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PREFACE 

The laboratory of seismics and acoustics at Delft University has been involved in industry 
sponsored research into inversion techniques for detailed delineation of reservoirs. For these 
types of techniques high quality reflection data is required. The overburden wave propagation 
effects however, distort the reflection events from the target zone. A true zero offset section at a 
datum just over the target, without the overburden wave propagation effects, is to be preferred 
over a surface zero offset section. Therefore, several years ago research has been initiated into 
redatuming techniques at Delft University. Special focus was put on the preservation of the 
amplitude information in the redatuming, because of the reservoir delineation which would use 
the redatumed zero offset data. 

Later on research activities into wave equation based 3-D depth migration, 3-D redatuming, 
multiple elimination and macro model verification have been intensified in the industry 
sponsored research project TRITON. I think the close cooperation between the people in this 
project has been very beneficial for research presented in this thesis and the other key research 
area's in TRITON. 

I would like to thank my promotor prof. Berkhout for his indications of the directions of the 
research and the interesting discussions on the macro model. Special thanks are due to Kees 
Wapenaar for the many discussions and suggestions. 

Furthermore I would like to thank the Marathon Oil company for providing me with the 
water tank data set and Ad van der Schoot for providing me with the different stacks for this 
data set. Also I would like to thank Jason Geosystems for allowing me to continue the work on 
my thesis after I had left the university. In preparing several of the figures for this thesis I had 
terrific help from Tiny van der Werff and Vladimir Budejicky for which I would like to thank 
them. 

Delft, September 1988 
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INTRODUCTION 

In the search for fossil fuels surface measurements are carried out in order to determine the 
subsurface structure and rock properties. Various methods for doing these surface 
measurements are available. In the magnetic methods the subsurface structure is derived from 
small changes in the earth magnetic field. The gravitational methods use changes in the earth 
gravitational field to determine the subsurface structure. However these methods can only 
resolve large structural changes. The seismic method allows for small (down to meters) 
structural changes to be resolved from the measurements. In the seismic method a seismic 
source generates waves propagating into the subsurface. Since the subsurface is discontinuous 
with respect to the properties determining the wave propagation, the source waves are reflected 
at the structures in the subsurface. Therefore the measured wave field at the surface contains 
information on the structures in the subsurface. The acquisition geometry and signal to noise 
ratios however make an interpretation of the registered wave field in terms of a depth model 
very difficult. Extensive data processing of the registered wave field is carried out in order to 
obtain an image of the subsurface structures. The processed data is presented in a section. An 
interpreter uses this section together with other information to determine the location and size of 
possible hydrocarbon reservoirs or coal seams. A correct image with respect to the lateral and 
depth positioning of the structures as well as the strength of the reflectors is important for the 
correct delineation of the reservoir. An incorrect well location is very expensive both in terms of 
money for the oil company and career opportunities of the interpreter. 
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The registered wave field in seismic techniques is an 'image' of the subsurface in a space-
time coordinate system. The vertical axis is the time and not depth. Going from time to depth 
requires the elimination of various wave propagation effects. The commonly used time 
migration will cause the reflection response to move both horizontally and vertically in the 
section. Also it will cause diffraction energy from diffractors to collapse. The result is however 
not yet an image in depth. The vertical axis is still time. A depth migration is computationally 
more expensive but it does produce an image in depth. This image is a map of the reflectivity 
properties of the whole subsurface area under investigation. However for the target zone high 
detail is required both in terms of reflectivity properties as well as elastic properties. With 
current acquisition techniques and migration techniques insufficient detail structure is resolved 
from the data. For this purpose inversion techniques have been developed such as proposed by 
van Riel and Berkhout [1985] and still are being refined and extended. These techniques aim at 
going beyond the resolution of the seismic data. Unfortunately reservoirs are situated up to 
several kilometers below the surface. So the reflection response which is input to these 
inversion techniques is distorted because of the overburden wave propagation effects. In order 
to have better quality input data for the inversion or detailed interpretation these overburden 
wave propagation effects should be eliminated. 

In the redatuming procedure the surface data is brought to a new datum (figure 0.1). By 
choosing this new datum just over the target zone a clear and undistorted reflection response is 
obtained. The wave propagation effects of the overburden are eliminated. The redatuming 
should of course preserve the amplitude and travel time information of the surface data in order 
to obtain the true reflection response of the target. The key issues in the redatuming are the 
subsurface model and the elimination of the wave propagation effects. For the redatuming the 
approach of model driven processing is applicable. 

0.1 MODEL DRIVEN PROCESSING 

A seismic data processing sequence contains different types of processing. Most of these 
processing algorithms require only the data as input. Processing parameters are obtained by 
maximizing some coherency criterion. For the stacking processes, the stacking velocities are 
obtained by applying different stacking velocities to selected CMP panels. The velocity for 
which a reflection event is properly aligned after normal move out correction is the stacking 
velocity. For depth migration and redatuming an initial depth model is required before the actual 
processing takes place. These processing algorithms require both the data as well as a depth 
model as input. So the position of the reflectors is both input as well as output to the depth 
migration and redatuming algorithms. The apparent contradiction may be solved by identifying 
the requirements for the input depth model. It turns out that this input depth model is a sparse 
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Figure 0.1 The purpose of redatuming is to bring down the acquisition surface to a level just over the area 
of interest. The overburden wave propagation effects are eliminated from the data. 

Seismic data Interpreter 

Macro model 

Estimation 

Depth migrationj 

Redatuming 

Q C 

Figure 0.2 In the model driven processing the estimation of the macro model is carried out separately from 
the processing. If a good macro model has been found, the expensive processing takes place. 
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model and should be determined with special techniques. This sparse depth model, which we 
will call the macro subsurface model, is used to model the wave propagation through the 
subsurface. The approach in which the depth model is obtained separately from the actual 
processing will be referred to as model driven processing. 

The model driven processing is schematically represented in figure 0.2. Input to the model 
driven processing is again only the seismic data. The depth model or macro model for the 
redatuming could be obtained with tomographic techniques. An interpreter should identify the 
major structures in the subsurface in for instance a stacked section. The tomographic techniques 
should estimate the true positions of these major structures in depth as well as the interval 
velocities. This macro model is a sparse model since it does not contain detailed structures such 
as thin layers. If the travel times modeled in the macro model correspond to the travel times of 
the main reflection events in the seismic data, the depth migration will yield an optimal result. 
So by examining the data mismatch between modeled reflection travel times and measured travel 
times the quality of the depth model may be examined. If the data mismatch is sufficiently small 
the depth migration result will be optimum. In this way only a single depth migration run is 
required. 

The depth model used in the migration or redatuming is useful for an interpreter as well. The 
positions of the major structures and the interval velocities in this model helps the interpreter to 
determine the general geological structures in the area. 

In chapter 1 of this thesis various properties of the macro model will be discussed. The 
medium properties determining the wave propagation and the reflection characteristics are 
separated. The macro model for describing the wave propagation effects contains the trend 
information from the acoustic velocity profile. The full elastic case has not been considered for 
this thesis. Various modeling experiments have been carried out to investigate the effects of 
detailed fluctuations in the velocity profile on the wave propagation properties. 

0.2 WAVE PROPAGATION 

The wave propagation is a key issue for the redatuming. In chapter 2 wave propagation 
modeling operators are discussed. The wave propagation operators are based on the Kirchhoff 
integral. In the macro model a number of interfaces are identified which may be several wave 
lengths apart. The Kirchhoff integral allows for the wave field to be extrapolated over large 
distances in a single extrapolation step. The wave field extrapolation operators used in this 
thesis are based on the one-way wave equation. Although wave propagation based on the two-
way wave equation is more accurate, the one-way extrapolation operators have been chosen 
because of their robustness. The Green's function and its relation to the wave field extrapolation 
will be discussed in this chapter as well. The freedom in choice of the Green's function is an 
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important tool in obtaining the most suited wave field extrapolation operator for specific 
geometries or applications. 

In chapter 3 the inverse wave propagation is discussed. The wave field which has been 
registered by the geophones should be back propagated to bring it down to the new datum. 
Special attention has been paid to the preservation of amplitude information in the inverse wave 
field extrapolation. The commonly used matched inverse Rayleigh operator or Kirchhoff 
approximation does not handle the amplitudes of the wave field properly. An inverse wave 
extrapolation operator which preserves the amplitude information in the inverse extrapolation is 
obtained by choosing an appropriate Green's function. If this integral is applied recursively in a 
layer to layer extrapolation, even the boundary conditions are incorporated. The transmission 
effects at acoustic impedance contrasts are automatically eliminated. 

0.3 THE REDATUMING 

The redatuming procedure is discussed in chapter 4. Firstly the forward model of a seismic 
dataset is discussed. In matrix notation a relation between the surface shots, the surface 

Redatuming 
-* Wave fields at surface 

Elimination of 
propagation 

effects 

Wave fields at new datum 

Correlation of upgoing 
and downgoing 

wave field 

Zero offset section at new datum 

Figure 0.3 In the redatuming surface shot records are brought down to the new datum through an inverse, 
wave field propagation. At the new datum a true zero offset section is obtained by correlation of up going and 
down going wavefields. 
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geophone data and the subsurface structures is determined. Through inversion of these 
equations a relation between the shot records at the surface and the shot records at the new 
datum is obtained. The redatuming procedure is outlined in figure 0.3. For the elimination of the 
wave propagation effects the wave field extrapolation operators derived in chapter 3 are used. 
Special attention has been paid to the data organization in the redatuming. Berryhill (1984) 
proposed a redatuming procedure which requires the data to be reorganized from a common 
shot gather configuration to a common receiver gather organization. This results in a huge 
overhead and tremendous input/output in an actual implementation, particularly if the method 
would be extended for 3-D applications. However in this thesis a shot record based redatuming 
is proposed. Each shot is redatumed separately, allowing for a highly efficient implementation 
and very well suited for parallel processing. 

In chapter 5 the redatuming is applied to both synthetic as well as real data. In practice the 
geophone cable length is limited, resulting in a partly lost reflection response. In the 
experiments discussed in the first sections of chapter 4, the cable length and geophone spread is 
varied. Only part of the reflectivity information is reconstructed if limited surface data is 
considered. The synthetic redatuming experiments have been carried out on shot records 
obtained with finite difference modeling. The last experiment involves real data modeled in a 
water tank. The macro model for this data set has been obtained with travel time inversion. The 
redatuming resulted in a reconstruction of the zero offset section for the deepest reflector. The 
overburden wave propagation effects have been eliminated, resulting in a high quality section, 
which is superior over the surface zero offset section. 
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1 

A MODEL FOR THE OVERBURDEN 
WAVE PROPAGATION EFFECTS 

1.1 INTRODUCTION 

In the seismic experiment an acoustic wave field is sent into the earth in order to examine the 
subsurface structures. Since the wave field propagates through the subsurface, information 
about the subsurface may be extracted from the registered wave field. From the reflection of the 
wave field at the subsurface structures an image of the subsurface could be reconstructed. This 
image is not complete since not all of the structures are resolved from the seismic data. The 
dimensions of the smallest structures which can be resolved from the seismic data alone are 
comparable to the size of the seismic wavelet (figure 1.1). A model describing the wave 
propagation through the subsurface is important for the reconstruction of the subsurface 
structures. For the description of wave propagation through the subsurface the following 
problems are considered. From physical relations such as the equation of motion and the stress-
strain relation a description of the wave propagation is found. This problem in considered in the 
next chapter. The other problem concerns the parameterization of the subsurface. Looking at the 
subsurface on a microscopic scale results in a very detailed description of the subsurface. This 
detail may not be significant for the wave propagation which is relevant for the migration or the 
redatuming problem. So the scale at which the subsurface is considered should be changed. If 
fewer detail is considered, the parameterization becomes more sparse. The purpose is to find a 
parameterization which is sufficient to model the wave propagation effects relevant for our 
problem. 
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Figure 1.1 The lithological log, a seismic wavelet and a well known building in London shown on the 
same scale, give some idea of the size of the structures which may be resolved from seismic data. 

In this chapter a parameterization of the subsurface which is sufficient for describing the 
wave propagation effects is investigated. Both migration and redatuming techniques require the 
wave propagation effects to be eliminated. 

An intelligent subsurface parameterization will allow for simplifications such that the 
propagation of the waves of interest is still described accurately enough. Because of the 
simplifications the mathematics become more simple and the inverse problem for the wave field 
back propagation is more easily found. The approach may no longer be exact, but if the errors 
are sufficiently small this is acceptable. 

1.2 THE PARAMETERIZATION 

For the modeling of the acoustic wave propagation through the earth a representation of this 
earth is required. The representation should be convenient and sufficient to describe the 
propagation effects which are of interest. A parameterization of the earth on a molecular scale 
could be chosen. The distribution of molecules is very dense compared to the seismic scale. So 
this parameterization is not useful since it is too elaborate. If we increase our scale another 
description or parameterization could be chosen. If we look at the earth through a microscope, 
fine layers and structure become visible. However this representation is still to detailed for most 
geophysical applications. A less detailed description is required. A visual inspection of a core 
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from a borehole also shows some fine layering. However these layers are still quite small 
compared to the seismic wavelet. In general an even more sparse representation or 
parameterization of the earth is taken for the geophysical applications (figure 1.2). 

, n - 1 1 

molecular scale 

microscopic scale 

visual scale 

seismic scale 

Figure 1.2 Different scales could be considered for the parameterization of the medium. However a sparse, 
not to detailed representation is preferred for the evaluation of propagation effects. 

In depth migration and inverse scattering type of applications, a representation of the velocity 
and density as a function of the spatial coordinates is chosen. Usually the detail which is 
incorporated into the velocity model does is larger than the seismic wavelet. Although the 
seismic scale is too coarse to contain all the detailed features which exist in the actual medium, 
the parameterization is an acceptable representation of the true medium for most geophysical 
applications. 

In the case of the wave propagation through an overburden the propagation effects should be 
modeled. A parameterization should be chosen which is sufficient to describe the wave 
propagation effects. The macro model is defined to be a representation of the subsurface which 
satisfies this condition. A geological interpretation of the macro model is only of minor interest. 
So the representation does not need to have an exact relation with the true medium. In specific 
cases a stack of homogeneous layers has approximately the same propagation effects as a single 
layer with a velocity gradient. This stack of layers could be an acceptable parameterization, 
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although it does not reflect the true structure. So the parameterization is not intended to be a 
complete and accurate description of the true earth. It should only be sufficient to describe some 
effect related to the data. In molecular physics a similar approach is followed. Different models 
or representations of an atom exist. Different representations are used to describe different 
effects. The various models are not mutually exclusive. In the seismic case the macro model is 
used to describe the wave propagation. Other, more detailed representations should for instance 
be used for stratigraphic interpretations. In the next section a parameterization of the overburden 
specifically for the wave propagation will be discussed. 

1.3 THE MACRO MODEL 

In the previous section it has been argued that the parameterization of the overburden should 
allow for a sufficiently accurate description of the wave propagation effects. In the seismic 
reflection response the major events are related to strong impedance contrasts. Usually only few 
of these strong reflection events occur. So a parameterization of the subsurface consisting of 
several layers will be chosen. 

From depth migration we know that a model of the earth consisting of a several layers with 
simple velocity profiles turns out to describe the wave propagation sufficiently well. The 
reflection is imaged correctly even for small structures (in this case small is of the order of 
magnitude of the wave length). The velocity distribution in the layers may range from 
homogeneous to simple velocity gradients for most structures. 

Since the macro model should have a parameterization which is sufficient to describe the 
wave propagation effects. These effects and the properties of the earth which determine the 
wave propagation should be investigated. For this purpose consider the following identification 
of the propagation effects in relation to the medium properties: 
- The propagation properties which are determined by the trend in the medium properties of 

the earth. These properties determine the transmission effects of the medium. 
- The reflectivity properties which are determined by the detail in the medium properties of the 

earth. These properties determine the reflection effects of the medium. 
In order to extract the detail in the model or the trend information different estimation techniques 
should be used. The trend information can be obtained through tomographic techniques. Either 
the transmitted wave field is measured in order to estimate the trend information or offset 
information is used in surface experiments. The trend information is a sparse parameterization 
of the subsurface. Low frequency structural information is considered for this parameterization. 

The detail in the model could be obtained through seismic depth migration or inverse 
scattering techniques. In general these techniques require the trend information as input as well 
as the seismic data itself. The wave propagation effects between the acquisition surface and the 
depth level of interest are eliminated before the reflectivity or the acoustic or elastic properties 
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are estimated. In general the trend information is more sparse than the detail. The detail contains 
the more high frequent structural information (figure 1.3). Unfortunately the trend information 
and the detail information which may be recovered from the seismic data is limited. The amount 
of detail is limited because the seismic sources are bandlimited and high frequent seismic waves 
are strongly attenuated. Furthermore not all of the trend information may be resolved from the 
seismic data because the reflected wave field is registered over a limited distance. Also the range 
of dips at which the wave fields travel through the subsurface is limited. 

Seismic signal 

Frequency »-

^ . Not resolved from the 
seismic data. 

. »- Resolved from the seismic 
signal 

I *- Partly resolved from offset 
j l JL ^ L data 

<x / <*\ \ > x \ 

Size of the structures *■ 

Figure 1.3 The size of the structures in the subsurface in relation to the bandwidth of the seismic signal. 
Structures smaller than the seismic wavelet can not be resolved from the seismic data alone. Structures larger 
than the seismic wavelet can only be partly resolved from offset data. 

In depth migration and redatuming techniques the wave field propagation through the 
overburden should be eliminated. In the case of migration the overburden are the structures 
overlying the depth level at which imaging should occur. In the case of redatuming the 
overburden are the structures overlying the new datum. The acquisition level is brought down 
from the surface to the new datum. In order to invert for the wave propagation effects of the 
overburden a parameterization of the overburden structures for the description of wave 
propagation effects of the overburden should be determined. The inverse problem of eliminating 
the wave propagation effects is solved in chapter 3 by inverting for the modeling relations. The 
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parameterization of the overburden should be adequate to describe the wave propagation effects 
through the overburden sufficiently well. For redatuming the reflection properties of the 
overburden are of no interest, since only the propagation needs to be inverted for. The reflection 
properties of the target zone below the overburden need to be determined. So only a 
propagation model of the overburden is required. 

In order to obtain an adequate parameterization of the subsurface, the properties determining 
the wave propagation effects should be examined more closely. Therefore the acoustic 
impedance profiles will be considered. For the full elastic case all elastic parameters should be 
regarded. However for this thesis we limit ourselves to the acoustic case. Consider the velocity 
profile from figure 1.4. 

-*■ Z 

DETAIL 

WNjA^AfVv\A/VvvUMA)W 
-*-z 

■ u TREND 

-*»z 

Figure 1.4 The detail and trend information in a velocity profile are considered separately for their relation 
to the wave propagation. 

The profile is very detailed compared to the wave length of the seismic signal. The detail 
goes even beyond the bandwidth of the seismic signal. The acoustic impedance profile also 
shows a trend. The travel time of the seismic events in the registered response are related to this 
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trend. The detail in the velocity function will average out in a zero travel time effect. The detailed 
variations in the acoustic impedance profile are related to the small reflection events in the 
response. Although a gradient in the velocity profile will cause the wave field to propagate back 
at turning planes, in practice most of the reflection occurs at sharp changes in acoustic 
impedance. In figure 1.5 the differentiation between properties determining the wave 
propagation and the properties determining the reflectivity has been visualized. 

