismograms. The modeled seis-
mograms are generated given the posterior mean estimated for each of the considered cases (see Figure 4.11).
The shaded area is within the maximum and minimum bounds of a total of 1000 waveforms generated using
1000 models drawn from the posterior distributions in Figure 4.11. Each seismogram is filtered and tapered
using the same parameters used in the multi-stage HMC workflow. The duration of each trace plotted here is
3.25s.

4.6.3. SOURCE CHARACTERISTICS

To investigate the source characteristics of the analyzed induced event, we first decom-
pose the MTs of the posteriors shown in Figure 4.11. In this study, we do not limit our
solutions to a single mechanism. We, therefore, decompose our moment tensor solu-
tions into their ISO, DC, and CLVD components. We do this for each case (1C-fault, 3C-
fault, and 3C-grid) and depict the decompositions in the Hudson plots in Figure 4.14.
The mean MT for each case is represented by the beachball with the red outline. For all
cases, the DC “region" is densely clustered (i.e., the center of the plot), with negative ISO
components clearly outnumbering positive ISO components. This is often attributed to
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the compaction due to the gas extraction (Dost et al., 2020). We show the posterior dis-
tributions of the different MT components in Figure 4.15 (bottom row). Furthermore, in
the top row, we depict the translation of the MT solutions in Figure 4.14 to distributions
of strike, dip, and rake. Here, we only show solutions with strikes between 90◦ and 180◦,
which are in accordance with the orientation of the fault close by (given the centroid
posterior distributions).

Figure 4.14: Hudson plot that shows the decomposition of the source mechanisms given the posterior distri-
butions in Figure 4.11. The beachball with the red outlines represents the mean MT.

Figure 4.15: Top: The distributions of strike, dip, and rake solutions given the beachballs in Figure 4.14. Here we
only show one part of the solutions closer to the orientation of the nearby major faults. Bottom: The marginal
posterior distributions for different earthquake mechanisms given the decomposition in Figure 4.14.

We visualize the centroid posterior distributions using horizontal and vertical slices
of the Groningen subsurface (Figure 4.16). In the top row, we show the depth of the
top reservoir as a contour map, including the location of faults from Bourne and Oates
(2017) at that depth. On top of these contour maps, we show the samples used to gen-
erate the 2D marginal posterior distributions of the lateral position of the centroids. We
also plot the result from Dost et al. (2020) and the KNMI as the black beachball and blue
star, respectively. The red beachball represents the mean MT which is also depicted in
Figure 4.14 (beachball with red outlines). Not only do the posterior means of the (lateral)
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Figure 4.16: Comparison of samples used to generate centroid posterior distributions in Figure 4.11 (east,
north, and depth) with the centroid estimated by Dost et al. (2020) and the KNMI. The samples are color coded
with the density of centroid posteriors. The black line in the last two rows represent the top reservoir obtained
from slicing the top reservoir map based on the red and blue line in the top row.

centroid positions coincide with the known fault, but also, the moment tensor solution
agrees quite well with the strike of the nearby fault. On the vertical slices (middle and
bottom rows), we depict the depth of the top reservoir as solid black lines. The location of
the east-west vertical cross section and the north-south vertical cross section are shown
as red and blue lines in the contour maps, respectively. For this specific earthquake, we
find the posterior mean of the centroid to be slightly shallower than the centroid esti-
mated by Dost et al. (2020). In fact, instead of being within the reservoir, we find the
probability of having the earthquake nucleated above the reservoir is higher. The earth-
quake (model) parameter that has the strongest trade-off with depth is origin time. This
is because an earlier origin time can be translated to an earthquake occurring at greater
depth and vice versa. In this study, origin time uncertainty is considered, and the result
shows that the estimated T0 from the KNMI is lagging by a few milliseconds. As a caveat,
however, we do not consider the uncertainty in the 3D velocity models, which may not
only introduce amplitude variations but also affect the origin time and/or depth. For a
more detailed comparison, in Table 4.1, we list the mean and standard deviation of our
estimated parameters (for the MTs, we convert these into strike, dip, and rake solutions)
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and compare them with the result of Dost et al. (2020) and the KNMI (hypocenter only).

4.7. DISCUSSION AND CONCLUSION
Using a probabilistic workflow incorporating the HMC algorithm, we estimate the source
characteristics of a 3.4 ML induced earthquake associated with gas extraction from the
Groningen gas field. Specifically, we estimate the posterior probability density of ten
earthquake parameters using two different sets of initial prior probabilities, of which
one is used in conjunction with two sets of data: one consisting only of vertical compo-
nent displacement recordings and a second one composed of the particle displacement
in all three directions (east, north, down). We find that the posteriors estimated using
both horizontal and vertical components of the seismograms (i.e., the latter data set)
have similar shapes. At the same time, the one that only depends on the vertical com-
ponent recordings yields a posterior that deviates (slightly) from the results of the other
two cases while simultaneously being slightly broader. However, we find no substantial
difference in the modeled seismograms associated with the different posterior means.
In terms of runtime, using an 8-core MacBook Pro (2018 version), it took us a maximum
of 3 minutes to run the 19 multi-stage workflows of the 1C-fault and 3C-fault case, and
12 minutes for the 121 multi-stage workflows of 3C-grid.

The main factor that affects the shape of the posteriors is uncertainty, which, in this
case, is formulated as data and model uncertainty. In our study, we choose a uniform
distribution for the model parameters to encode a state of ignorance (i.e., σm → ∞).
Whereas the data uncertainty is estimated individually for each component on each seis-
mometer (and hence captured by σr i in Apq , see Equation 4.12, where the indices r and
i are associated with a specific receiver and component, respectively). It is assumed that
the noise is uncorrelated. Prescribing the noise to be correlated will make the workflow
more complex and computationally more costly and require us to estimate data covari-
ance matrices. In addition, a study by Gu et al. (2018) reveals that in the case of induced
seismicity, accounting for (potentially) correlated noise has relatively little effect com-
pared to the uncertainty arising from the inaccuracy of the velocity model. Ideally, the
latter is also formally included. The relation between a specific source model (i.e., a spe-
cific set of model parameters) and the particle displacement at the surface will, in that
case, be quantified by means of a probability density function (Tarantola and Valette,
1981). Due to limited computational resources, however, we disregard the uncertainty
associated with the velocity model. Including it (for our 3D velocity model) will require
enormous computational effort as each ‘cell’ in the model must be varied according to
their variance when computing the forward problem represented by Equation 4.1 (ef-
fectively, the Green’s functions will become probability density functions). While using
1D velocity models, lateral heterogeneity is not considered, and therefore, the number
of cells will be exponentially reduced, hence the computational burden. In general, us-
ing 3D models has improved the characterization of earthquake sources since they bet-
ter represent the subsurface compared to 1D models (Hingee et al., 2011; Hejrani et al.,
2017; Wang and Zhan, 2020).

Many studies involving MT inversions limit the model space to purely double-couple
sources. Often, this limitation is justified by (presumed) a priori information of the
source type. For example, a DC mechanism is usually sufficient to explain faulting in tec-
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tonically active areas where volumetric components can be expected to be negligible. In
the context of induced seismicity, however, numerous studies have found that non-DC
components explain a substantive part of the observed recordings (Caputa et al., 2021;
Cesca et al., 2013; Šílenỳ and Milev, 2008). In the context of the gas extraction below
Groningen, a study by Willacy et al. (2019) uses waveform data to obtain moment tensor
solutions, assuming that the earthquakes can be explained by DC mechanisms. Hence,
they only estimated the best DC mechanisms of each observed earthquake. Meanwhile,
another study by Kühn et al. (2020) (also focusing on the events in Groningen) reveals
that ignoring non-DC components significantly affects the solution and data fit. In this
study, we find the DC component to be dominant but still need the ISO and CLVD com-
ponents to be non-zero in order to explain the data.

As for the centroid, we find that it is likely that the earthquake nucleated above the
reservoir. In our case, the posterior mean is located a bit above 2.8 km depth. This is a
small shift from the estimate by Dost et al. (2020), who estimate the earthquake to be lo-
cated inside the reservoir. A recent study by Smith et al. (2020), however, finds that most
of the Groningen earthquakes nucleated just above the reservoir, although this study
does not include the event we are using here. Considering both the centroid and MT
solution, we find that the models that best explain the recorded particle displacements
correlate well with the nearby fault (see Figure 4.16).

For the workflow to be applied to a larger number of induced earthquakes, we believe
a couple of additions would be beneficial. The first is related to the estimation of the
data uncertainty. Since the workflow relies on Bayesian inference, the data uncertainty
is rather critical while shaping reliable final posterior distributions. A second addition
would be to allow for correlated noise. Particularly for the Groningen earthquakes, the
effect of correlated noise for source characterization is not considered in any of the pub-
lications cited in this manuscript. Quantifying its effect on source parameter estimations
would, therefore, be relevant.

