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1. The advantages of seismic vibrators driven by linear synchronous motors justify
replacing hydraulic vibrators (chapter 2 of this thesis).

2. Because the contact between the vibrator and ground is important (chapter 4 of
this thesis), seismic vibrators should be designed to optimize this.

3. Instead of trying to optimize sources for an ideal signal, it is better to design signals
for a less ideal source (chapter 5 of this thesis).

4. Damaged ground absorbs signal; therefore a seismic source should cause as little
damage as possible.

5. The principle of Wikipedia is scientifically more productive than that of scientific
journals.

6. The increasing use of internet automatically causes a decrease of privacy.

7. The importance of prime numbers for signal analysis cannot be overestimated.

8. To assess whether development is truly sustainable, a complete inventory of all
effects is necessary.

9. The way the patent system is exploited for commercial benefits is not in the inter-
est of general development.

10. Communication is vital in a complex society as ours; therefore it is frightening that
languages develop slower than communication technologies.
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SUMMARY

The seismic method is an important indirect method to investigate the subsurface of
the earth. By analyzing how the earth affects the propagation of mechanical waves, the
structure of the earth and its seismic properties can be inferred. The seismic vibrator
is the most commonly used land source in active-source exploration and monitoring to
generate these waves and is the subject of this thesis. The goal of a seismic vibrator is
to produce seismic waves with a known signal signature. Commonly sinusoidal signals
whose frequency varies over time, called sweeps, are used for this purpose. These signals
are typically quite lengthy to compensate for the fact that the instantaneous amplitudes
of the vibrator are relatively weak compared to the ones from impulsive sources and the
target depths faced. Via the processing step of correlation, the lengthy source signature
is collapsed and virtual records are generated as if the vibrator would have released all
energy at once. The quality of these virtual records depends on the ability of the vibrator
engines to generate the force signature wanted and the ability of the vibrator mechan-
ics and the vibrator-ground interaction to successfully transform the driving force to a
seismic wave. In this thesis we investigate the feasibility of driving a vibrator with linear
synchronous motors, the influence of drive level on the signals a vibrator generates, the
effect of the vibrator-ground coupling, and the possibilities to design more robust source
signals.

A linear synchronous motor (LSM) is an electric motor that can produce large con-
trollable forces and is therefore suitable as a driving engine for a seismic vibrator. This
motor consists of two independent elements, a magnet track and a coil track, allowing
practically unlimited motor displacements. This makes the LSM very suitable for ex-
panding the source frequency band to the lower frequencies in which larger strokes are
needed. We successfully designed and built a multi-LSM prototype vibrator of some
1200 kg. In this thesis we describe its design and how we addressed the LSM control and
the suppression of its mechanical resonances of this vibrator. The seismic data acquired
in field tests proved that the prototype LSM vibrator acted very well as a seismic source.
It has no trouble generating pseudorandom sweeps, and even given its limited size, it
generated signals within the low-frequency regime, down to 2 Hz, rather easily.

In a number of field experiments described in this thesis, we show the influence of
the coupling between a vibrator and the ground, the sweep rate, and drive level on the
behavior of a vibrator and the spectra it generates. Just after the prototype LSM vibra-
tor was built, several field tests near Schoonebeek were performed. These tests, among
others, consisted of placing different mats between the vibrator and the ground, per-
forming the same sweep at different drive levels and with different sweep rates. These
experiments showed that coupling mats and drive level change the shape of the vibra-
tor’s spectral amplitude, while the sweep rate scales the spectrum uniformly. The change
with drive level was investigated in more detail in another experiment using a hydraulic
driven exploration vibrator, able to generate forces up to 266 kN. So a much wider range
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viii SUMMARY

of drive levels could be studied. From this second dataset we conclude that: the vibra-
tor signal is very repeatable for a given drive level and fixed position; the repeatability of
smaller drive levels is reduced when higher drive levels are performed in between; the
interaction of the base plate and the ground depends on the drive level in a nonlinear
way. If these effects are not taken into account, they produce arrival-time and amplitude
errors in the seismic records.

The influence of the contact between a vibrator and the earth on their dynamics was
further investigated. Although a vibrator might appear to be well-coupled with the earth
on a macro scale, perfect coupling certainly does not occur on the micro scale. With the
aid of contact mechanical modeling and concepts, it is shown in this thesis that this lack
of contact at the micro scale, or rather the change thereof during a sweep, can have a sig-
nificant effect on the dynamics of the vibrator-earth system. Modeling of such changing
contact, predicts that the dynamic behavior varies considerably with the vibrator drive
level. The most significant effect predicted by the model is a decrease in the base-plate
resonance frequency with an increasing drive level. Similar changes of resonance be-
havior with drive level were also found in the drive-level field tests.

Linear sweeps are the mostly used signals to drive seismic vibrators. Their constant
amplitude over time and flat frequency spectra are desired properties. However, the
transfer from the signal used to drive the vibrator to the seismic wave can affect these
properties considerably. In this thesis we show that the design of the phase offset of the
sweep can help to reduce the low-frequency energy of a sweep or can be used to assist
in separating simultaneous-source records. The nonlinear behavior of the vibrator, the
ground and their contact will distort the sweep and produce harmonics, which, after
processing, show up as noise and ghost events in the records. As we show in this thesis,
nonlinear sweeps, with both sweep rate and amplitude carefully designed, can be used
to anticipate on these transfer functions and help to remove harmonic noise from the
seismic records efficiently.

This thesis shows that the vibroseis method is complicated. Some parts of the setup
are more or less static and can be controlled, such as the design of the vibrator and the
signature it should produce. Other parts of the setup are more dynamic, spatially and
temporally, such as ground properties and vibrator-ground contact. If one aims to im-
prove the vibroseis method per se, all these aspects should be considered together as
they are inextricably intertwined.



ZUSAMMENFASSUNG

Das seismische Verfahren ist eine wichtige indirekte Methode um das Innere der Erde
zu untersuchen. Durch Analyse des Einflusses der Erde auf die Ausbreitung mechani-
scher Wellen kann die Struktur der Erde und seine seismischen Eigenschaften abgeleitet
werden. Der seismische Vibrator ist die gängigste Quelle in der aktiven Exploration und
dem Monitoring um diese Art Wellen zu erzeugen und ist das Thema dieser Arbeit. Das
Ziel eines seismischen Vibrators ist es seismische Wellen mit einem vorher bekannten
Signal zu erzeugen. üblicherweise werden für diesen Zweck Signale verwendet die auch
Sweeps genannt werden. Sweeps sind sinusförmige Signale bei denen die Frequenz mit
der Zeit variiert. Diese Signale sind in der Regel recht lang, um die Tatsache zu kompen-
sieren, dass die momentanen Amplituden des Vibrators im Vergleich zu den Impulsquel-
len und zu erreichenden Tiefen relativ schwach sind. Durch den Bearbeitungsschritt der
Korrelation wird die lange Signalquelle verkürzt und dadurch werden virtuelle Datensät-
ze erzeugt die aussehen als würde der Vibrator die gesamte Energie auf einmal freigege-
ben. Die Qualität dieser virtuellen Aufzeichnungen ist abhängig von der Fähigkeit des
Vibratormotors das gewünschte Kraftprofil herzustellen sowie die Möglichkeit der Me-
chanik des Vibrators und des Vibrator-Boden-Kontaktes die erzeugte Kraft erfolgreich in
eine seismische Welle umzusetzen. In dieser Arbeit untersuchen wir die Möglichkeit der
Konstruktion eines Vibrator mit Linearmotoren, den Einfluss des Kraftaufwandes auf die
Signale die der Vibrator erzeugt, den Effekt des Kontaktes zwischen Vibrator und Boden
und die Möglichkeiten robustere Quellensignale zu entwerfen.

Ein Linearmotor (LSM) ist ein Elektromotor der große steuerbare Kräfte erzeugen
kann und daher als Antriebsmotor für einen seismischen Vibrator geeignet ist. Dieser
Motor besteht aus zwei unabhängigen Elementen, einer Magnetreihe und einer Spulen-
reihe, wodurch nahezu unbegrenzte Motorbewegungen möglich sind. Dies sorgt dafür,
dass der LSM sehr geeignet ist für die Erweiterung des Frequenzbereiches einer Quel-
le auf niedrige Frequenzen, bei denen große Bewegungen erforderlich sind. Wir haben
erfolgreich ein Multi-LSM Vibrator Prototyp von ca. 1200 kg entworfen und gebaut. In
dieser Arbeit beschreiben wir den Entwurf, die LSM-Steuerung und eine Methode um
die mechanische Resonanz des Vibrators zu unterdrücken. Die seismischen Daten die
wir in Feldversuchen erhalten haben, zeigen dass der LSM Vibrator eine gute seismische
Quelle ist. Der Vibrator kann ohne Probleme pseudorandom Sweeps erzeugen und trotz
seiner begrenzten Größe kann er relativ einfach Signale mit niedriger Frequenz, bis 2 Hz,
erzeugen.

In Feldexperimenten die wir in dieser Arbeit beschreiben, wird die Wirkung des Kon-
taktes zwischen Vibrator und Boden, sowie die Laufgeschwindigkeit und Leistung des
Sweeps auf das Verhalten des Vibrators und den Spektren die er erzeugt beschrieben.
Nach dem Bau des LSM Vibrators wurden mehrere Feldexperimente in der Nähe von
Schoonebeek durchgeführt. Diese Tests bestanden unter anderem darin verschiedene
Gummimatten zwischen den Vibrator und dem Boden zu legen, die gleichen Sweeps bei
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unterschiedlicher Leistung und mit unterschiedlicher Durchlaufgeschwindigkeit durch-
zuführen. Diese Experimente zeigten, dass der Kontakt und der Leistungspegel die Form
der spektralen Amplitude des Vibrators verändern, während die Laufgeschwindigkeit
nur das Niveau des Spektrums beeinflusst. Die Wirkung des Leistungspegels wurde in
einem anderen Experiment mit Hilfe eines hydraulisch angetriebenen Explorationsvi-
brators weiter untersucht. Dieser Vibrator kann Kräfte bis zu 266 kN erzeugen und er-
möglicht, dass ein breiteres Spektrum an Kräften untersucht werden kann. Aus diesem
zweiten Datensatz schließen wir, dass das Vibratorsignal auch bei Wiederholung unver-
ändert ist, solange der Vibrator nicht bewegt wird und das Kraftniveau gleich gehalten
wird. Die Wiederholbarkeit von kleineren Kraftniveaus wird schlechter wenn zwischen
den Durchläufen Sweeps mit größerer Kraft durchgeführt werden. Auch das Zusammen-
wirken der Bodenplatte mit dem Boden ist auf nicht-lineare Art und Weise vom Kraftni-
veau abhängig. Wenn diese Effekte nicht berücksichtigt werden, treten im seismischen
Datensatz Fehler in Ankunftszeit und Amplitude auf.

Der Einfluss des Kontaktes zwischen dem Vibrator und der Erde auf ihre Dynamik
wird detailliert untersucht. Obwohl es scheint, der Vibrator habe im Makromaßstab einen
guten Kontakt, ist dieser Kontakt im Mikromaßstab bei weitem nicht perfekt. In dieser
Arbeit wird gezeigt, dass durch die Verwendung von mechanischen Kontaktmodellen
und -konzepten dieser Mangel an Kontakten im Mikromaßstab oder vielmehr dessen
Veränderung während eines Sweeps, einen erheblichen Einfluss auf die Dynamik des
Vibrators-Erde-Systems haben kann. Die Modellierung von Kontakten die sich umfor-
men, sagt das dynamische Verhalten vorher, das stark mit dem Leistungspegel des Vi-
brators variiert. Die Hauptwirkung, die durch das Modell vorhergesagt wird, ist eine Ab-
nahme in der Resonanzfrequenz der Grundplatte mit zunehmendem Leistungspegel.
ähnliche änderungen im Resonanzverhalten wurden auch in den Feldexperimenten ge-
funden.

Linear-Sweeps sind Signale die am häufigsten verwendet werden um seismische Vi-
bratoren zu steuern. Ihre konstante Amplitude in der Zeit und ihre flachen Frequenz-
spektren haben sich als gewünschte Eigenschaften erwiesen. Diese Eigenschaften kön-
nen sich jedoch wesentlich verändern, wenn der Vibrator die Ansteuersignale in seismi-
sche Wellen umwandelt. In dieser Arbeit wird gezeigt, dass die Startphase eines Sweeps
verwendet werden kann, um die Niederfrequenzenergie eines Sweeps zu reduzieren oder
um gleichzeitig agierende Quellen von einander zu unterscheiden. Das nicht-lineare
Verhalten des Vibrators, des Bodens, und ihres Kontaktes zueinander führt zur Verzer-
rung des Sweepsignals und erzeugt Obertöne, die nach der Verarbeitung als Rauschen
und Scheinankünfte im seismischen Datensatz erscheinen. In dieser Arbeit zeigen wir,
dass ein nicht-lineares Sweep, bei dem die Laufgeschwindigkeit und die Amplitude sorg-
fältig entworfen wird, diese Verzerrungen antizipieren kann und dabei hilft dieses Rau-
schen aus dem seismischen Datensatz zu entfernen.

Diese Arbeit zeigt, dass das Vibroseis Verfahren kompliziert ist. Einige Komponen-
ten der Methode sind relativ statisch und können beeinflusst werden, wie zum Beispiel
die Gestaltung des Vibrators, und das Signal dass sie produziert. Andere Komponenten
sind dynamischer in Raum und Zeit, wie zum Beispiel die Bodeneigenschaften und der
Vibrator-Boden Kontakt. Um das Vibroseis Verfahren zu verbessern, müssen alle diese
Aspekte die untrennbar miteinander verflochten sind, zusammen betrachtet werden.



SAMENVATTING

De seismische methode is een belangrijke indirecte methode om de ondergrond van de
aarde te onderzoeken. Door te analyseren hoe de aarde de propagatie van mechani-
sche golven beïnvloedt, kan de structuur van de aarde en haar seismische eigenschap-
pen worden afgeleid. De seismische vibrator is een veel gebruikte bron in de actieve ex-
ploratie en monitoring om deze golven op te wekken en is het onderwerp van dit proef-
schrift. Het doel van een seismische vibrator is om seismische golven te produceren met
bekend signaal. Vaak gebruikte signalen voor dit doel zijn sweeps. Dit zijn sinusvor-
mige signalen waarbij de frequentie in de tijd varieert. Deze signalen zijn meestal vrij
lang ter compensatie voor het feit dat de instantane amplituden van de vibrator relatief
zwak zijn vergeleken met die van impuls bronnen en de te bereiken dieptes. Via de ver-
werkingsstap van correlatie, wordt het lange bronsignaal ingekort en virtuele opnamen
gegenereerd alsof de vibrator alle energie in één keer heeft vrijgegeven. De kwaliteit van
deze virtuele opnamen is afhankelijk van de mogelijkheid van de vibratormotor om het
gewenste krachtprofiel te creëren en de mogelijkheid van de vibratormechanica en de
vibrator-grond interactie om die kracht succesvol om te zetten naar een seismische golf.
In dit proefschrift onderzoeken we de haalbaarheid van het aansturen van een vibrator
met lineaire motoren, de invloed van het krachtniveau op de signalen die een vibrator
genereert, het effect van de vibrator-grond-koppeling, en de mogelijkheden om robuus-
tere bronsignalen te ontwerpen.

Een lineaire motor (LSM) is een elektromotor die grote beheersbare krachten kan
produceren en is daarom geschikt als aandrijfmotor voor een seismische vibrator. Deze
motor bestaat uit twee onafhankelijke elementen, een magneetspoor en een spoelspoor,
waardoor vrijwel onbeperkt motorverplaatsingen mogelijk zijn. Dit maakt de LSM zeer
geschikt voor het uitbreiden van de frequentieband van de bron naar lagere frequenties
waar grotere bewegingen nodig zijn. Wij hebben met succes een multi-LSM prototype
vibrator van ongeveer 1200 kg ontworpen en gebouwd. In dit proefschrift beschrijven
we het ontwerp, de LSM aansturing en hoe we de mechanische resonanties van deze
vibrator onderdrukken. De seismische data verkregen in veldproeven tonen aan dat de
LSM vibrator een goede seismische bron is. De vibrator heeft geen problemen met het
genereren van pseudorandom sweeps, en kan, zelfs gezien zijn beperkte omvang, vrij
gemakkelijk signalen in het laagfrequente regime, tot 2 Hz, produceren.

In een aantal, in dit proefschrift beschreven, veldexperimenten laten we de invloed
van de koppeling tussen de vibrator en ondergrond, de sweepsnelheid en van het kracht-
niveau op het gedrag van een vibrator en de spectra die deze genereert zien. Nadat de
LSM vibrator gebouwd is, zijn verschillende veldproeven in de buurt van Schoonebeek
uitgevoerd. Deze tests bestonden onder meer uit, het plaatsen van verschillende mat-
ten tussen de vibrator en de grond, het uitvoeren van dezelfde sweep op verschillende
krachtniveaus en het uitvoeren van sweeps met verschillende sweepsnelheden. Deze ex-
perimenten toonden aan dat de koppeling en het krachtniveau de vorm van de spectrale
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amplitude van de vibrator veranderen, terwijl de sweepsnelheid het spectrum enkel uni-
form beïnvloedt. Het effect van het krachtniveau is verder onderzocht in een ander ex-
periment met behulp van een hydraulisch aangedreven exploratie vibrator die krachten
kan genereren tot 266 kN. Hierdoor kon een breder spectrum aan krachten bestudeerd
worden. Uit deze tweede dataset concluderen wij dat: het vibratorsignaal herhaalbaar is
zolang de vibrator niet verplaatst en het krachtniveau gelijk gehouden wordt; de herhaal-
baarheid van kleinere krachtniveaus verminderd wordt wanneer er tussendoor sweeps
met groter krachtniveaus worden uitgevoerd en dat de interactie van de grondplaat en de
grond op niet-lineaire wijze afhankelijk is van het krachtniveau. Indien er geen rekening
gehouden wordt met deze effecten kunnen aankomsttijd- en amplitudefouten optreden
in de seismische opname. Verder is de invloed van het contact tussen een vibrator en
de aarde op hun dynamica nader onderzocht. Hoewel een vibrator op een macroschaal
in goed contact met de aarde lijkt te zijn, is het contact op microschaal verre van per-
fect. In dit proefschrift wordt met behulp van contact mechanische modellen en con-
cepten aangetoond dat dit gebrek aan contact op microschaal, of liever de verandering
ervan gedurende een sweep, een significante invloed kan hebben op de dynamiek van
het vibrator-aarde systeem. Modellering van zulke wisselende contacten, voorspelt dat
het dynamisch gedrag sterk varieert met het krachtniveau van de vibrator. Het belang-
rijkste effect dat door het model voorspeld wordt, is een afname van de resonantiefre-
quentie van de grondplaat bij toenemende krachtniveaus. Soortgelijke veranderingen in
resonantie gedrag werden ook gevonden in de veldproeven.

Lineaire sweeps zijn de meest gebruikte signalen om seismische vibratoren aan te
sturen. Hun constante amplitude in tijd en hun vlakke frequentiespectra zijn gewenste
eigenschappen. Echter kunnen deze eigenschappen aanzienlijk veranderen op het mo-
ment dat de vibrator de aansturingssignalen omzet naar seismische golven. In dit proef-
schrift wordt aangetoond dat de startfase van een sweep gebruikt kan worden om de
laagfrequente energie van een sweep te verminderen of om te helpen bij het scheiden
van simultaan opererende bronnen. Het niet-lineaire gedrag van de vibrator, de grond
en hun contact leidt tot de vervorming van het sweepsignaal en genereert boventonen,
die na verwerking verschijnen als ruis en schijnaankomsten in de seismische opname.
In dit proefschrift laten we zien dat een niet-lineaire sweep, waarvan zowel de sweep
snelheid als de amplitude zorgvuldig ontworpen is, gebruikt kan worden om te antici-
peren op deze vervormingen en kan helpen om deze ruis efficiënt te verwijderen uit de
seismische opname.