Total description 
of the 

subsurface 

Macro 1 

Information | 

■ 

Propagation | 

Prop 3rties I 

Total de 
of 

subsi 

F 

scription 
the 
jrface 

Detailed 

Information 

1 

Reflectivity 

Properties 

Figure 1.5 The total description of the subsurface is split up in macro information and detail information. 
The macro information is related to the propagation properties and the detail information is related to the 
reflectivity properties. 

The parameterization of the subsurface which is adequate to describe the propagation effects 
of the overburden requires only the trend in the acoustic impedance model to be considered. The 
subsurface models which sufficiently well describe the overburden wave propagation effects 
and are parameterized accordingly, will be referred to as macro models. These models may be 
obtained from the data with tomographic techniques such as travel time inversion as has been 
shown by Van der Made [1987]. The macro models may be considered to be a sparse 
parameterization of the true subsurface. 

In order to verify that the trend information is sufficient to describe the wave propagation 
effects properly several modeling experiments have been carried out These experiments are not 
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intended to be a sound proof of the assumption that the propagation properties are determined 
by the trend information, but serve as a set of cases to get a feeling for the relation between the 
(frequency) information in the velocity profiles and the effect on wave propagation. We expect 
that the size of the detail compared to the wave length of the seismic wave field influences the 
wave propagation. Also the type of perturbation such random detail and correlated detail will 
have different effects on the wave propagation. Therefore the effects for several types of model 
perturbations on the overburden wave propagation has been examined. 

For the high frequency approximation the travel time for a wave field propagating through 
the perturbed velocity model is given by 

Si c d s , (1.1) 

where the integration takes place along the ray path s. 
The velocity function contains the velocity trend c0 and the velocity detail 5c. 

c = cn + 5c . (1.2) 

Substitution in (1.1) gives 

T = J — ^ — d s , (1.3) 
J c0 + 5c 

or 

1/c, f 1/co T = — ds . (1.4) 
J 1 + 5c/c0 

With 6c « c0 this may be approximated by 

T = f— 1 - — ds . (1.5) 
J c o \ coJ 

If the velocity detail 5c has a zero average along the ray path, the travel time effect will be zero. 
For the modeling experiment a macro model is defined containing a synclinal structure as 

shown in figure 1.6. In order to simulate detail in the velocity model spatially bandlimited (both 
in x and z direction) gaussian noise is added to this macro velocity model. The gaussian noise is 
equivalent to velocity anomalies in the velocity profile. A source is placed below the syncline at 
a depth of 2000 m. A finite difference modeling scheme with absorbing boundary conditions for 
all grid boundaries is used to obtain the modeled response at the surface for the perturbed 
velocity profile. The velocity perturbation is windowed in the depth direction such that the 
medium in the vicinity of the sources and receivers is homogeneous. This way the source 
strength for each source point does not vary because of velocity variations in the source region. 
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Figure 1.6 The macro model for the wave propagation modeling experiments. Velocity variations are added 
in the region between 200 m and 1000 m depth. The wave field which has propagated through the macro model is 
registered at the surface. 

By varying the strength of the velocity perturbation the effect of the detail in the model on the 
wave propagation is examined. The average size of the detail compared to the wave length is 
also related to the wave propagation effect. The size of the velocity anomalies is also varied. In 
the modeling experiments the following sizes are taken:« X, < X, ± X, > X. The velocity 
perturbations are shown in figure 1.7. A vertical velocity profile for each perturbation is shown 
in figure 1.8. The velocity perturbations are added to the macro model velocity distribution. The 
wave field is then modeled for the composite velocity distribution. For each of the different 
velocity perturbations four modeling experiments are carried out. For these four experiments the 
velocity perturbation is scaled to ± 125 m/s, ± 250 m/s, ± 500 m/s and ± 750 m/s. So in total 
sixteen modeling experiments are carried out for the random velocity perturbation. For the 
± 125 m/s experiment the registered wave field for each of the perturbations is shown in figure 
1.9. The registered wave field is undistorted for all the velocity perturbations. So this level of 
velocity perturbations does not influence the wave propagation for all types of perturbations 
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Figure 1.7 The velocity variations which are added to the macro model to examine the effects on the wave 
propagation. The size of the velocity anomalies ranges from « X in (a) through < X in (b) and S X (c) to > X 
in (d). 
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Figure 1.8 A vertical velocity profile from the perturbations from figure 1.7. 

ranging from fine ( « X) to coarse (> X). The variation in the detail has been increased to 
± 250 m/s in figure 1.10. Again the registered wave field is undistorted. For the >X 
perturbation minor distortion is present in the propagated wave field. However this distortion is 
well below the noise levels present in field data. Consequently velocity variations of ± 250 m/s 
for velocity anomalies ranging from « X to > X do not influence the wave propagation 
significantly. In the case of variations of ± 500 m/s the detailed perturbations do not influence 
wave propagation (figure 1.11). However for the = X and > X perturbations the propagated 
wave field is distorted. In the case of the = X perturbation this distortion is again small to 
practical noise levels. For the > X perturbation the distortion is becoming more significant as can 
be seen in figure 1.12. In this figure the propagated wave field for an unperturbed macro model 
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Figure 1.9 The propagated wave field for the « X, < X, £ X and > X perturbation at a strength of 
± 125 m/s. 
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Figure 1.10 The propagated wave field for the « X, < X, * X and > X perturbation at a strength of 
± 250 m/s. 
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Figure 1.11 The propagated wave field for the « X, < X, £ X and > X perturbation at a strength of 
± 500 m/s. 
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Figure 1.12 The propagated wave fields in the unperturbed velocity model has been subtracted from the wave 

fields from figure 1.11. 
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Figure 1.13 The propagated wave field for the « X, < X 
± 750 m/s. 

£ X and > X perturbation at a strength of 
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Figure 1.14 The propagated wave fields in the unperturbed velocity model has been subtracted from the wave 
fields from figure 1.13. 
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has been subtracted from the wave field obtained with the perturbed velocity model. For the 
± 750 m/s perturbation the distortion for the « X and the < X perturbations is still quite 
insignificant (figure 1.13). For the ± X and the > X perturbation the distortion is more 
pronounced. The character of the distortion is very similar to the response of a distribution of 
point diffractors (figure 1.14). So the velocity perturbation causes diffraction tails to appear in 
the response. From these experiments we get an indication that detailed information in the 
velocity profile (< X) does not significantly influence the propagation properties. Even for larger 
perturbations (> X) the propagation properties are not changed for small (< 250 m/s) velocity 
changes. In case of increasing velocity changes for large velocity anomalies diffraction events 
occur in the propagated wave field. The conclusions are summarized in table 1.1. 

Table 1.1 
The wave propagation distortion for different random velocity perturbations. 

A + indicates no wave propagation distortion. 
A +/- indicates some wave propagation distortion, but comparable to noise. 

A - indicates strong wave propagation distortion. 

125 m/s 

250 m/s 

500 m/s 

750 m/s 

«X 
+ 

+ 

+ 

+ 

<x 
+ 

+ 

+ 

+ 

sX 

+ 

+ 

+/-

-

>\ 

+ 

+/-

-
-

Apart from fully random perturbations correlated detail has also been added to the macro 
model. One vertical random velocity perturbation is extended laterally resulting in a finely 
layered velocity perturbation. This perturbation is strongly laterally coherent as occurs in the 
true subsurface as well. The different perturbations are shown in figure 1.15. Again the size of 
the velocity anomalies is varied from « X to > X. The transmitted wave field for the ± 500 m/s 
perturbations is shown in figures 1.16. The propagated wave field shows not the distortions 
which are present in the propagated wave field for the randomly perturbed velocity model. 
However for the strong lateral coherent velocity perturbations the travel time effect is not zero. 
In figure 1.17 the center trace for the £ X perturbation of strengths ± 125 m/s through 
± 750 m/s is shown. The response shifts in time and decreases in amplitude as the perturbation 
increases. In figure 1.18 the amplitude cross sections for the propagated wave field in the 
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Figure 1.15 Lateral velocity perturbations of dimensions « X , < X, £ X and > X have been added to the 
macro model to study the effect of coherent velocity anomalies on the wave propagation. 
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Figure 1.16 The propagated wave field for the 
strength of ± 500 m/s. 

X, < A., = X and > X coherent velocity perturbation at a 
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+/-125 +/-250 +/- 500 +/- 750 m/s 

200. 300. 400. 
msec 

Figure 1.17 The middle trace from the propagated wave fields for the £ X perturbation at ± 125 m/s, 
± 250 m/s, ± 500 m/s and + 750 m/s strength, shows a travel time shift which increases with increasing 
velocity variations. 

10-

3-

+/-125 +/-250 +/- 500 •- +/- 750 m/s 

500 1000 1500 
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2000 

Figure 1.18 The amplitude cross section for the propagated wave field in the £ X perturbed velocity model. 
The perturbation strength ranges from ± 125 m/s to ± 750 m/s. For the strong velocity anomalies the amplitude 
of the propagated wave field is biased. 
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perturbed velocity model is compared to the propagated wave field in the unperturbed velocity 
model. In these amplitude cross sections the envelope of the signal has been taken and the 
maximum in each trace is plotted as a function of the lateral position. From the figures we can 
see that for large velocity perturbations an amplitude bias occurs for the = k and > X type of 
perturbations. For the smaller velocity perturbations the amplitude bias becomes insignificant. 

Table 1.2 
The wave propagation distortion for different lateral coherent velocity perturbations. 

A + indicates no wave propagation distortion. 
A +/- indicates some wave propagation distortion, but comparable to noise. 

A - indicates strong wave propagation distortion. 

125 m/s 

250 m/s 

500 m/s 

750 m/s 

«X 

+ 

+ 

+ 

+ 

<x 
+ 

+ 

+ 

+ 

=K 

+ 

+ 

+/-

-

>X 
+ 

+/-

-
-

For the laterally coherent velocity perturbation the modeling results are summarized in table 1.2. 
The travel time shift which occurred for the strong perturbations can easily be compensated by 
modifying the interval velocities slightly. The macro model is sufficient for describing the wave 
propagation properties of the subsurface in the case of laterally coherent velocity perturbations. 

The experiments give a clear indication that the wave propagation properties of a medium are 
determined by the trend information in the velocity function. The detail in the velocity profile 
does not significantly influence the propagation of a wave field. The sparse parameterization 
used in the macro model is therefore a sufficient representation of the medium for describing the 
wave propagation properties. 
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2 

WAVE FIELD EXTRAPOLATION 

2.1 INTRODUCTION 

The wave field extrapolation is very important in migration and redatuming. In a seismic 
experiment the wave field is registered at only a few locations on the surface or on a well. 
Whereas for the migration and redatuming the wave field should be known throughout the 
subsurface. The registered wave field should be propagated or back propagated into the 
subsurface by applying wave field extrapolation operators. 

In one-way wave propagation an extrapolation in the direction of propagation away from the 
sources requires different operators from the extrapolation towards the sources. In this chapter 
the forward extrapolation away from the sources will be discussed. 

The wave field extrapolation operators will be based on the Kirchhoff integral. Quite often 
one of the terms of the Kirchhoff integral is dropped, resulting in the Kirchhoff approximation. 
The error in this approximation will be investigated. The Green's function which appears in the 
Kirchhoff integral will be examined more closely. By choosing different Green's functions an 
extrapolation operator may be found which is more suited for a certain problem. A trade off 
exists between the effort to be put in obtaining a suitable Green's function and the effort it takes 
to actually propagate the wave field. 
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2.2 FORWARD WAVE PROPAGATION 

The propagation of the wave field away from the source is described by the forward wave 
propagation. 

For loss-less inhomogeneous fluids the wave equation follows from the linearized stress-
strain relation 

KV.V = -jcoP (2.1) 
and the linearized equation of motion 

- V P = -jcoV, ( 2 2 ) 
P 

where P = P(x,y,z,(ö) denotes the Fourier transform of the acoustic pressure p(x,y,z,t), 
V = V(x,y,z,co) denotes the Fourier transform of the particle velocity v(x,y,z,t). p = p(x,y,z) 
describes the mass density distribution and K = K(x,y,z) describes the bulk compression 
modulus distribution. These two relations can be combined to obtain the well-known frequency 
domain representation of the acoustic wave equation. 

pV. j i v p j + k 2 P = 0 , (2.3) 

where 

k=f . (2.4) 
with 

c=J^- - (2.5) 
V p 

The propagation velocity distribution is described by c(x,y,z). 
In order to arrive at the Kirchhoff integral equation define a domain V bounded by a surface 

S and outward pointing normal n. Now define Green's functions which satisfy the following 
equation in V 

p V. - VG (r,rA,co) + k2G (r,rA,co) = -47tp5(r - rA) , (2.6) 

with r = (x,y,z) 
where rA = r(xA,yA,zA) is an arbitrary point A in V. So G represents the pressure associated 
with the wave field resulting from a point source in A. 
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Figure 2.1 Bounded domain V for theorem of Gauss. 

The theorem of Gauss states that 

f(V.a)dV= fa.ndS . 
v s 

Now define the vector field a = a(r,rA,co) in V such that 

a = gPVG-qGVP , 
q is some space variant function. So 

(2.7) 

(2.8) 

V.a=V.(qVG)P + qVG.VP-VG.qVP-GV.qVP . (2.9) 
If we assume V to be source free for the wave field P and using equation (2.3) and (2.6) it 
follows 

V.a =-47tP8(r - rA) , 

so after applying the theorem of Gauss 

P(rA>CD)=-— f — 
47t i p(r) 

3G(r,r.,cu) ap(r,co) 
P(r,(D) ^ y - 2 G(r,rA>co) 

3n 3n 
dS 

(2.10) 

(2.11) 
S P ( D 

Relation (2.11) represents the Kirchhoff integral. It states that if the wave field is known on a 
closed surface S which does not enclose any sources, the wave field may be calculated at any 
point inside V. If sources would exist inside V a volume integral over all sources should be 
included in relation 2.11. In seismics however the measurements are never available on a closed 
surface. Therefore generally a configuration is taken consisting of an infinite surface S0 and a 
hemisphere Sj with a radius R going to infinity as shown in figure 2.2. Since V should be 
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Figure 2.2 Modified surface S to eliminate contributions from S j to the Kirchhoff integral over SQ and Sj. 

source free all sources should be located in the upper half space above S0. The Sommerfeld 
radiation condition states that the contribution of the Kirchhoff integral over the hemisphere 
goes to zero if the radius R goes to infinity. So the Kirchhoff integral over S may be replaced by 
an integral over a plane surface S0 at ZQ. 

so 
As shown by Berkhout and Wapenaar (1988) Rayleigh type integrals for the geometry shown in 
figure 2.2 may be derived from the full Kirchhoff integral under the following surface condition 



2. WAVE HELD EXTRAPOLATION 35 

dz dz at z, '0 • (2.13) 

These conditions are equivalent to a reflection free surface. The wave equation at z0 now 
becomes 

a2 a (i dp1! a f i dp] , 2D _ 
(2.14) 

The wavefield P(r,co) is always spatial and temporal bandlimited in practical situations. The 
partial differentiatiori may be represented by a spatial convolution if only a limited bandwidth is 
considered (Berkhout, 1982). 

a2p 
H2*P = 0 atz = z0 , (2.15) 

with 

H„ k2d0(x,y) + d2(x) + d2(y) - ^ d,(x) - ^ dj(y) 

where do, d^ and d2 are defined according to 

| ^ = d i ( y ) * P | ^ = d l (x)*P , 

EL 
ax2 

a2p 
:d,(x)*P — = d,(y)*P 

ay 
2 "2^ 

d0(x,y) = 8(x) 8(y) . 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
The total wave field and the Green's functions may be split up into up going P - and down going 
P+ components 

P = P + P 
Each component satisfies the one-way wave equations 

- ^ - + jH, *P + = 0 

ap" 
3z - j H *P =0 

J 1 » 

(2.20) 

(2.21) 

(2.22) 

with 
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« 1 * » , = ^ . ( 2 2 3 ) 

Note that without lateral velocity and density variations at z = zo, Ü! is given by 

f f j CM + k
yy) 

H1(kx,ky)z0,co) = JJ HjCx.y.z.co) e dxdy , (2.24) 
so 

HjOc^.z^co) = ,ƒ k2 (z0) - k2 - k2 k2 

y 

A similar wave field decomposition is carried out for the Green's function 

with 
G = G 

dG+ 

dz 

3G" 
dz 

' + G _ 

- J H t 

+jHx 

» 

*G+ 

*G~ 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

By choosing the medium for the Green's function homogeneous above S0 the down going 
Green's function vanishes. 

G+ = 0 . (2.29) 
After substitution of the one-way wave field components in the Kirchhoff integral the Rayleigh I 
integral may be derived 

P(rA,co) = - — f— P (l%t0) G~(r,rA,co)dS . (2.30) 
27t J

s p(r) ö z 

In a similar way the Rayleigh ü integral may be derived 

1 f 1 + 3G"(r,r ,co) 
P(r.,co)= P+(r,co) 5 - ^ — dS . (2.31) 

A 2TC J p(r) 3z 

For a more rigorous discussion on the derivation of these integrals the reader is referred to 
Berkhout and Wapenaar (1988). 

2.3 INTERPRETATION OF THE KIRCHHOFF INTEGRAL 

In the previous sections the Kirchhoff integral and the Rayleigh integrals have been derived. In 
this section and the following sections some important characteristics of these integrals will be 
examined. Consider again the Kirchhoff integral (equation 2.11) 
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P ( r A ' r a ) = - ^ [ P ^ - G ^ ] d S • (232) 

As discussed earlier this integral equation states that the wave field inside a closed volume V 
bounded by the surface S (figure 2.3) may be calculated from the pressure and normal 

Figure 23 Bounded volume V for the Kirchhoff integral. 

Figure 2.4 According to Huygens' principle each point on S acts as a secondary point source. 

component of the particle velocity distribution at the surface S. No knowledge about the true 
sources outside S is required whatsoever. The interpretation is similar to the Huygens' 
principle. On the surface S each point acts as a secondary source (figure 2.4). The wave field in 
V is a superposition of the secondary sources. These secondary sources would however cause a 
wave field to propagate both inward in V as well as outward. But because of the second term in 
the Kirchhoff integral the outward propagating waves are eliminated. 
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2 . 4 A COMPARISON OF THE KIRCHHOFF INTEGRAL AND THE 
RAYLEIGH INTEGRAL 

A wave field extrapolation based on the Kirchhoff integral requires knowledge about both the 
pressure distribution as well as the distribution of the normal component of the particle velocity 
(equation 2.11). 

P(rA,co) = ■ - J — 
An i p(r) 

P(r,co) 
8G(r,rA,co) 3P(r>C0) 

dn 3n G(r,r.,co) dS (2.33) 
s P(r> 

Under certain conditions discussed in the next section of this chapter, the Rayleigh integral 
(equation 2.31) may be used instead of the full Kirchhoff integral. 

P(rA,co) - - ƒ — 
2it J p(r) 

P (r.co)-
3G~(i\r.,co) 

3n 
-dS (2.34) 

The Rayleigh integral or Kirchhoff approximation is often applied in extrapolation and migration 
procedures. However, if the surface over which the Rayleigh integral is evaluated is not flat 
some of the assumptions made in the derivation of the Rayleigh integral are violated. So in 
general the Rayleigh integral is no longer valid for these geometries. A different Green's 

DEPTH 

1000.--

1200. 
-1000. -500. 0. 500. 

LATERAL DISTANCE M 
1000. 