APPENDIX: LINEARIZATION OF THE FORWARD PROBLEM
In the context of Hamiltonian Monte Carlo, a model m can be interpreted as the position
of a particle in the 2Nm-dimensional phase space (Betancourt, 2017). Using Equation
4.3, this particle’s potential energy U , which is defined as U (m) ≡− lnρ(m | dobs), there-
fore reads (Fichtner and Simutė, 2018; Masfara et al., 2022)

U (m) = 1

2

(
d(m)−dobs

)⊤
C−1

d

(
d(m)−dobs

)
+ 1

2

(
m−m(0))⊤ C−1

m

(
m−m(0)) . (4.9)

where we have, for convenience, ignored the proportionality constant (this does not
affect our results as it is independent of m.)

In this study, the HMC variant that involves a linearization of the forward problems
is referred to as ‘linearized HMC.’ Linearization of the forward model implies a Taylor
expansion of Equation 4.1 about the prior mean m(0), and subsequently dropping higher
order terms. The linear approximation of ui reads (Fichtner and Simutė, 2018)

ui
(
x(r), t ;m

)= ui
(
x(r), t ;m(0))+ Nm∑

p=1

∂

∂mp
ui

(
x(r), t ;m(0))(mp −m(0)

p

)
. (4.10)
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Substituting this approximation in Equation 4.9, U (m) can be written as follows:

U (m) = 1

2

Nm∑
p,q=1

(
mp −m(0)

p

)
Apq

(
mq −m(0)

q

)
+

Nm∑
p=1

bp

(
mp −m(0)

p

)
+ 1

2
c, (4.11)

where Apq , bp , and c read

Apq ≡ 1

T

Nr∑
r=1

3∑
i=1

σ−2
r i

∫ T

0

∂

∂mp
ui

(
x(r), t ;m(0)) ∂

∂mq
ui

(
x(r), t ;m(0))d t + 1

Nmσ
2
m

, (4.12)

bp ≡ 1

T

Nr∑
r=1

3∑
i=1

σ−2
r i

∫ T

0

[
ui

(
x(r), t ;m(0))−uobs

i

(
x(r), t

)] ∂

∂mp
ui

(
x(r), t ;m(0))d t , (4.13)

and

c ≡ 1

T

Nr∑
r=1

3∑
i=1

σ−2
r i

∫ T

0

[
ui

(
x(r), t ;m(0))−uobs

i

(
x(r), t

)]2
d t , (4.14)

respectively. Here,σ−2
r i encodes the data uncertainty for receiver number r and com-

ponent i . This formulation implies that the noise is assumed to be uncorrelated. Sim-
ilarly, a pairwise uncorrelated prior probability of the model parameters is considered.
(i.e., Cm is diagonal). Using the three quantities above, ∂U

∂m in Equation 4.7 can be re-
placed by

∂U

∂mp
=

Nm∑
q=1

Apq

(
mq −m(0)

q

)
+bp . (4.15)
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5
MOMENT TENSOR AND RUPTURE

DIRECTIVITY ANALYSIS OF

INDUCED EARTHQUAKES IN

GRONINGEN GAS FIELD, THE

NETHERLANDS

In Groningen, the Netherlands, earthquakes are solely induced by the extraction of nat-
ural gas. Over the past decade, the induced events have emerged as a significant con-
cern. Their occurrence necessitates not only the importance of understanding the earth-
quakes’ source characteristics but also the development of more sophisticated character-
ization methods. The objective of this study is twofold. First, we estimate the induced
earthquakes’ source characteristics using a probabilistic method paired with geological
knowledge of the Groningen subsurface. Second, we investigate the rupture character-
istics of the earthquakes. Specifically, we aim to estimate the centroid coordinates and
moment tensors (MTs) of ten major induced earthquakes (magnitude > 2 ML) in the area.
Accompanying these probabilistic MT estimates is an analysis of the rupture directivity of
the selected earthquakes to gain insight into the dynamics of the earthquake’s ruptures.
For the probabilistic centroid moment tensor (CMT), we use an iterative workflow based
on the Hamiltonian Monte Carlo (HMC) algorithm paired with available Groningen sub-
surface knowledge. For the estimation of rupture directivity, we employ the Empirical
Green’s Function (EGF) method and benefit from the dense and large seismic monitoring
network in the Groningen area. The recovered (most likely) CMTs reveal that the lateral
centroid coordinates of the selected earthquakes align with the available Groningen fault
map. Furthermore, the depths are chiefly distributed in the vicinity of either the top or the

Parts of this chapter are currently being prepared for a journal article.
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bottom of the reservoir layer. In terms of source mechanisms, earthquakes are predomi-
nantly governed by double-couple mechanisms featuring normal faulting. Converting the
MT results to strike and dip, we obtain values comparable with the strike and dip of the
(known) existing faults intersecting the reservoir (at the mean centroid location). When
it comes to the rupture directivity, our results suggest that the events exhibit a minor di-
rectivity effect. Despite this minimal effect, the rupture directions consistently align with
strike values from both CMT inversions and the available fault map.

5.1. INTRODUCTION
Induced seismicity in the Groningen gas field, the Netherlands, has become a signifi-
cant concern. Since the first recorded event in December 1991, the magnitudes of the
induced events in the area have gradually increased, reaching a maximum (local) mag-
nitude of 3.6 in 2013 (Muntendam-Bos et al., 2022; Dost and Kraaijpoel, 2013). As these
magnitudes increased, measured surface accelerations also rose, causing damage to build-
ings near the epicenter. To better understand the physics of these earthquakes, a num-
ber of measures have been taken, initiatives launched, and developments initiated. A
notable example is the expansion of the Groningen seismic network (Dost et al., 2017).
Not only was this expansion initiated to lower the magnitude threshold of earthquakes,
but also to improve the quality of the characterization of those earthquakes (Ntinalexis
et al., 2019).

In general, studying earthquake characteristics is important to better understand
the key factors driving destructive earthquakes. Also, earthquake characterization fa-
cilitates the classification of events; for example, it may clarify whether those events
are natural or anthropogenic (van Thienen-Visser and Breunese, 2015). In addition, the
study of earthquakes may validate or augment available subsurface data such as velocity
models and fault maps or challenge the existing subsurface knowledge (Paulssen et al.,
2022). Once the earthquake is well-characterized, one can perform multiple analyses,
including seismic hazard assessment (Lui et al., 2016). For example, by predicting (peak)
ground motions, simulating different types of fault behavior, or investigating possible
hazard mitigation scenarios. Characterization of the induced events in Groningen has
been performed using various methods and data, depending on the estimated parame-
ters. When it comes to seismology, typical parameters are the centroid, which consists
of three coordinate components, the moment tensor (MT), which has six independent
components, and the origin time of the event. The following authors have presented sev-
eral important findings regarding the induced events in Groningen: Spetzler and Dost
(2017) estimate the earthquake centroid using a one-dimensional (1D) velocity model of
Groningen and find the depth of the induced earthquakes to be at the reservoir level (i.e.,
about 3 km depth). Also, in estimating centroid locations, Smith et al. (2020) use a three-
dimensional (3D) velocity model of Groningen and pair it with a probabilistic algorithm.
They find that, instead of being within the reservoir layers, there is a significant probabil-
ity that many of the earthquakes nucleate just above the reservoir layer. Other authors,
such as Dost et al. (2020) and Willacy et al. (2018), include the MT in their analysis. Both
reveal that the earthquakes appear to be mainly driven by normal faulting, which can
be expected in the Groningen subsurface (Buijze et al., 2019), and with depths mainly
within the reservoir. As for the centroid lateral coordinates, all authors show that most
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of the earthquakes align with known major faults.

In this study, we focus on analyzing two earthquake parameter categories. The first
set of parameters pertains to the centroid moment tensors (CMTs), whereas the second
involves rupture directivity. In essence, the estimated CMT parameters are similar to the
parameters considered by the aforementioned authors. In this study, however, we use an
efficient probabilistic inversion workflow based on the Hamiltonian Monte Carlo (HMC)
algorithm paired with the a priori available geological knowledge of the area for opti-
mum results. We furthermore use the available detailed 3D subsurface velocity models
of Groningen to generate our modeled data/seismograms. The purpose of the 3D mod-
els is to account for the imprint of lateral heterogeneity in the Groningen subsurface
on the recorded waveforms. In general, using 3D subsurface models has been shown to
improve the quality of the estimated parameters since they better represent the true sub-
surface (Wang and Zhan, 2020; Zhu and Zhou, 2016). We apply the workflow to estimate
the CMTs of ten of the largest events recorded in Groningen to date (exceeding a local
magnitude of 2). We show the epicenter of the ten earthquakes in Figure 5.1A, overlaid
with the map of major subsurface faults and the depth of the top of the reservoir (Bourne
and Oates, 2017). In Figure 5.1B, we depict for each of the ten events the azimuthal dis-
tribution of the geophones used in this study (i.e., borehole geophones at a depth of 200
m whose seismograms are (quantitatively) compared against the modeled seismograms
in the probabilistic inversion workflow).

Figure 5.1: (A) Study area with the labeled locations representing local villages, the inverted triangles represent-
ing the KNMI seismometers, and the red circles representing the earthquake events studied in this chapter. (B)
Seismometer coverage with the inverted triangles now representing seismometer azimuth with respect to the
north for each earthquake event shown in (A).

