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1. INTRODUCTION

1.1 Active Noise Control

The elimination of acoustic noise with the aid of anti-noise is based on the principle of
linear superposition of waves. This principle implies that at any point in a medium where
several acoustic waves are present, the resultant acoustic pressure equals the sum of the
pressures due to each wave individually. The consequence of this superposition principle
is that the addition of two acoustic waves may result in a zero acoustic pressure (silence)
at certain positions in the medium. Lord Rayleigh already observed these ‘points of
silence’. In ‘The Theory of Sound’ [1] he derives the geometrical position of the
cancellation positions, given two sources having the same ‘pitch’ as he calls it. He notices
that it is difficult to set up an experiment in which points of silence are realised and then
writes:

‘Perhaps the most satisfactory form of the experiment is that described in the
Philosophical Magazine for June 1877 by myself.

“An intermittent electric current, obtained from a fork interrupter making 128
vibrations per second, excited by means of electro-magnets two other forks, whose
frequency was 256. These latter forks were placed at a distance of about ten yards
apart, and were provided with suitably tuned resonators, by which their sounds were
reinforced. The pitch of the forks was necessarily identical, since the vibrations were
forced by electromagnetic forces of absolutely the same period. With one ear closed it
was found possible to define the places of silence with considerable accuracy, a motion
of about an inch being sufficient to produce a marked revival of sound. At a point of
silence, from which the line joining the forks subtended an angle of about 60°, the
apparent striking up of one fork, when the other was stopped, had a very peculiar
effect”.

If the acoustic pressure at a point of silence X, = (X,,¥,,2,) due to one of the forks equals
Pp(X;, 1), then the resultant pressure at X, is equal to zero if the second fork generates an

acoustic pressure at X, equal to
ps(x1!t) = —pp(xvt)'

This simple principle can be used to eliminate unwanted, primary noise emitted by
machinery, exhausts or whatever sources: a loudspeaker sends out the ‘anti-noise’ and the
result is silence. This way of reducing noise is called Active Noise Control (ANC)
because the original, primary wave field is influenced actively. It is contrary to the passive
ways to control noise for which mufflers, barriers and absorbing materials are used.

Effective active noise control is in practice not simple. There are three major problems in



reducing noise with anti-noise; they represent the three principal fields of research in
ANC.

The first problem is an acoustic problem. Using anti-noise, the acoustic pressure is
cancelled locally at one (or a few) positions in the volume. The primary wave field at
other positions in the volume will be affected too, and there is no guarantee that the
acoustic pressure will be reduced globally. At some positions the pressure may even
increase.

In addition to the acoustic problem there is a control problem. The primary pressure
P,(X,,1) is a time function and the secondary pressure p(X,,t) due to the anti-noise
source must have the same time dependency. Since the anti-noise signal has to be
calculated before it can be fed to the anti-noise source, the controller must be able to
predict P, (X;,1). In order to do so a controller model is needed which contains prior
information. Furthermore, since the anti-noise source generally is not situated at the
cancellation position X,, the acoustic transfer function between the source position and the
location X, must be taken into account.

Finally there is also the hardware problem: generally the complex control problem
mentioned above cannot be solved with an analog controller; a control algorithm has to be
executed real time on a digital computer. Since the computational effort can be
considerable, the costs of the hardware can be so high that from an economic point of
view it is not realistic to use ANC in noise abatement.

Recently hardware costs have come within an acceptable range for the simplest
applications. At the moment ANC systems are commercially available for the reduction of
the noise in ventilation ducts and the ‘booming noise’ in cars (second order engine
harmonic).

This thesis comprises the results of a research on the first two problems: the acoustic
problem and the control problem. It is the aim of the research to design complete active
noise control systems to be used in practice. Therefore much attention is paid to laboratory
experiments and the use of anti-noise in practical applications. The theoretical derivations
in the chapters 2,3 and 4 are illustrated with the laboratory experiments and in the last
chapter some results of active noise reduction in practice will be given.

1.2 The acoustics of anti-noise
1.2.1 The acoustic problem

The acoustic problem in ANC was stated in the previous section: local cancellation does
not guarantee a global reduction. With the help of a simple example the acoustic problem
can be illustrated. Assume there are two monopole sources, a primary source at X, and a
secondary source at X, injecting mass into an unbounded three dimensional medium. The
sources generate a spherical wave. The mass flux per unit time at X, due to the source at
X, is represented by the source function s (t) and the mass flux per unit time at X; due
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the to source at X, is represented by the source function s (t). The pressure amplitude at
a location X due to a monopole is inversely proportional to the distance to the source
while the time lag at X is proportional to this distance. At position X the distance to X, is
b= Ix - xpl and the distance to X, equals I, = {x - XSI. The total pressure at X due to the

two spherical waves is

r v
s,(t—2) s (t—-=)
p(x,t) = C + € (1.1)

4, 4,

¢ being the propagation velocity of the acoustic waves.
Now assume a point of silence has to be realised at a pre-specified position X;. The
‘retarded’ secondary source function generating perfect anti-noise at X, is

f T, I
s (t—=t)y=—=2lg (t—2L), 1.2
s C) p ol C) (1.2)

in which r,, =[x, = X,| and r,, =[x, = x,].

As a consequence the secondary source function is

—

[p r
Ss(t)=—s—"sp(t—%’1+s—’1). (1.3)

T

Equation (1.3) shows that if there is no prior information available on the primary source
function s, (t), anti-noise can only be realised if

ot 2051 (1.4)
The local cancellation at X, will have consequences for the wave field at other positions. It
will be obvious that the cancellation is not global. There are however more positions X at

which the primary pressure is cancelled if the secondary source function satisfies (1.3).
The difference in time-lag at the locations where the pressure is cancelled must be

1 1
E(rp—rs)=6(rp‘l—rs‘l). (1.5)
In a geometric presentation all locations where the difference of the distances t, and g is

equal to (rp’, - rsv,) are found on a hyperboloid with focus points at X, and X,.In figure
1.1 the hyperboloid is depicted for a situation in which (1.5) is fulfilled.

11



hyperboloid

Figure 1.1 ; The positions where the difference in distance to X, and X, is equal to

(rp,l - rs,l) are found on a hyperboloid.

Furthermore, on all cancellation positions the ratio of the primary pressure amplitude to
the secondary pressure amplitude has to be

Pal

=L (1.6)

o o
o

In a geometric presentation the locations on which equation (1.6) holds are found on the
sphere

2 2
2 a 44
- x| =—ﬁ‘xs—xp| =—1=r, (1.7)
O—m) @—m)
I,
in which the amplitude ratio &, = rs—] The centre X, is given by
p.l
al
— __l —_—
X =X+ (x,-x,). (1.8)

1

Note that due to restriction (1.4) o, <1. |
In figure 1.2 the sphere is shown (¢, = 0.25).
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sphere
Figure 1.2 ; The positions where the ratio of the distance to X, and the distance to

. I,
X, is equal to =1 are found on a sphere.
Pt

The intersection of the hyperboloid and the sphere is a circle of positions X in a plane
perpendicular to the line which connects the two sources. Note that if 1, =T, both the
hyperboloid and the sphere degenerate to a plane halfway the two sources.

Now assume that the primary source function s,(t) is periodic with period T, than

sp(t+nT0) = s,(1), (1.9

in which n=—e,...,—1,0,1,...,00, and the restriction (1.4) no longer holds. There are
more possible values for the difference in time lag:

1
E(rp—r5)=At,ag+nTo. (1.10)

1
in which At = P (rp‘1 - rs_,). So, there are more hyperboloids on which the difference in

time lag is optimal for anti-noise and, as Lord Rayleigh [1] puts it,

“The intersections of this sphere with the system of hyperboloids will thus mark out in

most cases several circles of absolute silence.”

In figure 1.3 the intersections are drawn for periodic noise with a period T, = %A’t,ag, and
an amplitude ratio ¢, = 0.25. In addition to the circle through X, there is one extra circle

of cancellation positions.
X n=1

St z
xp / X
sphere y

Figure 1.3 ; A geometric presentation of anti-noise at X,. On the sphere equation

(1.6) holds, on the circle also equation (1.5) is fulfilled. On the second circle equation
(1.10) holds for n=1.
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Using the set-up depicted in figure 1.3, global cancellation is not possible. The acoustic
pressure is only cancelled on a number of circles. However, the pressure at other
positions is affected too. The total acoustic pressure is only reduced on locations where
the sign of the primary acoustic pressure and the sign of the secondary acoustic pressure
are opposite. The total wave field is amplified on positions where the primary wave field
and the secondary wave field have the same sign. The maxima are found on positions
where the two wave fields have the same phase. If s (t) and s(t) are sinusoidal time
functions and the minima are given by (1.10), than the difference in time lag at maxima is

1
- (r,- r) = Aty +(+ )T,

The phase lag of a wave front at X is determined by the distance to the source but also
depends on the frequency.

The acoustic pressure as a function of the frequency is found applying the Fourier
transform on the acoustic pressure as a function of time. The Fourier transform performed
on the total pressure (1.1) yields

P(x,f) = Pp(x,f) +P,(x,f), (1.12)
where
exp(—jkr.)
=8 (fl——-
P.(x,f) = §,(f) P
and

Px,f) = 5, () 2B,

. 2nf . .
The wave number is k = = The wave length is inversely proportional to the wave

number: A = 2—” The functions S,(f) and S(f) are the Fourier transforms of the

primary and secondary source functions s,(t) and s,(t) respectively.
Assuming again that anti-noise is optimal at X,, the Fourier transform of the secondary
source function is

S,(f) = — =8, (N exp(~ 7k, ~1,.))- (1.13)

The total pressure at an arbitrary position X is found substituting (1.13) in (1.12). The
addition of the secondary wave field will give a minimum of zero acoustic pressure at the
cancellation positions and a pattern of reduced and amplified acoustic pressures at other
positions in space. The pattern of destructive and constructive interference strongly
depends on the wave number. To give an impression of these interference patterns the
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reduction of the primary pressure in the set-up illustrated in figure 1.3 is calculated in the
plane y=0. The reduction of the primary pressure is given by the ratio of the primary wave
field to the residual wave field (1.12) and is expressed in dB:

P,(x.f)
PO, 6

20Log

In figure 1.4 the reduction is plotted. The primary source is situated at X, = (0,0,0) and
the secondary source at X, = (1.5,0,0) (distances are in meters). In the figure the sources
and the cancellation position are indicated and the intersection of the sphere (1.5) with the
plane y=0 (a circle) is drawn with a solid line. In figure 1.4 the difference in the distances

r the wave

b1~y =1m., so the time lag At

lag lag *

= % S.. Since the period T, = %At

lengthis A = —;- m.

Figure 1.4 ; The reduction in dB of the primary wave field in the plane y=0. The
primary source is positioned at P, given by X, = (0,0,0) and the secondary source at
S given by X, = (1.5,0,0). Note that the dark spots indicate the points of silence.

The wave field is cancelled on the intersections of two hyperboloids and a sphere, giving
in the plane z=0 two sets of points where the reduction is high. In figure 1.4 these points
of silence are indicated with dark spots, the cancellation position X, being one of them.
The figure makes clear that, except for the area close to the secondary source, the
interference pattern is determined by the hyperboloids, so by the difference between the
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actual phase K(r, —r,) and the proper phase for anti-noise k(r,,—1;,). Note that the wave

i . . 1.
field has a large amplitude near the anti-noise source where — is small.
rS

1.2.2 Anti-noise in the free field

From the foregoing it follows that global cancellation can take place if X; = X,. However,
in practice it is not feasible to position an acoustic anti-noise source at exactly the noise
source position. Theoretically it is possible to generate a secondary wave front in the
propagation direction of the primary wave front with the help of sources somewhere else.
The theory is based on the principle of Huygens, stating that each point of a wave front
may be considered to be a secondary source generating a wave field in the propagation
direction of the primary wave field. This principle implies that any wave front can be
reproduced with the aid of a suitable distribution of sources. In order to fulfill the (spatial)
Nyquist criterion the mutual source distance must be smaller than %/l.

Now assume that a number of secondary sources is placed on a part of the spherical wave
front at some distance r, of the primary source. The sources are volume sources all with
the same amplitude and phase. The source strengths are chosen as to generate a spherical
wave front at a distance r,,, having the same amplitude as the primary wave front,
generated by the primary source at X,,. The phase of the secondary wave front however is
shifted 7 radian. Destructive interference will take place and the amplitude of the
resulting wave front in the propagation direction is smaller than the amplitude of the
primary wave front. In figure 1.5 the primary and secondary wave front at a distance I, ,
from X, are depicted.

Assuming that the secondary sources are able to reproduce the primary wave front exactly
7 radian out of phase in the indicated area, the pressure in this area at a distance r 21,
from the primary source equals

o (X,1)+p,(x,8] =0, (1.14)

for all t; X is a position within the indicated area at a distance r from the primary source.
Equation (1.14) implies that the surface of secondary volume sources acts as a reflector
with a pressure reflection coefficient -1.

The inward travelling wave field, opposite to the propagation direction, will be affected
too. The interference is not destructive in this direction because the primary wave field and
the anti-noise wave field have opposite propagation directions. In figure 1.5 the secondary
wave front at a distance r_, is drawn as well.
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Figure 1.5 ; The superposition of the actual primary wave front and the anti noise

wave front in the outward direction will result in a new wave front with a reduced

amplitude. The propagation direction of the primary wave field is indicated with
arrows.

1.2.3 Anti-noise in an enclosed space, the one dimensional situation

In a one dimensional wave field the generation of a secondary wave front in the
propagation direction of a primary wave front can be realised with one source. One
dimensional wave fields are found for instance in ventilation ducts or exhausts. If a wave
field is generated in a duct at frequencies below the cut-off frequency of the duct, the
cross modes disappear resulting in plane waves propagating in the length direction of the
duct. Similar to the derivations for spherical wave fields it can be derived that in an
infinitely long duct where a primary source generates plane waves travelling in the
positive x-direction, the acoustic pressure is cancelled ‘downstream’ while a standing
wave pattern is formed ‘upstream’ (see figure 1.6).

In chapter 2 the acoustical implications of one dimensional anti-noise will be discussed. It
will be shown that in the ideal situation the anti-noise source (a loudspeaker) also acts as a
reflector having a pressure reflection coefficient equal to -1. In chapter 5 an example will
be given for duct noise caused by a vacuum pump in a chemical plant.

17



anti-noise source

'upstream’ R ‘downstream’
primary I primary
—— ————
— 00 + oo
secondary secondary
— P R

————
x-direction

Figure 1.6 ; The propagation directions of the
primary and secondary plane waves in a one
dimensional wave field.

1.2.4 Anti-noise in an enclosed space, the three dimensional situation

If the primary source is placed in an enclosure, the wave field due to this source is not
only determined by the outgoing spherical wave front, but also by the multiple reflections
at the walls of the enclosure. In enclosures where there is only little damping these
multiple reflections largely determine the wave field. In these circumstances it is more
convenient to describe the wave field with the help of eigenfunctions. In case an
acoustic wave field is analysed with eigenfunctions, it means that functions are chosen
that describe the wave field at natural frequencies. The natural frequency itself is in that
case the eigenvalue. The wave pattern at a natural frequency is usually called an
eigenmode of the system. A mathematical proof can be given that not only the discrete
states at the eigenvalues, but also the states in between two eigenvalues can be described
with a weighted superposition of the complete set of eigenfunctions. In unbounded media
the use of eigenfunctions does not have any practical meaning. In enclosed wave fields
eigenfrequencies arise at frequencies which are linked with the dimensions of the
enclosure. The wave field in a reverberant enclosure at a natural frequency is described
with one eigenfunction, the wave field at frequencies between two natural frequencies can
only be fully described with an infinite number of eigenfunctions. If the wave length of
the wave field has the same order of magnitude as the dimensions of the enclosure, the
number of eigenfrequencies per frequency interval (modal density) is small. At low
modal densities the influence of eigenmodes with a high eigenfrequency is negligible and
the wave field between two natural frequencies can be described accurately with a
restricted number of eigenfunctions. The important implication for ANC is that it can be
shown that a wave field, which can be described with N eigenmodes, can be cancelled in
the whole enclosure with N properly positioned anti-noise sources [2].

In chapter 3 the acoustic implications of anti-noise for three dimensional wave fields with
a small modal density will be discussed. In practical situations there is always some
absorption at the boundaries of the enclosed wave field, so the derivations are more
complicated than in a non absorbing enclosure. Using a few assumptions, a simple model
can be applied which gives a clear insight in the possibilities of anti-noise in enclosures.
In chapter 5 an example of the application of three dimensional anti-noise in a cabin of a

18



small truck (a delivery van) will be given.

1.3 Adaptive control in anti-noise
1.3.1 The control problem

In section 1.1 three aspects of the control problem were mentioned: the controller must
have a model to calculate the anti-noise signal, the controller needs some prior source
information and the controller has to take into account the (partly) acoustic secondary
process between the controller output and the cancellation position. In figure 1.7 the
anti-noise set-up is drawn.

pm

cancellation

amplifier

fiiter RN model |

Figure 1.7 ; The typical control problem in ANC: the controller must have
prior information on the primary pressure P,(Xy,t) and must know
the transfer function between s(t) and ps(X,,1).

In this thesis only feed forward models are considered. In a feed forward model the input
contains prior information of the primary pressure p,(X,,t) at the cancellation position.
The relation between the controller output signal s(t) and the pressure p,(X,,t) must be
taken into account. It is defined by the transfer functions of the reconstruction filters,
amplifiers and the acoustic environment. In chapter 4 the incorporation of the secondary
process in ANC will be discussed.

1.3.2 The controller model

The controller model must be able to predict the primary pressure p,(X,,t) at the
cancellation position based on prior source information. For that situation the model
describes the relation between the prior source information and the primary pressure. Note
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that besides the modelling of the primary pressure p,(X,,t), the controller must take the
secondary process into account. The parameters of the model are often the coefficients of
a polynomial. However in case the primary noise is periodic, it is advantageous to use
Fourier coefficients as controller parameters.

The most common way to collect the prior information is a sensor ‘upstream’. This sensor
gets information of the primary signal before it arrives at the cancellation position. In a
feed forward configuration this sensor signal is used as an input of the controller. In the
figures 1.8 and 1.9 two examples of a feed forward configuration are shown. In figure
1.8 the prior information is gathered using an ‘upstream’ detection microphone,
measuring the incoming primary wave front. In this case the controller model comprises
the transfer function between the position of the detection microphone and the cancellation
point. The acoustic delay caused by the time it takes for the wave fronts to travel from this
detection microphone to the cancellation position is used by the controller to calculate the
anti-noise signal s(t). The major complication of this method is the fact that generally the
detection microphone will not only receive the primary wave front, but also the (delayed)
secondary wave field and its reflections to the boundaries (the anti-noise feed back, see
figure 1.8). The primary and secondary wave field are correlated, and instability problems
are likely to occur. To overcome these complications a complex controller model is
needed. Therefore this method is only used if there is no other possibility to get prior
source information. It is applied for example in ANC systems for the reduction of
stochastic fan noise in ventilation ducts.

o Q\;p

Py(x,.t)

p( X1, t) cancellation
o—

point

prior source information

model

Figure 1.8 ; Feed forward configuration for broadband noise.

Especially in the case that the primary noise is excited by rotating machinery like the
engine of a vehicle, there is a simple way to overcome anti-noise feed back. For rotating
machinery the noise to be reduced is periodic and comprises the revolution frequency of
the main shaft and a number of harmonics. Using a sensor mounted on the engine the

20



momentary revolution frequency (and of course the harmonics) are available and can serve
as prior information. The model contains the relation between this sensor and the primary
pressure at the cancellation position. It can be assumed that there is no anti-noise feed
back on this sensor, and therefore a simple controller model suffices. In most cases this
model only comprises the relation between the sensor and the primary pressure for the
revolution frequency and a number of harmonics, and not the relation for broad band
noise. Obviously the method can only be used to reduce the frequency components related
to the revolution frequency of the engine. In figure 1.9 a feed forward configuration for
rotating machinery is depicted.

/;\ \ >
A /*

model
prior source information

Figure 1.9 ; Feed forward configuration for periodic noise.

P (X, 1) .

cancellation
— o— point
p.(X,:t)

1.3.3 Adaptive control in a closed loop

In practical situations the controller model parameters and the secondary process are not
known exactly. Furthermore, the signals and acoustic processes are time variant. For
those reasons the controller must be adaptive: the controller must be able to adjust its
parameters continuously to the optimal values. In order to do so the controller must have
information on the performance, i.e. the residual noise level at the cancellation position. In
the open loop feed forward configuration shown in the figures in the previous section the
residual noise level is not available to the controller. In figure 1.10 the closed loop feed
forward configuration for periodic noise is drawn. In this configuration the residual signal
is incorporated. Obviously the residual signal in anti-noise is generally measured with a
microphone.

In chapter 4 the use of adaptive control in ANC is discussed, and a comparison is made
between a controller the parameters of which are the coefficients of a polynomial model
and a controller the parameters of which are Fourier coefficients. Two types of ‘Fourier’
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controllers are discussed: the well known block oriented controller in which (fast) Fourier
transforms are performed on blocks of data and a myopic controller in which the Fourier
coefficients are updated sample by sample.

The two practical examples are described in chapter 5. Both have Fourier controllers: the
duct noise caused by a pump is reduced with a one-dimensional block oriented Fourier
controller and the interior noise in the delivery van is reduced with a multi dimensional

myopic Fourier controller.

P, (X, 1)

cancellation
point

(7 N

Py (X 1)

residual

prior source information

Figure 1.10 ; The feed forward closed loop configuration for periodic noise.
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2 THE ACOUSTICS OF ANTI NOISE IN A ONE
DIMENSIONAL SITUATION

Introduction

Active noise control (ANC) is based on two main theoretical fields: Acoustics and
Adaptive minimization techniques. In this chapter the acoustics underlying anti noise will
be reviewed and a one-dimensional system (a duct) will be considered. Theoretical
implications will be illustrated with results of measurements in the laboratory.

2.1 The basic equations
2.1.1 The wave equation

The derivation of the acoustic wave equation is based on momentum conservation and
mass conservation and is described extensively in literature, Berkhout [3] and Skudrzyk
[4] for example. In the derivation resulting in the equations given in this section the
following assumptions are made. Shear forces and viscosity are neglected. The basic
equations of mass conservation and momentum conservation are linearized. The
differential relation between the density and the pressure is taken to be linear (only the
linear term of the Taylor series) and it is assumed that the adiabatic equation of state for a
perfect gas may be used. The following symbols are used:

p is the acoustic pressure, it is a function of time t and position X = (X,y,2),

P, is the static pressure, it is constant in time and position,

P, is the static volume density of mass, it is constant in time and position,

7=(v, Vv, v,)" is the acoustic particle velocity (a vector),

g is the volume density of the injection rate and

f =(f 11 )" is the volume density of the external force (a vector).

The ratio of the specific heat at constant pressure and the specific heat

C
at constant volume is kK = —&.
CV

The equation of momentum conservation is

a0 -
Vp + Psgzti = f, (2.1.1)

whereas the equation of mass conservation reads

1 dp ~
- V.o = q. 2.1.2
*p. 9t + V.o q ( )
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From these equations the wave equation is derived

oo 1P _ 99 vz
Vp I - 2, &t+V.f, (2.1.3)

in which ¢? is the squared propagation velocity of the acoustic waves

¢ = EPs
Ps
With the help of the Fourier transformation the equations can be written in spectral

components. In the following equations f is the frequency and the wave number K is
defined as

k=22,
C

Replacing lower case symbols for quantities in the time domain by upper case symbols for
quantities in the frequency domain, the equation of momentum conservation

VP(x,f)+ jkpcV(X,f) = F(x.f), (2.1.4)

and the equation of mass conservation
V.\7(x,f)+;—|;P(x,f) - Q) 2.1.5)

s

yield together the (inhomogeneous) Helmholtz equation
VP(x.f) + KPxf) = - jkp,cQxf)+V.F(x,f). (2.1.6)
2.1.2 Boundary conditions

Since the equation (2.1.6) has to be solved in a bounded medium the boundary conditions
must be known. The boundary conditions can be found if the conservation equations
(2.1.4) and (2.1.5) are integrated from a point just left of the boundary to a point just right
of the boundary (figure 2.1.1). The positions X; and X; around the boundary at
X, = (X,,Y,2) are defined as

X, =(xg,y,2) and X; =(X;,Y,2), 2.1.7)
in which
X} = Al’i(n%(xb +iAx) and X = Al)i(n})(xb -1Ax). (2.1.8)
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Integration of the x-component of momentum conservation gives the equation

j aP(x Deix + j kpCV, (x,f)dx = j F (x,f)dx, (2.1.9)

Xg

while integration of mass conservation yields

Wxa(:,)x ]9{ (x.f) WXf)]dx+JJk (x, fidx = joxf)dx (2.1.10)

Xp Xp

boundary
fluid
X g /
- bound?ry
material

P, f) | P(x;..f)

b?

'

Figure 2.1.1 ; The positions X, and X, around the boundary.