Figure 2.5 Geometry to compare the Kirchhoff integral with the Rayleigh integral. The source (*) at 
z = 0 m generates a wave field. The wave field at the synclinal interface is extrapolated to z = 1000 m with both 
the Kirchhoff as well as the Rayleigh integral. 
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function may be chosen in order to make the Rayleigh integral valid. However the Green's 
function will become more complex as will be discussed in the next section. For a specific 
configuration of a homogeneous space and a source in A both the Kirchhoff integral and the 
Rayleigh integral have been applied. The wave field at the surface S0 is extrapolated to Sj. 

In figure 2.6 the wave field at S0 is shown. Due to the undulated character of the surface the 
response at S0 is non-hyperbolic. The extrapolated wave field is shown in figure 2.7a for the 
full Kirchhoff integral and in figure 2.7b for the Rayleigh integral. The direct wave field at S, is 
shown in figure 2.7c. 

Figure 2.6 The pressure wave field at the synclinal interface from figure 2.5 due to a source at z = 0 m. 

In figure 2.8 the amplitude cross section for the Kirchhoff extrapolated response is compared to 
the direct source wave field. The travel times as well as the amplitudes are correct for the 
Kirchhoff based extrapolation operator. For the Rayleigh based wave field extrapolation 
operator the response at Sj shown in figure 2.7b is seriously distorted. An additional event is 
present on both sides of the apex of the hyperbole. This event is caused by a wave field 
propagating from S0 into the upper half space but still towards S! as shown in figure 2.9. 

As discussed in the section on the interpretation of the Kirchhoff integral the two terms in the 
Kirchhoff integral ensure the correct direction of propagation away from the surface and the 
source. In terms of Huygen's principle: the secondary sources at S should only cause a wave 
field to propagate away from the source for the homogeneous medium. In case of the Rayleigh 
integral only one term is present. The secondary sources S0 cause a wave field to propagate in 
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Figure 2.7 The wave field at z = 1000 m according to the analytical solution (a), the Kirchhoff integral (b) 
and the Rayleigh integral (c). 
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LATERAL DISTANCE (M.) 

»E 3 

! (b) 

Figure 2.8 The amplitude cross sections of the wave field at z = 1000 m obtained with the Kirchhoff 
integral (a, dotted) compared to the analytical solution (a, sohd). In figure b the result obtained with the Rayleigh 
integral (dotted) is compared with the analytical solution (solid). 
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Figure 2.9 The additional event in the Rayleigh extrapolated wave field is explained by contributions from 
the dipping part of the anticline. 

Operator weighing 

-90u 9 0 Operator 
angle 

Figure 2.10 The operator angle is limited to +/- 90' with respect of the normal to the surface to eliminate 
contributions as indicated in figure 2.9. 
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Figure 2.11 Wave field at z = 1000 m obtained with the Rayleigh integral using a +/- 90' operator angle 
limitation. 

LATERAL DISTANCE (M.) 

Figure 2.12 Amplitude cross section for the data from figure 2.11. The Rayleigh 90' result (dotted) is 
compared to the analytical solution (solid). 
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both directions. One way of suppressing the additional event is to put an additional weighing 
coefficient in the Rayleigh integral. This coefficient should be zero for angles between r and n 
of less than -90° or over 90° and one for angles between -90° and 90° (figure 2.10). Thus 
effectively limiting the operator angle to -90° to 90°. 

With this additional weighing coefficient the additional event disappears as shown in figure 
2.11. However, the amplitude cross section shown in figure 2.12 shows incorrect amplitudes 
for the wave field extrapolated with a Rayleigh based propagation operator. 

So for wave field extrapolation from a non-planar interface the full Kirchhoff integral should 
be used if the amplitude information should be preserved. If the Rayleigh integral is used an 
operator angle limitation should be applied to suppress artifacts. However, the amplitude 
information is not suppressed. In the next section the Green's function will be discussed. 

2.5 THE GREEN'S FUNCTION 

One intuitively would think that the propagation properties of the medium should be in the 
Kirchhoff integral. Well, the Green's functions may be interpreted as an impulse response of 
the medium at the surface S due to a point source in A. A strong analogy with the filter theory 
exists. In order to obtain the transfer function of a filter, a 5 pulse is used as input. The 
measured output is the transfer function. This procedure is identical to the derivation of the 
Green's function (figure 2.13). In order to obtain the output of the filter for an arbitrary input, 
the transfer function is convolved with the input signal. In the Kirchhoff integral the impulse 
response G is spatially convolved with the input wave field. In inverse extrapolation which will 
be discussed in the next chapter the purpose is to eliminate the wave propagation effects of the 
medium and do an inverse filtering for the propagation effects. 

propagation 
properties 
of the earth 

■*e 

Figure 2.13 The Green's function is obtained by applying a dirac source to the medium. In filter theory a 
similar method is used to obtain the transfer function of a filter. 

One can also observe some aspects of the important reciprocity properties in acoustic wave 
field theory. The Green's function is obtained by placing a point source in point A and register 
the response at the surface S. For the extrapolation the response at point A due to point sources 



2. WAVE FIELD EXTRAPOLATION 45 

on the surface S is required. However, because of reciprocity this is equivalent to a point source 
in A and registration on S. 

Another interesting property about the Green's function is that the properties of the medium 
should be identical to the actual medium inside V only. Outside V any medium properties could 
be chosen for G. Usually one would take the medium outside V to be homogeneous to simplify 
the calculations for G. Consider the geometry of figure 2.14a consisting of a homogeneous 
space with some source in B a volume bounded by S. The Green's function for calculating the 
wave field in A from the wave field on S is straight forward. A homogeneous medium would be 
taken inside and outside V. The Green's function only contains the direct wave field from A to 
the surface S. Now change the medium for calculating G by including a reflecting surface 
outside V (figure 2.14b). The wave field in A should be unchanged. However the Green's 
function changed since it now contains a scattered component as well as the direct component. 
A different Green's function is applied to the same wave field and should give the same wave 
field in A, since only the medium for G has been changed; not the actual medium. This apparent 
contradiction is solved if the contributions of the Kirchhoff integral for each part of S to the 

True medium "* Medium for Green's function 

. B 
Medium for Green's function 

Figure 2.14 Outside the volume V bounded by S the medium for the Green's function may be freely chosen. 
Both the upper and lower choice for the Green's function will result in the correct wave field in any point 
inside S. 
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wave field in A is examined separately. This procedure will also be followed later on for 
obtaining inverse extrapolation operators. By analysis of the various contributions in the kx-co 
domain, it can easily be verified that for S^ the upper part of S the up going (scattered) part of 
the Green's function applied to the down going wave field cancels the up going part of the 
Green's function on S2 applied to the wave field at S2. So only the direct part of the Green's 
function contributes to the wave field in A. Therefore the wave field in A is the same for both 
choices of the Green's function. 

Changing the medium for the Green's function outside V is a very powerful tool for 
obtaining a more suitable extrapolation operator. The Kirchhoff integral contains two terms. 
One term involves the pressure wave field on S and a spatial derivative of the Green's function. 
The second term contains the normal component of the particle velocity and the Green's 
function. As discussed in a previous section the two terms in the Kirchhoff integral become 
identical in the case of specific surface geometry and may be replaced by only one term. In the 
case of a curved surface a different approach should be used to eliminate one of the terms in the 
Kirchhoff integral. If on S0 (figure 2.15) boundary conditions for G are chosen such that either 
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By choosing the boundary condition G = 0 on S0, one term in the Kirchhoff integral is 

K 

A 

Figure 2.15 
eliminated. 
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G or 3G/3n vanishes only one term of the Kirchhoff integral remains. Since we are free to 
choose the medium for G outside V, specifying boundary conditions on S is no approximation. 
A boundary condition 

G = 0 onS , (2.35) 
corresponds to a free surface. Note that the Green's function becomes more complex for the 
arbitrarily curved surface than for the planar surface. This is illustrated for the geometry from 
figure 2.16. The medium is homogeneous. Consider two cases in which the surface on which 
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Figure 2.16 For a planar surface and a homogeneous medium below Sj, the Green's function may be 
determined analytically. 

the wave field in known is either planar (Sj) or curved (S0). In order to obtain the wave field in 
A from only the pressure data on S0 or Sj a suitable Green's function should be used. In the 
case of a planar surface the Green's function may be derived analytically 
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3G 1 +jkr -jkr 
^ - = - 2 p - ^ c o s 0 e J . 

r 
with 

and 

r = l r - r j 
A 

cos 6 = -
Irl 

This Green's function is shown in figure 2.17. 

(2.36) 

(2.37) 

(2.38) 
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Figure 2.17 The derivative of the Green's function at the surface Sj from figure 2.16. 

For the curved surface the Green's function can not be derived analytically since the 
boundary condition G = 0 on S results in direct waves from the dirac source in point A as well 
as reflection from the free surface S,. However with a finite difference modeling technique the 
Green's function can be found. The result is shown in figure 2.18. Note that both Green's 
functions are not caused by dirac sources in A since a high bandwith source cannot be modeled 
with finite differences. However the source spectrum is according to the dirac source for the 
bandwith of interest. 
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Figure 2.18 The derivative of the Green's function at the surface S0 from figure 2.15. 

2.6 RECURSIVE VERSUS NON-RECURSIVE EXTRAPOLATION 

In order to extrapolate a wave field with the Kirchhoff integral (2.11) the Green's function 
should be known. For subsurface models discussed in chapter 1 two different wave field 
extrapolation procedures are of interest. A recursive extrapolation or a non-recursive 
extrapolation (figures 2.19 and 2.20). The model is defined as a stack of layers with a relatively 
simple velocity profile in each layer. The Green's function for each layer may be derived 
analytically for most simple velocity profiles. In the next sections will be shown that under the 
assumptions of one-way wave field propagation this procedure has some nice properties when 
used for inverse wave field extrapolation. The wave field is extrapolated from interface to 
interface. At each interface the boundary conditions should be met. 

In case of the non-recursive wave field extrapolation procedure the wave field is extrapolated 
from the surface to the target zone in one step. The Green's function contains the propagation 
effects of the complete overburden structure including transmission effects at the interfaces. An 
analytical expression for the Green's function is not available for most structures. A numerical 
modeling procedure for obtaining the Green's functions is therefore required. Accurate 
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Surface 

New datum 

Figure 2.19 For the recursive extrapolation the wave field is extrapolated from interface to interface. 

Surface 

New datum 

Figure 2.20 In the non-recursive extrapolation the wave field is extrapolated across many interfaces. The 
Green's functions should contain the propagation effects of all layers. 
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modeling procedures based on finite difference approximation of the wave equation are 
computationally expensive. Ray tracing type of modeling techniques that are based on a high 
frequency approximation of the wave equation may be feasible for the non-recursive wave field 
extrapolation. However this has not be studied for this thesis. The recursive extrapolation has 
been applied in all redatuming experiments. For a discussion on non-recursive wave field 
extrapolation in redatuming the reader is referred to the TRITON project progress reports (1986, 
1987, 1988). 

2.7 ONE-WAY VERSUS TWO-WAY FIELD EXTRAPOLATION 

In migration and inversion different types of wave field extrapolation techniques are applied. A 
one-way extrapolation technique is employed or a two-way extrapolation technique. In the one­
way extrapolation the total wave field is decomposed in up going and down going waves. The 
up going and down going waves are supposed to propagate independently. This is an 
approximation since in general interaction does occur especially for waves traveling at high 
angles in case of velocity gradients. However, for models as discussed in chapter 1 the 
interaction takes place at the interfaces at which up going and down going waves are coupled 
through the boundary conditions. Outside the inhomogeneous regions in the subsurface model 
the up going and down going waves may be extrapolated separately. 

P+(Zl) = W+(Zl,z0) P+(z0) , (2.39) 

P"(z0)=W~(z0,z1)P"(z1) , (2.40) 

where W+(z1,z0) and W"(z0,zj) are extrapolation operators for up going and down going waves 
respectively. The one-way wave extrapolation techniques are very robust with respect to model 
errors. A slightly mispositioned reflector causes only a small distortion in the extrapolated wave 
field propagation. At acoustic impedance contrasts coupling of up going and down going waves 
occurs. The boundary conditions should be met explicitly. The multiple reflections are not 
handled properly. They could be eliminated by applying multiple elimination techniques such as 
proposed by Berkhout (1982) and currently being developed in the TRITON project (1986, 
1987, 1988). 

In two-way wave field extrapolation techniques the total wave field is considered. Both up 
going and down going waves are extrapolated simultaneously. Since the total wave field is 
continuous across acoustic impedance contrasts the boundary conditions are included implicitly. 
So transmission effects and multiple reflections are incorporated. A drawback of two-way wave 
equation based extrapolation techniques is the sensitivity to model errors. In the two-way wave 
equation based inverse extrapolation the multiple reflections are be eliminated as the 
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extrapolation depth increases. If however a reflector is mispositioned the multiple reflections 
according to the true depth model occur at different times than the multiple reflections according 
to the erroneous migration model. This results in a serious distortion of the extrapolated wave 
field. Since the depth model used for the redatuming is a propagation model and not a reflection 
model, the reflector positioning may not be that accurate. Therefore for our purpose a robust 
one-way wave equation based extrapolation technique is preferred over a two-way wave 
equation based extrapolation operator. 

2.8 A 2-D APPROXIMATION FOR A 3-D WORLD 

The earth is a three dimensional structure. Efforts to obtain an accurate image of the earth's 
subsurface should be based on 3-D models. However in seismics quite a lot of 2-D surveys 
have been carried out. Nowadays 3-D seismics is becoming more popular. The processing of 
the data from a 3-D survey requires a huge computational capacity which has only become 
available in the last decade through super computers like a CRAY. The study into redatuming 
with an emphasis on the preservation of the amplitude information presented in this thesis has 
been implemented for 2-D. Although the theoretical base for the redatuming is 3-D a 2-D 
approximation has been chosen because of the available computational capacity. A 3-D 
redatuming procedure is currently being developed within the TRITON (1986, 1987, 1988) 
project. 

The 2-D approximation may still give good results in practice if the subsurface is laterally 
invariant in the cross line direction. No out of plane events will distort the seismic reflection 
data. Because of the assumption of the wave field being constant in the cross line direction a 
difference in geometrical spreading for 3-D (1/r) and 2-D (1/Vr) occurs causing an incorrect 
scaling of the data during extrapolation. For a specific target depth local amplitude changes 
along a reflector are directly related to changes in acoustic impedance along the reflector. A more 
accurate approach for 2-D surveys is the 272 D approximation proposed by Bleistein (1984). 
Again the earth is assumed to be invariant in the cross line direction. However the wave field is 
not assumed constant in this direction. A geometrical spreading effect is included. The 
amplitude behaviour for a 2!/2 D redatuming may be more accurate for dipping structures. The 
2!/2 D approximation has not been studied for this thesis. The differences are summarized in 
table 2.1. 
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Table 2.1 
Geometrical spreading effects and medium assumption 

for 2-D, 2V2-D and 3-D wave propagation. 

3-D 

Spherical spreading (1/r) 

Velocity and density 
variations 

in x, y and z 

2-D 

Cylindrical spreading (Wr) 

Velocity and density 
variations 
inxandz 

2V2-D 

Spherical spreading (1/r) 

Velocity and density 
variations 
in x and z 

For 2-D the Kirchhoff integral (2.11) and the Rayleigh integral (2.31) should be modified. 
The integration in the cross line direction should be carried out to go from 3-D to 2-D. The 
derivation is shown in appendix A. For the geometry shown in figure 2.21 the 3-D Kirchhoff 
integral is given by 

1 r i j . 'VT ~^a 

P(r2,co) = — J — j — cos (<pj) e"jkr P(rrco) + jcop0 V^r^co) ^ — dS , (2.41) 
4TI S r 

for the Green's function a homogeneous layer has to be taken 

G = - p - (2.42) 

r = l r , - r 2 l 
The 2-D Kirchhoff integral is given by 

P(r2,co) = — f -jkJt cos cpj FlfOcr) P^.co) + cop07t H(
Q

2)(kr) V ^ , © ) dL , 
An I 

in which H^2) and Hj(2) represent Hankel functions. 

(2.43) 
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Figure 2.21 The geometry for the 2-D extrapolation operator. The medium inbetween of the two interfaces 
is homogeneous. 
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3 

INVERSE WAVE FIELD PROPAGATION 

3.1 INTRODUCTION 

Generally an inverse wave field extrapolation operator is derived by inverting the forward 
extrapolation operator. In this chapter an inverse extrapolation operator is derived directly from 
the wave equation and the theorem of Gauss. Recursive application of this operator yields a 
correct amplitude behaviour for the primary propagating waves. For a non-recursive application 
of the inverse extrapolation operator, it will be shown that for arbitrarily inhomogeneous media 
the amplitude errors are of the second order. 

In seismics or any other field in which echo acoustical measurements are carried out, the 
registration surface does usually not coincide with the area of interest. In surface seismics the 
measurements are carried out at the surface whereas the reservoirs may be located up to several 
kilometers below the surface. In order to determine the potential of a reservoir the rock 
properties in the target area should be determined. The acoustic response, which is related to the 
rock properties, propagates from the target zone to the surface. In the previous chapter the 
forward wave propagation has been discussed. However, in order to solve for the medium 
properties given the response and the source wave field, the forward problem has to be 
inverted. For the wave field propagation a band limited inverse extrapolation operator is found 
by taking the complex conjugate of the forward operator. The approach is commonly known as 
matched inverse. Unfortunately the inversion is only valid for planar interfaces. For an 
arbitrarily inhomogeneous medium the inversion of the forward operator may become very 
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complicated. The matched inverse has been used by various authors (Schneider [1978], Castle 
[1982], Carter and Frazer [1984], Wiggins [1984], Berryhill [1984]) for the inverse wave field 
extrapolation through complicated media. This inverse operator is commonly accepted to handle 
the phase properly. However the amplitude handling of the inverse wave propagation operator 
is hardly ever considered. In the next sections the matched inverse will be briefly discussed. 
Furthermore an inverse propagation operator will be examined which also holds for curved 
layer boundaries. This inverse operator will be derived directly from the theorem of Gauss and 
the wave equation instead of inverting for the forward problem. The amplitude behaviour of this 
generalized 'Kirchhoff summation' operator will be investigated. It will be shown that for an 
arbitrarily inhomogeneous medium the amplitude errors are of the second order. 

3.2 INVERSE EXTRAPOLATION THROUGH A PLANAR HOMOGENEOUS 
LAYER 

In this section the inverse extrapolation through a horizontal layer is discussed. The amplitude 
behaviour of this operator is investigated for comparison with the 'generalized Kirchhoff 
summation' operator which will be derived later on. The matched inverse back propagation 
operator is often used in migration or redatuming schemes. For a rigorous discussion the reader 
is referred to Berkhout [1982]. For the forward model consider an upward traveling wave field 
P_(r,co) at a planar surface SQ (figure 3.1). The up going wave field at S0 is obtained by 
applying the Rayleigh n integral to the wave field at Sj. 

P~(r0,co) = j W(r0,r1,<D)P"(r1,a» dS,(rj) , (3.1) 
s, 

where 

,-,, ■, 1 1 +jkAr „ -jkAr 
W(r r co) = i— cos 9 e J , (3.2) 

2B AT2 

with 
r0 = (x.y.zo) 
ri = (x'.y'.zj) 

AT = lr0 - rxl =J(x- x')2 + (y - y')2 + Az2 

Az = Zj — Zo 
cos 0 = Az/r 
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p'db-o» 

P"(rrco) 

Figure 3.1 The wave field at SI may be extrapolated to SQ with the phase shift operator. 

