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1

Introduction

1.1 Background

Seismic prospecting is one of the major players in the ongoing quest for oil. Sound
waves propagating through the subsurface are used to collect information on the
structure and material properties of this subsurface. Since the waves travel through
many different formations of unknown shape and composition, finding these proper-
ties is everything but straightforward. One of the reasons for this is that the problem
is not linear. The waves travelling through the subsurface are reflected back and
forth between the layers in the subsurface and interfere with each other. Therefore,
the data cannot be considered as the sum of data from many separate layers as would
be the case for a linear problem. Another problem is the matter of uniqueness. Since
the data are measured on the earth’s surface at a limited number of positions, there
is more than one solution matching the data. We call the problem where we try to
find the properties of the earth by probing and measuring it from the outside the
inverse problem.

In the 1980s the practise of geophysical data processing took a giant leap forward
thanks to the increased computer speed and memory. The current techniques enable
us to make three-dimensional images of the subsurface. Every existing processing
technique however makes its own approximations and has its own drawbacks. There-
fore the search for better and faster techniques is still very relevant. In this search
we are not only looking for ways to image the structure of the subsurface but also for
methods to recover detailed information on lithology and pore fill of the subsurface.

1.2 Seismic inversion methods

The different existing seismic inversion methods can roughly be divided into three
classes: The direct approximate methods, the iterative (nonlinear) methods and the
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direct nonlinear methods.

In direct approximate problems the nonlinear inverse problem is reduced to a lin-
ear problem by making approximations. Linear problems are mathematically much
easier to be solved. The simplest method of linearizing the scattering problem is
by using the Born approximation, as described by Morse and Feshbach [24]. Ap-
plication of the Born approximation requires the reflectivity to be sufficiently weak,
such that the transmitted downgoing wavefield is an approximation for the down-
going wavefield in a homogeneous medium. Linearized methods not only assume
small variations of the medium parameters but they also neglect multiply reflected
waves. Within the class of linearized methods many different solution methods can
be distinguished. Some methods construct a direct approximate solution of the lin-
earized equations, such as the method described by Claerbout [8] using the parabolic
approximation of the wave equation. Others use schemes based on the wave equa-
tion itself. An overview of migration methods such as the Kirchhoff migration is
given by Berkhout [4]. Migration methods aim at producing a depth section with-
out giving information on the material parameters. Migration methods make use
of a background model based on a coarse estimation of the subsurface parameters.
These migration methods use just the traveltime (phase) information in the data to
locate the reflection interfaces in time or depth sections. Velocity inversion methods
also make use of the amplitude information in the data. The methods explained by
Cohen and Bleistein in [11] and [12] show how velocity variations can be estimated
using linearized techniques, still assuming small velocity variations. A different way
of solving linearized problems is by using an iterative algorithm. Tarantola [31] de-
scribes a method to estimate the medium parameters iteratively, each step consisting
of a Kirchhoff migration and a forward modelling step. This method makes use of
a priori model information and then optimizes this model information to a model
which is the best in a given, precise, sense.

The second class of inversion methods is the class of iterative nonlinear methods.
This type of methods tries to construct a solution of the inverse scattering problem
by sequentially updating a model. This model is generally an initial guess and a
method is chosen to improve this guess by minimizing the error between model and
measured data. Optimization methods tend to require much computation time. An-
other problem is the danger to end up with a ’local minimum’ instead of with the
real minimum error. An example to illustrate this problem is given by Cheney [7]:
A person trying to minimize his altitude above sea level in a mountain range will
have trouble determining whether a bottom of a valley is lower than the other valley
bottoms. Many different optimization methods can be applied to inverse scattering
problems. Tarantola [32] describes a method based on the least-squares criterion.
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Each iterative loop in this inversion method requires the solution of two times as
many forward problems as there are source locations. Another example of an in-
version method in this class is the Extended Contrast Source Inversion by van den
Berg et al. [34]. This method is based on the conjugate gradient method and does
not require solving the forward problem for each iterative step. Sen and Stoffa [28]
describe the class of global optimization methods. These methods do not have a
problem with local minima but convergence of these methods to the optimal solu-
tion is not guaranteed for most methods. Examples are the Monte Carlo methods,
Simulated Annealing and Genetic Algorithms. The advantage of iterative nonlinear
methods compared to the linear methods is that strong variations of the medium
parameters are handled much better. A disadvantage of these methods is the fact
that an a priori model has to be estimated. The choice of this a priori model has
influence on the inverted result.

The third class of inversion methods is the class of direct nonlinear methods. This
class contains methods that give an explicit expression for the unknown in terms
of the data and methods that use explicit algorithms to reconstruct the unknown
in a finite number of steps. Most of these methods involve transforming the one-
dimensional wave equation into the Schrédinger equation, which obviously cannot be
applied directly to multi-dimensional problems. An overview of this class of meth-
ods for electromagnetic applications is given by Habashy and Mittra [19]. The most
well-known direct nonlinear methods are ’layer-stripping’ methods. First, the desired
quantities are determined at the earth surface, then the measurements that would
have been made if a thin layer below the surface had been absent are mathemati-
cally reconstructed. The desired quantities at this new surface are now determined
and the method is repeated layer by layer. Examples of layer-stripping methods are
described by Yagle and Levy [39] and Koster [21]. The advantage of layer-stripping
methods is that they are generally fast and not constrained to small velocity per-
turbations. Since these methods are completely data driven, measurement errors
and noise might result in unstable results. Unlike the optimization methods, layer-
stripping does not guarantee that the final reconstructed image will be consistent
with the measured data.

1.3 The layer-stripping method in this thesis

The inversion method described in this thesis falls in the class of direct nonlin-
ear methods. The major advantage of this method in comparison with existing
layer-stripping methods is the fact that is applicable to laterally varying media.
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Furthermore, we aim to make this method less sensitive to noise and errors in the
data. The advantage of this method compared to linearized methods is the fact that
multiples are treated correctly and there are no constraints on the velocity model.
The advantage of our method compared to optimization methods is that no a priori
velocity model has to be included.

Each layer-stripping step in our method consists of two actions: A layer replacement
and a contrast determination. The layer replacement is performed by applying the
reciprocity theorem. This theorem as described by Fokkema and van den Berg [17]
relates two acoustic states to each other. It can be applied to many different acoustic
problems such as wavefield decomposition, source deghosting and multiple removal.
In our case, one state is the actual state and the other state has the same medium
configuration except for the fact that the top layer was removed and replaced by
a homogeneous layer with known wavespeed. Using the data measured in the first
state we can determine the wavefield in the second state. In the next layer-stripping
step this second state will become the new first state and the calculated wavefield
will perform as the new 'measured’ data. The second action is used to determine
the contrast between the top layer and the layer beneath it. In order to determine
this contrast we apply an imaging condition which relates the up- and downgoing
wavefields just above an interface to the wavefield just below this interface in order
to determine the velocity contrast over this interface. The derivation of the imaging
condition uses the boundary conditions over an interface and the causality principle.
The causality principle is the well-known principle that there will always be a lapse of
time for a wave to travel from one position in space to another position. Our research
strategy is to first derive the theory for the full three-dimensional case and then start
to test the method for its behavior in one dimension. This is then extended to plane
wave incidence on horizontally layered media and we invert synthetical data mod-
elled in a two-dimensional laterally varying configuration using common-midpoint
techniques. The implementation of the method for the three-dimensional case falls
beyond the reach of this research and remains for future research.

As all methods described in the previous section the causality-based imaging method
does make some common approximations and assumptions. First, it is assumed that
the subsurface wave propagation is adequately described by the acoustic wave equa-
tion. By making use of the acoustic approximation we neglect shear wave energy.
Second we assume the source wavelet and incident wavefield can be determined. An
example of a source wavelet estimation method during removal of surface-related
multiples is given by van Borselen [35]. Weglein et al. [38] has shown that an esti-
mation of the source wavelet can be made by measuring the vertical derivative of
the wavefield together with the wavefield. If we measure however both the pressure
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and velocity wavefield we can decompose the pressure wavefield into an upgoing and
a downgoing part and determine the wavelet from the downgoing part. Furthermore
we focus only on the velocity variations and assume the density to be a constant.
Although wave speed and density are related in nature it has been shown that den-
sity variations are not the main source of reflected waves [31]. Finally we assume
the wave speed in the top layer can be determined. This is not unrealistic, especially
not in marine surveys where the top layer is water. These assumptions are made in
order to test the method for its ability to determine velocity profiles directly from
measured data. The acoustic approximation and the assumption of constant density
might be relaxed in further research.

1.4 Time-lapse seismic monitoring

In general, time-lapse measurements can be used to monitor the changes of the
(sub-)surface caused by mankind or by environmental circumstances. Over the last
decade the use of time-lapse seismic monitoring has advanced rapidly. The main goal
of time-lapse seismic surveying is to monitor the changes in a reservoir during oil or
gas production. Being able to monitor the fluid flow in a reservoir can significantly
improve the recovery of a well. In time-lapse seismic monitoring multiple seismic
surveys are acquired and analyzed. The seismic surveys are performed at different
moments in time, where the lapse of time between the surveys is on calendar scale
and much larger than the recording time. Time-lapse seismic methods are also re-
ferred to as 4D seismics where the fourth dimension is time. In reservoir monitoring
it is assumed the geology does not change over time, just the reservoir properties
do. When changes in fluid saturations or pressures in the reservoir occur, changes in
the seismic reflection properties change accordingly. It is common practise in time-
lapse seismics to invert the difference section between two seismic measurements.
This difference section represents the difference that occurred in the subsurface over
time. An overview of the application of time-lapse seismic reservoir monitoring is
given by Lumley [23]. In order to obtain valuable 4D data the repeatability of the
measurements has to be very high. Also required are very precise inversion methods
since the changes in the reservoir are usually small compared to the resolution of
the seismics.

The research project leading to this thesis was performed as a part of an inter-
faculty research programme focussing on the observation of the earth’s surface and
subsurface. We aimed to develop an imaging method which is accurate enough to
be applied to 4D-problems. Also, the layer-stripping format of our method makes
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it possible to focus on the changes in the reservoir only, instead of having to invert
entire difference sections.

1.5 OQutline of the thesis

The aim of this thesis is to develop a direct inversion method that is applicable to
laterally varying media and does not require a priori model information. The first
chapters describe the theory behind the method, followed by some implementation
results in the last chapters.

Chapter 2 gives the theory of the method in the three-dimensional case. It starts
with the general description of some basic terms and principles such as the acoustic
wave equations in the time and the space domain and the reciprocity theorem. This
is followed by the theory behind the layer replacement method and the derivation
of the causality-based imaging condition. We finish this chapter with an overview
of the complete layer-stripping procedure.

In Chapter 3 the simplification of the general three-dimensional case to the one-
dimensional case is given in steps. First the theory is adjusted for the general
two-dimensional case, followed by the case for 2D wave propagation in a horizon-
tally layered medium. From this case the 1D case is derived.

We have chosen to begin with the implementation of the one-dimensional case in
order to evaluate the behavior and characteristics of the method, without consid-
ering too many influential factors at once. In Chapter 4 we discuss some testing
results after implementation of the one-dimensional theory. We discuss how we use
the energy of the wavelet to stabilize the method and how the multiples in the data
are treated. We discuss how the thickness of the stripped layers influences the result
and we give some remarks on the resolution of the layer-stripping method. This is
followed by some imaging results for oblique plane-wave incidence. In section 4.2
we compare our method to another layer-stripping method based on the Schur al-
gorithm, known as a fast algorithm applicable to one-dimensional problems.

Chapter 5 deals with the inherent limited bandwidth of the acoustic data. It shows
why and how the imaging fails for data without the lowest frequency information.
A solution method for this problem is proposed. This solution method uses the en-
velope or absolute value of the data and does not require background velocity model
information. Taking the envelope or absolute value of a wavefield results in a loss of
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the sign of the wavefield. We propose a method to deal with this problem, making
use of median filters.

Some applications of the layer-stripping method are given in Chapter 6. The appli-
cation of the layer-stripping method in time-lapse seismics is discussed. We image
the velocity change in a reservoir by making use of a difference term based on the
one-way reciprocity theorems. This method does not require the wavelets of the two
separate measurements to be the same. We finish the chapter with the imaging result
for some 2D laterally varying medium examples, using common-midpoint techniques.

The conclusions and some recommendations for further research are given in Chap-
ter 7.






2
Theory

In this chapter the theory behind the layer-stripping method is given for the general
3-dimensional case. We will start by giving the definitions of some basic terms
and principles. After that the method for wavefield extrapolation is explained; it is
shown how a wavefield below a very thin layer can be determined using Rayleigh’s
reciprocity theorem, when the wavefield on top of this layer is known. This is
followed by the derivation of an imaging condition for the 3-dimensional case. This
imaging condition is used to determine the contrast over an interface. The derivation
is based on the principle of causality. The wavefield extrapolation method together
with the imaging condition are combined to form a layer-stripping method which
can determine the acoustic wavespeed in a laterally varying medium layer by layer.

2.1 General description

In the following sections we will use a Cartesian coordinate system with a reference
frame built of three mutually perpendicular unit vectors iy,i; and i3. A location in
space is defined by the vector x, which is specified by its coordinates =1, x2 and x3
such that

xr = 33111 + .73212 + .73313. (21)

Vectors i; and is are both horizontally directed. The projection of these vectors will
be denoted by a7 such that &7 = x1i; + x2i3. The vector i3 is directed vertically
downwards.

Partial differentiation with respect to =, where ¢ = {1,2,3}, is denoted by 9,
differentiation to time t is denoted by 0.

2.1.1 The summation convention

The summation convention is a shorthand notation to indicate the sum of products
of arithmetic arrays. Let a, and b, denote one-dimensional arrays with ¢ = {1, 2, 3},
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then: s
aqgbq stands for Z agby. (2.2)
q=1

To denote the horizontal coordinates only, Greek subscripts are used, for example
a is a one-dimensional array with v = {1,2}.

2.1.2 Acoustic equations in the space-time domain

Fokkema and van den Berg [17] show how the well-known pair of linear acoustic
wave equations can be derived from the equation of motion, a deformation equation
and the constitutive relations. These basic acoustic wave equations are given by:

akp(wat> +/08tw€($7t) :fk(wat)’ (23)
Orvg(x,t) + kOp(x, t) = q(2, t), (2.4)
where

p(x, t) = acoustic pressure [Pal,
vg(x,t) = particle velocity [m/s],
fr(x,t) = volume source density of volume force [N/m?],
q(x,t) = volume source density of volume injection rate [s71,
p(x) = volume density of mass [kg/m?],
k(x) = compressibility [Pa~!].

The compressibility and density are related to the wave speed c¢ as follows:

N

c=(kp)~ 2. (2.5)

Sources of the volume force type represent the action of acoustic sources of the dipole
type, while source of the injection rate type represent the action of acoustic sources
of the monopole type.

2.1.3 Acoustic equations in the Laplace domain

By carrying out a Laplace transformation, the time coordinate in the acoustic equa-
tions is eliminated, and a set of equations remains in which the transform parameter
s occurs. We assume that the sources that generate the acoustic wavefields are
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switched on at time instant tg = 0. In view of causality, we are interested in the
behavior of the wavefields in the interval

T =(t e RJt>0). (2.6)

The one-sided Laplace transform on a signal u(x,t), defined in ¢ > 0 is given by:

iz, s) = /exp(—st)u(az,t)dt. (2.7)

teT

Since the sources under consideration generate wavefields of bounded magnitudes,
the right-hand side of Eq. (2.7) converges if the complex Laplace transform param-
eter s satisfies the constraint Re(s)> 0. When we consider the limiting case s = jw,
in which w is the angular frequency, the Laplace transform is equivalent to the tem-
poral Fourier transform. The acoustic equations in the Laplace domain have the
following form:

Oxp(, s) + spin(@,s) = fr(w,s),
Ok (x, s) + skp(x, s) = 4(x, s).

The t = tg contributions of the Laplace transform are incorporated in the source
terms.

In seismic problems, it is common to use the spatial Fourier transformation with
respect to x1 and x9, which are the horizontal coordinates. This two-dimensional
Fourier transformation is defined as:

'a(jSOél,jSO[Q,Z‘?,,S) = (210)

exp(jsaixy + jsagwe)t(xy, o, x5, s)dA,
(z1,22)eR?
where ar = {a1,as} is the angular slowness vector and we take sar to be real.

dA is the elementary surface in R%2. The transformation back to the spatial domain
is defined as:

. . . ) . $)dA
)2 exp(—jsaizy — jsasxs)u(jsan, jsas, s, s)

(sa1,s2)eR2

=u(x1,x2, T3, S). (2.11)
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2.1.4 The reciprocity theorem

In this section we will briefly show the derivation of Rayleigh’s reciprocity theorem
following Fokkema and van den Berg [17]. The reciprocity theorem relates two non-
identical acoustic states in a three-dimensional bounded domain ID to each other.
The domain D is bounded by boundary surface dD. The two different states inside
the domain will be referred to as state A and state B. Table 2.1 shows how each state
is characterized by the acoustic wavefield (p, 0), the constitutive parameters (p, k),
and the source terms ( fk,cj). The acoustic wave equations in the Laplace domain
(see (2.8) and (2.9)) for state A are now:

okp™ + spit = i, (2.12)

oo + skp™ = ¢, (2.13)
and for state B:

okp® + spii = fL, (2.14)

OB + skp? = ¢b. (2.15)

For simplicity of notation the dependence on (x ,s) is omitted. The interaction
between the two states can be described by:

Ok (padl — pPod) = 0P 0kpa + paOktl — 072 0kpp — PrORDL. (2.16)

The interaction quantity (2.16) can be rewritten using the acoustic wave equa-
tions (2.12) to (2.15). The result is the local form of Rayleigh’s reciprocity theorem:

O(pof — pPoi) = s(p® — p?)ifof — s(kP — kh)p?p”
+fk o +4°p i fk Uk —¢*pP. (2.17)

The global form of Rayleigh’s reciprocity theorem can be found by integrating (2.17)
over the domain D and using Gauss’ integral theorem in the left-hand side of the
equation:

/ (p vf—p 0, )nde

TedD

=/Mf—wmﬁtaﬁ—wmme

/ [FAGE + 3PP — FPof — gApPlav, (2.18)
eD
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State A State B
Field State {pA, 51} (=, 5) {pB, 0B} (x, s)
Material State {pA, k4 () {pB, kB (z)
Source State {6, fA}(z,s) {4, fP (=, )
Domain D

Table 2.1: States in the field reciprocity theorem.

where nj is the normal vector directed perpendicularly away from the boundary
of the domain JD. Note that the first and second term at the right-hand side of
Egs. (2.17) and (2.18) vanish when the constitutive parameters are chosen to be the

same for state A and state B, meaning p4 = p? and k* = k.