Dit proefschrift laat zien dat de vibroseis methode ingewikkeld is. Sommige onder-
delen van deze methode zijn min of meer statisch en kunnen worden beïnvloed, zoals
het ontwerp van de vibrator en het signaal dat ze moet produceren. Andere onderdelen
zijn dynamischer in ruimte en tijd, zoals de grondeigenschappen en het vibrator-grond
contact. Om de vibroseis methode te verbeteren, moeten deze aspecten die onlosmake-
lijk met elkaar zijn verweven gemeenschappelijk beschouwd worden.
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INTRODUCTION

1.1. BACKGROUND
There are many reasons to investigate the subsurface. The quest for resources, like oil,
gas, metals, minerals, water, heat, etcetera, led to the development of many different
techniques to study the earth below our feet. Besides the direct techniques like digging
and drilling, there are indirect methods available to gain insight. Geophysical methods
characterize the subsurface by assessing the physical properties of the earth and the spa-
tial and temporal changes thereof.

One class of these indirect investigation techniques is the seismic method. Seismic
methods rely on the propagation of mechanical waves through the earth. By analyzing
how the earth affects the propagation of the wave, properties of the composition of the
earth can be inferred. Many different seismic techniques are possible, and they are typi-
cally named by the “wave type” they use, like surface and body waves or by the propaga-
tion “effect” they use to analyze, like wave dispersion, reflection, refraction and scatter-
ing. Irrespective of the wave type and effect used, the seismic method can be passive or
active. In passive seismic methods the “source” of the waves is not specifically controlled
and the seismic signal might be generated by wind, ocean motion, traffic, earth quakes,
etcetera. In active seismic methods a dedicated source is used to produce the seismic
signal. The seismic vibrator is one type of active source and is the subject of this the-
sis. To put things in perspective, this introduction chapter presents an overview of the
signals generated by vibrators, how the vibrator operates and the difficulties involved.
With this in mind the motivation for the work carried out and described in subsequent
chapters is given.

1.2. BEING LOUD OR BEING SMART
In the simplest model of the seismic experiment the output (recorded signal at the geo-
phone) is a linear reaction to the input (source signal). In an ideal, noise and distortion-
free case the signal received at a geophone, y(t ), is the convolution of the source signal

1
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s(t ) with the impulse response of the earth h(t ),

y(t ) = s(t )∗h(t ). (1.1)

In this system h(t ) contains all information obtainable for a certain source-receiver pair.
If s(t ) would be a Dirac delta distribution δ(t ), the recorded signal would, by definition,
be equal to the earth’s impulse response,

y(t ) = δ(t )∗h(t ) =
∫ ∞

−∞
δ(t −τ)h(τ)dτ= h(t ). (1.2)

Seismic sources can be divided in two groups, based on the method they use to approx-
imate the delta distribution.

Impulsive sources, like explosives, weight drops, hammer blow and air guns, use a
direct approach, approximating a band-limited Dirac delta distribution by producing
a signal that is as short and as strong as possible. The difficulty with this approach is
that a perfect delta pulse can not physically be generated and typically the duration and
strength of the pulse are not independent. Furthermore, the stronger the pulse, the more
likely the linear assumption is to fail. Also the repeatability of an impulsive source can
be very low.

The other group of sources, like seismic vibrators, try to circumvent these problems
by focusing on the frequency-domain characteristics of the delta distribution. Realizing
that the delta distribution has an infinitely wide, flat power spectrum, vibrator signals
are designed to send out frequencies over the widest range possible. However, instead
of releasing all energy at once, the energy is distributed over time, reducing the need for
large instantaneous amplitudes like the delta distribution. In the processing of vibratory
data the distribution is collapsed to construct a virtual record as if the source would have
released all its energy at once.

The compression of the source wavelet is normally done by correlation or decon-
volution. Instead of applying these operations directly in the time domain, the data is
typically transformed to the frequency domain, where these operations become simple
multiplications. The frequency-domain equivalent of equation 1.1 is,

Y (ω) = S(ω)H(ω), (1.3)

where S(ω) is the source spectrum and H(ω) is transfer function of the earth. By multi-
plying equation 1.3 with the conjugate of the source signal, S(ω), the phase of the source
signal is removed and the spectrum of the correlated signal,

C (ω) = Y (ω)S(ω) = |S(ω)|2H(ω), (1.4)

is found to be equal to the transfer of the earth scaled by the power spectrum of the
source, |S(ω)|2. As expected, the more frequencies present in the power spectrum of
the source that carry significant amplitude, the more frequencies of the earth’s transfer
function H are captured in C . The impact of the power spectrum imprint in C can be
reduced in two ways. Firstly by making sure that the source produces a flat spectrum,
which makes |S(ω)|2 effectively a constant and secondly by deconvolving the data for
the source signal, i.e. dividing C by |S(ω)|2 in a stabilized way.
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Another informative way to describe the process of distributing a band-limited signal
over time at acquisition and enable its compression during processing, is by considering
statistical moments of a signal. It can be shown, see the book of Cohen Cohen (1995),
that the moments of the energy signal in the time domain can be determined in the
frequency domain,

< t n >≡
∫ ∞

−∞
t n | f (t )|2dt

= 1

2π

∫ ∞

−∞
F (ω)

d n

j ndωn F (ω)dω,
(1.5)

where f (t ) is the time signal and F (ω) is its equivalent in the frequency domain.
The zeroth moment, n = 0, represents the energy of the signal and equation 1.5 be-

comes Parseval’s relation. The first moment is a measure of the location of the center of
the signal and the second moment is a measure of the spread of the signal. If the signal
considered is centered around zero, having a zero first moment, the variance, a measure
of duration in the time domain, is given by,

σ2 = < t 2 >
< t 0 > =

∫ ∞
−∞

([
dR(ω)

dω

]2 +
[

R(ω) dψ(ω)
dω

]2
dω

)
∫ ∞
−∞

[
R(ω)

]2dω
(1.6)

where we make use of the fact that the frequency spectra of the signal can be written in
terms of its amplitude and phase components, F (ω) = R(ω)e jψ(ω), where R(ω) and ψ(ω)
are real functions.

To maximize resolution, the ability to distinguish different arrivals, σ should be min-

imized. The optimal value equals 0 for a delta distribution, because in that case dψ(ω)
dω

and dR(ω)
dω are zero, while R = 1. For a band-limited impulse, as many frequencies as

possible should be present, maximizing the denominator but at the same time having
small values of dR(ω)

dω over the domain. Optimally R would be constant except for two
smooth edges at the lower and higher end of its spectrum. The signal in the field has a
phase such that its energy is distributed well over time (larger σ), but in processing the

phase should be removed to make dψ(ω)
dω zero and reduce σ to its minimal value given

the source amplitude spectra R(ω).

1.2.1. SWEEP SIGNALS
One signal that is very well suited to probe a transfer function, and is commonly used to
drive seismic vibrators, is the linear sweep. The linear sweep has a relatively flat ampli-
tude spectrum as well as an excellent time distribution. The linear sweep signal can be
calculated through

s(t ) = A(t )sin(φ0 +2π f0t +παt 2), (1.7)

where A(t ) is an amplitude term, φ0 is a phase offset in radians, f0 is the starting fre-
quency in Hz and α is the sweep rate in Hz/s. The amplitude term typically is constant
for most of the sweep except at the start and end of the sweep where a taper is applied.
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For α > 0 the frequency increases over time and the sweep is called an upsweep. For
α< 0 the frequency decreases over time and we have a downsweep. For α= 0, the signal
is just a monotonic sinusoidal with a frequency f0.

An example of a sweep and some of its properties are shown in Figure 1.1. The used
upsweep has a duration of 15 s, starts at f0 = 10 Hz and increases with α = 6 Hz/s such
that the end frequency is 100 Hz. At the start and end of the sweep a 200 ms cosine
taper has been applied, clearly visible in Figure 1.1a. The amplitude spectrum of the
sweep (Figure 1.1b) is relatively flat at the interior, but oscillates and overshoots around
the starting frequency of 10 Hz and final frequency of 100 Hz. Also energy leaks to fre-
quencies outside the 10-to-100 Hz range. The trade-off between leakage and overshoot
is controlled by the type and length of taper used. Because the amplitude spectrum only
approximates that of a Dirac delta, the autocorrelation of the sweep contains side lobes
(Figure 1.1c).
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Figure 1.1: Example of a 15 s linear 10-to-100 Hz sweep with 200 ms cosine tapers (a) Segments of the time
amplitude of the sweep, (b) amplitude spectrum and (c) the autocorrelation result of the sweep.
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1.3. PRACTICAL DIFFICULTIES
Knowing what the seismic signal should look like, the next question is how to gener-
ate it. Mechanical seismic vibrators can be used for this purpose and consist of three
main components: A driving engine, a contact body and a mass the engine can react
against. For a surface vibrator the contact with the ground is made by a so-called base
plate and the engine is placed between the base plate and the reaction mass. Depend-
ing on the maximal driving force and masses involved, an extra mass resting on the base
plate, called a hold-down mass, might be added to prevent the plate from decoupling
from the ground. A model of the main components of a vibrator is shown in Figure 1.2.

Figure 1.2: Model of main components of a seismic-exploration vibrator. The driving engine is placed between
the reaction mass and base plate (driving force). Parallel to this there might be a support structure to hold
the reaction mass (RM support). To prevent the base plate (BP) from decoupling from the earth a hold-down
system might be present (HD support). The translation of the forces between the elements of the vibrator to a
seismic wave occurs at the contact between the base plate and the earth (BP-earth interaction). From (From
Noorlandt and Drijkoningen, 2016).

The masses and supporting elements of the vibrator are fixed by design and their
behavior would be only marginally adjustable in the field. The plate-ground interaction
changes with every ground type, condition and contact geometry. The only controllable
element is the driving force, but that is also typically affected by a number of constraints.
An overview of constraints applicable to hydraulic drive vibrators was given by Sallas
(2010), while van der Veen et al. (1999) describes some of the constraints belonging to
electric-driven vibrators.

One constraint all mechanical vibrators have in common, is their finite stroke, the
maximum amount the reaction mass can move. Because the stroke needed for a certain
force increases with decreasing frequency, the available stroke becomes a limiting factor
in producing low frequencies. Below a certain frequency the vibrator simply is unable to
produce a significant force. The supporting structures typically contain (air) springs and
therefore resonate at certain frequencies. The ground itself acts as a low-pass filter, but
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also introduces resonances and determines if and how the movement at the vibrator-
ground contact gets transformed into a propagating wave.

Needless to say, because of all these constraints and interactions, it is rather difficult
to generate a predefined seismic wavelet accurately under all conditions. The far-field
seismic wavelet will always be a distorted copy of the designed sweep. The challenge
is to make a vibrator that produces signals with a minimum amount of distortion and
to estimate the true source signal, including all distortions, as accurately as possible so
that the resolution can be optimized during the processing of the records. Part of the
vibrator’s behavior might be predictable and can be compensated with the help of feed-
forward and feed-back loops. Although this works relatively well for linear interactions,
the nonlinear interactions are much harder to predict and thus to control. The unknown
and varying ground-plate interaction complicates matters further. In practice the source
wavelet estimate E(ω) will be different from the true source wavelet S(ω) and the corre-
lation equation 1.4 will be replaced with

C (ω) = Y (ω)E(ω) = S(ω)E(ω)H(ω) (1.8)

and the deconvolution will commonly be replaced by

D(ω) = S(ω)E(ω)

E(ω)E(ω)+ε
H(ω), (1.9)

where ε is a real-valued stabilization constant typically set to a small fraction of the max-
imum value of |E(ω)|2. The stabilization constant has to be chosen with care to prevent
boosting the noise in the data.

1.3.1. HARMONICS
Nonlinearities of the vibrator, the ground and/or their contact cause the extra generation
of other frequencies than the intended fundamental frequency. Typically, these harmon-
ics are observed as positive integer multiples of the fundamental frequency (the higher
harmonics), but different ratios, like subharmonics, can be observed in some cases as
well Stiller et al. (2012). The effect of higher harmonics on vibrator data was described in
detail by Seriff and Kim (1970). The main problem with harmonics is that they make the
seismic wavelet self-similar.

This self-similarity reduces the ability to compress the wavelet in processing and pro-
duces ghost event/arrivals. To illustrate this, Figure 1.3 shows three compression situa-
tions of a linear upsweep with and without harmonics. In the top-most example I the
autocorrelation of the sweep is plotted. In that case the compression is perfect and pro-
duces a central peak (Figure 1.3a I) without signal being present at larger correlation lags
(Figure 1.3b I). When the sweep is contaminated with harmonics, example II, the cross
correlation of the sweep-without-harmonics with the sweep-with-harmonics results in
the same central peak (Figure 1.3a II), but also noise is introduced at earlier times (Fig-
ure 1.3b II). If the source signal is measured accurately enough the correlation approach
can be replaced with a deconvolution approach to compress the wavelet. Example III
presents the “autodeconvolution” of a sweep-with-harmonics. Two observations can be
made. First, the presence of frequencies beyond the original spectrum of the sweep itself
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help to reduce the width of the central peak (Figure 1.3a III). Second, the self-similarity
of the signal causes harmonic noise to occur at negative as well as positive correlation
times (Figure 1.3b III), albeit at lower amplitudes when compared with the cross corre-
lation result (example II).
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Figure 1.3: Effect of harmonics on a linear 15-s 10-to-160 Hz sweep. Different correlation and deconvolution
examples at small (a) and large (b) time lags. In plot b the main peak has been muted (|t | < 0.4 s). See text for
an explanation of the examples.

1.4. MOTIVATION AND OUTLINE OF THIS THESIS
Although the vibroseis method has successfully been applied for decades, it can still be
improved. As elucidated in this chapter the vibrator source should act linearly and be
able to produce waves with a known wavelet containing a wide range of frequencies.

In this thesis the possible use of a linear synchronous motor (LSM) to drive a vibrator
is studied. This type of electric motor has several advantages over the commonplace
hydraulic design. Most importantly the design of an LSM does not put any fundamental
restrains on the vibrator’s stroke, but may also behave more linear compared with other
motors. Using an LSM to drive a vibrator might therefore increase the frequency range
as well as reduce the distortion produced by the vibrator. Chapter 2 describes the design
and functioning of the LSM prototype vibrator we built.

Some first experiments carried out with this new vibrator are described in Chapter
3. During these experiments it was observed that the coupling of the vibrator with the
ground has a large impact on the behavior of the vibrator. Another observation was the
nonlinear change of the spectra of the acceleration of the base-plate with changing drive
level settings. This nonlinearity with drive level was studied in more detail using a hy-
draulic vibrator.

The interaction between the vibrator and the ground is one of the causes for the non-
linearity observed in the field. Chapter 4 focuses on the geometry of the contact and
shows that even if the base plate and the ground consist of linear-elastic materials, the
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geometry of the contact can react in a nonlinear way. This is seen as one reason why the
behavior of the vibrator changes with drive level.

Although linear sweeps are commonly used to drive vibrators, they are not the only
possible choice. Optimizing vibrator sweeps is the subject of Chapter 5. In that chap-
ter the properties of the sweep signal are described and several means to optimize for
certain situations are discussed.

In the last chapter of this thesis, Chapter 6, the topics covered in the other chapters
are discussed and an outlook is given.
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2
A SEISMIC VERTICAL VIBRATOR

DRIVEN BY

LINEAR SYNCHRONOUS MOTORS

Rik Noorlandt, Guy Drijkoningen,
Johan Dams and Rob Jenneskens

A linear synchronous motor (LSM) is an electric motor that can produce large control-
lable forces and is therefore suitable as a driving engine for a seismic vibrator. This motor
consists of two independent elements, a magnet track and a coil track, allowing practi-
cally unlimited motor displacements. This makes the LSM very suitable for expanding
the source frequency band to the lower frequencies in which larger strokes are needed. In
contrast to hydraulic engines, the LSM performs equally well over the whole frequency
range, making possible a smaller amount of signal distortion, especially at the low fre-
quencies. To find the feasibility of an LSM-driven vibrator, we successfully designed and
built a multi-LSM prototype vibrator of some 1200 kg. We addressed the synchronization
between the individual motor tracks and the different motors. To lower the energy con-
sumption, a spring mechanism was implemented that delivered the force needed to lift
the vibrator mass to its neutral position. The resonance belonging to this spring mech-
anism was successfully suppressed with the help of a position feedback control that also
suppressed the temperature effects. The seismic data acquired in the field tests proved that

This chapter has been published as a journal paper in Geophysics, 80(2), EN57–EN67 (Noorlandt et al., 2015)
and has received the award for Best Paper in Geophysics 2015. Note that minor changes have been introduced
to make the text consistent with the other chapters of this thesis.
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the prototype LSM vibrator acted very well as a seismic source. It has no trouble generat-
ing pseudorandom sweeps, and even given its limited size, it generated signals within the
low-frequency regime, down to 2 Hz, rather easily.

2.1. INTRODUCTION
The goal of a seismic vibrator is to exert a controlled time-varying force on the ground.
In a basic vibrator, this force is provided by a driving engine that moves some (reaction)
mass with respect to a base plate, which is in contact with the ground. To prevent the
base plate from decoupling from the ground, a hold-down system might be present to
add a static force on the base plate. A more detailed description of seismic vibrators can
be found in Baeten and Ziolkowski (1990) and Meunier (2011). Seismic exploration vi-
brators are typically driven by a hydraulic engine. Although these engines can produce
very large forces, the hydraulics put unwanted limitations on the vibrator. The intrin-
sic nonlinearity of the hydraulic system is one of the causes of the harmonics typically
observed with vibrators (Sallas, 2010). Depending on the design, the hydraulic flow rate
might (Sallas, 2010) or might not (Wei and Phillips, 2013) limit the output power of the
vibrator at low frequencies. At the high end of the spectrum, the output is limited as
well, due to the compressibility of the hydraulic fluid (Sallas, 2010). Furthermore, the
stroke, the maximal movement of the reaction mass possible, needed for the generation
of low frequencies, and the volume and pressure within the hydraulic engine are directly
related. Therefore, designing a vibrator with a larger stroke for more output at the low
frequencies is not a trivial task.

Another possibility to drive a vibrator, which does not have the intrinsic limitations
of a hydraulic system, is using a linear synchronous motor (LSM). An LSM is an electric
motor able to generate linear forces and can be found in numerous applications. They
are used in factories to move objects in a fast and precise way, but they can also be found
in the propulsion system of some magnetic-levitation trains and roller coasters (Veltman
et al., 2002). Use of a linear synchronous motor to drive a seismic vibrator is proposed by
Unger (2002) and Drijkoningen et al. (2006). The work of Drijkoningen et al. (2006) led
to the development of the prototype LSM vibrator, which is presented in this chapter.
The main goal of this LSM vibrator is to show its feasibility as a seismic source. To keep
the vibrator practical for research applications, it was kept relatively small, with a weight
of about 1 ton and a driving force of about 7 kN. Still, it can well be used for shallow (<
1 km) seismic exploration and is able to generate low frequencies down to 2 Hz at full
force. Noorlandt et al. (2012) present some of the very first results obtained with this
new vibrator.