Using (2.1.8), equation (2.1.9) reduces to

PO -POGH = [F.xhdx @.1.11)

Xp

whereas equation (2.1.10) becomes

Vv, (x2,H -V, (x;,0) = joxf)dx (2.1.12)

Xp
If there are no sources in the layer the boundary conditions simply are
P(x;.H)-Px;.H) = O,

V(x;,))-V(x;,f) = O. (2.2.13)
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Often the boundary conditions are expressed in terms off the normal specific acoustic
impedance of the boundary material. The normal specific acoustic impedance is defined as
the ratio between the normal velocity and the pressure, giving here

Pxp.f) _ PO

Z(x;,f) V.0 = Vo) (2.1.14)
again assuming that there are no sources in the layer around X,,.
2.1.3 The potential energy
The power flow of a wave field through a surface is:
w=pd.iidS, (2.1.15)
s

in which the direction of 7 is perpendicular to the surface S. To find the power flow
through a closed surface S, Green's first theorem and equations (2.1.1) and (2.1.2) are
applied to a volume V, enclosed by a surface S (there are no sources inside V, appendix
A, 2.1: Potential energy):

w=§p5.ﬁds=—i P sakv. (2.1.16)
7 atd|2pc? 2™

The net power flow (out of the volume) is equal to the decrease of potential and kinetic
energy of the volume element. So the instantaneous potential energy density is

p2

oot = 2o (2.1.17)
while the time averaged potential energy density equals
17 p?
€, == |——=dt. 2.1.18
Pt T 2pc? ( )

For a periodic time function with period T this may be rewritten as ( appendix A)

E}P(xv,nAf)l2
épot zw, (2.1.19)
s

. 1
in which X, is the position of the volume element and Af=?, or
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o 2R
Cpot = -"‘5?— (2.1.20)

in which P, (x,) = AfP(x,,,nAf) are the Fourier coefficients.

2.2 One dimensional situation
2.2.1 The extrapolation matrix

Consider a one dimensional wave field propagating in the x-direction like noise in a rigid
walled duct at frequencies below the cutoff frequency (appendix A, 2.2). The
conservation equations (2.1.4) and (2.1.5) for plane waves in the x-direction can be
written in a compact form using a vector

)

&0 = lvh)
SO

IBXA) | ABx )+ S(x.f), 2.2.1)

ox

0 -jkp,e . F.(xf)

- whi - |-jk = | x
in which A ;JE 0 and  S(x,f) ( Q(x,f)}

The derivation of the solution of the differential equation can be found in Wapenaar and
Berkhout [5]. The solution is

Bou) = Mx—x,HB(x,.0)+ [Mx—x,H5(x,dx’, (2.2.2)
where M(x — x,,f) is the extrapolation matrix (appendix A, 2.2 extrapolation matrix)

cos(k(x—x,))  —jp.csin(k(x—x,))
_—isin(k(x -x,))  cos(k(x—x,))

M(x - x,,f) (2.2.3)

The pressure and velocity at a position X in a one dimensional wave field can thus be
found by extrapolating the pressure and velocity at a position X, and adding to it the wave
field caused by the sources between the two positions.
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2.2.2 Wave-field in a duct with a volume source

In figure 2.2.1 a one dimensional system with a source in the duct wall at position X, is
schematically drawn. The surface of the cross section of the duct is A . The length of the
duct between the boundaries is L. A variable position in region I of the duct (figure 2.2.1)
is denoted with X, whereas a variable position in region II is denoted with X;;. The source
is a small surface (A ) moving with a velocity V,(f). The inner acoustic impedance of the
surface is infinitely high. The volume injection rate of the source thus is

U = AN().

There are no other sources present in the duct, so F (X,f) =0 everywhere.
It is assumed that the volume injection rate density in a layer of thickness AX at the
position of the source (X = X, see figure 2.2.1) is uniform, so the particle velocity in the

x-direction in the layer is

v = S0,
d
SO (2.2.4)
ape,h = .

Hence for X, < X, <X, and kAx <<1

TM(X,I—X’,f)é(x’,f)dx’ = M(xu—xp,f)(vof)]. (2.2.5)
X d
Z(0,f) P Z(L.f)
e

x=0 X=X_ x=L

Figure 2.2.1 A duct with a source at position and boundaries at x=0 and x=L

The boundary conditions are determined by the boundary-material (and what is behind the
material). The boundary conditions at x=0 and at x=L can be expressed in the specific
acoustic impedance of the boundary material seen by a wave field in the fluid (figure
2.2.1). Without concerning about the actual values, we will assume that we know the
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specific acoustic impedance at the boundaries at Xx=0 and x=L, so

P(O,f) _ P(L,f)
—V(O,f) =Z(0,f) and __V(L,f) =Z(L,f). (2.2.6)

The wave field in the duct is completely described with two vector equations and the
boundary conditions. For the wave field at a position in region II the equations are

B(xy, ) = M(x,., )B(O,) + MOX, — X, f )(vo(f)]’
d
and (2.2.7)

B(x,,,f) = M(x, - L, HB(L,f).

Note that the acoustic pressure at the source position is continuous, whereas the acoustic
particle velocity is not continuous:

0
Va(H)

] for x;-x;—0.

B(x:,f)-B(x;,f) = (

Similar equations hold for the wave field in region I.
Often in a source free region of the one dimensional wave field the impedance
transformation formula is used. It is found with the extrapolation matrix:

(%o, f)cos(k(x—x,)) - jp,csin(k(x - x,))

Z—(X"—’;) sin(k(x—x,))

S

Z, (xf)= z , (2.2.8)

cos(k(x—x,))—

in which Z, (x,f) denotes the specific acoustic impedance at position X, extrapolated from
X,

2.2.3 The power flow in the duct

In section 2.1 the power flow through a surface is given (equation (2.1.15)).
The time averaged power flow through a surface of cross section A is

A T
A ) 2.2.9
w T E[pvxdt ( )

Similar to the potential energy (appendix A) this can be rewritten for a real periodic time
function with period T to
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2A,

W=

ZRe[P (X NATV(X, nAf)} (2.2.10)

Considering only frequency component f=nAf , the time averaged power flow at a position
X is found

W(x.f) = A"He[P OV, )] @2.2.11)

With the help of the extrapolation equation (2.2.2) it can be derived that, if there are only
volume sources present between X and X, (appendix A,2.2 Power flow),

Re[P*(x,f)V(x,f)] - Re[P*(xo,f)V(xo,f)]JrIRe[P'(x',f)Q(x',f)]dx', 2.2.12)

50, in the duct described in the previous section, the time averaged power flow is

Wi f) = 2Be Re[ (x[,,f)V(xH,f)} 2A, Re[ *(xp,f)Vs(f):I, (2.2.13)

or, using Fourier coefficients
W.(x,) = 2AdRe[P:(xn)Vn(xn)J+2A5Re[ (x )] 2.2.14)

for X, <X, <X, . Obviously, if there are no sources between x; and X,

W(X1 £ = W(Xn’f) .

2.3  Anti noise in the duct
2.3.1 The experimental set-up

In this section the wave field in a duct in anti noise conditions will be derived. The
theoretical derivations will be illustrated with the results of experiments.

There are two volume sources in the duct: a primary source P at position X, having a
volume velocity Ups(f) = AV(f) (see equation 2.2.4) and a secondary source S at
position Xg having a volume velocity U (f) = A Viy(f) (figure 2.3.1). A variable position
in region I of the duct is denoted with X,, a variable position in region II is denoted with
x,; and a variable position in region III is denoted with X, .

The objective is to minimize the potential energy in a part (or region) of the duct. This is
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done by minimizing the quadratic pressure on a sensor at position M (the error sensor) by
adapting the source strength of S. As a result the potential energy in the duct regions will
change (and not necessarily decrease).

The (complex) impedances at the boundaries are Z(0,f) and Z(L,f).

In the experiments a circular duct is used with a diameter of 0.15 meter and a signal
frequency of 240 Hz, this is well below the cutoff frequency of the first higher order
cross mode (approximately 1100 Hz). The total length of the duct is 3.53 m, in figure
2.3.1 the duct is schematically drawn. The primary source position X, is 0.62 m., the
secondary source position Xg is 2.91 m.. The left and right termination of the duct were
closed with damping material. The Standing Wave Ratio (SWR, the ratio of the maximum
pressure to that of the minimum pressure) due to the reflection at one of the boundaries is
approximately 2 (in decibels : 6 dB). The anti noise source signal is computed with help
of an active noise controller for periodic noise (HADAP UNIT"). The adaptive algorithm
used in the controller minimizes the quadratic pressure measured by a so called error
sensor at position X,. The adaptive algorithm will be discussed in chapter 3. The pressure
in the duct was measured with an array of microphones with a spacing of 0.1 m. The
pressure sensor which is part of the ANC system is also part of the measurement array.
The microphones were placed through holes in the duct wall to avoid excessive wiring
inside the duct.

Z(0,1) P S Z(L1)
I 1l 111

x=0 X,=0.62 x=2.91 L=3.53

Figure 2.3.1 ; The three regions and the two sources in ANC
2.3.2 Anti noise downstream the secondary source: X, in region III
The anti noise condition in region III is P(x,f) =0, which implies that V(Xy,f)=0,

since the SWR is not infinite.
Hence, the wave field in the duct during anti noise can be described with

[P(thf)) = B = Mxg-xhHBxH + fM(xm_x',f)é(x',f)dx'.(z.z..l)
Vx(xm!f) x

Since the boundary condition at Xx=0 is known, the source strength of the anti noise

source (or secondary source) related to the source strength of the noise source (or primary
source) can be found with the impedance extrapolation formula and
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Pu®)) _ 2 .
(Vx(xm,f)) = 0 = M(x;,HBOf) +

0 0
+ Mxy —xp’f)[vpd(f)J + M(xp —Xs,f)[v d(f)] (23.2)

This equation can be solved simply if both sides are multiplied with M(x, — x;,f), and
then rearranging the equation to

_ 6] 0
-M(x,,f)B(O,f) = [Vpd(f)J + M(xp—xs,f)(V (f))' (2.3.3)

The relation between the velocities of the sources is

U = - U,,_(f)c . (2.3.4)
cos{k(x, - X,)) + —Z—](’;(i_T)sin(k(xp -%,))
0\ p»

The acoustic pressure in region III, and so the acoustic pressure at the secondary source
position is zero. As a consequence there is no power flow in region II and III (see
equation 2.2.11), and no acoustic energy is generated or absorbed by the secondary
source. During anti noise the secondary source acts as an acoustic reflector with a
pressure reflection coefficient of -1.

Furthermore the standing wave ratio (SWR) in region II will be infinite.

The wave field in region II is determined by

Bx,,f) = —M(x, —xs,f)(v O(f)} (2.3.5)

An interesting situation arises if sin(k(x, —x,))=0, and so P(x,,f)=0.
In this case neither of the sources radiates energy into the duct, the amplitudes of the
volume velocities of the sources are equal and there is only a standing wave between the
sources.

The cancelation of the sound pressure in region III can have a negative as well as a
positive effect on the power radiated by the primary source.

In an experiment the set up as described above is used (see figure 2.3.1). The error sensor
is placed in region IIT at X,;=3.32 m.. In the figures the amplitude of the pressure (SPL)
has been drawn as a function of the position X in the duct. Three wave fields are depicted :
the primary wave field (U,(f) = 0), the secondary wave field (U,(f)=0) and the total
wave field during ANC.

In figure 2.3.2 the pressure amplitude of the primary wave field (solid line) and the
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pressure amplitude of the secondary wave field (dashed line) as measured by the
microphones are plotted in one figure. The secondary wave field is the acoustic field the
secondary source radiates during the generation of anti noise. This pressure can be
measured by computing first the anti noise (or secondary) signal which cancels the
primary noise on the error microphone (we need the primary field for this) and then
switch off the primary noise without further adapting the anti noise signal.

The frequency is 240 Hz, so the wavelength is 1.43 m.. There is a shift of the interference
pattern in the solid line at the primary source and in the dotted line at the secondary
source. Because of the damping at the duct terminations the ratio of the maximum
pressure amplitude to the minimum pressure amplitude (Standing Wave Ratio) is not very
large (in decibels: approximately 6 dB).

pressure [dB]

-20

T I I T I T
05 1.0 15 2.0 25 3.0

x [m]

Figure 2.3.2 ; The pressure amplitude of the primary wave field (solid line) and of
the secondary wave field (dashed line).

In figure 2.3.3 the sum of the total acoustic fields is depicted: it is the actual pressure
amplitude measured in the duct during the generation of anti noise. In region III the
pressure amplitude is almost zero. Due to the near field of the loudspeaker the pressure
drop at the secondary source is not very sharp.

The standing wave ratio in region II, between the two sources is approximately 20 dB, so
it has increased considerably compared to the SWR in figure 2.3.2.
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Figure 2.3.3 ; The amplitude of the total pressure during anti noise in region IIl.

2.3.3 Anti noise between the sources : X, in region Il

The anti noise condition in region Il is P(x,,f) = 0. However, this does not imply that
V(x,,f) =0, since there is a source between X, and the boundary. Hence, the wave field
in the duct during anti noise is described with

+ jM(x—x',f)é(x',f)dx'. (2.3.6)

- 0
B(x,f) = M(x—x,,,f)(v(x f)]

The relation between the source strength of the secondary source and the source strength
of the primary source can only be found using two vector equations (besides the boundary
conditions (2.2.6)). For convenience they are written in the form

- 0
M(xp—xn,n(v(f f)] - M, DBO.H + [vdm)‘ (23.7)

and

0 ~ 0
M(x, - xn,f)(V (x f)) = M(x,-LOBLf) - Mx, - xs,f)(VSd (f)). (2.3.8)

With the help of the impedance extrapolation the following relation is found

au,(f)

cos{k(x, - X))+ ffx—s;ﬁSin(k(xp -x,))

U = + , (2.3.9)
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cos{k(x, ~ %))+ ZLJ(‘;: fsinlkx, ~x,)

JpsC
Z,(x;, 1)

in which @ =

cos(k(x, X))+ sin(k(x, - x,)) .

The reduction of the pressure at a sensor position in region II will cause a standing wave
between the sources. In the nodes the pressure is zero, and there is no power flow in
region II. As a consequence the Standing Wave Ratio in region II during anti noise will be
infinite.

In an experiment the error sensor is placed in section IT at X;=0.81 m..

20 |
P
. 10%\/\/—\/—\/\5/'
m N ~ -~ ~
5 / N \ N .
o o N/ R N </ NaaNg
3 I I m
o *m
2 10
20
[ | I I I [
0.5 1.0 1.5 2.0 25 3.0

x [m]

Figure 2.3.4 ; The pressure amplitude of the primary wave field (solid line) and of
the secondary wave field (dashed line)

In figure 2.3.4 the pressure amplitude of the wave field due to the primary source
(U,(f) =0, solid line) and the pressure amplitude of the wave field due to the secondary
source (U, (f) = 0, dashed line) are plotted in one figure.

In figure 2.3.5 the pressure amplitude during anti noise is plotted. There is an extreme
pressure minimum at the position of the error sensor. The standing wave ratio is large
compared to the primary and secondary wave field, as expected.
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Figure 2.3.5 ; The amplitude of the total wave field during anti noise in region Il
(sensor position x=0.81 m.)

2.3.4 Anti noise ‘upstream’
If the controller microphone is placed in region I, to the left of the primary source, the anti
noise system is called 'up-stream’ .

The anti noise condition in region I is P(x,,f) = 0, which implies again that V(x,,f) = 0.
So the wave field can be described with:

Bixf) = [Mx—x,HS(x,fHdx’. (2.3.10)
The relation between the source volume velocities during anti noise in region I is

uf) = - Up(f)(cos(k(xs ~X,))+ Z—j%sin(k(xs - X, ))]. (2.3.11)

The pressure in region I and so the pressure at the primary source is zero, which means
that the primary source does not generate or absorb energy during anti noise in region I.

As a consequence there is no power flow in region I and II and the SWR is infinite.

Again the wave fields are measured. The error sensor is placed in section I near the left
termination of the duct (x;=0.2 m.).

36



pressure [dB]

0.5 1.0 15 2.0 25 3.0
x [m]

Figure 2.3.6 ; The pressure amplitude of the primary wave field (solid line) and of
the secondary wave field (dashed line).

In figure 2.3.6 the pressure amplitude of the primary wave field (U(f) = 0, solid line) and
the pressure amplitude of the secondary wave field (U, (f) = 0, dashed line) as measured
by the microphones are plotted in one figure.
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Figure 2.3.7 ; The amplitude of the total wave field during anti noise in region L.

In figure 2.3.7 the pressure amplitude measured in the duct during the generation of anti
noise is depicted. Left of the primary loudspeaker the pressure-level is very low, although
there is some influence of the near field of the primary loudspeaker. The SWR in region II
is rather large.
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2.4 Conclusions

The acoustic pressure and the particle velocity in a multi-source, one-dimensional situation
can be found elegantly with the help of the so-called extrapolation matrix (equation 2.2.2,
[5]). This equation is very effective to quantify the pressure and the particle velocity in a
duct in which anti noise is generated. Derivations and measurements show that with the
assumption of perfect anti noise there is no power flow between the (monopole) noise
source and (monopole) anti noise source. Furthermore, with the assumption of perfect
anti noise, in the ‘downstream’ configuration the acoustic impedance at the secondary
source is zero whereas in the ‘upstream’ configuration the acoustic impedance at the
primary source is zero. This means that in the ‘downstream’ configuration the secondary
source and in the ‘upstream’ configuration the primary source act as an acoustic reflector
having a pressure reflection coefficient of -1.
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3 THE ACOUSTICS OF ANTI NOISE IN A THREE
DIMENSIONAL SITUATION

Introduction

From a practical point of view active reduction of noise in a three dimensional wave field
is much more complicated than active reduction in a one dimensional field. Reflection of a
primary wave field by creating a zero impedance, as in a duct, can only be realised using a
plane filled with sources having a mutual distance small compared to the wavelength.
Furthermore, if we want to isolate a noise source in space, it must be surrounded by a
closed surface of sources. In an enclosure however, the sound pressure can be reduced
considerably without reflecting the wave field or isolating the noise source if the modal
density is low. At low modal densities the wave field is largely determined by only a few
eigenmodes. This means that the (opposite) acoustic field generated by the noise source
can be reconstructed with a (small) number of anti-noise sources, even if the position of
the noise source is unknown. As a consequence the potential energy is not brought to zero
but minimized. In most applications the objective is to minimize the global potential
energy. However, in some applications the pressure level in parts of the enclosure is of
no concern and it can be advantageous to minimize the potential energy locally.

A clear review of the mechanisms of anti noise in enclosures at low modal densities can
be given by describing the wave field due to a number of sources as a weighed
superposition of the eigenfunctions (the eigenmodes) of the enclosure. The description of
a (standing) wave field as a superposition of eigenmodes is developed by Morse [6] and
is worked out by Nelson c.s. [7-9]. A simple set of eigenfunctions will be used here since
the objective is not to describe exactly the wave field in a complicated enclosure, but to
make clear why ANC can work in an enclosure at low modal densities.

The theoretical derivations will be illustrated with results of experiments performed in a
small enclosure: a box of compressed wood having dimensions 1.00 m. x 0.85 m. x 0.33
m.. The rigid walls of this enclosure have a pressure reflection coefficient close to one.
Small loudspeakers excite the wave field which is measured with the help of many
microphones.

3.1 The acoustic pressure as a superposition of eigenfunctions

3.1.1 The Greens function in an enclosure

The wave field in an enclosure is largely determined by its (inner) form and dimensions,
the boundary conditions, the medium and its non-homogeneities and the acoustic sources
present in the enclosure. In most applications the form is irregular, the boundary

conditions are complicated and there are many sources. As a consequence the wave field
is difficult to model. However, to understand the mechanisms of anti noise in an
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enclosure at low modal densities it is not necessary to compute the exact acoustic pressure
in a complicated enclosure. Insight in the possibilities of anti noise in enclosures can be
given using a model, based on the superposition of eigenfunctions. The medium in this
model is considered to be homogeneous, and the sources present have a high internal
impedance and there are no external sources.

The three dimensional wave equation is derived in section 2.1.1.:

VP(x,f) + KPx.fy = - jkp,cQ(x,f). (3.1.1)

The solution of an inhomogeneous Helmholtz equation can be derived in several ways.
For reasons mentioned above the solution is derived assuming that a wave field in an
enclosure can be described by a weighed superposition of eigenfunctions: a multiplication
of a weighing coefficient depending on the frequency and an eigenfunction depending on
the position:

P(x.f)= Y a,(fiF,(x). (3.1.2)
n=1
In general the wave field may be interpreted as a weighed superposition of a finite number

of eigenfunctions rather than a superposition of an infinite number of weighed
eigenfunctions. A set of eigenfunctions

¥ (x), (3.1.3)
is chosen having the following properties:
¥ _(x) satisfies the homogeneous three dimensional Helmholtz equation

V¥ (x)+k2Y,(x)=0, (3.1.4)
and the homogeneous boundary condition

9¥%) | i, B, ¥, (%) = O, (3.1.5)
an,

in which ny, is the direction perpendicular into the boundary.
The real part of the eigenvalue

k, = (2nf, + j6,)/ ¢,

determines the eigenfrequency f, belonging to it whereas the imaginary part, determined
by the modal damping §,,, stands for the absorption.
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Note that (X, ) does not depend on the order of the eigenfunction n which means that the
normal acoustic impedance at the wall, defined as

P(xy,f)

Vi, (%,1)’ oL

Z, (x,,f)=

does not depend on the frequency.
Since (x,) does not depend on the eigenfunction number n the following relation holds
(appendix B)

J"I’n(x)‘{’m(x)dV=0 ifnzm. (3.1.7)

Vanclosure

The equations (3.1.4) and (3.1.5) applied to an enclosure with given dimensions and
boundary conditions yield the chosen eigenfunctions of this enclosure up to an arbitrary
(complex) factor. Often the arbitrary factor is chosen so that

j‘{’(x (x)dV =1 ifn=m, (3.1.8)

Venckosure

yielding normalized eigenfunctions.
In the following derivations only normalized eigenfunctions will be used.
The combination of the equations (3.1.1), (3.1.2) and (3.1.4) yields

3 a, (H(k? - k2%, () = —jkp,cQx f). (3.1.9)

n=0

In order to compute a coefficient a,(f), both sides of equation (3.1.9) are multiplied by
¥ (x), and the result is integrated over the volume V of the enclosure giving

jo (x,F)¥, (x)dV, (3.1.10)

) Vsource

in which (3.1.7) and (3.1.8) have been used.
A simple unit source with a high inner impedance (volume source) at position
X, = (X,,¥,,2,) has a source strength:

Q(x,,f)=5(x-x)8(y - ¥)8(z - z). (3.1.11)

Using (3.1.2) and (3.1.10), the sound pressure at a position X, = (X1, YmsZyn) due to a
simple source at X, can be found. It is called the Greens function of the enclosure:
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G(x,,, X, )= 2( fkps) (X, (X,). (3.1.12)

In the following derivations we assume that the sources are velocity sources, having an
infinitely high impedance. Consider a source mounted in a wall. The wall is situated in a
y-z plane at X=Xy, The source has a uniform surface velocity V,(f) in the x-direction. The
source strength is

Q(x,f) = Vi (y,2,HE(x - X, ), (3.1.13)
while

V. (y,zf) = V,(f) on the source surface
and

V. (v,z,f) = 0 elsewhere.

The acoustic pressure at a position X, = (X, ¥, Z,,) due to this source can be written as a
superposition of the eigenfunctions with the help of (3.1.2) and (3.1.10). Using Green's
function (3.1.12) the pressure is:

P(Xyf) = V() [GXy %, fidydz. (3.1.14)
SSOUYCS

and X, =(X,,Y,2).

As a consequence, the frequency response from the 1th velocity source having a uniform
surface velocity V(f) to a position X, is

P(Xp,f)
~V—(f)—-Hm|(f) | G X, Tidydz. (3.1.15)

Ssour::e |

3.1.2 A simple set of eigenfunctions

An eigenfunction of an enclosure actually describes a standing wave field at an the
eigenfrequency. Considering a wave field to be a superposition of plane waves
propagating through the enclosure and reflecting on its walls, the wavelength has to 'fit’
into the enclosure to create a standing wave (appendix B). The wave number connected to
this wavelength (the eigenvalue) strongly depends on the inner form of the enclosure and
the boundary conditions. In enclosures having an irregular form, complicated boundary
conditions and non-homogeneities, the eigenfunctions and eigenvalues are difficult to
find. However, in a rectangular enclosure with rigid walls a very simple set of
(normalized) eigenfunctions can be found using the homogeneous Helmholtz equation.
The solution of the homogeneous wave equation is derived using a plane wave
decomposition and an orthogonal basis (x, y and z) parallel to the walls of the box
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(appendix B):

Y. (x) = Lc:,,xenyenz ! Vengosure - €OS(K,, X) cos(k, y)cos(k, z), (3.1.16)

where in an enclosure with dimensions L, Ly L,

x” nz r.lz
k, =-*-, k"vzl_y_y and k,, =7, (3.1.17)

in which n, = 0,1...c0, n, = 0,1...cc and n, =0,1..., and
g, =lifn, = Oand g, =2ifn, >0 (and likewise for €, and €, ).
The wave number of eigenfunction n (the eigenvalue) is

k, =1/k§x +ka +kp . (3.1.18)

The eigenfunctions given by (3.1.16) have a simple form. To illustrate one, the

eigenfunction for whichn, =1, n, = 1 and n, =0is given by

y10(0) = A7V, cos(x)cos (),
x y

is plotted in figure 3.1.1 for a rectangular enclosure.
RN YA'A
\ o

_ _J4/V

pressure

&

Figure 3.1.1 ; The eigenfunction of the 1-1-0 mode
on a linear scale.