2.2 Layer replacement

2.2.1 Theory of layer replacement for general 3D case.

In this section we discuss how the wavefield just below a thin layer can be determined
when the wavefield on top of this layer is known. The use of the reciprocity theorem
is the foundation of the layer replacement method. Figure 2.1 shows the two states
to which the reciprocity theorem is applied. These two states will from now on be
referred to as state 0 and state 1. In both states we assume an upper (z3 < x9)
and a lower half-space (x3 > 23). The upper half-space consists of a homogeneous
background medium with known constant wave speed cg. Source and receiver are
positioned in the upper half-space. The lower half-space in both states is divided into
thin horizontal layers with thickness Axs. The layers are thin enough to justify the
assumption that the wave speed inside a layer does not vary in the vertical direction.
The wave speed can however be variable in the lateral direction. The density p is
assumed to be constant and identical in both half-spaces. State 0 represents the
actual state in which the wavefield was measured. State 1 represents an almost



14 Chapter 2. Theory

State 0 State 1

Field State {p°, 09} (z|z) {p*, 01} (z|™)

Material State | {ci(xr),ca(xr),..,cn(xT)} {co,c1(xT),...,en(xT)}

Source State { ¢%6(x — =%),0} {¢%(x — =F),0}

Domain D

Table 2.2: States in the field reciprocity theorem.

identical medium configuration except for the top layer which is replaced by a layer
with the same properties as the homogeneous background medium. The properties
of the acoustic states 0 and 1 are shown in Table 2.2. Since the compressibility x and
the wave speed c are related through ¢ = (np)*% and the density p is a constant, we
can use ¢, (z7) to describe the material state in the nth layer, where 2 ' < z3 < 2%
and n can be any number between 1 and the desired number of stripped layers N.
We will take for both states 0 and 1 a point source of volume injection (monopole
source). Note the reversed source and receiver positions in state 1 with respect to
state 0. Domain D contains both the upper and the lower half-space. Application
of Rayleigh’s reciprocity theorem in global form, Eq.(2.18), to the states shown in
Figure 2.1 leads to:

[ @la®)ikiale") - 7 (ele)ifala®)nida

TedD

= [ st = R)iP(ala) ")V
TeD

+ / *o(x — )P (x|x®) — %0 (x — 2%)p* (z]|2T)dV. (2.19)
TeD

The dependency on s is still omitted for simplicity of notation.
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STATE 0 STATE 1
x° zh z° xh
Source Receiver Receiver Source
X \V4 \V4 X
c c

0 _C 29
C1($T) Co 1
L3
co(@r) co(@r) 2
T3
cs(xr) cs(@r) :

Figure 2.1: Configuration of the two states in Rayleigh’s reciprocity theorem for the deriva-
tion of layer replacement.

In this notation {p, oy }(x¥|z°) is the wavefield {p,?r}, which was generated at
source position &° and measured at receiver position . If we take domain D to
be a sphere with radius A, the left hand side of Eq. (2.19) vanishes in the limit
A — oo. In that case, the domain D resembles an unbounded domain. Next, we
substitute §°(s) = @ where W (s) is the wavelet spectrum, and we define the

S
laterally variable contrast K (zr) as:
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where k., denotes the compressibility in layer n and k™ represents the compressibility
in state n. This results in the following expression:

/ s* K (@r)p° (@|a”)p' (e|lz")aV = W[p (@) — p' (@5[a)]. (2.21)

TeDO

The total wavefield in state 0, p°, can be decomposed into an incident and a reflected
wavefield, p%* and p°" respectively, according to:

PO (x|x®) = pi(x|x®) + pOr (x]x”), r3 < ). (2.22)
The incident field can be expressed as:

) Wexp — e —
]50’2(1:|:13S): ( co‘ D

, 2.23
4m|z — 5| (223)
where we made use of Green’s function. The Laplace domain representation of the
Green’s function is given by:

S

. _ exp(— |z —z'|)

Glx—a's)=

2.24
drr|x — x'| (2.24)

Equation (2.24) is the expression for the spherical wave due to a point source in a
homogeneous medium. The wavefield in state 1 can be decomposed in an incident
and reflected part in a similar way:

p(zla’) = pt (2|e™) + p 7 (xfz®), 23 < as. (2.25)

Rewriting the reciprocity theorem as applied to state 0 and state 1, (Eq. (2.21)),
and making use of Parseval’s theorem (see appendix C.1) we find:

1 ) = .
)2 / dA/ﬁl(—jsaT,x3|wR)321C{P0}(]saT,x3|ws)dx3
0
3

SQTGR2 z
= WP’ («®a®) - p' (x|z")]. (2.26)

A spatial Fourier transformation was performed with respect to the horizontal
receiver positions only. These spatial Fourier transformations are defined as:

ﬁo(jsaT, 1:3\:85) = / exp(jsar - ccT)f)O(m|mS)dA, (2.27)
iBTERQ
ﬁl(—jsaT,x3|wR) = / exp(—jsar - :cT)ﬁl (m|azR)dA. (2.28)

:BT6R2
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The operator K{p°} is a compact way of writing the convolution operator in the
transformed domain:

K{p°}(jsar,xs|z®) =

1 s ) ;.
2n)? / K (jsap — jsalp)pP(jsaly, xs|z¥)dA, (2.29)
salpeR?
where
K(jsar) = / exp(jsar - xr)K(xzr)dA. (2.30)
iBTERQ

Taking a closer look at Eq. (2.26) it is clear that the fields on the right hand side
of the equation are not in the same domain as the fields on the left hand side. In
order to evaluate this equation the wavefields should all be in the same domain. To
accomplish this the following operator is applied:

/ exp(jsadt - k) / exp(—jsaf - x3) - - - dAdA. (2.31)

xleR? x5 eR?

Application of this operator to the fields on the right-hand side of Eq. (2.26) cor-
responds to a transformation to the spatial Fourier domain for both source and
receiver coordinates. To finally get all fields in the same domain, the forward spatial
Fourier transform with respect to the source and receiver positions is performed on
the left-hand side of the equation, and we find:

<271r>2 | o

sareR?

1
T3

X /51(—.7'80@’333|jsa¥ax?)SQK{ﬁo}(jsaTvﬂfﬂ — jsaf,xf)dz;
g

= W[ﬁ(]sa?, x?})%l - j5a73“7 CL‘E?) - 51(—1861:% x??‘]sa?a xSR)]a (2'32)

where the double overbar indicates the double spatial Fourier transformation with
respect to both source and receiver coordinates.

The physical reciprocity condition can now be applied. This condition says that for
two states with the same medium parameters an interchange of source and receiver
position in one state compared to the other means in the spatial Fourier domain an
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interchange of the vertical source and receiver position and an opposite sign of the
transform variables. The physical reciprocity condition is expressed as follows:

RR)

P (=jsai,a3|jsadt, af) = p' (jseff, af| - jsaf, 23), (2.33)

When we apply this to Eq. (2.32) we find:

<271r>2 [ o

SQTCRZ

1
T3

X /ﬁl(jsa%xﬂ — jsap, x3)s* K{p°} (jsar, x3| — jsaf, x5 )dxs
=3
= W[ﬁo(jsaTR,xff\ —jsag,x35) — p(jsal, 2f| — jsad, x3)). (2.34)
The incident wavefield in a homogeneous medium in the transformed domain can
be written as

P (jsar, 3| — jsad, x5) = (2m)? S(sap — saf) exp(—sT5 |z — 25]), (2.35)

25Fg
which is the spatial Fourier domain version of Eq. (2.23) with the vertical slowness
Fg :

1

TS =(5+af af)/?  Re{l§}>0. (2.36)

€
The reflected wavefield in state 0 at depth zi' can be expressed in terms of the
wavefield at depth 2 by conducting a simple extrapolation step:

P (jsaf, 2y | — jsag,x) =
exp(—sl“é?‘(a:g — xf‘))ﬁo’r(jsa%x% — jsa%, ng), a:3R < xg. (2.37)

with the vertical slowness T'¥:

1
k= (% +af a2 Re{IF} >o0. (2.38)

Analogously to Eq. (2.37) the reflected wavefield in state 1 at the receiver position
can be written in terms of the reflected wavefield in state one at depth =3 by:
R s

(]SQT7IS ‘ 7]8aTax§)

eXp(—sFO (a:3 — a:3R))p ' (jsaT,x§| —jsa%,xg), x3R < xé (2.39)
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Now we rewrite Eq. (2.34) by decomposing the wavefield in state 1 on the left-hand
side into an incident and a reflected part following Eq. (2.25). The wavefields on the
right hand side are decomposed in a similar manner leading to:

1

(2m)? / dA/[ﬁl’i(jsa¥7x§| — jsaur,x3) +
0

sareR? T3

517T(jsa¥,x§”| — jsap,x3)] X K{ﬁo}(jsaT,x3| —jsa%x?‘?)dxg

= W[Z:)O’i(jsaga ‘T3R| - jsa"lgﬁ l‘g) - 51’1‘(].5‘)?7 x?‘ - jsais“a Ig) (240)
+ Or(jsad, x| — jsag,xf) — p (jsad, x| — jsag, ag)].

Now we substitute the expression for the incident wavefield, Eq. (2.35). Note that
the incident wavefields on the righthand side will drop out because the incident field
in state 1 is equal to the incident field in state O:

") = 7 ). (2.41)

This is the case since source and receiver are both positioned in the same homoge-
neous background medium (x5 ($:8) < 29). Next, we extrapolate the receiver position
to the first interface, 23, by applying Egs. (2.37) and (2.39) and we find:

exp(—sTE(x 04/ - .

2 / Lot =) i) st ] - e o)
exp(—sTEAzx: _ . .
—p( (271_)02 3) / P (jsakt xl] — ]S(XT,.’Eg)dA X

sapeR?

1
T3

52 /exp(sl"o(;v3 — 2)K{p°} (Gsar, z3| — jsad, x5 )ds
g
= W[p" (jsaff, a§| — jsai,a3) (2.42)

P (jsaf, ag| — jsag, o) exp(—sIg Aws)),

with L
I'o= (5 +ar ar)’/?,  Re{lo} >0, (2.43)

€0
and Arg = x3 — 23. We will use this equation to calculate the reflected wavefield in
state 1 measured at depth 3. In order to do this we need to know the total wavefield
in state 0 at the same depth. We now perform a similar procedure to Eq. (2.34), by



20 Chapter 2. Theory

extrapolating the receiver to one thin layer below the first interface, 1, this yields:

IC{‘EO}(jsoz?7 x3| — jsa*;, x?)dm

2t /eXp(—SF(?wa — z3)
s“W

ZSFOR
z3

1 N )
Jr(27.[.)2 / pl’ (]Sagaxé‘ 7]5aT7x§)dA X
saT6R2
(El
3
s2 /exp(sFo(:cg — xf))K{ﬁO}(jsaT,x3| — jsa%x?)dxg
KL’O
3
=W (jsaf, 3| — jsaf, z5) (2.44)

_ﬁlﬂ(jsa?) l‘il’)l - jsaga 'Tg) - ﬁ17r(.73a¥7 $§| - Jsa’tlg"v JJ}?)]

In this case the incident fields on the right-hand side of the equation do not cancel,

since in state 0 the incident field travels through a layer with wave speed ¢ (),
and in state 1 it does not. Multiplying the right- and left-hand side of Eq. (2.42)
with exp(sI'ffAz3) and subtracting the result from Eq. (2.44) we find:

jzz)o(jsa?7 xé\ - jsa%xs) = ﬁo’r(jsoz?,xg\ —jsa%x?)exp(sfé%Axg)

+p% (jsakt, 29| — jsad, x5) exp(—sT{Axs) (2.45)
(171
, 3 sinh(sr(l)%(xg — x};)) ov,. R s g
+s SFR ]C{p }(]SaT,Zg‘ — Jsap, T3 )dl‘g7
9 0
where
sinh(z) = P = ePCT) (2.46)

2

We call Egs. (2.42) and (2.45) the two basic equations, where Eq. (2.45) is the con-
sistence equation, which is used to determine the total wavefield in state 0 recorded
at position z3. Once this wavefield is known, Eq. (2.42) is used to determine the re-
flected field in state 1 at depth x1. After the top layer has been replaced by a layer
with the homogeneous background medium properties, the source can be moved
downwards over Axz and state 1 becomes the actual state (state 0) for the next
layer-stripping step. In both basic equations, Egs. (2.42) and (2.45), the velocity
¢(xr) in the top layer has to be known. In order to determine this velocity we use an
imaging condition based on the causality principle. The derivation of this imaging
condition is shown in the next section.
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2.3 A causality-based imaging condition

2.3.1 Derivation of imaging condition for laterally varying 3D media.

In this section we derive an imaging condition which relates the up- and downgoing
waves just above an interface to the velocity contrast over this interface. The term
imaging condition is a term known from migration, where in the imaging condi-
tion the ¢ = 0-value is used to determine the reflectivity. This principle was first
introduced by Claerbout [8]. Our imaging condition resembles the imaging condi-
tion in migration in the sense that we also use the ¢ = 0-value of the wavefields.
A difference is however the fact that we use the imaging condition to directly de-
termine the medium parameter wavespeed as opposed to determining the reflectivity.

We consider a medium consisting of two half-spaces, a homogeneous upper half-
space and a heterogeneous lower half-space. The lower half-space is heterogeneous
in the horizontal direction but not in the vertical direction. The medium configura-
tion is shown in Figure 2.2.

homogeneous l T

heterogeneous l

Figure 2.2: Medium configuration for derivation of imaging condition.

When a wave travels downwards the two boundary conditions across the interface
between the two half-spaces are:

lim 03P,y = lim 03Dl 40, o (2.47)
i =i, 245

where the wavefields are written in the single spatial Fourier domain and p is short-

hand for p(jsar,z3|x®). The first boundary condition states that the component
of the particle velocity normal to the interface is continuous across this interface.
We will write this boundary condition in a short hand notation:

5%15‘18 :aéﬁ’zga (2'49)
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where the term 0 § ﬁ‘mg denotes the vertical derivative of the pressure wavefield
very close to the interface when approaching the interface from the side of the upper
half-space (from small z3 to large x3). A solution for the partial derivative in the
x3 direction approaching the interface from above is known:

03 p|,y= I3 (P —P), (2.50)

where p = p* + p". This solution accounts for the opposite direction of propagation
of the upgoing wavefield p” and the downgoing wavefield p* by the minus sign. From
the Helmholtz equation it follows that the second derivative in the vertical direction
over the pressure wavefield shows a jump across the interface which is proportional
to the velocity contrast over this interface. The Helmholtz equation for constant
density is defined as:

~ S ~
ot = (5 — 0,05, (2.51)
From this it follows directly that:
s s

{05203 = (5 —

cg  cilzr)

)b = s2Kp. (2.52)

In the spatial Fourier domain this corresponds to:
{(05)? - (05)*)p = °Kp. (2.53)

The same follows from the Taylor expansions shown in appendix B, (see Eq. (B.17)).
Note that K is a convolutional operator similar to the one in Eq (2.29). Eq (2.53)
can be rewritten as:

(93)°p = (@4)°p — s°Kp, (2.54)
The second derivative of the wavefield in a homogeneous medium is known, so we
can write for the upper half-space:

(93)°p = *(T)*p. (2.55)
Substituting this in Eq. (2.54) we find for the lower half-space:
(93)°p = S*((T8)* — K)p. (2.56)

When there are only downgoing waves below the interface we can write:

(055 = —s,/(0F)? — Kp (2.57)

Note that the term /(I'ft)? — K is a pseudo-differential operator. Substituting this
term in Eq. (2.49) together with Eq. (2.50) yields:

D" — ') = =/ (T§)? — Kp. (2.58)
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Now write, multiplying p = p* + p" by T'¥:
Lip" +T8p' =T, (2.59)
and add these equations:
2Tt = (—/TH)?2 — K +THp. (2.60)
Subtracting the same two equations results in:

oarfpt = (/(TE)2 — K +T&)p. (2.61)

In the next step we will make use of the inner product which is defined as:

(7.9) =55 [ Fag-a)da. (262)

For the inner product between the terms for the up- and downgoing wavefield we
can write:
(2r§p" . 20gp') =
(T5D, To'p) + (LoD, /()2 = Kp) — (/ (TF)? — Kp, T6'P)
—<\/(F§)2 - Kp, \/(Fé"‘)2 — Kp)]. (2.63)

We will now make use of the fact that the pseudo-differential operator is symmetric,

as shown in appendix A. Note that the operator is only proven to be symmetric
when we meet the condition s = jw. The two middle terms on the right hand side
drop out and we can write for the remaining two terms:

(5. TEB)] —(\/ (08 — Kp, \/(D)? - Kp) =
[(p, (T{)?p) — (P, (TF)? — K)p)] = (p,KD). (2.64)

We have now found the following result:
AT, TPy = (p, Kp)- (2.65)

Note that this equation is only valid when there is no upgoing wavefield below the
interface, only a downgoing wavefield. If this is not the case, Eq. (2.57) does not
hold. When the lower half-space is heterogeneous in the vertical direction as well
as in horizontal direction, as is would be in a realistic earth model, there will be an
upgoing wavefield below the interface. We now use the causality principle: since it
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will always take a lapse of time for a wave to travel from one position in space to
another position in space, there will always be a time interval where the upgoing
waves in the lower half-space have not reached the area just below the interface
yet. During this short time interval there are only downgoing waves just below the
interface and the imaging condition is valid. In order to meet this condition we
define our imaging condition to be valid for time ¢ = 0 only. This leaves us the
desired imaging condition:

Fo[ardpn oie’) = o (b Kp)] . t=0, (2.66)

where .7-'[1 stands for the inverse temporal Fourier transform, where we use s = jw.
The imaging condition shows that the contrast over an interface can be determined
once the up- and downgoing parts of the pressure wavefield are known.