The second category of earthquake parameters we investigate involves the direction
and speed of rupture propagation. Depending on its directivity, an earthquake’s impact
may be different in different directions and hence locations. For example, in the direc-
tion of propagation, the ground motion is expected to be higher, resulting in more de-
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structive motion and vice versa (Cesca et al., 2011; Courboulex et al., 2013). An analysis
by Oates et al. (2024) reveals how several earthquakes in Groningen exhibit a clear direc-
tivity pattern. Therefore, the second focus of this chapter is to analyze the directivity of
the ten events for which we estimate their CMTs. Following that, the output of both anal-
yses, CMT and directivity, is compared with the available subsurface data (i.e., local fault
strike) to evaluate their consistency. In what follows, we first focus on estimating the
CMTs and hence start by introducing the theory underlying the HMC workflow. We then
continue with the results of the CMT estimation and the decomposition of the moment
tensors, which allows one to extract specific characteristics of the source mechanisms.
In the second part, we quantify the rupture directivity. We again start by introducing the
methodology, usually referred to as the Empirical Green’s function (EGF) method (e.g.,
Abercrombie, 2015). This is followed by a discussion of the selection of the small (child)
events that are later used to deconvolve the recordings of the ten larger earthquakes. Fi-
nally, the results of both analyses are interpreted and discussed in the discussion section
of this article, including recommendations to optimize the results further.

5.2. PROBABILISTIC CENTROID MOMENT TENSOR INVERSION
Estimating the CMT of a seismic event requires an inversion technique that minimizes
the difference between the observed seismograms and the modeled seismograms. While
the observed data are collected from selected seismic stations (in our case, these are
shown in Figure 5.1A), the modeled seismograms are generated using a specific set of
CMT parameters via the solution of what is referred to as the ‘forward problem.’ By min-
imizing the difference (or misfit) between the observed and modeled seismograms, one
can infer those CMT parameters that most likely resulted in the observed waveforms.
In a Bayesian context, this is slightly different in the sense that not a single, optimum
solution is sought but an ensemble of solutions (i.e., an ensemble of CMTs) whose den-
sity is proportional to the posterior probability. Below, we start by introducing the for-
ward problem we use to generate our modeled data, followed by a description of Bayes
formulation and some details of the HMC implementation. We end this section with a
presentation of our findings.

5.2.1. THEORY
Both observed and modeled seismograms in this study are in the form of particle dis-
placement. Assuming the extent of a seismic source is sufficiently small (in comparison
to the wavelength of the recordings used), it can be considered a point source. This im-
plies that particle displacement may mathematically be written as (Aki and Richards,
2002):

ui
(
x(r), t

)= 3∑
j=1

3∑
k=1

M j k (t ,T0)∗Gi j ,k
(
x(r), t ;x(a)) , (5.1)

where ui represents the displacement in the xi direction at position x(r) (geophone loca-
tion), and x(a) the position of the source that starts to radiate seismic energy at T0. The in-
dex i can take on values 1, 2, and 3, and hence the ui combine to form the displacement
vector u ≡ (u1,u2,u3). These components correspond to the particle displacement in the
east, north, and down directions, respectively. The moment tensor element M j k repre-
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sents one of the nine components of the moment tensor M, a 3×3 symmetric matrix with
six independent components. Meanwhile, the subscripts j and k represent the direction
in which a force is acting and pointing, respectively (hence moment tensor; M has units
of Newton-meters). The comma after the second subscript of the Green’s function Gi j ,k

implies a spatial derivative in the k direction with respect to x(a). Finally, ∗ represents a
time-domain convolution. In general, the moment tensor M is time-dependent. Usually,
all moment tensor components are assumed to have the same time dependence, i.e., a
synchronous source. Here, we furthermore assume instantaneous rupturing. This is not
an uncommon assumption for (relatively small) induced seismic events. This assump-
tion implies that the time dependence of M is modeled using a Heaviside function.

In this study, we estimate the CMTs using a probabilistic algorithm that relies on
Bayes’ theorem. In general, Bayes’ theorem quantifies the probability of a model ex-
plaining the observed data given prior knowledge and available observed data. Mathe-
matically, it can be written as

ρ(m|dobs) ∝ ρ(dobs|m)ρ(m), (5.2)

where ρ(m|dobs) represents the posterior probability distribution, ρ(dobs|m) the likeli-
hood, and ρ(m) the prior probability distribution. In our case, the model vector m con-
tains the ten CMT parameters we want to infer, with ρ(m) the prior knowledge we pos-
sess of these parameters. The observed data is contained in the data vector dobs. The
likelihood ρ(dobs|m) quantifies the difference between dobs and the modeled data (nu-
merical solution of Equation 5.1) computed for a specific set of model parameters (i.e., a
specific m). In other words, the product in the right-hand side of Equation 5.2 measures
the overall probability of a model m, given the observed data dobs.

In order to estimate the posterior, many different sampling algorithms exist. In this
study, we use the Hamiltonian Monte Carlo (HMC) algorithm. The HMC algorithm is
described extensively in Neal (2011), and proven to be highly efficient in comparison to
other (more generic) types of probabilistic inversion algorithms (e.g., Metropolis-Hastings
algorithms) when tuned optimally. This is because HMC uses a deterministic process
based on Hamiltonian dynamics, which guides the exploration of the model space. This
is contrary to Metropolis-Hastings (MH) algorithms, for example, which randomly sam-
ple the model space. In the context of CMT parameters, Fichtner and Simutė (2018)
enhanced the efficiency of the HMC sampler by linearizing the forward problem. This
approach was later adopted by Simutė et al. (2023) to estimate the CMTs of several ma-
jor earthquakes on the Japanese peninsula. In application to induced seismic events,
in Chapter 2, we embed the same linearization and HMC sampling approach in an effi-
cient probabilistic workflow. This workflow relies on the process of iteratively linearizing
the forward problem around the centroid, and updating this centroid after estimation of
the ("local") posterior probability. We refer to this process as a multi-stage workflow. To
further reduce computational costs, in Chapter 4, we pair the multi-stage workflow with
the available geological prior knowledge. They showcase this workflow by estimating the
CMT parameters of a ML 3.4 event, which occurred in 2019 in Groningen. In this study,
we also adopt that approach and include a-priori geological knowledge in the form of a
fault map to estimate the CMTs of the ten selected events.
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5.2.2. IMPLEMENTATION

In this section, we summarize the most important aspects of our approach, including
the use of an iterative probabilistic workflow. For technical details regarding the work-
flow, we refer to Chapter 2 and 4. For this study, we feed the aforementioned multi-stage
workflow with (initial) prior information from the fault geometry in the vicinity of the
studied earthquakes. This implies that, for each of the ten events, we generate n initial
model vectors denoted m0

1, m0
2,...,m0

n . Each initial model m0
i is associated with a differ-

ent initial estimate of the event’s centroid and moment tensor. These are derived from
the fault geometry and serve as the starting model of a separate multi-stage workflow.
In practice, these separate multi-stage workflows are run in parallel. Being the starting
model of an individual multi-stage workflow, the first linearization is performed around
the centroid x(a) and T0 contained in m0

i (note that the particle displacement in Equa-
tion (5.1) already depends linearly on the moment tensor components, and hence this
relationship does not need to be linearized). In our case, the centroid entries of the m0

i
are determined by the geometry of the faults close to the event’s hypocenter, as it was
estimated by the Royal Netherlands Meteorological Institute (KNMI) (depicted in Figure
5.1A). Around these hypocenters, we draw a circle with a diameter of 2 km and sample
the fault segments inside this circle (see, for example, the center plot of Figure 4.10 in
Chapter 4). Each sample is then contained in a separate m0

i , and serves as the start-
ing model of one of the n separate multi-stage workflows. The density of the sampling
along the faults is based on the maximum frequency of the waveforms (in dobs). In our
case, we use P-wave arrivals bandpass filtered between 1 and 4 Hz contained in cosine-
tapered windows with a duration of 3 seconds. Given the upper frequency of 4 Hz and
a P-wave velocity of approximately 3500 m/s (the lowest P-wave velocity between 2800
and 3000 m depth in the region of interest), the shortest wavelength (at reservoir depth)
is approximately 875 m.

To ensure that the HMC algorithm samples the global (potential energy) minimum,
the along-strike separation between the centroids of the separate m0

i is set to less than
a quarter of a wavelength, i.e., 200 m. Note that we only sample the faults horizontally
and not vertically. This is because the KNMI, by default, sets the centroids at a depth of 3
km, whereas the reservoir thickness is, on average, only 300 m. The latter is in the same
range as one-quarter of a wavelength: having the initial m0

i all at 3 km depth should
hence suffice to ensure sampling of the global minimum. Finally, the strike and dip of
the faults at the positions of the m0

i are converted to moment tensor elements (assum-
ing the rake is -90 ◦). Since we employ a probabilistic algorithm, we include uncertain-
ties associated with both the data and the model parameters in the form of data and
model (co-)variance. We set the data variance to 10% of the maximum amplitude of the
recorded seismograms for each receiver’s component individually. This is an overesti-
mation of the actual data variance, but by overestimating this value, we aim to accom-
modate simultaneously the inaccuracy of our velocity model (which leads to disparity
in the synthetic seismograms) and the noise present in the recorded seismograms, al-
though alternatively, both can be estimated individually (Duputel et al., 2011).