The integral is equivalent to a two dimensional convolution over x and y so 

P"(x,y,z0)co) = W(x,y,Az,co) * P^x.y.Zj.oo) . (3.3) 

By transforming the operator and the wave field to the wave number domain the convolution 
becomes a multiplication 

P (kx,k z0,co) = W(kx,k Az.co) P (kx ,kzpco) , 

with 

and 

-jk^Az 
W(k ,k,Az,a>) = e 

* y 

k = 7k2-k2-k2 

z v * y 

k = - j , / k 2 + k 2 - k 2 

z J \J x y 

» 

2 2 2 
fork >k +k 

r i 2 , 2 , 2 for k < k + k 
* y 

(3.4) 

(3.5) 

(3.6) 

The transformed operator is the well known phase shift operator. By applying this operator to 
the data on a planar surface a wave field propagation over a depth step Az occurs. For the 
propagating waves (kx

2 + L,2 < k2) the amplitude of the operator is 1 independent of the 
extrapolation step Az. For the evanescent waves (kx

2 + k 2 > k2) the amplitude decays 
exponentially (figure 3.2). 
The inverse wave field extrapolation operator F should invert for the wave propagation effects 

WF = I . 

An inverse wave field operator F for the phase shift operator is given by 
(3.7) 
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I WO^.eo.Az) 

Figure 3.2 The amplitude of the phase shift operator in the kx-w domain is 1 for the propagating waves. 

1 
F(k ,k ,Az,u)) = 

* y W(k x , k ,Az,CO) 

(3.8) 

Accuracy and stability should always be investigated for an inverse wave propagation operator. 
This inverse operator is accurate since 

W F = 1 . (3.9) 
However, for the evanescent part of the wave field this inverse operator increases exponentially 
with Az. Therefore it is not a stable operator and can not be applied to noisy data. In order to 
stabilize the inverse operator the following approximation is often made 

<F(k .k.Az,co)> = W*(k k Az,co) 
A y A y 

(3.10) 

This operator is an exact inverse for the propagating waves. For the evanescent waves the 
operator is not correct (figure 3.4). 

W W =' 
|->0 

2 2 2 for k + k < k 
* y 

r , 2 , 2 , 2 fork +k >k x y 

(3.11) 

So W* is a stable spatially band limited approximation of F. In general the spatial band 
limitation will restrict the maximum obtainable spatial resolution. For a more extensive 
discussion on the resolution in the migration problem the reader is referred to Berkhout [1984]. 
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I W (kx,(0,Az) | 

Figure 3.3a The inverse of the phase shift operator is unstable for the evanescent waves. The amplitude 
increases exponentially. 

J W(kx,co,Az)l 

Figure 3.3b The matched inverse phase shift operator is a stable operator. 
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Wrk^co.Az) W (kx,co,Az) I 

Figure 3.4 The matched inverse phase shift operator correctly inverts for the propagation effects for the 
propagating waves. The evanescent waves are not handled correctly. 

3.3 INVERSE EXTRAPOLATION THROUGH AN INHOMOGENEOUS 
MEDIUM 

In this section the inverse extrapolation for non-planar interfaces and inhomogeneous media is 
discussed. Since the Rayleigh integral is not valid for curved surfaces the full Kirchhoff integral 
(equation 2.11) should be applied. However in the problem of inverting the Kirchhoff integral 
the number of unknowns is twice the number of knowns. The pressure P is known whereas 
both pressure and particle velocity on S should be calculated. Even if both P and Vn are 
measured the equations will not be independent. So inverting the forward problem does not 
seem to be a solution for the inverse propagation from non-planar interfaces. Therefore an 
alternative approach should be followed. Again the Kirchhoff integral is derived but now for 
different Green's functions. Consider the geometry from figure 3.5. 

In the previous chapter the Green's functions should satisfy the following wave equation 

pV . [ - VG ] + k2 G = -p 4TI8 (r-rA) 
P 

(3.12) 

For the inverse wave propagation a slightly modified Green's function is used. These Green's 
functions G should satisfy the following equation in the bounded domain V 

p*V . | — G ] + k*2 G' = -p 4TC8 (r-rA) (3.13) 

For a loss-less medium p(r) and k(r) are real and the Green's function G defined by the last 
equations is identical to the Green's function defined by equation 3.12. For lossy media, the 
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Figure 3.5 Bounded domain V for the Kirchhoff integral. 

medium parameters p(r) and k(r) should be taken complex valued. A small negative imaginary 
part should be added to wave number according to 

k(r) = k0(r) (1 - JTi) with r| « 1. (3.14) 

To get an idea what the Green's functions look like, consider a homogeneous medium. The 
forward propagation solution to the above equations are respectively 

-jk„lr-rAl 
G(r,r.,co) = p(r) e -kon|r-rAl 

Ir-rJ 
A 

(3.15) 

and 

GXr,rA,ü)) = 
P (r)e 

-jkolr-rAl 
+k„Tilr-rAl 

lr-
(3.16) 

The absorption which occurs in lossy media is described by the term e ^ r"r*. In addition to 
the spherical divergence this exponential causes an amplitude decay for the Green's wave field 

propagating away from the source point rA. The second solution contains the term e*^*1 r*rA 

which represents an amplitude increase for waves propagating away from the source in rA. This 
solution is physically unacceptable, so it should be rejected. 
The back propagating solutions to the above wave equations are 

+jk0lr-rA' 

G*(r,rA,co) = P ( r ) e 

lr-

-k„Tilr-rAl 
(3.17) 

and 
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+jknlr-rAl 

O'Cr^-P^-e*^ . ( 3 . 1 8 ) 
lr-r .1 

A 

Since this wave field G propagates towards rA the term e_koT1 r"rA represents an amplitude 
increase. Therefore this solution is physically not acceptable. The other solution contains the 

exponential term e+^)T1 r"rA which represents an amplitude attenuation for the wave field 
propagating towards rA. So this back propagating Green's function is an acceptable solution the 
wave equation given in relation (3.13). 

With the back propagating Green's function a second version of the Kirchhoff integral will 
be derived. In the previous chapter the Kirchhoff integral has been derived using the forward 
propagating Green's function. Similar to the derivation in the previous chapter define a vector a 
field in V 

1 * 1 * 
a = —PVG G VP . (3 19) 

P P 
After application of the theorem of Gauss (2.7) to this vector field and substituting equations 
(2.3) and (3.13) the following integral equation is obtained. 

x -1 f l JdG*\ (dP\. dS . (3.20) 
s P 

This integral equation is identical to the Kirchhoff integral from equation 2.11 except for the 
complex conjugate Green's functions. Again as for the forward propagation operator the 
configuration of a closed surface is not suited for the seismic application. The wave field is only 
known for a part of the surface. At this point in the forward modeling a geometry of a 
hemisphere and a non-planar surface was chosen. However since the hemisphere could enclose 
sources (inverse extrapolation is towards the sources) which would make the integral invalid, 
this geometry should not be used here. For the inverse extrapolation consider the geometry 
depicted in figure 3.6. 

The pressure and particle velocity is assumed to be known at the surface SQ of infinite 
extend. Consider a closed surface with the shape of a pilar box. The top of the box is the 
acquisition surface S0. The bottom of the box is Sj. The rim of the box S„, is at infinity. 
Furthermore all (secondary) sources are located below Sj. Since S„ is of finite extend and 
located at infinity, the contribution of the pressure at A from this surface vanishes. So for the 
configuration of figure 3.6 the Kirchhoff integral from equation 3.20 may be replaced by 
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P(rA,<o) = P0(rA,co) + P,(rA>fl») , (3.21) 

Figure 3.6 Geometry for deriving an inverse Kirchhoff extrapolation operator. The volume V has the shape 
of a pilar box, a cross section is shown. 

Moving Sj to infinity similar to the derivations for the forward model will cause V to contain 
sources. So the Kirchhoff integral in equation 3.23 will not be valid. However because of 
contributions over St the integral is still not suited for wave field extrapolation purposes. The 
wave field is only known at S0. Therefore the integral over Sj (3.23) should be investigated 
more closely. 

In order to simplify the evaluation of the integral over St a slightly different geometry should 
be chosen. The surface S^ is now planar and horizontal (figure 3.7) instead of curved. At 
surface Sj' the total wave field may be split up in an up going (-) and down going (+) 
components. 
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P(r,zt,co) ' P (LZ,,CO) 

Figure 3.7 The surface S j from figure 3.6 is replaced by a planar surface S j ' . 

P(r,r1,co) = P (r.i-j.cu) + P (r,r1(co) , 

G(r,r1,co) = GV.IVCO) + Glr ,^,©) , 

with 

(3.24) 

(3.25) 

r, = (x.y.Zj) and r = (x,y,z) . (3.26) 

Suppose the medium is loss-less and homogeneous in an infinite region around z = Zj. 

at z = Zj . (3.27) 
V p = 0 

Vc = 0 
The up and down going wave field satisfy the one-way wave equations (2.21) and (2.22). A 
slightly modified version of Parseval's theorem reads 

ƒ ƒ A(x)y)B*(x)y) dxdy = — J j A(kx,ky)B*(kx>ky)dkxdky 
27t ■ 

(3.28) 

with A and B being some space dependent function and the 2-D spatial Fourier transform is 
defined by 

A(kx>ky) = J j A ( x , y ) e ^ v dxdy . 
—oo 

Furthermore for the z derivatives we may write 

(3.29) 
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8P 
— (r,co) = jkzP(kx,ky,z.,co) , 

with 

.-7i k = J k 2 - k 2 - k 2 
z V x y 

(3.30) 

(3.31) 

Applying Parseval's theorem and substitution of equation (2.23) yields 

Pjd-^co) = - - F^1 \[P++P"]jk2 * [-G*++G*"]-jkz [p+-P_] [ G * + + G * - ] | . (3.32) 
p. z, 

By making the area below Sj' reflection free for the Green's functions no up going waves will 
occur at S{ so 

p(x,y,z>z1) = p(x,y,z1) , (3.33) 

(3.34) c(x,y,z>z1) = c(x,y,z1) , 

therefore Gr = 0. 
Note that no assumptions are made by choosing a homogeneous medium below Sj'. So the 

above equation becomes 

P l < r A ' « » = - - F ? 
P 

P++P ■K[^ + ] -^ Z [P- + -P-]G + ) (3.35) 

Now consider the evanescentand the propagation waves separately. For the propagating waves 
at Sx', kz*(zj) = kz(Zl) since kx

2 + ky2 < k2(zi). So 

* G * + P + ] P ^ r ^ . + l i r 1 

P 
For the evanescent waves kx

2 + ky
2 > k2(zj), so k,* = -kj at zv 

vfiAM—-^[j^+r] . 

(3.36) 

(3.37) 

Deriving an analytical expression for the inverse Fourier transform for Pj(rA,co) is quite difficult 
since the expression changes around kx

2 + ky
2 = k2(zj). However if we assume A to be not too 

close to Si' the contributions for the evanescent waves may be neglected compared to the 
propagating waves. So relation 3.36 is used for all values of kx and ky. So 

Ï V A * 0 » = T"FA [jkzÖ+ 'P+ (3.38) 

or 
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PjCr^co) es - J - ^ — (r,rA,co) P+(r,o>) dS' . (3.39) 
P s, 

This relation is identical to equation 3.23 except for the evanescent part of the wave field. Next 
we consider the special case of a homogeneous medium inside V and above S0. Since the wave 
field at Sj' only contains up going waves, Pj"1" = 0. There are no contributions from Sj' to the 
wave field in A and P1(rA,co) = 0. The wave field in A is obtained by an integral over S0 only 

p 0 < r A . » > — - M 1 

4*4 P 
Since only data at the acquisition surface is required, this inverse extrapolation operator is well 
suited for the seismic application. The pressure and normal component of the particle velocity 
Vn on So are used to obtain the wave field in point A which is closer to the sources than the 
acquisition surface. So an extrapolation to the sources may be carried out. Since the integral 
over S0 gives the correct wave field in A for the propagating waves, the integral over Sj may be 
neglected. So relation 3.40 holds for any shape of Sj. The inverse extrapolation from an 
arbitrarily curved surface S0 to an arbitrarily curved surface S j through a homogeneous medium 
is therefore achieved by applying the integral equation 3.41 for all points on Sj. The integral is a 
full Kirchhoff type of integral involving both the pressure as well as the particle velocity. This 
relation could be interpreted as the matched inverse Kirchhoff integral because of the complex 
conjugate Green's functions. Since no approximations have been made the integral describes a 
true amplitude inverse wave field propagation for the propagating waves in homogeneous 
media. The incorrect handling of the evanescent waves results in a limited spatial resolution due 
to spatial band limitations. Note that this inverse extrapolation operator has not been obtained by 
inverting the forward operator but is derived directly from the theorem of Gauss. The validity of 
the matched inverse Kirchhoff integral is shown for a simple geometry in the following 
experiment. Consider a 2-D medium depicted in figure 3.8a with 2-D wave propagation. The 
pressure and normal component of the particle velocity of a dipole line source at Z2 are measured 
at the curved surface S0. The pressure response is shown in figure 3.8b. In order to obtain the 
wave field on Sj or S2 the wave field at S0 should be inverse extrapolated towards the source. 
The matched inverse Kirchhoff integral is applied to the pressure field and normal component of 
the particle velocity on S0 for all points A on Sj and S2. The inverse extrapolation yields the 
hyperbolically shaped dipole response at Sj as shown in figure 3.9c. An amplitude cross 
section for this response is depicted in figure 3.9d. The maximum in each trace is plotted as a 
function of the lateral position. The amplitude of the response matches exactly the analytical 

'teMS* dS (3.40) 
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Figure 3.8a Geometry for inverse extrapolation of the wave field at SQ to Sj . The wave field is caused by a 
source at S2. The wave field is therefore extrapolated towards the source. 

Figure 3.8b The wave field at SQ from figure 3.8. 

response shown as the solid line. Only at the left and right spatial boundary deviations occur 
due to the limited aperture. This would not occur if S0 would be of infinite extend. If the data is 
extrapolated to the source level S2 the response shown in figure 3.9e is obtained. The level to 
which the wave field is extrapolated is close to the source so one of the assumptions made in the 
derivation of the inverse full Kirchhoff operator is violated. The inverse extrapolated wave field 
at the source is smeared out. In figure 3.9f the real part of the central frequency component is 
shown as a function of the lateral position. The true source is a spatial delta function. The 
smearing is due to the incorrect extrapolation of the evanescent wave field. The inverse 
extrapolation from S0 to Sj has also been carried out with the Rayleigh integral. This is the 
commonly used inverse extrapolation operator which involves the pressure only. The Rayleigh 
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Figure 3.9 The inverse extrapolated wave field at Sj obtained with a Rayleigh inverse wave field 
extrapolation operator (a), a full Kirchhoff inverse wave field extrapolation operator (c). The amplitude cross 
section allow for a comparison between the amplitudes of the inverse extrapolated wave field (dotted) and the 
analytical solution (solid). The lowest figures shows the inverse extrapolated wave field at S2 obtained with the 
Kirchhoff integral. In (f) the real part of the central frequency component from the data in (e) is shown. 
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inverse extrapolation operator is obtained by dropping the 3P/3n from equation 3.40 and replace 
P(r,co) by 2P(r,co) 

po(«V°) = - f J 1 

The inverse extrapolated wave field at Sj obtained with this inverse operator is shown in figure 
3.9a. The hyperbolic response is present in this data as well as some significant artifacts. In the 
amplitude cross section shown in figure 3.9b strong amplitude deviations compared to the 
analytical response are present. So the amplitude information in inverse extrapolation is not 
preserved by the Rayleigh type of operators. The full Kirchhoff operator should be applied. 
This operator is particularly suited for recursive inverse extrapolated in the macro model 
discussed in chapter 1. The layers in the macro model are homogeneous. So true amplitude 
inverse extrapolation from interface to interface is accomplished by applying the full Kirchhdff 
inverse extrapolation operator to the pressure and normal component of the particle velocity at 
each interface. The problem of the boundary conditions which occurs when passing through 
each layer interface will be discussed in section (3.5). 

3.4 INVERSE WAVE FIELD EXTRAPOLATION FOR ARBITRARILY 
INHOMOGENEOUS MEDIA 

In the previous section an inverse extrapolation operator for curved surfaces and homogeneous 
media enclosed by V has been derived. The only approximation has been the incorrect handling 
of the evanescent waves. However for the seismic application the medium is not homogeneous. 
So if the full Kirchhoff inverse extrapolation operator from equation 3.40 is used in 
inhomogeneous media an approximation is made. In this section the error related to this 
approximation is investigated. 

In the derivation of the full Kirchhoff inverse wave field extrapolation operator the 
contributions of the integral over Sx' (figure 3.10) are investigated. Since all sources are below 
Sx' the wave field at S{ is up going only provided the medium is homogeneous. If however the 
medium is inhomogeneous down going waves at S{ do occur due to scattering of the up going 
waves at inhomogeneities above Sj'. Therefore the integral over Sj' (equation 3.39) will not 
vanish. In order to analyze the contribution of the integral over Sj' to the wave field in A the 
Green's function will be split up into two components. GD is related to the direct waves in the 
Green's function. Gs is associated to the waves in the Green's function which have been 
scattered by the inhomogeneities in the medium (figure 3.10). So 

3G* 
3n dS (3.41) 
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Figure 3.10 The direct and scattered components for the Green's function at Sj' for an arbitrarily 
inhomogeneous medium inside V. 

G(r,rA,a)) = GD(r,rA,ü)) + Gs(r)rA,co) a tS x . (3.42) 

Furthermore assume that the wave field Pj(rA,co) may be split up into down going and up going 

waves. So 

P ^ . c o ) = P > A , c o ) + P ^ A - G ) ) (3-43) 

and 

2JC •; p 
Si 

l f l 
P (rA>co)= 

s, 

From figure 3.10 it can be seen that the back propagating Green's functions GD* and Gs* 
converge to A from opposite directions. Therefore Pf and P ^ represent down going and up 
going waves in A. The total wave field in A includes contributions from S0 as well 

P (r.co) 
3 G D (r'rA'C°) 

3n 
dS (3.44) 

ÖG* (r,r co) 
P(r,co)- dn 

dS (3.45) 
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P(rA>co) = P0(rA,co) + Pj(rA,co) + PjCr^co) . (3.46) 

Provided the medium is non-reflecting in the small region between A and S{, P0(rA,co) is an up 
going wave field only 

P0(rA,co) = P~(rA,co) . (3.47) 

For the seismic application the down going waves in A cannot be reconstructed from an integral 
over the wave field on SQ only. Since no data is available at S{ no contributions to the wave 
field in A can be computed for this surface. Therefore we have to make the following 
approximation for the seismic situation 

P (rA,co) =* P0(rA,co) , 

or with relations 3.21, 3.22, 3.23 and 3.46. 

-, x l n \JdG 

r co £ P U j 
A 4TC J p l 3 n i 

dS 

(3.48) 

(3.49) 
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Figure 3.11 The inverse extrapolation through an inhomogeneous medium. At z = 0 m the wave field is 
registered from a line source at z = 1500 m. The wave field is inverse extrapolated to z3 across an acoustic 
impedance contrast at z2. 