2.3.2 The layer-stripping procedure

The layer-stripping procedure combines the wavefield extrapolation method ex-
plained in section 2.2.1 and the causality-based imaging condition as explained in
section 2.3.1. When both pressure and velocity wavefields are measured, the pressure
wavefield can be decomposed in an upgoing and a downgoing part. This is shown by
Fokkema and van den Berg in [17]. The wavefields are measured above a medium
which is divided in thin horizontal layers. These layers are virtual, meaning that
they do not necessarily coincide with the actual interfaces in the subsurface. Us-
ing the decomposed pressure wavefield the contrast over the first virtual horizontal
interface can be defined by applying the imaging condition (2.66):

FHArEp 8] = F [(5.Kp)] . t=0, (2.67)
where
K{p}(jsar,z3|x®) =
(271r)2 / K(jsar — jsalp)p(jsaly, x3|@®)dA, (2.68)
salpeR?
Rjsar)= [ explisar @)K (@r)dA, (2.69)
zreR?
and
Kler) = 5 — -+ . (2.70)
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The imaging condition is solved by determining the inner product of the wavefields
per frequency in the frequency domain, performing an inverse Laplace transform on
the inner products, and solving for K in the time domain. The horizontal layers are
defined to be thin enough to justify the assumption that they are homogeneous in
the vertical direction (but not necessarily in the lateral direction). Once the contrast
over the first interface is known and therefore also the propagation velocity in the
top layer, we can determine the wavefield just below this layer using the first basic
equation (2.45):

ﬁo(jsa¥, xé\ —jsa%xg?) = ﬁo’r(jsa%m‘g\ —jsa%xg?) exp(sF(I)%Axg)
+50’i(jsa¥, xg| — jsoz‘;7 mg) exp(—sl"?Axg) (2.71)

ajl

3
2 / sinh(sT{t(z3 — 21))

= Ly ;4 feyS S
R AR sed ol — e, a5 ).

0
T3

Note that it is not necessary to write the wavefields in the imaging condition in the
double spatial Fourier domain. The imaging can be derived by considering only one
Fourier transform, in particular with respect to the receiver coordinate, while for per-
forming the layer replacement the information from all source and receiver locations
is required. The integral over x5 in Eq 2.72 is solved using the trapezoidal rule. This
wavefield is then used in the determination of wavefield p*" (jsa, 23| — jsar, 25).
This is the upgoing pressure wavefield measured at depth z3 when the top layer
is replaced by a layer with the same properties as the homogeneous background
medium (state 1 in Rayleigh’s reciprocity theorem). This wavefield after ’stripping’
the top layer is calculated using the second basic equation, Eq. (2.42):

exp(—sTE(x 04/ .
ZW/ P =T ) sadt | - jsaf )

exp(—sTEAz3 - .
(—02) pU(jsadt, wy] — jsor, x5)dA x
(2m)
saTeR2
3
52 exp(sTo(xs fzg))lC{p Y(jsar, x3| — jsa:;,l'g)dl'g
xr

= W[ ()r(jsaT7I3| 7]SQT,£E§) (272)

M(jsaf, x| — jsap, a3) exp(—sTf Aws)],

> wo
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After discretization in the frequency and wavenumber domain we can write this
integral equation as a matrix equation of the following form:

P (I + K) = T, (2.73)

where P"" is the matrix to be solved, T is a term containing known wavefields,
I is the unit matrix and K is the discretized kernel. In order to solve this matrix
equation, the sampling rate in the source and receiver direction must be equal and
the equation has to be solved for each frequency. The matrix equations can be solved
using a standard matrix inversion method. A solution method for the integral equa-
tions using Taylor series and Neumann iterations is given in appendix B. Once the
wavefield p-" (s, 23| — jsar, z5) is known, the entire procedure can be repeated.
The imaging condition is used to determine the contrast over the next (virtual) in-
terface and the wavefield as determined in the second basic equation (Eq. (2.73))
becomes the wavefield in the new state 0, see Figure 2.1. The entire procedure can
be repeated until the desired depth is reached and a velocity profile of the lower half-
space is determined. The procedure is referred to as a ’layer-stripping’-procedure
since the medium is evaluated layer by layer and once the information concerning
one layer is used, this layer is replaced and not considered anymore in the further
evaluation of the medium. An overview of the total procedure is shown in Figure 2.3.
Note that before the layer-stripping can be applied the data has to be preprocessed
such that a configuration with a homogeneous upper half-space and a heterogeneous
lower half-space is simulated. This means for example that surface-related multiples
in the marine case should be removed.
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Measured pressure and velocity field

l

Decomposition in up-and downgoing field

]

Contrast determination using imaging condition

l

Calculation of field in state 0 at 3

l

Calculation of field in state 1 at z:3

v

Velocity profile of subsurface
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Figure 2.3:

Flow diagram of layer-stripping algorithm.
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The one-dimensional case

The theory for the laterally varying, three-dimensional case has been fully derived in
Chapter 2. Solving the basic equations, Egs. (2.42) and (2.45) and the imaging con-
dition, Eq. (2.66), in this case involves solving pseudo-differential equations and large
matrix manipulations. In order to analyze the theory, we start with the computa-
tionally much more simple one-dimensional case, where both medium and wavefield
are one-dimensional. First we simplify the theory derived in Chapter 2 to the case
where both medium and wavefield are two-dimensional, the two-dimensional case.
Then we simplify this to the horizontally layered case, where the wavefield is two-
dimensional and the medium is one-dimensional, and finally to the one-dimensional
case. We also show the derivation of the imaging condition for the one dimensional
case.

3.1 Theory for the two-dimensional case.

In the two-dimensional case we consider a two-dimensional wavefield generated by
a monopole line source along the x5 direction. The medium does not vary in the
xo direction. To find the expression for a monopole line source, the expression for a
monopole point source is integrated with respect to xs. The wavefield in the Laplace
domain, generated by a monopole point source at point g in a homogeneous medium
is written as:

P, s) = W(s)G(x — x°,s), (3.1)
where G(x,s) is the Green’s function (Eq. (2.24)). For a monopole line source we
write:

Pz, x3,8) = W(s) / Glxy — 27, 29, 23 — 25, s)das. (3.2)
To€eR
It follows:

P(z1,23,8) = W(s)é@) (x1 — xls,xg — x?, s), (3.3)
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where G®? is the two-dimensional Green’s function, which can be expressed as:

A 1 exp(js(aixy — slglx
G<2)($1,$3,8):% / p(] ( 12&)11_‘0 0| 3|)d(80¢1), (34)

sapeR

where the vertical slowness I'y is:

1
To=(=+a})'?,  Re{l'}>0. (3.5)
i)
The incident wavefield in the spatial Fourier domain for the two-dimensional case in
a homogeneous medium can now be written as:

ﬁi(jsaf,x3R| - jsaf,m?) = (27) 5(5&{2 — saf) exp(fsfgm? — x§|) (3.6)

QSFOS

Consider the first of our basic equations, Eq. (2.42) before substitution of the ex-
pression for the incident field:

a}

#82/ / i (jsalt, o] — jsar, o)
=3 saureR?

xK{p"}(jsal, xs| — jsaf, x5)dAdxs

exp(—sTEA -
SRLARAN) [ g (safiadl - jsar. ) x

(2m)?
sareR?
3

s? [ exp(sTo(z3 — 23))K{p"} (jsar, z3| — jsaf, x5 )das

8
§> wo

[P°" (jsadt, 25| — jsaz, a3) (3.7)
—ﬁl’T(jsa¥,m§| — jsa%x?) exp(—sF(I)%Amg,)]
Since there is no variation in the x5 direction we can write:

K(jsar) = (2m)0(jsas) K (jsar). (3.8)

Substituting this in the expression for the convolutional operator , Eq (2.68), we
find:

KA{p°}(sau, ms| — jsan, 25) = (3.9)

1 _ ] o '
_(271-) / K(jsan —jsa’l)pO(]sa/l,x3| _38a1,$§)d(80/1).

sl eR
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Further, when the fields are independent of x5 we can write:

p(jsar,x3) = (2m)0(jsas)p(jsaq, x3). (3.10)

Substituting Eq. (3.10) in the first basic equation, Eq. (3.7), the integrals over sar
on the left hand side of the equation will reduce to integrals over sa; as a result of
the delta function in Eq. (3.10). Now substitute Eq. (3.6) for the incident field and
the integral in the first term will cancel entirely as a result of the delta term in this
expression. The delta terms that are still left in the equation cancel on both sides
of the equality-sign. We have now arrived at the 2D-expression of the first basic
equation:

exp(—s['¥(x 04/ - .
2 W / Lot = ) i) sl ) = s

1 _ . .
+§exp(—sF§Am3) / P (jsalt al| — jsaq, x3)d(saq)

saeR
Il
3
x 52 /exp(sFo(:rg — 23)K{p°}(jsar, z3| — jsaf, x5 )dxs
1:0
3
= W (jsaf', a§| — jsaf, z3) (3.11)

—p"" (jsal, 2b| - jsaf, 25) exp(—sTH Axy)),

Substituting Eq. (3.10) in Eq. (2.45), we find the 2D version of the consistence
equation, the second basic equation:

Plisatt, x| - jsay, a3) = (3.12)
PO (jsaft, af| — jsay,x5) exp(sT{ Axs)
+ﬁo’i(j8af, 9| — jsals, x?) exp(—sl“é?‘Axg)

3:1

3
s / sinh(sT8(z3 — 1))
sTf

K{ﬁo}(jsa{%, x3| — jsaf,x?)dxg.

wO
3
3.1.1 A horizontally layered medium.

In case of a horizontally layered medium the operator K{p} is no longer a convolu-
tional operator but a simple multiplication of the field by scalar K. Since in this
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case the contrast does not vary in the x;-direction we can write:
K(jsaq — jsaly,x3) = (2m)0(jsay — jsal) K (z3). (3.13)

Substituting this in Eq. (3.10) it is clear the integral vanishes as a result of the delta
function and a simple multiplication is left. The contrast is now defined as:

K=———. (3.14)

In case of such a so-called 1-D configuration, the data are shift invariant with respect

to the horizontal source coordinate, x7, and depend only on the lateral distance

(xft — 2¥) between source and receiver position. Consequently we can write:

- R R[S S AR S R s

play, zg|ey, o3) = p(ay’ — a7, 25°(0, x3). (3.15)
Now apply the forward Fourier transformation with respect to both source and
receiver position:

pljsat, ag|jsa?,zf) = (2m)d(sai’ — saf )p(jsat, 5|0, z3). (3.16)

Applying this to the 2D-version of our first basic equation, Eq. (3.11), we find:

1

i R 0
2K W/ exp(—slg'(z3 — 3))
’L'O

. R s
sag’, r3|xy )dx
281—‘(}){ p (.] 1 3| 3) 3
3

+exp(—5F§AZ3)ﬁl’r(jsaf, x§|x§) X (3.17)

1

T3
S2K/6Xp(SF0($3 — xg))ﬁo(jsaf,xgmg)dmg
3

= Wp* (jsafl a§la3) — p1" (jsar', w3|e3) exp(—sTf Aws)].

The integral over sy has dropped out as a result of the delta function and the
term (27) has been cancelled with the same term in front of the integral. The term
(27m)8(saft + saf) showed up on both the right- and left-hand side of the equation,
so this term was cancelled as well. Also note that the term s2K can be written
in front of the integral since it is an integration over the small area z§ to x1 only,
in which area the contrast is a constant now. For convenience of notation we have
written: p(jsaf, xft|0,25) = p(jsaf, oft|z3).
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Application of Eq. (3.16) to Eq. (3.12) leads to a similar cancellation of the (27)d(sadt+
saf) term. We find:

ﬁo(jsaﬁxémg) = (3.18)
O o o) explorf Aas) + 5 (jsof afle) exp(—oT i)

smhsF 33 z3) o, .
2K/ 0103 = 2 50 jsaf, ol s,

3.2 Theory for the one-dimensional case.

The last step is the simplification to a one-dimensional wavefield as well as a one-
dimensional medium. In this case @« = 0. As a result the expression for T'y (see
Eq.( 3.5)) reduces to I'y = % The two basic equations now become:

1
T3
o ¢ s .
SPKW /—0 exp ((13 — xg)) 0 (z3 | I’g)dl’g +
2s Co
T3

exp (——Aaj;g) (333 | 303 2K/exp ( (x5 — x?)) jﬁo(x3 | x?)dxd
= W™ (2§ | 25) — p"" (a3 | xa)exp(—c—ﬁ%)]» (3.19)

0

and:
N N S 0 i S
wuax®:ﬁwﬁwﬁmm(aAm)+w%£wﬁnw(—aA@)+

(131
SQK/ 0 sinh (i(xg - x§)> P0(x3 | 25)das. (3.20)
S Co
20

These equations can be solved easily by using the trapezoidal rule for the integrals
over the area from z9 to x1.
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3.2.1 Derivation of imaging condition in 1D.

Consider the medium shown in figure 2.2, but with a laterally invariant lower half-
space. Following the procedure explained in the first part of section 2.3.1 we can
write for a one-dimensional wavefield in a horizontally layered 2-D medium:

("~ ) = —sFp, (3.21)
Co

where the operator F' is defined as:
F=,/(—)?-K. (3.22)
co

Note that the expression for I'y has reduced to % Again following section 2.3.1 we
write:
P +p =P (3.23)

Multiplying Eq. (3.23) by % and adding the result to Eq. (3.21) leads to:

2 1
—p" =(— — F)p. 3.24
== (= Fp (3:24)

Subtracting the same two equations leads to:

2 1
——p'=—(F+ —)p. 3.25
e Gl (3.25)
Multiplying Eq. (3.24) and Eq. (3.25) results in:
1 =% =T 1 =
A=) = () = F*)(p)*. (3.26)
Co Co

Substituting the expression for F' we find the following imaging condition:

—K(p)*. (3.27)

i = VRGP (3.28)
Since the imaging condition has to be applied at time ¢ = 0 we write:
2
FOP] = DK< FB. =0, (3.29)

where F; ! stands for the inverse temporal Fourier transform. We assume s = jw.
The numerical solution of Eq. (3.29) for the contrast function K is straightforward.



4

Evaluation of the one-dimensional
case

In this chapter, some imaging results for synthetic 1D-data are given after which
we will focus on several aspects of the layer-stripping method such as the wavelet,
multiples and layer thickness and resolution. Some imaging results for oblique plane-
wave incidence on a horizontally layered medium are given, followed by a comparison
is made to a layer-stripping method based on the Schur algorithm.

4.1 Results for the 1D-case

The layer-stripping scheme was tested on a one-dimensional earth model shown in
Figure 4.1. The earth model consists of several layers with a propagation velocity
varying from 1500 m/s to 3200 m/s. The density is taken to be constant. The 1D
synthetic data were generated in matlab using an acoustic reflectivity method, as
developed by Kennett [20]. A Gaussian wavelet was used for modelling the reflected
wavefield, a closer look at the wavelet will be taken in section 4.1.1. The synthetically
generated reflected wavefield together with the imaging result is shown in Figure 4.2.
The correspondence between the calculated velocities and the velocity model is very
high. In the next sections we will treat several aspects of the layer-stripping method
such as wavelet and multiples by zooming in on parts of the earth model.

4.1.1 Implementation of the imaging condition.

The imaging condition, Eq. (3.29) is valid only for the short period of time that there
are only downgoing waves below the interface over which the contrast is calculated.
In order to meet this requirement the imaging condition is defined as follows:

FOE = SK <GP =0 (a.)
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Figure 4.1: Propagation velocities for 1D earth model. The density does not vary.