In this chapter, we describe the design of the prototype LSM vibrator and the issues
associated with building it. The operation of a single LSM and the synchronization of
the six LSMs in the prototype vibrator is explained in some detail. The supporting struc-
ture of the prototype vibrator generates a few resonances, and we clarify their origin
and a method to suppress them. Having explained the basic operation of the prototype
LSM vibrator, some field data are presented. These data give insight to the harmonic
behavior of the vibrator, the type of signals it can produce, and its ability to send out
low-frequency signals. In the “discussion” section, we describe the lessons learned and
steps to be taken to build an LSM production vibrator.
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2.2. DESIGN AND PRINCIPLE OF A LINEAR-MOTOR VIBRATOR
To show the feasibility of an LSM vibrator, a compact design was chosen that does not
include a hold-down mass. In this way, the design is simpler and the number of possible
elements that distort the signal is reduced. The disadvantage is that the vibrator force is
limited to the weight of the reaction mass. Figure 2.1 shows a drawing of the vibrator and
its components. Table 2.1 shows the basic properties of the vibrator. In addition to the
base plate, reaction mass, and LSMs, it also contains an air spring and a few leaf springs.
The air spring supports the reaction mass, thereby greatly reducing the total driving force
needed. The leaf springs guide the reaction mass in the vertical direction, constraining
the movement of the reaction mass to 1 degree of freedom. The leaf springs provide a
cost-effective way to guide the mass without adding any friction. Figure 2.2 shows the
prototype vibrator deployed in the field.

Reaction mass

Base-plate / Stamp

Permanent magnet

Electromagnet / Coils

Air spring

Leaf springs

Figure 2.1: A 2D sketch showing the different components of the prototype LSM vibrator.

2.2.1. MECHANICAL MODELING
One of the most important design specifications of the vibrator is its frequency response.
The amplitude response should be flat within a certain bandwidth, 2 to 200 Hz for our
vibrator. To accomplish this, the dynamic behavior of the vibrator was predicted using
finite-element modal analyses. The outcome of the finite-element simulation is used to
create a continuous-time state-space model as described by Gawronski (2004), and this
model is then used to analyze the frequency response for the (combination of) sensors
and actuators. This procedure led to a few changes in the original design, removing some
resonances within the frequency band of interest and making other resonances still in
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Figure 2.2: Prototype vibrator, based on LSMs, deployed in the field.

Reaction mass 1027 kg
Base plate mass 230 kg
Base plate area 0.5 m2

Number of LSMs 6
Maximal driving force 6.7 kN

Active stroke ± 42 mm
Lowest frequency at 100% drive level 2 Hz

Table 2.1: Basic properties of the prototype LSM vibrator
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that band easier to control. As an example, Figure 2.3 shows the 25-Hz rocking mode
of the reaction mass that was clearly visible in one of the early designs. With the help
of three, instead of one, vertical accelerometers on the reaction mass, this mode can be
measured. This measurement is then used to balance the forces of the actuators, such
that this mode is not excited, as will be shown later on.
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Figure 2.3: Finite-element prediction of the relative displacement of the vibrator at its 25 Hz mode. Displace-
ments are shown at their largest values, and the colors indicate the value of the mass normalized eigenvector
(Gawronski, 2004).

Another very important aspect of a vibrator is its stroke, the amount of distance the
reaction mass can move up and down. Given the weight of the reaction mass and the
maximum force that the driving engine can produce, the stroke fixes the lowest fre-
quency that the vibrator can produce at full force. If the reaction mass would only ex-
perience a driving force equal to F = M A sin(ωt ), where M is the amount of mass, its
displacement would follow U =− A

ω2 sin(ωt ). In such a case, the displacement is related
to the driving force by

U =− F

ω2M
. (2.1)

So, for a fixed driving force and reaction mass, the displacement increases with decreas-
ing frequency. To increase the maximum driving force at a fixed frequency, one has to
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increase the stroke, reaction mass, or both. For our prototype vibrator with its stroke,
reaction mass, and maximum driving force, as given in Table 2.1, the lowest frequency at
full force is approximately 2 Hz, equal to the design specification.

2.2.2. PRINCIPLE OF A LINEAR SYNCHRONOUS MOTOR
An LSM is an electric motor that can be seen as an unrolled permanent magnet syn-
chronous motor. The LSM used in the prototype vibrator consists of a U-shaped permanent-
magnet track and a coil track sliding in between, as shown in Figure 2.4. The intercoil and
intermagnet distances are chosen such that the same force can be made for any position
of the tracks by controlling the current distribution over the different coils. The need for
the synchronization of the track positions and the current, together with the fact that
the resulting force acts along a line, i.e., is linear, gives these types of motors their name.
With this geometry, the motor can drive over any distance needed. Therefore, an LSM-
driven vibrator will be able to equally generate low frequencies with a large stroke as high
frequencies with a relative small stroke. This is in contrast to hydraulic engines in which
fluid flow and dynamics limit and distort the output at low and high frequencies (Sallas,
2010), or single-coil-magnet designs in which the linearity is lost for larger amplitudes
(van der Veen et al., 1999).

Figure 2.4: Sketch of the geometry inside the LSM motor. The two sides of the permanent magnets are colored
in white and red, and the coils are black.

For a Lorentz-type motor, the force produced can be determined with the help of the
Lorentz force law,

−→
F =

∫ −→
I ×−→

B dl , (2.2)

where
−→
F is the force produced by the interaction of the current,

−→
I , flowing through the

coil,
∫

dl , inside the magnetic field,
−→
B . In an ideal Lorentz motor, the magnetic field

from the permanent magnets is perpendicular to the coil plane as seen in Figure 2.4. In
equation 2.2, it is clear that the resulting force will, therefore, be in the plane of the coil.
The distances between the straight parts of the coil 2RC in Figure 2.4 and between the
magnets Rm in Figure 2.4 are chosen to be the same. With such geometry, the force on
both straight parts of the coil will be in the same direction. The alternating pattern of
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the permanent magnets causes the magnetic field strength to vary sinusoidally in the
driving direction. It is relatively easy to show that with this setup, the total force on a
single coil acts only in the driving direction x̂ equal to

−→
F (I , x) =G I cos

( πx

Rm

)
sin

(
π

Rc

Rm

)
x̂, (2.3)

where x is the position of the center of the coil, I is the current flowing through the coil,
G is a constant that depends on the magnetic field strength and the shape of the coil,
and Rm and 2Rc are the distances between the magnets and straight part of the coil, as
shown in Figure 2.4. Because Rm = 2Rc , the sine term in equation 2.3 is equal to one.

To deal with the dependency on the coil position, multiple coils are used that are
shifted by multiples of 2

3 Rm , as shown in Figure 2.4. Together, these coils form three
groups for which the total force is

−→
F (i1, i2, i3, x) = nG

[
i1 cos

( πx

Rm

)
+ i2 cos

( πx

Rm
+ 2π

3

)
+ i3 cos

( πx

Rm
+ 4π

3

)]
x̂, (2.4)

where n is the number of coils per group and i1, i2, and i3 are the currents applied to
the different coil groups. To obtain a constant force, the currents applied to these groups
need to be commuted with the same phase:

i1 = I cos
( πx

Rm

)
,

i2 = I cos
( πx

Rm
+ 2π

3

)
, (2.5)

i3 = I cos
( πx

Rm
+ 4π

3

)
,

where I is the magnitude of the current. Substituting the currents given by equation 2.5
in equation 2.4 gives

−→
F (I ) = 3

2
nG I x̂

= K I x̂ (2.6)

where K is the so-called motor constant. The total force produced by the motor is thus
linearly related to the applied current I . To make the force change over time, like a sweep,
one simply divides the desired force-time signal by the motor constant and uses the out-
put as the current input of the motor I (t ) = F (t )

K .
Of course, there is a limit to the force that a single LSM can produce. Heat generation,

proportional to coil resistance times the square of the current, was ignored in the above
derivation. The generation of heat and the transport thereof sets the maximum current
that the motor can endure before damage occurs and, therefore, sets the maximum force
possible. During the design phase of our vibrator, the LSMs were carefully selected, bal-
ancing the maximum force, maximum stroke, efficiency, linearity, heat dissipation, and
amplifier specifications. With the current motors and cooling design, the vibrator can be
used continuously.
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2.2.3. COIL-MAGNET TRACK SYNCHRONIZATION

For the LSM to work efficiently, the currents as expressed in equation 2.5 need to be in-
phase with the cosine terms in equation 2.4. Therefore, the displacement of the coils
with respect to the magnetic field x needs to be known, but the only displacement mea-
surement available is between the reaction mass and base plate u. This measured dis-
placement has an unknown offset ∆ relative to x that needs to be determined to be able
to generate the currents of equation 2.5.

To find ∆, two currents, or forces if one multiplies with the motor constant K , are
applied to the motor coils at the same time. The first set of currents applied to the coils
is equal to the currents in equation 2.5, except that they are commuted with respect to
the known u instead of the unknown x. The second set of currents applied to the coils are
used to distort the motor behavior. They have a similar shape but a different amplitude
and an extra phase offset α:

i1 = I A cos
( π

Rm
u

)
+ IB cos

( π

Rm
u +α

)
,

i2 = I A cos
( π

Rm
u + 2π

3

)
+ IB cos

( π

Rm
u + 2π

3
+α

)
, (2.7)

i3 = I A cos
( π

Rm
u + 4π

3

)
+ IB cos

( π

Rm
u + 4π

3
+α

)
,

Substituting the currents given by equation 2.7 in equation 2.4 and making use of the
fact that u = x +∆ gives

−→
F (I A , IB ,α) = K I A cos

(π∆
Rm

)
x̂ +K IB cos

(π∆
Rm

+α
)
x̂. (2.8)

The first term is the force of equation 2.6, but the motor efficiency to convert electric cur-
rent to force is reduced depending on the value of ∆. Although the conversion efficiency
of I A is fixed, the efficiency of converting the distortion current IB to force can be con-
trolled with the phase offsetα. This can be used in a few ways to find∆. For our vibrator,
we keep IB constant and vary α while a position controller is used to keep the reaction
mass at the same position by changing I A . Assuming that the motor force is constant at
that fixed position, a change of α is completely compensated for by the controller cur-
rent I A . Therefore, by fitting multiple realizations of I A for differentα, as shown in Figure
2.5, it is possible to determine the unknown π∆

Rm
up to a multiple of 2π. With this, we can

calculate x and apply the currents given in equation 2.5, maximizing the output of the
LSM.

2.2.4. MULTIPLE MOTOR SYNCHRONIZATION

Depending on the desired driving force, multiple LSMs need to work in parallel. The
motors cannot all be placed at the center of the vibrator and will, therefore, produce a
moment with respect to the center of gravity. In our prototype vibrator, the motors are
placed symmetrically, so that if they produce an equal force, all the moments cancel and
only a net vertical force is left over. The motors and amplifiers are, however, not equally
strong by default.
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Figure 2.5: Position control force K I A versus distortion angle α. The dots are measured data, and the line is
the fit through these dots.

To find the correct gain for each amplifier-motor pair, use is made of three accelerom-
eters located at the three edges of the reaction mass together with the rocking mode at
25 Hz as predicted by finite-element analysis (Figure 2.3). The rocking mode is clearly
visible on the reaction-mass accelerometers, as shown in Figure 2.6, when the forces
produced by the different LSMs are not balanced.

A grid search was performed varying the three motor gains between 90% and 100% to
find gain values for which minimal rocking occurs and the forces from the linear motors
are thus balanced. The results of the grid search are presented in Figure 2.7. It is clear
that the minimum amount of rocking occurs if the gains of amplifier-motor pair 2 and 3
are reduced (Figure 2.7a). This means that for equal input, the force produced by the first
amplifier-motor combination is less than that of the other two amplifier-motor combi-
nations. Balancing the motor forces reduces the maximum average difference between
the accelerometers’ amplitude spectra by a factor of five and the different accelerometer
signals are much more alike, as shown in Figure 2.8.

2.2.5. AIR SPRING SUPPORT

To avoid lifting the reaction mass to its neutral position with the LSMs and waste energy,
a choice has been made to use an air spring between the reaction mass and base plate.
The use of an air spring to bias the reaction mass to the center of its displacement range
is also commonly found in hydraulic vibrators. If a hold-down mass is present, it is typ-
ically isolated from the base plate with an air spring as well. In both cases, the purpose
of the air spring is to transfer the force at DC, without affecting the frequencies in the
seismic band.

The force produced by the air spring can be predicted from the ideal gas law. The air
spring can be approximated by a closed cylinder with a volume V , for which the ideal
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Figure 2.6: Example of the (a) amplitude and (b) phase response measured by the three reaction-mass ac-
celerometers, when the three motor forces are unbalanced.
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a b c

Figure 2.7: Influence of the amplifier-motor gain distribution on the difference among the reaction-mass ac-
celerometers’ responses. Colors indicate the sum of the absolute difference between amplitude spectra of each
pair of reaction-mass-accelerometer signals between 20 and 30 Hz. Each panel shows the result of scanning
two gains, and the third one was kept at 100%.

gas law states that
pV

T
= k, (2.9)

where p is the pressure, T is the absolute temperature inside the cylinder, and k is a
constant determined by the gas properties. The force the air spring exerts on the reaction
mass is then given by

F = k
T

h
, (2.10)

where h is the height of the cylinder. Equation 2.10 is only valid as long as the cylinder
can be compressed without changing its diameter or contact area with the reaction mass.
A Taylor expansion around the neutral cylinder height h0 gives

F = kT

h0
− kT

h2
0

(h −h0)+ kT

h3
0

(h −h0)2 +O ((h −h0)3) |h −h0| < 1, (2.11)

where use was made of the fact that the reaction-mass displacement is related to the
cylinder height, through (h −h0). From equations 2.10 and 2.11, it is clear that the air
spring behaves nonlinearly as a function of h and is temperature dependent.

The air spring for the prototype vibrator was selected such that the first Taylor term
compensates for the gravity force, the resonance frequency of the spring is below 2 Hz,
it has low damping, and it meets certain safety regulations. Although the resonance it-
self is outside the designed bandwidth, at approximately 1.5 Hz, it still has a significant
influence to the response up to some 6 Hz, as can been seen in Figure 2.8.

2.2.6. SUPPRESSING SUPPORT SPRING RESONANCE AND TEMPERATURE EF-
FECTS

Because the spring resonance frequency is low, the driving force at this frequency must
be limited to prevent exceeding the available stroke. To suppress the resonance behavior,
two different control methods were implemented.
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Figure 2.8: (a) Amplitude and (b) phase response measured by the three reaction-mass accelerometers, when
the three motor forces are balanced. Note that, comparing these results with that of Figure 2.6, the air spring
resonance at approximately 1.5 Hz is not affected by motor balancing, whereas the rocking mode at approxi-
mately 25 Hz is.
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First, a feed-forward control was tried, changing the driving force in advance to an-
ticipate the spring response. Although this method is theoretically more stable than the
feedback method described below, it was not successful in suppressing the resonance.
This mainly had to do with the hysteresis of the air spring, most probably caused by the
deformation of the rubber air container, making a prediction of the exact spring force
very difficult.

Therefore, use is made of a position feedback control. The position controller changes
the driving force in real time such that the reaction-mass displacement follows the pre-
scribed position curve as closely as possible. The position curve is calculated beforehand
based on the pilot and desired dynamics. To prevent base-plate resonance signals from
getting into the control loop, the position control is only active for low frequencies. With
this setup, the LSMs try to remove any low-frequency influence the springs have on the
system. A nice side effect of using a position feedback is that any temperature effect of
the air spring, as described previously, is also suppressed by this controller.

As an example, the position feedback controller was used to make the reaction mass
move as if gravity and the spring forces were absent, and the only force acting was the
force from the LSMs. In that case, the position controller suppresses the behavior of
the springs. The reaction-mass displacement belonging to the driving force only can be
found by dividing the sweep force by the reaction mass and integrating it twice. We sim-
ply used the trapezoidal method on the heavily oversampled time signal for this. Figure
2.9 shows reaction-mass displacement without and with the position controller active. It
is clear that, for this example, the displacement amplitude caused by the support system
is larger than that of the LSMs. When the position controller is active, as shown in Figure
2.9b, the LSMs suppress the spring behavior very well. The reaction-mass displacement
follows the prescribed position curve closely, and the average absolute difference be-
tween the two curves is reduced by a factor of approximately 160.
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Figure 2.9: The first 3.5 s reaction-mass displacement for a 12-s linear sweep from 2 to 160 Hz. (a) Without
position feedback control and (b) with position feedback control.
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2.3. FIELD CASE
To show the seismic performance of the vibrator, we carried out some field tests at a
seismic-monitoring site in the northeast of the Netherlands. At this site, 4C sensors,
each equipped with a 3C geophone and one hydrophone, are buried at a fixed level with
respect to the geoid at approximately 50 m below the surface. In this chapter, only the
data from the hydrophones and vertical component of the geophones are presented.
During the field tests, we also temporarily installed a few surface geophones. All the
recorded data were correlated with the pilot signal. This was done to keep all distortion
caused by the vibrator visible in the seismic records. It also prevented any noise from
the accelerometers to propagate into the records. The accelerometer’s measurements,
however, are used to show the harmonic and low-frequency behavior of the vibrator.

2.3.1. REGULAR LINEAR SWEEP
The most common signal to drive a seismic surface vibrator is the linear upsweep, in
which the frequency of the driving sinusoid is increased linearly with time. The signal
is tapered or faded at both ends to avoid step behavior. Figure 2.10 shows the seismic
record obtained with a 10-s linear sweep from 5 to 200 Hz, after being correlated with
the pilot channel.The buried geophones and hydrophones show the direct arrival and a
few reflections. Even though the geophones are at an approximately 50-m depth, they
still pick up Rayleigh-wave energy. The hydrophones have a different sensitivity and,
therefore, their record is less noisy and does not show the Rayleigh-wave arrival that
strongly. Both records have some ringing, which indicated that the correlation with the
pilot signal is not fully compressing the source wavelet in the seismic data.

2.3.2. HARMONICS
Signal distortion is an important issue with seismic vibrators. Especially the generation
of harmonics is a common and difficult problem (Seriff and Kim, 1970). For a linear
upsweep, the energy of the harmonics is mapped to earlier arrival times, possibly mask-
ing earlier events. To investigate the distortion and harmonics of the prototype vibrator,
the acceleration of the reaction mass (average of the three sensors), the acceleration of
the base plate, and the weighted-sum ground force are used. The weighted-sum ground
force (Castanet and Lavergne, 1965; Sallas, 1984) estimates the force that the vibrator
exerts on the ground by summing the acceleration of the reaction mass and base plate,
weighted with their masses. In a rigid 1D approximation, the reaction mass only expe-
riences the force from the driving engine, whereas the base plate experiences the force
from the driving engine (with opposite sign) as well as the force from the ground. By
summing, one thus removes the influence of the engine and is left with the force on the
ground only.

It is expected that LSMs produce less harmonics compared with hydraulic engines
because they act more linearly. The mechanics and ground coupling, however, also gen-
erate harmonics. Therefore, the influence of the driving engine alone on the total signal
distortion cannot be determined.

Figure 2.11 shows the time-frequency analysis for the pilot signal, the measured ac-
celerations, and the weighted-sum ground force. Next to the designed signal, these plots
also show energy at other times and frequencies. The harmonics of the weighted-sum
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a

b

Figure 2.10: Seismic records obtained at 50-m depth with a 10-s linear sweep from 5 to 200 Hz. Vertical-
geophone data shown in panel (a), Hydrophone data shown in panel (b). (Dead traces are blanked.)
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ground force, Figure 2.11b, are on the order of 20 dB lower than the fundamental signal at
all frequencies, including the lower. If we look at the signals that make up the weighted-
sum ground force, the reaction-mass acceleration, shown in Figure 2.11c, and base-plate
acceleration, shown in Figure 2.11d, we see that most of the weighted-sum ground-force
harmonics originate from the base-plate acceleration signal. The reaction-mass har-
monics are at approximately -30 dB, whereas the base-plate harmonics are already vis-
ible at -20 dB. This shows that the LSMs have a limited contribution to the harmonics
found in the weighted-sum ground force. Most of the harmonics are coming from the
base plate, which might be caused by the ground coupling. It is striking that the recorded
pilot signal, shown in Figure 2.11a, shows harmonics as well, although these are not in
the designed pilot signal. These harmonics are probably caused by the electromagnetic
(EM) interference between the amplifiers and our recording equipment. If this is the
case, part of the harmonic energy observed with the accelerometers actually does not
originate from the movement of the masses.

a b

c d

Figure 2.11: (a) Time-frequency plot of the pilot signal, (b) weighted-sum ground force, (c) reaction-mass ac-
celeration (after time averaging the three sensors), and (d) base-plate acceleration.