72 3. INVERSE WAVE HELD PROPAGATION 

■ *>*-• H e (-»** M H H»*»H* H W I"*** HW l-?H* e ^ ^ 
t-»^ NJKOCO u>^ JLUI <jio> rt^i XJOPCD toie o o H H NtKi 10OJ £>4fcm UICTI » - j -SJCB cpu> « o o 
o u i o t s i ó u i a y i p t n a m p uiocA Otfi ot>i o m o i i i o o l o c n o u i p mci u i p y p uioi>i 

Figure 3.12 The inverse extrapolated wave field at Z3. 
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Figure 3.13 The amplitude cross section for the data from figure 3.12 (dotted). The amplitude difference 
between the inverse extrapolated wave field and the analytical solution (solid) is of the order ofR2. 
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The part of the up going wave field in A which has been neglected Pj- (rA,co) is, according to 
relation 3.45, proportional to the product of the scattered wave P+(r,co) at S{ and the Green's 
function G*P s at Sj. So the magnitude of the neglected wave field is proportional to multiple 
reflected waves. It is therefore two orders of magnitude lower than P0~ (rA,co). 

An inverse wave field extrapolation through an inhomogeneous medium of the primary wave 
field from a curved surface S0 is achieved by applying the generalized 'Kirchhoff summation' 
operator from equation 3.49. The amplitude errors are of the second order so multiply reflected 
waves should be neglected. Furthermore the evanescent waves are neglected as well. Finally 
only the up going wave field is reconstructed. This operator is well suited for the seismic 
application since the main interest for migration and redatuming is inverse extrapolation of 
primary waves. 

The full Kirchhoff inverse wave field extrapolation operator has been applied to the wave 
field at zt in an inhomogeneous 2-D medium shown in figure 3.11. A dipole line source is 
located in point L. A layer interface is present at level z2. The inverse wave field extrapolation 
with the integral from equation 3.49 brings the wave field from zj to z3. Since the medium 
between zj and Z3 is not homogeneous the inverse extrapolation operator is an approximation. 
The extrapolated wave field at z3 is shown in figure 3.12. The response is hyperbolically 
shaped. The amplitude cross section for this response in depicted in figure 3.13. Comparison 
with the analytical wave field shows an amplitude error of the order R2, where R denotes the 
reflection coefficient. So the non recursive application of the full Kirchhoff integral in 
inhomogeneous media yields an error of the magnitude of multiply reflected waves. However 
when the integral is applied recursively the amplitude information will be preserved as will be 
discussed in the next section. 

3.5 RECURSIVE APPLICATION OF THE FULL KIRCHHOFF INTEGRAL 
FOR RECURSIVE INVERSE WAVE FIELD EXTRAPOLATION 

In the previous sections the application of the full Kirchhoff inverse extrapolation has been 
discussed. If the medium through which the wave field is inverse extrapolated is homogeneous 
the full Kirchhoff inverse extrapolation operator is exact for the propagating waves. If the 
medium is inhomogeneous this operator is no longer correct resulting in amplitude errors of the 
order of the multiply reflected waves. However if the macro model description of the subsurface 
is used a recursive extrapolation from interface to interface may be carried out. In one-way wave 
field extrapolation techniques the boundary conditions are usually not satisfied. Normally, if the 
wave field is extrapolated across an acoustic impedance contrast, the boundary conditions 
should be explicitly incorporated. It will be shown in this section that in case of the recursive 
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wave field extrapolation the up going wave field is correctly inverse extrapolated (except for the 
evanescent) without explicitly incorporating the boundary conditions. 

Consider in figure 3.14 some upward traveling wave field which has been registered at the 
surface Sj. In order to obtain the up going wave field at A, the wave field at Sj will be inverse 
extrapolated recursively. For the first extrapolation step consider the medium enclosed by Sj 
and S2. On Sj the wave field is known. The wave field just above S2 should be calculated. 

New datum 

Figure 3.14 In the recursive extrapolation the upgoing wave field at the surface is extrapolated to die first 
interface. The upgoing wave field just above the first interface is obtained. 

Since the medium enclosed by Sj and S2 is homogeneous the full Kirchhoff inverse 
extrapolation operator could be applied for many points on S2 without making any 
approximations. For the next extrapolation step the wave field at S2 is extrapolated to S3. 
However since the wave field above S2 is known the velocity contrast at S2 lies inside the 
closed volume of the Kirchhoff integral. Application of the integral to the wave field above S2 

yields ampUtude errors of the order of magnitude of the multiply reflected waves as discussed in 
the previous section. So the wave field just below S2 should be known. Since the wave field 
originates from sources below S3 the only wave field above S2 is an up going wave field. 
Therefore the total primary wave field above S2 is known. 
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P.(r,co) = P . ( r , a>) 
is. 4s, 

V lo(r,co) = V' (r,a>) 
just above S, (3.50) 

n<lS. " IS , 

Since the wave field is continuous across S2 the total wave field below S2 is identical to the total 
wave field above S2. 

V r - f f l ) = V r , C 0 ) • (3.51) 

(3.52) 
"2 """'2 

Just below S2 the wave field may split up in up going waves and down going waves (figure 
3.15) 

V„Ts,(r'ra) = V ( r ' t ó > 

Figure 3.15 Since the total wave field is continuous across an acoustic boundary condition, the upgoing 
wave field above the interface equals the upgoing and downgoing wave field just below the interface. 

P_(r,(o) =P_(r,co) + p- (r,eo) 
Ts. Ts. ts, (3.53) 

V „ T S 2
( , V Ü ) = V n T s 2

( r , a ) ) + X W r , C 0 ) • (3'54) 

Since we are interested in the up going wave field only, the down going wave field component 
is undesired. If the boundary conditions would be taken into account the up going wave field 
below S2 could be calculated from the up going wave field above S2. Since incorporating 
boundary conditions is quite difficult in one-way schemes, this is not a good solution. However 
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application of the full Kirchhoff inverse extrapolation operator with an up going Green's 
function to the total wave field just below S2 yields the up going wave field on S3 (figure 3.16). 

P"Vn 

P"Vn" 

n 

New datum 

Figure 3.16 An inverse extrapolation of the total wave field just below the first interface with one-way 
Green's functions causes the downgoing wave field to be eliminated. 

The down going wave field components do not interact with up going Green's functions and are 
cancelled during the inverse extrapolation. The undesired down going wave field is eliminated. 
So for the configuration of a stack of homogeneous layers and buried secondary sources 
recursive inverse wave field extrapolation of the primary up going wave field yields the correct 
up going wave field for the propagating waves at a deeper level. The wave propagation effects 
for curved layer interfaces and boundary conditions are all handled correctly. 

For an experimental verification of the recursive inverse wave field extrapolation consider the 
configuration from figure 3.17. A wave field originating from line source L propagates to the 
receivers at level zv An impedance contrast exists at zj. The wave field is recursively inverse 
extrapolated from the receivers to level z3, where it is compared to the analytical wave field. The 
first extrapolation step involves inverse wave propagation from zx to z2 with the full Kirchhoff 
inverse wave field extrapolation operator and a propagation velocity cx = 1500 m/s. The 
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Figure 3.17 The same geometry as in figure 3.11 for a recursive full Kirchhoff inverse extrapolation across 
an acoustic impedance contrast 

extrapolated wave field is then inverse propagated from z2 to z3 with a propagation velocity 
c0 = 2000 m/s. The pressure of the inverse extrapolated wave field at i^ is shown in figure 
3.18. The amplitude cross section is compared to the analytical wave field shown as a solid line 
is depicted in figure 3.19a. For the area in which the wave field has been back propagated the 
amplitude match is perfect. Some side lobs effect occur due to aperture truncation. If the 
recursive inverse wave propagation is carried out with the commonly used Rayleigh operator 
involving the pressure data only, the amplitude behavior is not correct as shown in the 
amplitude cross section in figure 3.19b. Because this operator does not handle the boundary 
conditions correctly. 

For the plane layer model the validity of the correct amplitude behavior of the recursive full 
Kirchhoff operator is easily verified analytically. Computations in the kx-co domain allows for 
an easy analysis. For a dipole source S at zs (figure 3.20) the wave field at the receivers is given 
by 

Pr(kx,to) = e 
-jk.,1 Mi 1 , 

T < k *,r k ,o) e 
-Jkz.oM»1 

(3.55) 

with 
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Figure 3.18 The inverse extrapolated wave field at z3. 

k j = CO/Cj . 

The transmission operator T(kz l ,kz0) for the transmission from the lower halfspace to the 
upper halfspace is given by 

T(k ,,k n) = 
v z,l z,0' 

2p!Jk z,0 

PlJkz,0+PoJkz,l 
(3.56) 

For the Kirchhoff extrapolation both pressure and particle velocity data are required 

j k 
V(kx,co) = ^ P ( k ] ( , c o ) 

jcop 
(3.57) 
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Figure 3.19 The amplitude cross section for the recursively full Kirchhoff inverse extrapolated data from 
figure 3.18 (dotted) is compared to the analytical solution (solid) in a. For the data in b the Rayleigh integral has 
been used for the inverse extrapolation. The boundary conditions are not handled correctly for this operator. 



80 3. INVERSE WAVE HELD PROPAGATION 

z 
r . 

p,C r i 

z i . 

Prf, 0^0 

zs 

Figure 3.20 Geometry for an analytical verification of the recursive full Kirchhoff inverse wave field 
extrapolation across acoustic impedance contrasts. 

So 

V z r (k x ,co)=-^-P r (k x ,co) . (3.58) 

The Green's function is given by 

G = J-i^Z • (3-59) 
2jk z 

The inverse extrapolation considering the propagating waves only from the receivers at zd to z; 

is achieved by 

1 +jk.,lz-Z:l 1 1 +jk,.lz-z,l 
P.(kx,co) = i e J ^ ' ' P (kx,co) + L J - e ^ * - > P l Vzr(kx,co) , (3.60) 

J Z , l 

or, by substituting 3.55 and 3.58 

P ^ - T ^ J ^ e - * ^ ' • (3.61) 

Similarly, 

V^1(k,CD) = ^ - P 1 ( k x , c o ) . (3.62) 
j a ) P l 
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The next step of the recursive inverse extrapolation yields 

+JkI.olVz.l.1 1 +jk,0 IZJ-Z, i i l e j k . 
P.<M°> = T e ^ M » + T ^P ;(kx,0)) , (3.63) 

z L JöJp0 jk^ojcopj 
or after substitution of 3.56 and 3.60 

, 1 +)*z.olzi-z.' ,, , , -Kdzr^ P(k,co)= — e T(k „k n) e + 

l*nJk»i +Jkzolzrz.' ~Jkjolzrzs' 
0 z . 1 . , .o . - T ( k z i i k ^ ) e *•«. > ( 3 6 4 ) 

or 

pa(kx^4 

2 r i J kz,0 

r0Jkz.l 
rtJkz,0 

or after substitution of 3.56 

1+- T(k
z .rkz,o)e , (3-65) 

_ ., . -K.dz.-zJ ,2 ,2 
Pa(kx,co) = e k >kx , (3.66) 

which is the wave field at level za due to a dipole source at zs. So the wave propagation effects 
and the boundary conditions have been handled correctly in the recursive Kirchhoff inverse 
wave field extrapolation. 

For the geometry from figure 3.21 with the curved layer interface the recursive inverse wave 
field extrapolation has also been applied. A line source S is located at a depth level of 1500 m. 
The receivers are located on top of an anticlinal structure. The wave field should be 
backpropagated to level z2. The wave field has been modeled with a finite difference modeling 
scheme. Therefore the boundary conditions have been properly handled in the forward 
modeling for this laterally varying subsurface model. The pressure response at the receivers is 
shown in figure 3.22. In order to identify both events several snap shots of the finite difference 
modeling are shown in figure 3.23. The second event in the response is associated with an 
internal reflection in the anticlinal structure as indicated in figure 3.24. For the recursive inverse 
wave field extrapolation the registered wave field is back propagated to the layer interface. 
According to the boundary conditions the total wave field is continuous across the acoustic 
impedance contrast. Since the total wave field above the anticline consists of the up going wave 
field only. The total wave field below the anticline (consisting of the up going direct wave field 
from the source and the scattered wave field) equals the up going wave field just above the 
anticline. Another inverse extrapolation step applied to the wave field at the anticline will 
eliminate the down going wave field and reconstruct the up going wave field at level T^ as 
shown in figure 3.25. So the internal reflection in the anticline has been eliminated since the 
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Figure 3.21 Geometry for recursive inverse wave field extrapolation across a curved interface. At 
z = 300 m the wave from a source at z = 1500 m is registered. This wave field is inverse extrapolated to z2. 

Figure 3.22 The registered data at z = 300 m obtained with finite differences modeling. 
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Figure 3.23 Time snap shots of the wave field in the subsurface allow for an identification of all events. The 
second event in figure 3.22 is caused by an internal reflection in the anticlinal structure. 
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Figure 3.24 A raypath for the internal reflection in the anticlinal structure. 

boundary conditions were met and the amplitude information is preserved. The amplitude cross 
section in figure 3.26 shows a comparison with the analytical wave field. The amplitude level of 
the recursively inverse extrapolated wave field compares good with the analytical wave field 
shown as a solid line. So the recursive application of the full Kirchhoff operator correctly 
inverse extrapolates the wave field. The wave propagation effects as well as the transmission 
effects are properly handled even for curved layer interfaces. Some deviations occur because 
some of the waves have propagated out of the registration aperture due to the interface 
curvature. The inverse wave field extrapolation has also been carried out with the Rayleigh 
operator involving the pressure data only. The result depicted in figure 3.27 shows an additional 
event because this operator is not valid for curved interfaces. Furthermore the amplitude cross 
section presented in figure 3.28 shows the incorrect amplitude handling of this operator because 
the boundary conditions were not met. The non recursive inverse extrapolation operator as 
discussed in a section (3.4) has also been applied for this geometry. The back propagated wave 
field at level z^ is shown in figure 3.29. No additional events are present in this response. The 
amplitude cross section (figure 3.30) shows an amplitude difference compared to the analytical 
wave field. The difference in amplitude corresponds to the error of the order of R2 due to the 
fact that this operator is not exact. 
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Figure 3.25 The recursive full Kirchhoff inverse extrapolated wave field at zr±. 
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Figure 3.26 The amplitude cross section for the data from figure 3.25 (dotted) compared to the analytical 
solution (solid). Because of the aperture limitation only part of the wave field is reconstructed. 
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Figure 3.27 The recursive Rayleigh inverse extrapolated wave field at Z2- An undesired additional event is 
present 
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Figure 3.28 The amplitude cross section for the data from figure 3.27 (dotted) is compared to the analytical 
solution (solid). The amplitude information is not preserved in the inverse extrapolation. 



90 3. INVERSE WAVE HELD PROPAGATION 

Figure 3.29 The non-recursive inverse extrapolated wave field at Z2-

Figure 3.30 The amplitude cross section for the data from figure 3.29 (dotted) is compared with the 
analytical solution (solid). The difference corresponds to an amplitude error of the order of R2. 



91 

4 

THE REDATUMING 

In seismics the hydrocarbon reservoirs and the source and detectors are separated by an 
overburden. This overburden consists of up to several kilometers of earth. The reflection 
response of the zone of interest, the reservoir, is distorted because of overburden wave 
propagation effects. A more preferable configuration would consist of source and detectors 
directly over the target zone. So instead of a datum at the surface a datum within the subsurface 
is required. A redatuming of the surface data should bring down the sources and detectors for 
the seismic experiments from the surface to a new datum over the target zone. For this purpose, 
the overburden wave propagation effects should be eliminated from the seismic data. 

In this chapter the redatuming procedure is discussed. For the redatuming, wave propagation 
effects should be eliminated. In the previous chapters forward wave field and inverse wave field 
extrapolation have been discussed. In surface seismics the source and the detectors are located at 
the surface. Reflected waves from the subsurface structures are registered at the surface. In the 
first sections of this chapter a forward model for describing the reflection response at the surface 
due to a source at the surface is described. In the forward formulation the overburden wave 
propagation and the reflection at the target zone should be clearly separated in order to be able to 
obtain an inverse relation. In this inverse relation the overburden wave propagation effects 
should be eliminated and an undistorted target zone reflection response should be obtained. 

The matrix notation will be used in the derivation of the redatuming procedure. The 
advantage of this notation is its simplicity and clarity. Furthermore, compared to a formulation 
in terms of integrals, the matrix notation is closer to a computer implementation. All matrices are 
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monochromatic, so only one frequency component of the data and the operators is considered in 
the matrix relations. The monochromatic geophone data for frequency co- is represented by a 
data vector p (see also figure 4.1) 

T 
p(z0) = (p(xvz0,a.), P(x2,z0,co.) P(xn,z0,coj)) . (4.1) 

> 
> 
> 
> 
> 
> 
> 

( I ) 

Figure 4.1 Each element of a data vector contains a complex valued monochromatic data point 
corresponding to a particular spatial position. 

In the monochromatic data matrix each column of the matrix is equivalent to one data vector 
P(ZQ). For convenience the variable co- is dropped in the notation. Every vector corresponds to a 
single shot experiment. So the diagonal corresponds to data for which the lateral position of the 
geophone is the same as the lateral position of the shot and is therefore the (monochromatic) 
zero offset section. This is also shown in figure 4.2. For the extrapolation of a data vector p(z;) 
a matrix vector multiplication is carried out. If W(zi+1,Zj) denotes the extrapolation operator, the 
extrapolation is given by 

p(z.+1) = W(zi+1,z.)p(z.) . (4.2) 

Each row of W corresponds to the Green's function in the Rayleigh type of extrapolation 
operators (see also chapter 2). So simultaneous monochromatic extrapolation of all shots is 
given by 

P(z.+1) = W(zi+1,z.)P(z.) . 
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Figure 4.2 In the data matrix each column correponds to a data vector. Different columns correspond to 
different shot locations. 

4.1 THE FORWARD MODEL 

In the seismic reflection method a source at the surface generates the illuminating wave field. 
Usually a simple point source or a small source array is used. This wave field propagates 
through the overburden to the target zone (figure 4.3) and gets distorted during propagation. At 
the target zone the illuminating wave field is no longer a simple wave field. The structures in the 
overburden cause the illuminating wave field to become rather complex. The propagated source 
wave field is given by 

s+(z.) = W+(z.,z0)s+(z0) , (4.3) 

in which s+(z;) corresponds to the source wave field at the surface; the elements of s+(z;) 
correspond to the source wave field at spatial locations x and at depth z;. W+(Zi,z0) represents a 
wave field propagation operator from depth z0 to Zj. The dot product of a row of W and s 
corresponds to the evaluation of the integral equation 2.30. The rows of W are related to the 
Green's functions. 
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zo S(z0) 

wT 

m,) 
Figure 4.3 The source wave field s+(zn) at the surface is propagated downward through the overburden to 
level z; by applying a wave field extrapolation operator W+. 

The reflection response p-(z;) of the target at depth z; due to s+(Zi), also propagates through the 
overburden to the surface and gets distorted during propagation. At the surface this reflection 
response is registered by the detectors: 

p"(z0) = Vr(z0,z.) p_(z.) , (4.4) 

where p~(zo) denotes the reflection response at the surface and W_(z0,zi) determines how the 
reflection response at level z; propagates upward to level ZQ. 
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Figure 4.4 The upgoing wave field at level z;, p~(z;) is propagated to the surface by applying a wave field 
extrapolation operator W~. 

At the target zone the incident wave field s+(z;) is related to the reflected wave field p~(z;) 
through the target reflection response: 

p"(z.) = X(z.) s+(z.) . (4.5) 

The matrix X will denote the target reflection response operator. Since the redatuming aims at 
obtaining the reflection response X(z;) of the target zone this matrix will be examined more 
closely in the next section. 