For the uncertainty of the model parameters, we use a different approach, which de-
pends on the model parameter. First, for the epicenter, we extract latitude and longitude
values from a number of previous studies in the area (Smith et al., 2020; Dost et al., 2020;
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Spetzler and Dost, 2017). Based on the values published in those studies, we set the vari-
ance to be 300 m in both horizontal directions. The uncertainty of the depth we set to
100 m. We also account for uncertainty in the origin time, which additionally reflects
the inaccuracy of the velocity model. For this, we set the uncertainty to be 0.1 s, which
is slightly lower than half of the wavelength duration, given the upper frequency we use
is 4 Hz. For the moment tensor components, we set the uncertainty of all components
to infinity to encode the state of ignorance, which means that all values for each param-
eter are equally weighted as a solution despite the mean values being pre-determined
(concatenated in m0).

5.2.3. RESULTS

We present the marginal posterior probabilities for the centroids of the ten selected
events in Figure 5.2. In the main box of Figure 5.2, these centroids are shown as scat-
ter points overlaid on the top reservoir map. The red beach ball represents the mean
moment tensor solution, plotted at the lateral position of the mean centroid (i.e., the av-
erage location of the event’s scatter dots). Both the moment tensors and the epicenters
demonstrate good agreement with major faults in the area. Furthermore, to detail the
depth profiles of the models constituting the posterior probability, we collapse the cen-
troids onto cross-sections along several profiles slicing through the Groningen subsur-
face. These are displayed as smaller insets on the right side (excluding the one with the
red frame). The depths are not uniformly distributed in the middle of the reservoir but
are concentrated at either the top or the bottom of the reservoir layer (Rotliegend sand-
stone). The red box at the bottom right magnifies the area around event 9 and serves
to highlight the "size" of the posterior with respect to a circle with a diameter of 2 km
around the KNMI-reported epicenter (the red-shaded area). The green dots represent
samples of the faults within this circle. These samples correspond to the initial centroids
associated with the separate m0

i .

We then decompose the moment tensor solutions from each event into their isotropic
(ISO), double-couple (DC), and compensated linear vector dipole (CLVD) components.
These decompositions are shown in the Hudson plots in Figure 5.3. The mean solutions
are predominantly double-couple (i.e., close to the middle of the Hudson plot), which
is attributed to slip on a fault. However, they all have (slightly) negative ISO compo-
nents, which points to a decrease in volume. In Groningen, this can be attributed to
compaction resulting from the gas extraction in the area (e.g., Smith et al., 2019). While
the mean solution is close to double-couple, the optimum solutions are skewed towards
a higher percentage of the negative CLVD components. Negative CLVD components in
themselves can be seen as the movement of materials from the lateral axes in combina-
tion with compression in the vertical axis, both without volume change. In the context
of mining, it is often associated with the collapse of voids.

To evaluate how our solutions explain the observed data, we compare the observed
data against the modeled data generated from our mean CMT solution. We plot this
comparison in Figure 5.4 (red and black seismograms) with the horizontal axis corre-
sponding to 4 seconds of seismograms. In running the workflow, we set the uncertainty
of the observed data to 10% of the maximum amplitude of the seismogram on each sta-
tion of each component. This addition of uncertainty allows the workflow to accommo-
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Figure 5.2: Main frame: Marginal posteriors of the centroid for each of the ten events (scatter clouds) plotted
on top of a contour of the depth of the top reservoir. Black dashed lines delineate known faults cutting through
the top reservoir (Rotliegend). The numbered red circles represent the (KNMI-estimated) epicenters. The
beachballs represent the DC component of the mean MT of the posterior probability. Cross-sections along a
number of profiles (solid brown lines in the main frame) are shown as four vertically separated insets to the
right of the main frame. The plot at the bottom right (red colored box) is a magnification of the area of event
#9. It shows a circle with a diameter of 2km as a red-shaded area surrounding the KNMI’s epicenter, including
samples of faults (green dots), which served as initial centroid priors (i.e., these are associated with individual
m0

i ).

date solutions that explain modeled data within that range. To examine how the uncer-
tainty affects our solutions and, ultimately, the generated modeled data, in Figure 5.4, we
plot the upper and lower bounds delineating the ensemble of waveforms generated from
a total of 100 samples from our posterior probability (dark grey solid lines bounding the
gray area in Figure 5.4). We summarize our CMT inversion results in table 5.1.

5.3. RUPTURE PROPAGATION ANALYSIS
A seismic rupture’s energy is usually not radiated uniformly in all directions. Conse-
quently, different regions on the Earth’s surface are affected differently (Courboulex et al.,
2013). This irregular distribution of seismic energy can be attributed to several factors,
including the direction in which the rupture propagates along a fault. When the rupture
propagates in a particular direction, the seismic waves, and hence the released energy,
tend to be focused along that path. This phenomenon is known as the directivity effect
(Cesca et al., 2011). Seismic waves propagating in the direction of rupture propagation
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Figure 5.3: Hudson plots generated by decomposing the MT solutions (i.e., the individual samples of our pos-
terior probability density). The samples are additionally color-coded based on the ‘normalized’ probability
density. The beachball represents the DC component of the mean solution, including its position on the Hud-
son plot.

may cause more damage and ground shaking compared to areas in the opposite direc-
tion. Local geological conditions may further modify the particle acceleration, ampli-
fying or damping the shaking experienced at the surface (Garini et al., 2017). In other
words, two areas equidistant from the earthquake’s epicenter might experience different
levels of shaking based on the path of the rupture and the local geological conditions.
Therefore, understanding the radiation pattern resulting from rupture propagation pro-
vides crucial insights for earthquake preparedness and risk mitigation, aiding in the de-
velopment of strategies to protect communities in earthquake-prone areas. In our case,
these are the citizens of the province of Groningen. In this study, we analyze the rup-
ture propagation of the ten events investigated in the previous section. More precisely,
we estimate the horizontal direction in which those ruptures propagate, the horizontal
components of the event’s rupture lengths, and their rupture velocity. In the next sub-
section, we first describe the theory underlying our analysis, after which we explain the
selection of the child events that are needed to estimate rupture direction and distance.
This is followed by the results of our analysis.

5.3.1. THEORY
The seismic energy of an earthquake rupture can propagate along a fault line. Depend-
ing on the rupture parameters, such as propagation speed, size, and preferential rupture
direction, different seismogram characteristics can be observed when measuring in dif-
ferent azimuthal directions. These differences are often referred to as rupture directivity
effect (Cesca et al., 2011). One way to evaluate this effect is by analyzing the amplitude
and frequency spectra of the recorded seismograms. Assuming that the rupture is propa-
gating unilaterally in a homogeneous medium, the amplitude of seismograms recorded
at the azimuth parallel to the rupture direction will be higher and will consist of more
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Figure 5.4: Comparison between observed data (red) and modeled data (black) generated from the mean CMT
of the posterior for each event. The gray shaded area marks the maximum and minimum bound of a set of 100
(forward) modeled wavefields generated from 100 samples drawn from the posterior probability density. The
horizontal axis corresponds to 4s of seismograms.

high-frequency signals. Conversely, seismograms recorded on the opposite side will dis-
play lower amplitudes with a predominance of lower-frequency signals. These differ-
ences in amplitude and frequency lead to varying levels of ground motion in different
areas, which in turn affects the risk posed to buildings and infrastructure differently.

In a more complex scenario, when the medium is heterogeneous and/or the rupture
is propagating bilaterally, resolving rupture directivity will be more intricate. One way
to address this complexity is by extracting the source time function of a rupture. The
observed seismogram is effectively the temporal convolution of a complex Green’s func-
tion and a source time function (STF). While the Green’s function captures the Earth’s
intrinsic properties, the STF represents the excited signal. In the case of a small rup-
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Figure 5.5: Preferred strike, dip, and rake solutions given the mean of CMT solutions for each event.

ture, a simple point source assumption can be used to model the observed displacement
(Equation 5.1), but in the case of a propagating rupture, the recorded displacement can
be seen as the result of summing displacements due to multiple point sources. We illus-
trate these multiple point sources in Figure 5.6 (in top view). The solid light green line
represents the fault line, and the rupture is propagating in the direction towards receiver
B. As depicted, each point source represented by the red ball will result in an individual
observed seismogram, which is represented by the red traces. Because the rupture prop-
agates at a specific speed and in a specific direction, depending on which receiver we are
looking at, there will be differences in the arrival times. At receiver B, the wavefront of
the propagated waves will be compressed; hence, the observed seismograms (the black
trace obtained by summing over the red traces) at B will be close to being in phase with
the individual black traces in comparison to when looking at receiver A. This results in
observed seismograms that have relatively higher amplitude and consist of more high-
frequency signals at receiver B in comparison to seismograms at receiver A. Deconvolv-
ing the black traces with a single point source results in a relative source time function
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(RSTF). In that case, the RSTF in receiver A will likely be broader with smaller ampli-
tude compared to the RSTF in receiver B as represented by the green traces in Figure 5.6,
a phenomenon referred to as Doppler broadening 1(Oates et al., 2024). The method of
deconvolving observed seismograms from the large earthquakes with the signals from
the smaller earthquakes (which represent the point source) to obtain the RSTF is often
referred to as the empirical Green‘s function (EGF) method (Hartzell, 1978; Courboulex
et al., 1996; Hutchings and Viegas, 2012).

