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PREFACE

The laboratory of seismics and acoustics at Delft University has been involved in industry
sponsored research into inversion techniques for detailed delineation of reservoirs. For these
types of techniques high quality reflection data is required. The overburden wave propagation
effects however, distort the reflection events from the target zone. A true zero offset section at a
datum just over the target, without the overburden wave propagation effects, is to be preferred
over a surface zero offset section. Therefore, several years ago research has been initiated into
redatuming techniques at Delft University. Special focus was put on the preservation of the
amplitude information in the redatuming, because of the reservoir delineation which would use
the redatumed zero offset data.

Later on research activities into wave equation based 3-D depth migration, 3—D redatuming,
multiple elimination and macro model verification have been intensified in the industry
sponsored research project TRITON. I think the close cooperation between the people in this
project has been very beneficial for research presented in this thesis and the other key research
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Wapenaar for the many discussions and suggestions.

Furthermore I would like to thank the Marathon Oil company for providing me with the
water tank data set and Ad van der Schoot for providing me with the different stacks for this
data set. Also I would like to thank Jason Geosystems for allowing me to continue the work on
my thesis after I had left the university. In preparing several of the figures for this thesis I had
terrific help from Tiny van der Werff and Vladimir Budejicky for which I would like to thank
them.

Delft, September 1988



INTRODUCTION

In the search for fossil fuels surface measurements are carried out in order to determine the
subsurface structure and rock properties. Various methods for doing these surface
measurements are available. In the magnetic methods the subsurface structure is derived from
small changes in the earth magnetic field. The gravitational methods use changes in the earth
gravitational field to determine the subsurface structure. However these methods can only
resolve large structural changes. The seismic method allows for small (down to meters)
structural changes to be resolved from the measurements. In the seismic method a seismic
source generates waves propagating into the subsurface. Since the subsurface is discontinuous
with respect to the properties determining the wave propagation, the source waves are reflected
at the structures in the subsurface. Therefore the measured wave field at the surface contains
information on the structures in the subsurface. The acquisition geometry and signal to noise
ratios however make an interpretation of the registered wave field in terms of a depth model
very difficult. Extensive data processing of the reéistered wave field is carried out in order to
obtain an image of the subsurface structures. The processed data is presented in a section. An
interpreter uses this section together with other information to determine the location and size of
possible hydrocarbon reservoirs or coal seams. A correct image with respect to the lateral and
depth positioning of the structures as well as the strength of the reflectors is important for the
correct delineation of the reservoir. An incorrect well location is very expensive both in terms of
money for the oil company and career opportunities of the interpreter.



2 INTRODUCTION

The registered wave field in seismic techniques is an ‘image’ of the subsurface in a space-
time coordinate system. The vertical axis is the time and not depth. Going from time to depth
requires the elimination of various wave propagation effects. The commonly used time
migration will cause the reflection response to move both horizontally and vertically in the
section. Also it will cause diffraction energy from diffractors to collapse. The result is however
not yet an image in depth. The vertical axis is still time. A depth migration is computationally
more expensive but it does produce an image in depth. This image is a map of the reflectivity
properties of the whole subsurface area under investigation. However for the target zone high
detail is required both in terms of reflectivity properties as well as elastic properties. With
current acquisition techniques and migration techniques insufficient detail structure is resolved
from the data. For this purpose inversion techniques have been developed such as proposed by
van Riel and Berkhout [1985] and still are being refined and extended. These techniques aim at
going beyond the resolution of the seismic data. Unfortunately reservoirs are situated up to
several kilometers below the surface. So the reflection response which is input to these
inversion techniques is distorted because of the overburden wave propagation effects. In order
to have better quality input data for the inversion or detailed interpretation these overburden
wave propagation effects should be eliminated.

In the redatuming procedure the surface data is brought to a new datum (figure 0.1). By
choosing this new datum just over the target zone a clear and undistorted reflection response is

_obtained. The wave propagation effects of the overburden are eliminated. The redatuming
should of course preserve the amplitude and travel time information of the surface data in order
to obtain the true reflection response of the target. The key issues in the redatuming are the

 subsurface mode] and the elimination of the wave propagation effects. For the redatuming the
approach of model driven processing is applicable. '

0.1 MODEL DRIVEN PROCESSING

A seismic data processing sequence contains different types or processing. Most of these
processing algorithms require only the data as input. Processing parameters are obtained by
maximizing some coherency criterion. For the stacking processes, the stacking velocities are
obtained by applying different stacking velocities to selected CMP panels. The velocity for
which a reflection event is properly aligned after normal move out correction is the stacking
velocity. For depth migration and redatuming an initial depth model is required before the actual
processing takes place. These processing algorithms require both the data as well as a depth
model as input. So the position of the reflectors is both input as well as output to the depth
migration and redatuming algorithms. The apparent contradiction may be solved by identifying
the requirements for the input depth model. It turns out that this input depth model is a sparse
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Figure 0.1 The purpose of redatuming is to bring down the acquisition surface to a level just over the area
of interest. The overburden wave propagation effects are eliminated from the data.

Seismic data Interpreter

Macro model

Estimation

Depth migration |

Redatuming

Figure 0.2  Inthe model driven processing the estimation of the macro model is carried out separately from
the processing. If a good macro model has been found, the expensive processing takes place.



4 INTRODUCTION

model and should be determined with special techniques. This sparse depth model, which we
will call the macro subsurface model, is used to model the wave propagation through the
subsurface. The approach in which the depth model is obtained separately from the actual
processing will be referred to as model driven processing.

The model driven processing is schematically represented in figure 0.2. Input to the model
driven processing is again only the seismic data. The depth model or macro model for the
redatuming could be obtained with tomographic techniques. An interpreter should identify the
major structures in the subsurface in for instance a stacked section. The tomographic techniques
should estimate the true positions of these major structures in depth as well as the interval
velocities. This macro model is a sparse model since it does not contain detailed structures such
as thin layers. If the travel times modeled in the macro model correspond to the travel times of
the main reflection events in the seismic data, the depth migration will yield an optimal result.
So by examining the data mismatch between modeled reflection travel times and measured travel
times the quality of the depth model may be examined. If the data mismatch is sufficiently small
the depth migration result will be optimum. In this way only a single depth migration run is
required.

The depth model used in the migration or redatuming is useful for an interpreter as well. The
positions of the major structures and the interval velocities in this model helps the interpreter to
determine the general geological structures in the area.

In chapter 1 of this thesis various properties of the macro model will be discussed. The
medium properties determining the wave propagation and the reflection characteristics are
separated. The macro model for describing the wave propagation effects contains the trend
information from the acoustic velocity profile. The full elastic case has not been considered for
this thesis. Various modeling experiments have been carried out to investigate the effects of
detailed fluctuations in the velocity profile on the wave propagation properties.

0.2 WAVE PROPAGATION

The wave propagation is a key issue for the redatuming. In chapter 2 wave propagation
modeling operators are discussed. The wave propagation operators are based on the Kirchhoff
integral. In the macro model a number of interfaces are identified which may be several wave
lengths apart. The Kirchhoff integral allows for the wave field to be extrapolated over large
distances in a single extrapolation step. The wave field extrapolation operators used in this
thesis are based on the one-way wave equation. Although wave propagation based on the two-
way wave equation is more accurate, the one-way extrapolation operators have been chosen
because of their robustness. The Green’s function and its relation to the wave field extrapolation
will be discussed in this chapter as well. The freedom in choice of the Green’s function is an
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important tool in obtaining the most suited wave field extrapolation operator for specific
geometries or applications.

In chapter 3 the inverse wave propagation is discussed. The wave field which has been
registered by the geophones should be back propagated to bring it down to the new datum.
Special attention has been paid to the preservation of amplitude information in the inverse wave
field extrapolation. The commonly used matched inverse Rayleigh operator or Kirchhoff
approximation does not handle the amplitudes of the wave field properly. An inverse wave
extrapolation operator which preserves the amplitude information in the inverse extrapolation is
obtained by choosing an appropriate Green’s function. If this integral is applied recursively in a
layer to layer extrapolation, even the boundary conditions are incorporated. The transmission
effects at acoustic impedance contrasts are automatically eliminated.

0.3 THE REDATUMING

The redatuming procedure is discussed in chapter 4. Firstly the forward model of a seismic
dataset is discussed. In matrix notation a relation between the surface shots, the surface

Redatuming
~«————— Wave fields at surface

Elimination of
propagation

effects

«——— —  Wave fields at new datum

| Correlation of upgoing f
and downgoing
wave field

<«  Zero offset section at new datum

Figure 0.3 In the redatuming surface shot records are brought down to the new datum through an inverse,
wave field propagation. At the new datum a true zero offset section is obtained by correlation of up going and
down going wavefields.
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geophone data and the subsurface structures is determined. Through inversion of these
equations a relation between the shot records at the surface and the shot records at the new
datum is obtained. The redatuming procedure is outlined in figure 0.3. For the elimination of the
wave propagation effects the wave field extrapolation operators derived in chapter 3 are used.
Special attention has been paid to the data organization in the redatuming. Berryhill (1984)
proposed a redatuming procedure which requires the data to be reorganized from a common
shot gather configuration to a common receiver gather organization. This results in a huge
overhead and tremendous input/output in an actual implementation, particularly if the method
would be extended for 3-D applications. However in this thesis a shot record based redatuming
is proposed. Each shot is redatumed separately, allowing for a highly efficient implementation
and very well suited for parallel processing.

In chapter 5 the redatuming is applied to both synthetic as well as real data. In practice the
geophone cable length is limited, resulting in a partly lost reflection response. In the
experiments discussed in the first sections of chapter 4, the cable length and geophone spread is
varied. Only part of the reflectivity information is reconstructed if limited surface data is
considered. The synthetic redatuming experiments have been carried out on shot records
obtained with finite difference modeling. The last experiment involves real data modeled in a
water tank. The macro model for this data set has been obtained with travel time inversion. The
redatuming resulted in a reconstruction of the zero offset section for the deepest reflector. The
overburden wave propagation effects have been eliminated, resulting in a high quality section,
which is superior over the surface zero offset section.
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A MODEL FOR THE OVERBURDEN
WAVE PROPAGATION EFFECTS

1.1 INTRODUCTION"

In the seismic experiment an acoustic wave field is sent into the earth in order to examine the
subsurface structures. Since the wave field propagates through the subsurface, information
about the subsurface may be extracted from the registered wave field. From the reflection of the
wave field at the subsurface structures an image of the subsurface could be reconstructed. This
image is not complete since not all of the structures are resolved from the seismic data. The
dimensions of the smallest structures which can be resolved from the seismic data alone are
comparable to the size of the seismic wavelet (figure 1.1). A model describing the wave
propagation through the subsurface is important for the reconstruction of the subsurface
structures. For the description of wave propagation through the subsurface the following
problems are considered. From physical relations such as the equation of motion and the stress-
strain relation a description of the wave propagation is found. This problem in considered in the
next chapter. The other problem concerns the parameterization of the subsurface. Looking at the
subsurface on a microscopic scale results in a very detailed description of the subsurface. This
detail may not be significant for the wave propagation which is relevant for the migration or the
redatuming problem. So the scale at which the subsurface is considered should be changed. If
fewer detail is considered, the parameterization becomes more sparse. The purpose is to find a
parameterization which is sufficient to model the wave propagation effects relevant for our

problem.
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Figure 1.1 The lithological log, a seismic wavelet and a well known building in London shown on the
same scale, give some idea of the size of the structures which may be resolved from seismic data.

In this chapter a parameterization of the subsurface which is sufficient for describing the
wave propagation effects is investigated. Both migration and redatuming techniques require the
wave propagation effects to be eliminated.

An intelligent subsurface parameterization will allow for simplifications such that the
propagation of the waves of interest is still described accurately enough. Because of the
simplifications the mathematics become more simple and the inverse problem for the wave field
back propagation is more easily found. The approach may no longer be exact, but if the errors
are sufficiently small this is acceptable.

1.2 THE PARAMETERIZATION

For the modeling of the acoustic wave propagation through the earth a representation of this
earth is required. The representation should be convenient and sufficient to describe the
propagation effects which are of interest. A parameterization of the earth on a molecular scale
could be chosen. The distribution of molecules is very dense compared to the seismic scale. So
this parameterization is not useful since it is too elaborate. If we increase our scale another
description or parameterization could be chosen. If we look at the earth through a microscope,
fine layers and structure become visible. However this representation is still to detailed for most
geophysical applications. A less detailed description is required. A visual inspection of a core
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from a borehole also shows some fine layering. However these layers are still quite small
compared to the seismic wavelet. In general an even more sparse representation or
parameterization of the earth is taken for the geophysical applications (figure 1.2).

molecular scale ——10

microscopic scale »
4— 10 m
-3

visual scale -

seismic scale -1 10

Figure 1.2  Different scales could be considered for the parameterization of the medium. However a sparse,
not to detailed representation is preferred for the evaluation of propagation effects.

In depth migration and inverse scattering type of applications, a representation of the velocity
and density as a function of the spatial coordinates is chosen. Usually the detail which is
incorporated into the velocity model does is larger than the seismic wavelet. Although the
seismic scale is too coarse to contain all the detailed features which exist in the actual medium,
the parameterization is an acceptable representation of the true medium for most geophysical
applications.

In the case of the wave propagation through an overburden the propagation effects should be
modeled. A parameterization should be chosen which is sufficient to describe the wave
propagation effects. The macro model is defined to be a representation of the subsurface which
satisfies this condition. A geological interpretation of the macro model is only of minor interest.
So the representation does not need to have an exact relation with the true medium. In specific
cases a stack of homogeneous layers has approximately the same propagation effects as a single
layer with a velocity gradient. This stack of layers could be an acceptable parameterization,
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although it does not reflect the true structure. So the parameterization is not intended to be a
complete and accurate description of the true earth. It should only be sufficient to describe some
effect related to the data. In molecular physics a similar approach is followed. Different models
or representations of an atom exist. Different representations are used to describe different
effects. The various models are not mutually exclusive. In the seismic case the macro model is
used to describe the wave propagation. Other, more detailed representations should for instance
be used for stratigraphic interpretations. In the next section a parameterization of the overburden
specifically for the wave propagation will be discussed.

1.3 THE MACRO MODEL

In the previous section it has been argued that the parameterization of the overburden should
allow for a sufficiently accurate description of the wave propagation effects. In the seismic
reflection response the major events are related to strong impedance contrasts. Usually only few
of these strong reflection events occur. So a parameterization of the subsurface consisting of
several layers will be chosen.

From depth migration we know that a model of the earth consisting of a several layers with
simple velocity profiles turns out to describe the wave propagation sufficiently well. The
reflection is imaged correctly even for small structures ( in this case small is of the order of
magnitude of the wave length). The velocity distribution in the layers may range from
homogeneous to simple velocity gradients for most structures.

Since the macro model should have a parameterization which is sufficient to describe the
wave propagation effects. These effects and the properties of the earth which determine the
wave propagation should be investigated. For this purpose consider the following identification
of the propagation effects in relation to the medium properties:

— The propagation properties which are determined by the trend in the medium properties of
the earth. These properties determine the transmission effects of the medium.

— The reflectivity properties which are determined by the detail in the medium properties of the
earth. These properties determine the reflection effects of the medium.

In order to extract the detail in the model or the trend information different estimation techniques

should be used. The trend information can be obtained through tomographic techniques. Either

the transmitted wave field is measured in order to estimate the trend information or offset

information is used in surface experiments. The trend information is a sparse parameterization

of the subsurface. Low frequency structural information is considered for this parameterization.

The detail in the model could be obtained through seismic depth migration or inverse
scattering techniques. In general these techniques require the trend information as input as well
as the seismic data itself. The wave propagation effects between the acquisition surface and the
depth level of interest are eliminated before the reflectivity or the acoustic or elastic properties
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are estimated. In general the trend information is more sparse than the detail. The detail contains
the more high frequent structural information (figure 1.3). Unfortunately the trend information
and the detail information which may be recovered from the seismic data is limited. The amount
of detail is limited because the seismic sources are bandlimited and high frequent seismic waves
are strongly attenuated. Furthermore not all of the trend information may be resolved from the
seismic data because the reflected wave field is registered over a limited distance. Also the range
of dips at which the wave fields travel through the subsurface is limited.

Seismic signal

Frequency —»

» Not resolved from the
seismic data.

Resolved from the seismic
signal

Partly resolved from offset
data

<A PSRN >

Size of the structures ——»

Figure 1.3 The size of the structures in the subsurface in relation to the bandwidth of the seismic signal.
Structures smaller than the seismic wavelet can not be resolved from the seismic data alone. Structures larger
than the seismic wavelet can only be partly resolved from offset data.

In depth migration and redatuming techniques the wave field propagation through the
overburden should be eliminated. In the case of migration the overburden are the structures
overlying the depth level at which imaging should occur. In the case of redatuming the
overburden are the structures overlying the new datum. The acquisition level is brought down
from the surface to the new datum. In order to invert for the wave propagation effects of the
overburden a parameterization of the overburden structures for the description of wave
propagation effects of the overburden should be determined. The inverse problem of eliminating
the wave propagation effects is solved in chapter 3 by inverting for the modeling relations. The
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parameterization of the overburden should be adequate to describe the wave propagation effects
through the overburden sufficiently well. For redatuming the reflection properties of the
overburden are of no interest, since only the propagation needs to be inverted for. The reflection
properties of the target zone below the overburden need to be determined. So only a
propagation model of the overburden is required.