In practice, taking only the value of the wavefields at time ¢ = 0 when calculating
the contrast from the imaging condition, does not give very accurate results. This
is visible in Figure 4.3, which shows the velocities calculated using this method.
The actual velocity model is denoted by the dashed line. In order to improve the
accuracy of the method we decided to use a shifted causal wavelet. We assume that
the sources that generate the acoustic wavefields are switched on at time instant tg,
where ty < 0. The energy of the wavelet between ¢ = ¢ty and ¢t = 0 is now taken into
account in the evaluation of the imaging condition. We define:

C

0 0
[ 7= 2n [ F @) (42)

—ws —ws

where ws is the window size used for calculating the energy of the wavefield. To find
the results in Figure 4.2 a window size of 1.4 s was used. The width of the non-causal
part of the wavelet, tg, is approximately 0.04 s. Using a larger window size proved
to give more accurate results than when using ws = tg. Figure 4.4 shows a part of
the calculated upgoing wavefields at increasing source and receiver depth. Note that
as source and receiver are virtually moved downwards with every layer that is being
stripped, the events in the data move towards time ¢ = 0. When source and receiver
have reached the same depth as a certain velocity contrast, the event caused by this
contrast will keep its position at ¢ = 0. The negative part of the t-axis is the part
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Figure 4.2: On the top the modelled upgoing wavefield and on the bottom the imaging result
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Figure 4.3: The imaging result together with the actual model (dashed). The values of the
wavefields at time t = 0 were used to evaluate the imaging condition

used in the integral of the imaging condition, Eq. (4.2). A cosine taper is applied to
the window over the wavefield. The value of the taperis 1 at t =0 and 0 at t = —ws
where ws is the size of the noncausal window. This prevents artifacts to occur when
the small events that travel through the noncausal part of the data reach the edge
of the window. The contribution of these small events, results of the small mistakes
in the layer extrapolation, is however not negligible. They play a major role in the
stabilization of the method and considering them prevents the stack of mistakes as
is common for most known layer-stripping methods. This stack of mistakes is visible
in figure 4.3 where these events were not considered.

4.1.2 Wavelet

The wavelet was chosen such that its time rate of volume injection ¢* has a Gaussian
is related to the wavelet W as follows:

A4S

distribution. ¢

W (s) = spq°(s)- (4.3)

For convenience we will from now on refer to ¢° as the wavelet.
Figure 4.5 shows the wavelet in the time domain together with its frequency spec-
trum. Note that the frequency spectrum has a dc-component. This dc-component
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Figure 4.4: Calculated upgoing wavefields at increasing source and receiver depth.

has turned out to be crucial for the performance of the layerstripping method. A
closer look at this property is taken in Chapter 5.

4.1.3 Internal multiples

In order to investigate how the layer-stripping method deals with the internal mul-
tiple reflections in the data we take a look at a velocity model with two interfaces,
one at 300m and one at 900m depth. The synthetic data was modelled using the
Gaussian wavelet shown in Figure 4.5. The imaging result is shown in Figure 4.6 to-
gether with the actual velocity model. The behavior of the multiple reflection while
stripping the layers is made visible in Figure 4.7. The multiple at the start of the
procedure is at about 1.4s. The more layers stripped, the closer both the multiple
and the primary event that caused it move towards the (¢ = 0)-axis. At a source
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Figure 4.6: Velocity model with two reflecting interfaces(dashed line) together with the cal-
culated velocities (solid line)

and receiver depth of 600 m the multiple is at 0.5 s. The multiple and its primary
event reach the (¢ = 0)-axis at the same moment, after about 900 m of layers have
been stripped. Had they not reached the axis at the same time, the multiple would
have been treated as a separate event when applying the imaging condition. For
means of visibility the amplitude of the multiple is enlarged in the wiggle plot of
Figure 4.7. The size of the multiple in the separate traces shown below the wiggle
plot is the actual size. The top picture shows the velocity model When we take a
closer look at the first of our basic equations, Eq (2.42):

g
SPKW /C—O exp (—i(xg - l’g)) PO(xs | 23)dxs +
2s co
xo

3
11?1
S . S ~
exp (—aAm) pl’r(xé | a:g?)szK/exp (5(;33 — xg)) po(xg | xg)dxg
:EO

T77.20,7 1,7 s
= W™ (a3 | 25) — " (23 | x?)exp(—am‘sﬂ, (4.4)
the second and third term on the left-hand side can be recognized as a multiple
generator term as described by van Borselen [35]. This term takes care of the correct
handling of the multiples in the data. The small event at 600 m depth in Figure 4.6
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is caused by miscalculations in the imaging procedure starting at about 300 m depth,
when the first interface has reached the ¢t = 0-axis. The event caused by the second
velocity contrast now starts to propagate towards ¢t = 0 with a different speed than
before. The small miscalculation however travels towards ¢ = 0 with the old speed
and causes the event visible at 600 m. The event does not result in a lasting change
of the imaged velocity.

4.1.4 The influence of the thickness of stripped layers

Since the fields are sampled in time with time step At it is to be expected there is
a relation between the thickness of the stripped layers, Azs and At. It was found
that for any time step the best results were achieved using:

Awy = %(CO « At) (4.5)

This can be explained by the fact that when source and receiver are both moved
downwards over Az the travel distance of the wavefield is reduced by 2 x Az .
The layerstripping procedure is not extremely sensitive to the correct choice for Azx.
Figure 4.8 shows the imaging result for 4 different layer thicknesses: Az = 1,3,6
and 15 m. The time step used is 0.004 s, so the optimal layer thickness is 3m. For
a layer thicknesses of 1m the difference is hardly visible and for a thickness of 6m
only small deviations are visible at greater depths. For a layer thickness of 15m the
mistake is much larger.

4.1.5 The resolution of the method

The resolution of the layer-stripping method is mainly determined by the resolution
of the data and the width of the wavelet. In surface seismic surveys the frequency
bandwidth is usually about 5-50 Hz, and the sound speed varies from about 2500
to 5000 m/s. This means the wavelengths of the acoustic waves, which determine
the resolution in seismic images, are about 50 m or more. Figure 4.9 shows the
imaging result for different velocity models. The model has four velocity interfaces:
at 600m, 1200m, 1800m and 2400m respectively. The velocity varies from 2000m/s
to 2200m/s, back to 2000m/s and 1800m/s, and then back to 2000m/s again. The
wavelet used is the same as in the previous sections, shown in Figure 4.5 The figure
top left shows this situation. In the figure at the top right, all velocity steps are
divided in two steps of 100 m/s. These steps are also visible in the imaging result.
Note that the small lobes in the imaging result at the interfaces are reduced in
size. These lobes can be recognized as the ’ears’ that occur as the result of Gibb’s
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Figure 4.8: Imaging result together with actual model (dashed) for different layer thicknesses.
Top left: Axs = 3m, which is the optimal thickness. Top right: Axs = 1m, bottom left:
Axz = 6m, bottom right: Axs = 15m.

phenomenon. The figure on the middle left shows the case were the velocity step
is divided in five steps. The individual steps are not recognizable anymore in the
imaging result. The ears in the data have decreased even more. The figure on
the middle right shows the case where the steps are taken at once again, but the
thickness of the two layers with velocity 2200m/s and 1800m/s is much smaller. For
a thickness of 150m the imaging result is still good as is the case for a layer thickness
of 90m shown in the figure at the bottom left. When the layer thickness decreases
to 60 m the imaging result does not reach the actual velocity anymore, especially for
the higher velocities. This can be explained by the fact that for higher propagation
velocities the events are closer to each other in time and will interfere sooner.

Figure 4.10 shows the imaging result for the same velocity model as in Figure 4.9
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Figure 4.9: Imaging result together with actual model (dashed) for different velocity models.
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Figure 4.10: Imaging result together with actual model (dashed) for lower frequent wavelet.
Top left: the wavelet in the time domain, top right: wavelet in the frequency domain.

bottom left, but for a different wavelet. As shown in Figure 4.10 this wavelet is has
a smaller bandwidth and is therefore broader in the time domain. When a wavelet
has a broader bandwidth the separate events will influence each other more, so the
velocity results are less accurate then for the wavelet with smaller bandwidth used
in Figure 4.9.

4.1.6 Results for oblique incidence

We will now take a look at an obliquely incident plane wave on a horizontally strat-
ified two-dimensional medium. In Figure 4.11 a plane downgoing wave with propa-
gation velocity co has a wavefront making an angle ¢ with the horizontal axis. The
direction of the ray normal makes the same angle ¢ with the vertical axis. The ray
parameter, or horizontal slowness, p is defined as:

At sing

4.
Axl Co ( 6)
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Figure 4.11: Obliquely incident plane wave.

where Ax; is the horizontal distance the wavefront propagates in a time increment
At. The term ﬁ; is also known as the stepout per trace. Figure 4.12 shows the
imaging results for different angles of incidence together with the model velocities.
The synthetically generated reflected wavefields for the different angles of incidence
that were used as input for the layer-stripping procedure are also shown. The imag-
ing results were obtained considering the special case s = jw, where s is the Laplace
parameter. In this case the slowness o must be taken imaginary. We therefore define

the real slowness p which is related to a as:
p=ja. (4.7)

The spatial Fourier transform pair in a two dimensional medium is defined as:

u(jsa, xs, s) = / exp(jsaxy )i(zy, x3, s)dA, (4.8)
x1eR
1 . . N
) / exp(—jsaxy)u(jsa, x3, s)dA = G(xq, x3, 3). (4.9)

saeR
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When s = jw and p = ja we can rewrite this as follows:

u(sp,xs3,8) = / exp(spxy)a(zy, 3, s)dA, (4.10)
(z1)eR
w .
20 / exp(—spx1)a(sp, x3, s)dA = G(x1, x3, s). (4.11)
(p1)eR?

Equation (4.10) can be recognized as the temporal Fourier transform of the Radon
transform. Application of this transform to the theory as described in section 3.1.1
is straightforward. From the results in Figure 4.12 it can be concluded that the
imaging procedure gives good results for oblique incidence. Note that for postcritical
incidence the method does not hold. This is the case when

1 (sing)?

(en)? = ()

where ¢,, is the velocity in the n-th layer. For an angle of incidence of 27 degrees
the ’critical velocity’ is 3300 m/s. As shown by Leyds and Fokkema [22], non-causal

(4.12)

noise is generated when postcritical reflection occurs. This non-causal effect can be
explained by the fact that the evanescent wave travels faster horizontally than the
propagating wave and therefore creates a scattered field before the incident wave
arrives. Since the derivation of our imaging condition is based on the causality
principle, our method will fail for postcritical incidence. In Figure 4.12 the imaging
result for an angle of incidence of 27 degrees becomes unstable before the critical
point has been reached. This is a result of noise being generated during the layer-
stripping procedure. The noise occurs as a result of the fact that the events in the
data are very close together for higher angles of incidence, while the thickness of
the stripped layers stays the same. If we reduce the thickness of the stripped layer
from 3 meter to 0.5 meter, the result is improved and the noise is reduced. This
is shown in Figure 4.13. The imaging result is less accurate for the deeper layers.
In Figure 4.14 the imaging result, again for an angle of incidence of 27 degrees, is
shown but now for lower model velocities and a thickness of the stripped layers of
3 meter. In this case the instability as a result of noise does not occur, and the
imaging result is still accurate for deeper layers.
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Figure 4.13: Imaging results together with actual model (dashed) for an angle of incidence

of 27 degrees. The imaging result was achieved by reducing the thickness of the stripped
layers to 0.5 m.
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4.2 Comparison to Schur-algorithm

In order to evaluate the layer-stripping method using a causality-based imaging con-
dition the method was compared to another layer-stripping algorithm, the Schur al-
gorithm. The time domain version of this algorithm, also known as the fast Cholesky
recursion, is known as a fast and efficient method. It is also known, as most layer-
stripping methods, for its habit to stack mistakes at each layer-stripping step and
increase the mistake with each step.

4.2.1 The Schur algorithm for the normal incidence problem

The Schur algorithm can be used to solve the inverse problem for a one-dimensional
acoustic medium probed with plane waves. We will consider the case of plane
waves at normal incidence. Following the derivation by Yagle and Levy [39], a
two-component wave system is found:

. pdown +0, pdown — _rpP,
anup + atpup = —'rpdown7 (413)
where the reflectivity function r(7) is given by
1
r(r) = 567 InZ. (4.14)

Z is the acoustic impedance and 7 is the travel time. In the system of equations (4.13)
pdOWD i the downgoing wave and pUP is the upgoing wave. Let the downgoing wave
contain a probing impulse. By causality, both the upgoing and downgoing waves

must be zero for ¢t < 7. The up- and downgoing waves can now be written as:

pdown —5(t— 1)+ deWHx(t —-7) (4.15)
PP = 5UPy (¢ — 1), (4.16)

where the tilde denotes smooth functions, and x(t) denotes the unit step function.
When Egs (4.13) are combined with

r(1) = 2p"P (7, 7), (4.17)

the equations can be solved recursively. This system is known as the Fast Cholesky
recursion. The derivation of the Fast Cholesky recursions following Yagle and
Levy [39] is shown in appendix D, together with an alternative solution of the Schur
algorithm.
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4.2.2 Comparison of imaging results

The Fast Cholesky recursions were run on synthetic data with the same velocity pro-
file as in Figure 4.1. In order to meet the requirements on the wavefield we used the
wavelet shown in Figure 4.15. The imaging results together with the actual model
for both methods are shown in Figure 4.16. The results for the causality-based
imaging method are the same as in section 4.1. To investigate the performance of
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Figure 4.15: Wavelet used for generating synthetic data for Schur algorithm, in time domain
(left) and in frequency domain (right).

both methods in case of the presence of noise, noise was added to the synthetic
data. The signal to noise ratio is about 78. The imaging results for both methods
are shown in Figure 4.17. On top are the reflected wavefields used as input for both
methods. The difference between those wavefields is the wavelet used for generating
the synthetic data. The wavelets used are the ones shown in Figures 4.15 and 4.5.
Below the wavefields is the imaging result shown together with the actual velocities.
Both methods seem not to have much problems with the noise, although the Schur
method shows some deviations for greater depths. The causality-based method is
only a fraction less accurate then when the data was noise-free, see Figure 4.2. Note
that both methods are completely data driven methods, so if there are large discrep-
ancies in the data, they will occur in the imaging result as well.

The biggest difference between the Schur-method and the causality-based imaging
method is the fact that the latter method can be applied to media that are inhomo-
geneous both in the horizontal and the vertical direction, while the Schur-method
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Figure 4.16: Imaging result obtained with Schur algorithm (left) and with causality-based
imaging condition (right). The dashed line is the actual velocity model.

is only valid for 1D problems. Another difference is connected to the definition of
the wavelet. While the causality-based imaging method can handle any wavelet
containing low frequencies, the wavelet for the Schur-method is defined to contain a
probing impulse. The value of this probing pulse in the reflected wavefield is used
to determine the reflectivity function. This is in contrast with the causality-based
method where the size of the reflected wavefield related to the incident and total
wavefield gives the desired velocity. Since only the true value of the reflected wave-
field is used in the Schur-method, using the energy of the wavefield as we explained
in section 4.1.1 is not possible for this method. The use of the energy of the wavefield
results in a stabilization of the layer-stripping which is missing in the Schur method.
Another explanation for the stability of the results using the causality-based imaging
method is the large window we use in the evaluation of the imaging condition. As
visible in Figure 4.4 small miscalculations in the layer extrapolation are still consid-
ered in the imaging condition. When these miscalculations are not considered, we
recognize in the imaging result the stacking of mistakes common for layer-stripping
methods. This is visible in Figure 4.3.
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Figure 4.17: Imaging result for noisy data. Top left is the synthetically generated upgoing
field used as input for the Schur method. The imaging result for this method are shown
bottom left. The actual velocities are denoted by the dashed line. Top right is the upgoing
wavefield used as input for the causality-based imaging method, the imaging result together
with the actual velocities for this method are shown on the bottom right.




5

The lack of the lowest frequencies in
seismic data

In the previous chapter we have used a Gaussian wavelet, containing all low fre-
quencies, to model and image our data. Such a wavelet is however not realistic for
seismic data since the lowest frequencies cannot be produced by the seismic source.
When testing the imaging procedure for more realistic wavelets, we encountered the
problem that these low frequencies are extremely important to the quantitative in-
terpretation of seismic data. In this chapter a description of the problem is given
and a solution method is proposed.