Obviously, since the eigenfunctions are real in this standing wave field, there exist only a

positive and a negative phase (phase difference 180°). The phase distribution of the first
six eigenfunctions in the rectangular enclosure of dimensions 1.00 m x 0.85 m x 0.33 m
is depicted in figure 3.1.2.
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Figure 3.1.2 ; The phase of the first six eigenfunctions in a rectangular box.
3.1.3 The number of dominant eigenmodes

The number of eigenmodes that completely determines the wave field is infinite.
However, not all eigenmodes contribute to the wave field to the same extent. In general
the wave field in an enclosure may be interpreted as a superposition of a limited number
of eigenmodes rather than a superposition of an infinite number of eigenmodes. So, using

the coefficient-vector a(f) = [a1(f) aN(f)]T, and the eigenfunction-vector
P(x) = [F(x) .. ‘PN(X)]T, the acoustic pressure (3.1.2) can be written in a vector
notation as

P(x,f) = a(f)T¥(x). (3.1.19)

The Green's function (3.1.12) can be written in a matrix notation using a diagonal matrix
A(f) having elements

kee
Am(f)= (K*-K2) , (3.1.20)
0 n#m
yielding
G(X,,, X, f) = P(x,) AF)F(x,). (3.1.21)

The elements of the matrix A(f) determine the amplitudes of the eigenmodes and depend
on the frequency. Whether eigenmode n is important to the Green's function or not
depends on the eigenfunction n at the source- and sensor position.

The eigenmodes contributing substantially to the wave field are called the dominant
eigenmodes. Considering equation (3.1.20) it will be clear that the number of dominant
eigenfunctions strongly depends on the denominator values and so on the excitation
frequency. If a source in the enclosure excites a wave field at a frequency near to an
eigenfrequency the amplitude of this eigenmode will be large compared to the other
eigenmode-amplitudes. As a resnlt the wave field is largely determined by this
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eigenmode. Note that the first eigenfunction at k; =0 is

‘P1(X) = V 1/Venclosure .

At very low frequencies the first eigenmode is the only dominant eigenmode, and as a
consequence the acoustic pressure of the wave field will be close to uniform, as the
influence of the other eigenmodes is small.

At excitation frequencies between the eigenfrequencies more eigenmodes contribute
substantially to the wave field. In that case the number of dominant eigenmodes strongly
depends on the modal density. The modal density is defined as the number of eigenvalues
per frequency-interval and can be made visual considering the three dimensional
eigenvalue-space (appendix B). The number of dominant eigenmodes strongly increases
if the modal density increases.

To give an impression of the influence of the excitation frequency on the number of
dominant eigenmodes, the modal amplitudes of the diagonal matrix (3.1.21) of the
rectangular enclosure (dimensions 1.00 m x 0.85 m. x 0.33 m.) have been calculated and
are depicted for six different eigenfrequencies. In the six figures along the vertical-axis the
logarithms of the modal amplitudes are plotted at a position on the horizontal axis which
matches with the eigenfrequency.

In figure 3.1.3 the amplitudes are plotted for an excitation frequency of 266 Hz, which is
close to the fourth eigenfrequency of 263 Hz. The fourth eigenmode clearly dominates the
wave field and is more than 10 times larger compared to the adjacent eigenmode
amplitudes. At the excitation frequency of 282 Hz in figure 3.1.4 the amplitude of this
eigenmode has diminished, so the relative influence of the adjacent eigenmodes is larger.
At 300 Hz, depicted in figure 3.1.5, the domination of the fourth eigenmode has nearly
disappeared and several eigenmodes determine the wave field. In figure 3.1.6 the modai
amplitudes at an excitation frequency of 318 Hz are shown. The amplitude of the fifth
eigenmode is larger here while at 336 Hz, close to the fifth eigenfrequency of 340 Hz, it
dominates the wave field. This is plotted in figure 3.1.7. In the figure 3.1.8 the fifth
eigenmode has diminished again.

In the measurements which will be discussed in the next section all sensors are placed in a
x-y plane (at z=0.025 m.). The wave field in a plane at z=z, is determined by the

eigenfunctions

Y, (x) = cos;(knxx)cos(kny y)cos(k,, Z,) (3.1.22)

With the help of the sensors, placed in the x-y plane, the n, —ny —n, mode cannot be
distinguished from the n, —ny, —0 mode. Therefore, the wave field in the x-y plane is
described with an alternative set of eigenmode coefficients in which each n, —ny —n,
mode (ny and ny fixed) is added to the ny —ny — 0 mode. This new set of amplitudes for
an excitation frequency of 300 Hz is also calculated and it is depicted in figure 3.1.10.
next to the global set of eigenmodes which are plotted again in figure 3.1.9.
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The calculated modal amplitudes in a rectangular enclosure.
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Figure 3.1.9 ; The modal amplitudes at  Figure 3.1.10 ; The modal amplitudes
300 Hz of the complete enclosure. if only the x-y plane is considered.
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There is a slight difference in the amplitudes and there are of course less eigenmodes
(approximately 30 eigenmodes up to 1000 Hz). Up to about 300 Hz however, the
dominant eigenmodes in the x-y plane are also the dominant eigenmodes of the enclosure
(x-y-z space). In active noise control the number of dominant eigenmodes will prove to be
very important. A complicated wave field determined by many eigenmodes is difficult to
reduce actively.

3.1.4 The eigenmodes in a rectangular box

The number of dominant eigenmodes is studied in the box of compressed wood. In figure
3.1.11 the measurement set-up is drawn schematically. The source is placed near to the
ceiling on position (Xpays YmaxsZmax)- The 64 measurement microphones (8x8) are placed
on a height of 0.025 m. in a regular grid.

source

Figure 3.1.11 ; The measurement set-up,

there are 64 microphones.

The complex eigenvalues are found solving the Helmholtz equation (3.1.1) under the
constraint of the boundary conditions. In the box which is used in the experiments the
modal damping is small, since the pressure reflection coefficient of the walls is close to
one.

The eigenfrequencies of the box can be estimated by measuring frequency responses. A
source is placed in one of the corners of the box generating broad band noise while the
acoustic pressure is measured with a microphone in an opposite corner. The theoretical
values of the wave numbers based on the dimensions of the box (equation 3.1.17) and the
measured values are compared. The measured values deviate slightly due to the presence
of the source and because the walls are not completely rigid (Table I in appendix B).

Not all dominant eigenmodes contribute to the wave field to the same extent. As derived
in the previous sections the wave field can be considered to be a superposition of a limited
number of weighed eigenfunctions. The acoustic pressure, measured on a sensor, is in
this description data in the space-frequency domain found after a transformation from data
in the eigenvalue-frequency domain. The transformation equation is (3.1.2). On the other
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hand the amplitudes of the eigenfunctions in a measured wave field are found using the
backward transformation. In this way the number of dominant eigenfunctions determining
a measured wave field can be measured using many microphones. The equation
transforming the (measured) data in the space-frequency domain to the eigenvalue-
frequency domain is derived using a least squares solution.
Suppose there are M microphones, placed in the enclosure at positions X,---X,. The
pressures can be put in a pressure vector. The pressure vector can be written as

P(x1,) Pa)T

: = : a(f) +€ (3.1.23)

Pow)] | P

where li’(xm) and d(f) are N dimensional vectors, N being the number of dominant

eigenmodes. The vector € stands for the errors.
Obviously the vector 4(f) can be estimated if the eigenfunctions and the values of k, , kny

and k,, are known (and M2 N). Using a vector and matrix notation the vector a,(f) for

which the squared error £"€ is minimized is (appendix B)
i, = [¥7P] ¥R (3.1.24)

This is the least squares error solution of the (forward) vector equation (3.1.23) and it
yields the amplitudes of the eigenmodes (see also section 3.2). Unfortunately the exact
eigenfunctions and the exact values of k, , k"y and k,, are not known, even not in the
rectangular enclosure.

In the measurement set up 64 electret microphones are placed in a horizontal plane
(2z=0.025 m.) in the box, so only the eigenmodes in the x- and y-direction can be
measured. In the set-up the largest mutual distance between the microphones is
approximately 0.18 m. As a consequence a detectable eigenmode must have a wave length
larger than approximately 0.36 m (940 Hz). A loudspeaker is placed in a corner of the
box.

The synthetic eigenfunctions

W, (x) = cos(kp, x)cos(knyy)

are calculated for 20 eigenvalues (up to 800 Hz) while the values of k, and kny are

computed according to equation (3.1.17). The eigenfunction vector thus is
P(x)" = [1 cos(mx/L,) cos(my/L,) ... cos(4ny/Ly)], (3.1.25)

where the last element is the 20" eigenfunction.
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The eigenfunction vectors and the measured pressure at the microphones are used in
equation (3.1.24). This method to measure the coefficient amplitudes of the x-y plane
contains some inaccuracies:

- for economical reasons 64 microphones of medium quality are used, as a

consequence maximum deviations of 25° in phase are found.
- spatial aliasing of the eigenfunctions with eigenfrequency above the
Nyquist frequency (940 Hz) is inevitable,
- the true eigenfunctions and eigenvalues will deviate from the synthetic
ones.
Nevertheless, the method gives the amplitudes of the eigenmodes if the measured wave
field in the x-y plane is thought to be built up by the synthetic eigenfunctions, and that
will do for the purpose the method is used for: to make an estimation of the number of
dominant eigenmodes in the box at a given excitation frequency.
In a first experiment the loudspeaker excites the wave field at 269 Hz, close to the fourth
eigenmode (see table I, appendix B). The pressure level found on the microphones is
depicted in figure 3.1.12 in a three dimensional plot. The x- and y-axis correspond with

20
f=269 Hz
- 20 157
— F10-
o D
0 5 =
5
@B 2
Ny “ L b hl 1\
--20 0 T T 1

200 400 600 800
Eigenfrequency  (Hz)

SAS

Figure 3.1.12 ; The pressure level at  Figure 3.1.13 ; The estimated amplitude
269 Hz. of the coefficient vector.

the x- and y-axis in the measurement set-up (figure 3.1.11), while on the z-axis the
pressure level is depicted in dB. The fourth eigenfunction can clearly be seen in this
figure.

The (absolute) mode-coefficient amplitude, calculated with the measured pressures and
the synthetic eigenfunctions are depicted in figure 3.1.13. The amplitude of the fourth
eigenmode (266 Hz) is much larger than the others.

In a second experiment the wave field is excited at a frequency between two
eigenfrequencies (333 Hz). In figure 3.1.14 the pressure level is depicted. The wave field
is more complicated and it is determined by more eigenfunctions. In figure 3.1.15 the
amplitudes of the eigenmodes are drawn, showing that there are definitely more
eigenmodes contributing to the wave field.
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Figure 3.1.14 ; The pressure level at Figure 3.1.15 ; The estimated amplitude
333 Hz. of the coefficient vector.

In both experiments the number of dominant eigenmodes is limited.
The figures make clear that the measured coefficients depend on the difference in
frequency between the excitation frequency and the eigenfrequency.

3.2 Anti noise in an enclosure

The objective in ANC is to minimize the local or global potential energy. However, a
ANC system always uses error sensors (microphones) and will in most cases not be
capable to measure the global potential energy. In fact the sum of the squares of the
pressures on those error sensors is minimized. The implications of this least squares
solution for the global and local potential energy can be derived in a simple way using a
vector notation. First the least squares solution will be derived.

3.2.1 Least squares solution in anti noise

The pressure on the sensors is determined by the given primary (noise) sources and the
controlled secondary (anti-noise) sources. The sum of the squared pressure-amplitude on
M sensors due to the primary sources and L secondary sources is

2

M 2 M
N Pt (%) = Zle(xm,f) + PSJ(xm,f)+...+Ps‘L(xm,f)] (3.2.1)
m=1 m=1

in which P, (X,,,f) is the pressure on sensor m due to the primary source configuration,
while P, (x,,,f) is the pressure on sensor m due to secondary source .

Assume that the secondary source | has a (uniform) surface velocity V|(f) and that H__ (f)
is the frequency response of source | to sensor m. Equation (3.2.1) can be rewritten to
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M 2 M L 2
2 Pt B = X P () + 3 Hey (HVi() (3.2.2)
m=1 m=1 I=1
Using the vector notation ﬁl(f) = [H“(f) HMll(f)]T, equation (3.2.2) can be rewritten
to
L 2
B =[B(H+ X HEV() - (3.2.3)
=1
The L source-strengths are placed in a vector too, giving
P, f)| =[B,(H)+H(f) V(f)| (3.2.4)

in which H(f) = [fL(f) ﬁL(f)], a MxL matrix, and V(f) =[V,(f) .. V.(f)]".
B0 is

The optimal source-strength vector which minimizes the squared vector-length

the least squares solution of the vector-equation

B, (f)=B,(f) + HOV(H), (3.2.5)

while |P

ot f)| is the least squares error.

T | PO

Figure 3.2.1 ; Geometric interpretation of anti noise on the sensors.
V() =[V,() VL,(NI', the dimension is given by the number of sensors.

This least-squares problem can be interpreted as a geometric problem in M dimensional

space. The length of the M dimensional vector 13m(f) is minimum if ﬁot(f) is orthogonal
to all vectors H,(f) (figure 3.2.1), in other words if the dot product is zero for all |:
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H(f)-B,(f)=0, all I. (3.2.6)

Developing the dot products we find

H'(H)B, () + H(H(f)V,, () =0, (3.2.7)

yielding
V() = —[H'(DH] H (DB (7). (3.2.8)

The optimum source-strength vector can only be found if the square matrix H*(f)H(f) is
not singular. Singularity of this matrix occurs if the vectors H(f) do not form a
independent system, so if

A= 3 cA (3.29)

i=1,i!

and ¢, are complex constants.

Considering the geometric interpretation some important consequences are clear:

1] A unique optimum vector cannot be found if H,(f)= 0 which will happen if
all the sensors are placed positions where the acoustic pressure due to source |

is zero.

2] A unigue optimum vector cannot be found if L. > M (more secondary sources
than sensors).

3] If L<M, adding an independent secondary source will reduce the vector

length of the perpendicular P,(f).

4] If L=M the vector length of the perpendicular P, (f) will be zero since the
independent vectors H,(f) form a complete base for the M dimensional
space. This means that if the number of sources equals the number of sensors,
the acoustic pressure on the sensors is cancelled completely.

Using the optimal source vector (3.2.8), the resulting pressure on the sensors is in vector
notation

B, (f) = B,(f) - H[H (OH()] HA (DB, (3.2.10)

In a number of experiments the reduction in an enclosure with the help of anti noise will
be shown. The (error) sensors are placed along the walls of the enclosure (unless stated
otherwise) to avoid that ﬂl(f) =0. In none of the experiments the number of sources is
larger than the number of sensors. The source strengths of the secondary (anti-noise)
loudspeakers is calculated (in an adaptive algorithm) with equation 3.2.9.
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3.2.2 Global reduction in an enclosure

The optimal source vector giving the least squares solution of the pressure on the sensors
will not necessarily minimize the global potential energy. The positions of sources and
sensors combined with the values (amplitude and phase) of matrix A(f) determine the
global result of reduction on the sensors. The number of sources necessary to get a
substantial reduction of the global potential energy can be derived simply using a
geometric interpretation in N dimensional space, N being the number of dominant
eigenmodes.

The unscaled potential energy density due to a frequency component f is derived in section
2.1 and is given by equation (2.1.22). The unscaled global potential energy in an
enclosure with volume V,

nclosure 1S°

E;:ol,acouslic (f) = j P(x;f)rdv .

enclosure

Assuming that B(X) is small the (normalized) eigenfunctions are real. Using equations
(3.1.19), (3.1.7) and (3.1.8) the estimated unscaled global potential energy is

E, o (f) = a(f)a(f), (3.2.11)

in which a(f) is a N-dimensional vector. The vector 4(f) can be written as a superposition
of contributions due to the primary source and the secondary sources. These velocity
sources are mounted near the walls of the enclosure and have a uniform surface velocity.
The source-strength is given by equation (3.1.13). For convenience it is assumed there is
only one primary source at a position X, having a surface A, and a velocity V,(f). There
are L secondary sources at positions X, having surfaces A, and surface velocities V|(f)
(I=1,..L). The elements of the coefficient vector are found with the help of the equations
(3.1.10) and (3.1.13)

, L
a(f)= (k_g'ip;_‘j) V,(f) [, (x, )48 + Y V() [ ¥, (x)dS |. (3.2.12)

n Ay =1 A
In anti noise the source strengths are controlled by the surface velocities of the sources,
therefore the coefficient vectors are written as a product of the surface velocity and the
coefficient vectors for a unit velocity. The coefficient vector of unit velocity for the
primary source is

a,,(f) = A() [ ¥(x,)dS, (3.2.13)
Ap
and the coefficient vector of unit velocity for secondary source | equals
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g, (f) = A(f) [ ¥(x,)dS. (3.2.14)
Al
The elements of the vector 4,,(f) are

—jK
()= (T<2]——&k§_) [n(x,)ds, (3.2.15)
A

P

and similar for @,,,. The total vector now can be written in the form

() = Vy 0 )+ 3 V(P ) (3:2.16)

The optimum source-strength-vector Vif)= V() ... V.(f)]" minimizing the length of
the coefficient vector #(f) (and so the global potential energy) is the least squares solution
of equation (3.2.13). Similar to the geometric interpretation in M (number of sensors)
dimensional space, the optimum vector @(f) is orthogonal to all vectors 4, (figure
3.2.2).

V, (08,00

-V, (a,.(f) | &D

—V, (DA (NN - - - -7

Figure 3.2.2 ; Geometric interpretation of the
least squares solution in N-dimensional space.
There are 2 secondary sources.

In figure 3.2.2 a geometric interpretation of the least squares solution is depicted. A
substantial global reduction only can be realised if the secondary source vectors can
construct a vector more or less in the direction of the primary source vector. Since the
vectors are largely defined by the N dominant eigenmodes, a considerable global
reduction is guaranteed if there are N independent secondary source vectors, and so N
secondary sources distributed in the enclosure. This means that at low modal densities
and at an excitation frequency close to an eigenfrequency the number of secondary
sources needed is small.
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However, a fair global reduction with less sources is possible if their positions are
cleverly chosen. The direction of a source vector in N dimensional space is given by the
(dominant) eigenmodes and the eigenfunction values at the source position (3.2.15)., the
vector

Obviously the vectors 4,,(f) and d,(f) are equal if the positions of primary source and
secondary source | are equal. Furthermore, as long as the mutual distance of the two
sources is small compared to the wavelength of the highest order dominant mode, the
coefficient vectors will be approximately the same which means that only one source is
needed.

It is to be noted that the potential energy with or without anti noise is written as a
superposition of the squared weighed eigenfunctions. Since the eigenfunctions describe
standing waves, there is no power flow in the enclosure. This means that, similar to anti
noise in a duct, no (acoustic) power flow to or from the sources is involved in anti noise
in an enclosure. The reduction is caused by a destructive interference of the primary and
secondary wave fields.

A few experiments in the rectangular box are carried out to study the reduction of the
acoustic pressure at the microphones in the x-y plane in the box and to verify the vector
presentation of anti-noise. At low frequencies the reduction at the microphones may be
considered to be close to the global reduction.

3.2.3 Anti noise in the rectangular box: reduction in the x-y plane

The experiments are carried out in the rectangular box mentioned before. The anti-noise
source signals are calculated with the help of a multi channel (8 inputs, 4 outputs) active
noise controller for periodic noise (OCTOPUS"). There are six controller microphones
mounted close to the bottom and one to four anti-noise sources mounted near the ceiling.
The wave field is measured with 64 measurement microphones (figure 3.1.10). In a first
experiment the primary source is placed in a corner of the box (see figure 3.1.10), while
an anti-noise source is placed in the corner opposite to it. The controller microphones are
placed along the walls (see figure 3.2.3).

Figure 3.2.3 ; The positions of the controller microphones
close to the bottom of the box.

The excitation frequency is 333 Hz which is between the fourth and fifth eigenfrequency.

In figure 3.2.4 the primary wave field is shown in a three dimensional presentation, while
in figure 3.2.4 the estimated modal amplitudes are depicted.
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Figure 3.2.4 ; The pressure level at Figure 3.2.5 ; The estimated amplitude
333 Hz. of the coefficient vector (primary field).

Global reduction with the help of the secondary source is not possible in this situation. At
the excitation frequency there are a good deal of dominant eigenmodes. Furthermore, the
eigenfunctions at the two source-positions are not consistent in phase (figure 3.1.2) , and
as a result the vectors 4,,(f) and 4,(f) have completely different directions in the N
dimensional coefficient space. In figure 3.2.6 the resulting wave field is shown. Although
the form of the wave field is definitely different from the primary field shown in figure
3.2.4, the reduction of the averaged squared acoustic pressure on the 64 microphones is
small (approximately 3.2 dB).
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Figure 3.2.6 ; The pressure level at Figure 3.2.7 ; The estimated amplitude
333 Hz. of the coefficient vector (residual field).

The estimated modal amplitudes are shown in figure 3.2.7. Noticeable is the shift in
modal amplitudes due to the anti-noise wave field: the fourth and fifth eigenmode which
are consistent in phase on the source positions (figure 3.1.2) are reduced while some
other eigenmodes (2, 3 and 6) are enlarged. This experiment shows that due the different
directions of the coefficient vectors the anti-noise source cannot reduce the potential
energy substantially.

In a second experiment the secondary source is positioned again in the opposite corner,
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the controller microphones are placed along the walls. In this experiment the excitation
frequency is 269 Hz, which is near to the fourth eigenmode (1-1-0 mode). In figure 3.2.8
the primary wave field and in figure 3.2.9 the estimated coefficient amplitudes are
depicted.
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Figure 3.2.8 ; The pressure level at Figure 3.2.9 ; The estimated amplitude
269 Hz. of the coefficient vector (primary field).

At this frequency the wave field is largely defined by the corresponding eigenfunction.
This means that there is only one dominant eigenmode and that, as a result, the coefficient
vectors (3.2.14) are pointing more or less in the same direction. In figure 3.2.10 the
reduced wave field is shown. In spite of the fact that there is only one secondary source,
the reduction of the averaged squared acoustic pressure at the microphones is much larger
than in the previous experiment, about 10 dB, due to a considerable reduction of the
fourth eigenmode. The estimated mode coefficient amplitudes are depicted in figure
3.2.11. The fourth eigenmode is reduced by approximately 25 dB.
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Figure 3.2.10 ; The pressure level of Figure 3.2.11 ; The estimated amplitudes
the residual at 269 Hz (one source) of the coefficient vector (residual field).

This experiment shows that good reduction at the microphones is possible with one
source if the wave field is largely determined by one dominant eigenmode.
The reduction can be improved by using more anti-noise sources. Three sources are
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added to the set-up and the ideal source strength vector (3.2.8) is computed. The reduced
field is depicted in figure 3.2.12. The reduction is better, resulting in a reduction of the
primary wave field at the microphones of 15 dB.
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Figure 3.2.12 ; The pressure level of Figure 3.2.13; The estimated amplitudes
the residual ar 269 Hz (four sources) of the coefficient vector (residual field).
The 4 coefficient vectors 4, are capable of reproducing the primary coefficient vector
a,,(f) better, and in particular the first few eigenmodes are reduced (figure 3.2.13).

In a third experiment the secondary source is placed next to the primary source. The cone-
centers have the same x- and z-coordinates. The mutual distance of the cone-centers is
approximately 0.15 m. The primary source is exciting the wave field at a frequency of
150 Hz, which is below the eigenfrequency of the 1-0-0 mode. In figure 3.2.14 the

pressure level of the primary wave field is depicted , while in figure 3.2.15 the estimated
amplitudes of the coefficient vector are drawn.
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Figure 3.2.14 ; The pressure level ~ Figure 3.2.15 ; The estimated amplitude
at 150 Hz . of the coefficient vector (primary field).

In figure 3.2.16 the pressure level of the reduced wave field is shown. Although there are

several dominant eigenmodes in the primary wave field and only one anti-noise source,
the reduction at the microphones is considerable (approximately 18 dB).
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In figure 3.2.17 the resulting estimated coefficient vector is depicted. The eigenmodes
corresponding to frequencies up to approximately 500 Hz are reduced.
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Figure 3.2.16 ; The pressure level of Figure 3.2.17 ; The estimated amplitudes
the residual at 150 Hz (one source of the coefficient vector (residual field).
next to the primary source).

The results of the experiment show that the anti-noise source next to the primary source is
capable of reproducing the (negative) primary source vector quite well at this frequency,
thus giving a substantial reduction.

The three experiments show that the reduction of the global potential energy can be
described by a reduction of the modal amplitudes of the residual wave field. The results of
the experiments match fairly well to the theory.

Global reduction does not always mean that the pressure level at all positions in the
enclosure decreases. Locally the pressure level can increase (figures 3.2.4 and 3.2.6). In
some cases it is desirable that the noise level is reduced at a particular position in the
enclosure.

3.2.4 Local reduction in the box

Local reduction can be accomplished by placing the sensors on particular positions, thus
(for instance) forcing the wave field in a desired eigenmode.

In a last experiment two controller sensors are placed close to the middle of the enclosure
at a mutual distance of 0.2 m.. There are two loudspeakers in the opposite corners of the
box. The excitation frequency is 333 Hz. In figure 3.2.18 the set-up with sources and
controller microphones is schematically drawn. Since the number of controller sensors
equals the number of anti-noise sources the sound signal on the microphones is reduced
to zero. The 2 controller sensors are placed between the 64 measurement sensors. In
figure 3.2.19 the residual pressure level of the wave field is shown.
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Figure 3.2.18 ; The measurement set -up Figure 3.2.19 ; The pressure level
for local reduction. of the residual wave field at 333 Hz.

Around the microphones the reduction of the pressure level is approximately 30 dB. The
reduction of the averaged squared acoustic pressure on the microphones (in the x-y plane)
however is small (approximately 4 dB). The wave field looks different compared to the
primary wave field (figure 3.2.4). The residual wave field is forced into the 1-1-0 mode.
In figure 3.2.20 the estimated modal amplitudes are depicted showing the high level of the
fourth eigenmode.
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Figure 3.2.20 ; The estimated amplitudes of the coefficient
vector after local reduction.

The experiment makes clear that locally the reduction is quite large in spite of the fact that
there are only two anti noise sources. Furthermore, by forcing the wave field into the 1-1-
0 mode the pressure level is low on the nodal lines. Local reduction can be used to give
high reductions locally, but it may increase the pressure level on other positions.