In order to obtain an adequate parameterization of the subsurface, the properties determining
the wave propagation effects should be examined more closely. Therefore the acoustic
impedance profiles will be considered. For the full elastic case all elastic parameters should be
regarded. However for this thesis we limit ourselves to the acoustic case. Consider the velocity
profile from figure 1.4.

DETALL

’ , TREND

—_—Z

Figure 1.4  The detail and trend information in a velocity profile are considered separately for their relation
to the wave propagation.

The profile is very detailed compared to the wave length of the seismic signal. The detail
goes even beyond the bandwidth of the seismic signal. The acoustic impedance profile also
shows a trend. The travel time of the seismic events in the registered response are related to this
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trend. The detail in the velocity function will average out in a zero travel time effect. The detailed
variations in the acoustic impedance profile are related to the small reflection events in the
response. Although a gradient in the velocity profile will cause the wave field to propagate back
at turning planes, in practice most of the reflection occurs at sharp changes in acoustic
impedance. In figure 1.5 the differentiation between properties determining the wave
propagation and the properties determining the reflectivity has been visualized.

Total description
of the

subsurface i

Macro Detailed
Information Information
Propagation Reflectivity

Properties Properties

N AN S

0 T SR RO

4
Total description
of the

subsurface B

N gy

Figure 1.5 The total description of the subsurface is split up in macro information and detail information.
The macro information is related to the propagation properties and the detail information is related to the
reflectivity properties.

The parameterization of the subsurface which is adequate to describe the propagation effects
of the overburden requires only the trend in the acoustic impedance model to be considered. The
subsurface models which sufficiently well describe the overburden wave propagation effects
and are parameterized accordingly, will be referred to as macro models. These models may be
obtained from the data with tomographic techniques such as travel time inversion as has been
shown by Van der Made {1987]. The macro models may be considered to be a sparse
parameterization of the true subsurface.

In order to verify that the trend information is sufficient to describe the wave propagation
effects properly several modeling experiments have been carried out. These experiments are not
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intended to be a sound proof of the assumption that the propagation properties are determined
by the trend information, but serve as a set of cases to get a feeling for the relation between the
(frequency) information in the velocity profiles and the effect on wave propagation. We expect
that the size of the detail compared to the wave length of the seismic wave field influences the
wave propagation. Also the type of perturbation such random detail and correlated detail will
have different effects on the wave propagation. Therefore the effects for several types of model
perturbations on the overburden wave propagation has been examined.

For the high frequency approximation the travel time for a wave field propagating through
the perturbed velocity model is given by

1
1:=I€ds , | (1.1)

where the integration takes place along the ray path s.
The velocity function contains the velocity trend cq and the velocity detail 8c.

c=c,+8 . (1.2)

Substitution in (1.1) gives

1
’C=J ds , (1.3)
c0+8c
or
1/c, . ’
1=J‘—ds . (1.4)
1 +8¢/c0 ' ‘

With 8¢ << ¢ this may be approximated by

1 &c
T=J§(l——) ds . (1.5)

Co

If the velocity detail 8¢ has a zero average along the ray path, the travel time effect will be zero.

For the modeling experiment a macro model is defined containing a synclinal structure as
shown in figure 1.6. In order to simulate detail in the velocity model spatially bandlimited (both
in x and z direction) gaussian noise is added to this macro velocity model. The gaussian noise is
equivalent to velocity anomalies in the velocity profile. A source is placed below the syncline at
a depth of 2000 m. A finite difference modeling scheme with absorbing boundary conditions for
all grid boundaries is used to obtain the modeled response at the surface for the perturbed
velocity profile. The velocity perturbation is windowed in the depth direction such that the
medium in the vicinity of the sources and receivers is homogeneous. This way the source
strength for each source point does not vary because of velocity variations in the source region.
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Figure 1.6  The macro model for the wave propagation modeling experiments. Velocity variations are added
in the region between 200 m and 1000 m depth. The wave field which has propagated through the macro model is
registered at the surface.

By varying the strength of the velocity perturbation the effect of the detail in the model on the
wave propagation is examined. The average size of the detail compared to the wave length is
also related to the wave propagation effect. The size of the velocity anomalies is also varied. In
the modeling experiments the following sizes are taken:<< A, <X, £ A, > A. The velocity
perturbations are shown in figure 1.7. A vertical velocity profile for each perturbation is shown
in figure 1.8. The velocity perturbations are added to the macro model velocity distribution. The
wave field is then modeled for the composite velocity distribution. For each of the different
velocity perturbations four modeling experiments are carried out. For these four experiments the
velocity perturbation is scaled to + 125 m/s, £ 250 m/s, + 500 m/s and * 750 m/s. So in total
sixteen modeling experiments are carried out for the random velocity perturbation. For the
+ 125 my/s experiment the registered wave field for each of the perturbations is shown in figure
1.9. The registered wave field is undistorted for all the velocity perturbations. So this level of
velocity perturbations does not influence the wave propagation for all types of perturbations
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Figure 1.7  The velocity variations which are added to the macro model to examine the effects on the wave

propagation. The size of the velocity anomalies ranges from << A in (a) through <X in (b) and & A (c) to> A

in (d).
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Figure 1.8 A vertical velocity profile from the perturbations from figure 1.7.

ranging from fine (<< A) to coarse (> A). The variation in the detail has been increased to
+250 m/s in figure 1.10. Again the registered wave field is undistorted. For the > A
perturbation minor distortion is present in the propagated wave field. However this distortion is
well below the noise levels present in field data. Consequently velocity variations of 250 m/s
for velocity anomalies ranging from << A to > A do not influence the wave propagation
significantly. In the case of variations of & 500 m/s the detailed perturbations do not influence
wave propagation (figure 1.11). However for the 2 A and > A perturbations the propagated
wave field is distorted. In the case of the & A perturbation this distortion is again small to
practical noise levels. For the > A perturbation the distortion is becoming more significant as can
be seen in figure 1.12. In this figure the propagated wave field for an unperturbed macro model
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has been subtracted from the wave field obtained with the perturbed velocity model. For the
+ 750 m/s perturbation the distortion for the << A and the <A perturbations is still quite
insignificant (figure 1.13). For the * A and the > A perturbation the distortion is more
pronounced. The character of the distortion is very similar to the response of a distribution of
point diffractors (figure 1.14). So the velocity perturbation causes diffraction tails to appear in
the response. From these experiments we get an indication that detailed information in the
velocity profile (< A) does not significantly influence the propagation properties. Even for larger
perturbations (> A) the propagation properties are not changed for small (< 250 m/s) velocity
changes. In case of increasing velocity changes for large velocity anomalies diffraction events
occur in the propagated wave field. The conclusions are summarized in table 1.1.

Table L.1
The wave propagation distortion for different random velocity perturbations.
A + indicates no wave propagation distortion.
A +/- indicates some wave propagation distortion, but comparable to noise.
A — indicates strong wave propagation distortion.

<<A <A =A >A
125 m/s + + + +
250 m/s + + + +/-
500 m/s + + +/- -
750 m/s + + - -

Apart from fully random perturbations correlated detail has also been added to the macro
model. One vertical random velocity perturbation is extended laterally resulting in a finely
layered velocity perturbation. This perturbation is strongly laterally coherent as occurs in the
true subsurface as well. The different perturbations are shown in figure 1.15. Again the size of
the velocity anomalies is varied from << A to > A. The transmitted wave field for the + 500 m/s
perturbations is shown in figures 1.16. The propagated wave field shows not the distortions
which are present in the propagated wave field for the randomly perturbed velocity model.
However for the strong lateral coherent velocity perturbations the travel time effect is not zero.
In figure 1.17 the center trace for the & A perturbation of strengths + 125 m/s through
+ 750 m/s is shown. The response shifts in time and decreases in amplitude as the perturbation
increases. In figure 1.18 the amplitude cross sections for the propagated wave field in the
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Figure 1.15 Lateral velocity perturbations of dimensions << A, < A, & A and > A have been added to the

macro model to study the effect of coherent velocity anomalies on the wave propagation.
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— /=125 — +/-250 — +/- 500 -

+/- 750 m/s

200. 300.

400.

Figure 1.17 The middle trace from the propagated wave fields for the & A perturbation at + 125 m/s,
+ 250 m/s, + 500 m/s and + 750 m/s strength, shows a travel time shift which increases with increasing

velocity variations.

10
54
— +/-125 —— +/-250 — +/- 500 +/- 750 m/s
0 . ' -
0. 500 1000 1500

LATERAL DISTANCE (M.)

2000

Figure 1.18 The amplitude cross section for the propagated wave field in the & A perturbed velocity model.
The perturbation strength ranges from + 125 m/s to + 750 m/s. For the strong velocity anomalies the amplitude
of the propagated wave field is biased.
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perturbed velocity model is compared to the propagated wave field in the unperturbed velocity
model. In these amplitude cross sections the envelope of the signal has been taken and the
maximum in each trace is plotted as a function of the lateral position. From the figures we can

see that for large velocity perturbations an amplitude bias occurs for the & A and > A type of
perturbations. For the smaller velocity perturbations the amplitude bias becomes insignificant.

Table 1.2
The wave propagation distortion for different lateral coherent velocity perturbations.
A + indicates no wave propagation distortion.
A +/~ indicates some wave propagation distortion, but comparable to noise.
A - indicates strong wave propagation distortion.

<<A <A = >A
125 m/s + + + +
250 m/s + + + +/=-
500 m/s + + +/- -
750 m/s + + - -

For the laterally coherent velocity perturbation the modeling results are summarized in table 1.2.
The travel time shift which occurred for the strong perturbations can easily be compensated by
modifying the interval velocities slightly. The macro model is sufficient for describing the wave .
propagation properties of the subsurface in the case of laterally coherent velocity perturbations.

The experiments give a clear indication that the wave propagation properties of a medium are
determined by the trend information in the velocity function. The detail in the velocity profile
does not significantly influence the propagation of a wave field. The sparse parameterization
used in the macro model is therefore a sufficient representation of the medium for describing the
wave propagation properties.
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2

WAVE FIELD EXTRAPOLATION

2.1 INTRODUCTION

The wave field extrapolation is very important in migration and redatuming. In a seismic
experiment the wave field is registered at only a few locations on the surface or on a well.
Whereas for the migration and redatuming the wave field should be known throughout the
subsurface. The registered wave field should be propagated or back propagated into the
subsurface by applying wave field extrapolation operators.

In one-way wave propagation an extrapolation in the direction of propagation away from the
sources requires different operators from the extrapolation towards the sources. In this chapter
the forward extrapolation away from the sources will be discussed.

The wave field extrapolation operators will be based on the Kirchhoff integral. Quite often
one of the terms of the Kirchhoff integral is dropped, resulting in the Kirchhoff approximation.
The error in this approximation will be investigated. The Green’s function which appears in the
Kirchhoff integral will be examined more closely. By choosing different Green’s functions an
extrapolation operator may be found which is more suited for a certain problem. A trade off
exists between the effort to be put in obtaining a suitable Green’s function and the effort it takes
to actually propagate the wave field.
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2.2 FORWARD WAVE PROPAGATION
The propagation of the wave field away from the source is described by the forward wave
propagation.

For loss-less inhomogeneous fluids the wave equation follows from the linearized stress-

strain relation
KV.V = jwP 2.1
and the linearized equation of motion
1 _: .
— VP =joV, (2.2)
p

where P = P(x,y,z,0) denotes the Fourier transform of the acoustic pressure p(x,y,z,t),
V = V(x,y,z,) denotes the Fourier transform of the particle velocity v(x,y,zt). p = p(x,y,z)
describes the mass density distribution and K = K(x,y,z) describes the bulk compression
modulus distribution. These two relations can be combined to obtain the well-known frequency
domain representation of the acoustic wave equation.

pv. (l VP) +KP=0 , 2.3)
p

where

k=

-

ole

2.4
with

c= 2.5)

SR

The propagation velocity distribution is described by c(x,y,z).

In order to arrive at the Kirchhoff integral equation define a domain V bounded by a surface
S and outward pointing normal n. Now define Green’s functions which satisfy the following
equation in V

1 2
pVv. (; VG (rr A,w)) +kG (rr,,0) =-4npd(r-r,) , (2.6)

with r = (x,y,2)
where rp = I(x4,ya.Za) is an arbitrary point A in V. So G represents the pressure associated
with the wave field resulting from a point source in A.
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1=}

Figure 2.1 Bounded domain V for theorem of Gauss.

The theorem of Gauss states that

J (V.a)dv = Ja.n ds . 2.7
v s

Now define the vector field a = a(r,r,,w) in V such that

a=gPVG - qGVP , (2.8)
q is some space variant function. So

V.a=V.(qVG)P + qVG.VP -VG.qVP - GV qVP . (2.9)

If we assume V to be source free for the wave field P and using equation (2.3) and (2.6) it
follows

V.a=-AnPd(r-r,) ,

(2.10)
so after applying the theorem of Gauss
. dG(r,r,,w)
P(r, o) = __L L |:P(r,m) LSO OP(r,w) G(r,r A,co) dS . 2.11)
41 3 p(r) dn on

Relation (2.11) represents the Kirchhoff integral. It states that if the wave field is known on a
closed surface S which does not enclose any sources, the wave field may be calculated at any
point inside V. If sources would exist inside V a volume integral over all sources should be
included in relation 2.11. In seismics however the measurements are never available on a closed
surface. Therefore generally a configuration is taken consisting of an infinite surface Sq and a
hemisphere S; with a radius R going to infinity as shown in figure 2.2. Since V should be
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Figure 2.2 Modified surface S to eliminate contributions from S to the Kirchhoff integral over Sg and S;.

source free all sources should be located in the upper half space above S;. The Sommerfeld
radiation condition states that the contribution of the Kirchhoff integral over the hemisphere
goes to zero if the radius R goes to infinity. So the Kirchhoff integral over S may be replaced by
an integral over a plane surface Sy at z.

1 (1{PoG oP

P(I'A,O))——; ;[-BT—%‘G] ds . (2‘12)
SO

As shown by Berkhout and Wapenaar (1988) Rayleigh type integrals for the geometry shown in

figure 2.2 may be derived from the full Kirchhoff integral under the following surface condition
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op dc

a—z_'o’ -a—z_O atz, . (2.13)
These conditions are equivalent to a reflection free surface. The wave equation at z, now
becomes

d 9 (1P 3 [10P

——P+p—(————)+p ( ) kP 0 . (2.14)

Py ay p dy ox p ox

The wavefield P(r,w) is always spatial and temporal bandlimited in practical situations. The
partial differentiatiorf may be represented by a spatial convolution if only a limited bandwidth is
considered (Berkhout, 1982).

P,
—2—+H2 P=0 atz=z; , (2.15)
. oz
with
np Blnp
H,= K dy(x,y) + d,(x) + d2(y) ——d,(x) - au| (2.16)
%

where d, d; and d, are defined according to

oP dP

—— * P - = *

3y d,» - LW (2.17)

’p a’p

—“‘dz()*P —2=d2(y)*P , (2.18)

x> ay

d,(x,y) = 8(x) 8(y) . (2.19)
The total wave field and the Green’s functions may be split up into up going P- and down going
P+ components

P=P +P , (2.20)
Each component satisfies the one-way wave equations

P . "

) _

—— * =

5 ~J H *P =0 | _ (2.22)

with



36 2. WAVE FIELD EXTRAPOLATION

H, *H,=H, . (2.23)
Note that without lateral velocity and density variations at z = z, H; is given by

~ j (kex +kyy)

H, (k, .k ,2,0) = _U H, (x,y,2,0) ¢ " dxdy | (2.24)

N

et 2 2 2
H, (K, .k, 20,0) = Jx (Z)-k, -k, . (2.25)

A similar wave field decomposition is carried out for the Green’s function

G=G"+G (2.26)
with
oGT .
5z - H *G' 2.27)
G~ . )
5 - HH*C . (2.28)

By choosing the medium for the Green’s function homogeneous above S, the down going
Green’s function vanishes.

G'=0 . (2.29)
After substitution of the one-way wave field components in the Kirchhoff integral the Rayleigh I
integral may be derived

1 {1 P(re) -,
Py =-— [ LD G, wyas | (2.30)

2m 5 p(r)
In a similar way the Rayleigh II integral may be derived
oG (r,r A ®)

L1,
P(r, @) = - — | —— P*(r@) ———Ads 231
M g e 02 .

For a more rigorous discussion on the derivation of these integrals the reader is referred to
Berkhout and Wapenaar (1988).

2.3 INTERPRETATION OF THE KIRCHHOFF INTEGRAL

In the previous sections the Kirchhoff integral and the Rayleigh integrals have been derived. In
this section and the following sections some important characteristics of these integrals will be
examined. Consider again the Kirchhoff integral ( equation 2.11)
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on

aG P
,o»———f [ G2 ]ds . (232)

As discussed earlier this integral equation states that the wave field inside a closed volume V
bounded by the surface S (figure 2.3) may be calculated from the pressure and normal

l=]

Figure 2.3 Bounded volume V for the Kirchhoff integral.

Figure 2.4 According to Huygens' principle each point on S acts as a secondary point source.

component of the particle velocity distribution at the surface S. No knowledge about the true
sources outside S is required whatsoever. The interpretétion is similar to the Huygens’
principle. On the surface S each point acts as a secondary source (figure 2.4). The wave field in
V is a superposition of the secondary sources. These secondary sources would however cause a
wave field to propagate both inward in V as well as outward. But because of the second term in
the Kirchhoff integral the outward propagating waves are eliminated.
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2.4 A COMPARISON OF THE KIRCHHOFF INTEGRAL AND THE
RAYLEIGH INTEGRAL

A wave field extrapolation based on the Kirchhoff integral requires knowledge about both the
pressure distribution as well as the distribution of the normal component of the particle velocity
(equation 2.11).