Figure 5.6: (Modified after Poiata et al. (2017)) Illustration of observed seismograms at two opposite receivers, A
and B, given the source is a propagating rupture towards receiver B (multiple point sources). The point sources
are represented by the red beachball, which is due to the movement of fault represented by the green line.
Individual seismogram from each point source is represented by the red trace, and the observed seismogram
(black trace) is obtained by summing the red traces. Deconvolving the black traces with the same single red
trace results in a relative source time function represented by the green traces.

In application, similar to what we illustrated previously, RSTF is achieved by decon-
volving seismograms from two events that are estimated to be co-located and governed
by the same mechanism (i.e., fault movements). An important condition is that the lat-
ter seismogram should be due to a ‘relatively’ small event in terms of event magnitude.
This will ensure that it exhibits less to no directivity compared to the larger event, which
then closely resembles a point source relative to the larger event. Mathematically, the
deconvolution of the seismic recording of the stronger event with the seismogram of the
weaker event can be written as:

uP
i ∗ (uC

i )−1 =
3∑

j=1

3∑
k=1

(M P
j k ·SP)∗Gi j ,k ∗

( 3∑
j=1

3∑
k=1

(M C
j k ·SC)∗Gi j ,k

)−1
(5.3)

= ∆M ·SP ∗ (SC)−1 (5.4)

= SR (5.5)

with uP
i being the seismogram of the larger event (often also referred to as the parent

1As a caveat, Doppler broadening mentioned here is a different phenomenon than the Doppler effect where
the frequency shift is due to a moving source.



5

94 5.3. RUPTURE PROPAGATION ANALYSIS

event; hence the P), and uC
i being the recording of the child event. The STF of the Parent

event is denoted by the SP and the STF of the child event by the SC. Note that this implies
that the moment tensors M of both events are not time-dependent because this time
dependence is now captured by SP and SC. Furthermore, ∆M represents the magnitude
ratio between both events.

By assuming that the child event is an impulsive point source (as in the previous sec-
tion), the relative source time function (RSTF) SR is obtained through deconvolution of
the parent seismogram with the child seismogram. The assumption that the child event
is an impulsive point source means that SC is effectively a delta function, which in turn
implies that SR is a scaled version of SP. In our application, we deconvolve the seis-
mograms in the frequency domain using additive noise to stabilize the deconvolution
(Clayton and Wiggins, 1976). More specifically, we deconvolve the horizontal compo-
nents (north-south and east-west recordings) of the S-wave in the seismograms. The
S-wave is preferred over the P-wave because it exhibits a higher signal-to-noise ratio,
particularly on the horizontal components, rendering the deconvolution results more
stable. We then use the duration of the RSTF ∆t (the width of the pulse) at different seis-
mic stations to recover rupture characteristics. Specifically, we parameterize the dura-
tion of the RSTF (measured between zero crossings) using rupture propagation velocity
cR , shear wave velocity vS , rupture length L, rise time tr , and azimuth ϕ (clockwise with
respect to strike and being 0 in the direction of propagation) as follows (Schubert, 2015;
Ben-Menahem and Singh, 2012):

∆t (ϕ) = tr + L

cR
− L

vS
cos(ϕ). (5.6)

Equation 5.6 is valid for unilateral rupture, that is, the situation when a rupture prop-
agates (predominantly) in a single direction. Other variations would be asymmetrical
and pure bilateral rupture. In that case, Equation 5.6 can be reformulated as (Oates et al.,
2024)

∆t (ϕ) = Max

[
tr + L1

cR
−

(
L1

vS

)
cos(ϕ), tr + L2

cR
+

(
L2

vS

)
cos(ϕ)

]
, (5.7)

with L1 and L2 now being fault segments where an earthquake propagates in the direc-
tion in which L1 and L2 are pointing; ideally, strike and 180◦ + strike or the other way
around.

It should be noted that both Equations 5.6 and 5.7 are, kinematically, contingent on
the assumption that the earthquake nucleates and slips in the same horizontal plane as
the receiver. In reality, the receivers, of course (are close) to the surface and the earth-
quake at depth. This may seem like a violation of the mentioned assumption, but this
violation is minimal because (i) we only use stations that are at least 1 km away from the
events and (ii) the propagation close to the rupture is sub-horizontal for propagation to
stations at such distances (Kraaijpoel and Dost, 2013). As for tr , since induced earth-
quakes usually generate higher frequency seismograms, which corresponds to short rise
times, tr and should often be smaller than RSTF, this parameter is often assumed to be
negligible even in events larger than induced earthquakes (Oates et al., 2024; Park and
Ishii, 2015; Paulssen et al., 2022). Furthermore, ϕ can be reformulated in terms of the
azimuth of the recording receivers with respect to the north. In the following sections,
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we estimate L and cR for both rupture models by minimizing the sum of the squares of
the difference between the observed∆t (ϕ) and the∆t (ϕ) predicted by Equations 5.6 and
5.7. The goodness of fit is furthermore computed to indicate which model (unilateral or
bilateral) better explains the rupturing process for each event.

5.3.2. SELECTING CHILD EVENTS

For each parent event, the successful application of Equations 5.6 and 5.7 is contingent
on the selection of appropriate child events. For this, we determine, based on the KNMI
catalog, the 10 events closest to the location of each parent event. We depict these can-
didate child events in Figure 5.7 by means of solid orange circles. Since our main events
are all above ML = 2, the candidate child events are required to have magnitudes below 2.
The usual approach for selecting a single child event per parent event involves estimat-
ing the CMTs of the candidate child events (Paulssen et al., 2022; López-Comino et al.,
2012). The child event that has a CMT solution that is most similar to the parent event
is then selected. The low signal-to-noise ratio (SNR) of the seismograms of the potential
child events, however, makes it difficult to follow this procedure, in particular, because
P-waves are used in the CMT inversion (whereas the S-wave amplitudes are often higher,
resulting in higher SNRs). Therefore, in this study, we simply apply, for each parent event,
the EGF method to all candidate child events and examine the results. These results are
shown in Appendix A.

Figure 5.7: Epicenter of each main event (beachball) with the ten closest candidate child events (based on their
horizontal distance).

After applying the EGF method to all potential child events (Appendix A), we proceed
by examining the results in terms of the azimuthal variation of the amplitudes. Specifi-
cally, we aim for deconvolution results that yield relatively high amplitudes around time
delay = 0 and/or have a distinct sinusoidal pattern. The high amplitude not only indi-
cates that the child event nucleated at or close to the location of the parent event but
also that it is driven by a mechanism similar to the parent event. Furthermore, the si-
nusoidal pattern indicates that the relative orientation of a child event is located along
strikes but at some lateral distance away from the centroid of its main event. That is,
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we expect the maximum and minimum of the sinusoidal pattern to coincide with the
“strike" derived from both the CMT inversion and strike of the available (known) fault
geometry, as illustrated in Figure 5.8. In the left panel of this figure, assuming that the
strike direction is parallel to receiver A, the child event (the orange beachball) is located
northwest of the parent event and along the strike. Consequently, at receiver A, the travel
time of the signal originating from the parent events (the red beachballs) is larger com-
pared to the child event and vice versa for receiver B. Application of the EGF method,
therefore, yields a positive delay time in the direction of station A. If the child event is
located southeast of the parent event, we observe an opposite sinusoidal pattern, which
is shown in the right panel of Figure 5.8. Finally, if the child event and the parent event
are co-located, we expect to see the pattern shown in the middle panel of Figure 5.8 (i.e.,
no to minimum sinusoidal pattern is observed). It should be understood that the pat-
terns depicted in Figure 5.8 are ideal cases in the sense that parent and child events are
located at the same depth level as the event and in the absence of lateral heterogeneity in
the subsurface. In reality, these patterns will often (slightly) deviate from this ideal situa-
tion. What is more, the width/temporal duration of the extracted RSTF for receiver B will
likely be shorter in comparison to what is extracted at receiver A in all three scenarios
due to Doppler broadening explained earlier.

Figure 5.8: (Illustration of how the relative along-strike location of the child event affects the pattern of the
EGFs as a function of azimuth. (Left) Illustrates the pattern if the child event is located closer to station (de-
picted as being station A here) in the along-strike direction than the parent event; the EGFs exhibit a sinusoidal
pattern where station A has a positive delay time and station B a negative delay time. (Right) Illustrates the op-
posite case. (Middle) Illustrates the EGFs if the small and main events are co-located, resulting in no sinusoidal
pattern. Given that the rupture propagates towards receiver B, the duration of the extracted RSTF (the width
of the green seismograms) recorded at receiver B is shorter than at receiver A.