3.3 Conclusions
The description of a wave field as a superposition of eigenmodes has been first applied to

the anti noise situation by Nelson c.s. [7-9]. In this chapter a geometric interpretation of
the anti noise problem with the eigenmode theory is given using vectors comprising the
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modal amplitudes of the primary and secondary sources. The modal amplitudes of the
eigenmodes of the excited wave field in a given enclosure are not only a function of the
frequency, they also depend on the position of the sources. The wave field in the entire
enclosure can only be reduced completely if the number of anti noise sources is equal to
(or larger than) the number of eigenmodes. However, a substantial reduction is achieved
if the number of sources is equal to the number of dominant eigenmodes.

In a number of experiments the amplitudes of the eigenmodes of a rectangular box of
reinforced compressed wood are estimated in the situations with and without anti noise at
several frequencies. The estimation is based on pre-calculated eigenfunctions and the
measured pressure in a horizontal plane of the box. The results agree well with the theory.
They show that at an eigenfrequency, where there is only one dominant eigenmode, a
substantial reduction can be achieved with only one anti noise source. Furthermore, if the
noise source and the anti noise source are positioned very close to each other, and so their
modal amplitude vectors are more or less the same, a considerable global reduction can be
achieved with one source, even if there are several dominant eigenmodes.
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4. THE USE OF ADAPTIVE CONTROL IN ANTI NOISE
Introduction

In the previous two chapters the implications of anti-noise for acoustic wave fields in one
and three dimensional situations were discussed and the optimal source strengths of the
anti-noise sources were derived. The source strengths are determined by the primary
signals, as they are measured on the error sensors, and depend on the transfer functions
from anti-noise sources to sensors. In this thesis it is assumed that the primary signals to
be reduced are excited by rotating machinery, like an electric driven fan or the engine of a
car. Rotating machines give rise to a periodic primary signal comprising the fundamental
frequency, being the revolution frequency of the main shaft, and a number of harmonics
and sub harmonics. The transfer functions from anti-noise sources to sensors are partly
acoustic, for example the inside of a duct and the interior of a car. Due to alterations in the
revolution frequency and due to changes in the acoustic environment, the characteristics
of the primary signal are not completely time invariant. Furthermore, the transfer
functions from anti-noise sources to sensors may not be fully stationary. As a result the
optimal source strengths vary in time and adaptive control methods are needed to adjust
the source strengths of the anti-noise sources.

There is a variety of methods for the control of periodic noise: the controller can be
analog or discrete, it can have a feedforward or a feedback structure and a time domain or
a frequency domain approach. Already in 1975 Widrow e.a. describe a feed forward
controller applied to estimate periodic noise corrupted by additional noise [10]. Glover
{11] used the principles to construct an adaptive notch filter. Most control algorithms for
periodic noise are based on these papers. Elliott e.a. [12] introduced the multiple error
algorithm and applied it to a MIMO system comprising multiple inputs (microphones) and
multiple outputs (loudspeakers). An up to date comparison of control methods for
periodic noise is made by Sievers [13].

The signals discussed in this chapter are continuous time functions that are sampled. The
sampling interval is At, and the first sample is taken at t=At. For convenience the notation
y(K) is used instead of the more proper notation y(kAt) for the value of the signal at t=kAt.
Unless stated otherwise K has a value ranging from 1 to n.

In most cases a sensor can be mounted on the rotating equipment giving within a certain
accuracy the momentary angular phase of the main shaft. Based on this sensor signal,
wave form generators can construct complex periodic time functions of unit amplitude. If
the revolution frequency of the main shaft is stationary, each of the time functions
comprises only one frequency component:

exp(j2xfkat), v=1...N, 4.0.1)

in which f, is one of the harmonics of f,, the fundamental frequency of the main shaft.
The frequency components fulfill the Nyquist criterion (f, ., < 1/2At).
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It is realistic to assume that there is a linear relation between these time functions and the
related frequency components of the primary signal. The signals generated by the wave
form generators can serve as a reference signal of the primary signal and therefore can be
used as a feed signal for a controller. As a result, the adaptive control methods to adjust
the optimal source strengths can be based on linear feedforward control. Linear
feedforward control generally gives a good reduction if the total transfer functions from
anti-noise controller outputs S,(n) to error signal inputs &,,(K) are known. The total
transfer function comprises not only the acoustic transfer from source position to sensor
position, but also the transfer functions of filters and transducers. Bear in mind that the
index ¢ denotes the output channel number while the index m denotes the input channel
number. In figure 4.0.1 the feedforward control configuration is depicted. Only one anti-
noise source and only one error sensor is shown.

d

rofating
machine

)

acoustic

sensor 1 environment
Adaptive s(k) (.!I

feedforward

reference controller

L <

['wave form
generators

e(k)

NIy S
\lj

Figure 4.0.1 ; The ANC feedforward configuration for rotating machinery.

The objective in ANC is to minimize the measured error signal g(k) (figure 4.0.1),
which is the sum of the signals generated by the primary noise source and the secondary,
anti-noise source, Y, (k) and y(Kk) respectively.

The ANC set-up drawn in figure 4.0.1 can be represented schematically in a block
diagram as in figure 4.0.2 in which the waveform generators, the rotating machine and
the acoustic environment are replaced by one process, having the reference signal as an
input. The output of this primary process is the primary signal y, (k).

primary process y p( k)
o(k) v g

J s(k) N

reference :
Adaptive , Secondary
| feedforward process y s( k)
controller
L -

Figure 4.0.2 ; Block diagram of the ANC feedforward configuration.

64



The controller output is the signal s{k). The secondary process is the function
transferring the controller output into the process output y, (k). Besides the frequency
response of the transducers and electronic filters, the secondary process comprises the
acoustic transfer function from anti-noise loudspeaker to error microphone (see figure
4.0.1). The type of linear model with which the primary process is described, and the
type of linear model used in the controller depend on the type of reference signal.

The time input vector

The addition of the outputs of the wave form generators yields a single reference signal
comprising all the frequency components to be reduced. Assume there are N frequency
components, then the input signal based on a single reference signal is

ok) = iexp( j2mt kAL). (4.0.2)
v=1

This signal serves as an input of the linear primary process and as an input of the linear
adaptive feedforward controller (figure 4.0.2). A single input signal generally will lead to
a polynomial process- and controller model. A well known, simple but in most cases
stable polynomial model is the finite impulse response (FIR). If that for both the primary
process and the controller a FIR of length I may be used, then both the primary signal
y,(K) and the controller output (k) are a linear combination of the sequence of the input
signal elements @(k), ¢(k—1),---,@(k —I+1). The controller model based on the FIR
often is called a tapped delay, or transversal filter. The input elements at t=kAt can be
gathered in a ‘time’ vector:

80 = [ok) o1 - pk—1+1)]" (4.0.3)
The Fourier input vector

If the outputs of the wave form generators are used independently, the inputs of the
primary process and the controller are multi dimensional. Assume that the primary signal
comprises I frequency components v =1,...1, then the primary signal y,(k), and also
the controller output S(K) are a linear combination (with complex coefficients) of the time
functions

¢, (k) = exp(j2zf kAt), (4.0.4)
which are the functions on which the Fourier transform is based. The complex

coefficients therefore are the Fourier coefficients. Thus, the input elements at t=kAt can
be gathered in a ‘Fourier’ vector:

K = [oK) o,k - oK) (4.0.5)
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In this chapter the theory of linear adaptive feedforward control will be reviewed and
applied step by step to the anti-noise configuration. Theoretical implications will be
illustrated with results of measurements in the laboratory. In the first three sections of this
chapter the transfer functions from secondary sources to error sensors are supposed to be
time invariant whereas in the fourth section time varying secondary process parameters
will be considered. In the first part of section 4.1 it will be assumed that the acoustic
environment and the revolution frequency are stationary as well.

4.1 Basic equations
4.1.1 Linear control

The ANC controller problem may be considered to be basically a parameter estimation
problem. Assume the unknown parameters describing the primary process have to be
estimated while the primary signal y, (k) can be observed and the input signal(s) ¢(k) are
known. The acoustic environment and the revolution frequency are assumed to be
stationary, so the process parameters are time-invariant. In figure 4.1.1 the parameter
estimation configuration is depicted.

(B:(k) Linear Yp () ¢f ® Linear yp(k)
— process [ __H process [P

Figure 4.1.1 ; The output y,(k) is a linear combination of the 'time’

input values (ﬁ: (K) or the 'Fourier’ input values (ﬁf k).

The parameters to be estimated using the sequential time input ¢,(k) are the elements of
the FIR (length I) of the primary process. On the other hand, using the Fourier inputs
(Z)f(k), each element representing one frequency, the parameters to be estimated are the
complex Fourier coefficients of the primary process.

Both the time input vector @,(k) and the Fourier input vector ¢,(k) are written as a
complex conjugate because it makes the notation in the derivations more
straightforward.

In a general notation, common in adaptive control, process parameters are denoted by the
symbol ;. For both linear models, the output can be written in a vector notation as

y,(k) = @6, andk=1,..n, (4.1.1)
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in which 8 is the time invariant I dimensional vector containing either the FIR filter
coefficients if the time input is used or the I dimensional vector containing the complex
Fourier coefficients if the Fourier inputs are used.

The following derivations can be applied to both models, since they are both linear.

The n observations are collected in the vector Y, (n) = [yp(1) yp(n)]T and the n input
vectors are written as the matrix ®(n) =[¢(1) - (Z)(n)]H, yielding
Yo(n) = @(n)9, (4.1.22)

which becomes the convolution matrix if the time input vector is used:

oM (o) ¢© ... ¢@-0 )6

ypf2) _ <p':(2) <p':(1) <P'(3:—I) ‘9;1, (4.1.2b)

Y, lo'n) ¢mh-1 ... ¢ (h-T+)A6L,

and the inverse discrete Fourier transformation if the Fourier input vector is used:

o)) (o) () ... o()Y)6
%@ |_| 9@ ¢ .. ¢ % |

(4.1.2¢)
Y.M) (o/(n) e;(n) ... o/MA6

Now the I process parameters can be estimated with a least squares solution. For n 21
and a non singular input correlation matrix ®"(n)®(n) the least squares solution is

B,(n) = (@"Mem) o My,n). (4.1.3)

The objective in ANC is to design a secondary signal y(K) having the same amplitude as
the primary signal, but the opposite sign. In the absence of extraneous noise the addition
of the primary and secondary signal yields a residual ideally equal to zero. Contrary to the
parameter estimation configuration shown in figure 4.1.1, in ANC the output-error is the
observed variable. The output-error is the addition of the primary signal and the
secondary signal. The basic output-error model is depicted in figure 4.1.2. The ANC
feedforward configuration given in figure 4.0.2 may be considered to be a modification
of the basic output-error configuration, the modification being the presence of the
secondary process. In the derivations first the basic output-error configuration will be
considered. At the end of this section the optimal controller parameters in the ANC
configuration will be derived.
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Figure 4.1.2 ; The basic output-error configuration.

The optimal controller parameters minimizing the output-error can be estimated if the
input is known and the error signal is observed for a number of samples.

Assume that for k=1,...n the stationary parameters of the linear controller are 6, then
¥s(n) = @()e,. (4.1.4)
The set of parameters that minimizes the error g(k) for k=1,...n

ek) = y,K)+y.(k), (4.1.5)

can be estimated if the sum of the squares of the n errors £(K), the cost function
2

JB) = 4T LW = 3P0+ (4.L6)

k=1

is minimized. Note that if £(k)=0 than y,(n) = -¥(n).
The solution with a least squares error (LSE) can be found for n 21 and a non singular
input correlation matrix ®"(n)®(n):

Bl = —(@M®M) "), (). 4.1.7)

If the closed loop configuration shown in figure 4.1.2 is used, the LSE equation can not
be found directly since the process output vector ¥,(n)_is not available. Furthermore, it

may require a considerable computational effort to calculate the inverse matrix which is
unfavorable for real time, sample based systems. Therefore other methods are needed to

estimate the optimal controller parameters. There are several methods to find adaptively
the least squares error solution éc’lw (n), and there is much literature about the subject
(Widrow [14], Astrom [15] and many others). A majority of the estimation methods is
based on gradient search methods or the recursive least squares solution (RLS). In
this thesis only the recursive approach will be reviewed.
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4.1.2 Recursive Least Squares Error and Projection method
Both underlined problems mentioned above are avoided if the recursive least squares
error (RLSE) method is used. In the RLSE method an estimate of the vector ¥, (n) is

used and the inverse matrix is calculated recursively.
If the controller parameters are estimated with an arbitrary estimation method using the

configuration shown in figure 4.1.2, the most recent estimate at t=kAt is éc,e(k —-1), so

Yo(K) = 6" (k)6 o(k 1), (4.1.8)
Combination of equations (4.1.5) and (4.1.8) gives the estimate of y, (k)

Yoo(K) = (k)= 3" ()6, o (k - 1). (4.1.9)
The LSE based on (4.1.9) is

B0 = —(@M®M) B Mn),.n) (4.1.10)

Following the derivation of the recursive least squares solution as described for example
by Astrom [15], the input correlation matrix is written as

n -1
P(n) = (<I>”(n)c1>(n))'1 = (Z(ﬁ(k)@“(k)j, (4.1.11)

k=1

leading to a recursive solution (appendix C):
Bono = 61—~ PIG(M)e(n). 4.1.12)

The matrix P(n) can be found recursively with the help of the simple recursive relation
for the inverse matrix P7'(n) (appendix C, equation C.2) and the matrix inversion
lemma (Astrom [15]). The recursive computation of the matrix P(n) requires a number of
calculations proportional to I? (I is number of parameters). As a consequence the
computational effort needed to calculate the RLSE estimation is almost completely
dominated by the matrix computation if there are more than 4 parameters. In ANC for
periodic noise, the number of parameters to be estimated is about 10 to 20, but can be as
high as 100. Therefore the RLSE algorithm is simplified using the so called projection
method. Using this method the recursive calculation of the matrix (4.1.11) is avoided.

The method is called projection method because, in a geometric interpretation, the

projection on the input vectors (Z)*(k) is essential. The I dimensional vector comprising

the actual process parameters 6, the vector comprising the estimated parameters

éc'e(k—1) and the input vector (f)’(k) are considered to be vectors in a complex I
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dimensional space. Now assume that the input vectors § (k), k=1,...n, completely span
the I dimensional space, consequently the optimal ‘anti’ vector -6 can be written as a
linear combination of the vectors é’)'(k). Therefore it is natural to update the estimate
éc’e(k —1) each iteration step in the negative direction of # (k). To guarantee
convergence the length of the update is determined by the projection of the ‘difference’
vector

A ,(k=1=6+8,,(k-1, (4.1.13)

on the input vector (ﬁ*(k). Using the measured error
ek) = ¢"(k)AD, (k) (4.1.14)

the projection of the ‘difference’ vector Aéc_p(k—1) on the input vector ¢(k) can be
written as the vector

70— _Pk)e(k)
Alk)= TG (4.1.15)
The estimate is updated with — A(K)
O, = 8,,(k—1)-AK). (4.1.16)

In figure 4.1.3 the procedure is depicted for a two dimensional situation (the vectors are
taken real for convenience).

- y
y Y| e
é - -
- g,
26,0 A6 A
o) A(2)
(N —éc,p(1)= 1&(1) 'éc,pa)
A]
01 X ®2 X X
Figure 4.1.3a Figure 4.1.3b Figure 4.1.3c

a) Assuming that écvp(0)=6, the equations (4.1.13) to (4.1.16) for k=1 yield
éc,,,(1)= —A(1). Using this, Aéc’p(1) is found with the help of (4.1.13) for k=2.
b) Using (4.1.14) and (4.1.15 ) for k=2, A(2), the projection of Aéc'p(1) on®{(2), can
be calculated. c¢) Equation (4.1.16) for k=2 yields 5c’p(2). All vectors are real in
this example. Note that - éc'p(2) is a better approximation for 0 than -éc,p(1).
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The updating formula is known as Kaczmarz's projection algorithm. Note that only the
most recent input vector and the most recent error is used in the algorithm. The difference
vector Aécyp(1) drawn in figure 4.1.3a is perpendicular to the input vector @(1). As a
consequence the optimal estimate is found within 2 steps if @(2) is perpendicular to ¢(1).
This has implications for an I dimensional space. In an I dimensional space the optimal
anti-noise vector is found within I steps if the input vectors (b*(k), k=1,..I, form an
orthogonal base for the I dimensional space. If, on the other hand, the vectors (b'(k) are
independent, but all point more or less in the same direction, many steps are needed to
find the solution.

An important quantity in studying the rate of convergence of the projection algorithm is
the eigenvalue spread of the normalized input correlation matrix, defined as

dHn)@,(n ig k;;(k) (4.1.17)

The rate of convergence decreases if the eigenvalue spread, the ratio of the maximum
eigenvalue to the minimum eigenvalue of the matrix (4.1.17), increases (Widrow[14],
Haykin [16]). Besides that, the sensitivity of the eigenvalues to perturbations in the
matrix increases with the condition number of the matrix (Noble [17]).

In the 2 dimensional example depicted in figure 4.1.3 the eigenvalue spread of two input
vectors is determined by the intermediate angle ¢, — ¢,: 4, = 1£cos(¢, — ¢,) (appendix
Q). For the two input vectors shown in the figure the eigenvalue spread is approximately
3.

It can be proven that if I input vectors form an orthogonal basis of the I dimensional
space, the eigenvalue spread of the matrix (4.1.17) is 1 at n=I. The eigenvalue spread of
a matrix composed of independent input vectors all pointing more or less in the same
direction is large.

4.1.3 Time-varying primary process parameters and extraneous noise

So far, the process parameter vector 6 is assumed to be constant. In the ANC
applications mentioned in the introduction of this chapter, the primary process however
alters in time due to variations in the revolution frequency of the main shaft and due to
changes in the acoustic environment. The assumption is made that those variations are
slow, that is to say the changes in the process parameter vector are small during one
period of the primary signal. A change in the time variant actual process parameter ] (k)
will simply change the length of the ‘difference’ vector 4.1.13 in the ensuing step. As
long as the alteration in the process vector is smaller than the change in the estimate, the
estimation converges, although of course the estimate is always one step behind. This can
be made clear with the help of figure 4.1.4, depicting the situation shown in figure 4.1.3c

while 6 (2) # 6 (1). The calculation of the estimate éc_p(2) is based on the previous
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process vector (see figures 4.1.3), the calculation of the new estimate éc,p(3) however

will be based on the new actual process vector 6 (2). Thus the estimate will always
follow the alterations in the actual process.

Y]
6@

Figure 4.1.4 ; The difference vector Aéc(2) after a change in the actual process
parameter vector. The previous parameter vector is shown with a dotted line.

The influence of non-correlated, extraneous noise on the projection algorithm has been
neglected so far. In most applications however the measured error signal is perturbed
with extraneous noise. As a result the lengths of the estimated projections given by
equation (4.1.15) will not be calculated properly. In order to decrease the influence of
these ‘noisy’ projections on the estimated parameters, the lengths and so the influence of
the extraneous noise can be reduced using a step size factor, resulting in the modified
algorithm

5 = B (g 90
c,p(n) ec,p(n ) 7¢H(n)¢(n)

and 0 <y < 1.1t will be clear that the number of steps, needed to find the actual process
vector, increases when the step size factor decreases. A second modification is made to
stabilize the calculated projection (4.1.15), since it is not unthinkable that the
denominator becomes very small. A small real constant ¢ is added, resulting in the
algorithm

0.,(n) = B,,(n- 1)-7;%5. 4.1.19)

The properties of the modified projection algorithm can be found in appendix C and
Astrom [15]. Some authors refer to the algorithm as Normalized Least Mean Squares
(NLMS, Widrow [14], Haykin [16] ).
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4.1.4 The input vector and process model

In this section two types of input vectors and the related process models are mentioned:
the single, time input with which the FIR coefficients are estimated and the Fourier inputs
with which the Fourier coefficients are estimated. Since the input correlation matrix is
defined by the input vector, the rate of convergence and the stability of the estimation
process are determined by the choice of the input vector.

The time input vector
The components of the time input vector are at t=KAt
G0 = [ok) ok-1 - glk-1+D]" (4.1.20)

The input-output relation of the controller is in that case a convolution of the complex

conjugate of the time signal ¢(k) with the controller parameter vector §c‘(k -1):
y (k) = @MK)Bi Kk —1) = 2(p k-0B;;(k-1) (4.1.21)

In figure 4.1.4 a controller based on the convolution is depicted. The model is also called
a tapped delay line, each ‘tap’ representing one sample delay, so the controller might be
called a ‘time delay controller’. The parameters Oé,i(k —1) are updated according to the
projection algorithm (4.1.19).

The minimum number of complex parameters is equal to the number of frequency
components (appendix C), so I=N.

(p(k Q (k I+

¢(k1)
- i
9‘.#—5
y(k

4.1.4 ; A controller in which the output is the result of a convolution of the input
signal with the controller parameters.

The eigenvalue spread and condition number of the input correlation matrix strongly
depend on the relation of one period of the input signal to the length of the total delay.
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Using the composed input signal (4.0.2), the eigenvalue spread is optimal for the
frequencies present in the signal if the total time delay covers one period of this signal
(appendix C) but strongly increases for shorter lengths. The condition number is in
general large.

The Fourier input vector

The components of an N dimensional Fourier input vector are at t=kAt:

) = [k ek - o] (4.1.22)

The input-output relation of the controller is in that case a multiplication of the complex
conjugate of the signal values ¢,(k), v =1,....,N with the controller parameters gathered

in the vector 8!(k —1)
- N o, .
ys(K) = ¢r(k)g; (k1) = 3 o, (k -6, (k1) (4.1.23)
v=1

In figure 4.1.5 a controller based on the multiplication is depicted. The parameters
BE_V(k — 1) are updated according to the projection algorithm (4.1.19).

Since the input signals (and not the input vectors) are orthogonal the eigenvalue spread
and the condition number of the input correlation matrix of the ‘Fourier’ controller is
already are 1 after one period of the composed signal given by (4.0.2). Hence, it may be
expected that, compared to a time delay controller, the convergence rate of a Fourier
controller will in general be larger.

@, (k)

0, K)

Figure 4.1.5 ; A controller in which the output is the result of a multiplication of
the input signals with the controller parameters.

A special case of a Fourier controller is the block-based Fourier controller. In such a
controller the parameters to be estimated also are the Fourier coefficients of the optimal
output signal. The Fourier coefficients determining the controller output signal however
are not updated after each sample, but each time after a block of samples. The procedure
is performed in three steps. First a Fourier transform is carried out on blocks of samples
of the input signal and on blocks of the error signal, so a control loop in the frequency
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domain can be created for each frequency component individually (figure 4.1.6). After
that, the optimal parameters for each control loop are calculated individually in the
frequency domain. In the last step the output signal is calculated using an inverse Fourier

transformation.
The input variables of a block m are the Fourier coefficients of one period T of the input
signal. Using upper case symbols for the Fourier coefficients, the inputs of block m are

X, (m)=AfX(m, vAf)

and Af= i The input-output relation is again a multiplication
0

Y,.,(m) =0, (m)X,(m). (4.1.24)

X, (m) ()

Figure 4.1.6 ; Each input of the block based Fourier controller is multiplied with a
controller parameter.

4.2 The anti-noise control loop

In ANC the general principles of linear control are used to find adaptively the anti-noise
signal. However, the general (closed) loop configuration as depicted in figure 4.1.2 has
to be modified because of the presence of the secondary process, the partly acoustic
process from controller output to the error input.

P| primary process | yp(k)
P ’ (k)
reference Adaptive s(k) Secondary
feedforward » process
controlier
/ el

Figure 4.2.1 ; Block diagram of the ANC feedforward configuration.
In the first part of this section a single-channel anti-noise control loop will be discussed.

The controller in a single channel control loop only has one controlier output and only
one error input. In figure 4.2.1 a single channel system is shown. In the second part of
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this section a multi-channel control loop will be considered. In a multi-channel control
loop there are more error inputs and possibly more controller outputs.

In the derivations it will be assumed that the primary process and the secondary process
are linear,

4.2.1 Single channel control in ANC

In the previous section it was made clear that the output signal s(k) (k=1,...n) of a linear
controller can be written as

sk) = ¢"()8,(k-1), (4.2.1)
in which @"(k) is the vector comprising the controller input values and éc(k —1) is the
vector containing the most recent controller parameters.
Assume that the time invariant secondary process can be modelled as a finite impulse

response (FIR) having the coefficients hj, then the output of the secondary process can
be written as a convolution of the controller output and the finite impulse response

J-1
(k) = Y hsk-j. (4.2.2)
i=0

The measured error is £(k) =y, (K) + y,(K), hence for a time delay controller

[

-1 1l
ek) = y,(k) + 202 e k-j-i)f,;k-j-1, (4.2.3)

i i

—

[
o
il
o

while for a sample based Fourier controller the measured error is
J-1 N . . .
k) = v + 2hY ok, k-j-1. (4.2.4)
=0 v=1

An important assumption is made to simplify the estimation problem to what is known as
the filtered-x-configuration (Widrow [14], he uses the symbol x for the input). It is
assumed that by taking the step size factor ¥ small, the change in the estimated
parameters is small during the length of the FIR (J samples), so

8,(k=1-j)= 0 (k-1 for j=0,...d-1, (4.2.5)

and thus, for a time delay controller
1-1 J-1 " o
gk) = y,k) + X0,(k=12he k-j-0, (4.2.6)

i=0 j=0
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and for a Fourier controller,

N J=1
ek) = y,(0 + X6, k-0Xhek-). (4.2.7)
v=1 =0

Both equations can be written in the vector notation

ek) = y,k) + F(k)G,(k-1). (4.2.8)
The vector
J-1 . o
i) = Yhok-j-i, (4.2.9)
j=0
or
-1,
k) = 2.ho k-, (4.2.10)

I

]
o

is called the filtered-x signal. In figure 4.2.2 the process is depicted.