The target response for primary waves due to sources s+(zj) at the surface is found by 
combining (4.3), (4.4) and (4.5): 

p-(z0)=W"(z0,z.)X(z.)W+(z.,z0)s+(z0) . (4.6) 

In this relation both s+(z0) and p~(z0) are vectors containing the monochromatic source and 
detector data at the surface as shown in figure 4.1. However, many shots are available so the 
source and detector data vectors should be extended to matrices. Each column of the S matrix 
contains the source data for one shot. The corresponding column in the P matrix contains the 
reflection response for the same shot position as shown in figure 4.6. 
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Figure 4.5 The surface response p~(zo) due to a surface source wave field s+(z0) is obtained by applying a 
wave propagation operator W+ followed by a reflection response operator X(z;) and a wave propagation operator 
W - to bring the wave field back to the surface. 

■ k shot-

Figure 4.6 Corresponding columns in the source data matrix S and the detector wave field matrix P relate 
to the same shot location. 
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So for a multi-shot experiment the forward model becomes: 

P > 0 ) = W-(z0,z.)X(z.)W+(z.,z0)S+(z0) . (4.7) 

This equation describes the forward problem for a number of surface experiments where each 
source wave field s+(z0) causes a reflection response p~(z0) from the target zone. If some 
special acquisition parameters are present these may be incorporated in a detector matrix D(ZQ): 

P"(z0) = D(z0) W-(z0,z.) X(z;) W+(z.,z0) S+(z0) . (4.8) 

If an array of geophones is used per station to suppress ground roll, the acquisition matrix 
becomes a band matrix instead of a diagonal matrix. However, since the emphasis is on the 
redatuming problem, the acquisition matrix will not be considered further on. We will assume 
that D(ZQ) and S+(ZQ) are diagonal matrices. 
For the migration the reflectivity matrix R(z) should be determined for every depth level. In the 
redatuming application the target response X(z;) should be obtained for one depth level from the 
surface data. So the forward problem should be inverted for. The target reflection response 
X(zj) should be extracted from the surface data P(ZQ) by inverting (4.8). 

4.2 THE TARGET RESPONSE X 

In the redatuming the response from the target zone denoted by X(z;) should be obtained from 
the surface data. This response as it appears in the forward problem will be examined more 
closely. 

The reflection response describes the relation between a down going incident wave field 
s+(z;) and the up going reflected wave field p~(z;): 

p"(z.) = X(z.) s+(z.) . (4.9) 

For the case of a single reflector at z; and a homogeneous halfspace below z;, X(z;) corresponds 
to the reflectivity properties R(z;) of the reflector. The reflection is defined as the relation 
between the incident wave field and the reflected wave field: 

p-(z.) = R(z.)s+(z.) . (4.10) 

If the reflectivity does not vary laterally the above equation may be written as 

P"(x,Zi,co) = R(x,z.,co) * S+(x.z;.co) . (4.11) 

The reflection is written in terms of a spatial convolution (along the x-coordinate) of the 
reflectivity operator and the illuminating wave field. If the reflection operator is transformed 
from the space frequency domain to the wavenumber frequency domain by applying a Fourier 
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transform to R(x,z;,co), then each element of R(kx,z;,co) corresponds to a plane wave reflection 
coefficient: 

P"(kx,z.,co) = RCk^.oo) S+(kx,z.,co) . (4.12) 

R(kx,Zi,co) is the plane wave reflection coefficient for an angle of incidence a, according to 
k 

sin a = —ï-

and 

k = oo 

For one specific frequency R^.z^Cu) is shown in figure 4.7. The reflected wave field is 
obtained by applying a plane wave reflection coefficient to each plane wave. If the reflection 
operator is applied in the x domain instead of the plane wave domain, R(kx,z;,co) should be 
transformed to the space domain. In figure 4.8 the transformed R(x,Zi,co) is shown. This 
operator should be spatially convolved with an incident wave field in order to obtain the 
reflected wave field (see equation 4.12). Each function R(x,z;,co) represents one row of the 
reflectivity matrix in equation 4.10. Note that if the reflector is assumed to be locally reacting, 
the reflection operator R(x,Zi,co) becomes a spike. 

W 

Figure 4.7 The reflectivity R(kx,co;) is very similar to the plane wave reflection coefficient as a function 
the angle of incidence. The center of the horizontal axis correponds to normal incidence. The points where the 
reflectivity function reaches 1 correpond to critical reflection. The points at which the function drops below 1 
again are the 90' angle of incidence points. 
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H 

Figure 4.8 The reflectivity operator R(x,co j) should be applied as a convolution operator to the data. 

For a far more rigorous description of the concept of reflection in terms of convolution the 
reader is referred to Berkhout (1982). 

In the above a single reflector is assumed at the target level. However, in general the target 
zone response is more complicated. For the forward model this response X(z;) could be 
obtained through some modeling procedure. As discussed in chapter 2, the Kirchhoff integral 
can be used to model the wave propagation. However, in chapter 2 the discussion is focussed 
on modeling of propagation through the medium. The known wave fields are at one depth level 
whereas the unknown wave fields are at another depth level. For modeling the reflection 
response X(z;) of the target structures both the down going wave field and the up going wave 
field should be modeled. A one-way approach is chosen so multiples are not included. 

rW~kf7 n+t aG(r,rA,co) dp\r,0)) 
P (r,co) 3n 3n G (r,rA,co) dS (4.13) 

4TC * p 
r and rA are on S, where S represents the datum just above the target. 

In figure 4.9 the Green's function for some medium is shown. Note that the Green's 
function G"(r,rA,co) represents an up going scattered wave field arriving at r in S, related to a 
downward radiating source at rA on S (figure 4.9). Expression 4.13 states that the up going 
wave field at rA on S is obtained by applying the Kirchhoff integral to the down going wave 
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Figure 4.9 The target response X(z;) may be written in terms of Green's functions Gs~. 

field on S. If the surface S is planar, equation 4.13 may be modified. As discussed in chapter 2, 
both terms in the above Kirchhoff integral become identical so 

P (xA,yA,z 0))= [ — 
A A s 2JC { p 

P (x'.y'.z .co) 
3G (x'.y'.x y z co) 

an 
dx'dy' , 

or in matrix notation 

p-(z ) = X(z ) p+(z ) , 

(4.14) 

(4.15) 

where the rows of X(zs) are given by the Green's function G~ according to equation 4.14. 

4.3 THE REDATUMING 

In the redatuming the objective is to obtain the target reflection response X(z;) at the new datum 
from the surface data. From the previous relation it follows that the illuminating wave field 
W+(Zi,z0) S+(z0) has to be inverted for as well as the upward propagation W-(zo,z;). The 
redatumed reflection response is given by (figure 4.10). 

c^ " 

[w - ] 
-1 

[w+s+] 

Figure 4.10 The redatuming in terms of matrix operations. 
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Figure 4.11 The matrix operations for the redatuming involve an inverse extrapolation per CSG and a 
source wave field extrapolation per CRG. 

0 0 0 + o ; o o + o o ; o + o o o 

Pi 

Figure 4.12 In redatuming per shot gather each shot is processed separately. Addition of all partial 
redatuming results will yield the same response as as in figure 4.11 

X(z.) = W-(z0)z.)] p-(Zo)|V(z.,z0)S+(z0)_ (4.16) 



102 4. THE REDATUMING 

The inverse extrapolation operator W_1 has been discussed in the previous chapter. In the 
relation above [W-Czg.Zj)]-1 P~(z0) describes the elimination of the overburden wave 
propagation effects for the reflected up going wave field. The registered wave field is inversely 
extrapolated down to the target zone. Since this matrix multiplication involves operation on the 
columns of P~(zo) (figure 4.11) this inverse extrapolation is carried out per common shot gather 
(CSG). The other part of the right hand side of equation 4.16 P-(z0)[(W+(Zi,z0) S^z,,)]-1 

involves dot products of the rows of P-(z0) with the columns of [W+(ZJ,ZO) S+(z0)]-1. So this 
matrix multiplication which represents inversion of the illuminating wave field involves 
processing per common receiver gather (CRG). In the redatuming procedure proposed by 
Berryhill (1984) the inverse extrapolation per CSG and CRG also occurred. In practice this is a 
problem (especially for the 3-D case) since it involves changing the data organization during the 
processing. The data volume is quite large so this data reordering should be avoided. In the 
matrix notation the previous relation can easily be written in terms of processing per common 
shot gather. If we have only one shot record, the data matrix P-^ZQ) is zero except for the k* 

ACQUISITION 

REDATUMED ZO SECTION 

Figure 4.13 The shot record redatuming involves a redatuming of each shot separately followed by an 
addition of all the redatumed shot data. 



4. THE REDATUMING 103 

SHOT 
RECORDS 

extrapolate 
source 

wave field 

extrapolate 
detected 

wave field 

correlate 
extrapolated 
wave fields 

add to 
redatumed 

shots 

REDATUMED 
SECTION 

NEXT 
SHOT 

NEXT 
FREQUENCY 

Figure 4.14 Flowchart for the shot record redatuming process. 

column corresponding to the shot location xk. Applying the previous relation results in a 
redatumed section for only one surface shot record: 

.,-1 - . - l 
X(z.) = [WIZQ.ZJ) >-(z0)|y(Vo)S+(Vj • (4-17) 

Repeating this procedure for each shot record and adding the results, gives the redatumed 
reflection response. For many different shot locations this single shot record redatuming is 
given by 

X = X j +X2 + . . .+X k + ... +XN (4.18) 
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so 

X(z.) = W-(z0,z.)] [p-(z0) + ... + p-k(z0)... + PN(z0)] [w+(Z.>Zo) S+(z0)j (4.19) 

or 

X(z.) = [w-(z0,z.)] p-(Z()) [w+(Zi,z0) S+(z0)] , ( 4 2 0 ) 

in which the data matrix P"ic(z0) contains zeros except for the k* column corresponding to shot 
position xk (see figure 4.12). This relation is equivalent to the multi shot redatuming relation, so 
a processing per common shot gather in the redatuming procedure should be feasible. The 
procedure is shown schematically in figures 4.13 and 4.14. If the number of shot locations at 
the surface is less than the number of shots at the new datum the problem is ill-posed. Few 
surface registrations can not give a correct reflection response for many points at the new 
datum. 

In conclusion, a wave propagation model together with sufficient surface shot records allows 
for the construction of a zero offset section (diagonal of X) or a set of common shot gathers 
(columns X) at a new datum. Furthermore the redatuming procedure allows for processing per 
surface shot record. The zero offset section which is obtained with redatuming is a true zero 
offset section. Unlike the conventional CMP stacking process, no hyperbolic assumptions are 
made about the move out curve. In the redatuming the move out elimination is based on the 
wave equation and the interval velocity model. The zero offset section is therefore truly zero 
offset. 

4.4 REDATUMING WITH THE FULL KIRCHHOFF OPERATOR 

The redatuming process as discussed in the previous section assumes Rayleigh type of 
extrapolation operators. Only the acoustic pressure wave field is considered in the extrapolation. 
If the full Kirchhoff integral is applied, both the particle velocity and the pressure of the wave 
field should be extrapolated. The operator matrices and data matrices should contain the data and 
operators related to both wave field variables P and Vn. In matrix notation the matrices 
containing the wave field should consist of two submatrices containing the pressure data and the 
normal component of the particle velocity data: 

or (4.21) 

The extrapolation operator for this data matrix consists of 2x2 submatrices 
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2 PP 

2 VP 

2 PV 

2 vv 

or 

— W~ 
2 PP 

— W~ 
2 VP 

—W 
2 PV 

— W~ 
2 w 

The submatrix WPP represents the P to P extrapolation operator. WPP corresponds to the first 
term of the integral in equation 2.11. The WPV represents the Vn to P extrapolation operator. 
This corresponds to the second term of the integral in equation 2.12. WVP is the P to Vn 

extrapolation operator and WVv is the Vn to Vn extrapolation operator based on the integral 
equation in relation The full Kirchhoff extrapolation of the pressure and particle velocity 
is achieved with the following matrix multiplication. 

P+(z) 

V+(z) 

- W p p ( Z s > z 0 ) lw; v (z c ) Z n ) 
'P V \ "o' 

J-VC(z,zn) I ' VPV s'T) iw. 
w (z-zn) 

P(^n) 

V >o> 

(4.22) 

Note that this equation describes the downward extrapolation. A similar equation holds for the 
upward extrapolation. 
The target response X as defined in section 4.3 should also be built up from four submatrices. 

X(z) = 

Xpp(zs) I Xpv(zs) 

(4.23) 
.vp(zs) I Xvv(zs) 

Each submatrix represents the pressure or particle velocity response for a pressure or particle 
velocity input. With XPP, X v v , XPV and XVP, the response of the target for a wave field 
described in terms of pressure distribution and particle velocity is defined. The four responses 
however are not independent because for a given wave field, P and Vn are not independent. The 
forward model for both P and Vn becomes (figure 4.15): 
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Figure 4.15 Forward modeling of the seismic surface response in terms of P and Vn. 

P-(Z0) 

V >o> 

where 

_W | —W 
2 PP 2 p v 

Lw i —w~ 
2 VP 2 w 

Xpp(zs) I Xpv(zs) 

Xvp(zs) I Xyv(zs) 

2 PP 2 p v 

2 VP ' 2 w 

P (z ) 

V (z ) 
nv 0 

(4.24) 

p~(zn) 

v„(zo> 

is the up going wave detected field at the surface and 

P fcO 

V > o ) 

is the down going source wave field at the surface. 
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For notational convenience we omitted the arguments (zs,zo) and (ZQ,ZS) in the downward and 
upward extrapolation operators, respectively. 

However, finding both XPP and XVy and the cross terms XPV and XVp from the down 
going source wave field P+ and the up going wave field P~~ on the new datum is not trivial. I 
have not found a way to construct the four dependent responses Xpp, Xyy» XPV and XVP from 
the up going and down going P and Vn at the new datum for any geometry. If the cross terms 
XpV and XVP could be eliminated, the reconstruction of XPP and X v v would be straightforward 
as will be shown below. 

If the new datum would be a planar surface, assuming one-way wave fields, the dependency 
between XPP, X v v , XPV and XVP could be expressed explicitly, without any knowledge about 
the actual wave field. In chapter 2 it has been shown that for one-way Green's functions the 
contributions for both terms in the Kirchhoff integral are identical in case of integration over a 
planar surface. In analogy with the derivation of equation 2.30 and 2.31 from 2.11, we may 
therefore write equation 4.24 as 

P~(Zn) 

V > 0 > 

Iw-
2 PP 

iw-
2 PV 

_W I _W 
2 VP 2 w 

XPp(Zs) I ° 

0 I Xv v(zs) 

2 PP 
- W + 

2 PV 

Lw+ i _w + 
2 vp 2 w 

PT(z0) 

V (z ) 

(4.25) 

For the redatuming the following equation should be solved 

P"(z) 

V (z) 

Xpp(zs) I 0 

0 I Xvv(zs) 

P ( z ) 

V+(z) 

(4.26) 

where 

P"(z) 

V (z) 

iw" 
2 PP 

— W~ 
2 vp 

n - i 

2 PV 

iw-
2 vv 

P-( Z O ) 

V (z ) 
n 0 

(4.27) 

and 
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P (z ) 

V+(z) 

- W + 
2 PP 

- W + 
2 VP 

I 

- W + 
2 PV 

2 vv 

P+(z ) 

V (z ) 
nv 0 

(4.28) 

Hence, XPP(zs) is resolved from the downward extrapolated wave fields P-(zs) and P+(zs), 
according to 

Xpp(zs) = p-(zf) [V\z)Yl ■ (4.29) 

Similarly, XVv(z
s) *s resolved from the downward extrapolated wave fields Vn

_(zs) and 
Vn

+(zs), according to 

Xvv(zs) = V > s ) [ V > s ) ] - 1 . (4.30) 

The P to P response XPP at the new datum z; should be reconstructed from the inverse 
extrapolated source wave field P+(zj) and the inverse extrapolated detected wave field P~(z;). 
This is similar to the procedure for the redatuming of P only, which has been discussed in the 
previous section. The Vn to Vn response Xyv *s reconstructed similarly from the particle 
velocities V+

n(zi) and V_
n(zi) at the new datum. 

4.5 APPLICATION OF REDATUMING IN LAYER REPLACEMENT 

The redatuming process is primarily intended for bringing the acquisition surface down to the 
target area. However, if the main interests are the general geological features in the whole 
subsurface instead of only a small area, the datum should be the surface. However, especially in 
the case of marine data, an undulating sea floor may result in a distortion and disruption of 
reflection events from the underlying structures. Yilmaz and Lucas (1986) suggested the use of 
pre-stack redatuming to eliminate the water layer and to replace it by a layer with a velocity 
similar to the velocity in the shallow structures. This is accomplished by inverse extrapolating 
the detected data and the source data to the sea floor taking the wave propagation velocity in 
water. Next, the inverse extrapolated wave fields are forward extrapolated to the acquisition 
datum with a velocity which is close to the velocity of the first layer. The extrapolated wave 
fields are then used to reconstruct shot records. The distortion from the irregular water-bottom 
has now been eliminated in the surface data. The stacking process may yield a better result after 
the layer replacement. 
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4.6 REDATUMING AND MIGRATION 

In this section the relation between migration, redatuming and focussing analysis will be 
discussed. In seismics the migration is used to obtain an image of the reflectivity everywhere in 
the subsurface. The focussing analysis is a technique to verify if the migration velocities used in 
the migration process are correct. The migration and redatuming have many similarities (figure 
4.16). In the migration, in order to image the reflectivity at a certain depth, the wave 
propagation effects for the shallower structures are eliminated. By taking the ratio of the up 
going wave field and the down going incident wave field at a depth, the reflectivity is estimated. 

Eliminate 
propagation 

effects 

Imaged 
trace 

Apply 
imaging 
condition 

Redatumed section Migrated section 

Figure 4.16 In both redatuming as well as depth migration an elimination of overburden wave propagation 
effects takes place followed by an imaging step. 

A more commonly used imaging condition is the correlation of the down going wave field and 
the up going wave field at t = 0 s. This imaging condition is stable. In redatuming the process is 
very similar. The wave propagation effects for the overburden are eliminated as well. The 
imaging condition however should not result in the reflectivity at a single depth, but the full 
response for the lower structures. The ratio of the down going wave field and the up going 
wave field results in the reflectivity for t = 0 s and the response of the lower structures at 
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Figure 4.17 Both depth migration and redatuming are carried out with the surface reflection data for both 
reflectors. The new datum coincides with the first reflector. 

0 1 2 3 
5 5 5 5 

Figure 4.18 True zero offset time section obtained with redatuming to the first reflector (again has been 
applied to emphasize the reflection from the second interface). 
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t > 0 s. For a simple medium this is shown in figure 4.17. A pre-stack redatuming is carried 
out at the level of the second reflector. A zero offset section after redatuming is shown in figure 
4.18. The first reflector occurs at t = 0 s. In the redatumed section sources and receivers are 
located at the new datum on top of the reflector. The travel time for the reflection response is 
therefore zero seconds. The second reflector occurs at the two way travel time. In the migrated 
section (figure 4.19) the vertical axis is depth instead of time. The reflectivity is obtained for 
every depth level in the subsurface. Whereas in the redatuming the amplitude of the second 
reflector is determined by both the propagation effects and the reflection properties. 

Figure 4.19 Depth migrated section. 