5.1 Problem description

In this section we will show what happens when the data lacks low frequency infor-
mation. Figure 5.1 shows two different wavelets both in time and frequency domain.
The Gaussian wavelet has a frequency spectrum containing all low frequencies, while
the derivative of the Gaussian wavelet has a spectrum which is zero for 0 Hz, in other
words which has no dc-component. Using these two wavelets, synthetic data were
modelled. For simplicity, we will take a look at the first two interfaces of the veloc-
ity model we used so far (see Figure 4.1). The new input velocity model has two
contrasts, one at 900 m and one at 1140 m depth. The velocity varies from 1500
m/s to 1800 m/s and 2000 m/s. Imaging using the causality-based imaging method
gives good results for the Gaussian wavelet and no usable results when the derivative
of a Gaussian wavelet was used. This is visible in Figure 5.2. The imaging result
for the derivative of a Gaussian becomes very large at a depth of about 70 m, long
before the first interface is reached. The reason for this instability is that when using
the energy of the wavefield in the imaging condition, a division by the wavelet is
performed when evaluating this imaging condition. This corresponds to a division
by zero when the dc-component is missing. To illustrate the problem further, we use
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Figure 5.1: Top: Gaussian wavelet in time (left) and frequency (right) domain. Bottom:
Derivative of Gaussian wavelet in time and frequency domain.

a very small window size for calculating the energy of the wavefields, as described
in section 4.1.1. The window size used in Figure 5.3 is 0.02 s. The window size used
to find the results shown in Figure 5.2 is 1.4 s. The results for the wavelet that does
contain the zero-frequency are less accurate than when a larger window was used,
but the wavelet that does not have all low frequencies now at least gives a stable
result. This result is however not satisfactory since although the velocity contrasts
cause a response in the imaging result, the imaged velocity between the contrasts
is the same as the background velocity. To further illustrate the problem we use a
wavelet that has roughly the same shape in the time domain as the derivative of
a Gaussian wavelet. It has a positive peak in the non-causal part and a negative
peak in the causal part of the time domain. The wavelet is composed by computing
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Figure 5.2: Imaging result for synthetic data modelled using a wavelet that contains all low
frequencies (Gaussian) and a wavelet that does not (derivative of Gaussian). The wavelet
without dc-component does not give a stable result (dashed line), while the results for the
wavelet that does have a dc-component are good (solid line). The true velocity model is
given by the dash-dotted line.

the Hilbert transform of the Gaussian wavelet (see appendix C.2), therefore the fre-
quency content of both wavelets is comparable. The wavelet is shown both in time
and frequency domain in Figure 5.4. The imaging result shown in Figure 5.5 does
not encounter the same problem as is the case for the derivative of the Gaussian
wavelet. A window size of 1.4 s was used in the evaluation of the imaging condition.
The imaging result is less accurate than for a Gaussian wavelet because of the large
width of this particular wavelet in the time domain. This result is consistent with
our assumption that the cause of the problems is the lack of the dc-component in
the wavelet and not the shape of the wavelet in the time domain. This is in spite of
the fact that the actual imaging is performed using the energy of the wavefields in
the time domain. The reason for failure of the method when the lowest frequencies
are missing can be found in the spectral information of the desired velocity func-
tion. This spectral information contains a broad range of wavenumbers, including
small wavenumber components. It is not possible to recover these small wavenumber
components from the data when the data does not contain low frequency informa-
tion. Some theoretical inversion methods ignore this problem, such as the method
described by Raz [25]. In those cases it is assumed that the data can be properly de-
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Figure 5.3: Imaging result for synthetic data modelled using a wavelet that contains all low
frequencies (solid line) and a wavelet that does not (dashed line). A very small window (0.02
s) was used to evaluate the imaging condition. When the wavelet has no dc-component, the
imaging procedure ’sees’ the interface, but does not reach the correct velocity. The true
velocity model is given by the dash-dotted line.

convolved in order to recover the reflectivity sequence. This is explained by Treitel,
Lines and Ruckgaber [33]. An ideal wavelet deconvolution corresponds to the case
where we have a full-band zero-phase wavelet. The method by Schur, described in
the previous chapter, requires a wavelet initiated by an impulse containing the low
frequencies. The velocity inversion procedure described by Cohen and Bleistein [11]
makes an estimate of the velocity deviation from a certain background velocity by
considering only the available frequency bandwidth. They assume that the velocity
variations in the subsurface are small. They use a technique that determines the
derivative of the velocity deviation from the background velocity. This derivative is
band-limited. Some inversion methods use background velocity information to add
the missing frequencies to the inversion result. One of those methods is the method
described by Carrion and Kuo [6], where a minimization technique is used to find
the critical path of the wave field in the 7 — p domain. Low-frequency information
can be derived from for instance well log-data, as described by Treitel [33], or time
migration velocities. We performed experiments where a background velocity model
was included in the imaging procedure but this did not lead to satisfactory results.
In the following sections we propose a method that does not make use of a back-
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Figure 5.5: Imaging result for synthetic data modelled using a wavelet based on the Hilbert
transform of a Gaussian. The true velocity model is given by the dash-dotted line.

ground velocity model, but does take care of the required frequency content of the
data.
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5.2 The envelope method

In this section we propose a method to add low-frequency content to the data without
using a background velocity model. To do this, we use the envelope of the data in
the imaging procedure. The envelope of a wavelet W is defined as follows:

envelope(t) = /W (t)2 + H[W ()2, (5.1)

where W(t) is the wavelet and H denotes the Hilbert transform. We will take an-
other look at the case where the derivative of a Gaussian is used for the wavelet.
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Figure 5.6: The synthetic upgoing wavefield, used as input for the layer-stripping process,
both in time and frequency domain. Top: the original wavefield. Bottom: the upgoing
wavefield after the envelope was taken. The two events correspond to the two interfaces in

the velocity model.
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The synthetically generated upgoing wavefield in the time and frequency domain
using this wavefield and the same for its envelope are shown in Figure 5.6. When
the envelope of the wavefield is taken, its frequency spectrum contains the desired
dc-component. The velocity model used for modelling the data is the same as the
one used in the previous section. The velocity results after taking the envelope of
the wavefields are shown in Figure 5.7. The dashed line denotes the actual model ve-
locities. Note that the final value of the calculated velocity is approximately correct,
but the exact position of the interfaces is not as clear as in previous results. This
loss of resolution is a result of the fact that the wavelet is much broader in the time
domain after the envelope is taken. Using a wavelet with a broader frequency band
results in higher resolution. Also note that the imaged velocity starts to rise again
at about 1800 m depth. This is the result of the fact that the internal multiples
have been given a positive sign after taking the envelope of the wavefields. This will
be explained in section 5.4. Testing of the envelope method on other wavelets such
as a Ricker wavelet also gave good results.
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Figure 5.7: Results for the envelope method, calculated velocities together with the actual
velocity model (dashed).

When applying this method we take the envelope of the measured wavefields and
perform both the imaging and the wavefield extrapolation using these adjusted wave-
fields. A slightly different method is to take the envelope of the wavefields before
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calculating the imaging condition and after extrapolation of the fields. After cal-
culation of the contrast the original wavefields (without taking the envelope) are
extrapolated over the next layer. Then the envelope is taken again and the new
contrast determined, etc. The velocity results for this method however are unsatis-
factory. This can be explained by the fact that the imaged velocity and the wavefield
extrapolation method are very closely related. The wavefield is propagated using
the imaged velocity. If the imaged velocity is based on properties that the wavefield
to be extrapolated does not have, the wavefield will not be propagated appropriately
and the method will fail.

A different way of dealing with the lack of low frequency problem might be by
the following method: First, low-resolution velocity information could be found by
taking the envelope of the wavefield. Then, this low-resolution information could be
used as background velocity information when imaging with the original wavefields.
Since experimenting with this method so far did not lead to satisfactory results this
should be a subject of further research.
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5.3 The absolute value method

An alternative for the envelope method, based on the same principle, is given in
this section. Good results are obtained when the absolute value of the measured
wavefields is taken at the beginning of the layer-stripping procedure. Like with the
envelope method, both the extrapolation of the wavefields and the calculation of
the contrast with the imaging condition is performed with the absolute value of the
wavefields. The absolute value of the upgoing wavefield together with its frequency
spectrum is shown in Figure 5.8. Note that the frequency spectrum now contains the
desired dc-component. We used the same velocity model as in the previous section.
The imaging result of this method is shown in Figure 5.9. An improvement of the
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Figure 5.8: The absolute value of the (synthetic) upgoing wavefield, used as input for the
layer-stripping process, both in time and frequency domain. The two events correspond to
the two interfaces in the velocity model.

resolution can be seen in comparison to the envelope method. The little ’ear’ at the
velocity steps is now bigger than for the envelope method. This is related to the
fact that the velocity step is now more sudden. This behavior can be recognized as
Gibb’s phenomenon. Testing of the absolute value method on other wavelets such
as a Ricker wavelet gave good results.



64

Chapter 5. The lack of the lowest frequencies in seismic data

2100

2000

1900

1800~

velocity [m/s]

3

=)

S
T

1600

1500

1400 ‘ : ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 1200 1400 1600 1800 2000
depth [m]

Figure 5.9: Results for the absolute value-method, calculated velocities together with the ac-
tual velocity model (dashed). The absolute value of the wavefields was taken at the beginning
of the layer-stripping procedure. The derivative of a Gaussian was used as input wavelet.
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As we stated before, the reason for failure of the imaging method when the lowest
frequencies are missing is that the spectral information of the desired velocity profile
contains small wavenumber components. This means that the desired low-frequency
information somehow has to be added to the data or to the imaging result. The
common method in seismics is to add this information to the imaging result by using
background velocity information. The absolute-value or envelope method however
adds low-frequency information directly to the data. The underlying assumption is
that the events in the data are separate events. For this reason, the method will fail
for overlapping events, as is shown in Figure 5.10. The imaging method is performed
on a velocity model with three interfaces at 900, 910 and 920 m. depth. Due to the
bandwidth of the wavelet, the events in the synthetic data that correspond to these
interfaces will overlap. The imaging result of the reflection response modelled with a
Gaussian wavelet, containing low frequencies, is very good, while the imaging result
of the reflection response modelled with the derivative of a Gaussian in combination
with the envelope and absolute-value method does not reach the correct velocity.
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Figure 5.10: Imaging result for a Gaussian wavelet(a), for the derivative of a Gaussian
using the envelope method (b) and for the derivative of a Gaussian using the absolute value
method (c). The solid line denotes the true velocities.
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5.4 Negative velocity contrasts

Because both the envelope and the absolute value method result in a loss of the sign
of the events in the data, these methods fail for negative velocity contrasts. The
multiple reflections in the data will no longer be handled correctly either. In this
section we propose a solution method for this problem.

After the absolute value or envelope of the wavefield is taken the method sees a
negative contrast as a positive one. The imaging result for a velocity model which
has a negative contrast is shown in Figure 5.11. The true velocity varies from 1500
m/s to 1800 m/s and 2000 m/s and then back to 1800 m/s. The imaged velocity
however varies from 1500 m/s to 1800 m/s to about 2230 m/s. The negative velocity
contrast was interpreted as a positive one.

To show what happens when an internal multiple in the data does not have the
correct sign we take another look at the velocity model used in section 4.1.3. The
velocity varies from 1500 m/s to 2500 m/s at 300 m depth to 5000 m/s at 900 m
depth. Figure 5.12 gives the imaging result using the absolute value of the wavefields.
The actual velocity is given by the dotted line. The multiple now has the wrong sign,
resulting in the imaged contrast at 2200m. When the multiple is manually given
the correct sign, the imaging result as shown in Figure 5.13 is found. The faulty
contrast at 2200 m is no longer there. We will take a closer look at the behavior
of the multiple in Figure 5.14. Shown are the calculated upgoing wavefields at 660
m and 1200 m depth for the case where the sign of the multiple was not corrected
(top) and for the case that the multiple was given the correct sign (bottom). When
the sign of the multiple is not correct, the event at 0.7 s was not recognized by the
imaging procedure as a multiple, but is treated as a primary. The same event is
visible at about 0.4 seconds at 1200 m depth (top right) and will cause the faulty
contrast at about 2200 m when it reaches the ¢ = 0-axis. The event at 0.4 s in the
picture top left is generated by the multiple generator in the imaging procedure as
a compensation for the missing multiple. The timing of this event corresponds to
the timing of the multiple that was given the correct (negative) sign as visible in the
picture bottom left. The small event still visible at 0.7 s is the result of slight mis-
calculations in the imaging procedure. As shown by the figure on the bottom right,
at 1200 m depth this event has faded away and will hardly influence the imaging
result.

A solution method for this problem is to determine the sign of the events before
taking the envelope or the absolute value, and then to apply this sign to the result-
ing data. We use a median filter to determine the sign of the events. Median filters
are commonly used in seismics in order to despike the data, as described by Claer-
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Figure 5.11: [Imaging result for both the absolute wvalue-method (top) and envelope
method(bottom) together with the actual velocity model (dashed) which contains a nega-
tive velocity contrast. The derivative of a Gaussian was used as input wavelet.

bout and Muir [9]. Other applications are the attenuation of coherent wavefields,
described by Duncan and Beresford [15], or upgoing-downgoing wavefield separation
in VSP data processing as described by Reiter et al. [26]. A median filter sorts
the data points inside a certain window in ascending order. The median value of
the numbers inside this window is simply the central value. Filtering of a trace is
performed by passing the window over this trace and replacing each data point in
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Figure 5.12: Imaging result using the absolute value method. The event at 2200 m depth
is caused by the incorrect sign of the internal multiple. The actual velocity is given by the
dotted line. The derivative of a Gaussian was used as input wavelet.

the trace with the median value of the points within the window centered on the
current point. The window is shifted over the entire length of the trace, leaving a
new, filtered trace. Before applying the median filter we transform the wavefield
such that the events are symmetric (zero-phasing). For an anti-symmetric wavelet
such as the derivative of a Gaussian we use a Hilbert transform for this. The next
step is to apply the median filter to this zero-phased upgoing wavefield. A trace
containing the sign of the events in the original data is now computed by assigning
the value -1 or +1 to every negative or positive point in the filtered trace respec-
tively. The absolute-value data or envelope data are now multiplied by this trace
in order to assign the correct sign to the events in this data. Using a median filter
proved to give better results than using a mean filter. The choice of the width of the
median filter window is important. If the window is chosen too wide, the events will
overlap and if the window is chosen too small, the result will almost be the same
as the original data. This is shown in Figure 5.15. Shown from left to right are
the synthetic upgoing wavefield, the wavefield after zero-phasing, the filtered result
for a window size of 0.12 s, the filtered result for a window size of 0.04 s and on
the right the filtered result for a window size of 0.28 s. The filtered result, from
which we compute the trace containing the sign of the original data, is best for a
window size of 0.12 s. Note that we expect a positive event to lead to a positive
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Figure 5.13: Imaging result using the absolute value method. The sign of the multiple was
corrected manually. The actual velocity is given by the dotted line. The derivative of a
Gaussian was used as input wavelet.

sign. In this case it’s the other way around, which is a result of the shape of the
wavelet after zero-phasing. This can easily be corrected for by median filtering the
zero-phased wavelet and checking the sign of the result. The trace containing the
sign of the original data, together with the result of application of this trace to both
the absolute value and the envelope of the data is shown in Figure 5.16. The data
after application of the trace give the imaging results shown in Figure 5.17. Since
the absolute value method has higher resolution we will just use this method in the
following example. Figure 5.18 shows the imaging result for the multi-layered depth
model we used in the previous chapter. Figure 5.19 shows the synthetic upgoing
wavefield after manipulation with the trace containing the sign of the events in the
original data, which is also shown in this figure. The result is slightly less accurate
than the result shown in Figure 4.1. This is the consequence of very small events or
artifacts being given the wrong sign. The high amount of sign changes in the last
second of the data is a result of the very small changes around zero in this part of
the data. Since these changes are very small, the sign changes will hardly affect the
imaging result. Note that the method to determine the sign of each event in the data
will fail when events with an opposite sign are overlapping. Also note that, as stated
in section 5.3, by using the envelope or absolute value of the data the assumption
was made that the events are not overlapping, so this makes two reasons for the
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Figure 5.14: Calculated upgoing wavefields at 660 m (left) and 1200 m (right). In the two top
pictures the sign of the internal multiple has not been corrected, in the two bottom pictures
it has been given the correct (negative) sign.

method to fail in case of overlapping events.
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Figure 5.16: The picture on the left shows the synthetic upgoing wavefield. The trace con-
taining the sign of the data which was found by filtering the original upgoing wavefield is
shown on the middle left. The picture in the middle right shows the reflected wavefield after
manipulation with the correct sign, used for the absolute value method. The picture on the
right shows the same but now for the envelope method.
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Figure 5.17: Imaging result for the both the absolute value-method (top) and envelope
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Figure 5.18: Imaging result for the absolute-value method after correction for the sign. The
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Figure 5.19: The left picture shows the trace containing the sign of the original data which
was found by filtering the original upgoing wavefield. The picture on the right shows the
reflected wavefield after manipulation with the right sign for the absolute value method.
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Some applications of the
layer-stripping method.

In this chapter we discuss some applications of the layer-stripping method. We give
some examples of how the method can be applied to time-lapse problems. This
is followed by the inversion of a two-dimensional model making use of common
midpoint techniques.

6.1 An application in time-lapse seismic imaging

In this section we give an example of how the causality-based imaging method can
be applied to time-lapse seismic imaging. We also show that for this method there
are no constraints on the repeatability of the wavelet. We finish the chapter with an
example of how the causality-based imaging method can be applied to 4D problems
by subtracting the inversion results.

The causality-based imaging method is applied to a difference term representing
the time-lapse changes in a reservoir. Fokkema, Dillen and Wapenaar [16] have
presented the idea to apply the reciprocity theorem to the two different measure-
ment states in 4D seismics. We make use of a method based on this idea derived
by Dillen [14] and Wapenaar, Dillen and Fokkema [36]. This method applies the
reciprocity theorems for the one-way wave equations as derived by Wapenaar and
Grimbergen [37]. These reciprocity theorems relate the up- and downgoing wave-
fields in two different acoustic states. In time-lapse seismics it is common to make use
of the difference section between two seismic sections measured at different moments
in time. This difference section contains information on the change in the subsurface
that arose during the time interval between measurements. The amplitudes in the
difference section are however disturbed as a result of traveltime shifts due to the ve-
locity changes in the subsurface. Therefore, the amplitudes in the difference section
are not a good representation of the quantitative velocity change in the subsurface.
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res 2 res 2

Figure 6.1: The up-and downgoing wavefields in the interaction integral.