Hence, if the secondary path is known, for small step size factors the problem is reduced
to a general linear control configuration. Using the projection algorithm (4.1.15), the
controller parameters in a filtered-x configuration are updated according to

- - F()e(k)
0.k) = O k-NY-y———. 4.2.11
(ﬁ(k) F. (k) paramger YS(k) (ﬁ(k) parameter S(k) yS(k)
— h adjustment [ —® adjustment — ’

/ /

Figure 4.2.2a ; The configuration which ~ Figure 4.2.2b ; The actual configuration:
is used to calculate the parameters. the parameters are updated with the
It is assumed that the actual values help of figure 4.2.2a.
of h; are known.

The normalized input correlation matrix of the filtered-input configuration is for k=1,...n,

y TP () (4.2.12)
STOF(K) o

The eigenvalue spread of this matrix strongly depends on the input vectors, and will in
general not be optimal. For the Fourier controller the eigenvalue spread of the matrix can
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be optimized simply if the matrix is diagonal, so if the dot products
i *
Sr, K k), k#v, (4.2.13)
k=1
are negligibly small compared to the diagonal elements

ir K)r, (k). (4.2.14)

k=1

in other words, if the signals r, (k) and r, (k) may be considered to be independent.
Although independency can only be proven for n — oo, it is reasonable to assume that
for the Fourier controller the dot products (4.2.13) are negligible after a few periods. If
the input signal and the secondary process are stationary during this time interval, then

r, (K)r, (k) =T, (O), (0),

and, as a consequence the input correlation matrix reduces to the diagonal matrix

rOr© o0 - 0
0 ' ' (:) (4.2.15)
r, (0)r,(0) ' o,
Z 0 0 n(Ory(0)

It will be clear that the eigenvalue spread of this matrix will be optimal if in the updating
algorithm (4.2.11) the parameters 6, ,(K) are scaled with a factor

_(k_)r(_k)_ (4.2.16)
Zr (K, (k)
resulting in the algorithm
K = 6, k-1)-y K 2,
6c.v( ) gc,v( ) 7 (a + r:(k)rv(k)) (4 2 17)

Convergence of the algorithm is only guaranteed for small values of the step size factor,
the maximum value is inversely proportional to the number of samples in one period of
the output signal. Since the step size factor is already bounded by (4.2.5), this restriction
does not affect in practice the maximum convergence rate. In practice the measured error
is scaled with N, the number of frequencies, leading to similar values of the step size
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factor if the number of frequencies to be estimated is varied.
It is important to note that equation (4.2.17) would have been found too, if it is assumed

that the momentary ‘dot-product’ r‘: (k)r.(k) = 0, for v #x. Using this assumption, the
error equation (4.2.8) can be transferred into

rKek) = 1 K)YK) 1,k (K, (k= 1), (4.2.18)

resulting in the alternative error equation

L) gy - K )
oo T Torg Pl (4.2.19)

The application of the projection algorithm to this error equation will lead to the result
(4.2.17). In the derivation of the optimal algorithm for the multi channel controller this
will prove to be very helpful.
For a Fourier controller in which the coefficients of a block of samples are calculated
using a FFT on the input signals (figure 4.1.6), the filtered-x-inputs of sample block m
are

R,(m) = HX,m), v=1...N, (4.2.20)

while the controller parameters are updated according to

R, (M)E, (m)

e,m = 6,m-1)- A

) (4.2.21)

o+

4.2.2 Multi channel controllers

In an active noise control system for a three dimensional situation several anti-noise
sources and error sensors are used. The projection algorithm applied to the filtered-x
configuration for a multi channel controller can be derived with the help of the equations

for a single channel controller. If there are M sensors, the cost function (4.1.6) is
modified to

JB) = +3 3 e, K. 4.2.22)

The signal of source £ is given by
s,(k) = @} (K)B; (k). (4.2.23)
So, for L anti-noise sources the measured error on sensor 7 is
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J-1

£,(6) = VoK) + Y. D h'"s, (k- ), (4.2.24)

£=1 j=0

in which y, (k) is the primary noise on sensor . The coefficients of the time invariant
finite impulse response describing the transfer function from source output £ to sensor
input m are hf"". Similar to single channel control, filtered input signals are used

J-1
Fym(K) =Y W7 (k—i—j), (time delay) (4.2.25)
=0
and
* J_1 *
r, . (K) = X hi"g, (k- j), (sample based Fourier). (4.2.26)
j=0

In order to simplify the notation vectors are used. For a time delay controller the
parameters 6, (k) are gathered in one vector of length IL

gL =[O0 - Bk - k) - 8] (4.2.27)
and the filtered-x values r,, (k) are collected in M (I*L) vectors

) =[lan®) = i) e hn®) o M ®)] . (42.28)

For the Fourier controller the parameters Géf, (k) are gathered in one vector
LK) =[65K) - Otk o Bk - BNk (4.2.29)
and the filtered-x values , , , (K) are collected in M vectors

oK) = [Fn) ) e fam®) o ] (4.2.30)

The measured error on sensor m now can be written for both controllers as
E,(K) = Y, u(K)+ T8, (k—1). (4.2.31)

The error vector is
&(k)
k)= i [=¥,K)+RK)P, k-1, (4.2.32)
£,(K)
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in which y, (k) = (ypﬂ(k) yp.M(k))T and R(k)=(G(k) - t,(k)). Note that the
matrix R(k)R™(k) is singular if M<IL (or M<NL).
In all M measured errors, the most recent parameter vector is §CL(k —1). For the time

delay controller which is used in the measurements the new vector is found applying the
projection algorithm to each of the M error equations, yielding

Fak)eq k)
T () (4.2.33)

Mz
g—‘I 3—“

8 (k)=65 (k-1)-y

1

E
1

In this multi channel configuration the normalized input correlation matrix is given by

ALY
) (4239

The eigenvalue spread of this matrix strongly depends on the mutual relation of the
filtered input signals and generally will not be optimal.

The eigenvalue spread of the Fourier controller however can be optimized assuming that
the signals t,, ,, (k) and ., . (k) are independent for all values of £,,£, and m,,m,

(x£V).

Using the L dimensional vectors 8, ,(K) = [Gg.v(k) Gév(k)]T,
rv,1,1(k) MRLIRRY (k)

and the LxM matrices R, (k) = : : , v=1...N,
rv,L,1(k) o rv,L,M(k)

the error vector (4.2.32) can be written in the form

E(k) = Y, (k) + i[Rt‘(k)éw(k -1). (4.2.35)

v=1

Bearing in mind the derivations in the previous section, it is assumed that the momentary
dot-product equals zero

ey ey () = 0, (4.2.36)

v,

for all values of £,,¢, and m,,m,, and k # v, so R,(K)R{(k) =
As a result for each frequency component an alternative error equation can be formulated.
Since

R, (k)E(k) = R, (K)y, (k) +R, (KR ()8, (k- 1), (4.2.37)
and provided that R, (k)R"(K) is not singular, the new error equation is
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[Rv(k)Ri’(k)]"Rv(k)é(k) = [R, (RS (K)] R, (K)Y, (k) +6,,(k—=1),  (4.2.38)
leading to the updating algorithm for the Fourier controller
8,,(K) = 8, (k=0 -¥[R,(RIK)] R, (K)E(K). (4.2.39)

In this algorithm the values of the step size factor are restricted too, the maximum value
being determined by the number of samples in one period of the output signal. In practice
the measured error is scaled with N, the number of frequencies.

The eigenvalue spread of the input correlation matrix linked to the algorithm (4.2.39) is
optimal, which means that, contrary to the multi channel algorithm of the time delay
controller, the rate of convergence for the Fourier controller does not depend on the
position of sources and sensors.

4.3 Active noise control experiments

In a one dimensional wave field, like the wave field in a duct, one anti-noise source is
able to reconstruct the (negative) primary wave field and one error sensor suffices to
check the result (chapter 2). Therefore a single channel ANC system can be used to
reduce actively a one dimensional wave field. The anti-noise signal is generated by a
loudspeaker while the error signal is measured by a microphone. Since these signals are
real time functions, the algorithms in the previous section have to be modified somewhat.
In the first part of this section these modifications will be given. Then the behaviour of a
single channel anti-noise system based on the projection algorithm will be examined with
the help of the results of a number of experiments in the laboratory. Experiments are
carried out with all three different inputs mentioned in section 4.1.

In a three dimensional situation more anti-noise sources and sensors are needed (chapter
3). In the last part of this section some results of measurements with multi-channel ANC
systems will be discussed. The derivations of the multi-channel controllers for real time
signals are not given, since they can be found directly with the help of section 4.2 and the
following derivations for single channel controllers.

4.3.1 Single channel controllers

Single channel controllers are mainly used for the reduction of one dimensional wave
fields, like the wave field in a duct. In a one dimensional wave field one anti-noise source
is able to reconstruct the (negative) wave field and only one error microphone is needed
to measure the result.

The microphone and loudspeaker signals are real, so using the filtered-x assumption
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(4.2.5), the measured error is

I-1
) = Rely (k)] + Re[z (K)8,.( } (4.3.1)
i=0
Consider a single input signal given by equation (4.0.2),
N
(k) =Y exp(j2nf kat). (4.3.2)
v=1

Combination of this signal with a tapped delay (figure 4.1.4) gives the filtered input
signal
J-1 . N
r(k) = 3 hy Y, exp(j2zf, (k — j- DAL)). (4.3.3)

j=0 v=1

Note that with this type of configuration, the computational effort can be reduced

considerably using
r.. k) = rk-1. (4.3.4)

The controller parameters are updated according to equation (4.2.11) (appendix C).
In a simplified form the time delay controller is often used with a real input :

N
(k) = Y cos(2nf kAt). (4.3.5)
v=1

As a consequence all imaginary parts of the signals are zero, and the estimation problem
only contains real numbers. Since the behaviour of a real time delay controller does not
deviate much from the behaviour of a complex time delay controller, all experiments are
carried out with a real time delay controller.

For a sample based Fourier controller (figure 4.1.5), the filtered input signals are

J-
r,(K) = 2:“} exp(j2xf, (k- jAt)), (4.3.6)

j=0

while the controller parameters are updated according to equation (4.2.17).
In the block based Fourier controller the equations (4.2.20) and (4.2.21) are used.

4.3.2 Experiments with single channel ANC
The behaviour of an anti-noise controller can be characterized by its rate of convergence,
its performance and its stability. The rate of convergence is linked with the eigenvalue

spread of the input correlation matrix and can be varied with the step size factor. The
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maximum step size factor is bounded by the total delay of the secondary process
(equation (4.2.5) must be valid) and the extraneous noise. The performance, or overall
reduction, strongly depends on the rate of convergence for systems which change in time:
if the rate of convergence is small the controller cannot track the alterations . The stability
is linked with the condition number of the input correlation matrix. Experiments are
carried out to examine the behaviour of a single channel system for the three inputs
mentioned in section 4.1 (time delay, sample-Fourier and block-Fourier). The input
correlation matrices based on the filtered input signals are calculated and their eigenvalues
and condition number are compared with respectively the rate of convergence and the
stability of the controller.

In the experiments two set-ups are used: a set-up in which the noise source, anti-noise
source and the error-sensor are placed in an anechoic room, and a set-up in which the
noise source, the anti-noise source and the error sensor are placed in a duct. The impulse
responses of the primary and secondary process are assumed to be time invariant. The
FIR of the secondary process, truncated to 150 points, is measured in both set-ups before
operation with the help of broad band noise. The sampling frequency used in the
controller is 2 kHz. The input signals are produced by wave form generators. In figure
4.3.1 the set-ups are depicted (see also figure 4.1.3).

waveform waveform
generato P anechoic generators|

room M

duct
<
2m.
M P
] S
s 7

Figure 4.3.1 ; The single channel set-up in the anechoic room and in the duct .

The error sensor signal is measured as a function of time, and the results are shown in
graphs in which the level of the error signal, averaged over 100 samples is drawn.

In a first experiment the set-up in the anechoic room is used. The distance between the
secondary source and the error-sensor is 2 meters. The total delay caused by this
acoustical path, filters and loudspeakers is about 25 samples. After about 35 samples the
FIR of the secondary process may be truncated. Five wave form generators create signals
comprising the following frequency components: =55 Hz, f,=110 Hz, f,=165 Hz,
f,=220 Hz and ;=275 Hz. At a sample frequency of 2 kHz one period of the composed
signal having a fundamental frequency of 55 Hz runs to just over 36 samples.

The tapped delay line of the time delay controller comprises 32 samples, nearly one
period. The filtered-x vector is found with equation (4.3.3), while the 32 controller
parameters are updated according to (4.2.11). The eigenvalue spread of the 5 largest
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complex eigenvalues of the matrix (4.2.12) is approximately 8. The calculated condition
number is very large (1013).

Both the sample- and the block based Fourier controller have 5 complex parameters, one
for each frequency component. The block based Fourier controller has a block size of 64
samples and a sample frequency of 880 Hz. The coefficients are calculated with the help
of the scaled projection algorithms, equation (4.2.21) for the block based Fourier
controller and equation (4.2.17) for the sample based controller. The condition number
and eigenvalue-spread are 1 for both controllers, which means that the convergence rate
of the Fourier only is bounded by the delay.

In all cases the maximum step size factor is used for which the algorithm is stable during
the experiment (at least about 5 minutes anti-noise).

In figure 4.3.2. the results of the measurements with the three different inputs
configurations are depicted. At t=0.2 s. the active noise controller is started.

80 convergence
anechoic room

g 70— Fourier (block)
1
<
w 60— time
w
(]
o
2 50

40— Fourier (sample)

I T T | |
0.0 0.5 1.0 1.5 2.0

TIME seconds

Figure 4.3.2 ; The level of the measured error during convergence for three
different input configurations in the anechoic room.

The graphs in figure 4.3.2 show that the relation of the convergence rates of the sample
based Fourier controller to that of the time delay controller is in agreement with their
eigenvalue spread. Also the typical outcome of the block operation used in the block
based Fourier controller can be seen in the figure. The eventual reduction (or:
performance) of the controllers is the same. The background noise level is found at
approximately 40 dB in this measurement. It is affected by the relatively high level of
(very) low frequency noise.

In a second experiment the set-up in the duct is used. In this experiment only the time
delay controller and the sample based Fourier controller are considered. The length of the
duct is 4 m. Due to the multiple reflections in the duct the impulse response in the duct is
longer than in the anechoic room, all 150 elements of the impulse response are needed to
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calculate the filtered input signal. The convergence of the error signal to the noise level is
measured for two different primary signals: the signal comprising 5 frequency
components, mentioned above, and a signal comprising 8 harmonic frequency
components ranging from 32 Hz to 256 Hz. The sampling frequency is 2 kHz. In the
time delay controller for both signals 32 tap elements are used, which means that the
convolution filter for the second signal is rather short compared to one period (62
samples). The spread of the 5 largest eigenvalues for the first input signal has, due to the
acoustic transfer in the duct, increased to 20, the condition number is approximately 10°.
The eigenvalue spread of the largest 8 eigenvalues for the second signal is about 101! and
the condition number is 10!7. For the Fourier controller again scaled inputs are used so
eigenvalue spread and condition number are 1.

In figure 4.3.3 four noise levels of the error signal (2 primary signals and two
controllers) are shown as a function of time. The figure shows that in accordance with the
eigenvalue spread the convergence of the time delay controller is rather small for the
signal containing 5 components and even smaller for the signal containing 8 harmonics.
Compared to the measurement in the anechoic room, the convergence of the Fourier
controller is somewhat smaller due to a decrease of the maximum step size factor. This is
caused by the somewhat longer impulse response in the duct.
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Figure 4.3.3 ; The level of the measured error during convergence for
a Fourier controller and a time delay controller in a duct.
Two different primary signals are used.

In all experiments the calculated condition number of the input correlation matrix of the
time delay controller is much larger than the condition number of the Fourier controller.
This must have consequences for the stability of the controller. To establish the stability
of both controllers an experiment is carried out in which the set-up in the duct is used.
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The primary source radiates the signal with the 5 harmonics mentioned above. ANC is
switched on and the controllers converge to the noise level according to the figures
shown before. Now the time-delay controller, based on convolution, becomes unstable
after a few hours. That is to say it calculates an output signal so high that the output-
overload protection circuit, which prevents damage on the loudspeakers, switches off the
controller. The experiment is repeated several times with the same set-up and each time
the controller was switched off automatically by the overload protection circuit after
approximately 5 hours. The Fourier controller, having a condition number around 1 did
not become unstable at all. After 27 hours (200 million samples) the experiment with the
Fourier controller was stopped.

4.3.3 Experiments with multiple channel ANC

In the experiments for multi-channel ANC again two set-ups are used: a set-up in which
the noise source, 3 anti-noise sources and 3 error-sensors are placed in the anechoic
room, and a set-up in which the noise source, the 3 anti-noise sources and the 3 error
sensors are placed in an enclosure (4.3.1). Theoretically a set up with 3 anti-noise
sources and 3 sensors should reduce the pressure level on the sensors to the background
noise level (chapter 3). The impulse responses of the primary and secondary process are
assumed to be time invariant. The FIR model of the 9 secondary processes, truncated to
150 points is measured in both set-ups before operation with the help of broad band
noise. The sampling frequency used in the controller is 1 kHz. The periodic primary
source signal contains 5 frequency components: f,=50 Hz, f,=100 Hz, f,=150 Hz,
f,=200 Hz and f,=250 Hz., so one period of the single input signal is 20 samples.

In the time delay controller 22 controller parameters are used, which means that the total
delay completely covers one period. The parameters are calculated with the help of the
projection algorithm (4.2.33). The Fourier controller contains 5 controller parameters and
is calculated with the scaled projection algorithm (4.2.39).

control 4

Figure 4.3.4 ; The multi channel set-up in the anechoic room .
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In the set-up in the anechoic room the distances between sources and sensors are rather
short, they range from 0.75 m. to 1.00 m. The impulse responses of the secondary
processes are measured and may be considered to be close to a simple delay of about 10
samples for the frequencies from 100 Hz to 300 Hz, so it may be expected that not only
the Fourier controller, but also the time delay controller will have an optimal eigenvalue
spread.

Since in the time delay controller the total delay completely covers one period the rate of
convergence is bounded (for both controllers) by the delay only. In figure 4.3.5 the sum
of the squared error signals, averaged over 100 samples, is drawn as a function of time.
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Figure 4.3.5 ; The level of the sum of the squared errors on the three sensors during
convergence for a Fourier controller and a time delay controller in the anechoic
room.

The figure makes clear that the rate of convergence for both controllers is very large,
which may be expected considering the optimal eigenvalue spread and the short delay. In
both cases the pressure level on the microphones is reduced to the (non correlated)
background noise level.

In a second experiment the set-up in the enclosure is used, a rectangular box of
dimensions 1.00 m x 0.85 m.x 0.33 m.. The 9 transfer functions from anti-noise sources
to error sensors in this set-up strongly depend on the position of the sources, the position
of the sensors and, besides that, on the frequency (chapter 3). Since it is not possible to
scale the time delay controller, the input correlation matrix given by (4.2.34) will have a
large eigenvalue spread. The eigenvalue spread in the set-up in the box was
approximately 2500. The eigenvalue spread of the Fourier input matrix is optimal since
the scaled projection algorithm is used (4.2.39). The results of the measurements are
depicted in figure 4.3.6. The step size factor of the Fourier controller is bounded (section
4.2) and therefore the convergence is not as fast as in the anechoic room. The noise level
is reached after approximately one to two seconds. The time delay controller has a rather
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typical behaviour: an initial fast convergence after which the rate of convergence
decreases gradually. The time delay controller did not reach the background noise level
within the measurement time (5 minutes).
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Figure 4.3.6 ; The level of the sum of the squared errors on the three sensors during
convergence for a Fourier and a time delay controller in the rectangular box

In multi channel control the condition number for the time delay controller is, again, very
large. In an experiment for which the 3x3 multi channel set-up was used in a room, the
time until the controller becomes unstable is measured. The time delay controller was
switched off automatically by the output-overload protection after 140 minutes while the
Fourier controller was stable during 27 hours, before being switched off manually.

4.4 Time varying secondary process parameters

In the previous sections the derivation of the projection algorithm was reviewed and it
was applied to the anti-noise configuration. In this configuration the so called filtered-x
assumption is used in the updating algorithm, and therefore an estimate of the secondary
process is needed (equation (4.2.9 and 4.2.10)). So far it was assumed that the
secondary process is stationary, which means that it can be measured off-line, before
operation of anti-noise. Due to changes in the acoustic environment however the
parameters describing the secondary process often alter, and consequently a regular
update of these parameters is needed in order to guarantee convergence. This means that
besides the configuration in which the controller parameters are estimated (described in
the previous sections), an additional controller loop is needed in which the parameters
describing the secondary process are estimated. In this additional loop the existing
controller output and error input are used. If the primary signal is absent these parameters
can be estimated using the most basic configuration (figure 4.1.1), or, in case the
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projection algorithm is used, the basic output-error configuration shown in figure 4.1.2
and in figure 4.4.1a.

Yo(K)
s:g:::ilary actual + L+
—P» secondary —p-
n (k) process yq (k) n (k)+ s (k) process Yn+s(k)

. /
estimated - + T](k) estimated -
secondary z —3P» secondary

process |y, (k) process

Z &,(k)

Figure 4.4.1a ; Off-line estimation. Figure 4.4.1b ; On-line estimation.

In ANC the secondary process is described generally with its FIR. For periodic signals
however also Fourier coefficients may be used. The FIR of the secondary process is
found using a broadband excitation signal 7)(k) as a controller output. This excitation
signal is an input of the actual secondary process as well as an input of the estimated
secondary process. The outputs of the processes are in that case y,(k) and y, (k)
respectively. Ideally y, .(K) =y, (k). On-line, that is to say, if the primary signal is
present, the excitation signal is added to the anti-noise signal. The off-line and on-line
configuration are shown in figure 4.4.1a and 4.4.1b. The estimation of the FIR
coefficients of a process is much described in literature (for ANC in Eriksson [18] for
instance).

If the parameters are estimated on-line, the level of the process output signal y, (k) must
be small compared to the primary signal, because it is not desirable to increase the error
level audibly. As a consequence the error signal €,(k) comprises much ‘extraneous
noise’ and so the step size factor of the secondary process estimation has to be very
small. Furthermore, the FIR generally comprises many elements, especially in a
reverberant environment. For those reasons only slow alterations in the parameters can be
tracked.

It can be advantageous in some cases to estimate the Fourier coefficients of the secondary
process. In the first case because the relatively high level of the anti-noise signal s(k) can
be part of the excitation signal. Furthermore, the number of parameters to be estimated is
in most cases small: only the Fourier coefficients of the frequency components related to
the revolution of the rotating machine have to be estimated. Obviously the method only
makes sense in case a block- or sample based Fourier controller is used. An important
problem arises using this method since the excitation signal, used to estimate the
parameters, and the primary signal are strongly correlated. This correlation is the cause of
errors in the estimated values. The correlation can be reduced using difference signals:
signals which are the difference of two samples of an original signal with a time spacing
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of one period (van Overbeek, [19]). In the following section the method to estimate the
Fourier coefficients of the secondary process will be reviewed.

4.4.1 On-line estimation of the Fourier coefficients in a block Fourier controller

Assume that the primary signal is stationary having a period of (exactly) p samples. Then
the difference signals are:
AYp(k)=yp(k)_Yp(k_p)v (4.4.1)

and similarly for s(k), &(Kk) and y(k). The sampling interval is At.
The time variant secondary process is determined by its impulse response h;(k),
j=1..J-1.The time variant Fourier coefficient f, of this secondary process is

J-1
H,(k) = Y hi(k)exp(j2zf,jAt). (4.4.2)
=0

The application of the estimation method using difference signals is most simple for the
Fourier-block based controller. In that case the Fourier coefficients of the secondary
process are estimated using the (fast) Fourier transform, performed on two successive
blocks (block m-1 and block m) of the controller output signal s(k) and the measured
error signal &,(k). Each of the blocks comprise one (ore a few) period(s) of the signal,
yielding after subtraction the Fourier coefficients of the difference signals: AS,(m) and
AE, (m). It is assumed that the signals are stationary during one block. The input-output
relation for a system-identification configuration with these signals is

AE (m) = AY, (m)+ H, (m)AS, (m)+ AH,(M)AS, (m) + AH,(M)S, (m)

Furthermore it is assumed that the alterations in the Fourier coefficients (4.4.2) are very
small during two blocks, so H,(m) = H, (k) if k is in block m-1 and in block m.

Since the frequency coefficients may be considered to be independent, a very simple
configuration can be used. The configuration is depicted in figure 4.4.2, note the
resemblance to figure 4.1.1.

AY, (m)

AS,(m) M N AE,(m)

+

Figure 4.4.2 ; Estimation of the Fourier coefficients H,(m)

using difference signals (block operation).
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If the primary difference signal AY, (m) is assumed to be negligibly small and,

moreover,
Hm=Hm-1, v=1..N,

than the input-output relationship of the configuration shown in figure 4.4.2 is
AE,(m) = H, (m)AS, (m), (4.4.3)
yielding the (stabilized) least squares solution

AS, (M)AE, (m)

) 4.4.4
a+|AS, myf @49

Hv,ls (m)

in which ¢ is a small positive constant.

The updating algorithm must be used with care since it is not unimaginable in ANC that
AS,(m) = 0, yielding questionable values for H, , (m). To avoid this a range is defined:
the estimation may only be performed if |AS,(m)| > 8, and S being a positive constant.
The range is known as the dead zone of the algorithm.