2.3.3. OTHER DRIVING SIGNALS

The first step in processing the seismic records obtained with a vibrator is removing the
phase of the source signal from the seismic response, thus compressing the record as if
the vibrator had sent out a zero-phase wavelet. The phase of the source wavelet, there-
fore, can be changed at will, without affecting the seismic record. This opens up the
possibility to design signals with specific properties. One of these properties might be
designing multiple signals that are orthogonal to each other, i.e., have low crosscorrela-
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tion. With such signals, multiple seismic vibrators could work simultaneously, reducing
the acquisition time tremendously. Pseudorandom signals (for an overview, see Dean,
2014) can be designed to have such properties. One of the reasons why pseudorandom
signals are not used that frequently is the difficulty to transmit them by (hydraulic) vi-
brators (Dean, 2014).

To show that the LSM vibrator has no problem with producing this kind of signal,
we randomized the phase of a linear upsweep and compared the seismic records ob-
tained with the original sweep and randomized one. The signals are shown in Figure
2.12. Because the amplitude spectra are the same, both signals have the same auto-
correlation. However, the time and time-frequency behaviors are quite different. In
the time domain, the envelopes of both signals are quite different, and the randomized
sweep shows peaks that are approximately three times larger than the amplitude of the
linear sweep. Although there is a simple one-to-one mapping from time to frequency for
the linear sweep, there is no such relation for the randomized signal as is visible in the
time-frequency plot. Figure 2.13 shows the obtained buried-geophone records. Because
we maximized the force to approximately 6 kN, while keeping the amplitude spectra the
same, the time-domain peaks of the randomized signal cause the seismic signal-to-noise
ratio to be lower than the records as shown in Figure 2.10. The reflections are, however,
still visible in Figure 2.13a and 2.13b. The difference between the records is minimal and
was most likely caused by the difference in noise and the ability to fully compress the
source wavelet by correlation with the pilot signal.
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Figure 2.12: Regular linear upsweep (top) and a power-spectrum equivalent pseudorandom signal (bottom).
(a and d) Time-domain Signal, (b and e) Amplitude spectra, and (c and f) time-frequency plot. Seismic records
belonging to these signals are shown in Figure 2.13.
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a

b

Figure 2.13: Seismic records obtained with the vertical geophones at a 50-m depth. (a) Response of the regular
sweep and (b) the response of the pseudorandom signal. (Dead traces are blanked.)
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To show the ability of the vibrator to send low frequencies, a randomized phase sig-
nal with a very steep slope in the amplitude spectrum was designed. This slope makes
it possible to have a strong signal at 2 Hz without having the air-spring resonance con-
sume all of the available stroke. A maximal force of approximately 6 kN was used again.
The spectra measured at the vibrator, shown in Figure 2.14, show that the reaction mass
(Figure 2.14c) follows the designed signal (Figure 2.14a) closely. Because we do not apply
feedback on the weighted-sum ground force, the base-plate acceleration (Figure 2.14d)
changes the weighted-sum ground force spectra (Figure 2.14b) at the higher frequencies.
Figure 2.15 shows the mean ambient noise spectra recorded with the surface geophones
and the response curves belonging to these geophones. From this, it is clear that a larger
amount of energy of the vibrator is needed for low frequencies to overcome the ambi-
ent noise level and lower geophone response. Figure 2.16 shows the seismic record ac-
quired with the low-frequency signal of Figure 2.14. Note that no correction was applied
for the geophone response. Different low-pass filters were applied to the data. Figure
2.16a shows the record without applying a low-pass filter. In Figures 2.16b-2.16d, low-
pass filters with a cut-off at 4, 6, and 8 Hz were applied. Most ambient noise enters the
record from the right as is clearly visible below the surface wave in the 4 Hz version of the
record, possibly originating from the road and farms on that side of the line. The surface
waves from the LSM vibrator are visible in all versions of the record, but with increasing
filter bandwidth, they become more dominant with respect to the ambient noise, as is
expected from Figure 2.15.

2.4. DISCUSSION
As with every prototype, one gains much insight going through the process of actually
building and testing it. Many choices were made and reconsidered during the design
and building phase of the vibrator presented. With the knowledge that we now have,
we would make two choices differently. First, we would use an air spring with a larger
volume, increasing h0 in equation 2.11. By doing so, the vibrator would need to get a
different safety certification, but the mechanical resonance frequency would be lower
and the temperature sensitivity would be smaller. This would allow for easier generation
of low frequencies, with less need of a position controller. We would also opt for a dif-
ferent type of amplifier and change the wiring of the system. In the current prototype,
six pulse-modulated amplifiers are used to power the LSMs. These amplifiers gener-
ate the currents needed by switching on and off a high-voltage source at 20 kHz. This
binary high-voltage sequence is then smoothed by passing it through a low-pass filter
before it goes to the LSM. These types of amplifiers are very efficient, but the drawback
is that they generate EM noise. This EM noise, together with how the vibrator is wired,
causes signal distortion that is picked up by the accelerometers. With better amplifiers,
the harmonics visible in Figure 2.11 can be reduced significantly. This is supported by
data from a smaller LSM vibrator recently built (see Drijkoningen and Noorlandt, 2014).
That vibrator does not have an air spring because the movement is perpendicular to the
gravity force. It only contains two LSMs to drive the reaction mass and uses linear ampli-
fiers to drive them. The harmonics observed with this vibrator, as shown in Figure 2.17,
are extremely small: The recorded pilot signal is free of harmonics, and the harmonics
visible in the weighted-sum ground force signal are 30 dB below the fundamental sig-
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Figure 2.14: Pseudorandom signal with a very sharp low cut in the frequency domain. (a) Pilot signal, (b)
weighted-sum ground force, (c) reaction-mass acceleration (after time averaging the three sensors), and (d)
base-plate acceleration. The seismic record belonging to this signal is shown in Figure 2.16.
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Figure 2.15: Spectra of the background noise (solid line) and the 4.5-Hz geophone response (dashed line).
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a b

c d

Figure 2.16: Seismic waves as recorded by the surface geophones using the signal shown in Figure 2.14. (a)
Unfiltered, (b) low pass up to 4 Hz, (c) low pass up to 6 Hz, and (d) low pass up to 8 Hz. Surface waves coming
from the vibrator are marked with a black line above and below their arrival. (Dead traces are blanked.)
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nal. These harmonics completely come from the base plate because the reaction mass
is free of harmonics up to -80 dB. The low-frequency distortion originates from the sup-
port springs and has an amplitude of -45 dB. This shows that LSM-driven vibrators can
indeed reproduce a designed wavelet, including the low frequencies, faithfully.

The main purpose of our prototype LSM vibrator is to show the feasibility of an LSM-
driven vibrator. The current vibrator can be used for shallow monitoring studies (Arts
et al., 2013). For deeper targets (deeper than 1 km or so) and larger offsets, the current
force is not large enough. To upscale, more or stronger LSMs would be needed. They are
readily available, but the circular design might not be well suited to position a large num-
ber of LSMs. The radius of the vibrator has to increase, which makes it more sensitive for
rocking due to the longer leaf springs and the increased moments of the engines. A rect-
angular design could be more suitable in that case. Depending on the frequency range
desired, the stroke and reaction mass should be changed as well. If the source should be
used for exploration depths of a few kilometers, with a lot of source positions, the porta-
bility should be enhanced as well. The prototype vibrator can be lifted as soon the base
plate is manually locked to the reaction mass. This locking should be made automati-
cally, or one should change the base plate such that it can be lifted directly to reduce time
needed to reposition the source. Of course, having a dedicated vibrator truck, as typical
exploration vibrators have, would allow operation in the field to speed up even more.

a b

c d

Figure 2.17: Time-frequency plot of the (a) pilot signal, (b) weighted-sum ground force, (c) reaction-mass ac-
celeration, and (d) base-plate acceleration obtained with a small LSM vibrator (Drijkoningen and Noorlandt,
2014). Note that the color scale extends to -80 dB in contrast to the -60 dB scale used in Figure 2.11.
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2.5. CONCLUSION
LSMs can be used to drive a seismic vibrator. We successfully designed and built a pro-
totype LSM vibrator, with which we acquired good seismic data using a wide range of
signals. The prototype LSM vibrator easily generates low-frequency signals as well as
pseudorandom signals, which makes it a good candidate for simultaneous sweeping.
The difference between an LSM and a hydraulic engine was explained, and the steps to
be taken to build a production version were discussed.
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3
EXPERIMENTS ON THE BEHAVIOR

OF VIBRATORS

In this chapter we show the influence of the coupling conditions, sweep rate and drive level
on the behavior of a vibrator and the spectra it generates. Just after the prototype LSM
vibrator, described in the previous chapter, was built, several field tests near Schoonebeek
were performed. These tests, among others, consisted of placing different mats between the
vibrator and the ground, performing the same sweep at different drive levels and sweep
over the same frequency range with different sweep rates. These experiments showed that
coupling mats and drive level change the shape of the vibrator’s spectral amplitude, while
the sweep rate scales the spectrum uniformly. The change with drive level was investigated
in more detail in another experiment using a hydraulic driven exploration vibrator, able to
generate forces up to 266 kN. So a much wider range of drive levels could be studied. From
this second dataset we conclude that: the vibrator signal is very repeatable for a given
drive level and fixed position; the repeatability of smaller drive levels is reduced when
higher drive levels are performed in between; the ground-base plate interaction depends
on the drive level in a nonlinear way and not taking these effects into account produces
arrival-time and amplitude errors in seismic records.

3.1. INTRODUCTION
Having built the prototype LSM vibrator, described in the previous chapter, one of the
first questions was how it would perform in the field. Therefore a series of field tests near
Schoonebeek were performed. At the time of the tests a seismic monitoring system was
just installed with a large number of buried geophones and hydrophones (Hornman and
Forgues, 2013). NAM and Shell kindly allowed us to perform our tests on that location
and to use the data recorded. Two of the tests performed will be discussed in this chap-
ter. In the first test presented, (Section 3.2) four different mats were placed between the

Parts of this chapter were presented at the EAGE 2012 Noorlandt et al. (2012) and EAGE 2013 Noorlandt et al.
(2013).
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vibrator and the road, showing that coupling significantly affects the vibrator’s signal.
In a second test (Section 3.3), the effects of changing the power of the signal by chang-
ing the drive level, as well as by changing the sweep rate are investigated. What will be
shown is that sweep rate controls strength of the amplitude spectra uniformly, while the
drive level also changes the shape of the spectra.

The observation that the drive level affects the behavior of the vibrator in a nonlinear
way, was further investigated when the three companies; ION, INOVA and Shell, created
the opportunity to carry out field experiments with a regular-sized hydraulic-driven ex-
ploration vibrator. The experiments were carried out at a test site near Devine, Texas
(The University of Texas) and consisted of repeating multiple series of sweeps with dif-
ferent drive levels at two different locations. The advantages of these experiments were
that a larger force range could be investigated (up to about 266 kN, compared to the 7 kN
of the LSM vibrator), a deep borehole equipped with geophones was available such that
the far-field wavelet could be measured and that the location and coupling conditions
were different from the experiments performed with the LSM vibrator. The results of the
drive-level experiments with the hydraulic-driven vibrator will be discussed in Section
3.4.

3.2. INFLUENCING GROUND-VIBRATOR COUPLING BY MATS
During data acquisition, the base plate of the LSM vibrator needed to be protected from
the tarmac it was placed on. Because the plate is made out of aluminum, it was expected
that the unevenness of the tarmac would cause very high point stresses on the base plate
that would leave their marks. Therefore a thin mat was placed between the vibrator and
the ground. Initially no large influence on the behavior of the vibrator was expected,
but to be sure four different materials were tried. The materials used were bubble Sof-
Tred, polyurethane foam, open cell neoprene and solid rubber. A photo of each mat is
presented in Figure 3.1.

Placed on the different mats the vibrator performed the same 30-s linear sweep from
2 to 200Hz at 2000 kN without any feedback loop active. As Figure 3.2 clearly shows our
initial expectation was wrong and the mats affect the behavior of the vibrator signifi-
cantly. Because the sweep was identical for the test with each mat, the curves in Fig-
ure 3.2a overlap. For the particular sweep used the overshoot at both the low and high
frequency end is about 10%. The weighted-sum ground force spectra (Figure 3.2b) are
clearly affected by the choice of mat. The solid-rubber mat produces the flattest spec-
trum compared to the others, and also produces the smallest amplitudes at frequencies
between 60 and 160 Hz. At about 120 Hz the force produced on this mat is only 40%
of the one produced on the polyurethane-foam mat. The reaction-mass force spectra
(Figure 3.2c) make clear that the mass is not the cause of this change of ground force.
The spectra are very similar to the pilot spectra. Note that at the time of these tests no
optimization, as described in Chapter 2, of the motor gains or sweep was performed.
Therefore the spectra contain more variation in amplitude than the examples shown in
Chapter 2. The amplitude increases slightly towards the low end of the spectrum due to
the vibrator’s air-spring resonance. The step in the amplitude just below 50 Hz is caused
by a mode of the reaction-mass and is not affected by the mat used. The variation in am-
plitude around 130 Hz is caused by the leaf springs in reaction to the base-plate move-
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a b

c d

Figure 3.1: Different mats used to protect the base plate. (a) bubble Sof-Tred, (b) polyurethane foam, (c) open
cell neoprene and (d) solid rubber.
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Figure 3.2: Spectra measured for different mats placed between base plate and tarmac. (a) The pilot signal,
(b) weighted-sum ground force, (c) reaction-mass force, (d) base-plate force, (e) buried hydrophone and (f)
geophone at 9 m below the source. The spikes in (e) and (f) are caused by other mono-frequent sources active
during our experiments.
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ment. This is the only part of the reaction-mass spectrum that depends on the mat used.
As expected the biggest difference in spectra is visible for the base-plate force as shown
in Figure 3.2d. It is clear that the solid-rubber mat reduces the base-plate acceleration,
while the polyurethane-foam mat seems to enhance it, compared to the other two mats.
The amplitude variation at 130 Hz becomes more noticeable for the larger amplitudes.
Also the generation of harmonics, as visible by the “thickness” of the curves and the am-
plitudes above 200 Hz, becomes stronger with amplitude, especially for the foam mat.

Recordings were not only made on the vibrator itself but also in the ground under-
neath the vibrator, at approximately 9-m depth with a hydrophone and a geophone. It is
interesting now to compare the source spectrum estimated at the vibrator (Figure 3.2b)
with what was registered by the hydrophone and geophone at depth (Figures 3.2e and f
respectively). The spectra registered with the ground sensors are much more erratic than
those registered at the vibrator. One explanation for this is the fact that the ground sen-
sors are within the near-field and record a superposition of different waves with different
paths. The two ground sensor types also have a different sensitivity, which explains why
the geophone spectra are different from the hydrophone spectra. Comparing Figures
3.2e and f, it is clear that the hydrophone is less sensitive outside a frequency band from
approximately 30 to 140 Hz. Still the influence of the mats is reflected in the spectra mea-
sured in the ground; the order of the colors and their relative amplitudes are comparable
with those shown in Figure 3.2b.

To indicate the impact of these mats on the seismic signal in the time domain, Figure
3.3 presents the signals recorded at the vibrator after correlation with the pilot. As ex-
pected from the spectral results, the correlation of the pilot (Figure 3.3 a) and reaction-
mass force (Figure 3.3 c) hardly changes with the mat used. However, the base-plate
(Figure 3.3 d) and the weighted-sum ground force (Figure 3.3 b) do change. Again this
confirms that the the mats mainly influence the base plate behavior, which than impacts
the total force the vibrator exerts on the ground. Figure 3.3 b indicates that the seismic
far-field wavelet depends on the mat used.

Which mat was used also affected the harmonic distortion of the vibrator. Spec-
trograms of the weighted-sum ground force for the different mats are shown in Fig-
ure 3.4. For the open-cell materials (Figure 3.4 b and c) the second harmonic is more
pronounced, up to -25 dB relative to the fundamental signal, compared to the closed-
cell/solid mats (Figure 3.4 a and d), were it reaches -35dB at most. The coupling influ-
ences the different harmonics independently, visible in the results using the polyurethane-
foam mat (b). The second harmonic is relatively strong (about -25dB), but the third har-
monic (about -35dB) is relatively weak.

3.3. INCREASING POWER

Often, one wants to put as much power into the ground as possible, in order to maximize
the signal-to-noise ratio. There are two ways to do that with a seismic vibrator: increase
the force or increase the duration of the sweep. In the experiments at Schoonebeek with
the LSM vibrator, both were done and the results are presented here.
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Figure 3.3: Correlation of the pilot signal (a), weighted-sum ground force (b), reaction mass force (c) and base-
plate force (d) with the pilot signal for the different coupling conditions.

3.3.1. WITH DRIVE LEVEL

In the first power-increase test, the drive level of the vibrator was varied. Figure 3.5
presents the spectra obtained when linear sweeping from 20 to 200 Hz in 20 s at drive
levels ranging from 0.5 kN to 6 kN, while the vibrator was placed on the bubble Sof-Tred
mat. In a perfect linear world all spectra measured should simply scale with the driving
force. In our case this is only true for the pilot signal (Figure 3.5a). The weighted-sum
ground force spectra display the same features as before. The bump around 50 Hz is
present as well as the amplitude reduction around 130 Hz. However, because the sweep
starts at 20 Hz the air spring does not influence the spectra measured. It can also be
observed that the features near 50 and 130 Hz become more prominent with drive level,
this is especially visible in the reaction-mass force and base-plate force spectra (Figure
3.5 c and d). One effect visible in the data that has not been discussed yet, is the obser-
vation that the frequency at which the maximum ground force occurs shifts with drive
level. At 0.5 kN the maximum is located at around 130 Hz, while at 6 kN this occurs al-
ready at about 110 Hz. It is clear that this is dictated by the behavior of the base plate.
Comparing Figure 3.5b with 3.2b, it seems that increasing the drive level makes the bub-
ble Sof-Tred mat behave more like the polyurethane-foam mat. It is also interesting to
see that the lower half of the spectrum scales differently with drive level than the up-
per half. Compare for example the results at 60 Hz with those at 160 Hz. At 60 Hz the
curves are much further apart than at 160 Hz. This is also reflected in the hydrophone
and geophone spectra (Figure 3.5 e and f).
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Figure 3.4: Time-frequency contour plots of the weighted-sum ground force for different materials placed
between the vibrator and the ground. (a) bubble Sof-Tred, (B) polyurethane foam, (C) open cell neoprene
and (D) solid rubber. Amplitude scale is given in dB relative to the maximum amplitude in each individual
plot.
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Figure 3.5: Spectra measured for various driving forces. (a) The pilot signal, (b) weighted-sum ground force,
(c) reaction mass force, (d) base-plate force, buried hydrophone (e) and geophone (f) at 9 m below the source.
The spikes in e and f are caused by other mono-frequent sources active during our experiments.
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3.3.2. WITH SWEEP DURATION

Another way to affect the amplitude after correlation, is by varying the sweep rate. Keep-
ing the bandwidth of a sweep constant, the duration of the sweep will determine its am-
plitude after correlation. In that case the spectral amplitude scales approximately with
the square root of the duration of the sweep (equation A6 of Rietsch, 1977). In the sec-
ond power-increase test, the vibrator was again placed on the bubble Sof-Tred mat. The
drive level was fixed at 2000 kN and the duration of the 2-to-200 Hz sweep was varied
from 20 up to 160 s. In Figure 3.6 the obtained spectra are shown. Because the sweep
starts at lower frequency than in the previous power-increase test, the uplift at the low
end of the spectrum is more pronounced. More striking however, is the observation that
the spectra do not change shape with changing sweep duration. If the amplitude would
be corrected for duration, the spectra would overlap perfectly. Although not explicitly
shown here, this can be easily verified, because a four times longer sweep will double
the spectral amplitude. The results of the 80 (or 160) s sweep should therefore be twice
that of the 20 (or 40) s sweep. Comparing the two power-increase methods it seems that
increasing the duration of the sweep (Figure 3.6 e and f) is more beneficial for the higher
frequencies than increasing the drive level (Figure 3.5 e and f).