1
Prap®=="1-5 an an

aG ] ’
! [P(r,w) rrp® 9pw) G(r,r )| dS . (2.33)
4n 5 p(r)

Under certain conditions discussed in the next section of this chapter, the Rayleigh integral
(equation 2.31) may be used instead of the full Kirchhoff integral.

1 1 +
P(r,,0)=— P (r,o)
A 2n g p(r) dn

oG (r,r A®)
dS (2.34)

The Rayleigh integral or Kirchhoff approximation is often applied in extrapolation and migration
procedures. However, if the surface over which the Rayleigh integral is evaluated is not flat
some of the assumptions made in the derivation of the Rayleigh integral are violated. So in
general the Rayleigh integral is no longer valid for these geometries. A different Green’s

DERTH

200 .4

400 A

600 .- ‘\\\\v////

800 .4

4000 4 = = o e

1200.
—-4000. -500.

0. 500. 1000.
LATERAL DISTANCE M

Figure 2.5  Geometry to compare the Kirchhoff integral with the Rayleigh integral. The source (*) at
z = 0 m generates a wave field. The wave field at the synclinal interface is extrapolated to z = 1000 m with both
the Kirchhoff as well as the Rayleigh integral.
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function may be chosen in order to make the Rayleigh integral valid. However the Green’s
function will become more complex as will be discussed in the next section. For a specific
configuration of a homogeneous space and a source in A both the Kirchhoff integral and the
Rayleigh integral have been applied. The wave field at the surface Sy is extrapolated to S;.

In figure 2.6 the wave field at S, is shown. Due to the undulated character of the surface the
response at S is non-hyperbolic. The extrapolated wave field is shown in figure 2.7a for the
full Kirchhoff integral and in figure 2.7b for the Rayleigh integral. The direct wave field at S, is
shown in figure 2.7¢. '

*00Z

‘00Y

Figure 2.6 The pressure wave field at the synclinal interface from figure 2.5 due to a source at z = 0 m.

In figure 2.8 the amplitude cross section for the Kirchhoff extrapolated response is compared to
the direct source wave field. The travel times as well as the amplitudes are correct for the
Kirchhoff based extrapolation operator. For the Rayleigh based wave field extrapolation
operator the response at S; shown in figure 2.7b is seriously distorted. An additional event is
present on both sides of the apex of the hyperbole. This event is caused by a wave field
propagating from S; into the upper half space but still towards S, as shown in figure 2.9.

As discussed in the section on the interpretation of the Kirchhoff integral the two terms in the
Kirchhoff integral ensure the correct direction of propagation away from the surface and the
source. In terms of Huygen’s principle: the secondary sources at S should only cause a wave
field to propagate away from the source for the homogeneous medium. In case of the Rayleigh
integral only one term is present. The secondary sources S, cause a wave field to propagate in
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Figure 2.7  The wave field at z = 1000 m according to the analytical solution (a), the Kirchhoff integral (b)
and the Rayleigh integral (c).
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Figure 2.8  The amplitude cross sections of the wave field at z = 1000 m obtained with the Kirchhoff
integral (a, dotted) compared to the analytical solution (a, solid). In figure b the result obtained with the Rayleigh
integral (dotted) is compared with the analytical solution (solid).
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DEETH
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Figure 2.9  The additional event in the Rayleigh extrapolated wave field is explained by contributions from
the dipping part of the anticline.

Operator weighing

-90° 90" Operator
angle

Figure 2.10 The operator angle is limited to +/- 90° with respect of the normal to the surface to eliminate
contributions as indicated in figure 2.9. '
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Figure 2.11 Wave field at z = 1000 m obtained with the Rayleigh integral using a +/- 90° operator angle
limitation.

350

300

-c.8 ~-0.8 . -0.4 -0.2

LATERAL DYSTANCE {M.)

Figure 2.12 Amplitude cross section for the data from figure 2.11. The Rayleigh 90° result (dotted) is
compared to the analytical solution (solid).
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both directions. One way of suppressing the additional event is to put an additional weighing
coefficient in the Rayleigh integral. This coefficient should be zero for angles between r and n
of less than —90° or over 90° and one for angles between —90° and 90° (figure 2.10). Thus
effectively limiting the operator angle to —90° to 90°.

With this additional weighing coefficient the additional event disappears as shown in figure
2.11. However, the amplitude cross section shown in figure 2.12 shows incorrect amplitudes
for the wave field extrapolated with a Rayleigh based propagation operator.

So for wave field extrapolation from a non-planar interface the full Kirchhoff integral should
be used if the amplitude information should be preserved. If the Rayleigh integral is used an
operator angle limitation should be applied to suppress artifacts. However, the amplitude
information is not suppressed. In the next section the Green’s function will be discussed.

2.5 THE GREEN’S FUNCTION

One intuitively would think that the propagation properties of the medium should be in the
Kirchhoff integral. Well, the Green’s functions may be interpreted as an impulse response of
the medium at the surface S due to a point source in A. A strong analogy with the filter theory
exists. In order to obtain the transfer function of a filter, a & pulse is used as input. The
measured output is the transfer function. This procedure is identical to the derivation of the
Green’s function (figure 2.13). In order to obtain the output of the filter for an arbitrary input,
the transfer function is convolved with the input signal. In the Kirchhoff integral the impulse
response G is spatially convolved with the input wave field. In inverse extrapolation which will
be discussed in the next chapter the purpose is to eliminate the wave propagation effects of the
medium and do an inverse filtering for the propagation effects.

propagation
5 properties G
of the earth

Figure 2.13 The Green’s function is obtained by applying a dirac source to the medium. In filter theory a
similar method is used to obtain the transfer function of a filter.

One can also observe some aspects of the important reciprocity properties in acoustic wave
field theory. The Green’s function is obtained by placing a point source in point A and register
the response at the surface S. For the extrapolation the response at point A due to point sources
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on the surface S is required. However, because of reciprocity this is equivalent to a point source
in A and registration on S.

Another interesting property about the Green’s function is that the properties of the medium
should be identical to the actual medium inside V only. Outside V any medium properties could
be chosen for G. Usually one would take the medium outside V to be homogeneous to simplify
the calculations for G. Consider the geometry of figure 2.14a consisting of a homogeneous
space with some source in B a volume bounded by S. The Green’s function for calculating the
wave field in A from the wave field on S is straight forward. A homogeneous medium would be
taken inside and outside V. The Green’s function only contains the direct wave field from A to
the surface S. Now change the medium for calculating G by including a reflecting surface
outside V (figure 2.14b). The wave field in A should be unchanged. However the Green’s
function changed since it now contains a scattered component as well as the direct component.
A different Green’s function is applied to the same wave field and should give the same wave
field in A, since only the medium for G has been changed; not the actual medium. This apparent
contradiction is solved if the contributions of the Kirchhoff integral for each part of S to the

B True medium ’ ~ Medium for Green's function
S <
. A
—
B
True medium Medium for Green's function
S s
§ 1
° A
+——
5,
A AN

Figure 2.14 Outside the volume V bounded by S the medium for the Green’s function may be freely chosen.
Both the upper and lower choice for the Green’s function will result in the correct wave field in any point
inside S.
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wave field in A is examined separately. This procedure will also be followed later on for
obtaining inverse extrapolation operators. By analysis of the various contributions in the k,-®
domain, it can easily be verified that for Sy, the upper part of S the up going (scattered) part of
the Green’s function applied to the down going wave field cancels the up going part of the
Green’s function on S, applied to the wave field at S,. So only the direct part of the Green’s
function contributes to the wave field in A. Therefore the wave field in A is the same for both
choices of the Green’s function.

Changing the medium for the Green’s function outside V is a very powerful tool for
obtaining a more suitable extrapolation operator. The Kirchhoff integral contains two terms.
One term involves the pressure wave field on S and a spatial derivative of the Green’s function.
The second term contains the normal component of the particle velocity and the Green’s
function. As discussed in a previous section the two terms in the Kirchhoff integral become
identical in the case of specific surface geometry and may be replaced by only one term. In the
case of a curved surface a different approach should be used to eliminate one of the terms in the
Kirchhoff integral. If on S (figure 2.15) boundary conditions for G are chosen such that either

0.

DEﬂTH

200 .

400 .

600 .4

800 .

1000 .4 *

T T
0. 200. 800. 1000.

400. 600. :
LATERAL DISTANCE M
Figure 2.15 By choosing the boundary condition G = 0 on Sy, one term in the Kirchhoff integral is
eliminated.
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G or 0G/dn vanishes only one term of the Kirchhoff integral remains. Since we are free to
choose the medium for G outside V, specifying boundary conditions on S is no approximation.
A boundary condition

G=0 on§ , (2.35)
corresponds to a free surface. Note that the Green’s function becomes more complex for the

arbitrarily curved surface than for the planar surface. This is illustrated for the geometry from
figure 2.16. The medium is homogeneous. Consider two cases in which the surface on which

DEﬁTH

200 .4

400 .4

600 .4

800 .4

1000 .4 *
A

T T
0. 200. 800. 1000.

400. 600.
LATERAL DISTANCE M

Figure 2.16 For a planar surface and a homogeneous medium below Sy, the Green’s function may be )
determined analytically. ’

the wave field in known is either planar (S;) or curved (Sg). In order to obtain the wave field in
A from only the pressure data on Sg or S; a suitable Green’s function should be used. In the
case of a planar surface the Green’s function may be derived analytically
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oG 1+ jkr -
X——Zp—cos Oe
with
r= |r—rA|
and
-2
cos 6 = A
rl

»

This Green’s function is shown in figure 2.17.
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Figure 2.17 The derivative of the Green’s function at the surface Sy from figure 2.16.

(2.36)

2.37

(2.38)

For the curved surface the Green’s function can not be derived analytically since the
boundary condition G = 0 on S results in direct waves from the dirac source in point A as well
as reflection from the free surface S;. However with a finite difference modeling technique the
Green’s function can be found. The result is shown in figure 2.18. Note that both Green’s

functions are not caused by dirac sources in A since a high bandwith source cannot be modeled
with finite differences. However the source spectrum is according to the dirac source for the

bandwith of interest.
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2.6 RECURSIVE VERSUS NON-RECURSIVE EXTRAPOLATION
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/ Surface
W>

W>

W

\> New datum

Figure 2.19 For the recursive extrapolation the wave field is extrapolated from interface to interface.

Surface

New datum

Figure 2.20 In the non-recursive extrapolation the wave field is extrapolated across many interfaces. The
Green's functions should contain the propagation effects of all layers.
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modeling procedures based on finite difference approximation of the wave equation are
computationally expensive. Ray tracing type of modeling techniques that are based on a high
frequency approximation of the wave equation may be feasible for the non-recursive wave field
extrapolation. However this has not be studied for this thesis. The recursive extrapolation has
been applied in all redatuming experiments. For a discussion on non-recursive wave field
extrapolation in redatuming the reader is referred to the TRITON project progress reports (1986,
1987, 1988).

2.7 ONE-WAY VERSUS TWO-WAY FIELD EXTRAPOLATION

In migration and inversion different types of wave field extrapolation techniques are applied. A
one-way extrapolation technique is employed or a two-way extrapolation technique. In the one-
way extrapolation the total wave field is decomposed in up going and down going waves. The
up going and down going waves are supposed to propagate independently. This is an
approximation Sinc_e in general interaction does occur especially for waves traveling at high
angles in case of velocity gradients. However, for models as discussed in chapter 1 the
interaction takes place at the interfaces at which up going and down going waves are coupled
through the boundary conditions. Outside the inhomogeneous regions in the subsurface model
the up going and down going waves may be extrapolated separately.

PY(z)=W'z,.z) P'(z) , (2.39)

P (z)) =W (z.z) P (z) , (2.40)
where W+(z,,zg) and W—(z,z,) are extrapolation operators for up going and down going waves
respectively. The one-way wave extrapolation techniques are very robust with respect to model
errors. A slightly mispositioned reflector causes only a small distortion in the extrapolated wave
field propagation. At acoustic impedance contrasts coupling of up going and down going waves
occurs. The boundary conditions should be met explicitly. The multiple reflections are not
handled properly. They could be eliminated by applying multiple elimination techniques such as
proposed by Berkhout (1982) and currently being developed in the TRITON project (1986,
1987, 1988).

Tm doim i mocnoen 3
10l iIWO-way C

ation techniques the total wave field is considered. Both up
going and down going waves are extrapolated simultaneously. Since the total wave field is
continuous across acoustic impedance contrasts the boundary conditions are included implicitly.
So transmission effects and multiple reflections are incorporated. A drawback of two-way wave
equation based extrapolation techniques is the sensitivity to model errors. In the two-way wave

equation based inverse extrapolation the multiple reflections are be eliminated as the
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extrapolation depth increases. If however a reflector is mispositioned the multiple reflections
according to the true depth model occur at different times than the multiple reflections according
to the erroneous migration model. This results in a serious distortion of the extrapolated wave
field. Since the depth model used for the redatuming is a propagation model and not a reflection
model, the reflector positioning may not be that accurate. Therefore for our purpose a robust
one-way wave equation based extrapolation technique is preferred over a two-way wave
equation based extrapolation operator.

2.8 A 2-D APPROXIMATION FOR A 3-D WORLD

The earth is a three dimensional structure. Efforts to obtain an accurate image of the earth’s
subsurface should be based on 3-D models. However in seismics quite a lot of 2-D surveys
have been carried out. Nowadays 3-D seismics is becoming more popular. The processing of
the data from a 3-D survey requires a huge computational capacity which has only become
available in the last decade through super computers like a CRAY. The study into redatuming
with an emphasis on the preservation of the amplitude information presented in this thesis has
been implemented for 2-D. Although the theoretical base for the redatuming is 3-D a 2-D
approximation has been chosen because of the available computational capacity. A 3-D
redatuming procedure is currently being developed within the TRITON (1986, 1987, 1988)
project.

The 2-D approximation may still give good results in practice if the subsurface is laterally
invariant in the cross line direction. No out of plane events will distort the seismic reflection
data. Because of the assumption of the wave field being constant in the cross line direction a
difference in geometrical spreading for 3-D (1/r) and 2-D (1/Nr) occurs causing an incorrect
scaling of the data during extrapolation. For a specific target depth local amplitude changes
along a reflector are directly related to changes in acoustic impedance along the reflector. A more
accurate approach for 2-D surveys is the 21/2 D approximation proposed by Bleistein (1984).
Again the earth is assumed to be invariant in the cross line direction. However the wave field is
not assumed constant in this direction. A geometrical spreading effect is included. The
amplitude behaviour for a 21/2 D redatuming may be more accurate for dipping structures. The
21/2 D approximation has not been studied for this thesis. The differences are summarized in
table 2.1.
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Table 2.1
Geometrical spreading effects and medium assumption
for 2-D, 21/2-D and 3-D wave propagation.

3-D 2-D 212D
Spherical spreading (1/r) | Cylindrical spreading (l\/r) Spherical spreading (1/r)
Velocity and density Velocity and density Velocity and density
variations variations variations
inx,yandz inx and z inx and z

For 2-D the Kirchhoff integral (2.11) and the Rayleigh integral (2.31) should be modified.
The integration in the cross line direction should be carried out to go from 3-D to 2-D. The
derivation is shown in appendix A. For the geometry shown in ﬁgure 2.21 the 3-D Kirchhoff
integral is given by

1 [ 1+jkr ik . e
P(ryw) =— | ——cos () e = P(r;,0) +jop, V,(r,,w) ——dS | (2.41)
4r S r
for the Green’s function a homogeneous layer has to be taken
e
G=p—, (2.42)
r= lrl - r2| .

The 2-D Kirchhoff integral is given by
P(r,m) = LJ‘ —jkm cos ¢, H(lz)(kr) P(rl,(o) + @p,T H(Oz)(kr) Vn(rl,m) dL | (2.43)
4r
L

in which Hy® and H,® represent Hankel functions.
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Figure 2.21 The geometry for the 2-D extrapolation operator. The medium inbetween of the two interfaces
is homogeneous.
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3

INVERSE WAVE FIELD PROPAGATION

3.1 INTRODUCTION

Generally an inverse wave field extrapolation operator is derived by inverting the forward
extrapolation operator. In this chapter an inverse extrapolation operator is derived directly from
the wave equation and the theorem of Gauss. Recursive application of this operator yields a
correct amplitude behaviour for the primary propagating waves. For a non-recursive application
of the inverse extrapolation operator, it will be shown that for arbitrarily inhomogeneous media
the amplitude errors are of the second order.