The equations (4.4.3) , (4.2.20):

R"(m) = Hv,ls(m)xv(m),
and (4.2.21)
ev(m) = @V(m - 1) - ’}/MEL"?’
a+[R,(m)

are implemented in a hardware controller "HADAP’-unit). This active noise control unit
is used in situations where the revolution frequency and the acoustical process are
changing in time relatively slowly (it is also used in the experiments described in chapter
2). A great number of experiments is carried out in several industrial applications, in
chapter 5 an example of an industrial application in which it is used will be presented.

4.4.2 The estimation of the Fourier coefficients in a sample based Fourier
controller

With the help of the projection algorithm the Fourier coefficients H, (k) (4.4.2) can also
be estimated on a sample base. The derivations will be more clear for the off-line
configuration, so before the on-line estimation method based on difference signals is
discussed, the off-line estimation method based on normal signals will be interpreted. It
is assumed that during the off-line estimation the controller parameters éc are fixed.

The controller output signal is (see (4.2.1))
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sk) = ¢"(k)6, = Y 0, (K)8,, - (4.4.5)
v=1

In figure 4.4.3 the off-line output-error configuration is drawn.

s(k) actual
—| secondary
process
y, k)

0.Kg,. estimated - g +
4’7 secondary 5

v=1l..N process | y (K)

/ ak)

Figure 4.4.3 ; The output error configuration used to estimate
the Fourier coefficients of the secondary process on a sample base (off-line).

The real part of the controller output s(K) is the input for the actual secondary process,
so, if the FIR elements are real the output of the secondary process is

N J-1
= RG[Z ¢, (K, hi(k)ﬁl’v(—i)}- (4.4.6)
Combination of the expression for ¢, (k) (equation (4.04)) and equation (4.4.2) yields

y (k) = Re[Z <p;(k)6c,vHv(k)}- (4.4.7)

v=1

Using for convenience X, (k) = ¢, (k)8 ,, this can be written as

y (k)= Relii x:,(k)HV(k)]. (4.4.8)

The input of the estimated secondary process is multi dimensional (x,(k),
v =1,...N).The output of the estimated process must be real. Assume that the estimated
Fourier coefficients are H, ,(K), than the output can be written as
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Yo(k) = He[ZN‘, XL(k)HV,c(k)}. (4.4.9)

v=1

The output error obviously is &,(k) = y4(k) -y, (k). The projection algorithm applied to
the configuration depicted in figure 4.4.3 gives the algorithm with which the Fourier
coefficients of the secondary process can be estimated on a sample base:

x, (k)e, (k)

Hv,c(k) = Hv,c(k - 1) +Y o+ X‘ (k)x (k) .

(4.4.10)

The estimation of the Fourier coefficients on-line, in the presence of the primary signal,
requires a configuration with difference signals. The error equation of the estimation loop
is (see figure 4.4.4)

£,(K) = Ay, (K) + Ay, (k) - Y (K). (4.4.11)

Ay, (k)

As(k) actual + +
——p»| secondary f—-yp-( =

Proce;s Ays(k) . (k)
£

(P: (k)Ag, ,k-1) estimated - +
' —! secondary )5
v=1...N

process yc(k)

Figure 4.4.4 ; On-line estimation of
the Fourier coefficients on a sample base.

The derivation of the algorithm with which the Fourier coefficients are estimated on-line
on a sample base is identical to the off-line derivation, but for two additional
assumptions:

- the frequency coefficients f, of the primary difference signal Ay, (k) are negligibly
small

- the differences A8, (K —1) are changing in time only slowly .

Defining AX, (k) = @, (k)A8, , (k - 1), the updating algorithm can be written as

Ax, (K)e, (k)

. (4.4.12)
o+ Ax,, (k)Ax, (k)

H, (k) = H_Kk-0+7
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Since generally the difference signal is small (in order to fulfill the filtered-x assumption),
the controller output Yy (k) will be small in relation to the ‘extraneous’ noise Ay, (k),
which means that this method can only be used if the parameters to be estimated change
in time slowly

In the projection algorithm (4.2.17) with which the controller parameters éc(k) of the
(sample based) Fourier controller are estimated the filtered-x values r,(k) are used. The
filtered-x values are calculated with the estimated Fourier coefficients of the secondary
process. Using the definition (4.2.10) the filtered-x values are

[

-1, o1,
nl) = Y hKe, k=) =0,6hKe, ) (44.13)

i j=

1}
(=]

SO
nk) = @,kH, K. (4.4.14)

4.5 Conclusions

The ANC controller problem has been solved using a parameter estimation approach. The
parameters are estimated using a simplified RLSE method: Kaczmarz’s projection
algorithm [15]. Actually this projection algorithm is referred to by other authors as
Normalized Least Mean Squares (NLMS, [14] and [16]). However, the interpretation of
the algorithm as a sequence of projections of the estimator on the input vectors clarifies
some interesting properties of the algorithm. Firstly place the interpretation shows that it
is very important for the convergence speed that the input vectors are orthogonal. An I-
dimensional vector in an I-dimensional orthogonal space can be estimated with the
projection algorithm in I steps. It means that if the input vectors are orthogonal, the
eigenvalue spread of the input correlation matrix is already optimal after one period of the
reference signal. Furthermore, in a geometric interpretation the consequences of
extraneous noise and a time varying process parameter vector can be easily visualized.

In 1975 Glover [11] proposed to use a sine and a cosine as input signals for noise
cancellation. In his concept he uses a unit ‘secondary process’ and therefore the LMS-
algorithm in combination with these input signals may be considered to be a projection
algorithm with orthogonal (Fourier) input vectors. In an anti noise (filtered-x)
configuration comprising a real secondary process these Fourier input vectors can be
used too. However, in order to guarantee an optimal eigenvalue spread of the input
correlation matrix the (filtered) input signals must be scaled properly.

In this chapter the proper scaling factors are derived for a SISO controller and a MIMO
controller. In a number of experiments the behaviour of the projection algorithm using
optimally scaled Fourier input vectors (a Fourier controller) is compared with the
projection algorithm applied to a tapped delay line. The experiments show that due to the
optimal eigenvalue spread the convergence speed of the Fourier controller is much higher
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in both the SISO as well as in the MIMO controller.

Finally, the on-line estimation of the Fourier coefficients of the secondary process is
discussed. It is proposed to estimate the coefficients using difference signals, thus
reducing the correlation between the primary noise and the excitation signal. The method
works well in practice and is implemented in a hardware control unit comprising the
block-based Fourier controller (‘HADAP’).
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5. PRACTICAL APPLICATIONS OF ANTI NOISE
Introduction

In the previous three chapters the theoretical derivations underlying active noise control
were illustrated with the results of numerical simulations and experiments in the
laboratory. Two algorithms have been developed during this study: the on-line estimation
based on difference signals, described in section 4.4 and the sample based Fourier
controller described in section 4.2. In two applications these algorithms are used. In this
chapter the ANC experiments in the applications and their results are described.

In the first experiment ANC is used to reduce periodic noise generated by a vacuum
pump, installed in a chemical plant. The pump is used to maintain reduced pressure inside
the drums of filters used for drying and washing a chemical substance. Two fall-pipes
coming from the delivery side of the pump drain off a mixture of hot water of about 70 °C
and very humid air into a reservoir. The revolution frequency of the pump is
approximately 8 Hz, and the pump has 16 rotor blades. The 16" , 3274 and 48th
harmonic of the revolution frequency are strongly present in the frequency spectrum of
the noise coming out of the fall-pipes. The wave-lengths of the harmonics shift in the
course of time due to alterations in the temperature and changes in the density of the air
and water mixture. In these circumstances the reduction of the low frequency noise with
passive means is difficult to achieve. If active noise control is to be used, a fully adaptive
system is needed, adjusting its parameters to alterations in both the primary noise and the
secondary process. In the experiments the periodic noise coming out of the fall-pipes is
reduced with the help of an anti noise controller with the following characteristics: a hard-
ware unit, the so called ‘HADAP-unit’, developed by TPD, comprising algorithms for the
block-based Fourier controller in combination with the on-line estimation of the secondary
process described in section 4.4.1.

In the second experiment ANC is used to reduce periodic low frequency noise inside the
cabin of a delivery van. The noise level in the cabin is annoyingly high, mainly because
the sound insulation of the cabin is poor at low frequencies. The periodic noise in the
cabin is largely determined by the diesel engine. The firing frequency and several
harmonics of the engine revolution frequency are present in the frequency spectrum
during a drive. During acceleration and deceleration the revolution frequency of the engine
changes continuously. However, it may be assumed that the rate of these changes are so
small, that the primary noise may be considered periodic. The inner dimensions of the
cabin roughly are 1.65 m. width x 1.25 m. length x 1.60 m height , and up to 200 Hz the
modal density is not very high. In the experiments the engine related noise in the cabin is
reduced with an anti noise system for three dimensional situations. The multi-channel
system contains 5 error-microphones and 4 anti noise sources. The controller must be
able to track the fast changes in the primary wave field meaning that the sample based
Fourier controller must be used.

In both experiments the measured data is recorded on a multi channel digital recording
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system (a DAT recorder). Simultaneously with the measured microphone signals a pulse
train is recorded comprising 256 pulses per revolution (vacuum pump) or 35 pulses per
revolution (delivery van). With the help of the pulse train the recorded microphone signals
can be analysed using a sampling frequency which is synchronized with the engine
revolution. The Fourier transform applied to data blocks acquired with a synchronized
sampling frequency yield order spectra.

5.1 Anti noise applied to a vacuum pump in a chemical plant
5.1.1 Introduction

The reduction of noise caused by large industrial vacuum pumps is a well known problem
in industrial noise control. The noise is generated in the pumps by the rotor blades and
propagates through the duct on the delivery side to the environment. The frequency
spectrum of this noise generally is dominated by a few harmonic components, the blade
passing frequency (i.e., the revolution frequency of the axis times the number of rotor
blades) being the fundamental frequency. In these large pumps the blade passing
frequency ranges from some 30 Hz up to about 150 Hz. The pressure levels in the ducts
can be very high, and sometimes even non-linear acoustics is involved. Often the ducts
transport not only air but also water, dust, chemical residues and the like. Furthermore,
the temperature, mean flow and the density in the duct and sometimes the revolution
frequency of the pump change in the course of time. Given all those circumstances,
passive noise reduction is very difficult: scalings accumulate on sound absorbing
materials and tuned resonators get out of tune.

In some cases active noise control can provide a solution, especially if the frequency
spectrum is dominated by a few harmonic components only. The variations in the
temperature, density and mean flow require a controller able to update on-line the transfer
function from error microphone to anti noise source regularly (say every minute or so). In
the ducts of the vacuum pump with which the experiments are carried out the variations
are slow as compared to the period of the blade passing frequency. Furthermore, the
changes in the revolution frequency of the axis are very small: within 0.5% during the
measurements. Therefore it is certainly possible to use a block-based Fourier controller to
reduce the periodic pump noise. This controller, combined with an on-line estimation of
the transfer function described in section 4.4.1 is implemented in a one-channel hardware
unit developed and constructed at TPD, which comprises a Digital Signal Processor
(DSP).

5.1.2 The initial situation in the plant

The machine with which the experiments are carried out, is a dual vacuum pump the
suction being based on centrifugal force. Each side of the dual pump has 16 rotor blades
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and one common axis which is driven via driving belts by a large electromotor of about
100 kWatts. The dual vacuum pump can serve two systems at different vacuum levels.
There are two inlets on top of the pump and two outlets at the back side. In figure 5.1.1 a
picture of a pump is shown. In the front the electromotor is visible; the driving belts are
covered for safety reasons. The two pump inlets on top are connected to one vacuum
pipe, the two outlets drain off through fall-pipes into a reservoir.

Figure 5.1.1 ; The vacuumpump as it is installed on the platform in the filter-
building. The dimensions of the platform are about 3.5 x 2 m.

Actually in total 5 of these vacuum pumps are installed on the ground floor of what is
known as the filter building. Generally two or three of the pumps are at work. In figure
5.1.2 the situation in the filter building is shown.

10m
-

reservoir
W 4004 4006 pump

electro motor
OO O=

filter-building, ground floor

l outer wall
o | N
C A

vessels

Figure 5.1.2 ; The situation in the filter-building .The measurement positions are
indicated by the letters A,B and C.
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ANC experiments are carried out with the pumps numbered 4004 and 4006 but also some
measurements are made while other pumps (4007 and 4008, the two pumps to the right of
4006) are at work. The reservoir is covered with concrete lids and the fall-pipes stick
through circular openings in the lids into the reservoir. Noise coming out of the fall-pipes
comes into the building through cracks and openings between the lids and the reservoir.
The pumps and the electromotors are placed on platforms on the concrete floor (see figure
5.1.1). The outer wall of the building is made of corrugated plastic. On the pumps 4004
and 4006 an optical sensor is mounted on the fly-wheel giving a synchronization signal of
256 pulses per revolution. With the help of the synchronization signal the harmonics due
to 4004 and 4006 can be traced in the measured spectra, provided of course that the
frequency resolution is sufficient. The revolution frequencies of the pumps are all around
8 Hz. The revolution frequency of the pump 4004 is 7.66 Hz giving a blade passing
frequency of just over 122.5 Hz, while the pump 4006 has a blade passing frequency of
123.5 Hz. A number of noise measurements are made in the filter building in several
combinations with working pumps. On 3 positions around the pumps (A,B and C, see
figure 5.1.2) microphones were placed at a height of approximately 2 meters.

The acoustic pressure at position B, recorded while the pumps 4004, 4007 and 4008 are
at work, is analysed using a synchronized sampling frequency. The synchronization
signal from the optical sensor on pump 4004 is used and the amplitudes of the frequency
components of 50 blocks of 2048 samples are averaged, yielding the order spectrum
shown in figure 5.1.3. Clearly the first order harmonic (the blade passing frequency), the
2nd order harmonic and the 3™ order harmonic are prominent in the spectrum. The two
other high levelled frequency components around the harmonics of 4004 are the
harmonics of the blade passing frequencies of the pumps 4007 and 4008. Simultaneously
the pressure level at the positions A and C is measured.
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order of blade passing frequency

Figure 5.1.3 ; The order spectrum at position B while 4004, 4007 and 4008 are at
work. The sampling frequency is synchronized with the revolution of 4004.
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In figure 5.1.4 (left figure) a bar chart is shown in which the pressure levels of the blade
passing frequency of 4004 (‘1”) and the two ensuing harmonics (‘2) and (‘3’) are
depicted for the measurement positions A, B and C. Note that the mutual relation between
the levels of the first three harmonics differ from one measurement position to another.
Furthermore, it turned out that the pressure levels of the harmonics strongly fluctuate in
time, In figure 5.1.4 at the right the same bar chart is made for a measurement a few
hours later, the same pumps are at work and the operating conditions did not change.
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Figure 5.1.4 ; The pressure levels of the blade passing frequency (1), the first
harmonic (2) and the second harmonic (3) on the measurement positions A, B and C

on two different moments.

The large changes in the pressure level can be explained assuming that the pressure is an
addition of interfering waves, while the amplitudes and phases of these waves change in

time.

Loudspeaker
in enclosure
outlet
pump [
—_— St
| * extra
outlet fall-pipe T-junction
pump
— (

Figure 5.1.5 ; The PVC modification of the two

outlets to one fall-pipe.

5.1.3. The anti noise set-up

Each (dual) vacuum pump has two outlets and so two single channel anti noise systems
would be required to silence one pump. However, without any objections the two outlets
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may be connected to one fall-pipe, making it possible to silence one pump with one single
channel anti noise system. Therefore one fall-pipe is removed and the two outlets are
connected to one fall-pipe. In figure 5.1.5 the modification of the fall-pipes of 4004 and
4006 is drawn schematically, showing the (PVC) ducts connecting the two outlets. The
diameter of the ducts is 0.15 meters. In the figure the loudspeaker is placed just above the
fall-pipe. In figure 5.1.6 a picture of the modification of 4004 is shown.
The anti noise source, a 15-inch 500 watts loudspeaker in an enclosure, is placed just
"above the fall-pipe (see figures 5.1.5 and 5.1.6). In order to avoid radiation, the
enclosure has a double wall; the inner wall is made of PVC, the outer wall of compressed

Figure 5.1.6 ; The PVC modification with which the
two outlets are connected to one fall-pipe. The enclosure
of the loudspeaker (without cover) is visible. The dimensions
of the loudspeaker box are about 0.5 m x 0.5 m x 0.5 m.

wood. The error sensor, a microphone in a rubber, waterproof cover, was placed in the
fall-pipe and was protected against the direct flow of (hot) water streaming through the
pipe. The error microphones are calibrated without the covers. During all measurements
the operating conditions for the pumps did not change, however this does not mean that
there are no variations in the temperature, the mean flow and the averaged density in the
ducts.

In order to determine the effect of the modification on the acoustic pressure levels, the
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pressure at the positions A, B and C is recorded at two different moments while the
pumps 4004, 4007 and 4008 are at work. In figure 5.1.7 the pressure levels at the blade
passing frequency of 4004, the 27d harmonic and the 3™ harmonic are shown in a bar
chart. Noticeably the levels at A, B and C are on the average some 10 dB below the levels
depicted in figure 5.1.4. Other measurements, including measurements at the harmonics
due to the vacuum pump 4006, show that on the average the modification indeed reduces
the level of the acoustic pressure at the harmonics.
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Figure 5.1.7 ; The pressure levels of the blade passing frequency (1), the first
harmonic (2) and the second harmonic (3) on the measurement positions A, B and C
on two different moments after the modification,_but without anti noise.

In the ANC experiments, the anti noise signals are calculated using the block based
Fourier controller described in chapter 4. The blocks of data on which the Fourier
transforms are applied are acquired with a synchronized sampling frequency using the
optical sensor. The transfer functions are updated on-line with the algorithms described in
section 4.4.1 (no estimation is made before operation).

The acoustic pressures at the two error microphones in the fall-pipes and at the three
measurements microphones A, B and C are recorded simultaneously with the sensor
signals from the optical sensors on the fly-wheels of 4004 and 4006.

5.1.4. Anti noise applied to the vacuum pump

A complete ANC system is installed on both the vacuum pumps 4004 and 4006. In a first
experiment anti noise is applied to the blade passing frequency, the 27 harmonic and the
31 harmonic due to 4006. During the experiment no other pumps are at work. The
acoustic pressure at the error microphone, mounted in the fall-pipe of 4006, and at the
positions A, B and C is recorded without and with anti noise.
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Figure 5.1.8 ; The order spectra without ANC (dotted line) and with ANC
(solid line) on the error microphone of 4006.

The measurements are analysed using a synchronized sampling frequency. In figure 5.1.8
the order spectra of the pressure with ANC (solid line) and without ANC (dotted line) at
the error microphone are depicted. The pressures of 50 blocks of 2048 samples are
averaged, in the figure only the first 400 components of the spectra are shown. The
recording with ANC is made about 30 seconds after the controller has been started.
Clearly the harmonic components at the fundamental frequency and the two following
harmonics are reduced to the level of the surrounding frequency components. The
increased level around the 3" harmonic during ANC is probably due to flow noise.
Although the acoustic pressure of the harmonics is reduced completely in the fall-pipes,
there is no substantial reduction at the positions A, B and C: as an example the order
spectra at position B are analysed and depicted in figure 5.1.9. The level at the
fundamental frequency is higher during ANC while the level of the 3/ is lower. This
means that the acoustic pressure at the harmonic frequency components in the filter
building is not only determined by the noise coming out of the pump outlets but also by
other sources. The measurements without and with anti noise are carried out with a time
interval of about one hour, and so the changes in figure 5.1.9 might as well be caused by
an alteration of amplitudes and phases of interfering waves.
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Figure 5.1.9 ; The order spectra without ANC (left) and with ANC (right) on the
measurement microphone B.

In a second experiment the measurements are repeated, in this case not only 4006 but also
4008 is at work. In figure 5.1.10 the order spectra without ANC (dotted line) and with
ANC (solid line) at the error microphone are shown. Again the harmonics due to 4006 are
reduced completely. In these measurements the level at the surrounding frequencies due to
flow noise is not as high as in figures 5.1.8. The reduction of the second harmonic is
over 30 dB. Note that in both situations without- and with anti noise the harmonics of
4008 are present, the algorithm is not bothered by these harmonics. Again there is no
distinct reduction of the acoustic pressure at the measurement microphones A, B and C.
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Figure 5.1.10 ; The order spectra without ANC (dotted line) and with ANC
(solid line) on the error microphone of 4006. During both measurements 4008 is at
work.
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The experiments are repeated 5 times spread over two different days. In all experiments
the level at the harmonic components measured at the error microphone in the fall-pipe of
4006 is reduced to the level of the surrounding frequency components. The pressure
amplitudes of the 5 measurements are averaged for each harmonic component and each
position. The results are compared with the results of 5 measurements in the initial
situation and the results of 4 measurements with the duct modification but without ANC.
The results are plotted using bar charts in figure 5.1.11a (position A), 5.1.11b (position
B) and 5.1.11c (position C).
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Figure 5.1.11a Figure 5.1.11b Figure 5.1.11c
The pressure levels at the three first harmonic components averaged over several
measurements. INI: initial situation, MOD: after the modification of the ducts,
ANC: with ANC. a) The levels at position A; b) the levels at B, ¢) the levels at C.

The initial situation is marked by INI, the modified situation without ANC by MOD and
the modified situation with ANC by ANC. The modification of the outlet ducts causes a
considerable reduction, especially at the positions B and C (the farthermost position from
4006). The additional reduction due to anti noise is small, at some harmonics even an
increase is found. The same experiments are carried out with ANC on the fall-pipe of
4004. In figure 5.1.12 the order spectra at the error microphone in the fall-pipe of 4004
without ANC (dotted line) and with ANC (solid line) are plotted. The fundamental
frequency and the 2" harmonic are reduced to the level of the surrounding frequency
components but the ANC system is not able to reduce the 3™ harmonic. In experiments
with the loudspeaker mounted in a comparable geometrical situation in the laboratory
higher pressure levels could be realised around these frequencies. Apparently the
circumstances in the outlet (high temperature and humidity and an increased static
pressure) reduce the efficiency of the loudspeaker in its enclosure at these frequencies.
The results of the experiments show that the algorithms are capable to find the correct
transfer functions and are able to calculate the proper anti noise signal in the circumstances
of the vacuum pump. Furthermore, apart from the 3™ harmonic of 4004, the ANC system
reduces the acoustic pressure at the harmonics on the error microphone to the level of the
surrounding frequencies.
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Figure 5.1.12 ; The order spectra without ANC (dotted line) and with ANC (solid
line) on the error microphone of 4004.

In the initial situation, before the modification is made, the periodic noise in the filter
building is largely determined by the noise coming out of the outlets of the pumps. After
the modification, in which the two outlets are connected to one fall-pipe, the periodic
noise in the filter building is mainly caused by other sources (radiation of the pump itself
and the ducts). So, in spite of the fact that the anti noise system works properly, there is
no considerable reduction in the building.

5.2 Anti noise in the cabin of a delivery van

5.2.1 Introduction

The sources of noise in vehicles which are driven by a combustion engine can roughly be
divided in two types: the sources related to the drive unit (combustion noise,
transmission) and the sources related to other sources (rolling noise, wind). The sources
related to the power unit are mainly periodic and deterministic, whereas the others are
mainly stochastic. If no noise control measures are taken the noise level in the interior of
vehicles is very high. Therefore car manufacturers apply passive noise control to prevent
hearing damage of driver and passengers and to improve the comfort in the cabin. At low
frequencies, below about 200 Hz, passive noise control for airborne noise is bulky or
weighty and therefore not very suitable in (small) vehicles. The firing frequency of most
combustion engines installed in cars lies within the low frequency range from about 20
Hz up to 200 Hz. In most passenger cars the level at the firing frequency is prominent in
the spectrum measured during a drive. Although this so called ‘booming noise’ adds in
most cases virtually nothing to the noise level in dB(A), it is known to be annoying, so
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the reduction of ‘booming noise‘ improves the comfort in the interior. Passive reduction
of noise at the firing frequency is not practical, while active reduction is very feasible
because the noise source is periodic, a reference signal is available and the modal density
is not high below 200 Hz in most car interiors [20], [21] . So, multi dimensional active
noise control for the firing frequency complements passive noise control in vehicles
equipped with a combustion engine. The performance of multi-dimensional ANC depends
on the maximum convergence speed of the adaptive algorithm. In cars the changes in the
revolution frequency are relatively fast and therefore a fast convergence is needed. This
means that the performance strongly depends on the eigenvalue spread of the input
correlation matrix of the algorithm (see chapter 4). In small commercial vehicles, like for
example delivery vans, not only the firing frequency but also other harmonics contribute
substantially to the noise level at frequencies below 200 Hz [22]. According to the
derivations and experiments in chapter 4 an ANC system with a sample based Fourier
controller is able to reduce several harmonics without instability problems while the
eigenvalue spread is optimal. In a small commercial vehicle, a delivery van, the behaviour
of the sample based Fourier controller has been studied. The Fourier controller is
implemented on a DSP (TMSC30) based hardware developed and controller constructed
at TPD (‘Octopus’). With the help of an acoustic antenna comprising 64 microphones
which are multiplexed to an 8 channel (digital) recording system, the wave field in a
horizontal plane is measured during the experiments. The microphones of the antenna are
mounted at a height just above the head of the driver (1.4 m above the floor). The switch-
pulse of the multiplexer is synchronized with the engine revolution in a such a way that
there is an integer number of engine revolutions in each block of data.