Dillen [14] derived an interaction integral between the wavefields in the two different
measurement states at an arbitrary reference level in the subsurface. He showed
that in this interaction integral the amplitude disturbances mentioned earlier do not
occur. The interaction integral derived by Wapenaar, Dillen and Fokkema [36] has
the same properties but now allows an interpretation in terms of downgoing and
upgoing wavefields. The interaction integral has the following form:

/ (P (x[z®)p" " (2|2) — p™F (2|2*)p"~ (2|2 }dA, (6.1)

represents the upgoing wavefield (travelling in the negative depth direc-
tion) in state 0, p1'T represents the downgoing wavefield in state 1 etc., and z3 is
the reference level. State 0 is the measurement state before changes occurred (the
reference state), state 1 is the state after the changes in the subsurface have occurred
(the monitor state). The wavefields in the integral are visualized in Figure 6.1.

where p%

The first reservoir in which time-lapse changes take place is denoted by ’res 1’ and
the second reservoir in which changes take place is denoted by ’res 2’. The left
part of the integral, fwB:l_g PO~ (x|2%)ptt (x|2T)dA, represents a virtual experi-
ment where the wavefield travels down through state 0, is reflected at the second
reservoir in state 0 and then travels back to the surface through the medium in
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res 2 res 2

Figure 6.2: Virtual experiments, corresponding to Figure 6.1.

state 1. A similar interpretation can be given for the right part of the integral,
fmS:mg PO T (x|2%)ph~ (x|2) }dA. In this case, the reflection at the second reservoir
takes place in state 1. This interpretation is visualized in Figure 6.2. The travel-
times in both virtual experiments are the same, so the amplitudes in the difference
term are not disturbed and are representative for the quantitative velocity change in
the second reservoir. We will determine this velocity change using the result of the
interaction integral in the layer-stripping procedure. To this end we will consider
the interaction integral as the reflected wavefield in the layer-stripping procedure.
For the downgoing wavefield we will use the wavefield initiated in the same medium
as are the wavefields in the interaction integral, but now travelling through a homo-
geneous background medium with the velocity of the second reservoir in state 0.

Figure 6.3 shows the velocity model we used for synthetic modelling of the wave-
fields. We modelled a plane wave using a finite difference method and analyzed the
interaction integral for the one-dimensional case, in which the interaction integral
reduces to an interaction term at z3:

P (@3l®)pt T (a3]a™) — 0T (@3]2%)ph T (2F]™) (6.2)

Figure 6.4 shows the modelled downgoing wavefield in state 1, the modelled upgoing
wavefield in state 0, the result of the convolution of these two and the interaction
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Figure 6.3: The subsurface model, with two reservoirs in which time-lapse changes take
place. In the first reservoir ¢®=2500 m/s and c'=2580 m/s and in the second reservoir
®=8100 m/s and c' =3000 m/s. The interaction term is determined at x3=900 m.
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term in the time domain. The event at about 1 s is used as reflected wavefield in the
causality-based layer-stripping method and the imaging result is shown beneath the
time traces. The velocity difference from 3100 m/s to 3000 m/s is imaged accurately.
Note that we invert a virtual experiment were the upper half-space has a background
velocity of 3100 m/s and we perform the layer-stripping using this background ve-
locity. Since the real upper half-space has different wave speeds, the depth at which
the contrast is imaged is an apparent depth which is not the same as the true depth
of the reservoir. The wavelet in this virtual experiment was computed by performing
an auto-convolution of the original wavelet. The event at approximately 1.3 s has a
disturbed amplitude due to the traveltime difference from the second reservoir. In a
subsequent step, the reference level could be lowered to a new level below the second
reservoir. Note that the wavelet we used for modelling the wavefields is a Ricker
wavelet. Due to the limited bandwidth of this wavelet we analyzed the absolute
value of the data. This method is explained in Chapter 5.

In time-lapse seismic surveys the repeatability of the measurements separated by
the time-lapse is very important for the correct evaluation of the difference section.
The repeatability concerns the exact location of source and receiver but also the
wavelet. It is difficult to reproduce the exact same wavelet in two different surveys.
The method we introduced in this section is not influenced by the repeatability of
the wavelet. Figure 6.5 shows the imaging result for the same subsurface models as
in the previous example but now two different wavelets were used. It is clear that
the difference between the wavelets hardly influences the imaging result. Since the
difference term we image contains a convolution of both wavelets it is not necessary
for these wavelets to be the same.

Another approach to time-lapse inversion, as apposed to inverting a difference sec-
tion, is to invert the reference state and the monitor state separately and then sub-
tracting the inversion results. This approach is for instance described by Abubakar
et al. [1] for the contrast source inversion method. An advantage of this approach is
that the method is much less dependant on the repeatability of the measurements
than when the difference between the seismic measurements is inverted. The source
and receiver configurations of the measurements may be different for instance. A
disadvantage of the method is that the inversion scheme has to be run twice, for
both states, and therefore requires more computation time. Imaging results for this
approach are shown in Figure 6.6. We used the same velocity model as for the
previous example, shown in Figure 6.3. The top picture of Figure 6.6 shows the
difference between the two separate velocity models. The middle picture shows the
difference between the two imaging results obtained by inverting the synthetic data
for the monitor state and the reference state separately. For both inversions the same
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Gaussian wavelet was used. The bottom picture shown the difference between the
two imaging results when for modelling the reference state a different wavelet was
used then for the monitor state. For the reference state we now used the derivative
of a Gaussian while for the monitor state we used a Ricker wavelet. The absolute
value of the wavefields was used. The difference result for the different wavelets
shows some small deviations that are not visible when similar wavelets were used.
This is a result of the fact that the resolution of the imaging result is strongly in-
fluenced by the frequency content of the wavelet. The frequency spectra of the two
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Figure 6.4: Top, from left to right: pb T (z3|z),p% ~ (z3|z®), p~ (23|2%)p*+ (23|2F), trans-
formed back to the time domain, and p*~ (x2|z®)pb T (23|2®) — pOF (23|2)pb~ (22]zT),
transformed back to the time domain. Below that the imaging result of the interaction
integral. The modelled velocity in the second reservoir varies from 8100 m/s to 3000 m/s.
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wavelets used for this example are shown in the top pictures (left and middle) in
Figure 6.7. The frequency content is almost the same. If this frequency content is
not the same, differences will be visible around the interfaces in the velocity model.
This is visible in the bottom picture of Figure 6.7. A Ricker wavelet, similar to the
one in the previous example, is used for the monitor state, and a derivative of a
Gaussian wavelet is used for the reference state. The frequency content is now lower
than for the previous example. This is shown in the top right picture of Figure 6.7
(reference state 2). The difference result now shows many deviations from the actual
difference, as shown in the top picture of Figure 6.6.

1+ 0,— — - -
p p pl*p® p 2" -p2*p"

0 0 0 0
0.2 0.2
04 0.5 0.5
0.4 :
()
E 0.6
+ 0.6 1 1
0.8
0.8
1 15 15
;

-10 0 10 -1 0 1 -2 0 2 -2 0 2

3150

3100

velocity [m/s]

3050 - b

3000 -

2950 ! ! !
0 600 1200 1800

depth [m]

Figure 6.5: Top, from left to right: pb T (z3|z™),p% ~ (z3|z®), p~ (23|z%)p*+ (23|2F), trans-
formed back to the time domain, and p*~ (x2|z®)pb T (23|2®) — pOF (23|2)pb~ (22]zT),
transformed back to the time domain. Note that two different wavelets were used. Below
that the imaging result of the interaction integral.
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Figure 6.6: Top: difference between velocity models for monitor state and reference state.
Middle: Difference between imaging results obtained by inverting the monitor state and
the reference state separately. Both states were modelled with the same wavelet. Bottom:
Difference section between imaging results, now the separate states were modelled with a
different wavelet. The frequency spectra of these wavelets are shown in Figure 6.7
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Figure 6.7: The frequency spectra for the different states. Top left and top middles are the
frequency spectra of the wavelets used for the monitor and reference state leading to the
bottom difference result in Figure 6.6. The spectra top left and top right are the frequency
spectra of the wavelets used for the monitor and reference state leading to the difference
result shown on the bottom.
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6.2 An example for a two-dimensional medium

So far, we have examined the behavior and characteristics of the method for the
one-dimensional case. In this section we use common midpoint gathers to invert a
2D example, as a first step towards extension of the method to the more-dimensional
problem.

The velocity model is shown in the top picture of Figure 6.9. The model has one
interface with variable depth, the velocity varies from 1500 m/s to 2500 m/s. The
model is 2500 m wide and 1050 m deep. Using a 2D finite-difference code we mod-
elled 126 shots with 126 receivers at the surface, each 20 meters apart. We used a
Ricker wavelet as input wavelet. This is a bandlimited wavelet not containing the
lowest frequencies. The problems arising when these frequencies are missing together
with a solution method are described in Chapter 5. For the examples in this section
we used the absolute value method described in section 5.3. The synthetic upgo-
ing wavefield for shot position at 1200m is shown in the top picture of Figure 6.10.
In the presence of dip it is more profitable to deal with common midpoint gathers
than with shot gathers. A comprehensive review of the use of common midpoint
data is given by Diebold and Stoffa [13]. The synthetic data were therefore sorted
to CMP-gathers, the gather for common midpoint position 1200 m is shown in the
middle picture of Figure 6.10. Every 20th CMP-gather was then transformed to the
intercept time and ray parameter (7-p) domain. An overview of 7-p mapping of
seismic data is given by Stoffa et al. [30]. The CMP-gather in the 7-p domain for
common midpoint position 1200m is shown in the bottom picture of Figure 6.10.
Since the trace for p=0 s/m after transformation to the 7-p domain corresponds to
normal incidence we can apply our imaging procedure to this trace. The processing
sequence for this procedure is depicted in Figure 6.8. Decomposition of the total
wavefield into an upgoing and a downgoing part was performed by modelling both
the heterogeneous and a homogeneous subsurface and subtracting the two data sets.
The step where the absolute value of the wavefields is used is necessary due to the
limited bandwidth of the data and is explained in Chapter 5. The imaging result
for several CMP-positions is shown in the middle picture of Figure 6.9. The imag-
ing result gives stable and accurate results for the left part of the model, which is
horizontally layered. The result starts to show deviations when the reflector in the
velocity model starts to dip. Furthermore the dip at the right side of the model is
too steep to be modelled correctly. This method, where we use plane-wave decom-
position of CMP-gathers is known to be applicable only to media varying smoothly
in the horizontal direction. The reason for this limitation is that by using only the
data for p = 0 s/m, we do not make use of a huge part of the information in the
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Figure 6.8: Flow diagram of layer-stripping algorithm using cmp-gathers.
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data. This will of course have consequences for the accuracy of the inversion result.
When the theory as described in Chapter 2 will be implemented, this restriction on
variations in the horizontal direction will not have to be made. We will then make
use of all values for the angular slowness « of the pressure wavefields in the double
spatial Fourier domain.

The imaging result for a slightly more complicated velocity model is given in Fig-
ure 6.11. The imaging result still closely resembles the velocity model. The ar-
tifacts caused by the 7-p transform were manually removed before applying the
layer-stripping. Stoffa et al. [30] describe how this removal can be performed using
a semblance derived window function.
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Figure 6.9: 2D velocity model (top) together with imaging result per CMP-position (middle).

The bottom picture shows the value of the imaging result at 450 m depth. The model velocity
at this position is 2500 m/s.
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Conclusions

In this thesis we have introduced a layer-stripping method based on the reciprocity
theorem and the causality principle. The surplus value of this method is that the
theory is applicable to laterally varying media and that no a priori velocity informa-
tion is required. Even though there are many different seismic imaging and inversion
methods, a direct nonlinear method determining the subsurface properties directly
from the data, for any subsurface configuration, still remained to be developed. The
method described in this thesis is a step towards the development of such a method.

The first chapters of this thesis focused on the theory behind the method. We
have shown that the velocity contrast over an interface between a homogeneous and
a laterally varying medium can be expressed in terms of the up- and downgoing pres-
sure wavefields in the homogeneous medium above this interface. We have called
this expression the imaging condition. The causality principle plays a key role since
the derivation is based on the assumption that the wavefield below the interface
consists of just downgoing waves. Due to causality we know that there will always
be a (short) interval in time for which this assumption is true. We have shown that
the imaging condition can be combined with a velocity replacement method based
on reciprocity in order to determine the properties of the subsurface. The wavefield
for the case where a thin laterally varying top layer is replaced by a layer with the
properties of a homogeneous background medium can be expressed in terms of the
wavefields before replacement of this layer. We have shown that it is theoretically
possible by repetitive layer replacement in combination with the imaging condition
to determine the velocity profile of a laterally varying, three-dimensional subsurface.
Implementation of the theory involves large matrix calculations and solving pseudo-
differential equations. The only assumptions on the subsurface we made are that
the wave propagation is adequately described by the acoustic wave equation and
that the density in the subsurface is a constant. In Chapter 3 we have shown that
the three-dimensional case can be simplified for the general two-dimensional case,
followed by the case for 2D wave propagation in a horizontally layered medium and
the one-dimensional case.
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We have investigated the properties of the method in the last chapters of the thesis,
beginning with the one-dimensional case and using synthetically generated data. By
starting with the one-dimensional case we have been able to closely evaluate and
understand the different characteristics of the method. It can be concluded that a
one-dimensional subsurface model can be very accurately inverted when the energy
of the wavefields are considered in the imaging condition. We have shown that the
internal multiples in the data are handled correctly, which was to be expected for
a non-linear solution method. The choice for the thickness of the stripped layers
is connected to the time sampling of the data and the velocity of the homogeneous
background medium. The resolution of the method depends on the bandwidth of
the data. Since the method is entirely data driven, only information contained in
the data can be recovered. Accurate results can be obtained for obliquely incident
plane waves on a one-dimensional medium, however the method does not hold for
post-critical incidence. For high angles of incidence and high velocities the method
breaks down for precritical incidence as well. This is a result of noise being generated
during the layer-stripping procedure.

By comparing the layer-stripping method to another layer-stripping method based
on the Schur algorithm we have shown that more accurate results are obtained using
the causality-based imaging method, especially in the presence of noise. The use of
the energy of the wavefields in the imaging condition has a stabilizing effect on the
imaging result which is not available for the Schur method. Another big difference
between the methods is the fact that the Schur algorithm is applicable to laterally
invariant media only.

The limited bandwidth of seismic data is a problem for seismic inversion which
should not be underestimated. In Chapter 5 we have shown that in order to recon-
struct a velocity profile, the spectral information of which contains small wavenum-
ber components, the presence of all low frequencies in the data is required. This
frequency content is however not realistic for seismic data. This problem is usually
dealt with by adding a priori velocity information. We have proposed an alternative
solution method using the absolute value or the envelope of the data which gives
good results as long as the events in the data are not overlapping. The loss of the
sign of the data due to taking the absolute value or the envelope can be dealt with
by constructing a sign-file using median filters. As a result of the adaptation of the
data the imaging result becomes less accurate than for the case a wavelet containing
all low frequencies is used.

We have shown that the method can be applied to time-lapse seismic imaging. The
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method can be used to determine the changes in a reservoir by inverting a differ-
ence term over the reservoir. The method we propose does not require the wavelets
of the two different measurements to be equal. In the final section of the chapter
we have shown that good imaging results can be obtained for two-dimensional sub-
surface models using common midpoint gathers. This technique is applicable only
to media varying smoothly in the horizontal direction. The imaging result for the
two-dimensional case shows the potential of the method for these kind of problems.
By fully implementing our layer-stripping method for the multi-dimensional case we
expect to find more accurate imaging results for laterally varying media.

As an overall conclusion we can state that promising results have been obtained by
designing and partly implementing a completely data driven inversion method which
is theoretically applicable to laterally varying media.

In order to be able to apply the method to real data some steps have to be made.
The first step is the implementation of the multi-dimensional case. As stated before,
this requires large matrix calculations in the layer replacement and solving pseudo-
differential equations in the imaging condition. The work by van Borselen [35] can
be a guideline for implementing the layer replacement. The second step is to find
a way to deal with the noisy character of real data. It was shown in section 4.2
that our layer-stripping method is relatively stable in the presence of noise. The
bandlimited nature of the seismic data might however lead to complications. When
we work with the absolute value or envelope of the data the noise will receive a
positive sign and will therefore have a large influence on the energy of the wavefields
in the evaluation of the imaging condition. To be able to apply the absolute value
or envelope method to real data the negative signs of the noise in the data have to
be recovered, for example by median filtering the noisy data with a different window
size. Please note that no matter how stable the method, it still is completely data
driven, which means that when there are mistakes in the data these mistakes will
show up in the imaging result and influence the rest of the imaging result. Some
other practical considerations are the fact that knowledge of the source wavelet is
required and that the velocity of the top layer (the velocity of the homogeneous
background medium) has to be known. Taking into account that by measuring both
the pressure and the velocity wavefield the wavelet can be determined, and the fact
that the top layer in seismic surveys is often sea water, these restrictions do not
seem insurmountable. Loosening the constraint on the density of the subsurface and
extension of the method to the elastic case can be a subject of further research.
Both adjustments of the method will lead to more complicated formulations and
calculations.
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The result in section 6.1 gives examples of the application of the method to time-lapse
seismics. The strength and surplus value of the causality-based imaging method for
industry might well be its potential to be used for accurately imaging parts of the
subsurface which need focussing on. We have shown that this is for instance possible
for time-lapse problems by imaging only the difference term representing the changes
that occurred in a reservoir over time. Our method can be combined with any other
method which can be used to determine the wavefields at a certain depth in the sub-
surface. Also note that in this thesis we have combined a layer replacement method
based on the reciprocity theorem with the causality-based imaging condition. This
combination is not obligatory and one can think of applications involving only one
of the two separate methods, such as for example an optimization method using
an a priori background model and the velocity replacement method or a method
combining the causality-based imaging method with a different way of extrapolating
the wavefields.