In seismics or any other field in which echo acoustical measurements are carried out, the
registration surface does usually not coincide with the area of interest. In surface seismics the
measurements are carried out at the surface whereas the reservoirs may be located up to several
kilometers below the surface. In order to determine the potential of a reservoir the rock
properties in the target area should be determined. The acoustic response, which is related to the
rock properties, propagates from the target zone to the surface. In the previous chapter the
forward wave propagation has been discussed. However, in order to solve for the medium
properties given the response and the source wave field, the forward problem has to be
inverted. For the wave field propagation a band limited inverse extrapolation operator is found
by taking the complex conjugate of the forward operator. The approach is commonly known as
matched inverse. Unfortunately the inversion is only valid for planar interfaces. For an
arbitrarily inhomogeneous medium the inversion of the forward operator may become very
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complicated. The matched inverse has been used by various authors (Schneider [1978], Castle
[1982], Carter and Frazer [1984], Wiggins [1984], Berryhill [1984]) for the inverse wave field
extrapolation through complicated media. This inverse operator is commonly accepted to handle
the phase properly. However the amplitude handling of the inverse wave propagation operator
is hardly ever considered. In the next sections the matched inverse will be briefly discussed.
Furthermore an inverse propagation operator will be examined which also holds for curved
layer boundaries. This inverse operator will be derived directly from the theorem of Gauss and
the wave equation instead of inverting for the forward problem. The amplitude behaviour of this
generalized ‘Kirchhoff summation’ operator will be investigated. It will be shown that for an
arbitrarily inhomogeneous medium the amplitude errors are of the second order.

3.2 INVERSE EXTRAPOLATION THROUGH A PLANAR HOMOGENEOUS
LAYER

In this section the inverse extrapolation through a horizontal layer is discussed. The amplitude
behaviour of this operator is investigated for comparison with the ‘generalized Kirchhoff
summation’ operator which will be derived later ori. The matched inverse back propagation
operator is often used in migration or redatuming schemes. For a rigorous discussion the reader
is referred to Berkhout [1982)]. For the forward model consider an upward traveling wave field
P-(r,w) at a planar surface S (figure 3.1). The up going wave field at S; is obtained by
applying the Rayleigh II integral to the wave field at S;.

Py ®) = [ Wirpr, 0P (r,.0) a8, @1
Sl
where
W(r,r,0) = L THIKAr g (.2)
2n Ar2
with
g = (X,¥,29)

r, = (x\y,zy)

2 W2 A2
Ar=|r0—r1|=\/(x—x') +(y-y) +Az

Az=12)-17
cos 0 =Azr
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SO P(r,.0)

5 P (r, )

Figure 3.1 The wave field at S1 may be extrapolated to Sy with the phase shift operator.

The integral is equivalent to a two dimensional convolution over x and y so

P (x,y,2,00) = W(x,y,AZ,0) * P (x,y,2,,00) . (3.3)
By transforming the operator and the wave field to the wave number domain the convolution
becomes a multiplication

Pk, kzp,0) = Wk, k ,Az,0) P(k k ,z),0) , (3.4)
with

- ik, Az

W(kx,ky,Az,w) =e , (3.5)

and
2 .2 2 2 2 2
k, = JK -k -k for k ka+ky

cfi2 2 2 2 2 .2
k, = Gk +k -k for k <k +k . (3.6)

The transformed operator is the well known phase shift operator. By applying this operator to
the data on a planar surface a wave field propagation over a depth step Az occurs. For the
propagating waves (k.2 + k 2 < k?) the amplitude of the operator is 1 independent of the
extrapolation step Az. For the evanescent waves (k,2+ ky2 > k2) the amplitude decays
exponentially ( figure 3.2).
The inverse wave field extrapolation operator F should invert for the wave propagation effects
WF=1 3.7
An inverse wave field operator F for the phase shift operator is given by
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1 | Wk, 042) |

k—>

Figure 3.2 The amplitude of the phase shift operator in the k,-® domain is 1 for the propagating waves.

Bk k Azw)s— . (3.8)
y W(kx,ky,Az,m) :

Accuracy and stability should always be investigated for an inverse wave propagation operator.
This inverse operator is accurate since

WE=1 . (3.9)
However, for the evanescent part of the wave field this inverse operator increases exponentially
with Az. Therefore it is not a stable operator and can not be applied to noisy data. In order to
stabilize the inverse operator the following approxin:ation is often made

<Flk k,Az,0)> = Wk k Az,0) . (3.10)

This operator is an exact inverse for the propagating waves. For the evanescent waves the
operator is not correct (figure 3.4).

o for i +1 < k*
WW* = (3.11)
20 fork+K > K

So W* is a stable spatially band limited approximation of F. In general the spatial band
limitation will restrict the maximum obtainable spatial resolution. For a more extensive
discussion on the resolution in the migration problem the reader is referred to Berkhout [1984].
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~-1
1 | W (k,,0,A2) |

kx

Figure 3.3a The inverse of the phase shift operator is unstable for the evanescent waves. The amplitude
increases exponentially.

¥
1 | W (k,,0,Az) |

kK —»

Figure 3.3b The matched inverse phase shift operator is a stable operator.
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~ ~ * *
1 1 Wk,0A2) W (k042

kx

Figure 3.4  The matched inverse phase shift operator correctly inverts for the propagation effects for the
propagating waves. The evanescent waves are not handled correctly.

3.3 INVERSE EXTRAPOLATION THROUGH AN INHOMOGENEOUS
MEDIUM

In this section the inverse extrapolation for non-planar interfaces and inhomogeneous media is

discussed. Since the Rayleigh integral is not valid for curved surfaces the full Kirchhoff integral

(equation 2.11) should be applied. However in the problem of inverting the Kirchhoff integral

the number of unknowns is twice the number of knowns. The pressure P is known whereas

both pressure and particle velocity on S should be calculated. Even if both P and V,, are

measured the equations will not be independent.-So inverting the forward problem does not-
seem to be a solution for the inverse propagation from non-planar interfaces. Therefore an

alternative approach should be followed. Again the Kirchhoff integral is derived but now for

different Green’s functions. Consider the geometry from figure 3.5.

In the previous chapter the Green’s functions should satisfy the following wave equation

1

pv. (—VG) +1KXG=—p4nd (r-r,) . (3.12)
p

For the inverse wave propagation a slightly modified Green’s function is used. These Green’s

functions G should satisfy the following equation in the bounded domain V

P*V . (L G) +k2G' =—p 4nd(r-r,) . (3.13)
p*

For a loss-less medium p(r) and k(r) are real and the Green’s function G defined by the last

equations is identical to the Green’s function defined by equation 3.12. For lossy media, the
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Figure 3.5 Bounded domain V for the Kirchhoff integral.

medium parameters p(r) and k(r) should be taken complex valued. A small negative imaginary
part should be added to wave number according to
k(r) =k, (r) 1 -jn) withn << 1. (3.14)

To get an idea what the Green’s functions look like, consider a homogeneous medium. The
forward propagation solution to the above equations are respectively

—jkglr—r,| -
—gnlr-r,] .
G(r,r,,0) =&r|2_e___e Ktlr-r (3.15)
r-r A|
and
. —jkglr-r,|
Ir—r,|

G'(rr,,0) = ﬂ%e—— ¢ I (3.16)

1]

The absorption which occurs in lossy media is described by the term e_ko"‘l' 'r"l. In addition to
the spherical divergence this exponential causes an amplitude decay for the Green’s wave field

. . . . Ir-r, |
propagating away from the source point r. The second solution contains the term o Ta

which represents an amplitude increase for waves propagating away from the source in r. This
solution is physically unacceptable, so it should be rejected.
The back propagating solutions to the above wave equations are

. +ikglr-r,| :
ey
G =20 o (3.17)
|l' — I'Al

and
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+jkglr-r|
* lr—r,|
G' (r,rA,(o) _ p +ko'ﬂ r-r |

(3.18)
le—r,|

Since this wave field G propagates towards r the term e'k°“lr'rAI represents an amplitude
increase. Therefore this solution is physically not acceptable. The other solution contains the

exponential term e Fal which represents an amplitude attenuation for the wave field
propagating towards r . So this back propagating Green’s function is an acceptable solution the
wave equation given in relation (3.13).

With the back propagating Green’s function a second version of the Kirchhoff integral will
be derived. In the previous chapter the Kirchhoff integral has been derived using the forward
propagating Green’s function. Similar to the derivation in the previous chapter define a vector a
fieldin V

1 « 1 =
a=—PVG -——G VP . (3.19)
p p
After application of the theorem of Gauss (2.7) to this vector field and substituting equations

(2.3) and (3.13) the following integral equation is obtained.

*
P(r,,0) = ;_1 1 lp (aain) - (g—:) G':I as . (3.20)
Ty P

This integral equation is identical to the Kirchhoff integral from equation 2.11 except for the
complex conjugate Green’s functions. Again as for the forward propagation operator the-
configuration of a closed surface is not suited for the seismic application. The wave field is only
known for a part of the surface. At this point in the forward modeling a geometry of a
hemisphere and a non-planar surface was chosen. However since the hemisphere could enclose
sources (inverse extrapolation is towards the sources) which would make the integral invalid,
this geometry should not be used here. For the inverse extrapolation consider the geometry
depicted in figure 3.6.

The pressure and particle velocity is assumed to be known at the surface S, of infinite
extend. Consider a closed surface with the shape of a pilar box. The top of the box is the
acquisition surface S;. The bottom of the box is S;. The rim of the box S, is at infinity.
Furthermore all (secondary) sources are located below S;. Since S, is of finite extend and
located at infinity, the contribution of the pressure at A from this surface vanishes. So for the
configuration of figure 3.6 the Kirchhoff integral from equation 3.20 may be replaced by
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P(r,,w) =Py(r,,0) + P,(r,,0) , (3.21)
with
1|_[3G"| (oP) .
PO(I'A,(D) = J—p—[ ( n )—(55) G :l ds s (322)
P, (r,,®) _—J' { (agl )—(g;) G*} ds . (3.23)
SO
S, S,
Sl

Figure 3.6 Geometry for deriving an inverse Kirchhoff extrapolation operator. The volume V has the shape
of a pilar box, a cross section is shown.

Moving §, to infinity similar to the derivations for the forward model will cause V to contain
sources. So the Kirchhoff integral in equation 3.23 will not be valid. However because of
contributions over S, the integral is still not suited for wave field extrapolation purposes. The
wave field is only known at Sy, Therefore the integral over S, (3.23) should be investigated
more closely. .

In order to simplify the evaluation of the integral over S a slightly different geometry should
be chosen. The surface S,' is now planar and horizontal (figure 3.7) instead of curved. At
surface S, the total wave field may be split up in an up going (-) and down going (+)
components.
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S, S,
T 4
P (5z,,0) P (xz,0)
Figure 3.7 The surface S, from figure 3.6 is replaced by a planar surface Sy'.
P(r.r,0) = P'(r,r ) + P (rr,0) , (3.24)
G(rr,0) = G'(r,r @) + G (r,r,0) , (3.25)
with
r,=(xyz)andr=(xyz2) . (3.26)
Suppose the medium is loss-less and homogeneous in an infinite region around z = z;.
Vp =0 .
atz=z, . (3.27)
Ve=0

The up and down going wave field satisfy the one-way wave equations (2.21) and (2.22). A
slightly modified version of Parseval’s theorem reads

f * 1 ] N g 1
jI A(x,y)B (x,y) dxdy = ; J.I A(kx,ky)B (kx,ky)dkxdky , (3.28)
with A and B being some space dependent function and the 2-D spatial Fourier transform is
defined by

Adk k) = ” Ay e dxdy (3.29)

Furthermore for the z derivatives we may write
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P o =
P (ri0) = Pl K 2,0) (3.30)

2 2 2
kz=‘/k —kx—ky . (3.31)

Applying Parseval’s theorem and substitution of equation (2.23) yields

R P [ s

7

with

By making the area below S’ reflection free for the Green’s functions no up going waves will
occur at S’ so

p(xy.z>z)) = p(x,y,z,) , (3.33)

c(x.y,z>z)) = c(x,y,z,) , (3.34)
therefore G-= 0. '
Note that no assumptions are made by choosing a homogeneous medium below S;". So the
above equation becomes

P (r,.0)=- % F, ([ﬁ*+§‘] ik, [_c";“] -k, [13*_13‘]6*) : (3.35)
- 2

Now consider the evanescent-and the propagation waves separately. For the propagating waves
at 8¢, k,"(zy) = k,(z;) since k,2 + k2 <k%(z,). So

2 1. S*+z
P (r,.0) = +-‘;-F " [szc P+] ) (3.36)
For the evanescent waves k,2 +k,2> k2(z)), sok,* = -k, at z;.
2 . a0z
P,(r,.0) =-;F N [szc i3 ] . (337)

Deriving an analytical expression for the inverse Fourier transform for Py(r ,w) is quite difficult
since the expression changes around k,? + k,? = k2(z;). However if we assume A to be not too
close to S;' the contributions for the evanescent waves may be neglected compared to the
propagating waves. So relation 3.36 is used for all values of k, and ky. So

2 1] . ~+* o+
Pl(rA,m)g;FA [szG P] , (3.38)

or
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3G+
=— (r,r ) P'(r,w)dS' . (3.39)

2
P(r,,0) & — I
Ps
1

This relation is identical to equation 3.23 except for the evanescent part of the wave field. Next
we consider the special case of a homogeneous medium inside V and above S,. Since the wave
field at S,' only contains up going waves, P;* = 0. There are no contributions from $,' to the

wave field in A and P(r,,®) 2 0. The wave field in A is obtained by an integral over S, only

1 (1 3G | [aP)
2 EHE)

ds . (3.40)

Since only data at the acquisition surface is required, this inverse extrapolation operator is well
suited for the seismic application. The pressure and normal component of the particle velocity
V, on S are used to obtain the wave field in point A which is closer to the sources than the
acquisition surface. So an extrapolation to the sources may be carried out. Since the integral
over S gives the correct wave field in A for the propagating waves, the integral over S, may be
neglected. So relation 3.40 holds for any shape of S;. The inverse extrapolation from an
arbitrarily curved surface Sy to an arbitrarily curved surface S, through a homogeneous medium
is therefore achieved by applying the integral equation 3.41 for all points on S,. The integral is a
full Kirchhoff type of integral involving both the pressure as well as the particle velocity. This
relation could be interpreted as the matched inverse Kirchhoff integral because of the complex
conjugate Green’s functions. Since no approximations have been made the integral describes a
true amplitude inverse wave field propagation for the propagating waves in homogeneous
media. The incorrect handling of the evanescent waves results in a limited spatial resolution due
to spatial band limitations. Note that this inverse extrapolation operator has not been obtained by
inverting the forward operator but is derived directly from the theorem of Gauss. The validity of
the matched inverse Kirchhoff integral is shown for a simple geometry in the following
experiment. Consider a 2-D medium depicted in figure 3.8a with 2-D wave propagation. The
pressure and normal component of the particle velocity of a dipole line source at z, are measured
at the curved surface S,. The pressure response is shown in figure 3.8b. In order to obtain the
wave field on S, or S, the wave field at S should be inverse extrapolated towards the source.
The matched inverse Kirchhoff integral is applied to the pressure field and normal component of
the particle velocity on §, for all points A on S, and S,. The inverse extrapolation yields the
hyperbolically shaped dipole response at S; as shown in figure 3.9c. An amplitude cross
section for this response is depicted in figure 3.9d. The maximum in each trace is plotted as a
function of the lateral position. The amplitude of the response matches exactly the analytical
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source (z=z))

(a)

Figure 3.8a Geometry for inverse extrapolation of the wave field at Sg to S;. The wave field is caused by a
source at S,. The wave field is therefore extrapolated towards the source.

B
bl i

M
i1

|

Figure 3.8b The wave field at Sy from figure 3.8.

response shown as the solid line. Only at the left and right spatial boundary deviations occur
due to the limited aperture. This would not occur if Sy would be of infinite extend. If the data is
extrapolated to the source level S, the response shown in figure 3.9¢ is obtained. The level to
which the wave field is extrapolated is close to the source so one of the assumptions made in the
derivation of the inverse full Kirchhoff operator is violated. The inverse extrapolated wave field
at the source is smeared out. In figure 3.9f the real part of the central frequency component is
shown as a function of the lateral position. The true source is a spatial delta function. The
smearing is due to the incorrect extrapolation of the evanescent wave field. The inverse
extrapolation from Sy to S; has also been carried out with the Rayleigh integral. This is the
commonly used inverse extrapolation operator which involves the pressure only. The Rayleigh
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inverse extrapolation operator is obtained by dropping the dP/dn from equation 3.40 and replace
P(r,») by 2P(r,w) '

1 (1 oG*
PO(rA,m)=—;J;;{P( = ﬂ as . (3.41)

The inverse extrapolated wave field at S; obtained with this inverse operator is shown in figure
3.9a. The hyperbolic response is present in this data as well as some significant artifacts. In the
amplitude cross section shown in figure 3.9b strong amplitude deviations compared to the
analytical response are present. So the amplitude information in inverse extrapolation is not
preserved by the Rayleigh type of operators. The full Kirchhoff operator should be applied.
This operator is particularly suited for recursive inverse extrapolated in the macro model
discussed in chapter 1. The layers in the macro model are homogeneous. So true amplitude
inverse extrapolation from interface to interface is accomplished by applying the full Kirchhoff
inverse extrapolation operator to the pressure and normal component of the particle velocity at
each interface. The problem of the boundary conditions which occurs when passing through
each layer interface will be discussed in section (3.5).

3.4 INVERSE WAVE FIELD EXTRAPOLATION FOR ARBITRARILY
INHOMOGENEOUS MEDIA

In the previous section an inverse extrapolation operator for curved surfaces and homogeneous
media enclosed by V has been derived. The only approximation has been the incorrect handling
of the evanescent waves. However for the seismic application the medium is not homogeneous.
So if the full Kirchhoff inverse extrapolation operator from equation 3.40 is used in
inhomogeneous media an approximation is made. In this section the error related to this
approximation is investigated.