The focussing analysis was first discussed by Yilmaz and Chambers (1984). However, they 
used time migration which does not result in an correct image in depth for laterally varying 
media. In 1986 Faye and Jeannot presented a paper where they used the focussing analysis with 
depth migration. In the focussing analysis the imaging condition is similar to the condition used 
in the redatuming process. After the correlation of the down going wave field and the up going 
wave field the whole result is used instead of only the zero time sample. By doing this analysis 
at a certain lateral position for every depth as shown in figure 4.20, as discussed by Cox in the 
TRITON reports (1987,1988), a verification of the macro model may be carried out. In case of 
a correct velocity model, all energy should be concentrated around the zero time line. From the 
deviations of the focus energy from the zero time line a model update may be derived. For 
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1500 m/s 

2000 m/s 

3000 m/s 

Figure 4.20 For the focussing analysis vertical new datum could be taken. If the interval velocities are 
incorrect the maximum reflection event does not occur at t = 0 s. 

simple horizontally layered media an analytical relation between model error and incorrect 
imaging position may be derived. 

For more complex media iterative update procedures should be used. So redatuming to a 
vertical datum results in the focussing panels, which are used in the focussing analysis. 
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5 
APPLICATION OF THE REDATUMING 

In this chapter the redatuming procedure, which has been discussed in the previous chapter has 
been applied to both synthetic data examples as well as a real data set. In the first section of this 
chapter the effects of a limited geophone spread and geophone sampling on the redatuming 
result are investigated. It is very interesting to study what information the registered data 
contains about the subsurface before interpreting the redatumed data. 

In the next sections redatuming examples for synthetic data are discussed. The first synthetic 
example involves a single interface overburden with steep dips and strong lateral velocity 
variations. Through finite difference modeling synthetic data is obtained. The surface data is 
brought down through redatuming. 

In the second synthetic example finite difference data has been modeled for a dome structure. 
Redatuming is carried out to obtain a true zero offset section for the structures below the dome. 
Finally in the last sections a real data example is discussed. The data was obtained through 
physical modeling in a water tank. The overburden for this model consists of a dome structure 
and a faulted structure. The redatuming is carried out to obtain an undistorted zero offset section 
of a deep planar reflector. 

5 .1 THE EFFECTS OF GEOPHONE SPREAD AND SPATIAL SAMPLING 
ON MIGRATION AND REDATUMING 

In practice the geophones are spread out over a limited distance. So not all of the reflected wave 
field is registered at the surface. Furthermore the distance between the geophone stations and the 
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individual shot location is not always according to the spatial sampling Nyquist criterion. The 
number of geophone stations and the station spacing are strongly related to the costs of a 
survey. However, if insufficient geophone stations are used some data may be lost. The 
geophone spread is related to the angular illumination of the reflectors in the subsurface. The 
reflectivity as a function of incidence, which is investigated in amplitude versus offset 
techniques may give detailed information on the density and velocity structure at the reservoir. 
However, these techniques fail if insufficient angular illumination is available. Therefore the 
angular reflectivity which is available in the data given the subsurface structures and the 
geophone spread should be examined. 

For the subsurface geometry from figure 5.1 the geophone spread and sampling have been 
varied. Sources and receivers are located at the surface. A redatuming to the level of the reflector 
is carried out for each of the acquisition configurations. Of course the effects of different 
geophone spreads and sampling depends on the subsurface geometry. It is not possible to give 
explicit analytical relations between some surface spread layout and the resulting effect after 
migration for a reflector at one kilometer depth, which holds for every subsurface structure. The 
dip and curvature in the overburden will strongly effect the wave propagation. However the 
experiments shown in this section should give some idea as to how different spread 
configurations may effect the image of a reflector in the subsurface after migration or 
redatuming. In terms of the response matrix X as defined in the previous section, different parts 
of this matrix are obtained as output from the redatuming. Since the redatuming occurs at the 
level of a reflector with no reflections occurring from deeper structures the response matrix X is 
equivalent to the reflectivity matrix R. Either the diagonal of the R matrix, a zero offset section 

—— oooooooooooooooo»oooooooooooooooo 

C = 1500 m/s 

Figure 5.1 The effect of cable truncation and acquisition geometry on redatuming is examined with the 
above subsurface model. 
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is considered, or a single row of the response matrix is regarded. The zero offset section relates 
most strongly to what an interpreter would like to have as output. However it contains not all of 
the available reflection information. A single row of the response matrix contains information 
about the reflection as a function of the angle of incidence. So a row of R should tell use about 
the angular illumination of the reflector for some surface acquisition configuration. This is very 
important information since amplitude versus offset techniques use the angular reflection 
properties to estimate the lithological properties. If the angular illumination for a certain reflector 
is insufficient amplitude versus offset techniques will not give an accurate estimate of the 
lithologic parameters. In the experiments the row of the response matrix R will be presented in 
the wave number domain. In this domain each element of R corresponds to a plane wave 
reflection coefficient. In the space domain the R matrix is a reflectivity operator in terms of 
convolutions which is very hard to interpret. In figure 5.2 the reflectivity for an interface 
between a 1500 m/s and a 3000 m/s layer is shown. The frequency is along the vertical axis. 
The wave number is along the horizontal axis. All straight lines going through the origin 
correspond to constant angle of incidence. Furthermore the figure is symmetrical in the vertical 
axis since the reflectivity for an angle of incidence of +cx° is the same as the reflectivity for -cc°. 
A cross section for constant frequency is also shown in figure 5.2. The horizontal axis is kx but 
can also be interpreted as the angle of incidence according to 

k 
sina = ^ . (5.1) 

The figure corresponds to the familiar plane wave reflection as a function of the angle of 
incidence. 

In the first set of experiments a split spread configuration is used. The spread length is varied 
from 3000 m to 200 m as is shown in figures 5.3a through 5.4c. The limited spread means that 
far offsets are not recorded. Therefore only a limited dip of the wave field is recorded. A high 
angle of incidence on the reflector would cause the reflected wave field to arrive at the surface 
beyond the last geophone. A row of the R matrix, obtained after the redatuming will be 
presented in the wave number domain. The figures should give a clear indication which angular 
reflection coefficients are resolved by the migration process. Figures 5.5 through 5.10 show the 
resolved reflectivity functions for the migration of a 3000 m geophone spread through a 200 m 
geophone spread. For the maximum spread length the reflection coefficient is fully resolved by 
the migration process. A cross section of the migrated data for 30 Hz is depicted in the figures 
as well. The dashed line corresponds to the migrated data and the solid line is associated with 
the analytical solution. Beyond kx = oa/c (90°) the reflection coefficient is unresolved because 
the inverse wave propagation does not handle the evanescent waves properly. This is the case 
for all commonly used migration algorithms. For the propagating waves the migration results 
matches the analytical solution quite well. Some ringing occurs due to aperture truncation. As 
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Figure 5.2 The analytical reflectivity for the reflector from figure 5.1 in the kx-co domain. The lower 
figure is a horizontal cross section at 30 Hz showing the plane wave reflection coefficient as a function of the 
angle of incidence according to sin a = kx/k. 
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Figure 5.3 The cable length has been varied from 3 km in (a) to 1.5 km in (c). A redatuming is carried 
out to the reflector at 500'm depth. 
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Figure 5.4 The cable length has been varied from 1 km in (a) to 200 m in (c). A redatuming is carried 
out to the reflector at 500 m depth. 
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Figure 5.5 The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from 
figure 5.3a. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as a 
dashed line. 
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Figure 5.6 The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from 
figure 5.3b. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as 
a dashed line. 
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Figure 5.7 The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from 
figure 5.3c. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as a 
dashed line. 
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Figure 5.8 The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from 
figure 5.4a. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as a 
dashed line. 
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Figure 5.9 The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from 
figure 5.4b. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as 
a dashed line. 
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Figure 5.10 The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from 
figure 5.4c. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as a 
dashed line. 
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Figure 5.11 The reflector depth has been varied from 100 m in (a) to 500 m in (c). A redatuming is 
carried out to the reflector. 
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Figure 5.12 The reflector depth has been varied from 750 m in (a) to 1 km in (b). A redatuming is carried 
out to the reflector. 
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Figure S.13 The reflectivity at 100 m depth obtained after redatuming for the acquisition geometry from 
figure 5.11a. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as 
a dashed line. 
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Figure 5.14 The reflectivity at 250 m depth obtained after redatuming for the acquisition geometry from 
figure 5.1 lb. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as 
a dashed line. 
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Figure 5.15 The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from 
figure 5.11c. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as 
a dashed line. 
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Figure 5.16 The reflectivity at 750 m depth obtained after redatuming for the acquisition geometry from 
figure 5.12a. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as 
a dashed line. 
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Figure 5.17 The reflectivity at 1 km depth obtained after redatuming for the acquisition geometry from 
figure 5.12b. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as 
a dashed line. 
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Figure 5.18 The geophones are taken only to the left hand side of the source. Therefore only the wave field 
which is reflected from the left to the right is registered. 

the spread length is reduced the maximum angle of reflection which is resolved by the migration 
process decreases. For the minimum spread length the migration result is distorted. Reflection 
coefficients other than normal incidence are hardly resolved. A geometrical analysis shown in 
figures 5.3 and 5.4, which is basically a high frequency approximation, confirms the results. 

For the second set of experiments the depth of the reflector has been varied (figures 5.11 and 
5.12). For a fixed spread length an increasing reflector depth results in a decreasing angular 
illumination. Therefore the maximum angle of the plane wave reflection coefficient which is 
resolved by the migration will decrease for deeper reflectors. Figure 5.13 shows the migration 
results for a reflector depth of 100 m. The spread length is 2000 m symmetrical around the 
source. The reflection coefficients are fully resolved for the propagating waves. As the reflector 
depth is increased the maximum angle decreases (figures 5.13 through 5.17). Also the effect of 
ringing due to aperture truncation becomes more pronounced. For a reflector depth of 1000 m 
plane wave reflection coefficients up to 26.6° are resolved. This corresponds to the geometrical 
analyses shown in figures 5.11 and 5.12. 

For the third set of experiments the spread is arranged a-symmetrical around the source. In 
figure 5.18 the acquisition geometry is shown. A geophone spread with offsets from 0 to 
-1000 m has been used for the redatuming to the reflector at 500 m depth. For this experiment 
the wave field is always reflected from the right to the left. Therefore only negative angles of 
incidence are present in the data. So only the left part of the reflectivity information in the kx-co 
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Figure 5.19 The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from 
figure 5.18. Only half of the reflectivity information is resolved. 
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Figure 5.20 A-symmetrical geophone spreads are used in the modeling. The cable length is shortened by 
reducing the maximum offset to the left of the source. 
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Figure 5.21 A-symmetrical geophone spreads are used in the modeling. The cable length is shortened by 
increasing the minimum offset while keeping the maximum offset constant. 
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Figure 5.22 The reflectivity information after redatuming to the reflector at 500 m depth. Due to the a-
symmetrical spread in figure 5.20a the resolved reflectivity is a-symmetrical as well. 
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Figure 5.23 The reflectivity information after redatuming to the reflector at 500 m depth. Due to the a-
symmetrical spread in figure 5.20b the resolved reflectivity is a-symmetrical as well. 
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Figure 5.24 The reflectivity information after redatuming to the reflector at 500 m depth. Due to the a-
symmetrical spread in figure 5.20c the resolved reflectivity is a-symmetrical as well. 
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Figure 5.25 The reflectivity information after redatuming to the reflector at 500 m depth. Due to the 
increasing minimum offset (figure 5.21a), the reflectivity for low angles of incidence is not resolved. 
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Figure 5.26 The reflectivity information after redatuming to the reflector at 500 m depth. Due to the 
increasing minimum offset (figure 5.21b), the reflectivity for low angles of incidence is not resolved. 
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Figure 5.27 The reflectivity information after redatuming to the reflector at 500 m depth. Due to the 
increasing minimum offset (figure 5.21c), the reflectivity for low angles of incidence is not resolved. 
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Figure 5.28 In the acquisition configuration from figure 5.3b the spatial sampling has been increased to 
15 m (a) and 20 m (b). For high frequencies aliasing occurs and the maximum angle of incidence for the 
reflectivity is decreased. 
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Figure 5.29 In the acquisition configuration from figure 5.3b the spatial sampling has been increased to 
50 m (a) and 75 m (b). Aliasing occurs, so the reflectivity may only be resolved for small angles on 
incidence. 
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domain has been resolved as is shown in figure 5.19. For the geometries shown in figure 5.20 
and 5.21 the following offset ranges have been chosen: -750 - 1000 m, -500 - 1000 m, -250 
- 1000 m, 0 - 1000 m, 250 - 1000 m, 500 - 1000 m. The redatuming results are shown in 
figures 5.22 through 5.27. The results show very nicely how, depending on the acquisition 
configuration different parts of the reflectivity information are resolved from the data by the 
redatuming or depth migration. This means that the zero offset data will be different as well. For 
complex overburdens, the wave propagation through this overburden may cause the angular 
illumination of the target zone to change laterally. Imaging conditions which do not incorporate 
this effect may result in a distorted zero offset section. For this thesis this effect has not been 
studied. I would suggest further research into this interesting subject. 

In the last set of experiments the spatial sampling interval has been varied. If the spatial 
sampling criterion is violated the maximum plane wave reflection coefficient which is resolved 
from the migration will be less than 90°. In figures 5.28 and 5.29 the redatuming results for a 
spatial sampling increment for 15 m, 30 m, 50 m and 75 m respectively are shown. No spatial 
anti-aliasing filtering has been applied. For the high frequencies the maximum angle for which 
the reflectivity is resolved decreases for increasing spatial sampling distance. For low 
frequencies however, the full angular reflectivity may be resolved from the data. In the space 
time domain the data is distorted because the aliased data is not separated from the unaliased 
data. 

From these experiments we can conclude that the acquisition configuration which is chosen, 
is related to the information which may be extracted from the data. The use of relatively 
expensive true amplitude wave field extrapolation operators is not sensible, if incomplete data is 
recorded because of insufficient surface coverage. 

5.2 STRONG DIP IN LATERAL VELOCITY VARIATIONS, A SYNTHETIC 
EXAMPLE 

The redatuming procedure discussed in the previous example has been applied to the data 
generated for the model shown in figure 5.30. The model is geologically not very feasible. 
However, various features such as steep dip and strong lateral velocity variations are present in 
this model. The effects resulting from these features may be studied in this model. The detectors 
are placed from 0 m to 2500 m at the surface. A dipole source with a signature shown in figure 
5.31 is placed at the surface. The shot spacing is 10 m with the first shot at 0 m and the last shot 
at 2500 m. Finite difference modeling has been used to obtain the synthetic data. All model 
boundaries, including the surface have been taken reflection free. The zero offset section for this 
model is shown in figure 5.32. The deepest reflection is distorted because of the overburden 
wave propagation effects. This makes interpretation of the response from this reflector difficult. 
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1000. 1500. 

LATERAL DISTANCE M 

Figure 5.30 Macro model with strong lateral velocity variations and steep dips in the overburden. The 
surface data is redatumed to the new datum at 600 m. 

0. 25. 50. 75. 100. 125., 

Figure 5.31 Source signature which has been used in the modeling of the surface data for the subsurface 
model from figure 5.30. 
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Figure 5.32 The zero offset section for the subsurface model from figure 5.30. The lower reflection 
response is distorted because of overburden wave propagation effects. 

For the redatuming the source wave field and the geophone data are recursively inverse 
extrapolated from the surface to the interface at 500 and on to the interface at 600. At this level 
the redatuming is carried out. Different operators have been used in the redatuming. The 
commonly used Rayleigh operator, involving a pressure to pressure extrapolation only has been 
used. Secondly the full Kirchhoff operator has been used. Both pressure and particle velocity 
data are extrapolated with this operator. The redatumed true zero offset section at z = 600 m is 
shown in figure 5.33. Since the procedure is carried out in the space frequency domain, the 
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Figure 5.33 The true zero offset section at the new datum. The full Kirchhoff integral has been 
recursively applied. 

reflections from the top reflector are now moved into negative time. In the ZO section obtained 
with the Kirchhoff operator the response from the deepest reflector is now flat. Because of the 
strong dip in the overburden some of the reflection energy from the deepest reflector reaches the 
surface beyond the last geophone. In the wave extrapolation the Kirchhoff integral should be 
taken from -°° to +°°. However, in practice we only have a limited cable length. Integration 
over this limited surface is only correct if the wave field outside the cable has decreased in 
amplitude sufficiently and the wave field may be approximated by zero amplitude. If the 
assumption about the amplitude decrease of the wave field is violated, distortion occurs. In 
migration the distortion occurs at the left and right extreme of the line. After migration smiles 
appear resulting from the truncation of the geophone cable. For redatuming similar effects 
occur. The response in figure 5.33 also shows some smile type of distortion. 

In figure 5.34 a zero offset section is shown, which has been modeled with finite difference 
for the model from figure 5.30. The exploding reflector model was used with only buried 
sources on the deepest reflector. In the figure diffraction events are indicated which propagate 
beyond the last geophone. For offset data similar events will be lost resulting in the redatumed 
zero offset section to show smiles. In figure 5.35 the redatumed zero offset section has been 
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Figure 5.34 The zero offset reflection response of the deepest reflector obtained with exploding reflector 
modeling. The steeply dipping events are internal reflections in the top reflector. 

obtained with a Rayleigh type of operator. This operator in not correct for curved interfaces and 
does not handle the boundary conditions correctly. Two strong additional events are present in 
the data which may be incorrectly interpreted. In the section 'A comparison of the Kirchhoff 
integral and the Rayleigh integral' in chapter 2 a similar event appeared in one of examples. The 
event could be eliminated by limiting the operator angle to 90°. In figure 5.36 the Rayleigh 
operator with angle limitation has been used to obtain the redatumed zero offset section. The 
addition event is reduced in amplitude, however it has not been eliminated. In the section 
'Recursive application of the full Kirchhoff integral for recursive inverse wave field 
extrapolation' in chapter 3 internal reflections in an anticlinal structure resulted in additional 
events, if the Rayleigh operator is used for inverse wave field extrapolation. The recursive 
application of the Kirchhoff integral did eliminate these internal reflections (figure 5.37) 
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Figure 5.35 The zero offset section at the new datum. The Rayleigh integral instead of the full Kirchhoff 
integral has been used in the inverse wave field extrapolation. Additional events are present in this section. 

Figure 5.36 The zero offset section at the new datum for which the angle limited Rayleigh extrapolation 
operator has been used. The additional event is reduced, however an amplitude anomaly still exists in the 
reflection event. 
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Figure 5.37 A ray path in the model from figure 5.30 indicating the internal reflection in the top 
reflector. 

resulting in an undistorted back propagated wave field. The additional event shown in figure 
5.35 could therefore well be such an internal reflection in the top reflector. Therefore the full 
Kirchhoff integral should be applied in the case of high velocity contrasts and strong lateral 
velocity variations in the overburden. However if reflection energy is not registered because of a 
limited cable length, smiles will occur in the redatumed result. All effort which is put in using an 
operator which preserves the amplitude information may be lost because of these distortion. 

5.3 DOME STRUCTURE, A SYNTHETIC EXAMPLE 

For this example a model of a dome structure has been chosen (figure 5.38). This type of 
structure typically occurs in the North Sea. For the modeling an acoustic finite difference 
modeling scheme has been used. The model has been compressed vertically to reduce 
computation time for the modeling. The acquisition parameters are listed below 

Shot spacing: 
Group spacing: 
Number of channels: 
Number of shots: 
Near offset: 
Far offset: 
Sample interval: 
Trace length: 

25 m 
15m 
511 
201 
0m 
5000 m 
6 ms (resampled) 
3s 
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Figure S.38 The redatuming is used to improve the quality of the reflection from the reflector at 2500 m 
for this dome structure. The new datum is at 2250 m. 