A

Proof of symmetry of
pseudo-differential operator

In the derivation of the imaging condition for laterally varying media, as described in
section  (2.3.1), Eq.  (2.64), the  property that the  operator

(TF)2 — K is a symmetric operator is used. Note that this operator is a pseudo-
differential operator in the spatial Fourier domain. In this section the proof of
symmetry of this pseudo-differential operator is given. We start with the expression
for the wave-equation for pressure in the (zr, s)-domain:

2

(V2 - %)ﬁ(wﬂ — 0. (A1)

Using this we can write (Helmholtz equation):

2
N S N .
03p(xr) = (57— — 0,0,)b(xr) = Hap(2r), (A.2)
ci(zr)
where operator Hy = sz(m - £0,0,), and v = {1,2}. Now we rewrite this as
follows:
HQ = H270 — sQK(a:T), (A3)
where 1 1
Hapo = 52(% - 8_2876*1)- (A.4)
Now write:
Halar)ilar) = [ Haler,ap)p(ey)dd (4.5)

x/peR?
where Hy(xr, x/) is called the kernel of operator Ha. It expresses the action of the

operator on wavefield p(x/.) in a generalized convolution integral. Consequently, it
can be written as:

Hy(zp,x7) = Ha(xr)d(xr — 7). (A.6)
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When we consider a medium with only one interface, there is only a downgoing field
beneath the interface. In this case we can write:

Osp(xr) = —Hip(xT), (A7)

where:

1 1
= S\/C%(ZCT) - 8—28q8q (A.8)
= S\/S_12H2’O — K(CL‘T) (A9)

The operator H, is a partial differential operator. We call the square-root operator

H1 a pseudo-differential operator since it contains implicitly (via Hz) the lateral dif-
ferentiation operators but it also contains a non-polynomial operation. Analogously
to Eq. (A.5) we can write:

Hienpen) = [ Hierepi@pid (A.10)
x/peR?
with
Hy(xr,x}) = Hi(z7)d(Xr — 7). (A.11)

Now we will focus on the symmetry behavior of the operators. The bilinear form is
defined as:

(f.ah = / f(@r)g(xr)dA. (A12)
xT6R2

We introduce an operator A and its transposed operator A’ for which the following
is valid:

(Af,g)p =< f, A'g >y . (A.13)

The operator A is symmetric when the transpose of A equals A itself:

A=A
s Alzr, zh) = A(xy, ©r). (A.14)

So for Hs and H; to be symmetric the following conditions have to be satisfied:

HLY = Ho & Ho(xr, x7) = Ho(xlp, 27), (A.15)
Ht =H1<:>H1($T,$éﬂ) =H1(SC/T,$T), (A16)
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Wapenaar has shown in [37] that this is the case for both operators in the zp
domain. Now we have to show the same for the spatial Fourier domain. In order to

do this, we write:

Fo(Hap(@r)) = Fol(Hop — s° K (x7))p(27)]
=s*(T2 — K(jsar))P(jsar). (A.17)

The operator F, performs the spatial Fourier transform. Using Eq. (A.5) we can

write:
Fotap @) =7 [ Haer.eh)per)da)
x/peR?
= / exp(jsar - ) / Hy(xr, )p(x)dAdA
xpeR? xneR?
1 . .
= (5)2 / / / exp(jsoy - Ty — jsarp - )
xreR? 2/ eR? salpeR?
1 = . = .
- (%)2 / Hsy(jsar, —jsal)P(jsalp)dA, (A.18)
salpeR?
where

H, (jsar, jsaly) = (A.19)

/ / Hy(xr, x) exp(jsar - o) exp(jsary - o )dAdA.
xreR? z/,eR?

From this it can be concluded that:

Hy(xr, @) = Hay(ahp, x7) < Ha(jsour, jsoly) = Ha(jsaly, jsar).
Now use Eq. (A.18) to write:

F(Hap(xr)) = Ha(jsar)p(jsar)
= s*(I'2 — K(jsar))P(jsor) (A.20)
= (%)2 / E’z(jSOzT, —jsalp)P(jsalp)dA.

salpeR?
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Similarly, we can write:

F(Hip(xr)) = Hi(jsar)p(jsar)

=351/T3 — K(jsar)p(jsar) (A.21)

1 = oo V(4
(3 / Hi(jsar, —jsap)p(jsor)dA.
salpeR?

Since:

H,y (jsar,jsoy) = (A.22)
/ / Hi(xr,x) exp(jsar - xr) exp(jsary - x7)dAdA,
xreR? z/,eR?

the following is valid:

Hl(mTa m/T) = Hl(w/TM,BT) <~ Hl(jSQT,jSa/T) = Iz{l(jsafl"7]saT) (A23)

The inner product is defined as:

(F.9) =2 [ Flsaryg(-jsar)ia, (A.24)
SO(TER2

Using this definition we arrive at the expression which is used in Eq. (2.64) in the
derivation of the imaging condition:

1 - S
o2 / / Hy(jser, —jsaip) f(jsoir)g(—jsar)dAdA =
sareR? sa’TeRQ

)" / / F(Gsely) Hi(=jsely, jsor)g(—jser)dAdA =

soreR? salpeR?
1 Z . - . .
([ Fsa)Fa(~jsadpg(-jsai)ia =
solpeR?

(f, H1g). (A.25)



B

Proposed solution strategy for layer
replacement

The two basic equations for the three-dimensional case, Eqs (2.42) and (2.45)are:

= K{ﬁo}(jsa%xﬂ —jsaaq«,mg)dmg
2sI'

i / exp(—sDf (3 — 25))
(EO
3
exp(—sTEAz 1. .
p(—oz?’) / pU (jsaft, z3| — jsor, x5 )dA x

(2m)
sareR?
@3

52 [ exp(sTo(xs — xg))lC{ﬁo}(jsaT,x3| — jsa%ax?)daxg

8
§> wo

[p*" (jsadf, a§| — jsat, a3) (B.1)

_;517T(jsa¥, {II§| _ Jsa*%’ (E?) eXp(—SF(I)%AmS)L
and

ﬁo(jsa% :Eﬁ\ —jsaaq«,xg) = ﬁo’r(jsa%xg\ —jsa%xg) exp(sl"é?‘Axg)

+ﬁ0’i(j5a¥7xg| _jsajs.,71'§) exp(—sI‘gAxg) (BZ)
zé h(sT( 1)
sinh(sI'{'(z3 — = 04/ - .
+82/ e K sodf @] — jsad, af)ds,
0

=
where Azz = x4 — 9. Since the expression Kp is a convolutional operator in case of
a laterally varying medium, a straightforward numerical solution of these equations
(as in section 3.1.1) is not possible. The evaluation of the equations involves dealing
with large matrices and will be time-consuming. In this appendix we propose a
solution method to solve the basic equations numerically. We use Taylor expansions
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to simplify the equations. In the first part of this solution method we follow the
theory by Smit [29]. Equation (B.2) is used to determine the total pressure wavefield
at depth z3, just below the top layer, from the known wavefields at depth z9. We
call this equation the consistence equation. Equation (B.1) is used to determine the
upgoing wavefield p*" after replacement of the top layer by a homogeneous layer.
In order to evaluate Eq. (B.2) we use a Taylor expansion for the total wavefield in
state 0:
PP(jserft, as| - jsoif, 25) = (B.3)
1
{(ws —23)9 3} + {(ws —2§)9 3} + 5 {(ws — )0 3}
xp° (jsat, 29| — jsad, x5) + O((z3 — 29)?), for 2§ < w3 < xi,
in which we use by definition:
{(ws = 29)9 5)" p°(jsaft, af| - jsaf, z3) (B4)

= (z3 — 23" ano NP0 (jsalt, xs| — jsaf, xy).
xr3 123

To rewrite the first two terms on the right-hand side of Eq. (B.2) we use the following

definitions:
05 p°(jsoft, a§| — jsaf, a) (B.5)
= sDo [P (jsadt, o3| — jsag, a3) — p™ (jsaf, o3| — jsag, z3)),
and,
exp(+sTHAz3 ) = (B.6)
2(TRV2(Aga)2 3(TRY3(Azga)?
RN L FRESS L
sH T4 (Azs)*
L SUOVAT]  of(agy))
24
This enables us to write the following:
ﬁo’r(jsa%x% - jsa‘qgw,xgs) exp(sI‘ngxg) (B.7)

+p (jsaf, | — jsaq, a3) exp(—sTg Axs)
1 1 1
= {A.ﬁga ;,}O + {Al‘g,a ;}1 + §{A$38 ;}2 + E{Al‘g,a ;}3 + ﬂ{Aﬂfga ;}4
xp’(jsodf, 25, —jsaf, x5) + O[(Aws)°],
with

{Az30 ;}nﬁo(jsa%x%—jsa%xg) = Az} lim_ BP0 (jsalt, xs|—jsa, x5). (B.8)
z3Txy
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Application of the Taylor approximations for exponential terms to the integral term
on the right hand side of Eq. (B.2) leads to:

1
X -

2 fsinh(sfg(mg —13))

K{ﬁo}(jsa% x3| — jso@g«, x§)dx3

sF(If
A CREEE SERT C] ®.9)

x [1 + (23 — 29)0 5 +%{(x3 —29)0 5} + 0[(Ax3)3]] dzs

<K{p°}(jsadf, 23| — jsait, z5)

Using the last two expressions we can rewrite Eq. (B.2)as:

Plisat , x3] — jsaf, a3) = (B.10)
1 1 1
[{Axga DO+ {Azs0 P + 5 {Aws0 JCIE g {30 S 5q (Aws0 ;}4]
Xﬁo(jsag) xgﬂ _jsaglg“v x??) + O[(Ax3)5]
¥ PR)2
#32 [ (o =)+ SR g - o)+ Ol

0
T3

x {1 + (23— 29)0 5 +%{(m3 —29)9 5} + 0[(Ax3)3]] dzs

<K{p°}(jsadt, 23| — jsaf,x3).

In Eq. (B.7) only terms up to the fourth order of Ax3 are considered, and analogously
we will consider the terms inside the integral up to the fourth order of x3. This leaves
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us three integral terms to be solved:

1
T3

PK ) (sal, 2l — jsad, 25) / (25 — x})das =

0
T3

(l"é—xg)22 =0v/:. R 0 .5 8
_fs K{p"}(jsar, x3] — jsaz, x3), (B.11)

1
T3

20} k() (jsadk, 2] — jsed, z5) / (23 — 23) (23 — £)das =
1‘0
'3
1'1 — 1’0 3 — . .
A 2§ () ok o8] vk ), 512

1
T3

2 =0y (. R O _ ;.8 S (sTg)? _ 133
s°K {p"}(jsar, v3| — jsap, x3) 6 (z3 — x3)°des +

20
T3

T3

s)/ (w3 — 29)* (w3 — x3)

2 = . .
$205 K{p}(jsaf, a§| — jsaf, x5 5 dzg =

T3

(sTE)2(z} — 29)* =07y ( j
. 0) (2j 3) SQK{pO}(jsa¥,$g| _jsaé;:axf?)
(371 _ 330 4 2 _ . .

Substituting all approximations in Eq. (B.2) results in:

20 (jsalt zl| — jsad, x5) = |:{A3738 ;}0 + {Axz30 ;,}1 (B.14)
5 (B0 (03 — PK(jsad)} + (a0 4)° ~ K (ised)0 5}
$ o () {(0 1) — 2K (isedf)(@ 57 + (2 4)2)

xp’(jsadf, 25| — jsaf, a5) + O[(Aws)?),

where Azz = z3 — 23. Note that in this notation K(jsalt) is a convolutional

operator working only on p(jsaft, 29| — jsaf,z5). We take a closer look at the
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known Taylor expansion of p°:
0 ;. . 1
P’ (jsaff,z}| — jsaf, zf) = [{A%a 530+ {Azs0 5} + §{A$35 5)?

1 1 —0/ - .
+6{Ax38 %}3 + ﬂ{Axga 31,}4} P (jsalt, 23| — jsad, x3) + O[(Axs)).
(B.15)

Comparing the same powers of Azxs for both approximations we find the following
three expressions:

3

(0 3)'7° = (2 35)'5°, (B.16)
1
3

The first equation states the well-known boundary condition that the pressure field
is continuous over a boundary. The second equation is recognized as the boundary
condition of continuity of the particle velocity over a boundary. The third equation
shows a jump in the second derivative of the pressure field proportional to the con-
trast over the boundary. This term is used in the derivation of the imaging condition
in section 2.3.1. Note that all these conclusions are still under the assumption that
the mass density is a constant. We can rewrite the last conclusion as:

{(05)? - (051" = K", (B.17)
Using the three equations (B.16) we can rewrite Eq. (B.14) as:
P (sadt,z}| - jsad,af) = [{Aws0 )0 + (A 3} (B.18)
3Bz ()7 - K(jsa)} + 52 (Aag (T - K(jsaf)}o }
g (@) (T~ Klisaf))?)
xp°(jsaf, af] — jsaf, x3) + O[(Axs)?],

where we used (0 ;)2 = s2(T'¥)2. We now introduce the square-root operator H

according to:

Hjsadt) = /(TF)? - K(jsal), (B.19)

where K(jsaf) is still a convolutional operator working only on
p(jsalt, 28| — jsai,x5). Substituting this in Eq. (B.18) we recognize the Taylor
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expansions of sinh and cosh:

23
sinh(z) = z + ? + O[z”], (B.20)
24
cosh(z )—1+§+z+0[ 6, (B.21)
and we can write:
cosh(sH (jsal) Axs)p° (jsak, 23| — jsaf, x5)
sinh(sH(jsaf)Azs) 1
SH(Jsag) a 0(jsaT7 $3| - jsa’ls"7 x3s)

Now we will follow Fokkema et al. in [18] by taking a closer look at how to solve
Eq. (B.1):

exp(—sI'&(z 0y /-
W / =) s

. S S
— jsap, a3 )das

exp(—ngAxg)

=1,r(: R 1 . S
(2m)2 / p " (jsar, xz| — jsar,x3)dA x
sareR?
w3
52 [ exp(sTo(ws — 2§))K{P H(jsaur, 23] — jso, o5 )das
=3
= W[ﬁo77’(j$a§,wg| 7‘]5(}/’%,‘%?) (B23)
_51,7“

(jsaf, x5 — jsag, x5) exp(—sTg Aws)]

This equation is used to determine the upgoing wavefield after velocity replacement.
When we substitute the result of the wavefield extrapolation, Eq. (B.22) in Eq. (B.23)
we find an integral equation of the second kind. We will write this in the following
compact notation:

X (jsakt, jsag) +

(2r)2 / L(jsor, jsaf)X (jsaff, jsar)dA

sareR?
=Y (jsaf, jsai), (B.24)
with
X(jsat, jsaz) = pH (jsaf, z3| — jsaf, z3),

(B.25)
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Y (jsa, jsag) = por (jsal, 1y — jsad, x5) exp(sTH Ass) (B.26)
3
_ ]_'\R . — 0
—s? exp (s As3) / exp(=sl (ﬁd 73)) {cosh(sH(jsa%)Axg)
2sI';
3
sinh(sH(jsaf)Azsz) 1 04, - ,
+ S'H(jsag) 935 |K{p°}(jsakt, 23| — jsaf, x5 )dxs
and
L(jsar,jsad) = (B.27)
2 v RyA
ih .
;V /exp(sI‘o(zg —z3)) {cosh(sH(jsa?)Axg) 4 (228235 x?’)@;,
@3

<K{p°}(jsaft, 3| — jsa, a8 )das

The expression for L(jsar, jsarS) is called the kernel function. To compute 9 ; 0
in Egs. (B.26) and (B.27) we make use of:

85 0 = sTo(P — %9, (B.28)

where the minus sigh accounts for the difference in propagation of the incident and
reflected wavefield in the upper half-space. Eq. (B.24) is the proposed equation that
is to be used for the velocity replacement in laterally variant media. A way to solve
this equation is the Neumann expansion. We rewrite Eq (B.24) as:

X(jsaf , jsat) =Y (jsaf, jsai) (B.29)
1
ehE / L(jsar, jsai) X (jsak, jsar)dA.
sareR?
(B.30)

This can be solved using a Neumann iterative solution:

XMW (jsadt, jsaf) =Y (jsak, jsof) (B.31)
1
G | LUsarsef) XD (saf jsar)dd
SQT€R2
n=12,...

and
XO(jsak, jsad) = YO (jsall jsad). (B.32)
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X (") is the approximate solution after n iteration steps.

In order to solve the basic equations, data has to be available for each source and
receiver position. This means that each source position is also a receiver position
and the other way around.
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Mathematical relations: Parseval’s
theorem and Hilbert transform

C.1 Parseval’s theorem

In the derivation of the wavefield extrapolation method we make use of Parseval’s
theorem. In most texts, Parseval’s theorem is defined as:

o0 o0
1
/ 2(t)dt = — / 13(w) 2w, (1)
21
—o00 —o00
where w is the frequency. We derive a more general form of Parseval’s theorem,

for the spatial coefficients . We start with the functions ¢(xr), ¥ (xr) and their
Fourier transforms ¢(jsar) and ¢ (jsar):

disar)= [ explisaz,)olar)ia, (€2
I reR2
o(xr) = (271r)2 O[/]R2 exp(—jsa,a,)p(jsar)dA (C.3)
dljsed) = [ explisalan)ular)da, (C.4)
T reR2
V(e = G | expisateitisad)da (C.5)
sQt/.eR?2

where v = {1,2}. We proceed as follows:
dA — 1 . -
[ senv@naa= [ o [ enisag)itsarnaa

IreR IreR sOUr eR

X / exp(fjsafyx,y)z@(jsa})dAdA. (C.6)

s eR
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Rewriting this we find:

| denienaa= oty [ dsandaa [ disag)aa

(2m)*
I reR2 sOUTeR2 s eR
X / exp(—jz~(sal, 4 sa))dA. (C.7)
(ETERQ

We will solve the last integral of Eq. (C.7) using a familiar integration result:

/ exp(jsax)dA = 27 (jsa), (C.8)

zeR2

and we find:

d(jsar)dA / Y(jsal)d(saly + sar)dA.

sOUreR2 sQt/ eR?