In the derivation of the full Kirchhoff inverse wave field extrapolation operator the
contributions of the integral over S;' (figure 3.10) are investigated. Since all sources are below
S,' the wave field at S;' is up going only provided the medium is homogeneous. If however the
medium is inhomogeneous down going waves at S;' do occur due to scattering of the up going
waves at inhomogeneities above S;'. Therefore the integral over S;’ (equation 3.39) will not
vanish. In order to analyze the contribution of the integral over S;' to the wave field in A the
Green’s function will be split up into two components. Gp, is related to the direct waves in the
Green’s function. Gg is associated to the waves in the Green’s function which have been
scattered by the inhomogeneities in the medium ( figure 3.10). So
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' - +
s, Plz.0) Gpp P (1.2,,00)

| |

Sources

Figure 3.10 The direct and scattered components for the Green’s function at Sy’ for an arbitrarily
inhomogeneous medium inside V.

G(rr,,0) =Gy(rr,,0) + Gyrr, ) ats, . ' (3.42)
Furthermore assume that the wave field P, (r,,®) may be split up into down going and up going
waves. So

P,(r,,®) = P}(r,,0) + P(r ,,0) (3.43)
and

1 (1 3Gy, (ryr ,,0)
Pl(r, ) =- —j ~ |:P+(r,m) —D & 48, (3.44)
2 P an
Sl
*
_ 1 (1] 4 oG (r,r,,0)

P (r, o)=—— j - [P r,@) ————— |dS (3.45)

1VA mdp on

1
From figure 3.10 it can be seen that the back propagating Green’s functions Gp* and Gs®
converge to A from opposite directions. Therefore Py* and P;- represent down going and up
going waves in A. The total wave field in A includes contributions from S, as well
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P(r,,0) = Py(r,,0) + P{(r,,0) + P[(r,,0) . (3.46)
Provided the medium is non-reflecting in the small region between A and S;’, Py(r,,) is an up
going wave field only

Py(r,.m) = Pa(r PO (3.47)

For the seismic application the down going waves in A cannot be reconstructed from an integral
over the wave field on S only. Since no data is available at S1' no contributions to the wave
field in A can be computed for this surface. Therefore we have to make the following
approximation for the seismic situation

P(r,o = Py(r,,0) , (3.48)
or with relations 3.21, 3.22, 3.23 and 3.46.
_ 1 (1 o9G"| [oP\ ..
P(r,0) -——|— P(—)—(— G |dS . (3.49)
4n p - on an
SO
0 Z
1
1500 m/s
500 ?
3
3000 m/s
1000
1500 A
-1000 0 1000

Figure 3.11 The inverse extrapolation through an inhomogeneous medium. At z = 0 m the wave field is
registered from a line source at z = 1500 m. The wave field is inverse extrapolated to z3 across an acoustic

impedance contrast at z,.
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The part of the up going wave field in A which has been neglected P, (r,,0) is, according to
relation 3.45, proportional to the product of the scattered wave P+(r,m) at S;' and the Green’s
function G*p 5 at S;. So the magnitude of the neglected wave field is proportional to multiple
reflected waves. It is therefore two orders of magnitude lower than Py~ (rp,).

An inverse wave field extrapolation through an inhomogeneous medium of the primary wave
field from a curved surface S, is achieved by applying the generalized ‘Kirchhoff summation’
operator from equation 3.49. The amplitude errors are of the second order so multiply reflected
waves should be neglected. Furthermore the evanescent waves are neglected as well. Finally
only the up going wave field is reconstructed. This operator is well suited for the seismic
application since the main interest for migration and redatuming is inverse extrapolation of
primary waves.

The full Kirchhoff inverse wave field extrapolation operator has been applied to the wave
field at z, in an inhomogeneous 2-D medium shown in figure 3.11. A dipole line source is
located in point L. A layer interface is present at level z,. The inverse wave field extrapolation
with the integral from equation 3.49 brings the wave field from z; to z3. Since the medium
between z; and z5 is not homogeneous the inverse extrapolation operator is an approximation.
The extrapolated wave field at z; is shown in figure 3.12. The response is hyperbolically
shaped. The amplitude cross section for this response in depicted in figure 3.13. Comparison
with the analytical wave field shows an amplitude error of the order R2, where R denotes the
reflection coefficient. So the non recursive application of the full Kirchhoff integral in
inhomogeneous media yields an error of the magnitude of multiply reflected waves. However
when the integral is applied recursively the amplitude information will be preserved as will be
discussed in the next section.

3.5 RECURSIVE APPLICATION OF THE FULL KIRCHHOFF INTEGRAL
FOR RECURSIVE INVERSE WAVE FIELD EXTRAPOLATION

In the previous sections the application of the full Kirchhoff inverse extrapolation has been
discussed. If the medium through which the wave field is inverse extrapolated is homogeneous
the full Kirchhoff inverse extrapolation operator is exact for the propagating waves. If the
medium is inhomogeneous this operator is no longer correct resulting in amplitude errors of the
order of the multiply reflected waves. However if the macro model description of the subsurface
is used a recursive extrapolation from interface to interface may be carried out. In one-way wave
field extrapolation techniques the boundary conditions are usually not satisfied. Normally, if the
wave field is extrapolated across an acoustic impedance contrast, the boundary conditions
should be explicitly incorporated. It will be shown in this section that in case of the recursive
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wave field extrapolation the up going wave field is correctly inverse extrapolated ( except for the
evanescent) without explicitly incorporating the boundary conditions.

Consider in figure 3.14 some upward traveling wave field which has been registered at the
surface S;. In order to obtain the up going wave field at A, the wave field at S; will be inverse
extrapolated recursively. For the first extrapolation step consider the medium enclosed by S,
and S,. On S, the wave field is known. The wave field just above S, should be calculated.

Vv
P n Surface
z

P Vn

/\/

New datum

Figure 3.14 In the recursive extrapolation the upgoing wave field at the surface is extrapolated to the first
interface. The upgoing wave field just above the first interface is obtained.

Since the medium enclosed by S; and S, is homogeneous the full Kirchhoff inverse
extrapolation operator could be applied for many points on S, without making any
approximations. For the next extrapolation step the wave field at S, is extrapolated to Ss.
However since the wave field above S, is known the velocity contrast at 8, lies inside the
closed volume of the Kirchhoff integral. Application of the integral to the wave field above S,
yields amplitude errors of the order of magnitude of the multiply reflected waves as discussed in
the previous section. So the wave field just below S, should be known. Since the wave field
originates from sources below S3 the only wave field above S, is an up going wave field.
Therefore the total primary wave field above S, is known.
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P . ro = P'ls (r,w)
Sz 2 justabove S, (3.50)
v lsz(lr,w) =V, lsz(l',(o)

Since the wave field is continuous across S, the total wave field below S, is identical to the total
wave field above S,.

PTsz(r’m) =Plsz(r’(°) s , (3.51)

VnTsz(r,w) =ansz(r,m) . (3.52)

Just below S, the wave field may split up in up going waves and down going waves (figure
3.15)

Figure 3.15 Since the total wave field is continuous across an acoustic boundary condition, the upgoing
wave field above the interface equals the upgoing and downgoing wave field just below the interface.

4 _
PTSZ(r,w) e PT Sz(r’m) +P Tsz(r,m) > (353)

N _ .
VnTSZ(r’w) - VnT Sz(r’w) + VﬂTSZ(r’w) . (354)

Since we are interested in the up going wave field only, the down going wave field component
is undesired. If the boundary conditions would be taken into account the up going wave field
below §, could be calculated from the up going wave field above S,. Since incorporating
boundary conditions is quite difficult in one-way schemes, this is not a good solution. However
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application of the full Kirchhoff inverse extrapolation operator with an up going Green’s
function to the total wave field just below S, yields the up going wave field on S5 (figure 3.16).

P Vn Surface
W¥
{} YA
P~ V;
v/~ D+t
P Vn P Vn
W¥

P~V

n

New datum

Figure 3.16 An inverse extrapolation of the total wave field just below the first interface with one-way
Green’s functions causes the downgoing wave field to be eliminated.

The down going wave field components do not interact with up going Green’s functions and are
cancelled during the inverse extrapolation. The undesired down going wave field is eliminated.
So for the configuration of a stack of homogeneous layers and buried secondary sources
recursive inverse wave field extrapolation of the primary up going wave field yields the correct
up going wave field for the propagating waves at a deeper level. The wave propagation effects
for curved layer interfaces and boundary conditions are all handled correctly.

For an experimental verification of the recursive inverse wave field extrapolation consider the
configuration from figure 3.17. A wave field originating from line source L propagates to the
receivers at level z;. An impedance contrast exists at z,. The wave field is recursively inverse
extrapolated from the receivers to level z,, where it is compared to the analytical wave field. The
first extrapolation step involves inverse wave propagation from z; to z, with the full Kirchhoff
inverse wave field extrapolation operator and a propagation velocity ¢, = 1500 m/s. The
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0
Z,
1500 m/s
500 22
Z3
3000 m/s
1000
1500 %
-1000 0 1000

Figure 3.17 The same geometry as in figure 3.11 for a recursive full Kirchhoff inverse extrapolation across
an acoustic impedance contrast.

extrapolated wave field is then inverse propagated from z, to z; with a propagation velocity
co = 2000 m/s. The pressure of the inverse extrapolated wave field at z, is shown in figure
3.18. The amplitude cross section is compared to the analytical wave field shown as a solid line
is depicted in figure 3.19a. For the area in which the wave field has been back propagated the
amplitude match is perfect. Some side lobs effect occur due to aperture truncation. If the
recursive inverse wave propagation is carried out with the commonly used Rayleigh operator
involving the pressure data only, the amplitude behavior is not correct as shown in the
amplitude cross section in figure 3.19b. Because this operator does not handle the boundary
conditions correctly.

For the plane layer model the validity of the correct amplitude behavior of the recursive full
Kirchhoff operator is easily verified analytically. Computations in the k,-® domain allows for
an easy analysis. For a dipole source S at z, (figure 3.20) the wave field at the receivers is given
by )

=ik, lz7zl —ik, o 12,1 (3.55)

P(k,0)=¢ T(k, .k, o) e :

with
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0. 20'. 40. 50’. 80. 100, 120. 140. 160. 180.
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Figure 3.19 The amplitude cross section for the recursively full Kirchhoff inverse extrapolated data from
figure 3.18 (dotted) is compared to the analytical solution (solid) in a. For the data in b the Rayleigh integral has

been used for the inverse extrapolation. The boundary conditions are not handled correctly for this operator.
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)
P1¢
4
Poo
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Figure 3.20 Geometry for an analytical verification of the recursive full Kirchhoff inverse wave field
extrapolation across acoustic impedance contrasts.

So

jk
Vv, (k,0)=—=1P (k) . (3.58)
jop,

The Green’s function is given by

1 -kpe

-1 3.59
25K, (3-59)

G

The inverse extrapolation considering the propagating waves only from the receivers at z4 10 z;
is achieved by

1 ik, lz-zl 1 1 Hk, sz
Pk @) =ze " Plk,w)+ IR " op, V,(k.0) (3.60)
z,
or, by substituting 3.55 and 3.58
aalzz]
P,(k,0) = T(k, ,k, ) e . (3.61)
Similarly,
Pt p | 3.62
V, (@) = === P (k,.0) . (3.62)

jop,
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The next step of the recursive inverse extrapolation yields

ik, o2z,

I 1 1 J
P,(k @) + - — ~=lp(k o) , (3.63)
jopy ik, jjop,

1 cﬂ'kz.o lz;—z,
2

P (k,.0)=

or after substitution of 3.56 and 3.60

1 +jkz,0 Ili—zll —jkz.olzi_zal
Pa(kx,(o) = Ee T(kz,rkz,o) e +
1 Tk, k22, K, olz2,|
_2—r_5k__ € T(kz,l’kz,o) € R (3.64)
1772,0 )
or
1], Tods ik, 7,2,
P (k,,0) = 5 [1 + LK, Tk, .k, o) € , (3.65)
or after substitution of 3.56
ik, 02,2, 2.2
P (k,,0)=¢ kK'>k | (3.66)

which is the wave field at level z, due to a dipole source at z,. So the wave propagation effects
and the boundary conditions have been handled correctly in the recursive Kirchhoff inverse
wave field extrapolation.

For the geometry from figure 3.21 with the curved layer interface the recursive inverse wave
field extrapolation has also been applied. A line source S is located at a depth level of 1500 m.
The receivers are located on top of an anticlinal structure. The wave field should be
backpropagated to level z,. The wave field has been modeled with a finite difference modeling
scheme. Therefore the boundary conditions have been properly handled in the forward
modeling for this laterally varying subsurface model. The pressure response at the receivers is
shown in figure 3.22. In order to identify both events several snap shots of the finite difference
modeling are shown in figure 3.23. The second event in the response is associated with an
internal reflection in the anticlinal structure as indicated in figure 3.24. For the recursive inverse
wave field extrapolation the registered wave field is back propagated to the layer interface.
According to the boundary conditions the total wave field is continuous across the acoustic
impedance contrast. Since the total wave field above the anticline consists of the up going wave
field only. The total wave field below the anticline (consisting of the up going direct wave field
from the source and the scattered wave field) equals the up going wave field just above the
anticline. Another inverse extrapolation step applied to the wave field at the anticline will
eliminate the down going wave field and reconstruct the up going wave field at level z, as
shown in figure 3.25. So the internal reflection in the anticline has been eliminated since the
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Figure 3.24 A raypath for the internal reflection in the anticlinal structure.

boundary conditions were met and the amplitude information is preserved. The amplitude cross
section in figure 3.26 shows a comparison with the analytical wave field. The amplitude level of
the recursively inverse extrapolated wave field compares good with the analytical wave field
shown as a solid line. So the recursive application of the full Kirchhoff operator correctly
inverse extrapolates the wave field. The wave propagation effects as well as the transmission
effects are properly handled even for curved layer interfaces. Some deviations occur because
some of the waves have propagated out of the registration aperture due to the interface
curvature. The inverse wave field extrapolation has also been carried out with the Rayleigh
operator involving the pressure data only. The result depicted in figure 3.27 shows an additional
event because this operator is not valid for curved interfaces. Furthermore the amplitude cross
section presented in figure 3.28 shows the incorrect amplitude handling of this operator because
the boundary conditions were not met. The non recursive inverse extrapolation operator as
discussed in a section (3.4) has also been applied for this geometry. The back propagated wave
field at level z, is shown in figure 3.29. No additional events are present in this response. The
amplitude cross section (figure 3.30) shows an amplitude difference compared to the analytical
wave field. The difference in amplitude corresponds to the error of the order of R2 due to the

fact that this operator is not exact.
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4
THE REDATUMING

In seismics the hydrocarbon reservoirs and the source and detectors are separated by an
overburden. This overburden consists of up to several kilometers of earth. The reflection
response of the zone of interest, the reservoir, is distorted because of overburden wave
propagation effects. A more preferable configuration would consist of source and detectors
directly over the target zone. So instead of a datum at the surface a datum within the subsurface
is required. A redatuming of the surface data should bring down the sources and detectors for
the seismic experiments from the surface to a new datum over the target zone. For this purpose,
the overburden wave propagation effects should be eliminated from the seismic data.

In this chapter the redatuming procedure is discussed. For the redatuming, wave propagation
effects should be eliminated. In the previous chapters forward wave field and inverse wave field
extrapolation have been discussed. In surface seismics the source and the detectors are located at
the surface. Reflected waves from the subsurface structures are registered at the surface. In the
first sections of this chapter a forward model for describing the reflection response at the surface
due to a source at the surface is described. In the forward formulation the overburden wave
propagation and the reflection at the target zone should be clearly separated in order to be able to
obtain an inverse relation. In this inverse relation the overburden wave propagation effects
should be eliminated and an undistorted target zone reflection response should be obtained.

The matrix notation will be used in the derivation of the redatuming procedure. The
advantage of this notation is its simplicity and clarity. Furthermore, compared to a formulation
in terms of integrals, the matrix notation is closer to a computer implementation. All matrices are
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monochromatic, so only one frequency component of the data and the operators is considered in
the matrix relations. The monochromatic geophone data for frequency o; is represented by a
data vector p (see also figure 4.1)

T
p(zp) = (P(x, 25 0), Py 2 @), .. » P 200)) @.1)

VYYYYVV¢

X >

Figure 4.1 Each element of a data vector contains a complex valued monochromatic data point
corresponding to a particular spatial position.

In the monochromatic data matrix each column of the matrix is equivalent to one data vector
P(zp). For convenience the variable o, is dropped in the notation. Every vector corresponds to a
single shot experiment. So the diagonal corresponds to data for which the lateral position of the
geophone is the same as the lateral position of the shot and is therefore the (monochromatic)
zero offset section. This is also shown in figure 4.2. For the extrapolation of a data vector p(z;)
a matrix vector multiplication is carried out. If W(z;,,,z;) denotes the extrapolation operator, the
extrapolation is given by

P(z,,) =W(z,,;,2) p(z) . 4.2)
Each row of W corresponds to the Green’s function in the Rayleigh type of extrapolation
operators (see also chapter 2). So simultaneous monochromatic extrapolation of all shots is
given by

Pz, ) =W(z,,2) P@z)
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Z0 CSG

Figure 4.2  In the data matrix each column correponds to a data vector. Different columns correspond to
different shot locations.