30. 40. 50. 
Herz 

Figure 5.39 The source signature used in the finite difference modeling of the surface data for the model 
from figure 5.38. 
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Figure 5.40 The zero offset section at the surface of the dome model. The reflection from the deepest 
reflector is pulled up because of lateral velocity variations in the overburden. Additional diffraction events are 
present because of the gain which has been applied to the data for plotting. 

The source signature is shown in figure 5.39. The somewhat low maximum frequency of 35 Hz 
resulted from stability conditions for the finite difference modeling. The near offset section is 
shown in figure 5.40. The response from the deepest reflector shows a pull up under the dome, 
because of the strong lateral velocity change in the overburden. A recursive redatuming 
procedure has been applied. In the recursive extrapolation the wave field is inversely 
extrapolated across each homogeneous layer. In the first step the source wave field and the 
detected wave field are extrapolated from the surface to interface 1. The next extrapolation step 
takes the wave fields from interface 1 to interface 3,5 and the segment of interface 2, which is 
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Figure 5.41 The true zero offset section at 2250 m in the dome model. The overburden wave propagation 
effects have been eliminated. 

between interfaces 3 and 5. On the left side the wave fields are then extrapolated from 3 to 4 and 
part of 2. Followed by an extrapolation from 4 to the left part of 2. On the right hand side the 
wave fields are extrapolated from 5 to 6 and the part of 2 between 5 and 6. Followed by an 
extrapolation from 6 to the right most part of 2. Finally the source and the detected wave fields 
are extrapolated from 2 to 7 at which level a reconstruction of a true zero offset section shown in 
figure 5.41 occurs. All overburden wave propagation effects have been eliminated and the 
response is horizontal without the pull up. Smile like distortions are present at the left and right 
hand side of the data due to the truncation of the geophone cable at the surface. However no 
artifacts are present for the part of the reflector which has sufficient surface coverage. So the 
redatuming yields a zero offset section which is better suited for structural or stratigraphic 
interpretation purposes, than a surface zero offset section. 

5.4 A REAL DATA EXAMPLE 

For the last example of redatuming a real data set has been used. The data has been obtained 
through physical modeling in a water tank. The dimensions of the model have been scaled down 
and the frequency of the source has been scaled up. The data from water tank modeling is 
generally quite similar to real seismic data. The acquisition parameters are listed below. 



154 5. APPLICATION OF THE REDATUMING 

Shot spacing: 
Group spacing: 
Number of channels: 
Number of shots: 
Configuration: 
Near offset: 
Far offset: 
Sample interval: 
Trace length: 

24.384 m 
24.384 m 
48 
296 
Entel spread 
243.84 m 
1389.9 m 
4 ms (resampled) 
2 s 

In the stacking velocity analysis the CMP gathers stacked for a wide range of stacking 
velocities. Unfortunately, the offset range is too small to determine the correct stacking 
velocities. The data has been stacked for different constant stacking velocities. The results are 
shown in figures 5.42, 5.43 and 5.44 in which the stacked sections for stacking velocities of 
3000 m/s, 3500 m/s and 4500 m/s are shown. All major events are present in all sections. 
Stacking with different velocities resulted in a constructive stacking of the events along the 
move-out curves. This gives us an indication that only little velocity information is available in 
the data. In order to obtain a macro model for the data, pre-stack travel time inversion has been 
used. In this procedure an interval velocity model is automatically modified to produce a better 
match between model travel times and measured travel times. An interpretation of the stacked 
section has been made to determine the major reflection events. Note that the event between 1. 
and 1.1 s to the left and right of the dome has a negative polarity. Soa velocity inversion occurs 
at the interface corresponding to this event. In order to obtain pre-stack travel times 17 CMP 
gathers have been selected of which 8 are shown in figures 5.45 and 5.46. In each of the CMP 
gathers the events related to the interpreted time horizons in the stacked section are picked. The 
pre-stack travel time picks are shown in figures 5.47 and 5.48. The vertical bars in these figures 
indicate at which offsets the travel times have been picked. Furthermore, the height of these bars 
indicate the uncertainty in the picks. Due to noise and picking inaccuracy, the travel time picks 
may be off several milliseconds. The pre-stack travel time inversion procedure uses the 
interpretation and the travel time picks to estimate the macro model. So the position of the major 
reflectors and the interval velocities should be estimated. For an extensive discussion on the 
pre-stack travel time inversion, which has been used the reader is referred to Van der Made 
(1987). 

The estimated macro model is shown in figure 5.49 together with the zero offset rays. In 
order to assess the correctness of the macro model the data mismatch should be analyzed. In the 
diagram for the model driven processing shown again in figure 5.50, the data mismatch analysis 
corresponds to the quality control procedure. Before carrying out the computationally expensive 
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Figure 5.42 A constant velocity stack (3500 m/s) of the water tank data. Curtesy Marathon Oil company. 
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Figure 5.43 A constant velocity stack (4000 m/s) of the water tank data. Curtesy Marathon Oil company. 
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Figure S.44 A constant velocity stack (4500 m/s) of the water tank data. Curtesy Marathon Oil company. 
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Figure 5.45 The CMP gathers at CDP locaüons 100, 150, 200 and 250. The gathers have been plotted 
with age to make the deeper events visible. 
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Figure 5.47 The picked travel times from the CMP gathers 100, 150,200 and 250 which have been used 
in the macro model estimation. 

redatuming the correctness of the macro model is verified. For different CMP gathers, the data 
mismatch is shown in figures 5.51 through 5.54. The measured travel times are depicted as 
solid lines and the modeled travel times, depicted as dashed lines, are shown for each event. 
The modeled travel times are obtained by ray-tracing in the estimated macro model. If the 
modeled travel times and the measured travel times coincide, then the estimated model explains 
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Figure 5.48 The picked travel times from the CMP gathers 300, 350,400 and 450 which have been used 
in the macro model estimation. Eight out of the 17 CMP gathers which have been used are shown in these 
figures. 

the data. The redatuming has been applied to the shot gathers taking the estimated model as the 
macro model. The new datum has been chosen at a depth of 3 km. The source wave fields and 
the registered wave fields have been recursively extrapolated from the surface to 3 km depth, the 
new datum. The true zero offset section at the new datum is shown in figures 5.55 and 5.56. 
Both the full Kirchhoff operator has been applied (figure 5.55) as well as the Rayleigh operator 
(figure 5.56). The response from the deepest reflector is now horizontal. The pull up due to 
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Figure 5.49 The estimated macro model from the picked travel times. The zero offset rays are shown to 
give an indication of the CMP coverage. The interval velocities are indicated inside the layers. 
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Seismic data Interpreter 
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Figure 5.50 In the model driven processing the macro model is estimated separately from the actual 
processing. Through quality control the accuracy of the macro model is assessed. 
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Figure 5.51 The modeled travel times (dashed lines) and the measured travel times (solid lines) for CMP's 
50,100,125 and 150. Since measured and modeled travel times coincide the data is explained by the estimated 
macro model. 
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Figure 5.52 The modeled travel times (dashed lines) and the measured travel times (solid lines) for CMP's 
175, 200, 225 and 250. Since measured and modeled travel times coincide the data is explained by the 
estimated macro model. 
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Figure 5.53 The modeled travel times (dashed lines) and the measured travel times (solid lines) for CMP's 
275, 300, 350 and 400. Since measured and modeled travel times coincide the data is explained by the 
estimated macro model. 
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Figure 5.54 The modeled travel times (dashed lines) and the measured travel times (solid lines) for CMP's 
425, 450, 475 and 500. Since measured and modeled travel times coincide the data is explained by the 
estimated macro model. 

lateral velocity variations in the overburden has been eliminated. To the left and right of the 
dome, the reflector response is continuous and of good quality. Below the dome structure 
however, the response is distorted. Either the macro model is not correct for this region or 
insufficient surface data has been used. The modeled travel times did coincide with the picked 
travel times, so the estimated overburden structure does explain the reflection data. Furthermore 
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Figure 5.55 The true zero offset section at the new datum obtained with a Rayleigh integral based operator. 

Figure 5.56 The true zero offset section at the new datum obtained with a the full Kirchhoff integral based 
operator. 

the zero offset section at the new datum obtained with the full Kirchhoff integral is different 
from the zero offset section obtained with the Rayleigh integral. The amplitude recovery of the 
Kirchhoff integral based operator is much better below the dome. The high velocity contrast at 
the top of the dome causes a high transmission loss which is not inverted for when using the 
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Rayleigh integral. The other anomalies may be related to insufficient surface coverage. Most of 
the reflection energy from the 3.5 km deep reflector may have been lost in the only 1 km long 
geophone cable. 

The experiments discussed in this chapter show that the redatuming eliminates overburden 
wave propagation effects resulting in a true zero offset section which is superior to a surface 
zero offset section. Furthermore it can be concluded that insufficient surface coverage may 
result in an undesired loss of reflection information for particularly the deep structures. 
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APPENDIX A 

THE KIRCHHOFF INTEGRAL FOR 
2-D HOMOGENEOUS MEDIA 

In this appendix the 2-D Kirchhoff integral for homogeneous media will be derived. In the 
recursive application of the Kirchhoff integral both pressure and normal components of the 
particle velocity are required at each surface over which the integral is taken. Therefore both the 
pressure P as well as the particle velocity V should be extrapolated. An expression for the 
extrapolation of the particle velocity will be derived as well. 
Consider the Kirchhoff integral for the geometry form figure A-l (relation 2.11) 

P(r ^—Lf-L 
4TC J p(r) 

3G(r,r co) 3P(r)C0) P(r,co) g-± i - p - G(r(rA,co) dS 

For a homogeneous medium we can take an analytical Green's function 

e-jkr 

G(r,rA1co) = p , 

(A-l) 

(A-2) 

with 
r = (x,y,z) 
rA = (XA>VA.ZA) 

r=lr-rAl 
k = co/c. 

After substitution in (A-l) and taken the normal pointing inward, the following 3-D Kirchhoff 
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Figure A-l Closed domain for obtaining the wave field in A from the wave field on the surface S with the 
Kirchhoff integral. 

integral is obtained 

1 f l + j k r e~J~ e"J 

P(rA,co) = — —-f— cos q>x - — P(r,co) + jcop Vn(r,co) — 
4ir J r r r 

-jkr ■jkr 

-dS 
4TC 

(A-3) 

For the 2-D approximation assume an invariant medium in the y-direction. Furthermore assume 
that the wave field P(r,w) has been caused by a line source in the y-direction. Since both the 
wave field and the medium are invariant in the y-direction, the integration in this direction may 
be carried out for (A-3) resulting in 

P(rA,co) = — f -jkTC cos <Pj H®(kr) P(r,co) + coprt Hj,2)(kr) V (r.co) dL , (A-4) 
4 l t L 

where H^2) and Hj<2) are Hankel functions of the second kind. In the recursive extrapolation 
integral (A-4) is applied repeatedly. So we need the normal component of the particle velocity in 
rA as well (figure A-2), 

V(rA.cü) = V(rA)co).n, ' nv A! (A-5) 

and 

V(rA,co) = VAP(rA,co) . 
jtop 

Substitution of (A-6) in (A-5) yields 

(A-6) 
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P V 

Figure A-2 In recursive application of the full Kirchhoff integral, both pressure and particle velocity data 
should be calculated on each interface. 

V„(rA,a» = -' nv A: 
Jk_.3P_ _3r_ 

jcop 3 k r ' 3nA 
(A-7) 

For the derivatives of the Hankel functions the following can be found in Abramowitz and 
Stegun (1970): 

d H ( 2 V M - H(2) 1 H(2Vlrrï 
3 k 7 H i ( k r ) " H o - k 7 H i ( k r ) 

and 

Substitution of A-8, A-9 and A-4 in A-7 yields 

-k 
V(rA ,co)=-

jCüPo47t I 

^HK) 

ƒ { * „ , , H-W-iHfw^. 

For the derivatives of r to the normal we can write 

Ê) = c o s < p i . 

(A-8) 

(A-9) 

- H a n j P(r,co) - coP7t Hf }(kr) Vn(r,co) j A - j > dL . (A-10) 

(A- l l ) 

A] = c o s ( p 2 (A-12) 
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and 

3 r 1 - 1 - y cos(cpj-(p2) + - cos((p,+(p2) 

Substitution of A-11, A-12 and A-13 in A-10 yields 

3nA J \ dn; r (A-13) 

Vn(rA>co) = -k 
jcop 47t L 

f |_jk [cos (pj cos cp2 HJ,2)(kr) -

— cos 9j cos q>2 - - cos((pj-<p2) + y cos((pj+(p2) lHf)(kr)]p(r,<a)-

0)p07t cos 92 Hj (kr) Vn(r,co)| dL . 

With A—4 and A-14 a 2-D recursive wave field extrapolation may be carried out. 

(A-14) 
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SUMMARY 

One of the main purposes of seismics is to detect hydrocarbon reservoirs beneath the surface. At 
the surface echo acoustical measurements are carried out. In order to obtain an image of the 
subsurface, the surface measurements or downward continued into the subsurface. This is 
achieved by applying back propagation operators to the surface data. In this thesis back 
propagation or inverse wave field extrapolation is investigated. Special attention has been paid 
to the preservation of the amplitude information in the registered wave field, when the inverse 
wave field extrapolation is applied. 

In the first chapter the macro model is discussed. In order to apply the inverse wave field 
extrapolation the wave propagation velocity in the subsurface is required. The actual velocity 
profile of the subsurface entails very detailed variations. However, the wave propagation effects 
are described sufficiently well if only a sparse model of the subsurface is used. A representation 
in terms of various layers with simple or constant velocity profiles is sufficient to describe the 
wave propagation effects. Various modeling experiments are discussed in chapter 1 to confirm 
this. 

For the modeling of the seismic wave propagation the Kirchhoff integral may be used. In 
chapter 2 the Kirchhoff integral is derived. The frequently used Rayleigh integrals are also 
discussed. The integrals may be interpreted in terms of the Huygens' principle. This is 
illustrated in a modeling experiment, in which artifacts, which occur if the Rayleigh integral is 
used can be explained with the Huygens' principle. Furthermore the role of the Green's 
function in the Kirchhoff integral is discussed. The Green's function turns out to be a useful 
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tool for obtaining a Kirchhoff integral best suited for specific acquisition geometries or 
conditions. 

In chapter 3 inverse wave field extrapolation operators are discussed. Application of these 
operators results in an elimination of wave propagation effects. It is shown that a full Kirchhoff 
inverse wave field extrapolation operator preserves the amplitude information, for inverse 
extrapolation from curved interfaces in homogeneous media. For arbitrarily media the amplitude 
errors are of the order of R2, where R is the reflectivity of the inhomogeneities. However, if the 
full Kirchhoff integral is applied recursively the transmission effects at layer interfaces is 
correctly inverted for. 

In chapter 4 the redatuming procedure is discussed. This procedure allows for the acquisition 
level to be brought down into the subsurface. This means that a true zero offset section or shot 
records may be constructed just over a target area. The high quality zero offset section, which is 
obtained with these procedure could be used for detailed stratigraphic interpretation. 

In chapter 5 the redatuming is applied to both synthetic as well as real data sets. If 
insufficient surface coverage is available due to limited geophone cable length, the response 
from the target may become distorted after redatuming. However, if sufficient data is gathered 
at the surface, the zero offset response from the target zone significantly improves in quality if 
the acquisition surface is brought down to the target level. 
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SAMENVATTING 

Een van de belangrijkste doelstellingen van seismisch onderzoek is het aantonen van carbonaat 
reservoirs in de ondergrond. Daartoe worden echo akoestische metingen aan het oppervlak 
verricht. Om een beeld van de ondergrond te verkrijgen worden onder andere de oppervlakte-
metingen de ondergrond in verplaatst. Dit wordt bereikt door een achterwaartse golfveld 
propagatie operator toe te passen. In deze thesis is deze achterwaartse propagatie of inverse 
golfveld propagatie operator onderzocht. Een speciaal aandachtsgebied is het behoud van de 
amplitude informatie tijdens de inverse golfveld propagatie. 

In het eerste hoofdstuk wordt het macro model beschouwd. Om de inverse golfveld 
extrapolatie operator te kunnen toepassen dient de propagatie snelheid in het medium bekend te 
zijn. Het werkelijke snelheidsprofiel van de ondergrond is zeer gedetailleerd. Echter worden de 
propagatie eigenschappen van een medium voldoende nauwkeurig beschreven met een minder 
gedetailleerd snelheidsprofiel. Een representatie in termen van een aantal lagen met eenvoudige 
of constante snelheidsprofielen is voldoende om de golfpropagatie eigenschappen te 
beschrijven. Verschillende modelleringsexperimenten, welke in hoofdstuk 1 besproken worden, 
bevestigen dit. 

Voor het modelleren van golfveld propagatie kan de Kirchhoff integraal worden gebruikt. In 
hoofdstuk 2 wordt deze Kirchhoff integraal afgeleid. De veelvuldig gebruikte Rayleigh integraal 
wordt ook besproken. Deze integralen kunnen worden geïnterpreteerd in termen van het 
Huygens' principe. Dit wordt geïllustreerd aan de hand van een modelleringsexperiment, waarin 
artefacten, welke ontstaan bij het gebruik van de Rayleigh integraal met behulp van het 
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Huy gens' principe kunnen worden verklaard. Verder wordt ook de rol van de functie van Green 
in de Kirchhoff integraal besproken. Deze functie blijkt bijzonder geschikt te zijn om als 
instrument te gebruiken, dat toestaat de Kirchhoff integraal in een vorm te krijgen, die het beste 
bij een bepaalde geometrie past. 

In hoofdstuk 3 worden een aantal inverse golfveld extrapolatie operatoren besproken. Het 
toepassen van zo'n operator resulteert in het wegnemen van golfveld propagatie eigenschappen. 
Aangetoond wordt dat toepassing van de volledige Kirchhoff integraal voor de inverse golfveld 
extrapolatie van een gekromde laag in een homogeen medium de amplitude informatie correct 
behandeld. Voor een inhomogeen medium zijn de amplitude fouten in de orde van meervoudige 
gereflecteerde golven. Indien echter de volledige Kirchhoff integraal in inhomogene media 
recursief wordt toegepast, worden transmissie effecten aan laagovergangen op correcte wijze 
geëlimineerd. 

In hoofdstuk 4 wordt de redatuming procedure behandeld. Met behulp van redatuming kan 
het acquisitie oppervlak het medium in worden verplaatst. Dit betekent, dat een echte zero-offset 
sectie of schot gathers kunnen worden geconstrueerd vlak boven een interessante laag, in plaats 
van aan het oppervlak. Een dergelijke hoge kwaliteit zero-offset sectie kan worden gebruikt 
voor stratigrafische interpretatie. 

In hoofdstuk 5 worden toepassing van de redatuming op zowel synthetische als echte 
gegevens besproken. Indien onvoldoende waarnemingen aan het oppervlak zijn verricht door 
een te korte geofoon kabel, kan de reflectie van de interessante lagen worden verstoord in de 
redatuming. Indien echter wel voldoende waarnemingen zijn geregistreerd, kan een zero-offset 
sectie worden geconstrueerd op de nieuwe datum, die beter van kwaliteit is dan de zero-offset 
sectie aan het oppervlak. 
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