The selection process of a child event is exemplified for parent event #7 in Figure 5.9,
using only four candidate child events. The mean strike obtained from our CMT inver-
sion for this event is 323◦. To determine which receivers to use when applying the EGF
method to all parent events, including this one, we draw a 35 km diameter circle from the
event’s epicenter and use active receivers within that radius, as represented by the blue
inverted triangles in Figure 5.9. However, some receivers, such as receiver G134, were
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not active during event #7. In a zoomed view over the epicenter of event #7 (see red box
in the left corner), we show that candidate child events #1,#2, and #4 are clustered near
the mean centroid of the parent event, while candidate child event #3 is located approx-
imately 100 meters southeast, in the opposite direction of the strike (see also Figure 5.7).
For the three clustered events, the observed pattern is similar to that in the left panel of
Figure 5.8, and the opposite is true for the smaller event #3. Considering the assump-
tions underlying Figure 5.8 and the EGF method, the three clustered candidate child
events are most likely located laterally northwest and along the strike. However, based
on the KNMI earthquake catalog used to plot the child coordinates, they are mapped
slightly in the opposite direction. This discrepancy could be due to several factors: the
parent event might actually be located further southeast than indicated (note that the
presented CMT solution and its location represent the posterior mean; standard devia-
tions are provided in Table 5.1), the epicenters of child events #1, #2, and #3 might not
have been accurately located by the KNMI (a reasonable assumption considering that a
1D velocity model was used), or a combination of both factors.

Figure 5.9: Application of the EGF method to parent event #7 and four potential child events. The left panel
shows the receivers selected to compute the EGFs. At the bottom left is the zoom over the area where the main
event epicenter is located, as well as the position of the four potential child events (estimated by the KNMI).
The CMT-derived mean strike of the parent event is 323°; hence, its opposite is 143°. The four panels on the
right side depict the EGFs for the four different potential child events, with the red vertical bands representing
the strike direction and its opposite with ±10◦.

After visual inspection, we use, for parent event #7, the deconvolutions with child
event #2 for further analysis. The reason is that these give the most consistent high am-
plitudes, in particular in comparison to the deconvolutions with child event #4. In addi-
tion, it has the flattest sinusoidal pattern, which means that child event #2 is most likely
closest to the parent event. A similar visual inspection has been performed for all 10
(parent) events considered in this study. That is, from each of the ten sets of stabilized
deconvolutions, each associated with a different candidate child event, one is chosen for
further analysis (indicated by means of the blue frames in Figure 5.12). The ten selected
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Figure 5.10: Selected sets of stabilized parent-child deconvolutions (indicated by blue frames in Figure 5.12).
The vertical red bands correspond to the strike direction (±10◦) estimated from the posterior mean CMT solu-
tions (see Table 5.1).

sets of stabilized deconvolutions are shown in Figure 5.10. The vertical red bands again
indicate the strike directions and its opposite (either + or - 180◦) estimated from the pos-
terior mean CMT solutions (see Table 5.1). In most cases, the maximum and minimum
of the sinusoidal pattern coincide with the estimated strike. In the following Section, we
use the azimuthal variation of the RSTFs, i.e, the measured ∆t (ϕ), to invert for rupture
length, rupture velocity, and rupture direction, considering both unilateral and bilateral
rupture scenarios (Equations 5.6 and 5.7, respectively).

5.3.3. RESULTS

Given the selected child events, we proceed by examining the RSTFs for each main event.
Specifically, we focus on identifying the zero crossings that limit the dominant pulse.
For each selected parent-child pair, the dominant pulses, filled with a green hue, are
displayed in Figure 5.11. The solid orange circles in both rectangular and polar frames
represent the RSTF duration as estimated based on the zero crossings. We then use the
estimated RSTF durations ∆t (ϕ) to fit Equations 5.6 and 5.7. While doing so, the shear
wave velocity (vS) is set to 2453 m/s, similar to the study by Oates et al. (2024), which
represents the shear wave velocity of the Groningen reservoir. The best fittings ∆t (ϕ) for
a unilateral rupture are depicted as solid blue lines in the rectangular and polar frames
in Figure 5.11 and as red solid lines for a bilateral rupture. Estimated rupture parame-
ters are colored accordingly. The (accordingly colored) straight solid lines in the polar
plots indicate the estimated rupture direction, with blue being the direction of unilateral
rupture and red being the direction of bilateral rupture.

We compare the rupture directions estimated for unilateral and bilateral scenarios
with the fault geometries and (posterior mean) CMT estimates in Figure 5.12. The rup-
ture direction for the unilateral case is depicted by means of blue wedges in Figure 5.12.
For the bilateral case, we depict the main rupture direction using a red wedge and its
opposite as a green wedge. Note that the size of the wedges is not on the same scale as
the map.
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Figure 5.11: Result of the rupture analysis of each parent event. The solid orange dots in the rectangular panels
delimit the zero crossing, which provides the apparent duration for each relative source time function. Best
fitting rupture models, as described by Equations 5.6 and 5.7 are depicted as blue and red solid curves, respec-
tively. Associated parameters are listed using the same color; the rupture speed (cr), rupture length (L), and
their goodness of fit. The polar plot shows the RSTF durations and the models using polar coordinates, with
the straight-colored solid lines corresponding to the rupture direction associated with the best-fitting rupture
models.

5.4. DISCUSSION

In this section, we discuss the implications and significance of the estimated CMTs and
rupture parameters. Our probabilistic CMT inversion results provide useful insights into
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Figure 5.12: Comparison between rupture directions estimated assuming unilateral and bilateral rupture sce-
narios, the available fault map, and the (mean) CMT solution for each event. The left frame depicts the esti-
mated unilateral rupture direction using blue wedges (±10◦). The right frame depicts the estimated bilateral
rupture directions, where the red wedges represent the rupture direction of the larger fault segment and the
green wedge the rupture direction of the smaller fault segment (i.e., in the opposite direction), with both trian-
gles being ±10◦ of their corresponding directions. Both the CMT-derived beachballs and the faults are color-
coded based on their strike (according to the color bar at the bottom right).

the centroid and source mechanisms associated with the studied events. Notably, the
centroid is consistent with the available fault map for all parent events. As for the source
mechanisms, we find that the events are predominantly explained by DC mechanisms
(normal faulting) but with the consistent presence of negative non-DC mechanisms (ISO
and CLVD). This is in line with the study by Dost et al. (2020). In general, negative ISO
components are associated with a loss of volume in a medium. In our case, this loss is
most probably due to gas extraction in the area. As for the negative CLVD components,
it represent the combination of compression in the vertical axis and dilatation in the
lateral axes (Vavryčuk, 2014, 2015). Examples of induced events that exhibit a significant
amount of negative CLVD mechanisms are often found in mining activities driven by col-
lapse events (Rudziński et al., 2016; Šílenỳ and Milev, 2008; Caputa et al., 2021). And nat-
urally, it can be found in volcanic-related earthquakes (Shuler et al., 2013; Fichtner and
Tkalčić, 2010). In many cases, however, the existence of CLVD components could also
be due to the presence of noise in the seismograms and/or the poorly known subsurface
models, such as the presence of high anisotropy (Mustać and Tkalčić, 2016; Stierle et al.,
2014). Therefore, in most cases, when dealing with earthquakes, seismologists often as-
sume that the CLVD components are minimum or close to zero, particularly when the
prior knowledge suggests it.

An ideal natural geological setting that results in negative CLVDs is a ring fault. In a
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volcanic environment, for example, this complies with the form of a caldera (Sandan-
bata et al., 2021). Other settings that could result in CLVD-type source mechanisms
are graben-like structures and complex fault systems (Irmak, 2013). The subsurface of
Groningen is known for its complex fault systems (De Jager and Visser, 2017). Assuming
that the CLVD mechanisms are unfavorable solutions, one can suppress their presence
by putting a strong prior for the DC mechanisms, which are distributed within the center
of the Hudson plot (Cesca et al., 2013). Nevertheless, in our application, we put a uniform
prior on the earthquake mechanisms to encode the state of ignorance. Notwithstanding
all this, the CMT results indicate that the earthquakes are predominantly governed by
double-coupled mechanisms.

The estimated widths of the RTSFs in this study constrain the rupture directions of
the source events. We find that the goodness of fit, in general, is relatively poor (see ’fit’
in Figure 5.11) except for some events. These low values could be due to most (parent)
events having normal faulting mechanisms with only relatively small rupture lengths. If
this is the case, then there is simply little directivity. Therefore, from a model perspec-
tive, rather than having a circle with either one lobe for unilateral cases or two lobes for
bilateral cases Cesca et al. (2011), a circle centered at 0 would be appropriate. Neverthe-
less, looking at the goodness of fit, we find that in some events, shifting to the bilateral
rupture model improves the fitness value significantly. Hence, we might argue that the
bilateral rupture assumption slightly better explains the data (RSTF duration) except for
event #5 (where the goodness of fit has similar values for both models). This is potentially
because a bilateral rupture model with equivalent rupture length better mimics the little
to no directivity effect, which is a circle centered at 0 (although having two lobes). This
then explains events with a jump in fit value have similar values for L1 and L2. However,
in general, the increase we found does not reach the same fitness where the directivity is
clearly visible, for example, in event #9. Therefore, further analysis and perhaps a more
complex model are required to capture the nuance of the data. As a caveat, we did not
include the noise analysis present in the dataset when performing directivity analysis.
Hence, the better fit in the bilateral rupture model could be due to the overfitting of the
available data points.