5.2.2 The wave field in the delivery van

The experiments are carried out in the cabin of a Mercedes delivery van, type 309 D,
which is equipped with a five cylinder diesel engine (65 kWatt). The cabin of the van is
separated from the cargo space by a partition wall of 15 mm thick ply wood. The engine
compartment is positioned in the front of the car, more or less between the driver seat and
the passenger seat. In figure 5.2.1 a schematic side view of the interior is shown.

The sound insulation of the engine is poor because the passive noise control measures are
restricted: the demands for comfort are not considered to be as high as they are in a
passenger car and generally no weighty partitions are used because they diminish the
carrying capacity.

In the cabin not much passive absorption is present. At frequencies below 200 Hz the
reverberation time is about 0.25 seconds, giving an averaged absorption coefficient
4=0.15. Computer simulations [23] of the wave field in the cabin interior imply that the
modal density is small at frequencies below about 200 Hz. In these computer simulations
on a 2 dimensional wave field the eigenfrequencies of a vertical plane between the
driver seat and the passenger seat are calculated up to 200 Hz. There are of course more
actual eigenfrequencies in the (3 dimensional) cabin between 0 Hz and 200 Hz, but the 2D
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Figure 5.2.1; A sectional view of the delivery van.

simulations give an impression of the modal density. In the 2D wave field the
eigenfrequencies are 57 Hz, 90 Hz, 159 Hz and 197 Hz. The actual number of
eigenfrequencies can be estimated by studying the acoustic resonances in the cabin. In an
experiment loudspeakers are placed at two positions near the bottom of the cabin: in the
corner behind the passenger seat and in the corner in front of the passengers seat. The
acoustic transfer functions from each of the the loudspeakers to 7 microphones, placed
near the ceiling in the other corners of the cabin are measured, and the average of the
amplitudes of the resulting 14 transfer functions as a function of the frequency is
calculated. The result is plotted in figure 5.2.2. The eigenfrequency at 90 Hz and to a less
extent at 157 Hz can be found back as resonances in the cabin. Besides these resonances
there are some more maxima in the averaged acoustic transfer (50 Hz, 100 Hz, 110 Hz,
142 Hz 175 Hz and around 200 hz), but the number is restricted and it may be assumed
that up to about 150 Hz the modal density is not high.

5 —
averaged acoustic transfer
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Figure 5.2.2; The amplitude averaged over 14 acoustic transfer functions in the
delivery van.
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At any resonance frequency there will be clearly audible spatial maxima and minima of the
acoustic pressure if the modal density is small. With the help of the acoustic antenna these
maxima and minima can be made visual. At 70 km/h (5™ gear) the firing frequency is
about 108 Hz which is close to one of the eigenfrequencies of the cabin. In figure 5.2.3 at
64 positions the spectral component of the wave field at the firing frequency is shown.
The driver position is in the right corner at the back (at the minimum x position and the
minimum y position), while the steering wheel is in the right foremost corner of the figure
(at the minimum x position and the maximum y position since it is not an English car).

20LoglP!

Figure 5.2.3; The wave field in the cabin at the firing frequency.
The speed is 70 km/h ( 5 gear)..

The amplitude of the wave field at the firing frequency is high at the right side of the
figure (the driver side), while there is a nodal line of small pressure amplitudes in the
length direction at the left (passenger side). Note that there is a small dip in the wave field
which is caused by the head of the driver.

The five cylinder engine ignites five times in two revolutions of the engine so in the order
spectrum of the engine harmonics the firing frequency is found at 2.5. The engine
revolution frequency during a drive ranges from 10 Hz (600 rpm) up to 75 Hz (4500
rpm) so the firing frequency ranges from 25 Hz to nearly 190 Hz.

The acoustic pressure is measured in a great variety of driving conditions. Synchronous
with the microphone signals, a pulse train produced by a (magnetic) sensor which counts
the 140 cogs on the flywheel is recorded (after a division by 4, so 35 samples per
revolution are on the tape).

In order to study the behaviour of the algorithm in the course of time, sequences of
Fourier transformed data blocks are plotted: the acquired data is divided in data blocks and
each data block is transformed to the Fourier domain, giving a sequence of engine-order
spectra if a synchronized sampling is used and a sequence of frequency spectra if a fixed
sampling frequency is used.

In figure 5.2.4 a sequence of 157 blocks acquired with a synchronized sampling
frequency is shown. The pressure level (in dB) is indicated by a color, the color-axis is
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shown next to the figure. The pressure is measured with a reference microphone which
is positioned near the ceiling in the left front corner of the cabin (see figure 5.2.1). Each
data block comprises 24 periods of the engine revolution frequency, so one data block
equals 24x35=840 samples. The constant driving speed is 70 km/h

(+2 %) in the 5" gear, resulting in an engine revolution frequency of 43 Hz (2600 rpm).
One data block covers about 0.55 seconds. In order to smooth the plotted data, the linear
moving average of 2 blocks is plotted. The figure makes clear that the level at the firing
frequency (2.5 times the engine revolution frequency) is prominent in all blocks. Several
harmonics contribute to the noise level. However, occasionally some of the harmonics
‘disappear’ in the level of the surrounding frequencies. A bump in the road lifts up the
entire spectrum a bit (see for instance block number 125). In figure 5.2.5 the order
spectrum averaged over all 157 blocks is shown. Clearly the pressure level at the firing
frequency rises above the other engine harmonics.

90 order spectra 70 km/h 5" gear
— 80—
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0 1 2 3 4 5 6 7 8 9 10

order engine harmonic

Figure 5.2.5; Order spectrum in the cabin at 70 km/h.(2600 rpm).

In another experiment the van is accelerated in the 5th gear from 70 kivh to 110 kmv/h in
38 seconds (maximum acceleration) after which the throttle pedal is released. During the
experiment the acoustic pressure is measured at the reference microphone and a sequence
of 210 data blocks is acquired with a fixed sampling frequency. Each data block
comprises 256 samples. The sampling frequency is 1024 Hz so one data block takes 0.25
seconds. In figure 5.2.6 the sequence of frequency spectra is shown. At t=0 the speed of
the car is just over 70 km/h and the engine revolution frequency is 2650 rpm, resulting in
a firing frequency of about 110 Hz. Up to a firing frequency of 160 Hz at t=20 seconds
(3800 rpm and 102 km/h), the level of the firing frequency is prominent in the spectrum.
Above 3800 rpm the level at the second engine harmonic increases rapidly, and around
4050 rpm (109 km/h at t=30 seconds) the construction seems to be at resonance at twice
the revolution frequency (other measurements show that the second engine harmonic also
protrudes around 4050 rpm in the 3™ and 4t gear). At t=38 seconds the throttle pedal is
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released and t=52.5 seconds the speed is again 70 kmv/h (all in the 5% gear). The figures
5.2.4 to 5.2.6 make clear that in the cabin several engine harmonics substantially
contribute to the noise level at low frequencies. In most cases the level at the firing
frequency dominates the spectrum above 25 Hz, in some driving conditions however, the
level at another engine harmonic is prominent.

5.2.3 The anti-noise set-up in the delivery van

The anti noise signals in the delivery van are calculated using the sample based Fourier
controller described in chapter 4. The algorithm is implemented on a DSP based hardware
unit which is developed and constructed at TPD. All experiments discussed in this section
are carried out with a multi-channel system comprising 5 error microphones and 4 anti-
noise outputs connected to loudspeakers. The reference signal is obtained with the help of
the magnetic sensor on the flywheel. The hardware unit has analog inputs and therefore
this sensor signal is fed to a signal generator which generates in each revolution
simultaneously one period of a sine and one period of a cosine. In figure 5.2.7 the set up
is drawn schematically.

clock

jgenerator

sensor

cosine

_—

microphone_:—
inputs i

—_—

loudspeaker
outputs

T "0 0O0

Figure 5.2.7 ; The set-up of the active noise control system in the delivery van.

The error microphones are positioned near the ceiling (see figure 5.2.8a) and the anti-
noise loudspeakers are placed at floor level, two of them being mounted in the plywood
partition wall (figure 5.2.8b). In the ANC experiments a maximum of four engine
harmonics will be reduced: the firing frequency at 2.5 times the engine revolution
frequency, the second engine harmonic at twice the revolution frequency and additionally
one or two others. At frequencies below 38 Hz the efficiency of the loudspeaker is very
small and more electric power is needed to cancel the wave field than the loudspeaker can
handle. Therefore ANC for the harmonic concerned is switched off automatically if its
frequency is below 38 Hz. There is also an upper frequency limit of about 210 Hz which
is due to the restricted memory available: the inverse matrices (see chapter 4) are stored in
the hardware memory and only a limited number of frequency components can be stored.
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Figure 5.2.4 ; The order spectra of 157 data blocks measured (gap-free) at the
reference microphone at 70 km/h (5t gear).

50
20log abs

200

frequency [Hz]

-t
(4]
Q

0 10 20 30 40 50
time ({s}

Figure 5.2.6 ; The frequency spectra of 210 data blocks measured (gap-free) at the
reference microphone during acceleration and deceleration from 70 km/h to 110
km/h to 70 km/h (5th gear).
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Figure 5.2.8a ; The microphone Figure 5.2.8b ; The loudspeaker
positions near the ceiling positions on the floor.

Several experiments are carried out at constant driving speed in the 4™ and 5" gear,
during (normal) acceleration from 0 km/h to 70 km/h with changing gears and during
(maximum) acceleration and deceleration from 70 knvh to 110 km/h in the 5 gear. In the
experiments at ‘constant’ driving speed the actual speed varies a little, but always less
than +2 percent.

The (magnetic) sensor signal, the acoustic pressure at the reference microphone and the
(multiplexed) microphone signals of the antenna are recorded on (digital) tapes during all
measurements.

The reference microphone is one of the error sensors (see figure 5.2.8a) and a
comparison of the acoustic pressures on this sensor with and without anti-noise shows
the reduction which is possible using the sample based Fourier controller in the set-up
described above. The reduction is optimal if in the spectrum of the residual, the level of
the engine harmonic which is cancelled does not rise above the level of the surrounding
frequencies. The acoustic pressure on the reference microphone with and without anti-
noise will be presented in graphs showing the frequency spectrum as a function of the
time and the order spectrum as a function of the block number. The pressure level at the
reference microphone is not always a measure for the noise experienced by the occupants
of the cabin. For instance, at some frequencies it can happen that the reference
microphone is positioned at a spatial pressure minimum while the head of the driver (or
the passenger) is at a pressure maximum. Furthermore, the local reduction at the reference
microphone due to anti-noise does not guarantee a reduction somewhere else in the cabin.
The global reduction strongly depends on the number of dominant eigenmodes (see
chapter 3). In general, using 4 anti-noise loudspeakers 4 eigenmodes can be reduced.
With the acoustic antenna a number of wave fields are measured at head height in the
cabin. The position of the maxima and minima in the wave field can be determined and the
effect of anti-noise on the wave field can be made visual. The acoustic pressure at several
harmonic components will be presented in 3D figures, showing along the z-axis the
pressure level in the horizontal plane (see figure 5.2.3).

The transfer functions from anti-noise output to error input are measured before
operation. During the ANC experiments the transfer functions appear to hardly change
and in order to save calculation time these functions are not adjusted during operation.
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The majority of the measurements are performed with only the driver in the cabin. The
results of measurements when also a passenger was present in the cabin did not
significantly deviate from the results of measurements with only the driver present.

All experiments are carried out on asphalted roads in the Netherlands. The measurements
with and without active noise control are carried out on the same road but not on exactly
the same stretch of the road, so in a few experiments there are small differences in the
level of the surrounding frequencies if the situations with and without anti-noise are
compared.

The sequences of spectra which will be shown in the following two sections are all
averaged (linear moving average of two blocks) before they are plotted.

5.2.4 The reduction at the reference microphone; constant speed

In a first series of experiments the reduction at constant speed is measured. For each
driving condition 157 blocks of acquired data are analysed with a synchronized sampling
frequency. Each block of 840 samples covers exactly 24 periods of the engine revolution
frequency.

In the first experiment the van is driven on a secondary road at 50 km/h (4t gear) and the
pressure level is measured with the reference microphone. After a short while the active
noise control system is switched on and the measurement is repeated. The revolution
frequency of the engine at 50 kmvh in the 4t gear is 40 Hz (2400 rpm), giving a firing
frequency of 100 Hz. The 157 blocks of data cover 94 seconds. In figure 5.2.9 two
sequences of order spectra of the pressure level (linear average of two spectra) are shown.
The 157 blocks depicted in the upper figure are measured without anti-noise, the 157
blocks in the lower figure are measured with anti-noise on the engine harmonics number
2, 2.5 (firing frequency) and 4. The level at the firing frequency is prominent in the first
157 spectra. During ANC the pressure level at all three harmonics is almost completely
reduced to the noise level of the surrounding frequencies in the entire sequence. It is
important to note that the algorithm is not influenced by a sudden increase of extraneous
noise caused by a bump in the road (for instance at block number 65). Furthermore, no
additional noise at other frequencies is generated by the active noise control system, only
the three harmonics are reduced.

The sequences of 157 spectra are averaged yielding a spectrum for the situation without
anti-noise and a spectrum for the situation with anti-noise. In figure 5.2.10 the two
spectra are plotted: a dotted line for the situation without anti-noise and a solid line for the
situation with ant-noise. The pressure level at the firing frequency is reduced by well over
20 dB.
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Figure 5.2.9 ; The order spectra of 157 data blocks measured (gap-free) at the
reference microphone at 50 km/h (4th gear). In the upper figure the situation without
anti-noise is plotted, in the lower figure the situation with anti-noise is shown.
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Figure 5.2.11 ; The order spectra of 157 data blocks measured (gap-free) at the
reference microphone at 70 km/h (5th gear). In the upper figure the situation
without anti-noise is depicted, in the lower figure the situation with anti-noise is
plotted.
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Figure 5.2.13 ; The order spectra of 157 data blocks measured (gap-free) at the
reference microphone at 110 km/h (5th gear). In the upper figure the situation
without anti-noise is plotted, in the lower figure the situation with anti-noise is
shown.
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Figure 5.2.15 ; The frequency spectra of 210 data blocks measured (gap-free) at the

reference microphone during acceleration from 0 to 70 km/h with changing gears. In

the upper figure the situation without anti-noise is plotted, in the lower figure the
situation with anti-noise is shown
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Figure 5.2.17 ; The frequency spectra of 210 data blocks measured at the reference
microphone during acceleration from 70 km/h to 110 km/h and deceleration from
110 km/h 1070 km/h (5t gear). In the upper figure the situation without anti-noise
is plotted, in the lower figure the situation with anti-noise is shown.
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Figure 5.2.10 ; The averaged level at the reference microphone with (solid line) and
without (dotted line) active noise control at 50 km/h (2400 rpm).

On another stretch of secondary road the pressure level is measured in the two situations
(no ANC and ANC) at 70 km/h (5t gear). The revolution frequency at 70 km/h in the 5%
gear is 43 Hz (2600 rpm), giving a firing frequency of 108 Hz. Active noise control is
applied to the engine orders 2, 2.5 (firing frequency), and 4. In figure 5.2.11 the
sequence of 157 order spectra without anti-noise is shown in the upper figure (already
shown in figure 5.2.4) whereas in the lower figure the sequence of order spectra with
anti-noise is depicted. Each sequence covers 87 seconds. During ANC the levels of the
firing frequency and the level of the 4" harmonic are completely reduced to the noise level
in all blocks. Apparently the 2" harmonic is only partly reduced.
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Figure 5.2.12 ; The averaged level at the reference microphone with (solid line) and
without (dotted line) active noise control at 70 km/h (2600 rpm).
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The two sequences of spectra are averaged and the result is shown in figure 5.2.12.
Clearly the level at the frequencies around the second engine harmonic is higher during
the ANC measurements. The level at the second harmonic itself is reduced by about 10
dB. The reduction of the pressure level at the firing frequency is nearly 30 dB.

The same type of figures are produced for the results of measurements at 110 km/h on a
highway. At 110 km/h (5™ gear) the engine revolution frequency is 68 Hz, and in figure
5.2.13 the two sequences (averaged over 2 blocks) without and with anti-noise are
depicted. Anti-noise is applied to the engine orders 1, 1.5, 2 and 2.5. In stead of the the
level at the firing frequency at 170 Hz, the level at the second engine order at 136 Hz is
prominent in the spectrum. The level at the firing frequency hardly rises above the noise
level. During ANC the pressure levels at the engine revolution frequency and at the firing
frequency are reduced to the level of the surrounding frequencies. The pressure level at
the second engine harmonic is largely reduced, but not completely. Apparently, there are
too many dominant eigenmodes. However, note that the ANC system reduces noise
exactly at the harmonics and that the second engine harmonic is close to a strong
resonance of the engine in its suspension. Resonances excited by a bump in the road
(block 135 for example) ar not reduced by the system.

In this experiment ANC is applied deliberately to the engine harmonic 1.5, a harmonic
which cannot be distinguished in the non periodic noise between the engine revolution
frequency and the second harmonic. The algorithm is not bothered by the high noise level
and there even seems to be a very slight reduction, as can be seen in figure 5.2.14, in
which the pressure levels averaged over 157 blocks are drawn. The level of the second
engine harmonic is reduced by more than 20 dB.
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Figure 5.2.14 ; The averaged level at the reference microphone with (solid line) and
without (dotted line) active noise control at 110 km/h (4080 rpm).
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In appendix D results of measurements at 60 km/h, 80 km/h, 90 km/h and 95 kmv/h (all in
the 5 gear) are shown.

5.2.5 The reduction at the reference microphone; acceleration and deceleration

In two series of measurements the van is accelerated. In both series the set-up described
in section 5.2.3 is used, and ANC is applied to the engine orders 2, 2.5, 4 and 5 as long
as they are within the frequency limits of the controller (from 38 Hz to 200 Hz).

In the first series the van is accelerated in 35 seconds from 0 to 70 km/h using all 5 gears.
This series is carried out on a secondary asphalted road. In figure 5.2.15 the two
sequences of frequency spectra, measured with a fixed sampling frequency of 1024 Hz
are shown. The block length is 256 samples giving a frequency resolution of 4 Hz. In the
upper figure (no ANC) the acceleration and the switching of the 5 gears is marked by the
presence of the level of the firing frequency which is the prominent harmonic in all five
gears. At the start of the sequence the firing frequency is about 30 Hz. In the first gear the
firing frequency increases rapidly to 120 Hz, after which the gear is changed. In each
ensuing gear the frequency increase takes more time. During acceleration in the 5th gear
the second engine harmonic is visible too. In the lower sequence (with ANC) the level at
the firing frequency is reduced considerably, but not completely. Due to the fast changes
the algorithm cannot track the harmonic perfectly during the entire sequence. In the 5t
gear the level of the 27 harmonic is reduced completely. Taking the average over all
order spectra, found with a synchronized sampling frequency (blocks of 840 samples),
the (complete) reduction of not only the level of the 27d harmonic but also the level of the
4™ harmonic, hardly perceptible in the spectrum, is evident.

In figure 5.2.16 the average of all order spectra is shown. The averaged reduction of the
level at the firing frequency during acceleration from O to 70 km/h is a little less than 15
dB.
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Figure 5.2.16 ; The averaged level at the reference microphone with (solid line)
and without (dotted line) active noise control during acceleration from 0 to 70 km/h.
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In the second series the van is accelerated (on a highway) from 70 km/h to 110 km/h in
the 5t gear, after which the throttle pedal is released. In this series the frequency of the
4t and of the 5™ harmonic is above 200 Hz in almost the entire sequence and so in fact
ANC is only applied to the 2" engine harmonic and the firing frequency (2.5). In figure
5.2.17 two sequences of 210 frequency spectra, measured with a fixed sampling
frequency of 1024 Hz, are shown. The block length is 256 Hz (4 Hz resolution) and so
each sequence covers 52.5 seconds. The left sequence without anti-noise was shown
already in figure 5.2.6. In the right sequence the results of the measurement with anti-
noise is shown. The level at the firing frequency is almost completely reduced to the level
of the surrounding frequencies. Again, it appears that at 110 km/h the level of the second
harmonic is not reduced completely (see section 5.2.4). In figure 5.2.18 the averaged
levels are depicted. Both harmonics are reduced by more than 15 dB during the
acceleration from 70 km/h to 110 kmv/h,
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Figure 5.2.18 ; The averaged level at the reference microphone with (solid line) and
without (dotted line) active noise control during acceleration from 70 to 110 km/h.

5.2.6 The reduction at the acoustic antenna

The wave fields are recorded in all driving conditions. However, the 64 microphone
channels are stored in a sequence of 8 data blocks on 8 (parallel) channels of the recorder.
Now a reasonable resolution in the engine order spectrum requires a block length for each
block of 24 engine revolutions.

During acceleration (and deceleration) the engine revolution frequency shifts significantly
in 192 revolutions and therefore only wave fields measured at constant driving speeds (
+2 %) are analysed. At a constant speed of 70 km/h (5t gear) the pressure level at the
firing frequency (108 Hz) dominates the spectrum. At the reference microphone the level
is 91 dB, and anti-noise reduces this level to about 62 dB, the level of the surrounding

124



frequencies (figure 5.2.12). In figures 5.19 the wave fields without ANC (left) and
with ANC (right) at the firing frequency are shown. The position of the driver is near to
the right hindmost corner, the head of the driver causes a visual dip in the left figure,
which was shown already in figure 5.2.3. The steering wheel is near the right front
corner of the figure. The position of the reference microphone is indicated in the figures
5.1 and 5.8a. The pressure at the firing frequency is averaged over the 64 microphones.
Without anti-noise the level of the averaged pressure is 82 dB. With the 4 anti-noise
loudspeakers it is reduced to 66 dB, close to the residual level on the reference
microphone. This means that there are not more than 4 eigenmodes largely determining
the pressure around 108 Hz, if the wave field is excited by the engine. The reduction of
the averaged pressure is not as large as the reduction of the pressure at the reference
microphone, mainly because the reference microphone is positioned at a pressure
maximum where the difference with the general noise level is high (see figure 5.2.19).
Note that the reduction of the pressure at the position of the driver is almost 30 dB,
whereas the reduction at the position of the passenger is very small.

20LoglPI

A

Figure 5.2.19 ; The wave field at the firing frequency at 70 kim/h;
left: without ANC and right with ANC.

The 2" engine harmonic at 70 km/h has a frequency of approximately 88 Hz. In figure
5.20 the wave fields at this harmonic the are shown (on the left no ANC and on the right
with ANC). The primary wave field (left) does not seem to be at resonance: no distinct
maxima or minima are visual. The level of the averaged pressure without anti-noise is 74
dB and the difference with the level at the reference microphone (78 dB) is smaller than at
the firing frequency. The level of the averaged pressure of the residual wave field (right)
is 64 dB, which is about the residual level at the reference microphone. Note that in this
case at the position of both the driver and the passenger the reduction is some 10 dB.
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Figure 5.2.20 ; The wave field at the second engine harmonic at 70 km/h:
left: without ANC and right with ANC.

The frequency of the 2" engine harmonic at 110 km/h is 135 Hz which is not very close
to an eigenfrequency. In figure 5.2.21 the wave fields are shown (on the left without
ANC and on the right with ANC). Without ANC the level of the averaged pressure at the
2" harmonic is 88 dB, while at the reference microphone a level of 92 dB is found
(figure 5.2.14). The level of the averaged residual pressure is 81 dB, which is well over
the residual level of 71 dB at the reference microphone. So, it seems that at 135 Hz the 4
anti-noise loudspeakers are not able to reduce the averaged pressure level of the wave
field to the general noise level. Apparently there are more than 4 dominant eigenmodes
determining wave field around 135 Hz.

20LogIPI

Figure 5.2.21 ; The wave field at the second engine harmonic at 110 km/h:
left: without ANC and right with ANC..

According to figure 5.2.2 the wave field is in resonance at 142 Hz. This would mean that
there is only one eigenmode that is largely determining the acoustic pressure. The firing
frequency at a constant speed of 90 km/h is about 142 Hz. In figure 5.2.22 the wave field
at the firing frequency, measured at 90 km/h, is shown. Clearly the wave field is almost
in resonance. At the reference microphone the level at the firing frequency is just over 80
dB. The level of the averaged pressure is 77 dB. This level is reduced with anti-noise to
65 dB, which is again close to the residual level at the reference microphone (62 dB). So
the averaged reduction is higher at 142 Hz than at 135 Hz which means that the number of

dominant eigenmodes is smaller.
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Figure 5.2.22 ; The wave field at the firing frequency at 90 km/h:
left: without ANC and right with ANC.

5.3 Conclusions

The results of the experiments in the chemical plant show that the block based Fourier
controller algorithms are capable to find the correct transfer functions and are able to
calculate the proper anti-noise signal in the circumstances of the vacuum pump.
Furthermore, the ANC system reduces the harmonics of acoustic pressure (apart from the
31d harmonic of 4004) on the error microphone to the level of the surrounding
frequencies.

In the initial situation, before the fall-pipes are modified, the periodic noise in the filter
building is largely determined by the noise coming out of the outlets of the pumps. After
the modification, in which the two outlets are connected to one fall-pipe, the periodic
noise in the filter building is mainly caused by other sources (radiation of the pump itself
and the ducts). So, in spite of the fact that the anti-noise system works properly, there is
no considerable reduction in the building.

According to the derivations and experiments in chapter 4, an ANC system with a sample
based Fourier controller is able to reduce several harmonics without instability problems
whereas the eigenvalue spread is optimal. In the delivery van the primary signal is
characterized by many harmonics and relatively fast changes in the fundamental frequency
of the periodic noise. Moreover, the primary noise is corrupted by sudden increases of the
extraneous noise due to bumps in the road on which the van is driven. The experiments in
the delivery van show that the sample based Fourier controller gives a substantial
reduction on several harmonic components in all driving conditions and is not bothered by
those circumstances.