3.4. DRIVE-LEVEL AND REPEATABILITY EXPERIMENT
The impact of drive level on the vibrator signals were studied in more detail when ION,
INOVA and Shell created the opportunity to carry out field experiments with a regular-
sized hydraulic-drive exploration vibrator. The experiments differed in a number of ways
from the LSM vibrator drive-level test described above: The probed force range was
much larger; The sequence of sweeps not only allowed to asses the drive-level depen-
dency, but also the repeatability of the vibrator; A deep borehole was available such that
the far-field wavelet could be measured; The tests took place in another setting, on a dif-
ferent soil, than the tests with the LSM vibrator; The vibrator controller used a feedback
loop on the ground force.

3.4.1. FIELD LAYOUT AND EXPERIMENT SETUP

At the test site a linear array of 24 geophones, with a spacing of 25 m, were placed at the
surface. Twelve geophones were placed in the borehole at depths from 2450 to 3000 feet
(approximately 747 to 914 m) with an interval of 50 feet (15.24 m). Two vibrator locations
were used. At the first location the vibrator was placed at about 180 m from the borehole
and 28 m from the first geophone. The second location was only 20 m apart from the first
and was about 195 m away from the borehole and 45 m away from the first geophone.
At the first location four extra geophones were placed more closely to the vibrator with
an interval of 2 m. An overview of the setup is given in Figure 3.7a, the vibrator used is
shown in Figure 3.7b.

On both locations the same drive-level experiment was performed, repeating a 8-
to-80-Hz 12-s sweep at ten different drive levels. The drive levels were set to 5, 10, 20,
30, 40, 50, 60, 70, 80 and 90% sequentially. For each drive level the sweep was repeated
ten times. After finishing the first set of 5-to-90% drive levels, the whole sequence was
repeated, so per location a total of 200 sweeps were performed without moving the vi-
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Figure 3.6: Spectra measured for different sweep lengths. (a) The pilot signal, (b) weighted-sum ground force,
(c) reaction mass force, (d) base-plate force, buried hydrophone (e) and geophone (f) at 9 m below the source.
The spikes in e and f are caused by other mono-frequent sources active during our experiments.
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Figure 3.7: Field layout (a). Geophones are indicated in blue, the vibrator positions are red, and the borehole
is colored magenta. The borehole contained twelve geophones (BH01 - BH12) at depths of 750 - 915 m. (b)
INOVA’s modified 266kN vibrator used for the experiments.
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brator or lifting its base plate. Figure 3.8 gives an overview of the drive levels and vibrator
location over time.
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Figure 3.8: Drive levels and locations over time.

3.4.2. EXPERIMENT RESULTS

Figure 3.9 shows the amplitude spectra of the reaction-mass acceleration, the base-plate
acceleration and the weighted-sum ground force derived from both measurements. Apart
from the lowest drive levels in the first location and the highest drive levels at the second
location, most spectra at the same drive level and of the same sequence overlap very
well. Each drive level was repeated ten times, but their difference is not visible on the
scale of Figure 3.9. It is also clear that the feedback loop on the weighted-sum ground
force worked well for both locations and all drive levels. The amplitude spectra of the
force are flat, especially above 20 Hz, and are very similar, although not shown here, to
the amplitude spectra of the sweeps used. Interestingly the relative contributions of the
reaction-mass and base-plate accelerations differ significantly with drive level. At the
first location the acceleration spectra contain a swell that shifts from about 50–55 Hz at
5% drive level to about 30–35Hz at a drive level of 90%. It also becomes more pronounced
with drive level. At the second location a similar structure is visible, but less pronounced
and at slightly higher frequencies. From these plots it is also clear that in the second
sequence (indicated by the dashed lines in Figure 3.9) the relative contributions of the
reaction-mass and base-plate accelerations to the force signal is different from the first
sequence, especially for the lower drive levels. In the first location the base-plate accel-
eration is relatively weaker than in the second sequence, while at the second location its
contribution is stronger in the second sequence.

The seismic data from the first location are shown in Figure 3.10 and 3.11. They make
clear that the vibrator’s drive level has a larger influence on the seismic records than what
might be expected from the flat spectra of the weighted-sum ground forces shown in
Figure 3.9a. Figure 3.10 shows the seismic records obtained at four different drive levels
(10, 20, 40 and 80%) after correlation and stacking. Relative amplitudes of events change
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Figure 3.9: Spectra of different vibrator signals (weighted-sum ground force (a & b), reaction-mass acceleration
(c & d) and (e & f) base-plate acceleration) for different drive levels. Left: first location. Right: second location.
First sequence represented with solid lines, second with dashed lines. Drive level is indicated with different
colors.
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Figure 3.10: Seismic records acquired after correlating the acquired records with the pilot signal for different
drive levels. Stack of the ten records at 10%(a) and 20%(b) drive level. Per record: 4 vibrator signals, 4 geo-
phones close to the vibrator (2 m apart), 24-geophones spread (25 m apart) and 12 borehole geophones (15.24
m apart). Traces are individually scaled by their maximum amplitude. Red-colored traces are also plotted in
common receiver gather for all drive levels in Figure 3.11.
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Figure 3.10: Seismic records acquired after correlating the acquired records with the pilot signal for different
drive levels. Stack of the ten records at 40%(c) and 80%(d) drive level. Per record: 4 vibrator signals, 4 geo-
phones close to the vibrator (2 m apart), 24-geophones spread (25 m apart) and 12 borehole geophones (15.24
m apart). Traces are individually scaled by their maximum amplitude. Red-colored traces are also plotted in
common receiver gather for all drive levels in Figure 3.11.
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a b

c d

Figure 3.11: Common receiver gathers for four different signals after correlation with the pilot signal. (a)
Weighted-sum ground force (“GF”), (b) surface geophone at about 4 m from the vibrator (“4”), (c) surface
geophone geophone at 600 m (“124”) and (d) borehole geophone at an offset of 180 m and depth of 777m
(“BH03”). Each plot shows 100 traces in groups of ten different drive levels. Color indicates normalized signal
amplitude. Note that the length of the time window of plot c is different from the other plots.
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with drive level; compare, for example, the first arrivals on far-offset surface geophones
at about 300 ms, with later events, including the surface waves, around 900 ms for the
different drive levels. Figure 3.11 presents four different receiver gathers for both drive-
level sequences performed at the first location, 200 shots in total in panels of 10 shots
at equal drive level. Again each recording was correlated with the sweep. In general the
signals are very similar within the same drive-level panel. The weighted-sum ground
force as measured at the vibrator (Figure 3.11a) hardly changes with drive level. The data
from the geophone close by the vibrator (Figure 3.11b) shows shifts of a couple of ms, but
also amplitude and bandwidth variations. Similar changes can be observed for the far
offset surface geophone and bore-hole geophone (Figure 3.11c and d respectively). Not
all “events” seem to be affected equally strong, some arrivals present at low drive level
vanish with larger drive level and vice versa, while others are present at all drive levels.

At the second location, the vibrator was placed on the bare soil. In the field it could
be observed that each time the vibrator got to the higher frequencies of the sweep dust
clouds from underneath the plate were formed. The fact that this occurred at the higher
frequencies makes sense, because the vibrator’s base plate experienced most accelera-
tion in that case (see Figure 3.9f). A photo of one of the dust clouds is shown in Figure
3.12a. The amount of dust did not decrease with the number of sweeps. Just next to
the plate small heaps were formed of material transported from underneath the base-
plate, see the photo in Figure 3.12b. This photo also clearly shows that there was an air
gap between the soil and the edge of the base plate. After the experiment was finished
and the base plate was lifted, the imprint the base-plate left behind in the soil was not
uniform. Therefore it can be concluded that the base plate did not generate a uniform
pressure field on the ground during the experiments. These observations, similar to the
observations at the mat experiments, suggest that the contact between the vibrator and
the ground plays a crucial role in transforming the vibrator’s driving force to a seismic
wave.

a b

Figure 3.12: Photos taken at the second location. Showing (a) dust clouds at the high end of the sweep and (b)
small heaps next to plate and air gaps between the plate and ground.
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3.5. CONCLUSION
From the measurements and their analysis as shown in this chapter several conclusions
can be drawn. Placing a material between the vibrator and the ground, thereby affecting
the coupling between the vibrator and the ground, can have a significant effect on the
behavior of the vibrator and the far-field wavelet it produces. Even if the material is a
thin mat.

Controlling the output power of a vibrator can be done via increasing drive level or
increasing the sweep duration. The sweep duration affects all frequencies uniformly.
However, increasing the drive level also affects the shape of the spectra. Although the vi-
brator signals (reaction-mass, base-plate accelerations and weighted-sum ground force)
can be very repeatable when repeating the same sweep at a fixed drive level, these sig-
nals at a certain drive level do change when sweeps with higher drive levels are used in
between.

The stability of the weighted-sum signal in the hydraulic vibrator experiments is not
reflected in the signals recorded with the geophones. This shows that, for the experi-
ments done, the weighted-sum is not a good estimate of the true source wavelet. The as-
sumption that the base plate exerts a uniform pressure on the ground below was clearly
observed not to be valid.

To summarize the observations described here suggest that the material properties
and geometry of the material underneath the base plate can influence the behavior of
the vibrator significantly, and in a nonlinear way. The effect of the geometry of the con-
tact is studied in detail and presented in the next chapter.
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4
ON THE MECHANICAL

VIBRATOR-EARTH CONTACT

GEOMETRY AND ITS DYNAMICS

Rik Noorlandt and Guy Drijkoningen

The geometry of the contact between a vibrator and the earth underneath influences the
dynamics of the vibrator. Although a vibrator might appear to be well-coupled with the
earth on a macro scale, perfect coupling certainly does not occur on the micro scale. With
the aid of contact mechanical modeling and concepts, it can be shown that this lack of
contact at the micro scale, or rather the change thereof during a sweep, can have a signifi-
cant effect on the dynamics of the vibrator-earth system. Modeling of such changing con-
tact predicts that the dynamic behavior varies considerably with the vibrator drive level.
The most significant effect predicted by the model is a decrease in the base-plate resonance
frequency with an increasing drive level. Extensive drive-level tests carried out in a field
experiment confirm this change of resonance behavior with drive level.

4.1. INTRODUCTION
Seismic vibrators are typically used to send out sweep signals. Distributing frequency
content over time reduces the amount of instantaneous power that a vibrator has to de-
liver, but these lengthy signals need to be compressed during processing. To do this, one
needs to know the source signal, which is most commonly measured at the vibrator.

This chapter has been published as a journal paper in Geophysics, 81(3), P37–P45 (Noorlandt and Drijkonin-
gen, 2016). Note that minor changes have been introduced to make the text consistent with the other chapters
of this thesis.
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Figure 4.1: Model of main components of a seismic-exploration vibrator. The driving engine is placed between
the reaction mass and base plate (driving force). Parallel to this there might be a support structure to hold
the reaction mass (RM support). To prevent the base plate (BP) from decoupling from the earth a hold-down
system might be present (HD support). The translation of the forces between the elements of the vibrator to a
seismic wave occurs at the contact between the base plate and the earth (BP-earth interaction).

Measuring the source signal, however, is not a trivial task, because the source con-
sists of multiple elements that dynamically interact with each other. A model of the
main components of a vibrator is shown in Figure 4.1. The most common method to
determine the source wavelet is the weighted-sum-ground-force method (Castanet and
Lavergne, 1965). This method relies on two basic assumptions: First, it is assumed that
the total force a vibrator exerts on the ground can be measured, and second, it is as-
sumed that this force is a measure of the seismic wavelet in the far-field.

The force the vibrator exerts on the ground is determined by summing the measured
accelerations of the reaction mass and base plate, after being multiplied with their re-
spective mass. In this way, the net forces on the reaction mass and base plate are added
together. From Figure 4.1, it is clear that the forces between the plate and reaction (RM
support and driving force) are removed from this sum. The forces left in the sum are the
support of the hold-down mass and the total of the interaction between the base plate
and the earth (HD support and BP-earth interaction). Typically, the hold down mass is
ignored because its support is designed to pass its weight without affecting the dynamics
of the base plate at frequencies above approximately 5 Hz. Therefore, the weighted sum
of the reaction-mass and base-plate accelerations equals the total force on the ground
(with opposite sign). Although this method is now most common, there was some de-
bate before it was accepted, see papers by Lerwill (1981), Sallas and Weber (1982), Lerwill
(1982) and Sallas (1984).

The assumption that the seismic wavelet measured in the far-field is, up to a deriva-
tive, proportional to the total force the vibrator exerts on the ground, can be taken from
the work of Miller and Pursey (1954, 1955). Miller and Pursey (1954), similar to the earlier
work of Reissner (1936), formulate the behavior of an isotropic elastic half-space when
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a uniform pressure field of circular shape is acting on it. They find that, in such a case,
the particle displacement is proportional to the pressure. If the pressure beneath the
base plate is uniform, it simply equals the force divided by the plate area, and therefore,
the seismic wavelet in the far-field should be proportional to the weighted-sum ground
force.

However, in practice, there is a difference between the weighted-sum-ground-force
signal and the wavelet observed in the far-field. Many papers are devoted to the mis-
match among the actual force (typically measured with load cells), the weighted-sum-
ground-force method, and the seismic far-field wavelet; see, for example, Baeten and
Strijbos (1988), van der Veen et al. (1999), Wei (2008), Wei (2009), Shan et al. (2009), Sara-
giotis et al. (2010), Wei et al. (2010), Sallas (2010), and Poletto et al. (2011). Any difference
between the seismic far-field wavelet and the source wavelet measured at, and used to
control, the source will cause a decrease of source repeatability and seismic resolution.
Martin and Jack (1990), Aritman (2001), and Meunier (2011) provide some examples.

The mismatch is a direct consequence of the assumptions made not being valid. The
vibrator components are typically assumed to be rigid, whereas in practice they are not.
Baeten and Ziolkowski (1990) propose a model to account for the flexibility of the base
plate. In their model, the contribution of the base-plate acceleration to the weighted-
sum ground force is adjusted and decreases with frequency. Their model shows that
flexure of the base plate is mainly of importance at high frequencies. Lebedev and Beres-
nev (2005) come to the same conclusion and also show that although the flexure is not
influencing the waves radiating from the source much, it does affect the measurement
of the base-plate acceleration. In their examples, different positions of the acceleration
sensor on the base plate cause travel time mismatches of up to approximately 0.6 ms.

In addition to the base-plate flexure, the fact that the vibrator is placed on a rough
surface (as indicated in Figure 4.1), also causes the assumption of a uniform pressure
distribution beneath the base plate to be violated. Although this will mainly affect the
propagation at higher frequencies only, where wavelengths becomes more nearly equal
to the size of the base plate (Lebedev and Beresnev, 2005), it can have a major influence
on the dynamics of the vibrator, as we will show in this chapter.

The contact between the vibrator and the earth as a cause of signal distortion has
been mentioned in the past. Lebedev and Beresnev (2004) and Lebedev et al. (2006)
propose a model in which the contact acts as a nonlinear spring. In their model, the
“contact spring” is weaker in tension (base plate moving away from the contact) than in
compression (base plate moving toward the contact). In this chapter, this contact behav-
ior is studied in more detail. First, we show some results of quasistatic modeling. The
importance of the shape of a contact is made clear by an analytical example. The out-
come of numerical modeling of a rough contact and its sensitivity to several parameters
are presented. Then, we describe a dynamic model that can not only reproduce the qua-
sistatic results of the rough contact but also is capable of predicting the behavior of the
contact when a sweep force is applied to the base plate. The predictions of the dynamic
model are then compared with some field measurements. The field measurements were
carried out to investigate the nonlinear, drive-level-dependent behavior of the vibroseis
setup. We conclude this chapter with a discussion of this work, its implications for field
surveys and conclusions that may be drawn.
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4.2. CONTACT MECHANICS
Normally, a seismic vibrator is not fixed to the ground, and its contact is simply estab-
lished by its weight. The driving engine is then used to generate a time-varying pressure
that is added to the static pressure caused by gravity. The total pressure can increase and
decrease, but care is taken to make sure that some pressure is left to keep the vibrator, at
least at macroscale, in contact with the ground. Normally, the (static) gravity component
is ignored because it is not recorded by the geophones. However, this can only be done
if the vibrator-earth system behaves linearly, which is most probably not the case as in-
dicated by the harmonics observed in the field. The displacement of the ground might
not be linearly related to the driving force due to the intrinsic material properties or the
geometry of the setup or both. Although material-induced nonlinearity changes from
material to material, geometry-induced nonlinearity can in principle occur with every
material beneath the vibrator, such as soil, rock, asphalt, concrete, ice, etc. The main
goal of this chapter is to describe the effect such a contact geometry might have.

Although the vibrator plate is relatively flat, the ground underneath is not. Therefore,
at the microscale, the plate will not be in contact with the ground over its complete or
nominal area, as shown in Figure 4.1. In general, the true contact area, places where
ground and base-plate molecules interact, is only a fraction of the nominal contact area.
Measurements presented by Dean et al. (2015) show that 3% of the contact area can carry
as much as 20% of the total load. The distribution of the plate-earth contacts is a function
of the applied force and therefore will change under dynamic loading.

The study of the pressure and contact distribution is part of the field of contact me-
chanics; for a good introduction, see the book of Popov (2010). Hertz (1882) published
one of the first papers describing the behavior of two elastic materials in contact. He
shows that if two curved elastic half-spaces are pressed together, the displacement and
contact area are related in a nonlinear way to the force applied.

4.2.1. SIMPLE CONTACT GEOMETRY
The exact force-displacement relation strongly depends on the shape and material of
the bodies brought in contact. To illustrate the effect of shape, Figure 4.2 shows the cross
section of differently curved bodies and their force-displacement relations when pressed
on a flat half-space of the same material. The shape of these modeled bodies has a verti-
cal axis of symmetry and a height h proportional to the distance to this symmetry axis r
raised to a certain power n:

h(r ) =α(1−n)r n , (4.1)

where α is a normalization constant. In our example, the value of α was set to 250 mm,
equal to maximum value of r . The base of these shapes becomes flatter with increasing
power. The behavior of such axisymmetric contacts has, for example, been described
by Heß (2012) and Popov (2013). The force-displacement relation for power law profiles
shown in Figure 4.2a is given by equation 21 of Popov (2013) and is proportional to the
applied force to a power n

n+1 as plotted in Figure 4.2b. The flatness of the base is clearly
reflected in these force-displacement curves. It is clear that the smallest displacement
for a given force is produced by two flat surfaces brought into contact. The flatter the
contact, i.e., the higher the power used, the better it approaches the linear behavior of
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two flat bodies brought into contact. For contacts with this geometry, the contact acts as
a spring that becomes stiffer (weaker) with increasing (decreasing) force.

a b

Figure 4.2: The 3D axis symmetric bodies. (a) Different gray scales and (b) their force-displacement relation
when pressed onto a half-space of the same material. Black arrows indicate direction of the force and displace-
ment. Values for parameters: Shear modulus: 200 MPa; Poisson’s ratio of 0.45.