4.1 THE FORWARD MODEL

In the seismic reflection method a source at the surface generates the illuminating wave field.
Usually a simple point source or a small source array is used. This wave field propagates
through the overburden to the target zone (figure 4.3) and gets distorted during propagation. At
the target zone the illuminating wave field is no longer a simple wave field. The structures in the
overburden cause the illuminating wave field to become rather complex. The propagated source

wave field is given by

s'(z) = W(z,z) s (z) (4.3)
in which s*(z;) corresponds to the source wavé field at the surface; the elements of s*(z;)
correspond to the source wave field at spatial locations x and at depth z;. W+(z;,zo) represents a
wave field propagation operator from depth z; to z;. The dot product of a row of W and s
corresponds to the evaluation of the integral equation 2.30. The rows of W are related to the

Green’s functions.
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o Zp_ S+(ZO)

ZVS*(z.)

Figure 4.3  The source wave field s*(zg) at the surface is propagated downward through the overburden to
level z; by applying a wave field extrapolation operator W.

The reflection response p~(z;) of the target at depth z; due to s*(z;), also propagates through the
overburden to the surface and gets distorted during propagation. At the surface this reflection
response is registered by the detectors:

P (z)=Wi(zy2) P (z) . (4.4)
where p—(z;) denotes the reflection response at the surface and W-(zg,z;) determines how the
reflection response at level z; propagates upward to level z.
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Figure 4.4 The upgoing wave field at level z;, p=(z;) is propagated to the surface by applying a wave field
extrapolation operator W—,

At the target zone the incident wave field s*(z;) is related to the reflected wave field p~(z;)
through the target reflection response:

p (z) =X(z)s'(z) . (4.5)
The matrix X will denote the target reflection response operator. Since the redatuming aims at
obtaining the reflection response X(z;) of the target zone this matrix will be examined more
closely in the next section.

The target response for primary waves due to sources s*(z;) at the surface is found by
combining (4.3), (4.4) and (4.5):

P (z) = W(z,2) X(z) W'(z,2) s'(z)) . (4.6)

In this relation both s*(z;) and p-(zg) are vectors containing the monochromatic source and
detector data at the surface as shown in figure 4.1. However, many shots are available so the
source and detector data vectors should be extended to matrices. Each column of the S matrix
contains the source data for one shot. The corresponding column in the P matrix contains the
reflection response for the same shot position as shown in figure 4.6.
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P‘(Zo) /\ o) Zo SYZO)
w w'

Plz) Stz)

| | 2\
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Figure 4.5  The surface response p~(zg) due to a surface source wave field s*(z) is obtained by applying a
wave propagation operator W+ followed by a reflection response operator X(z;) and a wave propagation operator
W~ to bring the wave field back to the surface.

L‘ k™ shot—————1

Figure 4.6  Corresponding columns in the source data matrix S and the detector wave field matrix P relate
to the same shot location.
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So for a multi-shot experiment the forward model becomes:

P (z) = W(zgy2) X(z) W'(z,2) S™(z) - @7
This equation describes the forward problem for a number of surface experiments where each

source wave field s*(z) causes a reflection response p~(zy) from the target zone. If some
special acquisition parameters are present these may be incorporated in a detector matrix D(zg):

P (z,) = D(z) W (z,2) X(z) W'(z,2) S"(z;) - (4.8)

If an array of geophones is used per station to suppress ground roll, the acquisition matrix
becomes a band matrix instead of a diagonal matrix. However, since the emphasis is on the
redatuming problem, the acquisition matrix will not be considered further on. We will assume
that D(zg) and S*(z) are diagonal matrices.

For the migration the reflectivity matrix R(z) should be determined for every depth level. In the
redatuming application the target response X(z;) should be obtained for one depth level from the
surface data. So the forward problem should be inverted for. The target reflection response
X(z;) should be extracted from the surface data P(zy) by inverting (4.8).

4.2 THE TARGET RESPONSE X

In the redatuming the response from the target zone denoted by X(z;) should be obtained from
the surface data. This response as it appears in the forward problem will be examined more
closely.

The reflection response describes the relation between a down going incident wave field
s*(z;) and the up going reflected wave field p~(z;):

P (2)=X(z)s'(z) . (4.9)

For the case of a single reflector at z; and a homogeneous halfspace below z;, X(z;) corresponds
to the reflectivity properties R(z;) of the reflector. The reflection is defined as the relation
between the incident wave field and the reflected wave field:

P (z)=R(z)s'(z) . (4.10)
If the reflectivity does not vary laterally the above equation may be written as

P (x,2,0) = R(x,z,0) * $*(x,z,0) . (4.11)

The reflection is written in terms of a spatial convolution (along the x-coordinate) of the
reflectivity operator and the illuminating wave field. If the reflection operator is transformed
from the space frequency domain to the wavenumber frequency domain by applying a Fourier
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transform to R(x,z;,®), then each element of R(k,,z;,®) corresponds to a plane wave reflection
coefficient:

P (k,z,0) = R(k,,z,0) §'(k ,2,0) . (4.12)
R(k,,z;,®) is the plane wave reflection coefficient for an angle of incidence a, according to
. kx
sin @ = —k—
and
k=2
c

For one specific frequency R(k,,z;,®) is shown in figure 4.7. The reflected wave field is
obtained by applying a plane wave reflection coefficient to each plane wave. If the reflection
operator is applied in the x domain instead of the plane wave domain, R(k,,z;,®) should be
transformed to the space domain. In figure 4.8 the transformed R(x,z;,®) is shown. This
operator should be spatially convolved with an incident wave field in order to obtain the
reflected wave field (see equation 4.12). Each function R(x,z;,w) represents one row of the
reflectivity matrix in equation 4.10. Note that if the reflector is assumed to be locally reacting,
the reflection operator R(x,z;,00) becomes a spike.

S

0 ky —»

Figure 4.7  The reflectivity R(k,,®;) is very similar to the plane wave reflection coefficient as a function
the angle of incidence. The center of the horizontal axis correponds to normal incidence. The points where the
reflectivity function reaches 1 correpond to critical reflection. The points at which the function drops below 1
again are the 90° angle of incidence points.
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el Ty

Figure 4.8 The reflectivity operator R(x,@ ;) should be applied as a convolution operator to the data.

For a far more rigorous description of the concept of reflection in terms of convolution the
reader is referred to Berkhout (1982).

In the above a single reflector is assumed at the target level. However, in general the target
zone response is more complicated. For the forward model this response X(z;) could be
obtained through some modeling procedure. As discussed in chapter 2, the Kirchhoff integral
can be used to model the wave propagation. However, in chapter 2 the discussion is focussed
on modeling of propagation through the medium. The known wave fields are at one depth level
whereas the unknown wave fields are at another depth level. For modeling the reflection
response X(z;) of the target structures both the down going wave field and the up going wave
field should be modeled. A one-way approach is chosen so mqltiples are not included.

P~ = | = " das . .
(r,.0) - 5 o G (r,rA,co) S (4.13)

r and r, are on S, where S represents the datum just above the target.
In figure 4.9 the Green’s function for some medium is shown. Note that the Green’s

oF { T R S AU

function G-(r,r,,®) represents an up going scattered wave field arriving at rin S, related to a
downward radiating source at rp on S (figure 4.9). Expression 4.13 states that the up going
wave field at r, on S is obtained by applying the Kirchhoff integral to the down going wave
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Figure 4.9 The target response X(z;) may be written in terms of Green’s functions G~

field on S. If the surface S is planar, equation 4.13 may be modified. As discussed in chapter 2,
both terms in the above Kirchhoff integral become identical so

_ 1 (1 0G (x',y',X,,¥ ,,Z.,®)
P (x,¥02,0) =—— | =[P (x,y'z,,0) ATATST T dxdy' (4.14)
27t s p an
or in matrix notation
p(z)=X(z)p'(z) . (4.15)

where the rows of X(z,) are given by the Green’s function G- according to equation 4.14.

4.3 THE REDATUMING

In the redatuming the objective is to obtain the target reflection response X(z;) at the new datum
from the surface data. From the previous relation it follows that the illuminating wave field
W+(z;,29) S*(z) has to be inverted for as well as the upward propagation W-(zg,z;). The
redatumed reflection response is given by (figure 4.10).

. .
<
.

P [w‘l_1 P [w*s*]_1

Z; Zo

Figure 4.10 The redatuming in terms of matrix operations.
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Figure 4.11 The matrix operations for the redatuming involve an inverse extrapolation per CSG and a
source wave field extrapolation per CRG. )

Figure 4.12 In redatuming per shot gather each shot is processed separately. Addition of all partial
redatuming results will yield the same response as as in figure 4.11

X(z) = [W'(z(,.zi)]_1 P(z) [W+(zi,z0) S+(z(,)]_1 . (4.16)
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The inverse extrapolation operator W-1 has been discussed in the previous chapter. In the
relation above [W—(zg,z;)]-! P-(zy) describes the elimination of the overburden wave
propagation effects for the reflected up going wave field. The registered wave field is inversely
extrapolated down to the target zone. Since this matrix multiplication involves operation on the
columns of P-(z;) (figure 4.11) this inverse extrapolation is carried out per common shot gather
(CSG). The other part of the right hand side of equation 4.16 P~(zy)[((W*(z;,zg) S*(zg)]"!
involves dot products of the rows of P~(zy) with the columns of [W+*(z;,zg) S*(zg)]-1. So this
matrix multiplication which represents inversion of the illuminating wave field involves
processing per common receiver gather (CRG). In the redatuming procedure proposed by
Berryhill (1984) the inverse extrapolation per CSG and CRG also occurred. In practice this is a
problem (especially for the 3-D case) since it involves changing the data organization during the
processing. The data volume is quite large so this data reordering should be avoided. In the
matrix notation the previous relation can easily be written in terms of processing per common
shot gather. If we have only one shot record, the data matrix P (zp) is zero except for the ki

SHOTS I_J::"‘_ r
. | sHots 7|
\L_\ t \\
%"‘ __//\
’\ — = REDATUMING

o || 1@“

ACQUISITION
l =/ = =
Z - l t

REDATUMED ZO SECTION

Figure 4.13 The shot record redatuming involves a redatuming of each shot separately followed by an
addition of all the redatumed shot data.
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SHOT
RECORDS

extrapolate
source
wave field

extrapolate
detected NEXT
wave field SHOT
NEXT
FREQUENCY

correlate
extrapolated
wave fields

add to
redatumed
shots

. REDATUMED
SECTION

Figure 4.14 Flowchart for the shot record redatuming process.

column corresponding to the shot location x,. Applying the previous relation results in a
redatumed section for only one surface shot record:
-1 -1
X(z) = [W‘(zo,zi)] P (z) [W+(zi,z0) S+(zo)] . 4.17)
Repeating this procedure for each shot record and adding the results, gives the redatumed
reflection response. For many different shot locations this single shot record redatuming is

given by

X=X1+X2+...+X +...+X (4.18)

k N’



104 4. THE REDATUMING

0
X(z) = ]:W_(zo,zi)]_l [P(_)(zo) +.. 4Pz ... + P;‘(zo)] [W+(zi,zo) S+(zo)]—1 . (4.19)
or
X(z) = [W'<z ,ZJ]_I P7(z) [W+(szo) S+(Zo>]_1 ; (4.20)

in which the data matrix P (zy) contains zeros except for the kt column corresponding to shot
position x; (see figure 4.12). This relation is equivalent to the multi shot redatuming relation, so
a processing per common shot gather in the redatuming procedure should be feasible. The
procedure is shown schematically in figures 4.13 and 4.14. If the number of shot locations at
the surface is less than the number of shots at the new datum the problem is ill-posed. Few
surface registrations can not give a correct reflection response for many points at the new
datum.

In conclusion, a wave propagation model together with sufficient surface shot records allows
for the construction of a zero offset section (diagonal of X) or a set of common shot gathers
(columns X) at a new datum. Furthermore the redatuming procedure allows for processing per
surface shot record. The zero offset section which is obtained with redatuming is a true zero
offset section. Unlike the conventional CMP stacking process, no hyperbolic assumptions are
made about the move out curve. In the redatuming the move out elimination is based on the
wave equation and the interval velocity model. The zero offset section is therefore truly zero
offset.

4.4 REDATUMING WITH THE FULL KIRCHHOFF OPERATOR

The redatuming process as discussed in the previous section assumes Rayleigh type of
extrapolation operators. Only the acoustic pressure wave field is considered in the extrapolation.
If the full Kirchhoff integral is applied, both the particle velocity and the pressure of the wave
field should be extrapolated. The operator matrices and data matrices should contain the data and
operators related to both wave field variables P and V,. In matrix notation the matrices
containing the wave field should consist of two submatrices containing the pressure data and the
normal component of the particle velocity data:

or S I (4.21)

The extrapolation operator for this data matrix consists of 2x2 submatrices
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| 1+ 1~ ) Q—
) Wep | 2 Wy 2 Wpp | 2 Wy
or
| 1+ S 1 -
7W I EWVV 5WVP I 5WW

The submatrix Wpp represents the P to P extrapolation operator. Wpp corresponds to the first
term of the integral in equation 2.11. The Wpy represents the V, to P extrapolation operator.
This corresponds to the second term of the integral in equation 2.12. Wyp is the P to V,,
extrapolation operator and Wyy is the V, to V,, extrapolation operator based on the integral

equation in relation ....... The full Kirchhoff extrapolation of the pressure and particle velocity
is achieved with the following matrix multiplication.
. 1 w+ 1 W+ +
P(z) 7 Wep(zozg) 1 5 Wpy(z,2) P'(z)
+ 1 1 +
V_(z) 5 Wipz,z) | o L AN v (z)
Note that this equation describes the downward extrapolation. A similar equation holds for the
upward extrapolation.
The target response X as defined in section 4.3 should also be built up from four submatrices.
Xppz) | Xpy(z)
X(z) = . (4.23)
Xupz) 1 Xy(2)

Each submatrix represents the pressure or particle velocity response for a pressure or particle
velocity input. With Xpp, Xyv, Xpy and Xyp, the response of the target for a wave field
described in terms of pressure distribution and particle velocity is defined. The four responses
however are not independent because for a given wave field, P and V,, are not independent. The
forward model for both P and V, becomes (figure 4.15):
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Figure 4.15 Forward modeling of the seismic surface response in terms of Pand V.

1,- 1 1.+ 1+

PG| |2V | TV ([Xpp(z) | Xpy@) ]| 2V0r | TVev | |P7(2))
- . (4.24)
- 1— 1 Xupz) | Xyoz) || 1t | 1o+ +
V. (zp) EWVP I vav VP Vs 5WVP I —2—WVv Vn(ZO)
where
P(z)
is the up going wave detected field at the surface and
RACY
) (zy)
is the down going source wave field at the surface.
+
LV" (ZO)
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For notational convenience we omitted the arguments (z,,zy) and (zg,z;) in the downward and
upward extrapolation operators, respectively.

However, finding both Xpp and Xyv and the cross terms Xpy and Xyp from the down
going source wave field P+ and the up going wave field P- on the new datum is not trivial. I
have not found a way to construct the four dependent responses Xpp, Xyy, Xpy and Xyp from
the up going and down going P and V,, at the new datum for any geometry. If the cross terms
Xpv and Xyp could be eliminated, the reconstruction of Xpp and Xyy would be straightforward
as will be shown below.

If the new datum would be a planar surface, assuming one-way wave fields, the dependency
between Xpp, Xyy, Xpy and Xyp could be expressed explicitly, without any knowledge about
the actual wave field. In chapter 2 it has been shown that for one-way Green’s functions the
contributions for both terms in the Kirchhoff integral are identical in case of integration over a
planar surface. In analogy with the derivation of equation 2.30 and 2.31 from 2.11, we may
therefore write equation 4.24 as

1~ 1 - 1__+ | S
PG| (2 ' W [ [Xppz) 1 0 ]{ZVer | TVVev || P()
=] e e e | (425
- 1___ 1 0 I Xgu@) | 1, + 1+ +
Vie | 3% | 5Way DAWE L S, 1w | Vatey)
For the redatuming the following equation should be solved
P)| [Xpz) | 0 P'z)
| = , (4.26)
- X
Viz) 0 1 XwWE] v
where
-1
- ! W, | L W, -
P(z) 2 "'PP A 2% P (zo)
- 4.27)
- 1. 1. -
Vie)|  |sWe 1 swo | Vi)

and
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1

* =W, 1 =W, +
P (zs) 2 PP 2 PV P (zo)
_ (4.28)
+ 1__+ 1__+ +
Vi@ [SWe 1 aWh | |V

Hence, Xpp(z,) is resolved from the downward extrapolated wave fields P-(z,) and P+(z),
according to

X,pp(z) = P(z) [P )1 . (4.29)

Similarly, Xyvy(z) is resolved from the downward extrapolated wave fields V,—(z,) and
V,*(z,), according to

Xyy(z) =V (2) Vi) . (4.30)
The P to P response Xpp at the new datum z; should be reconstructed from the inverse
extrapolated source wave field P+(z;) and the inverse extrapolated detected wave field P~(z;).
This is similar to the procedure for the redatuming of P only, which has been discussed in the

previous section. The V to V, response Xyy is reconstructed similarly from the particle
velocities V+,(zi) and V- (zi) at the new datum.