In terms of rupture direction, assuming bilateral rupture for most events does not
improve its alignment with the available fault map except for events #1, #2, and #3. How-
ever, it should be understood that the value on the map is the (global) trend of a fault
segment. In more detail, the geometry might change with depth and lateral position, as
shown in the study (Kortekaas and Jaarsma, 2017). As for the rupture speed, we found
that our results varied significantly between the two rupture models. That is, the bilat-
eral rupture assumption gives consistently higher values. Sometimes even as much as
twice the rupture speed compared to the rupture speed estimated for a unilateral rup-
ture model. Typically, the rupture speed varies between 0.7 and 0.9 times the shear wave
velocity (Ammon et al., 2020), which are categorized as subshear. In this study, how-
ever, we find that the values are often smaller (with the exception of event #9). At the
same time, a study by Weng and Ampuero (2020) suggests that rupture velocities might
be smaller than those typical values in case the rake angle is heading towards -90◦ (i.e.,
pure normal faulting).

A number of measures and/or additions could potentially improve the presented
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analysis. For the CMT inversion, for example, including the direct S-wave could be ben-
eficial. This is because its amplitude is significantly stronger than the P-wave, result-
ing in a better signal-to-noise ratio and, therefore, sometimes leading to more accurate
results (Xu et al., 2021). A significant challenge while including the S-wave, however,
involves the separation of the direct wave and (slightly) later arriving converted waves
and/or multiply reflected phases. Often, therefore, the horizontally polarized S-wave (or
SH-wave) is used (Spetzler et al., 2024). Another challenge involves the solution of the
forward problem (Equation 5.1), in particular in the case of numerical modeling rather
than analytical solutions. The necessity to generate accurate (direct) S-waves requires
the numerical model to have a denser mesh size. This is exacerbated in areas with very
low-velocity layers, such as the shallow part of Groningen’s subsurface. Hence, includ-
ing the direct S-waves in the probabilistic inversion requires extensive computational
power. Another potential improvement would be the inclusion of anisotropy in the mo-
ment tensor inversion. This is because the inclusion of anisotropy affects the results of
the CMT inversion to a certain degree, as shown by Rößler et al. (2007); Vavryčuk (2005).
As for the directivity analysis, one beneficial addition would be assessing the obtained
directivity pattern by means of forward modeling. This can be optimally done by per-
forming geomechanical simulations given Groningen subsurface models. These simu-
lations can then be constrained by the source parameters obtained from CMT inversions
(Ruan et al., 2022).

5.5. CONCLUSION
We performed a comprehensive analysis of ten of the largest induced seismic events in
the Groningen reservoir to date. Specifically, we ran both a probabilistic CMT inversion
and conducted a rupture directivity analysis to gain insights into source mechanisms
and rupture characteristics of the selected events. Based on our analyses, we conclude
the following: (i) In general, our CMT inversion reveals that the selected induced earth-
quakes can chiefly be explained by double-coupled mechanisms. In terms of faulting,
normal faulting appears to be dominant. This is to be expected, given the differential
compaction along the existing faults intersecting the gas reservoir. Furthermore, the
isotropic and CLVD mechanisms both show negative values. These are explained by a
loss of volume synchronous with normal faulting and are also consistent with the sub-
sidence in the area. (ii) The rupture directivity pattern obtained using the EGF method
generally shows low goodness of fit while testing using both unilateral and bilateral rup-
ture scenarios. However, there is a small increase in goodness of fit when switching from
unilateral to bilateral rupture. One reason could be the bilateral rupture can better rep-
resent the situation where the directivity effect of a rupture is minimal. However, the
increase of fit in the scenario does not pose the same magnitude as in one event (event
#9) where the directivity is highly visible. Therefore, we suggest a more detailed look
at the validity of the rupture model. This includes, for example, noise analysis, as the
noise can highly affect the extracted RSTF data points, which in turn can either underfit
or overfit the data. Another improvement can also be made by comparing the obtained
rupture orientation with a more detailed fault model. In addition, improvement of the
EGF analysis could be achieved further by coupling the EGF method with geomechanical
simulations. This way, we can get into more detail on the intrinsic nature of the rupture
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process taking place in the Groningen subsurface.

APPENDIX: SELECTION OF CHILD EVENTS
Below, we show the result of applying the EGF method (i.e., the stabilized parent-child
deconvolution) to each parent event and all candidate child events. Prior to applying this
method, we taper the horizontal components of the observed seismograms to isolate the
S-wave using a cosine taper with a taper length of 4s. We add one percent of additive
noise when applying the deconvolution to stabilize the results.

Figure 5.13: Application of the EGF method for each parent event to all candidate child events. The child event
associated with the deconvolved traces in the blue frame is selected for further analysis and estimation of the
rupture parameters. The horizontal and vertical black lines represent delay times of 0s and an azimuth of 0
degrees with respect to the north, respectively. The limit along the vertical and horizontal axes are ±0.5 s and±
180◦, respectively (see the annotation along the horizontal and vertical axes of Figure 5.10). The vertical red
bands indicate the strike directions obtained from the CMT inversion shown in Table 5.1 (with ±10◦).
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Caputa, A., Rudziński, Ł., and Cesca, S. (2021). How to assess the moment tensor in-
version resolution for mining induced seismicity: A case study for the Rudna mine,
Poland. Frontiers in Earth Science, 9:671207.

Cesca, S., Heimann, S., and Dahm, T. (2011). Rapid directivity detection by azimuthal
amplitude spectra inversion. Journal of seismology, 15:147–164.

Cesca, S., Rohr, A., and Dahm, T. (2013). Discrimination of induced seismicity by full
moment tensor inversion and decomposition. Journal of seismology, 17:147–163.

Clayton, R. W. and Wiggins, R. A. (1976). Source shape estimation and deconvolution of
teleseismic bodywaves. Geophysical Journal International, 47(1):151–177.

Courboulex, F., Dujardin, A., Vallée, M., Delouis, B., Sira, C., Deschamps, A., Honoré, L.,
and Thouvenot, F. (2013). High-frequency directivity effect for an Mw 4.1 earthquake,
widely felt by the population in southeastern France. Bulletin of the Seismological
Society of America, 103(6):3347–3353.

Courboulex, F., Virieux, J., Deschamps, A., Gibert, D., and Zollo, A. (1996). Source inves-
tigation of a small event using empirical Green’s functions and simulated annealing.
Geophysical Journal International, 125(3):768–780.

De Jager, J. and Visser, C. (2017). Geology of the Groningen field–an overview. Nether-
lands Journal of Geosciences, 96(5):s3–s15.

Dost, B. and Kraaijpoel, D. (2013). The August 16, 2012 earthquake near Huizinge
(Groningen)(KNMI Scientific report available at https://www.eumonitor.
nl/9353000/1/j4nvgs5kjg27kof_j9vvik7m1c3gyxp/vj6rovcbvxyl/f=
/blg205498.pdf). KNMI Scientific report.

https://zenodo.org/records/1035226
https://www.eumonitor.nl/9353000/1/j4nvgs5kjg27kof_j9vvik7m1c3gyxp/vj6rovcbvxyl/f=/blg205498.pdf
https://www.eumonitor.nl/9353000/1/j4nvgs5kjg27kof_j9vvik7m1c3gyxp/vj6rovcbvxyl/f=/blg205498.pdf
https://www.eumonitor.nl/9353000/1/j4nvgs5kjg27kof_j9vvik7m1c3gyxp/vj6rovcbvxyl/f=/blg205498.pdf


REFERENCES

5

105

Dost, B., Ruigrok, E., and Spetzler, J. (2017). Development of seismicity and probabilistic
hazard assessment for the Groningen gas field. Netherlands Journal of Geosciences,
96(5):s235–s245.

Dost, B., van Stiphout, A., Kühn, D., Kortekaas, M., Ruigrok, E., and Heimann, S. (2020).
Probabilistic moment tensor inversion for hydrocarbon-induced seismicity in the
Groningen gas field, the Netherlands, part 2: Application. Bulletin of the Seismolog-
ical Society of America, 110(5):2112–2123.

Duputel, Z., Rivera, L., Fukahata, Y., and Kanamori, H. (2011). Uncertainty estimations
for seismic source inversions. Geophysical Journal International, 190:1243–1256.
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Stierle, E., Vavryčuk, V., Šílenỳ, J., and Bohnhoff, M. (2014). Resolution of non-double-
couple components in the seismic moment tensor using regional networks—I: a syn-
thetic case study. Geophysical Journal International, 196(3):1869–1877.

van Thienen-Visser, K. and Breunese, J. (2015). Induced seismicity of the Groningen gas
field: History and recent developments. The Leading Edge, 34(6):664–671.
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6
CONCLUSIONS AND

RECOMMENDATIONS

In the following subsections, we list the key conclusions of each chapter, starting with
Chapter 2. In particular, we examine and link the conclusions with the research ques-
tions presented in Chapter 1. Following the conclusions, we present recommendations
based on the challenges in the concluded chapters, including proposed outlooks for rel-
evant future research.