4.2.2. ROUGH SURFACE CONTACT
Although the axisymmetric contact example shows an important property of contact
mechanics, it is not well-suited to describe real-life situations for at least two reasons.
First, the geometries are assumed to be perfect, and second, there is only a single contact
acting. If two real materials are pressed together there typically will be several locations
were the two materials are in contact. The number of locations and the shape of these
contacts change with the applied load. The calculation of solutions to this problem is
not straightforward because “the displacement at any point of the surface depends on
the entire pressure distribution inside the contact area (Heß, 2012)” and, in general, nu-
merical schemes solve this iteratively. Typically, a certain total displacement is assumed,
and the associated deformation and pressure distributions are calculated. The total of
the pressure distribution is then compared with the applied load and the total displace-
ment is adjusted until they match. To investigate the behavior of the vibrator-ground
contact, we made use of a program based on Vollebregt (2014), but similar results can be
obtained with the code made available by Sainsot and Lubrecht (2011). Both programs
are able to quasistatically model the deformation of arbitrary, but discretized, surfaces
brought into contact under different loading. In principle, the smallest details of the
ground microtopography should be taken into account, but, following the argument of
Persson (2001), there typically exists a natural macroscopic limit to the smallest details
needed to accurately model the contact behavior.

To obtain an idea of the typical force-displacement curves belonging to the vibrator-
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ground contact, a sensitivity study was carried out, using varying profile roughness (lat-
eral and vertical) and soil materials. The base plate was modeled as a flat solid steel plate
with a constant shear modulus of 80 GPa and a Poisson’s ratio of 0.3. The grid that was
used to perform the calculation was 1 × 1.8 m, similar to the size of the base plate of
the vibrator used in the field which is described later, and was sampled every 2.2 mm,
resulting in a grid of approximately 370,000 height samples. Three different levels of
profile coarseness were created with a pseudorandom number generator. The coarsest
grid was created by populating 100 samples uniformly over the 370,000 grid points and
interpolating in between. For the finer grids 900, respectively and 8100 samples, respec-
tively, were used as starting point. The grids were filtered to remove wavelengths below
10 mm, as to prevent numerical artifacts in the modeling. Finally, these three grids were
cumulatively summed and normalized. Figure 4.3 shows an example of the three grids
produced in this way.

a b c

Figure 4.3: Profiles as used to model the force-displacement relations. Increasing lateral details from (a-c).

Figure 4.4a shows the force-displacement relation when the steel base plate is pushed
onto the different profiles presented in Figure 4.3, assuming a ground shear modulus of
100 MPa, a Poisson’s ratio of 0.45, and a maximal profile height of 1 mm. For compari-
son, the result obtained with a flat profile has been plotted as well. The force range was
chosen roughly the same as that of a typical vibrator with a static hold-down force of
approximately 300 kN and a driving force of approximately ± 275 kN. The results of the
rough contact profiles differ significantly from that of the flat contact, but are mutually
hardly distinguishable. Using the profile in Figure 4.3c, the height, shear modulus, and
Poisson’s ratio were varied to study their impact on the force-displacement curves. These
results are shown in Figure 4.4b–d, respectively.

From the curves in Figure 4.4, it is clear that the force-displacement relation shows
a different behavior at small and large loads. At small loads, the curve is nonlinear and
similar to the force-displacements shown in Figure 4.2; the contact becomes stiffer with
force. At larger loads, the curves shown in Figure 4.4 deviate from those in Figure 4.2 by
showing almost linear behavior. The reason for this dual behavior is simple. At small
loads, only a limited number of contacts are actively carrying the load. With an increas-
ing load, the area of contact expands rapidly, until, at high loads, this expansion rate
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Figure 4.4: Force-displacements curves for (a) the different profiles of Figure 4.3 (also including flat soil surface
response), (b) different maximum profile heights, (c) different shear moduli, and (d) Poisson’s ratios. The solid
black curve is repeated in all plots and represents a reference: profile c with a maximum height of 1 mm, a
shear modulus of 100 MPa, and a Poisson’s ratio of 0.45.
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decreases and the contact starts to behave more and more as one single flat contact,
leading to a more linear behavior. This is also the reason why profile height and strength
play a dominant role because they control how easily the profile becomes “flat” under
loading. The different profiles and Poisson’s ratios did not affect the force-displacement
relation significantly. Because the modeling relies on the pseudorandom number gen-
erator, the calculation was repeated for 20 different starting seeds. These calculations
produced very similar force-displacement relations.

It is important to note that the loads in Figure 4.4 represent total load, i.e., the sum
of the static and dynamic forces of the vibrator. It shows that in those parts of a sweep
in which the dynamic force on the base-plate points in the downward direction, i.e.,
increasing the total load, the contact behaves more linear. However, if the dynamic force
drives the base plate upwards, the contact becomes less linear. At high drive levels, the
total load can decrease significantly during parts of the sweep, and although the vibrator
stays in contact with the ground, the relative resistance it experiences from the ground is
greatly reduced. In that sense, base-plate decoupling should be considered as a gradual
process, instead of a binary one. Also note that, comparing these results with the contact
models of Lebedev et al. (2006), the rest position and load of the vibrator does not act as
special situation from which behavior is different in a compression or tension state. In
the examples given in Figure 4.4, a transition between behaviors occurs at forces that
only depended on the geometry and parameters of the contact itself.

The curves shown in Figure 4.4 are only valid for elastic interaction, such that the pro-
files recover their original shapes, when they are not in contact anymore. The ground-
vibrator interaction, however, causes permanent deformation, mainly to the ground, as
well. When the base plate is lowered and the hold-down system is activated, the pressure
on the individual contact points can easily exceed the elastic limit. The soil will deform
until both surface profiles are more alike and the pressure is shared by a larger contact
area. During a sweep, the pressure on the ground dynamically reaches (much) larger
values, and as long as the contact area is not large enough to sustain the local pressure
elastically, permanent deformation will occur. It is expected that the role of permanent
deformation will decrease after several sweeps, such that the elastic behavior, with a
force-displacement relation similar to that of Figure 4.4, but with a fixed permanent dis-
placement offset, becomes dominant. Although the role of permanent deformation is
expected to decrease with the number of sweeps, it will not always be the case. Meunier
(2011, p. 112, Figure 20) provides an example, in which even after 60 sweeps the differ-
ence between the 59th and 60th record, amplified by a factor of 20, resembles the 59th
record. This clearly indicates that conditions between the 59th and 60th varied and most
probably were caused by permanent deformation of the road on which the vibrator was
placed.

4.2.3. CONTACT DYNAMICS; SINGLE NONLINEAR SPRING

Knowing the force-displacement relation of a quasistatic contact, it is instructive to in-
vestigate the dynamic effect such a relation would have on the base plate. Because our
main interest is the effect of the contact, we ignored the dynamic behavior of the reac-
tion mass and hold-down system, but did take into account their weight on the top of the
base plate. The contact spring (beneath the base plate) was chosen to behave such as the
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reference contact (solid black curve of Figure 4.4). This setup has some similarities with
a Duffing oscillator (Walker, 1995). Analytic solutions for such systems can only be found
under some very restrictive conditions, mainly due to the fact that the solutions strongly
depend on the driving amplitude and damping. Therefore, we chose to model the time
behavior numerically, using a standard ordinary differential equation (ODE) solver. The
driving force was a simple 12-s 8-to-80 Hz linear sweep, with 250 ms cosine tapers on
both ends, the same was used for the field measurements described later. Some damp-
ing was needed to prevent the base plate from decoupling. The amount of damping was
set such that at 100% drive level, the dynamic forces on the base plate just did not exceed
the static ones.

Figure 4.5 shows a small time window of the modeled acceleration of the base plate
for different drive levels. At low drive levels, the signal stays sinusoidal, but at high drive
levels, the acceleration amplitude becomes asymmetric and more sawtooth shaped. It
is clear that even for a linear elastic earth, the contact between the vibrator and soil can
cause a nonlinear distortion on the base-plate acceleration and therefore will affect the
weighted-sum-ground-force signal.
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Figure 4.5: Small time window of the modeled base-plate acceleration when driven by a 12-s linear sweep from
8 to 80 Hz and placed on a contact spring with a force-displacement shown by the solid black line in Figure 4.4.
Amplitudes were normalized for drive level.
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4.2.4. CONTACT DYNAMICS; WINKLER FOUNDATION
Up to now, we have used the quasistatic approach to determine the contact behavior.
Although this gives useful insights, a crucial property of the contact dynamics might have
been ignored. Consider the potential vibrator-ground contact area to be divided in three
groups: part of the area will stay in contact at all times, part of that area will never get
in direct contact, and in some area the contact will be made and lost repeatedly during
the sweep. The behavior of this last group is not well-represented in the examples above
nor in the model proposed by Lebedev and Beresnev (2004) and might give a twist to the
quasistatic results presented before, because this group might behave dynamically on
their own while not in contact with the vibrator.

To solve the rough contact problem dynamically in a full 3D setup is difficult and
there is hardly any literature available on this topic. For these kinds of problems, the
difficult 3D problem is typically replaced by a phenomenological model that is much
simpler, but captures the essence of the problem. Instead of the contact, a set of linear
springs with different heights, also called a Winkler foundation, is modeled. Rules for
converting the full problem to such a model can be found in the work done by Heß (2012)
and Popov (2013). Lebedev and Beresnev (2004), based on the work of Rudenko and Vu
(1994), propose to use a Winkler foundation model (Figure 1 in their paper) to describe
the vibrator-earth contact. To analyze the dynamic behavior of the contact, we use a
similar model, see Figure 4.6, with the difference that the contact springs (top springs
in Figure 4.6) are not allowed to extend beyond a certain threshold value (different for
each spring) and are connected to some “ground” mass. Each individual ground mass
is allowed to move freely but has a restoring force with respect to its displacement from
a certain reference plane. In this model, the ground can move independently from the
base plate, making the dynamic behavior most likely different from its static behavior.

a b

Figure 4.6: Multispring contact model. (a) Base plate just before it exerts a force on the ground, only a few
springs are in contact. (b) After applying the static load of the weight of the base plate, reaction and hold down
mass, more springs are in contact and some masses are displaced.

Instead of trying to convert our rough profiles shown in Figure 4.3 to an equivalent
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Winkler foundation directly, we chose to use the quasistatic results (Figure 4.4), mod-
eled with the program from Vollebregt (2014), and fit these with the multispring model
of Figure 4.6. The force-displacement curves obtained with rough surfaces, presented in
Figure 4.4, indicate that the contact becomes stiffer with increasing load. For the mul-
tispring model, this translates to more springs being in contact with the base plate at
higher loads. Two steps were made to determine the appropriate spring height distri-
bution, and hence the number of springs in contact at a certain displacement, to fit the
reference force-displacement relation of Figure 4.4. First, the spring constants were fixed
to a fraction of the smallest stiffness found in the force-displacement curve. Second, the
number of springs needed to compensate the load was calculated at every displacement
along the curve. For the reference curve in Figure 4.4, approximately 50 springs were
needed. As a last step, the masses between the springs were chosen such that their sum
equaled the mass of the base plate.

With these parameters, the behavior of the base plate was then determined numer-
ically when loaded with a static force of approximately 320 kN and driven by a linear
sweep at many different drive levels ranging from 10% to 90% of 275 kN. Some damping
was added to the masses to keep the base plate in contact to at least a single mass-spring
unit.

It is interesting to study the resulting transfers from the driving force, the linear sweep,
to the base-plate displacement for different drive levels. Figure 4.7 shows the amplitude
and phase response of the system when driven by a 12-s linear 8-to-80-Hz sweep. For
this contact model, the base plate has a resonance frequency of approximately 60 Hz at
the 10% drive level, which interestingly drops down to approximately 44 Hz at the 90%
drive level. If the system is described as a single harmonic oscillator, the resonance fre-
quency would be proportional to the square root of the effective stiffness. A frequency
drop of approximately 75% thus translates to a reduction of the effective stiffness by al-
most a half. The amplitude and the width of the frequency peak increases slightly from
low drive level to higher. Some striped patterns below the resonance frequency and es-
pecially at large force levels, indicating harmonic distortion, are also visible.

4.3. FIELD OBSERVATIONS
In 2012, a data set was obtained specifically focused on determining the amplitude-
dependent behavior of vibrator-soil interaction. Part of the data shown here were pre-
sented before by Noorlandt et al. (2013). The experiment took place near Devine, Texas.
The vibrator used was a modified 266 kN (60,000 lbf) vibrator from INOVA, mounted on
an AHV-IV vehicle. The modifications mainly dealt with reducing the harmonic distor-
tion. The experiment basically consisted of repeating the same linear 12-s 8-to-80-Hz
sweep, with different drive levels. Ten different drive levels from 5% to 90% were used,
and each drive level was repeated 10 times. After finishing the last sweep at a drive level
of 90%, the whole sequence was repeated. In total, 200 sweeps were performed with-
out moving the vibrator or lifting the base plate. The entire experiment was repeated
at a second location only 20 m from the first, but with different top soil conditions. At
the first location, the base plate was placed on grass-covered soil, at the second location
on bare soil. The vibrator controller was set to follow the amplitude of weighted-sum
ground force and the phase of the reaction mass. This was done such that the vibrator
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a b

Figure 4.7: Transfer of driving force to base-plate displacement for the multispring contact model (Figure 4.6).
(a) Amplitude and (b) phase spectra for different drive levels.

stayed within safe limits, without incorporating too much phase information from the
base plate.

The idea behind this procedure is to get information on the influence of the drive
level, permanent deformation, and repeatability of the source. Permanent deformation
is thought to be dependent mainly on the soil characteristics directly beneath the base
plate, the maximum amount of force applied, and the number of sweeps. By keeping the
vibrator on the same location during the experiment, it is expected that the compaction
of the soil reduces with number of sweeps performed. It is thus expected that the last
sweeps of each set of 10 are more comparable than the first, and that after completing the
first sequence, the lower drive-level sweeps of the second sequence are more repeatable
than those of the first sequence.

Figure 4.8 shows the measured accelerations and weighted-sum-ground-force am-
plitude spectra for the first location. In that figure, each force strip consists of 10 con-
secutive sweeps. The figure displays a total of 200 sweeps. The amplitudes have been
divided by drive-level percentages to make them comparable. Several observations can
be made. First of all, it is clear that the controller does a good job, especially above
approximately 24 Hz; the weighted-sum-ground-force signal has a flat amplitude spec-
trum, whereas the individual acceleration signals have not. The 10 sweeps done at each
drive level produce very comparable amplitude spectra and the repeatability in both se-
quences seems to be equal. The most striking, however, is that the base-plate acceler-
ation signals show a resonance, whose frequency decreases with the drive level. In the
second sequence, the amplitude of the base-plate resonance is a little bit smaller at the
lower drive levels.

To study this behavior in more detail, a correction has to be made for the fact that
the driving signal was adjusted dynamically by the controller and thus has no flat spec-
tra, as is clearly shown in Figure 4.8a. To remove the effect of the controller, the dynamic
transfer from the total driving force acting on the base plate to its displacement was cal-
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culated. Ignoring the hold-down system again, the total driving force equals the reaction
mass times its (negative) acceleration (Figure 4.1). The base-plate displacement can be
found by twice integrating its acceleration, which was done in the frequency domain.
Having determined both signals, the transfer function is obtained by dividing the dis-
placement signal by the force signal.

Figure 4.9 shows the transfer functions obtained for the first location, whereas Figure
4.10 shows the transfers for the second location nearby. The responses at these locations
differ a bit, but the main features coincide. In both cases, a resonance is present that
becomes stronger with the drive level. Also the frequency at which this amplification
occurs decreases with the drive level; although, this is clearer in the first location and
sequence than in the second location. Comparing the first sequence with the second se-
quence, it is notable that the behavior at the low drive levels is less comparable between
sequences than those of the high drive levels. This is probably caused by the permanent
deformation of the ground beneath the vibrator due to the high force levels in the first
sequence. Furthermore, at the second location, where the vibrator was placed on bare
soil, dust clouds from underneath the base plate were observed at high frequencies. The
amount of dust did not noticeably decrease, even for the very last sweep, indicating that
the contact was relatively poor and still reshaping even after approximately 200 sweeps.

a b c

Figure 4.8: Measured amplitude spectra for two sequences of increasing drive levels at the first location (grass-
covered soil). (a) Reaction-mass, (b) base-plate acceleration, and (c) the weighted-sum combination of both.
Amplitudes divided by drive-level percentages.

Besides the dynamic aspects of the vibrator, the wavelet that the vibrator produces
at different drive levels is, from a seismic perspective, even more interesting. Figure 4.11
shows for the first location the measured weighted-sum ground force and geophone re-
sponse at 850 m depth after correlation with the pilot signal. The ground-force signal
is almost completely the same for all drive levels and the two different sequences. It
is also symmetric in time, indicating that the pilot and weighted-sum ground force are
very alike. However, the signal measured in the borehole is not as stable and changes
with drive level. The first arrival shifts a couple of ms to later times when comparing
the 5% and the 90% case, for both sequences. The recordings of both sequences are
very similar, indicating that the difference in spectra between these sequences (Figures
4.8 and 4.9) only have minor effect. Similar time shifts with drive-level variation were
observed by Martin and Jack (1990). Therefore, it should be stressed that the weighted-



4

64 4. VIBRATOR-EARTH CONTACT

a b

Figure 4.9: Transfer of total driving force to base-plate displacement for field data at the first location (grass-
covered soil). (a) Amplitude and (b) phase spectra for two sequences of increasing drive levels.

a b

Figure 4.10: Transfer of total driving force to base-plate displacement for field data at the second location (bare
soil, 20 m away from the first location). (a) Amplitude and (b) phase spectra for two sequences of increasing
drive levels.
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sum-ground-force signal is only an estimate of the vibrator signature, and depending
on soil conditions and drive level, might be less applicable. Similar observations were
presented by Meunier (2011, p. 109, Figure 16).
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Figure 4.11: Weighted-sum ground-force signal (a) and (b) vertical-component borehole-geophone signal cor-
related by the normed pilot signal for different drive levels. For each drive level, the eighth sweep was plotted.
Amplitudes were divided by drive-level percentages and normed by overall maximum per plot.

4.4. DISCUSSION
There are quite some similarities between the measured transfer signals shown in Fig-
ures 4.9 and 4.10 and the modeled transfers of the Winkler foundation model shown in
Figure 4.7. In both cases, a resonance frequency is present whose frequency decreases
with amplitude. Such shift of frequency cannot be predicted by a fully linear model in
which source amplitude does not play a role in the dynamic behavior. It is therefore
tempting to interpret the frequency shifts observed in the field as a contact-mechanical
effect; however, the vibrator-earth contact might not be the only effect observed.

Reust (1993) argues that, because most soils are sublinear (force weakening), a de-
crease of resonance frequency with increasing drive level could be expected (see his Fig-
ure 5). In a field experiment comparable to ours, Johnson et al. (2009) find very simi-
lar decreases of resonance frequency with drive level. They attribute this frequency de-
crease to “modulus softening as a function of drive amplitude” and show that this hap-
pens at the source and between the (nearby) receivers (see their figures 7 and 8). Their
argument to calculate the receiver-receiver ratios is to “reduce any contamination from
potential nonlinear coupling of the vibrator plate to the ground.” Because the resonance
behavior in their source-to-receiver ratios is different from their receiver-to-receiver ra-
tios, we conclude that contact mechanics played a role in their measurements.

It would be nice to be able to distinguish material and contact induced nonlinear-
ity, but for this, further investigation of this topic is needed. Below, we discuss several
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shortcomings and improvements possible to the modeling, experiment, and processing.