4.5 APPLICATION OF REDATUMING IN LAYER REPLACEMENT

The redatuming process is primarily intended for bringing the acquisition surface down to the.
target area. However, if the main interests are the general geological features in the whole
subsurface instead of only a small area, the datum should be the surface. However, especially in
the case of marine data, an undulating sea floor may result in a distortion and disruption of
reflection events from the underlying structures. Yilmaz and Lucas (1986) suggested the use of
pre-stack redatuming to eliminate the water layer and to replace it by a layer with a velocity
similar to the velocity in the shallow structures. This is accomplished by inverse extrapolating
the detected data and the source data to the sea floor taking the wave propagation velocity in
water. Next, the inverse extrapolated wave fields are forward extrapolated to the acquisition
datum with a velocity which is close to the velocity of the first layer. The extrapolated wave
fields are then used to reconstruct shot records. The distortion from the irregular water-bottom
has now been eliminated in the surface data. The stacking process may yield a better result after
the layer replacement.
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4.6 REDATUMING AND MIGRATION

In this section the relation between migration, redatuming and focussing analysis will be
discussed. In seismics the migration is used to obtain an image of the reflectivity everywhere in
the subsurface. The focussing analysis is a technique to verify if the migration velocities used in
the migration process are correct. The migration and redatuming have many similarities (figure
4.16). In the migration, in order to image the reflectivity at a certain depth, the wave
propagation effects for the shallower structures are eliminated. By taking the ratio of the up
going wave field and the down going incident wave field at a depth, the reflectivity is estimated.

Eliminate
propagation

imaging
condition

Redatumed section Migrated section

Figure 4.16 In both redatuming as well as depth migration an elimination of overburden wave propagation
effects takes place followed by an imaging step.

A more commonly used imaging condition is the correlation of the down going wave field and
the up going wave field at t = 0 s. This imaging condition is stable. In redatuming the process is
very similar. The wave propagation effects for the overburden are eliminated as well. The
imaging condition however should not result in the reflectivity at a single depth, but the full
response for the lower structures. The ratio of the down going wave field and the up going
wave field results in the reflectivity for t = 0 s and the response of the lower structures at
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3000 m/s

Figure 4.17 Both depth migration and redatuming are carried out with the surface reflection data for both
reflectors. The new datum coincides with the first reflector.
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Figure 4.18 True zero offset time section obtained with redatuming to the first reflector (again has been
applied to emphasize the reflection from the second interface).
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t >0 s. For a simple medium this is shown in figure 4.17. A pre—stack redatuming is carried
out at the level of the second reflector. A zero offset section after redatuming is shown in figure
4.18. The first reflector occurs at t = 0 s. In the redatumed section sources and receivers are
located at the new datum on top of the reflector. The travel time for the reflection response is
therefore zero seconds. The second reflector occurs at the two way travel time. In the migrated
section (figure 4.19) the vertical axis is depth instead of time. The reflectivity is obtained for
every depth level in the subsurface. Whereas in the redatuming the amplitude of the second
reflector is determined by both the propagation effects and the reflection properties.

0.0

0.2

08

M

DL
I

T

The focussing analysis was first discussed by Yilmaz and Chambers (1984). However, they
used time migration which does not result in an correct image in depth for laterally varying
media. In 1986 Faye and Jeannot presented a paper where they used the focussing analysis with
depth migration. In the focussing analysis the imaging condition is similar to the condition used
in the redatuming process. After the correlation of the down going wave field and the up going
wave field the whole result is used instead of only the zero time sample. By doing this analysis
at a certain lateral position for every depth as shown in figure 4.20, as discussed by Cox in the
TRITON reports (1987, 1988), a verification of the macro model may be carried out. In case of
a correct velocity model, all energy should be concentrated around the zero time line. From the
deviations of the focus energy from the zero time line a model update may be derived. For
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Figure 4.20 For the focussing analysis vertical new datum could be taken. If the interval velocities are

incorrect the maximum reflection event does not occuratt=0s.

simple horizontally layered media an analytical relation between model error and incorrect

imaging position may be derived.

For more complex media iterative update procedures should be used. So redatuming to a
vertical datum results in the focussing panels, which are used in the focussing analysis.
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APPLICATION OF THE REDATUMING

In this chapter the redatuming procedure, which has been discussed in the previous chapter has
been applied to both synthetic data examples as well as a real data set. In the first section of this
chapter the effects of a limited geophone spread and geophone sampling on the redatuming
result are investigated. It is very interesting to study what information the registered data
contains about the subsurface before interpreting the redatumed data. )

In the next sections redatuming examples for synthetic data are discussed. The first synthetic
example involves a single interface overburden with steep dips and strong lateral velocity
variations. Through finite difference modeling synthetic data is obtained. The surface data is
brought down through redatuming.

In the second synthetic example finite difference data has been modeled for a dome structure.
Redatuming is carried out to obtain a true zero offset section for the structures below the dome.
Finally in the last sections a real data example is discussed. The data was obtained through
physical modeling in a water tank. The overburden for this model consists of a dome structure
and a faulted structure. The redarumihg is carried out to obtain an undistorted zero offset section
of a deep planar reflector.

5.1 THE EFFECTS OF GEOPHONE SPREAD AND SPATIAL SAMPLING
ON MIGRATION AND REDATUMING

In practice the geophones are spread out over a limited distance. So not all of the reflected wave
field is registered at the surface. Furthermore the distance between the geophone stations and the
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individual shot location is not always according to the spatial sampling Nyquist criterion. The
number of geophone stations and the station spacing are strongly related to the costs of a
survey. However, if insufficient geophone stations are used some data may be lost. The
geophone spread is related to the angular illumination of the reflectors in the subsurface. The
reflectivity as a function of incidence, which is investigated in amplitude versus offset
techniques may give detailed information on the density and velocity structure at the reservoir,
However, these techniques fail if insufficient angular illumination is available. Therefore the
angular reflectivity which is available in the data given the subsurface structures and the
geophone spread should be examined.

For the subsurface geometry from figure 5.1 the geophone spread and sampling have been
varied. Sources and receivers are located at the surface. A redatuming to the level of the reflector
is carried out for each of the acquisition configurations. Of course the effects of different
geophone spreads and sampling depends on the subsurface geometry. It is not possible to give
explicit analytical relations between some surface spread layout and the resulting effect after
migration for a reflector at one kilometer depth, which holds for every subsurface structure. The
dip and curvature in the overburden will strongly effect the wave propagation. However the
experiments shown in this section should give some idea as to how different spread
configurations may effect the image of a reflector in the subsurface after migration or
redatuming. In terms of the response matrix X as defined in the previous section, different parts
of this matrix are obtained as output from the redatuming. Since the redatuming occurs at the
level of a reflector with no reflections occurring from deeper structures the response matrix X is
equivalent to the reflectivity matrix R. Either the diagonal of the R matrix, a zero offset section

; fc= 150
I s

Figure 5.1  The effect of cable truncation and acquisition geometry on redatuming is examined with the
above subsurface model.
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is considered, or a single row of the response matrix is regarded. The zero offset section relates
most strongly to what an interpreter would like to have as output. However it contains not all of
the available reflection information. A single row of the response matrix contains information
about the reflection as a function of the angle of incidence. So a row of R should tell use about
the angular illumination of the reflector for some surface acquisition configuration. This is very
important information since amplitude versus offset techniques use the angular reflection
properties to estimate the lithological properties. If the angular illumination for a certain reflector
is insufficient amplitude versus offset techniques will not give an accurate estimate of the
lithologic parameters. In the experiments the row of the response matrix R will be presented in
the wave number domain. In this domain each element of R corresponds to a plane wave
reflection coefficient. In the space domain the R matrix is a reflectivity operator in terms of
convolutions which is very hard to interpret. In figure 5.2 the reflectivity for an interface
between a 1500 m/s and a 3000 m/s layer is shown. The frequency is along the vertical axis.
The wave number is along the horizontal axis. All straight lines going through the origin
correspond to constant angle of incidence. Furthermore the figure is symmetrical in the vertical
axis since the reflectivity for an angle of incidence of +o° is the same as the reflectivity for-a".
A cross section for constant frequency is also shown in figure 5.2. The horizontal axis is k, but
can also be interpreted as the angle of incidence according to

k
RS
-

The figure corresponds to the familiar plane wave reflection as a function of the angle of

sin o, = (5.1)

incidence.

In the first set of experiments a split spread configuration is used. The spread length is varied
from 3000 m to 200 m as is shown in figures 5.3a through 5.4c. The limited spread means that
far offsets are not recorded. Therefore only a limited dip of the wave field is recorded. A high
angle of incidence on the reflector would cause the reflected wave field to arrive at the surface
beyond the last geophone. A row of the R matrix, obtained after the redatuming will be
presented in the wave number domain. The figures should give a clear indication which angular
reflection coefficients are resolved by the migration process. Figures 5.5 through 5.10 show the
resolved reflectivity functions for the migration of a 3000 m geophone spread through a 200 m
geophone spread. For the maximum spread length the reflection coefficient is fully resolved by
the migration process. A cross section of the migrated data for 30 Hz is depicted in the figures
as well. The dashed line corresponds to the migrated data and the solid line is associated with
the analytical solution. Beyond k, = @/c (90°) the reflection coefficient is unresolved because
the inverse wave propagation does not handle the evanescent waves properly. This is the case
for all commonly used migration algorithms. For the propagating waves the migration results
matches the analytical solution quite well. Some ringing occurs due to aperture truncation. As
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Figure 5.2  The analytical reflectivity for the reflector from figure 5.1 in the k,-@ domain. The lower

figure is a horizontal cross section at 30 Hz showing the plane wave reflection coefficient as a function of the
angle of incidence according to sin a = k,/k.
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Figure 5.3  The cable length has been varied from 3 km in (a) to 1.5 km in (c)- A redatuming is carried
out to the reflector at 500°'m depth.
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Figure 5.4
out to the reflector at 500 m depth.
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The cable length has been varied from 1 km in (a) to 200 m in (c). A redatuming is carried
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The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from
figure 5.3a. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as a
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Figure 5.6  The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from

figure 5.3b. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as

a dashed line.
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The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from

figure 5.3c, In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as a
dashed line,
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Figure 5.8  The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from

figure 5.4a. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as a
dashed line.
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Figure 59  The reflectivity at SO0 m depth obtained after sedatuming for the acquisition geometry from
figure 5.4b. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as
a dashed line,
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Figure 5.10 The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from
figure 5.4c. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as a

dashed line.
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Figure 5.11 The reflector depth has been varied from 100 m in (a) to 500 m in (c). A redatuming is
carried out to the reflector.
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Figure 5.12 The reflector depth has been varied from 750 m in (a) to 1 km in (b). A redatuming is carried
out to the reflector.
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Figure 5.13 The reflectivity at 100 m depth obtained after redatuming for the acquisition geometry from
figure 5.11a. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as
a dashed line.
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Figure 5.14 The reflectivity at 250 m depth obtained after redatuming for the acquisition geometry from
figure 5.11b. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as
a dashed line.
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Figure 5.15 The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from
figure 5.11c. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as

a dashed line.
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Figure 5.16 The reflectivity at 750 m depth obtained after redatuming for the acquisition geometry from
figure 5.12a. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as

a dashed line.
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Figure 5.17 The reflectivity at 1 km depth obtained after redatuming for the acquisition geometry from
figure 5.12b. In the lower figure a cross section at 30 Hz is compared with the analytical reflectivity shown as

a dashed line.
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Figure 5.18 The geophones are taken only to the left hand side of the source. Therefore only the wave field
which is reflected from the left to the right is registered.

the spread length is reduced the maximum angle of reflection which is resolved by the migration
process decreases. For the minimum spread length the migration result is distorted. Reflection
coefficients other than normal incidence are hardly resolved. A geometrical analysis shown in
figures 5.3 and 5.4, which is basically a high frequency approximation, confirms the results.

For the second set of experiments the depth of the reflector has been varied (figures 5.11 and
5.12). For a fixed spread length an increasing reflector depth results in a decreasing angular
illumination. Therefore the maximum angle of the plane wave reflection coefficient which is
resolved by the migration will decrease for deeper reflectors. Figure 5.13 shows the migration
results for a reflector depth of 100 m. The spread length is 2000 m symmetrical around the
source. The reflection coefficients are fully resolved for the propagating waves. As the reflector
depth is increased the maximum angle decreases (figures 5.13 through 5.17). Also the effect of
ringing due to aperture truncation becomes more pronounced. For a reflector depth of 1000 m
plane wave reflection coefficients up to 26.6° are resolved. This corresponds to the geometrical
analyses shown in figures 5.11 and 5.12.

For the third set of experiments the spread is arranged a-symmetrical around the source. In
figure 5.18 the acquisition geometry is shown. A geophone spread with offsets from O to
~1000 m has been used for the redatuming to the reflector at 500 m depth. For this experiment
the wave field is always reflected from the right to the left. Therefore only negative angles of
incidence are present in the data. So onI)" the left part of the reflectivity information in the k,—®
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Figure 5.19 The reflectivity at 500 m depth obtained after redatuming for the acquisition geometry from
figure 5.18. Only half of the reflectivity information is resolved.
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Figure 5.20 A-symmetrical geophone spreads are used in the modeling. The cable length is shortened by
reducing the maximum offset to the left of the source.
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Figure 5.21 A-symmetrical geophone spreads are used in the modeling. The cable length is shortened by
increasing the minimum offset while keeping the maximum offset constant.
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Figure 5.22 The reflectivity information after redatuming to the reflector at 500 m depth. Due to the a-
symmetrical spread in figure 5.20a the resolved reflectivity is a-symmetrical as well.
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Figure 5.23 The reflectivity information after redatuming to the reflector at 500 m depth. Due to the a-

symmetrical spread in figure 5.20b the resolved reflectivity is a-symmetrical as well.
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Figure 5.24 The reflectivity information after redatuming to the reflector at 500 m depth. Due to the a-
symmetrical spread in figure 5.20c the resolved reflectivity is a-symmetrical as well.
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Figure 5.25 The reflectivity information after redatuming to the reflector at 500 m depth. Due to the
increasing minimum offset (figure 5.21a), the reflectivity for low angles of incidence is not resolved.
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Figure 5.26 The reflectivity information after redatuming to the reflector at S00 m depth. Due to the
increasing minimum offset (figure 5.21b), the reflectivity for low angles of incidence is not resolved.
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Figure 5.27 The reflectivity information after redatuming to the reflector at 500 m depth. Due to the
increasing minimum offset (figure 5.21c), the reflectivity for low angles of incidence is not resolved.
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Figure 5.28 In the acquisition configuration from figure 5.3b the spatial sampling has been increased to
15 m (a) and 20 m (b). For high frequencies aliasing occurs and the maximum angle of incidence for the
reflectivity is decreased.
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Figure 5.29 In the acquisition configuration from figure 5.3b the spatial sampling has been increased to
50 m (a) and 75 m (b). Aliasing occurs, so the reflectivity may only be resolved for small angles on
incidence.
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domain has been resolved as is shown in figure 5.19. For the geometries shown in figure 5.20
and 5.21 the following offset ranges have been chosen: —750 — 1000 m, —500 — 1000 m, -250
— 1000 m, 0 — 1000 m, 250 — 1000 m, 500 — 1000 m. The redatuming results are shown in
figures 5.22 through 5.27. The results show very nicely how, depending on the acquisition
configuration different péns of the reflectivity information are resolved from the data by the
redatuming or depth migration. This means that the zero offset data will be different as well. For
complex overburdens, the wave propagation through this overburden may cause the angular
illumination of the target zone to change laterally. Imaging conditions which do not incorporate
this effect may result in a distorted zero offset section. For this thesis this effect has not been
studied. I would suggest further research into this interesting subject.

In the last set of experiments the spatial sampling interval has been varied. If the spatial
sampling criterion is violated the maximum plane wave reflection coefficient which is resolved
from the migration will be less than 90°. In figures 5.28 and 5.29 the redatuming results for a
spatial sampling increment for 15 m, 30 m, 50 m and 75 m respectively are shown. No spatial
anti-aliasing filtering has been applied. For the high frequencies the maximum angle for which
the reflectivity is resolved decreases for increasing spatial sampling distance. For low
frequencies however, the full angular reflectivity may be resolved from the data. In the space
time domain the data is distorted because the aliased data is not separated from the unaliased
data.

From these experiments we can conclude that the acquisition configuration which is chosen,
is related to the information which may be extracted from the data. The use of relatively
expensive true amplitude wave field extrapolation operators is not sensible, if incomplete data is
recorded because of insufficient surface coverage.

5.2 STRONG DIP IN LATERAL VELOCITY VARIATIONS, A SYNTHETIC
EXAMPLE

The redatuming procedure discussed in the previous example has been applied to the data
generated for the model shown in figure 5.30. The model is geologically not very feasible.
However, various features such as steep dip and strong lateral velocity variations are present in
this model. The effects resulting from these features may be studied in this model. The detectors
are placed from 0 m to 2500 m at the surface. A dipole source with a signature shown in figure
5.31 is placed at the surface. The shot spacing is 10 m with the first shot at 0 m and the last shot
at 2500 m. Finite difference modeling has been used to obtain the synthetic data. All model
boundaries, including the surface have been taken reflection free. The zero offset section for this
model is shown in figure 5.32. The dcépest reflection is distorted because of the overburden
wave propagation effects. This makes interpretation of the response from this reflector difficult.
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Figure 5.30 Macro model with strong lateral velocity variations and steep dips in the overburden. The
surface data is redatumed to the new datum at 600 m.
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Figure 5.31 Source signature which has been used in the modeling of the surface data for the subsurface

model from figure 5.30.
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Figure 5.37 A ray path in the model from figure 5.30 indicating the internal reflection in the top
reflector.

resulting in an undistorted back propagated wave field. The additional event shown in figure
5.35 could therefore well be such an internal reflection in the top reflector. Therefore the full
Kirchhoff integral should be applied in the case of high velocity contrasts and strong lateral
velocity variations in the overburden. However if reflection energy is not registered because of a
limited cable length, smiles will occur in the redatumed result. All effort which is put in using an
operator which preserves the amplitude information may be lost because of these distortion.