6.1. CONCLUSIONS
In Chapter 2, a workflow backed by a variant of the Hamiltonian Monte Carlo algorithms
aims to answer the first research question, which reads "How can we modify existing ef-
ficient HMC probabilistic algorithms to estimate induced earthquake parameters without
hampering the accuracy of the estimation?". Our analysis concluded that the proposed
workflow is capable of efficiently estimating the posterior probability of 10 parameters
describing a synthetic earthquake source. However, because the event is a synthetic one,
several caveats must be emphasized here. First, the modeled seismograms used to solve
the forward problem in the workflow and the seismograms of the synthetic event are
both generated using the same velocity model and code. This does give us better control
in testing the workflow’s efficiency while assessing its output against the true parame-
ters of the synthetic event. Second, the study intentionally excludes an application to
field data, as the goal is to present a stand-alone workflow that can be applied in any in-
duced seismic setting. Applying the methodology to field recordings of induced seismic
events requires numerous processing details that fall beyond the scope of this chapter.
For example, the mismatch between the field seismograms and synthetic seismograms
might come from the lack of accuracy in the subsurface velocity model, leading to higher
uncertainty in the workflow’s outputs.

Chapter 3 also attempts to answer the first research question by detailing the ap-
plication of the inversion workflow in Chapter 2. However, this time, we increase the
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complexity of the model and the process used to obtain synthetic observed recordings
to make it more realistic. Particularly, we perform a geomechanical simulation in a 3D
subsurface model and use the finite fault assumption in generating the recordings in-
stead of the point source assumption (which is used in Chapter 2). At the same time,
we use a more simplistic velocity model (1D) and the point source assumption to model
the seismograms resulting from the solution of the forward problem in the HMC chain.
This simplification reflects our inability to accurately represent true subsurface mod-
els and the limitations in our assumptions on generating seismograms for fitting actual
field observations. One of our key conclusions is that the seismograms generated using
different assumptions and models exhibit exceptional waveform fitting at the selected
borehole receivers, highlighting the effectiveness of the workflow. Even when synthetic
field recordings are corrupted with noise, the accuracy of the fitting process remains sta-
ble. This robustness is further demonstrated by the minimal differences in estimated
earthquake parameters between noisy and noise-free synthetic recordings and by the
close alignment of these parameters (e.g., centroid locations) with those observed in the
geomechanical simulation.

The second and the third research questions highlighting "the inclusion of geologi-
cal information to the inversion" and "the implementation of the HMC workflow to field
data" are addressed in Chapter 4. Here, we use the workflow introduced in Chapter 2 to
estimate the source characteristics of a 3.4 ML induced earthquake in the Groningen gas
field. This estimation is performed using two different sets of initial prior probabilities,
which vary in how the epicenter locations are derived. The first set is based on a uni-
form grid, while the second set is informed by the location and orientation of subsurface
faults. Our key finding is that the overall shape of the posterior probability distribution
is largely similar between the two prior sets, except when limiting the seismogram input.
In such cases where only the vertical component of the seismogram is used, the poste-
rior distribution becomes slightly broader, indicating less precision. Moreover, using the
fault-derived prior set resulted in significantly higher computational efficiency, reducing
the computation time by a factor of four compared to the grid-based approach. When
comparing our findings with existing research, we observe that our posterior estimates
place the earthquake at a slightly shallower depth than the reservoir level, around 3 km
deep, which is consistent with previous studies. However, the estimated fault orientation
responsible for the earthquake aligns more closely with the available fault map than the
results from prior research.

In Chapter 5, we aim to answer the last research question, which is to "draw a link
between the estimated parameters and the geological knowledge of the area." We achieve
that by taking what we have learned from the previous chapters (e.g., workflow and
geological prior knowledge) and applying it to 10 more earthquakes and including an
additional analysis of the rupture directivity. Our analysis concludes that, in general,
all earthquakes are mainly dominated by double-coupled mechanisms driven by nor-
mal faulting in the area. This is expected, given the extensive graben-like structures in
the Groningen subsurface. In addition, we also find that the earthquakes have negative
isotropic components, which most likely represent the loss of volume due to the exten-
sive gas extraction from the reservoir. Further analysis of the directivity patterns reveals
that the majority of the earthquakes exhibit minimal or negligible signs of directivity,
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with the exception of one notable event. Overall, although the fit is relatively low, they
generally correspond to the fault lines mapped in the region. This alignment suggests
that the observed directivity, though weak, may still be influenced by the underlying
geological structures, highlighting the importance of considering fault orientations in
seismic assessments.

6.2. RECOMMENDATION
Building on the conclusions above, we highlight two recommendations that not only po-
tentially address the challenges we face but could also be relevant to future earthquake
characterization-related research. In summary, our recommendations are (i) to include
S-wave on the field data inversion and (ii) to include the uncertainty of both the observed
and synthetic seismograms.

To break it down, our first recommendation will plainly be beneficial for elevating
the results obtained in Chapter 4 and 5, where we deal with field data inversion. In those
chapters, we do not optimally utilize other wave segments except for the P-wave. It is un-
fortunate because other segments, such as S-waves and surface waves, have more dom-
inant amplitudes in the seismograms. If included, those high amplitudes will ease the
fitting process as they have better signal-to-noise ratios with potentially lower data un-
certainty (assuming that the noise is uncorrelated and applied for the whole earthquake
recordings), giving more robust results on the estimated parameters. In the context of
Groningen earthquakes, Willacy et al. (2019) perform a detailed 3D waveform modeling,
simulating an earthquake that nucleates from the Groningen reservoir due to a double
couple source, which is the dominant earthquake mechanism in the area. One of the
highlights they present is the difference in amplitudes of several wave segments gener-
ated by the simulated earthquake. Here, the weakest are the direct P-waves, followed by
the guided P-waves and eventually the S-waves and guided S-waves. Despite the dom-
ination of the S-wave amplitudes, including it in the inversion of Groningen field data
imposes two challenges: one is the computational challenge, and the other is the ac-
curacy of the modeled S-waves, which stems from the accuracy of the S-wave velocity
model itself.

On the first challenge, the value of Vp/Vs at the very shallow part of Groningen´s sub-
surface is relatively high (Kruiver et al., 2017a,b). This high ratio, which corresponds to
slower S-wave velocities, results in a denser computational grid required for accurately
modeling S-waves compared to P-waves at the same upper frequency, making simula-
tions computationally expensive. Another challenge lies in the accuracy of the S-wave
velocity model itself. While testing the workflow to fit the P-waves of field data, we also
evaluate how the estimated parameters model S-waves and compare them to field data.
Although the P-wave segments align well with the observations (as they fall within the
measured window), the modeled S-waves often show discrepancies, sometimes even
cycle-skipping in certain parts. These discrepancies typically stem from differences in
arrival times rather than mismatches in the shape of the S-wave segments and are more
pronounced at distant receivers. This inconsistency poses a challenge in our workflow,
as it assumes the same origin time for all receivers and wave segments. Consequently,
the arrival times for both P and S-waves are expected to be aligned. Our hypothesis is
that the S-wave velocity models might lack sufficient accuracy since they are derived
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mainly from the Vp/Vs relation extracted from a limited number of wells in comparison
to the P-wave velocity, which is constrained by numerous available sonic information in
the area (Romijn, 2017). One possibility to (partly) circumvent this inaccuracy of the S-
wave velocity model would be to perform the inversion with each P and S-wave segment
used individually, as was done by Dost et al. (2020).

As for the second recommendation, we argue that incorporating data uncertainty
analysis is essential for improving the reliability of the estimated parameters in this the-
sis (and also future relevant studies). Here, the focus on data uncertainty is primarily on
field data in the assumption of uncorrelated noise. In general, this uncertainty is typi-
cally linked to measurement errors, instrument noise, and environmental factors. While
the inclusion of this type of data uncertainty is important, it does not fully capture the
other sources of uncertainty that are related to the modeling of the synthetic seismo-
grams. In that case, the uncertainty is influenced by inaccuracies in velocity models,
numerical methods, and assumptions made during simulations. Typically, data uncer-
tainty on field seismograms can be estimated directly from the recordings itself (e.g.,
Mustać and Tkalčić, 2016), while quantifying the data uncertainty in synthetic seismo-
grams requires additional computational effort and, therefore, it is often disregarded de-
spite its significance. In the context of the field data example, Duputel et al. (2011) high-
lights that incorporating modeling errors not only enhances the posterior distributions
of estimated moment tensors but also improves the accuracy of these estimates. Sim-
ilarly, Gu et al. (2018) demonstrates that inaccuracies in 1D velocity models can signif-
icantly affect moment tensor estimations. Furthermore, on synthetic data, Pham et al.
(2024) show that incorporating errors from modeling using 3D velocity models yields
more reliable estimated parameters. All in all, accounting for the uncertainty of both
field and synthetic data is crucial for achieving a holistic understanding of the limitations
and errors inherent in seismic studies. By addressing these uncertainties, the reliability
and robustness of estimated parameters can be significantly improved.
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