Several simplifications were made in the modeling. All of the results in this work
are based on the assumption that the materials in contact can be described as linear
elastic continua, which might not be appropriate for the materials a seismic vibrator en-
counters in the field, such as rock, soil, asphalt, concrete, etc. From the often observed
permanent deformation of the material below the base plate, it is clear that this mate-
rial does not behave purely elastically or, as the work of Johnson et al. (2009) indicates,
linear. In our approach to use the quasistatic results in the multispring model (Figure
4.6), the horizontal interaction within the contact was ignored completely. This should
be taken into account because a vertical stress will convert to vertical and horizontal dis-
placements and thus will lead to a different deformation of the contact area than the one
predicted by the current model.

On the experiment side, the main shortcoming is that only two vibrator parameters
are measured, such as the accelerations of the base plate and reaction mass. Converting
these two macroscopic parameters to many microscopic parameters is inherently non-
unique. Load cells or more accelerometers will not solve this problem because first of all
they provide macroscopic information only, and second, in the case of load cells, they
alter the contact dramatically. However, insight in the dynamics of the vibrator-ground
contact can be obtained with a pressure mapping device, without affecting the contact
a lot. Results presented by Dean et al. (2015) are promising and show that the pressure
underneath the base plate is far from uniform.

Regarding the data processing, one could argue that the concept of a transfer func-
tion is only valid in the linear regime and care has to be taken not to over interpret the
results for the nonlinear case observed. Some of the responses might be more depen-
dent on timing, and thus on the choice of sweep, than on frequency as suggested by the
plot. To be able to determine the time dependency, not only the amplitude of the sweep
should be changed, but also its frequency range and sweep rate.

4.4.1. IMPLICATIONS FOR FIELD MEASUREMENTS

Several lessons can be drawn from the conducted studies. From the modeling con-
ducted it is clear that the contact behaves most nonlinear at small total loads (Figure
4.4). To avoid small total loads, the dynamic force on the base plate should be substan-
tially smaller than the static force given by the total weight of the base plate, reaction
mass, and hold-down system. Although not directly confirmed by our field data, lower
drive levels did produce smaller levels of resonance amplification. Preparation of the
contact can help to minimize the contact-mechanical effects. The smaller the height of
the air gaps between the base plate and the earth the better (Figure 4.4b). To decrease
the influence of permanent deformation insweeping, performing some sweeps before
the actual production sweeps, seems to be a good idea, but from the field measurements
it is observed that this is probably only effective if the contact preparation sweeps have a
(much) larger drive level than the succeeding (production) sweeps. Measuring the pres-
sure distribution underneath the complete base plate with a thin sensor would capture
the effect of the base-plate flexure and contact mechanical effects, leading to a better
ground force estimation. The work of Dean et al. (2015) showed that this is now possible.
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4.5. CONCLUSION
We show that the contact between the vibrator and ground can have a significant effect
on the behavior of the vibrator. Even if the applied force on the ground stays within its
linear elastic limits, the geometry of the vibrator-ground contact can cause the displace-
ment to respond nonlinearly to the applied force. As a consequence, the displacement
changes asymmetrically with a force increase or decrease. Extending the quasistatic
force-displacement relation to a dynamic study, with the help of a Winkler foundation
model, it was shown that a reduction in base-plate resonance frequency with the drive
level was to be expected. Field measurements performed with different drive levels show
similar behavior, but other causes cannot be excluded and have been discussed. More-
over, the field measurements showed that the measured weighted-sum ground force was
stable for different drive levels, but that the shape and timing of the wavelet observed in
the borehole was not. Overall, it should be concluded that the drive level, next to the
kind of sweep, is an important control variable.
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5
OPTIMIZING VIBRATOR SIGNALS

Linear sweeps are the mostly used signals to drive seismic vibrators. Their constant am-
plitude over time and flat frequency spectra are desired properties. However, the transfer
from the signal used to drive the vibrator to the seismic wave can affect these properties
considerably. Design of the phase offset of the sweep can help to reduce the low-frequency
energy of a sweep or can be used to assist in separating simultaneous-source records. Fur-
thermore nonlinear behavior of the vibrator, the ground and their contact will distort the
sweep and produce harmonics, which, after processing, show up as noise and ghost events
in the records. Nonlinear sweeps, with both sweep rate and amplitude carefully designed,
can be used to anticipate on these transfer functions and help to remove harmonic noise
from the seismic records.

5.1. INTRODUCTION
The goal of an active seismic experiment is to obtain information about the earth, by
sending a mechanical wave through it. This wave needs to be generated at the source
and captured at a receiver. The source puts constraints on the waves that can be made,
while the receiver puts constraints on the waves that can be observed. Crucial is the fact
that the receiver should have a way to identify the wave coming from a specific source
within all the ambient vibrations received. For impulsive sources, the timing and very
high source amplitudes, leading to high instantaneous signal-to-noise ratios, is used to
accomplish this. Signals originating from vibrator sources typically have a much smaller
amplitude and instantaneous signal-to-noise ratio, but the characteristics of their signal
are much better known and can be used to identify them at the receiver end.

The most common signal used to drive a seismic vibrator is the sweep. Sweeps have
a number of pleasant properties that make them very effective as vibratory source signal.

1. They are easy to calculate and generate,
2. are continuous in the time and frequency domain,
3. have a low crest factor,
4. have a controllable power spectrum and
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5. have good autocorrelation properties.

Although vibrators can be driven with other signals, designing other signals with
properties similar to the sweep is very difficult. Improvement of some of the proper-
ties of the signal typically reduces the quality of others. Dean (2014) gives an overview
on pseudorandom signal designs. All methods he discussed produce signals with either
a high crest factor or discontinuities or both. Because the peak amplitude of a vibrator
is limited, signals with higher crest factor will have lower root-mean-square amplitude
and therefore a lower signal-to-noise ratio.

In this chapter we first review the linear sweep. We will present the role of the ta-
per and phase offset. We then will discuss the difficulty that comes with the commonly
generated harmonics. Finally we will present two optimization techniques. The first
technique can be used to design sweeps that are more robust against noise of harmonic
origin. The second technique presented can be used to determine the sweep rate that
produces a signal with a desired power spectrum, given a certain time amplitude.

5.2. LINEAR SWEEPS
Sweep signals can be calculated through (see for example Aldridge, 1992)

s(t ) = A(t )sin(φ(t )), (5.1)

where A(t ) is a time-varying amplitude term and φ(t ) is a time-varying phase term in
radians, not to be confused with the frequency-domain phase spectra. The phase φ(t )
and frequency f (t ) of a sweep are related by

φ(t ) =φ0 +2π
∫ t

0
f (τ)dτ, (5.2)

where the frequency is given in Hertz andφ0 is some constant phase offset in radians. In
a linear sweep the frequency changes linearly with time, f (t ) = f0 +αt , where f0 is the
starting frequency (sometimes referred to as the carrier frequency) and α is the sweep
rate in Hz/s. The phase of the sweep is equal to

φ(t ) =φ0 +2π( f0t + 1

2
αt 2), (5.3)

For α > 0 the frequency increases over time and the sweep is called an upsweep. For
α< 0 the frequency decreases over time and we have a downsweep. For α= 0, the signal
is just a monotonic sinusoidal with a frequency equal to f0.

For linear sweeps the amplitude term A(t ) is commonly taken constant during the
sweep except for a small period of time at the start and end of the sweep, where the
amplitude is smoothly going to zero to reduce edge effects.

5.2.1. ROLE OF TAPERS
Part of a design of a sweep is the choice of a taper. The influence of a taper on the power
spectrum is best illustrated with an example. Figure 5.1a presents the power spectrum
belonging to a linear sweep for three different tapers. Applying a taper helps to reduce
the oscillations and amount of overshoot in the frequency domain, but the choice of
taper also affects the bandwidth available.
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Figure 5.1: Impact of the taper (a) and phase offset (b) on the power spectrum of a 15-s linear sweep from 1 to
30 Hz. For the taper plot, the phase offsets were chosen such that the DC component of each sweep was zero.
For the phase offset plot, a cosine taper of 200 ms was used.

5.2.2. PHASE OFFSET TO CONTROL LOW FREQUENCIES

The phase offset (φ0 in equation 5.2) has an influence on the lower end of the spectrum
as can be seen in Figure 5.1b. For the example given, a phase offset of about 60.8 de-
grees reduces the DC component of the sweep to zero (green curve), adding an extra
90 degrees increases the DC component to the highest value possible with this sweep
(red curve). The blue curve representing a phase offset equal to zero is somewhere in
between. Note that the green curve has a small DC component, but a large overshoot,
while this is reversed for the red curve.

The phase offset of any kind of sweep can always be chosen such that the DC com-
ponent equals zero as we will show here. The phase of the sweep, equation 5.2, can be
defined as,

φ(t ) =φ0 +ψ(t ), (5.4)

where ψ(t ) represents the phase change over time due to the, possibly complicated,
time-frequency function of the sweep. Instead of calculating the DC component of the
sweep directly,

X =
∫ T

0
A(t )sin(φ0 +ψ(t ))dt , (5.5)
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where T is the duration of the sweep, we integrate the complex version of the sweep,

Z =
∫ T

0
A(t )e i (φ0+ψ(t ))dt = e iφ0

∫ T

0
A(t )e iψ(t )dt , (5.6)

and use φ0 to rotate the outcome of the integral such that the imaginary part of Z be-
comes zero. Because X is equal to the imaginary part of Z , this rotation makes sure that
the original sweep will have a DC component equal to zero. Although the integral typi-
cally has to be evaluated numerically, determining the optimal rotation angle is simple.

The influence of the phase offset on the low frequency of the sweep is generally ig-
nored, but, as indicated by the work of Tellier et al. (2014), choosing the phase offset
wisely can help to get more output at the low frequencies. At the low frequencies the
maximum drive level of a vibrator is restricted due to the finite stroke of the reaction
mass and the possible presence of resonances due to (air) springs (see for example Fig-
ure 2.8). Therefore the small difference between the curves shown in Figure 5.2b can still
have a significant effect on the maximum driving force possible.

5.2.3. PHASE OFFSET TO SEPARATE SOURCES
The phase offset of the sweep can also be used to assist in separating source signals in
a simultaneous acquisition survey. The basic idea is to make multiple records and give
each source an unique phase offset pattern, so that when rotated back during process-
ing, only the desired source signal interferes constructively while all other source signals
interfere destructively. A nice description of how this works and overview on the evo-
lution of literature on this topic is given by Meunier (2011). The method itself probably
started with changing the sign of the signals used, as described by Silverman (1979) and
was later generalized to a multi-phase approach by Landrum (1987). Interestingly the
technique might also help to suppress harmonic noise in the data, because the higher
harmonics react differently to the phase offset than the fundamental signal, see patents
by Rietsch (1977a) and Edington and Khan (1991).

To elucidate the method, an example of the separation of three simultaneously op-
erating sources is given in Figure 5.2. In this example the sources are used to make three
records to enable their separation, see Figure 5.2a-c. For each record, the color of the
sweep indicates the phase offset used by the sources, blue representing 0 degrees, green
representing 120 degrees and red representing 240 degrees. Source A uses the same
sweep for all records. Source B uses a sweep with phase offset equal to 0, 120 and 240
degrees. Source C uses phase offsets of 120, 0 and 240 degrees. For illustration purposes
source A starts at 1 s, source B at 2 s, and source C at 3 s. Although it is not possible
to separate the contribution of each source from the individual records, it is possible by
combining the records. This is shown for each source in Figure 5.2d-f. First, the records
are correlated with the sweep signal used by the source of interest at the time of record-
ing (taking into account its phase offset, shown in blue, green and red). Second, the
obtained correlated records are summed together (shown in black). The correlation ro-
tates the phase offsets of the different contributions of the records, but only the phase
offset of the source of interest is rotated to 0 degrees in each record. The phase offsets
of the other source contributions vary with the records. The specific phase-offset pat-
tern used in this example makes sure that, after correlation, the phase offset of the other
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Figure 5.2: Phase offset used in a multi-source setup. (a-c) Contribution of the simultaneously operating
sources (A, B and C) to the three recordings. The color of the source signals represent the phase offset used,
blue represents 0 degrees, green represents 120 degrees and red represents 240 degrees. (d-f) Procedure to
extract the contributions of the three different sources. First, each record is correlated by the sweep used by a
specific source (blue, green, red). Second, the results are added together (black).
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source contributions is equal to 0, 120 and 240 degrees in one of the records. Therefor by
summing the records their contribution vanishes.

Although the example shows that the method works in theory, there are a number
of considerations to take into account in practice. First, the method only works if the
number of records per location is equal to, or larger than, the number of sources active.
If no stacking was needed, i.e. a single sweep per source would suffice, there is no time
improvement. Second, the dynamic range of the receivers has to be large enough to be
able to record the stronger total signal, but at the same time should be able to capture
enough resolution needed for further processing. Third, the method relies on all sources
acting completely synchronously in every record. If they do not, the separation will de-
grade. Similar degradation occurs if the phase offset produced by the vibrators is not
accurately enough. Noise and harmonics will further reduce the strength of the method.

5.2.4. SHORTCOMINGS AND HARMONICS

Linear sweeps are very useful, but there are cases where more control is required. The
power spectrum of the linear sweep with constant amplitude is flat, which is a good
property if it can be retained throughout the process of translating a vibrator drive signal
to a traveling seismic wave. However, the transfer function belonging to this translation
is typically complex and can alter the spectra significantly. Some frequencies might be
boosted due to resonances in the vibrator, ground and their contact, whereas other fre-
quencies might be attenuated strongly. To make a far-field seismic wavelet with a flat
amplitude spectrum, the driving sweep should be designed such that it anticipates on
the effects of the transfer function. For a linear sweep the only possibility to change the
spectrum is by changing its time amplitude and therefore decreasing the average energy
output of the vibrator. This might not be desired.

Furthermore, because the vibrator, the ground, and their contact do not act perfectly
linear, the source wavelet also gets distorted by harmonics. Harmonics cause the sweep
to become self-similar, due to the fact that certain frequencies appear at multiple in-
stances in time. This self-similarity generates ghost events in the seismic record. These
ghost events especially present a problem in case the ghost of one event masks the arrival
of another event. Especially linear sweeps are not very robust against harmonic noise as
we will show below.

The self-similarity of a sweep with a monotonically varying frequency caused by
higher harmonics can be elucidated by splitting the frequency range of the sweep into
octaves (powers of 2). Starting with the lowest frequency of the sweep fmin, we define
octave n to have frequencies from 2n−1 fmin to 2n fmin. For the first octave that is (partly)
covered by the sweep n equals 1, while for the last octave (partly) covered by the sweep

n equals d ln
( fmax

fmin

)
/ln

(
2
)e, where fmax is the highest frequency in the sweep. Higher har-

monics are multiples of the fundamental frequency and because the first harmonic is
twice the fundamental, the frequency range of the first harmonic belonging to octave n
will by definition overlap with the frequency range of octave n+1. Therefore it is obvious
that the last octave of a sweep can not cause harmonics that overlap with the frequency
range of the sweep. Also, by reversing the reasoning, the frequency range of the first oc-
tave of the sweep can not be present in any of the higher harmonics. As a consequence
self-similarity due to harmonics does not occur if the sweep spans only one octave or
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less. If the sweep spans more than one octave, however, frequencies in the sweep and
its harmonics overlap. Typically frequency ranges used to drive vibrators span multiple
octaves and therefore self-similarity of the seismic wavelet is difficult to avoid. Note that
the amount of overlap between the fundamental and its harmonics is only determined
by the bandwidth used and is irrespective of the time-frequency function used to gener-
ate the sweep. To illustrate this, Figure 5.3 shows the time-frequency curves of two 15-s
10-to-80 Hz sweeps and their first 9 harmonics. Both sweeps span exactly three octaves,
but have different sweep rates. For both sweeps the first 6 harmonics contain frequen-
cies that overlap with the fundamental frequencies of the sweep.
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Figure 5.3: Time-frequency curves of two 15-s 10-to-80 Hz sweeps and their first 9 harmonics. (a) Linear sweep
and (b) nonlinear sweep. Harmonics are colored red or blue depending if their frequency overlap with the
sweep or not.

Figures 5.4a and 5.4b present various correlation and deconvolution results for the
linear sweep used in Figure 5.3a. In Figure 5.4a emphasis is put on the main peak, while
in Figure 5.4b emphasis is put on the noise by muting the main peak and then applying
a gain of 10 to the data. Note the completely different time scales between Figure 5.4a
and 5.4b. The cases shown are:

I autocorrelation of the sweep (without harmonics)
II case I deconvolved for the sweep (without harmonics)

III correlation of the sweep including harmonics and the sweep without harmonics
IV autocorrelation of the sweep including harmonics
V case IV deconvolved for the sweep including harmonics

VI as case III but with white noise added
VII as case IV but with white noise added

VIII as case V but with white noise added

The harmonics were modeled with equal amplitude and phase as the sweep. Although
this does not completely match with typical observations in the field, it does help to il-
lustrate the problems faced. The white noise added was set to 25% of the peak amplitude
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Figure 5.4: Correlation and deconvolution examples at small (a) and large (b) time lags for a 15-s 10-to-80 Hz
linear sweep with and without harmonics. In plot b the main peak has been muted (|t | < 0.5 s). See text for an
explanation of the examples.

in the spectrum of the signal and was only added to one of the signals going into the cor-
relation or deconvolution. Before the wavelet compression step the data were filtered
with a low pass filter of 350 Hz.

Case I and II indicate that the linear sweep produces a nice peak (Figure 5.4a) without
noise at earlier or later times (Figure 5.4b). Because the linear sweep already has a flat
spectrum the deconvolution step (II) does not add much benefits compared to correla-
tion alone (I). The presence of harmonics (case III) does not affect the central peak (com-
pare Figure 5.4a case I and III), but does cause noise at earlier times, so called harmonic
correlation noise (compare Figure 5.4b case I and III). If the source wavelet including
the harmonics can be estimated and used in the processing, the resolution of the central
peak can be enhanced due to the larger total bandwidth of the source wavelet (Figure
5.4a case IV and V), but the price to pay is that the harmonic noise occurs on both sides
of the central peak (Figure 5.4b case IV and V). The deconvolution step reduces this har-
monic induced noise considerably (compare Figure 5.4b case V with IV) and enhances
the central peak a little bit further. In the real world the wavelet produced by the source is
not so well known as assumed in case IV and V. To display the effect a mismatch between
the true wavelet and wavelet used to compress the data, white noise was added to case
VI, VII and VIII. White noise is not the best estimate of the difficulties determining the
source wavelet in the field, but does suit the purpose of illustration here. In case VI the
recorded “data” contain the noise and are correlated with the “clean” sweep. The output
is very similar to case III, but noise is present along the whole time domain (compare
Figure 5.4b case VI with III). In cases VII and VIII the recorded “data” are free of noise,
but the noise has been added to the wavelet estimate. Comparing case VII with VIII it is
clear that correlation is more stable with respect to noise than deconvolution and that
the benefits of performing a deconvolution are greatly reduced.
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5.3. NONLINEAR SWEEPS:
CONTROL ON HARMONIC CORRELATION NOISE

To obtain more control on the power spectrum of a sweep and its robustness against har-
monic noise the amplitude and frequency function of the sweep should be optimized.
The specific choice of f (t ) and A(t ) in equation 5.1 control the time behavior of the
sweep as well as its frequency content. Qualitatively it is clear that the more time or am-
plitude is spent on a certain frequency range the more power it will obtain. To quantify
this, one needs to solve for the Fourier transform of the sweep,

Y (ω) =
∫ ∞

−∞
A(t )sin

(
φ(t )

)
e− jωt dt (5.7)

where the phase φ(t ) is defined as in equation 5.2. The power spectrum of the sweep
can be found by multiplying equation 5.7 with its conjugate, P (ω) = Y (ω)Y (ω). Even for
a linear sweep the integral in equation 5.7 can only be solved in terms of Fresnel integrals
as shown by Aldridge (1992). A more practical approach is to approximate equation 5.7
with the stationary-phase method. Rietsch (1977b,c) introduced this approximation to
the geophysical community and found that the power spectrum P (ω) of an upsweep can
be approximated by

P (ω) ≈ A2(τ)

4 f ′(τ)
(5.8)

where τ is the stationary point equal to the solution of ω= 2π f (τ), i.e. where the Fourier
transform frequency equals the sweep frequency.