5.3 DOME STRUCTURE, A SYNTHETIC EXAMPLE

For this example a model of a dome structure has been chosen (figure 5.38). This type of
structure typically occurs in the North Sea. For the modeling an acoustic finite difference
modeling scheme has been used. The model has been compressed vertically to reduce
computation time for the modeling. The acquisition parameters are listed below

Shot spacing: 25m

Group spacing: 15m

Number of channels: 511

Number of shots: 201

Near offset: Om

Far offset: 5000 m

Sample interval: 6 ms (resampled)

Trace length: 3s
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Figure 5.38 The redatuming is used to improve the quality of the reflection from the reflector at 2500 m
for this dome structure. The new datum is at 2250 m.
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Figure 5.39 The source signature used in the finite difference modeling of the surface data for the model
from figure 5.38.
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Shot spacing: 24384 m

Group spacing: 24.384 m
Number of channels: 48

Number of shots: 296
Configuration: Entel spread
Near offset: 24384 m

Far offset: 13899 m
Sample interval: 4 ms (resampled)
Trace length: 2s

In the stacking velocity analysis the CMP gathers stacked for a wide range of stacking
velocities. Unfortunately, the offset range is too small to determine the correct stacking
velocities. The data has been stacked for different constant stacking velocities. The results are
shown in figures 5.42, 5.43 and 5.44 in which the stacked sections for stacking velocities of
3000 m/s, 3500 m/s and 4500 m/s are shown. All major events are present in all sections.
Stacking with different velocities resulted in a constructive stacking of the events along the
move-out curves. This gives us an indication that only little velocity information is available in
the data. In order to obtain a macro model for the data, pre-stack travel time inversion has been
used. In this procedure an interval velocity model is automatically modified to produce a better
match between model travel times and measured travel times. An interpretation of the stacked
section has been made to determine the major reflection events. Note that the event between 1.
and 1.1 s to the left and right of the dome has a negative polarity. So a velocity inversion occurs
at the interface corresponding to this event. In order to obtain pre-stack travel times 17 CMP
gathers have been selected of which 8 are shown in figures 5.45 and 5.46. In each of the CMP
gathers the events related to the interpreted time horizons in the stacked section are picked. The
pre-stack travel time picks are shown in figures 5.47 and 5.48. The vertical bars in these figures
indicate at which offsets the travel times have been picked. Furthermore, the height of these bars
indicate the uncertainty in the picks. Due to noise and picking inaccuracy, the travel time picks
may be off several milliseconds. The pre-stack travel time inversion procedure uses the
interpretation and the travel time picks to estimate the macro model. So the position of the major
reflectors and the interval velocities should be estimated. For an extensive discussion on the
pre-stack travel time inversion, which has been used the reader is referred to Van der Made
(1987).

The estimated macro model is shown in figure 5.49 together with the zero offset rays. In
order to assess the correctness of the macro model the data mismatch should be analyzed. In the
diagram for the model driven processing shown again in figure 5.50, the data mismatch analysis
corresponds to the quality control procedure. Before carrying out the computationally expensive
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Figure 5.42 A constant velocity stack (3500 m/s) of the water tank data. Curtesy Marathon Oil company.
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Figure 5.44 A constant velocity stack (4500 m/s) of the water tank data. Curtesy Marathon Oil company.
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Figure 5.45 The CMP gathers at CDP locations 100, 150, 200 and 250. The gathers have been plotted
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Figure 5.47 The picked travel times from the CMP gathers 100, 150, 200 and 250 which have been used
in the macro model estimation.

redatuming the correctness of the macro model is verified. For different CMP gathers, the data
mismatch is shown in figures 5.51 through 5.54. The measured travel times are depicted as
solid lines and the modeled travel times, depicted as dashed lines, are shown for each event.
The modeled travel times are obtained by ray-tracing in the estimated macro model. If the
modeled travel times and the measured travel times coincide, then the estimated model explains
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Figure 5.48 The picked travel times from the CMP gathers 300, 350, 400 and 450 which have been used
in the macro model estimation. Eight out of the 17 CMP gathers which have been used are shown in these
figures. '

the data. The redatuming has been applied to the shot gathers taking the estimated model as the
macro model. The new datum has been chosen at a depth of 3 km. The source wave fields and
the registered wave fields have been recursively extrapolated from the surface to 3 km depth, the
new datum. The true zero offset section at the new datum is shown in figures 5.55 and 5.56.
Both the full Kirchhoff operator has been applied (figure 5.55) as well as the Rayleigh operator
(figure 5.56). The response from the deepest reflector is now horizontal. The pull up due to
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Figure 5.49 The estimated macro model from the picked travel times. The zero offset rays are shown o
give an indication of the CMP coverage. The interval velocities are indicated inside the layers.
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Figure 5.50 In the model driven processing the macro model is estimated separately from the actual
processing. Through quality control the accuracy of the macro model is assessed.
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Figure 5.51 The modeled travel times (dashed lines) and the measured travel times (solid lines) for CMP’s
50, 100, 125 and 150. Since measured and modeled travel times coincide the data is explained by the estimated
macro model.
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Figure 5.52 The modeled travel times (dashed lines) and the measured travel times (solid lines) for CMP's
175, 200, 225 and 250. Since measured and modeled travel times coincide the data is explained by the
estimated macro model.




5. APPLICATION OF THE REDATUMING 165

CMP _ 9,34625 —-=> off -
9 122 336 371 772 gpfset () 8954 o MR ,J037868, 3767 Wt (e o %o
0.2 0.2
22 22
o Y A |- -
o — U SRR SRUN DR P
o | ;
oy Wl
2 3 12 3
s O I g
- '-\\4\0\‘
CMP 11,4376 ——> offset -
9 12349982 e e, %0 o CMP j2esBeg, 369 7> e 695,
o2 SN ISR I U R IR s
22 \ IR— Y 0.4
T 0s 22
5s =
ol 0.8
! 55 1o |
1.0 v v
= 12 =
2 3 3
- -
C 16 2
§ == 1.4
86 B T

Figure 5.53 The modeled travel times (dashed lines) and the measured travel times (solid lines) for CMP’s
275, 300, 350 and 400. Since measured and modeled travel times coincide the data is explained by the
estimated macro model.
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Figure 5.54 The modeled travel times (dashed lines) and the measured travel times (solid lines) for CMP’s
425, 450, 475 and 500. Since measured and modeled travel times coincide the data is explained by the
estimated macro model.

lateral velocity variations in the overburden has been eliminated. To the left and right of the
dome, the reflector response is continuous and of good quality. Below the dome structure
however, the response is distorted. Either the macro model is not correct for this region or
insufficient surface data has been used. The modeled travel times did coincide with the picked
travel times, so the estimated overburden structure does explain the reflection data. Furthermore
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Figure 5.55 The true zero offset section at the new datum obtained with a Rayleigh integral based operator.

N
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Figure 5.56 The true zero offset section at the new datum obtained with a the full Kirchhoff integral based
operator.

the zero offset section at the new datum obtained with the full Kirchhoff integral is different
from the zero offset section obtained with the Rayleigh integral. The amplitude recovery of the
Kirchhoff integral based operator is much better below the dome. The high velocity contrast at
the top of the dome causes a high transmission loss which is not inverted for when using the
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Rayleigh integral. The other anomalies may be related to insufficient surface coverage. Most of
the reflection energy from the 3.5 km deep reflector may have been lost in the only 1 km long
geophone cable.

The experiments discussed in this chapter show that the redatuming eliminates overburden
wave propagation effects resulting in a true zero offset section which is superior to a surface
zero offset section. Furthermore it can be concluded that insufficient surface coverage may
result in an undesired loss of reflection information for particularly the deep structures.
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APPENDIX A

THE KIRCHHOFF INTEGRAL FOR
2-D HOMOGENEQOUS MEDIA

In this appendix the 2—-D Kirchhoff integral for homogeneous media will be derived. In the
recursive application of the Kirchhoff integral both pressure and normal components of the
particle velocity are required at each surface over which the integral is taken. Therefore both the
pressure P as well as the particle velocity V should be extrapolated. An expression for the
extrapolation of the particle velocity will be derived as well.

Consider the Kirchhoff integral for the geometry form figure A—1 (relation 2.11)

P(r A,a)) =_ ‘% J. L [P(r,m) BG(:),;A,O)) - BPZ(;I,(O) G(r,r A,(o) ds . (A-1)
3 P
For a homogeneous medium we can take an analytical Green’s function
e

G(r,r,,0)=p - > (A-2)
with
r=(x,y,z)
ra=(XaYaZa)
r=Ir—ryl
k = w/c.

After substitution in (A—1) and taken the normal pointing inward, the following 3-D Kirchhoff
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Figure A-1 Closed domain for obtaining the wave field in A from the wave field on the surface S with the
Kirchhoff integral.

integral is obtained
. —jkr —jkr
1 {1+jkr e’ . e
P(r A,co) = 21;'[ . cos ¢, - P(r,w) + jop Vn(r,m) - ds . (A-3)

S

For the 2-D approximation assume an invariant medium in the y-direction. Furthermore assume
that the wave field P(r,w) has been caused by a line source in the y-direction. Since both the
wave field and the medium are invariant in the y-direction, the integration in this direction may
be carried out for (A-3) resulting in

1 .
P(r,,0)=— J —jkm cos @, H(lz)(kr) P(r,) + wpn Hi)z)(kr) Vn(r,m) dL , (A-4)
4r
L
where Hy® and H; @ are Hankel functions of the second kind. In the recursive extrapolation

integral (A—4) is applied repeatedly. So we need the normal component of the particle velocity in
r, as well (figure A-2),

Vn(r A,co) =V(r A,o)) Smy, (A-5)
and
V(r,,0)=- L V,P(r,0 . (A-6)
Jop

Substitution of (A—6) in (A-S5) yields
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Figure A-2 Inrecursive application of the full Kirchhoff integral, both pressure and particle velocity data
should be calculated on each interface.

A" (rA,m)=—‘————.— . (A7)

For the derivatives of the Hankel functions the following can be found in Abramowitz and
Stegun (1970):

d <2) @ 1 . :
and
9 ~— H (k) = -HP(kr) A9
okr ’ (A-9)

Substitution of A-8, A-9 and A—4 in A-7 yields
X B H( o [ o8
j —jkm cos @, )~ Hy ) on. |
jopgn A

ar
kH(z)(kr)( )( )] P(r,®) — wpr H® )(kr)V(rm)( ) dL . (A-10)

A% (r o0 =

For the derivatives of r to the normal we can write

Jr
(5;) =cos @, , (A-11)

(;ﬂr:) =cos 9, (A-12)
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and

1 1
(23 [hemersa-semem].
A .

Substitution of A-11, A-12 and A-13 in A-10 yields

Voryw) = —~ J {'jk [COS 9, cos 9, ng)(kr) -
jopan
1 1 1 2
E(cos ¢, cos ¢, — 03 cos((pl—<p2) + 0 cos((p1+(p2)) H 1 (kr)] P(r,®) —

pgr cos ¢, H (k) vn(r,m)> dL . (A-14)

With A—4 and A-14 a 2-D recursive wave field extrapolation may be carried out.
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SUMMARY

One of the main purposes of seismics is to detect hydrocarbon reservoirs beneath the surface. At
the surface echo acoustical measurements are carried out. In order to obtain an image of the
subsurface, the surface measurements or downward continued into the subsurface. This is
achieved by applying back propagation operators to the surface data. In this thesis back
propagation or inverse wave field extrapolation is investigated. Special attention has been paid
to the preservation of the amplitude information in the registered wave field, when the inverse
wave field extrapolation is applied.

In the first chapter the macro model is discussed. In order to apply the inverse wave field
extrapolation the wave propagation velocity in the subsurface is required. The actual velocity
profile of the subsurface entails very detailed variations. However, the wave propagation effects
are described sufficiently well if only a sparse model of the subsurface is used. A representation
in terms of various layers with simple or constant velocity profiles is sufficient to describe the
wave propagation effects. Various modeling experiments are discussed in chapter 1 to confirm
this. ‘

For the modeling of the seismic wave propagation the Kirchhoff integral may be used. In
chapter 2 the Kirchhoff integral is derived. The frequently used Rayleigh integrals are also
discussed. The integrals may be interpreted in terms of the Huygens’ principle. This is
illustrated in a modeling experiment, in which artifacts, which occur if the Rayleigh integral is
used can be explained with the Huygens’ principle. Furthermore the role of the Green’s
function in the Kirchhoff integral is discussed. The Green’s function turns out to be a useful
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tool for obtaining a Kirchhoff integral best suited for specific acquisition geometries or
conditions.

In chapter 3 inverse wave field extrapolation operators are discussed. Application of these
operators results in an elimination of wave propagation effects. It is shown that a full Kirchhoff
inverse wave field extrapolation operator preserves the amplitude information, for inverse
extrapolation from curved interfaces in homogeneous media. For arbitrarily media the amplitude
errors are of the order of R2, where R is the reflectivity of the inhomogeneities. However, if the
full Kirchhoff integral is applied recursively the transmission effects at layer interfaces is
correctly inverted for.

In chapter 4 the redatuming procedure is discussed. This procedure allows for the acquisition
level to be brought down into the subsurface. This means that a true zero offset section or shot
records may be constructed just over a target area. The high quality zero offset section, which is
obtained with these procedure could be used for detailed stratigraphic interpretation.

In chapter S the redatuming is applied to both synthetic as well as real data sets. If
insufficient surface coverage is available due to limited geophone cable length, the response
from the target may become distorted after redatuming. However, if sufficient data is gathered
at the surface, the zero offset response from the target zone significantly improves in quality if
the acquisition surface is brought down to the target level.
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SAMENVATTING

Een van de belangrijkste doelstellingen van seismisch onderzoek is het aantonen van carbonaat
reservoirs in de ondergrond. Daartoe worden echo akoestische metingen aan het oppervlak
verricht. Om een beeld van de ondergrond te verkrijgen worden onder andere de oppervlakte-
metingen de ondergrond in verplaatst. Dit wordt bereikt door een achterwaartse golfveld
propagatie operator toe te passen. In deze thesis is deze achterwaartse propagatie of inverse
golfveld propagatie operator onderzocht. Een speciaal aandachtsgebied is het behoud van de
amplitude informatie tijdens de inverse golfveld propagatie.

In het eerste hoofdstuk wordt het macro model beschouwd. Om de inverse golfveld
extrapolatie operator te kunnen toepassen dient de propagatie snelheid in het medium bekend te
zijn. Het werkelijke snelheidsprofiel van de ondergrond is zeer gedetailleerd. Echter worden de
propagatie eigenschappen van een medium voldoende nauwkeurig beschreven met een minder
gedetailleerd snelheidsprofiel. Een representatie in termen van een aantal lagen met eenvoudige
of constante snelheidsprofielen is voldoende om de golfpropagatie eigenschappen te
beschrijven. Verschillende modelleringsexperimenten, welke in hoofdstuk 1 besproken worden,
bevestigen dit.

Voor het modelleren van golfveld propagatie kan de Kirchhoff integraal worden gebruikt. In
hoofdstuk 2 wordt deze Kirchhoff integraal afgeleid. De veelvuldig gebruikte Rayleigh integraal
wordt ook besproken. Deze integralen kunnen worden geinterpreteerd in termen van het
Huygens’ principe. Dit wordt geillustreerd aan de hand van een modelleringsexperiment, waarin
artefacten, welke ontstaan bij het gebruik van de Rayleigh integraal met behulp van het
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Huygens’ principe kunnen worden verklaard. Verder wordt ook de rol van de functie van Green
in de Kirchhoff integraal besproken. Deze functie blijkt bijzonder geschikt te zijn om als
instrument te gebruiken, dat toestaat de Kirchhoff integraal in een vorm te krijgen, die het beste
bij een bepaalde geometrie past.

In hoofdstuk 3 worden een aantal inverse golfveld extrapolatie operatoren besproken. Het
toepassen van zo’n operator resulteert in het wegnemen van golfveld propagatie eigenschappen.
Aangetoond wordt dat toepassing van de volledige Kirchhoff integraal voor de inverse golfveld
extrapolatie van een gekromde laag in een homogeen medium de amplitude informatie correct
behandeld. Voor een inhomogeen medium zijn de amplitude fouten in de orde van meervoudige
gereflecteerde golven. Indien echter de volledige Kirchhoff integraal in inhomogene media
recursief wordt toegepast, worden transmissie effecten aan laagovergangen op correcte wijze
ge€limineerd.

In hoofdstuk 4 wordt de redatuming procedure behandeld. Met behulp van redatuming kan
het acquisitie oppervlak het medium in worden verplaatst. Dit betekent, dat een echte zero-offset
sectie of schot gathers kunnen worden geconstrueerd vlak boven een interessante laag, in plaats
van aan het oppervlak. Een dergelijke hoge kwaliteit zero-offset sectie kan worden gebruikt
voor stratigrafische interpretatie.

In hoofdstuk 5 worden toepassing van de redatuming op zowel synthetische als echte
gegevens besproken. Indien onvoldoende waarnemingen aan het oppervlak zijn verricht door
een te korte geofoon kabel, kan de reflectie van de interessante lagen worden verstoord in de
redatuming. Indien echter wel voldoende waarnemingen zijn geregistreerd, kan een zero-offset
sectie worden geconstrueerd op de nieuwe datum, die beter van kwaliteit is dan de zero-offset
sectie aan het oppervlak.
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