The results of the measurements with the acoustic antenna show that the reduction is not
restricted to the error microphones but is achieved at other positions in the interior as well.
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Appendix A
Section 2.1 Basic equations
Potential energy

The potential energy can be derived using the powerflow through a closed surface:

w=§p5.ﬁds. (A1)
S

Now the first theorem of Green reads

[(tv2g+Vi.vgjV = §fVg.iidS. (A2)
S

v

The pressure p is substituted in f and the velocity 7 is substituted in the divergence of g:
p=f, ©=Vg, (A.3)

so combination of (A.2), (A.3) and the basic equations (2.1.1) to (2.1.2) without sources
(g=0 and f = 0) yields

2
w=§p5.ﬁds=—i [ A psﬁ.i)}dV. (A4)
s v

The time averaged potential energy of a periodic time function having period T can be
written as a superposition of the fourier coefficients using a Fourier series:

B, (x,1) = % 3" P(x,nAfjexp(j2maft), (AS)

N=—co

and Af= %— The time averaged quadratic time function can be written as

17, 11 ) i
?‘([pp(x,t)dt =7 ) ,:?n;’P(x,nAf) exp( JZETTAﬁ)} dt. (A.6)
Using orthogonality
1 T oxp(j2mAft)exp(— j2zmAftydt = =™ (A7
T‘([ep] mAft)exp(-J “Qifnm ’ 7
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the right hand side of equation (A.5) reduces to

7 ZIP(X naf)f. (A.8)

N=--oc0

Section 2.2 One dimensional situation

Cutoff frequency

In a rigid walled duct of constant cross section only plane waves propagate in the X-
direction at frequencies below the eigenfrequency of the first transverse eigenmode (y- or
z-direction). Eigenmodes are discussed in section 3.1. Anticipating on section 3.1, the
eigenvalue of the first transverse- or cross-mode in a rectangular duct is given by

n T
kyi=— or kyi=-—,
S =L,

. . . c
soif Ly <L the first cross-mode eigenfrequency, the cutoff frequency, is f, = L

Z
Extrapolation matrix

The extrapolation matrix derived in section 2.2 is used in the derivations of anti noise in
the one dimensional situation. It has the following properties

M(x; — X, f) = M(x; — xg, FIM(X;; — X, ), (A.9)
and
1 0
M (%, = x, FIM(X; — %, f) = (0 J, (A.10)
and, as a consequence
M (x, — X 1) = M(X;, — X, ). (A.11)

Power flow

The power flow of frequency component f at position X is (equation (2.2.11)

2, [of i
W(xh) =5 2erdP (x,f)V(x,f)]_
=%[P*(x,f)wx,f)+v*(x,f)P(x,f)]. (A.12)

130



The power flow can be written as a function of the power flow at a position X, and the
sources between the two position. With the help of equation (2.2.1)

9BIxh) _ AB(x,f) + S(x,f). (A.13)
Iax
Now P (xHVH+V xHPxH = B (xHNB(x,T), (A.14)
nwhichN = [°
1n whic = 1 0/ SO

[P*(x1,f)V(x1,f)+v*(x1,f)P(x1,f)]— [P*(xo,f)V(xo,f)+v*(xo,f)P(xo,f)] =

IHBHXf

- TFB;‘“)NB( f)+B"(x, IN (;)’:f)}ax (A.15)

Xo

Since A"N=—-NA, the right hand side of (A.15) can, with the help of (A.13), be
rewritten to

xf[é”(x,f)NE;(x,f)+é”(x,f)Né(x,f)]dx, (A.16)

Xo

and, if S(x,f) = [ Q (2 f)} to

Xy

[ HPxD+P (0D o, (A17)

Xo

so if there are only volume sources present between X and X,

Re[P*(x,f)V(x,f)] - [ X, VX, :| jRe[ (', )X’ f)]d (A.18)
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Appendix B
section 3.1
The acoustic pressure as a superposition of eigenmodes

Using Greens second theorem

(2, (V2 (%) - B, (0 V2, (x))dV =

Volume

= $(F, (X OVE, X5 - ¥, (x,HVE, (x.1).dS, (B1)

Surface

and Helmholtz equation (2.4.4) we find

(k2-K2) [(%.(x)E,(x)dV =

Volume

- () _ My (X)
= $(¥ (0“2 — E(X) =)dS. (B2)

Surface

If B(x) does not depend on the eigenfunction number, the right side of equation B2
equals zero, and as a consequence

[ (&, xw,0)av = 0, (B3)

Volume

ifnm.
Simple set of eigenfunctions

The eigenfunctions and eigenvalues can be found simply by considering the wave field to
be a superposition of plane waves. Doing so the eigenfunctions and eigenvalues can be
derived in several ways. Using a geometric presentation the mechanisms causing standing
waves can be made clear. Eigenfunctions and eigenvalues are found by solving the wave
equation.

Plane waves propagating in certain directions and reflecting to the walls create a standing
wave if the wavelength 'fits' into the enclosure. In figure B1 an example of fitting waves
is depicted in a two dimensional presentation (only the plane z=0 is shown). In this
example the wave fronts are parallel to the diagonals of the plane z=0. Only two of the
four possible wave fronts are drawn. The walls are supposed to be rigid (pressure
reflection coefficient equals 1) causing reflection without loss or phase shift. In the
example constructive interference takes place if the wavelength equals
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AL
Y2+

As aresult a standing wave pattern will be formed in the enclosure. It can be derived that

(B4)

this particular standing wave has two nodal lines of the pressure at X = %Lx and y = %Ly
(1-1-0 mode).

Figure B1 ; An example of a plane wave direction causing a standing wave (parallel
to a diagonal). If the wavelength equals the path-length of each of the the dashed
lines (1-1-0 mode) a standing wave will be formed.
Using the orthogonal basis x-y-z, a plane wave can be written as

expljkr] = exp[jk, xlexp(jk,ylexp(jk 2], B%5)

where, using spherical coordinates

k, =ksin(8)cos(@),
k, =ksin(6)sin(¢), (B6)
k, =kcos(6).
Since the wave length A = _2k£ the values of Kk, k, and Kk, are in the 1-1-0 mode

(8=, figure B1)
T n
kx=E:,ky=:andkz=0

Obviously k® =k2+kj +k:.
The total wave field describes the fourth eigenfunction, and is a superposition of the four
plane waves :
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¥, (x) = exp(jk x)exp(ik,y) + exp(- jk,x)exp(jk,y) +
+ exp(.’k xx) exP(_fkyY) + exp(_jkxx) exp(_jkyy) s

SO
¥, (x) = 4cos(k,x)cos(k,y).

Of course there are many (in fact infinite) possible combinations of propagation direction
and wavelength causing standing waves. They are found solving the three dimensional
homogeneous wave equation. The solutions ‘P, (X) can be represented by a superposition
of decomposed plane waves too:

¥ (x) =¥, (x)¥, ()Y, (2), (B7)
where
¥, (x)= ‘Pn*x exp(—jkn‘x)+ ¥ exp(jknxx), (B8)

and similar for the y and z direction.
If the pressure reflection coefficient at the walls of an enclosure is close to one, the
boundary conditions reduce to

a \an (Xb)

=0 B9
= (B9)

[}

so the particle velocity is zero at the walls. Since we assumed the box to be rectangular
(dimensions L,,L,,L,) a general solution of the three dimensional Helmholtz equation

under the constraint of the boundary conditions is

Ir]:_”y)cos(“zL” Z). (B10)

b3 y z

¥ (x) = acos(“lx_” Xy cos(

The normalized eigenfunctions are found using (2.4.7)

€0 Ea En, N7z X N, nrz
¥ (x) = Lan:Lz cos( L’i )cos( ‘I’_yy)cos( L’i ). (BID
The eigenvalues of these eigenfunctions are
nm ° (nx ’ n,mw ’
TR -

The eigenvalues can be visualized using the eigenvector space. The eigenvalues K,
(equation B12) are equal to the length of the vectors from O (x=0,y=0,z=0) to a grid
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point, as depicted in figure B2. In figure B2 the eigenvalue of the 2-3-1 mode is drawn.
The modal density as a function of the frequency (or the wave number) is defined as the
number of eigenvalues in a given interval around a wave number. In the eigenvector space
the wave number-interval is an interval of vector lengths so the modal density in
eigenvector space is the number of eigenvectors in a spherical shell with a thickness equal
to the interval. As will be obvious the modal density increases quadratically when the
wave number increases.

Figure B2 ; The eigenvalue k345 in its vector-space (2-3-1 mode).

The modal density can be visualized considering the occurrence of an eigenfrequency on
the frequency axis. The occurrence of an eigenfrequency in an enclosure with dimensions
1.00m x 0,85m. x 0.33 m is calculated using B12 and depicted in figure B3. The density
of eigenfrequencies increases with the frequency.

OCCURRENCE OF EIGENMODE

0 200 400 600 800 1000
Eigenfrequency  (Hz)

Figure B3 ; The occurrence of eigenfrequencies in an enclosure
with dimensions 1.00x0.85x0.33 m.
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Number of eigenmodes

The pressure reflection coefficient in the box of compressed wood is close to one, but not
equal to one. As a result the measured eigenfrequencies will deviate from the theoretical
derived eigenfrequencies. In Table I 10 synthetic eigenfrequencies, calculated with the
help of equation B12 and 10 eigenfrequencies measured in the enclosure are collected in a

table.
TABLE1

Ny Ny ng theoretical measured
1. 000 - OHz - OHz
2. 100 -170Hz -179Hz
3. 010 -200Hz - 205Hz
4. 110 - 263Hz - 269 Hz
5. 200 - 340Hz - 352Hz
6. 210 -39%Hz - 413Hz
7. 020 - 400Hz - 419Hz
8. 120 -435Hz - 454 Hz
9. 300 -510Hz - 518Hz
10. 0 01 - 515Hz - 530 Hz

Table B1 Theoretical and measured values
of the eigenfrequencies.

section 3.2

Vector and matrix notation

The M pressures on the sensors are placed in a vector :
P(f)=[Px,f) ... PO,f]",

the M eigenfunctions are written in a matrix

P(x,)"
Y = HE
P(xy)!

so for finite vector lengths

P(f)=Yaf)+E. (B13)
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The squared length of the error vector
8% = (B(N)~ ¥a,, () (B() - ¥a,.(0). (B14)

is minimzed for &, (f) = [¥™¥] ¥TB().
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Appendix C
section 4.1
Recursive Least Squares
The least squares error solution of the parameter vector (4.1.7) can written as
B = —PMS' M)y, Mn). (C.1)

According to equation (4.1.11) the recursive relation for the inverse matrix is

P(n) = P(n-1)+ M@ n). (C.2)
Now

'N)y,.(n) = @' (N-1Y,.(-1)+dNny,.(n), (C3)
SO

8,0 = —PO(-P(-16,,(-D+E)y,e(M),  (C4)
or

B = B,o(n—1)=POGNNY,,(n) +G" (M), (- 1).
(C.5)

Using equation (C.5) the least squares error solution of the controller parameter vector is
found recursively.

Projection algorithm, eigenvalue spread

. a - c
Assume the two normalized input vectors are (1) = [bj and ¢(2) = (dj

then the eigenvalues A of the input correlation matrix are found if the determinant of the

matrix
a’+c?-1 ab+cd
P (C.6)
ab+cd b°+d° -4
equals zero. So, using a® +b?=1 and ¢* +d* =1,
A2 -22 +(ad-bc)’ =0. (C.7)

The eigenvalue spread is found with the help of

A, =1%+/1-(ad-bec)?, (C.8)
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(see figure C1).

o(1
b, o(1)

Figure C1 ; The eigenvalue spread of the normalized correlation matrix of two
vectors in 2 dimensional space is given by A,, = 1£cos(¢, — ¢,).

Time-varying primary process parameters

With the help of Aéc(k—1)= é(k)+ E)c(k—1) the updating formula (4.1.15) can be
written as

5= AB (1) v PMe(n)
A8 (n)=A8(n-1)-7 TR (C.9)
so, if yis real and 6(n) = é(n—1)
ABH)AG () =[A6, ) =
~IAd n-1F °(n) 7@ nem) _
gl Ry [a + 5 O30 24 - ©o

in which the relation g(n) = —(Z)H(n)A@C {n—1) is used.
For valuesof 20 and 0<y <2,

A8, (n)|—|A,(n-1)<0. (C.11)
|46, -| |
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The minimum length of the convolution filter

Assume that the primary process can be described by a FIR filter having J elements h;,

and that the input signal is
N
(k) = Y exp(j2rt kat), (C.12)
v=1
then
J-1 N
yo(k) =3 0> exp(-j2xf kat). (C.13)
j=0 v=1
Now if J>N

plk-L) = 3" exp(j2r, (k~L)at) =

= iav exp(j2rnf,(k—L+1At) = .... (C.14)

v=1

in which «, = exp(-j2rf,At).
So, since there are N independent variables

ok-N)= Zﬁ.w(k -, (C.15)

in which B, is a function of «, -+, which means that the process can be written as

N-1

¥, () =Y 0 olk-j). (C.16)

=0

Eigenvalue for a convolution filter length of one period

Consider the input signal (C.12), having N frequency components and a period of p
samples. Since the Nyquist criterion is fulfilled, p > 2N. The sequential input vector has
a length p, so

K =[ok) ok-1) - ek-p+I]

Using the vector
¥, =[1 .. exp(ieat,(-p+na), (C.17)

the input correlation matrix after one period can be written as
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o
L

N
PR K) =pY ¥, (C.18)

v=1

I

The vectors (C.17) are eigenvectors of the matrix (C.18) having an eigenvalue p®:

p[i‘l{}[’v } —pZ‘P‘PH‘P P2,
v=1

The other eigenvalues of the matrix are determined by the noise in the reference signal and
are in general very small.

section 4.3
Single channel ANC, the projection algorithm for real signals

It can be derived simply that in spite of the fact that the process ouput Yy, (k) and the
controller input £(K) are real, the projection algorithm as derived for complex signals can
be used. Consider for convenience only one complex parameter 8 which has to estimated

adaptively. In that case the real error (equation (4.3.1)) can be written as

E(k)z(Re[(p(k)]]T(Re[e]J . (Re[r(k)]JT(Re[Bc(k—1)]]. 19

Im{e(k)] ) {Im[6] Im[r(k)] ) | Im[6,(k - 1)]

This ia an error equation in which the two parameters Re|6, (k)] and Im[6, (k)] have to be
estimated. Using the projection algorithm, the updating algorithm becomes

Im{g,()] )~ Ime, k-] )~ " a+Re[r(k WF +imrf” €2

(Re[ecm]] _ [Re[fuk - 1)]J ) [Ti?{&.i?}]dm

)=y e

which can be written in a complex form as 8, (k) = 6,(k - 5 .
oa+r (Kr(k)
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Appendix D

Additional measurements have been carried out at a constant speed of 60 kmv/h, 80 km/h,
90 km/h and 95 km/h (all in the Sth gear). The order spectra, averaged over 157 blocks
will be presented in this appendix. In figure D.1 the speed is 60 km/h (2300 rpm), and
ANC is applied to the engine orders 2, 2.5, 4 and 4.5.

100 ~

Iorder spectra 60 km/h 5" gear]

90 <

80

amplitude [dB]
~
(=]
1

D
=)
1

[4)]
o

T I
0 1 2 3 4 5 6 7 8 9 10

order engine harmonic

Figure D.1 ; The averaged level at the reference microphone with (solid line) and
without (dotted line) active noise control at 60 km/h (2300 rpm).

In figure D.2 the speed is 80 km/h (3000 rpm), and ANC is applied to the engine orders 2
and 2.5.

100
|;rder spectra 80 km/h 5" gear]

90
[y
Z 80
@
=4
2
% 70 i i
©

] | Ll‘ ‘ | l ‘ ‘

50 | T T 1 T 1 1

7 8 9 1

0 1 2 3 4 5 6 0

order engine harmonic

Figure D.2 ; The averaged level at the reference microphone with (solid line) and
without (dotted line) active noise control at 80 km/h (3000 rpm).
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In figure D.3 the speed is 90 km/h (3420 rpm), and ANC is applied to the engine orders
2,2.5 and 3..

100

{ order spectra 90 km/h 5" gear

90 —+

amplitude [dB]

0 1 2 3 4 5 6
order engine harmonic

Figure D.3 ; The averaged level at the reference microphone with (solid line) and
without (dotted line) active noise control at 90 km/h (3420 rpm).

In figure D.4 the speed is 95 km/h (3660 rpm), and ANC is applied to the engine orders
2,2.5and 3.

100 +

rorder spectra 95 km/h 5" gear

90 <

80 —

70 <

amplitude [dB]

60 —

50

order engine harmonic

Figure D.4 ; The averaged level at the reference microphone with (solid line) and
without (dotted line) active noise control at 95 km/h (3660 rpm).

143



(1]

(2]

3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

[13]

References

Rayleigh, J.W.S. [1945). The theory of sound, volume II [282] (second revised
and enlarged version of 1896), Dover Publications, Inc.

Nelson P.A. and S.J. Elliott [1992]. Active control of sound, Academic press
London

Berkhout, A.J. [1987]. Applied seismic wave theory, Elsevier Science
Publishers B.V. Amsterdam.

Skudrzyk, E. [1954]. Die Grundlagen der Akustik, Springer Verlag Wien.

Wapenaar, C.P.A. and A.J. Berkhout [1989]. Elastic wave field extrapolation,
Elsevier Science Publishers B.V. Amsterdam.

Morse, P.M. [1948]. Vibration and sound, McGraw-Hill New York

Nelson, P.A., A.R.D. Curtis, S.J. Elliott and A.J. Bullmore [1987]. The active
minimization of harmonic enclosed sound fields, Part I: Theory.Journal of
Sound and Vibration 117 (1), 1-13.

Bullmore, A.J., P.A. Nelson, A.R.D. Curtis and S.J.Elliott [1987). The active
minimization of harmonic enclosed sound fields, Part II: A computer
simulation.Journal of Sound and Vibration 117 (1), 15-33.

Elliott, S.J., A.R.D Curtis, A.J. Bullmore and P.A. Nelson [1987]. The active
minimization of harmonic enclosed sound fields, Part IlI: Experimental
verification.Journal of Sound and Vibration 117 (1), 35-58.

Widrow, B. et al. [1975]. Adaptive noise cancelling: Principles and
Application. Proc. IEEE, 63 , 1672-1716.

Glover, J.R. Ir. [1975).Adaptive noise cancelling of sinusoidal interferences.
Ph.D. dissertation Stanford University, Stanford California

Elliott, S.J., M. Stithers and P.A Nelson [1985]. A multiple error LMS
algorithm and its application to the active control of sound and vibration.

IEEE Transactions on Acoustics, Speech, and Signal Processing 35 (10), 1423-
1434

Sievers, L.A and A.H. Flotow [1992]. Comparison and extensions of control

144



[14]

[15]

{16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

methods for narrow-band disturbance rejection. IEEE Transactions on Signal
Processing 40 (10), 2377-2391.

Widrow, B. and S.D.Stearns [1985]. Adaptive signal processing, Prentice-Hall,
Inc. Englewood Cliffs, N.J.

Astrom, K.J. and B. Wittenmark [1989]. Adaptive control, Adddison-Wesley
Publishing Company

Haykin, S. [1986]. Adaptive filter theory, Prentice-Hall, Inc. Englewood
Cliffs, N.J.

Noble, B. and J.W.Daniel [1988]. Applied linear algebra, Prentice-Hall, Inc.
Englewood Cliffs, N.J.

Eriksson, L.J. and M.C. Allie. [1989]. The use of random noise for on-line
transducer modeling in an adaptive attenuation system. Journal of the
Acoustical Society of America, 85, 797-802

van Overbeek, M.W.R.M. [1991]. A method to identify the secondary path in
active noise control systems.Proc. Recent Advances in Active Control of Sound
and Vibration, Virginia Polytechnic Institute and State University, Blacksburg
Virginia

Elliott, S.J. et al. [1988]. The active control of engine noise inside cars. Proc.
Internoise 1988 (2), 987-990

van Overbeek, M.W.R.M. and N.J. Doelman [1991]. Active reduction of low
frequency noise in a car interior using feedforward and feedback control.
Controle Actif Vibro-acoustique et Dynamique Stochastique, Publication du
L.M.A. 127 Marseille

van Overbeek, M.W .R.M.[1992]. Active reduction of low frequency noise in
vehicles. 2nd International Conference Vehicle Comfort, Bologna Italy

Hoogenboom, E. [1993]. Parametric inversion of enclosed sound fields

application to active noise control. Thesis Lab. of Seismics and Acoustics,
Delft University

145



Summary

Unwanted noise emitted by machinery, exhausts or whatever sources can be reduced with
the help of loudspeakers radiating ‘anti noise’. This way of noise reduction is called
Active Noise Control (ANC) because the original, primary wave field is influenced
actively. ANC is contrary to the passive ways of controlling noise for which tuned
resonators, barriers and absorbing materials are used. Especially in case the noise is
periodic, ANC is an excellent complement to the existing passive noise control measures.
There are three principal fields of research involved in ANC: acoustics, adaptive control
and hardware development. This thesis comprises the results of a research project aiming
at the first two fields: acoustics and adaptive control for periodic noise.

The basic acoustics underlying anti noise are reviewed and a one-dimensional system (a
duct) and a three dimensional system (an enclosure) are considered. The optimal source
strength of the anti noise source in a one-dimensional situation is derived using the
extrapolation matrix. The theoretical derivations are illustrated with experiments in the
laboratory. The mechanisms of anti noise in a three dimensional situation (an enclosure)
are described with the help of eigenmodes. The modal amplitudes of these eigenmodes are
estimated, without and with anti noise, using a backward transformation on the measured
acoustic pressure on 64 microphones mounted in the enclosure.

It is proposed to use adaptive control in ANC that is based on parameter estimation
techniques. A comparison is made between a controller based on a polynomial model and
a controller based on Fourier coefficients. Two types of ‘Fourier’ controllers are studied:
the well known block oriented controller in which (fast) Fourier transforms are performed
on blocks of data and a so-called myopic controller in which the Fourier coefficients are
updated sample by sample. Both Fourier controllers are scaled in a way that the
eigenvalue spread of the input correlation matrix is optimal, thus guaranteeing an optimal
convergence speed. Results of experiments with the controllers in the one dimensional
situation and in the three dimensional situation show that if there are several harmonic
components to be reduced, the myopic controller converges much faster than the
controller based on a polynomial model.

It is the aim of this research to design complete active noise control systems to be used in
practice. Therefore much attention has been paid to laboratory experiments and the use of
anti noise in practical applications. The applicability of anti noise in practice is
successfully tested in two situations. A one dimensional ANC system comprising the
block based Fourier controller is applied to periodic noise generated by a 100 kWatt
vacuum pump installed in a chemical plant. Furthermore, a three dimensional ANC
system comprising the sample based Fourier controller is applied to periodic noise in the
cabin of a delivery van.
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Samenvatting

Lawaai wat geproduceerd wordt door machines, uitlaten of wat voor bronnen dan ook,
kan worden gereduceerd met behulp van luidsprekers die ’anti geluid’ genereren. Deze
wijze van geluidreduktie wordt wel aktieve geluidreduktie genoemd omdat het originele,
primaire golfveld aktief wordt beinvloedt. Aktieve geluidreduktie is wat dat betreft
tegengesteld aan passieve geluidbeheersing, waarbij %l dempers, geluidwallen en
absorberende materialen wordt gebruikt. Anti geluid is speciaal voor periodiek lawaai een
uitstekende aanvulling voor passieve lawaaibeheersing. Er zijn drie hoofdrichtingen in
anti geluid onderzoek aan te geven: akoestiek, adaptieve regeltechniek en
systeemontwikkeling. Deze dissertatie bevat de resultaten van een onderzoeksproject
gericht op de eerste twee gebieden: akoestiek en adaptieve regeltechniek.

Er wordt een kort overzicht gegeven van de grondbeginselen van de akoestiek en een één
dimensionaal systeem (een pijp) en een drie dimensionaal systeem (een omsloten ruimte)
worden besproken. De optimale bronsterkte van de anti geluidbron in het één
dimensionaal systeem is afgeleid met gebruikmaking van de extrapolatie matrix. De
theoretische afleidingen worden geillustreerd met experimenten in het laboratorium. De
mechanismen van anti geluid in het drie dimensionale systeem (een omsloten ruimte)
worden beschreven met behulp van eigenmodes. De modale amplitudes van de
eigenmodes zijn geschat, met en zonder anti geluid, nitgaande van de geluiddruk gemeten
op 64 microfoons in de omsloten ruimte.

De adapieve regeltechniek die wordt toegepast, is gebaseerd op een parameter schattings
methode. Een regelaar gebaseerd op een polynoommodel en een regelaar gebaseerd op
Fourier coefficienten worden vergeleken. Twee soorten ‘Fourier'regelaars zijn
bestudeerd: een welbekende regelaar waarin een Fourier transformatie wordt toegepast op
blokken data en een regelaar waarin de Fourier coefficienten bemonsterpunt voor
bemonsterpunt worden aangepast. Beide Fourier regelaars worden zodanig geschaald dat
de convergentiesnelheid van het algorithme optimaal is.

Het was de bedoeling dat het onderzoek een compleet anti geluid systeem op zou leveren.
Daarom is er veel aandacht besteed aan laboratorium- en praktijkexperimenten. De
toepasbaarheid van anti geluid is met goed resultaat getest in twee situaties. Een één
dimensionaal anti geluid systeem, waarvan het algorithme is gebaseerd op een Fourier
transformatie voor blokken data, is toegepast op periodiek lawaai afkomstig van een
vacuum pomp in een chemische fabriek. Een drie dimensionaal systeem, waarin het
algorithme is gebaseerd op de Fourier regelaar die punt voor punt de componenten
aanpast, is toegepast op periodiek lawaai in een bestelbus.
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