Equation 5.8 can be used to design a sweep that is more robust against the effects
of harmonics. Although the generation of harmonics can not really be influenced by
the design of the sweep, the timing of the harmonic correlation noise can be modified.
For a linear upsweep the harmonic correlation noise appears as dispersed energy arriv-
ing before the main event, see Figure 5.4 example III. The time difference between the
main event and the harmonic correlation noise is completely determined by the pattern
at which the frequencies of the sweep reoccur in its harmonics. For a linear upsweep
the time difference of the reoccurrence of frequencies increases over time, causing the
harmonic correlation noise to be dispersed. The increase in time difference can be seen
in Figure 5.3a as an increase of the horizontal distance between the sweep and its har-
monics. The time difference between the sweep and its first harmonic is smallest at the
lower end (at 20 Hz the difference is approximately 2.1 s) and increases toward the high
end of the sweep (at 80 Hz the difference is approximately 8.6 s). The ghost events due
to the first harmonic therefore is to be expected from about 2 to 9 s before the recorded
main events. The higher harmonics will produce ghosts that are more dispersed and
occur at a larger offset from the main event. Although the horizontal distance in Figure
5.3 give some indication on the expected arrival times of the harmonic correlation noise,
one should keep in mind that the finite duration of the sweep will cause the harmonic
noise to be present over a larger time window than determined from the time-frequency
curves.

To increase the time offset between the main events and their harmonic ghosts for
a linear upsweep one should increase the starting frequency of the sweep and decrease
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its sweep rate. Increasing the starting frequency is not desired, because it reduces the
resolution of the seismic wavelet. Increasing the sweep rate might also not be desired,
because it increases the duration of the sweep and reduces the production speed. How-
ever, if we allow the sweep to be nonlinear, more options are available. For example if
we design a time-frequency function f (t ) that obeys f (t +∆) ≤ 2 f (t ) we make sure that
the time difference between the sweep and its harmonics is at least ∆. Therefore after
correlation the ghost will be approximately ∆ away from the main event. For sufficiently
large ∆ the harmonic noise of the last (expected) event will appear well before the first
(expected) real event.

One function that obeys f (t +∆) = 2 f (t ) is,

f (t ) = f02
t
∆ . (5.9)

Figure 5.3b actually presents an example of a sweep with such a time-frequency function
that covers the same frequency range in the same amount of time as the linear sweep
shown in Figure 5.3a. In the example given f0 = 10 and ∆= 5. Comparing this nonlinear
sweep with the linear sweep we see that the time difference between the sweeps and
their first harmonics is different. The nonlinear sweep has a constant distance (5 s), while
the linear sweep starts with smaller distances (approximately 2 s) and ends with larger
distances (approximately 9 s). It is thus expected that the nonlinear sweep will have a
larger offset between the main event and its harmonic ghosts than the linear sweep.

If the amplitude of a sweep with a time-frequency function as in equation 5.9 is kept
constant, the power spectrum will decrease rapidly with frequency. The appropriate
time amplitude A(t ) belonging to a specified power spectrum P (ω) can be found by sub-
stituting equation 5.9 into 5.8,

A(t ) = 2

√
P

(
2π f (t )

) ln2

∆
f (t ). (5.10)

For a flat power spectrum, like P (ω) = 1, it is clear that the amplitude needs to increase
with frequency to compensate for the increasing sweep rate over time. Two issues make
a direct application of a sweep with this amplitude and time-frequency function imprac-
tical.

First, a vibrator can only be driven up to a certain maximum amplitude. Therefore
the amplitude function has to be fitted into the dynamic range of the vibrator. To be able
to produce the strong amplitudes at high frequency, the amplitude at the low frequen-
cies need to be small. This might lead to unacceptable signal-to-noise ratios at the low
frequencies.

Second, because the time difference between the occurrence of a certain frequency
in the sweep and its first harmonic is constant, the harmonic correlation noise of the first
harmonic will be much more focused in time as compared with a sweep with constant
sweep rate. Although this happens at a controllable offset from the center peak (at −∆)
this still might not be desired.

To solve these issues we propose to use a hybrid method. At low frequencies use
the exponential function and switch to a linear scheme when the sweep rate increases
above a certain threshold. An example of this approach is given in Figure 5.5. In this



5.4. NONLINEAR SWEEPS:
POWER SPECTRUM SHAPING BY SWEEP RATE VARIATION

5

81

example a linear 10-s 10-to-100 Hz sweep is optimized. We chose ∆ as 3 s, and did not
allow the sweep rate to exceed the original sweep rate (9 Hz/s). The optimized sweep
uses the time-frequency function of equation 5.9 until the sweep rate is equal to 9 Hz/s
(at approximately 6 s) and then continues using the linear time-frequency function, see
Figure 5.5a. The original sweep is shown in red and the optimized sweep is shown in
blue. The length of the sweep increases to approximately 13 s using this optimization
procedure. To make sure the optimized sweep produces the same power spectrum as
the linear sweep (as shown in Figure 5.5b) the amplitude of the first part of the sweep is
adjusted according to equation 5.10, visible in Figure 5.5c. Figure 5.5d displays the corre-
lation of the sweeps without harmonics with the sweeps including the first 4 harmonics.
From this plot it is clear that the optimization procedure indeed is able to move the har-
monic noise away from the central peak. Note that although the noise moved away in
time, it did become stronger. Therefore this technique should only be applied in case ∆
can be made large enough.
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Figure 5.5: Comparison of a linear sweep (red) and nonlinear sweep optimized for less harmonic correlation
noise (blue). (a) Time-frequency plot showing the sweeps (solid lines) and their first 4 harmonics (dashed
lines). (b) Spectrum belonging to the sweeps (without harmonics). (c) Time amplitude of the sweeps. (d)
Sweeps including 4 harmonics after being correlated with the sweeps without harmonics.

5.4. NONLINEAR SWEEPS:
POWER SPECTRUM SHAPING BY SWEEP RATE VARIATION

Another applications of equation 5.8, and the original topic of the paper by Rietsch
(1977c), is to determine the frequency-time relation f (t ) given a time amplitude A(t )



5

82 5. OPTIMIZING VIBRATOR SIGNALS

and power spectrum P (ω). Analytical solutions to equation 5.8 can only be found for very
specific, and very limited, amplitude and power spectrum functions. In order to allow
for more general functions, numerical solutions are necessary. Rietsch (1977c) proposed
to solve equation 5.8 by a finite difference scheme based on Taylor series expansions.
He presents two sets of equations. One set can be used for the parts of the sweep where
A(t ) is constant and the other set is for those parts of the sweep where A(t ) changes over
time, due to a taper for example.

We like to propose a different method here, which we think is more elegant. Rietsch
(1977c) showed (his equation 12 and 13) that equation 5.8 can be rearranged and inte-
grated to get the following equality,

1

4

∫ t

0
A2(τ)dτ≈

∫ t

0
P (2π f (τ)) f ′(τ)dτ=

∫ f (t )

f0

P (2πν)dν. (5.11)

The difficulty in solving this for f (t ) is that the right-most integral should be inverted
and applied to the first integral. However, another method is possible to determine f (t ).
Our method is based on the observations that the first integral is a measure of the energy
of the signal in the time domain and the last integral is a measure of its energy in the
frequency domain. Both integrals can be solved numerically and extracting the time-
frequency curve can be done by simply matching the cumulative energy values from
time-domain with those in the frequency-domain.

Before this can be done, however, the energies in both domains should be made com-
patible. Equation 5.11 approximately holds for a sweep, but it is not likely to hold in case
the power spectrum and time-domain amplitude are chosen independently. To make
sure that Parseval equation holds, the energy integrals of the chosen functions should be
normalized,

E(t ) =
1
4

∫ t
0 A2(τ)dτ

1
4

∫ T
0 A2(τ)dτ

(5.12)

E( f ) =
∫ f (t )

f0
P (2πν)dν∫ fT

f0
P (2πν)dν

(5.13)

where E(t ) is the cumulative energy in the time-domain and E( f ) is the cumulative en-
ergy in the frequency domain. The normalization is possible, because the duration T ,
the starting frequency f0 and final frequency fT of the sweep are known.

The time-frequency curve is found by first constructing the cumulative time-energy
integral E(t ) and constructing the cumulative frequency-integral E( f ). Then for a certain
time t , the cumulative energy E(t ) is determined, and that value of E(t ) is used for E( f )
to find the corresponding frequency f . This latter can involve interpolation. This is
repeated for many different values of t to construct the full time-frequency curve. If the
time steps are chosen small enough the time-frequency curve can be reconstructed with
enough resolution for practical purposes.

Figure 5.6 presents an example that illustrates the method. In Figure 5.6a the pre-
scribed amplitude curve is shown. Figure 5.6b shows the specified power spectrum.
Note that the absolute values of the curves in Figure 5.6a and 5.6b are not of importance
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Figure 5.6: Design of a nonlinear sweep with prescribed time amplitude and power spectrum. (a) Prescribed
time amplitude, (b) specified power spectrum (design), (c) normalized cumulative energy of the time ampli-
tude, (d) normalized cumulative energy of the frequency spectra, (e) time-frequency relation calculated and
(f) realized power spectrum.
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for the method due to the normalization step. In Figure 5.6c and 5.6d, E(t ) and E( f ) are
plotted respectively. The method of determining a single point on the time-frequency
curve is illustrated. First, the energy belonging to a certain time instance (6 s in this case,
indicated with a cross in Figure 5.6c) is determined (0.4 in this case, indicated with a
circle). Second, the crossing of the energy found in the time domain with the energy
curve in the frequency domain is determined (circle in Figure 5.6d), because they need
to be the same according to equation 5.11, and the frequency at which this happens is
recorded (approximately 83 Hz indicated with a cross). Repeating this for enough differ-
ent time values the whole time-frequency curve can be determined, as shown in Figure
5.6e. A sweep with a time-amplitude as shown in Figure 5.6a and time-frequency curve
as shown in 5.6e produces a power spectrum that closely resembles the shape of speci-
fied power spectrum, compare Figure 5.6f and 5.6b. The difference between the spectra
are due to the finite length of the sweep and the approximation involved.

Although the skyline spectrum used for the example in Figure 5.6 has little practical
use, it does illustrate how well the method is able to produce a signal with a spectrum
that has rapid transitions between high and low values. The strength of the method,
for practical purposes, is contained in the fact that it can be used to optimize the time-
amplitude and power spectrum of a sweep independently.

If the time amplitude of the sweep is kept fixed, it is possible to increase or decrease
the energy of the sweep at certain frequencies by varying the sweep rate. This can be
used to flatten the spectrum of the output signal, by designing the input signal such
that it compensates for the transfer function of the system. For seismic vibrators the
input signal is the driving sweep and depending on the knowledge of the system the
transfer function can be modeled or measured, and might include the dynamics of; the
vibrator, the vibrator-ground coupling, and the propagation path towards the receivers.
The output signal that is optimized can thus be the force on the base plate, the force on
the ground or the seismic wavelet recorded at the receivers.

Another use of the method is to increase the energies of those frequencies at which
the vibrator is unable to operate at high amplitude, either due to environmental con-
straints or due to its natural limitations. Typically this kind of amplitude constraint is
more dependent on frequency than on time and it is beneficial to replace A(t ) in equa-
tion 5.8 by A( f ). Bagaini (2006); Bagaini et al. (2008) showed that the equation then can
be used to design a sweep that compensates for the amplitude drop at the low end of
the spectrum caused by the finite stroke of the vibrator. The amplitude drop is simply
balanced by spending relatively more time at these low frequencies (typically below 5 to
10 Hz), similarly as in the nonlinear sweep shown in Figure 5.5.

5.5. CONCLUSION
In this chapter we have discussed a number of aspects of sweeps. Starting with the linear
sweep the role of tapers and phase offsets was made clear. It was shown that the phase
offset, irrespective of the choice of taper or sweep, can always be used to remove the DC
component from a sweep signal. Some of the challenges to deal with, like the generation
of harmonics were explained in detail and we have shown that although the linear sweep
has several desirable properties, changing the frequencies in a nonlinear way can be
beneficial. Using the stationary-phase approximation of the Fourier transform of the
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sweep we presented two different optimizations. In the first optimization, the sweep
rate was adjusted in such a way that the arrival time of the harmonic correlation noise
could be controlled. This enables the design of sweeps that are more robust to the effects
of harmonics. In the second optimization we presented a new method to determine the
time-frequency relation when the time-amplitude and power spectrum are given. This
method can be used to design sweeps that have a predefined power spectrum without
having to reduce the driving amplitude. This method can be useful if one wished to
correct for amplitude effects due to the transfer from the driving force of the vibrator to
the seismic wavelet it produces in the ground.
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6
GENERAL DISCUSSION AND

OUTLOOK

6.1. GENERAL DISCUSSION
The goal of a seismic source is to generate a seismic wave that samples the earth in an
optimal way. For vibratory sources, optimal implies that the waves transmitted by the
vibrator carry a unique signature that can be recorded and identified at the receiver side,
and can be used to resolve the seismic transferal properties of the earth between the
source and the receiver with the best possible temporal resolution. The vibrator thus
has to faithfully reproduce the designed signature. However, a perfect vibrator cannot be
built and the transmission of the vibrator-force signature to the seismic signature in the
ground cannot be completely controlled either. As a consequence there is a need to mea-
sure the actual, seismic, output signature of the vibrator. The weighted-sum ground-
force method that is routinely applied can only estimate the correct seismic signature to
some extent. Therefore the used signal to drive the vibrator should be robust against the
most common distortions due to the imperfections of the vibrator and the measurement
of the actual seismic signature produced. These aspects have recurred in different ways
in the previous chapters.

Improvement of the accuracy of seismic vibrators might be achieved by using a dif-
ferent driving engine. In Chapter 2 we have shown that it is possible to build a vibrator
driven by linear synchronous motors (LSMs). The potential benefits of such an engine
compared to the more commonly used hydraulic or voice-coil engines have been ex-
plained. These benefits are all directly related to the improvement of the resolution due
to the accurate generation of a designed signal and the increase of the frequency band
at the lower end of the spectrum. However, as should be clear from Chapter 2 as well,
the driving engine is not the only component determining the quality of the vibrator. In
the development of the prototype LSM vibrator a significant amount of work has been
put in tuning the vibrator components and finding solutions for resonance frequencies
and eigenmodes belonging to the vibrator as a whole. Measuring the acceleration of the
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reaction mass and base plate without too much interference from the large AC currents
needed to drive the LSMs was a specifically hard problem to solve.

Because the faithful generation of a seismic wave with a predefined signature is so
difficult and all the seismic data are correlated with the source signature, measuring
the actual signature of the wave emitted by the source is of great importance. Litera-
ture indicates (see Chapter 4 and references therein) that the de-facto standard of the
weighted-sum-ground-force approximation does not always predict the emitted signa-
ture properly. This can also be observed in some of our experiments described in Chap-
ter 3. The coupling with, and the properties of, the ground beneath the vibrator has a
significant impact on the behavior of the vibrator and the wavelet it emits. In the ex-
periment where the weighted-sum ground force was controlled (Section 3.4), drive-level
dependency of the wavelet recorded in a borehole was observed, while this dependency
was not reflected in the ground-force estimate. The amplitude at which the vibrator op-
erates clearly has an important imprint on the signature it produces.

One of the implicit assumptions of the weighted-sum approach is that the vibrator
can be modeled as an 1D system that is in perfect contact with the ground. This assump-
tion neglects that the true contact will vary over the base-plate area. In Chapter 4 we
showed that a rough vibrator-ground contact influences the behavior of the base plate
in a nonlinear way. The model predicted a decrease of base-plate resonance frequency
with drive level, similar to that observed in the field experiments (Chapter 3). Although
the modeling was limited, it does indicate that the 2D/3D effects cannot be ignored if
one aims to improve resolution of the method.

Although the driving engine of a vibrator might be improved (Chapter 2), factors such
as the vibrator-ground contact (Chapter 4) will always alter the seismic signature pro-
duced to some unknown extent (Chapter 3). Therefore besides optimizing the vibrator
and the method of determining the source signal, one should also make the intended
source signature robust against the expected distortions. In Chapter 5 we described a
number of methods to facilitate a robust design of a sweep. We showed that with a proper
design of a sweep, the harmonic correlation noise can be moved to arrival times where
it is less harmful to the record. We also presented a new method to determine the time-
frequency distribution when the time-amplitude and power spectrum are given. With
this method it is possible to adjust the output power spectrum of the vibrator without
having to reduce the time amplitude, possibly compensating for the transfer function of
the vibrator.

The chapters of this thesis should at least have clarified that the vibroseis method
is complicated. Some parts of the setup are more or less static and can be controlled,
such as the design of the vibrator and the signature it should produce. Other parts of
the setup are more dynamic, spatially and temporally, such as ground properties and
vibrator-ground contact. If one aims to improve the vibroseis method per se, all these
aspects should be considered together as they are inextricably intertwined.
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6.2. OUTLOOK
As with every research, answering one question nearly automatically generates a next
one. Here we would like to present a list of topics that are worth investigating further.

• We have successfully proven the concept of an LSM-driven vibrator. However, a
question remains if the technique can be scaled up for deep, i.e. a few kilometers,
exploration purposes. In principle we do not see many difficulties, because only
the number of LSMs needs to be increased. Of course the mechanical structure
of the vibrator should be fit for this larger number of LSMs and the power supply
should be carefully designed.

• LSMs are also well suited to drive a shear-wave vibrator. Due to their flat shape, it is
possible to design a shear-wave vibrator whose driving force is applied very close
to the base plate. This will help reduce resonances and nonlinearities commonly
seen for example with voice-coil driven vibrators, in which there is a considerable
vertical distance between the point at which the force is applied and the base of
the plate. A small (700kN) prototype has been developed, but again the question
of scalability is unanswered.

• To investigate the role of geometric nonlinearity due to the vibrator-ground con-
tact, it would be interesting to repeat the drive level test with a shear-wave vibrator.
Because the vertical load on the ground does not significantly change with drive
level for a shear-wave vibrator, it is expected that the effects caused by a chang-
ing contact geometry with a vertical vibrator would be absent in case a shear-wave
vibrator is used. Therefore comparing the outcome of a vertical and horizontal
drive-level test, would help to understand the role of contact between the vibrator
and the ground.

• Another experiment that would help to gain insight in the effects caused by the
vibrator-ground contact is to measure the contact area and pressure over the whole
base plate during the excitation. Literature shows that a number of attempts were
made in this direction, but until now no data was obtained over the entire base
plate or without affecting the dynamics too much.

• Next to the geometric-induced nonlinearity, the intrinsic nonlinear properties of
the ground should be studied as well. The permanent deformation beneath the
base plate visible in the field, is definitely a manifestation of nonlinear ground
behavior. The question is whether its dynamic effects diminish after a number of
sweeps and whether it is somehow possible to take these effects into account.

• We showed that robust sweeps can be designed such that recorded seismic data
is less affected by harmonic correlation noise and the transfer from the vibrator
to the ground. However, the approach used depends on the assumption that am-
plitude and time can be interchanged, i.e. a signal with short duration and high
amplitude will produce the same spectral strength as a signal with smaller am-
plitude and longer duration. Although this is true in the noise-free case, ambient
noise will impose a limit to how small the amplitude can be and still be detected.
The signals designed with the methods described should therefore be tested in the
field to find out to what extent the methods can be applied.
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