This leaves a general Parseval relation:

/ ¢ a:T xT / (Z) jsaT jsaT))dA (ClO)

I reR2 s(XTeR2

We use this relation in Equation (2.26) in the derivation of the wavefield extrapola-
tion method.

C.2 The Hilbert transform

Following Aki and Richards [2] the Hilbert transform is defined as:
FH[f(B)]) = =i x sgn(w) f (w), (C.11)

where sgn(w) = £1 as w 2 0, F is the Fourier transform and H denotes the Hilbert
transform. To compute the Hilbert transform, f(¢) is transformed to the frequency
domain, where the real and imaginary parts are interchanged, with for the positive
frequencies a sign change in the resulting imaginary part. This is equivalent to a
phase shift over 7. The Hilbert transform H[f(#)] is then found by an inverse Fourier
transform.



D
The Schur algorithm

The Schur algorithm [27] is known as a fast algorithm suited for high-speed data
processing. The algorithm uses a layer-stripping procedure to reconstruct a lossless
scattering medium described by symmetric two-component wave equations. The
method can be applied to solve the inverse problem for a layered acoustic medium [39)
but can also be used for many other problems such as the reconstruction of nonuni-
form lossless transmission lines or the linear least-squares estimation of stationary
stochastic processes [40]. We will follow Yagle and Levy [39] to show how the Schur
algorithm can be applied for inversion of a layered acoustic medium. This will be
followed by an alternative solution and some imaging results using this solution.

D.1 Inversion of a layered acoustic medium

The acoustic medium to be reconstructed consists of a homogeneous upper half-
space with known density po and sound speed ¢y extending over z3 < 0, and of a
horizontally layered inhomogeneous lower half-space with unknown density p(z3) and
unknown propagation velocity ¢(z3). An impulsive plane pressure wave, propagating
in the x3 direction, is incident on the inhomogeneous lower half-space at t = 0. Using
the acoustic equation and the stress-strain equation (Berkhout [3]) the following
system is obtained:

OJsp + pOyv = 0,
O30 + KO = 0, (D.1)
in which: 1
= —. D.2
h= o (D.2)

A change of variables is made form depth z3 to travel-time 7 using

1 /
T—O/C(Tg)dxg. (D.3)



110 Appendix D. The Schur algorithm

We can now write for the system of wave equations:

Orp=—2Z(7)0w,
Orv=—Z"1(1)0sp, (D.4)

where Z(7) = p(7)e(7) is the acoustic impedance. Now we define the following
normalized quantities:

(1, t) = 773 (7)p(7,t) = normalized pressure (D.5)
(T, t) = Z3 (T)v(7,t) = normalized velocity, (D.6)
We now make the following change of variables
down _ l D
1
pup(T7 t) = §(¢ - (b)a (DS)

where pUP is the normalized upgoing wave and pd°"1 the normalized downgoing
wave. A similar definition for the up- and downgoing wavefields is given by Claer-
bout [10]. Egs. (D.4) can now be transformed into the two-component wave system

0-p 1OV (7,1) + OO (7, 1) = —r (1)p"P (7. 1),
8, pP (7, 1) — Bp P (1, 1) = —r(r)pdOVR(1, 1), (D.9)

where the reflectivity function r(7) is given by
1
r(r) = 5& In Z(7). (D.10)

After normalization, the up- and downgoing waves for the normal-incidence problem
can be written as:

pAOVI(r ) = 6(t — ) + p(t)x(t — 7), (D.11)
pup(Ta t) = ﬁ(t)X(t - T)a (D12)

where the tilde denotes a smooth function. We will take a closer look at the defini-
tion of pUP and pdOWN in the next section. Substituting Egs. (D.11) in Egs. (D.9)
we find that

r(1) = 2p"P (7, 7). (D.13)

Together with Egs. (D.9) this forms the so-called Cholesky recursion system. The
starting points for the recursion are the up- and downgoing wavefields p"P(0,¢) and
pdown(()’ t) which are measured on the surface of the inhomogeneous medium. The
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partial derivatives in Egs. (D.9) are solved using an Euler-Cauchy approximation.
To calculate the impedance for each layer leading to the results shown in section 4.2.1

we used
Z(t+A)—Z(7)

"= 2 A T 20

where A is the discretization step. We also took the density p to be constant.

(D.14)

D.2 Alternative Schur solution

We now propose a theoretically more accurate solution, where we use a more exact
way of determining the reflectivity function. The following 1D wave problem is
considered:

8Tpdown n atpdown =S — rpUP, (D.15)
,pP — 9p"P = —ppdown

)

with the normalized downgoing wave
pdOV = p OV () (t — 7). (D.16)

We have now defined the source term separately, as opposed to section D.1, Eq. (D.11),
where the downgoing wavefield was defined to contain a probing impulse initiating
the waves. The source term S is defined as

S(r,t) = w(t —7)d(7), (D.17)

where w is the wavelet which is preceded by an impulse. The normalized upgoing
wave is given by
p'P = p"P (7, t)x(t - 1), (D.18)

and the reflectivity function r(7) is given by

1

r(r) = 5,0-2, (D.19)

where Z(7) is the impedance. We split the downgoing wavefield in an incident
wavefield pgown and a scattered wavefield pF}OWH in the following way:

. pgiown + 8tp§iown -5,

6Tpgown " atpdown —_—— (D.20)

S

where we have:
PO t) = p1O (7, ) + 1O (7). (D21)
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To solve this scattering problem we use the general solution of the following differ-
ential equation

Orat dia=bh, (D.22)

with a = a(7,t) and b = b(7,t) and the condition that ¢ > 7. The general solution
is given by:

a(r,t) = /b(T’,T$TiT’)dT'. (D.23)
0

With the aid of Eq. (D.23) the incident field is given by:
p?own(T, t) = / S(r',t —7+7")dr’
0

- / w(t — 7+ 7)8(r")dr’

0
r

=w(t—71) [ §(7)dr’
/
=w(t —7)x(t —7)x(7). (D.24)

Using the same general solution the scattered downgoing wavefield is given by:

pdOv(r 1) = — / r(r )P ('t — 7+ 7")d7. (D-25)
0

By using this general solution in the second expression of Eq. (D.15) we find for the
upgoing wavefield:

T

pP(r,t) = 7/ r (T/)p?OWH(T’,tJr 7 —7")dr’

0
-

= [ repdon - ar (D-26)
0
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Then, using the solution for the incident downgoing wavefield, Eq. (D.24), in the
solution for the upgoing wavefield, Eq. (D.26), we find the following set of equations:

T

pgiOWn(T, t) — _/T(T/)pup(T/’t — T4+ T/)dT/, (D27)

0
r

pP(7,t) = — / r(tHw(t +7 —27")x(t + 7 — 27")dr’
0
— /T(T’)pgown(T/, t+7—7)dr.
0

For causal wavefields (¢t > 7) we observe that we can write Egs. (D.27) as:

T

PO, 1) =~ [ Pt 7 ), GED
0
pP(7,t) = — / r(thw(t + 7 —27")dr" — /7‘(7’)}9510‘7”1(7"7 t+71—7)dr.
0 0

The aim of inversion is to determine the reflectivity function r = r(7) from the
surface measurement of the upgoing wavefield p*P = pUP(0,t). Therefore we intro-
duce w(t — 7) = Ad(t — 7) where A = At = Ar is the sampling rate. Then the
system (D.28) can be written as:

T

PO (7, 1) = — / r(r )P (et — 7 4 AT, (D-29)

T

pP(7,t) = %AT(T)(t + T) — /r(T’)p?OWH(T’, t+7—7)dr,

[ / / lié [ / ;T /
AO/T(T Yo(t+7—27")dr' = 5 0/7’(7' )o(r' — ( 5 ))d
:_%r(t‘;T). (D.30)
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Since the increment of 7 and t are the same, and denoted by A, it follows from
Egs. (D.29):
T+A
psdown(T +At+A)=— / r(t)p*P (1t — 7+ 7)dr,
0

T+A
= ngWH(T, t) — / r(tp*P (1t — 7+ 7'), (D.31)
and:
T+A
pP(r+ At —A)= %Ar(t —; 7-) — / T(T’)pgown(r’, t+7—7")dr,
0
T+A
= p"P(7,t) — / T(T’)pgown(T’, t+71—7")dr'. (D.32)

T

From Eq. (D.31) it directly follows that:

pdown iz gy = pdowni A 4 Ay - / r(rp"P (7't — 7+ 7)dr’,  (D.33)
T—A

and from Eq. (D.32):

pP(r,t) = pP(r — At + A) — / r(T')pgown(T, t+7—7")dr. (D.34)
T—A
We observe from Egs. (D.33) and (D.34) that pdoWi(r,¢) and p"P(r,t) can be
determined from pd®"I (7 — A t—A) and p*P (7 — A, £+ A). To obtain the recursion
scheme that enables this operation we discretize Egs. (D.33) and (D.34) and use the
trapezoidal rule. We define:
T=mA m=0,1,2,---,
t=(m+n)A n=0,1,2--. (D.35)
Using this discretization we obtain:
down down

PO (4 ) = IO (g — 1 — 1)
F(m—Dp"™P(m —1,m+n —1)

F(m)p"™ (m,m + n), (D.36)
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and

r(m)ps = (mym + n), (D.-37)

in which:

Z( )aTZ“”)T:mA

1

2

1. 1 Zm+1)-Z(m)
2 Z(m) Z(m)
1

2

D

Zm+1)—2Z(m)  Z(m+1)—Z(m)
Z(m) T Zm+1)+ Z(m)

(D.38)

From Egs. (D.36) and (

Lr(m) ) (pgiown(m, m+ n)) _ (D.39)

pP(m, m +n)

.37) we can deduce the following system:

pglown(m —1,m+n-— 1) _ %f(m _ 1)pup(m —1,m+n— 1)
—57(m — DpdoR(m — L m+n+1)+gm—1Lm+n+1) )

Hence we have:

down _15(m
(ps (mam+n)> :ﬁ (_ ; 21( >) xB,  (D.40)

p"P(m, m + n)

where
5o pglown(m_ Lm+n—1)—1i(m—1)p"P(m —1,m+n—1) .
—Li(m = 1)pdON(m — 1 m 44+ 1) 4 g(m — 1,m+n+ 1)
(D.41)

In the paper by Bruckstein and Levy [5] the square rule was used instead of the
trapezoidal rule. In that case Egs. (D.36) and (D.37) are:

PO am.m ) = O (m — 1m0 1)
—7(m—1)p*P(m —1,m+n—1), (D.42)

PP (i, + ) = pUP (0 — 1+ — 1)
—#(m — 1)pdoR (1 — 1 m 4+ 0+ 1). (D.43)
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These equations form a simplified version of Eq. (D.40). In order to solve sys-
tem (D.40) we need to know the reflectivity 7#(m). To that end we consider Eq. (D.29)
and considering p"P (7, 7) we arrive at:

T

1
pP(r,7) = 577(7') — /T(T’)pgown(T', 27 — 7')dr’, (D.44)
0
or
1 T
EF(T) =p"P(7,7) - /T(T')ngWH(T', 27 — 7)dr’. (D.45)
0

Note that the integral contribution on the right-hand side of this equation to the

2 since also pd

dOWIl depends linearly on

reflection function 7(7) is of the order 7(7)
7(7). In section D.1 r(7) was approximated by neglecting the integral contribution
leaving:

1
57(m) = pP(r,7), (D.46)

which is not correct in the strict sense. From Eq. (D.34) it follows that:

pP(r, 1) =p"P(r — AT+ A) - / T(T/)pg‘own(T/, 27 — 7)dr’. (D.47)
T—A

Substitution of Eq. (D.47) into Eq. (D.45) yields:

T—A
1

5?(7) =p"P(r —A,7+A) - / r(T’)pgovm(H7 27 — 7')dr’, (D.48)

(=)

and when we discretize this equation we obtain:

(n,2m —n), (D.49)

which together with the system (D.40) is a consistent computational scheme. We use
Eq. (D.49) to determine the reflectivity, and Eq. (D.40) to extrapolate the wavefield.
The evaluation is started for 7(0) = 0 in Eq. (D.49). p"P(0,t) is the upgoing wavefield
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measured at the surface. To give an impression we write the expansion:

Lr1)=p™(0,2),

2

1 1

57(2) =p"P(1,3) = SF(LPO(1,3),

1 1

57(8) =p"P(2.4) = SF)pIO (2,4) - 71O (1,5),

SP)=pP(3,5) — Lr@)plo(3,5) — (1)1 (1,7

—r(2)pdOV (2, 6),
etc. (D.50)

Note that for this algorithm the only field required as input is the upgoing field
measured at the surface. The reflected downgoing field is of course zero at the
surface. Since we introduced w(t —7) = Ad(t — 7) the measured reflected wavefield
consists of pulses only. The imaging result for this method together with the actual
velocity model is shown in figure D.1. The first interfaces are imaged accurately but
with increasing depth the mistake also increases.
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Figure D.1: Velocity model(dashed line) together with the calculated velocities (solid line).
On the right the input upgoing wavefield before normalization.
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Summary

Slicing the Earth:
A layer-stripping method employing a causality-based imaging
condition.

Hedi Poot

During the last decades many different seismic inversion algorithms have been de-
veloped. Since the problem to be solved is non-linear and does not have a unique
solution, every method makes use of its own approximations and assumptions. As a
step towards a new approach to the inversion of seismic data we have designed and
partly implemented a layer-stripping method applicable to laterally varying media
that does not require a priori model information and determines the velocity prop-
erties of the subsurface directly from the input data.

The derivation of the three-dimensional layer-stripping method is based on the com-
bination of a layer replacement method based on the reciprocity theorem and an
imaging condition based on causality. The imaging condition expresses the rela-
tionship between the up- and downgoing wavefields just above an interface and the
contrast over this interface. In the derivation of the imaging condition we make use
of the boundary conditions over the interface and the principle of causality. For this
reason the imaging condition is only valid for the short interval of time that there
are no upgoing waves beneath the interface, in other words for the lapse of time be-
fore the downgoing waves beneath the interfaces have reached other interfaces and
have had time to be reflected. Using the causality condition we can determine the
propagation velocity in a virtual horizontal layer thin enough to justify the assump-
tion that the velocity in the layer is varying only in horizontal direction. Using the
reciprocity theorem we can express the acoustic wavefields in a certain state to the
acoustic wavefields in a state with a different medium configuration. In our case
we define one state to be the actual state and the second state to have the same
configuration except for the top thin layer which is removed and replaced by a layer
with known, homogeneous background velocity. When we start with the measured
wavefields at the surface, which can be decomposed in an upgoing and a downgoing
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part, we can apply the imaging condition and determine the velocity in the top vir-
tual layer. By using the reciprocity theorem we can remove this layer, replace it by
a layer with homogeneous background velocity and determine the wavefields below
this layer. Now we can repeat the procedure by applying the imaging condition
again and stripping the layers until the desired velocity profile is found. We have
derived the theory for the three-dimensional, laterally varying case and simplified it
for the two- and one-dimensional case.

We have first implemented the theory for the one-dimensional case. Accurate re-
sults were obtained for different one-dimensional earth models by using the energy
of the wavefields in the imaging condition. We have shown that the width of the
stripped layer is related to the measurement time step and that the resolution of
the method depends mainly on the bandwidth of the data. The internal multiples
in the data are handled correctly. We have shown that accurate results can be ob-
tained as well for oblique angles of incidence. We have compared the method to
an other layer-stripping method, the Schur algorithm, which is applicable only to
horizontally layered media. We have shown that our method gives a more stable
imaging result, especially in the presence of noise. Our layer-stripping method was
applied to an example of a time-lapse seismic problem. The method has potential
to be applied in order to quantitatively determine the difference in the properties
of a reservoir between two measurements separated by a lapse of time. We have
applied the method to a laterally varying earth model by using common-midpoint
techniques. The implementation of our method for the full laterally varying case
still remains to be performed.

The limited bandwidth of seismic data is a limiting factor when directly trying
to determine the velocity profile of the subsurface. The spectral information of this
profile contains low wavenumber components which can only be recovered when the
data contains all low frequencies, which is not the case for seismic data. We have
proposed a solution method for this problem by taking the absolute value or en-
velope of the data. Good results are obtained by applying this method when the
events in the data are not overlapping. When taking the absolute value or envelope
of the data, the events in the data loose their sign. In order to compensate for this
we developed a method using median filters that determines the sign of the event
before taking the absolute value or envelope and then applies this sign to the all
positive result.

We can conclude that promising results have been obtained by designing and partly
implementing a completely data driven inversion method which is theoretically ap-
plicable to laterally varying media.
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De aarde in plakjes:
Een laag-afpelmethode, gebruik makend van een
beeldvormingsvoorwaarde gebaseerd op causaliteit.

Hedi Poot

Gedurende de laatste decennia zijn veel verschillende seismische inversie methodes
ontwikkeld. Omdat het hier gaat om een niet-lineair probleem dat geen unieke
oplossing heeft, maakt iedere methode gebruik van zijn eigen aannames en benaderin-
gen. Als een stap in de richting van een nieuwe aanpak van inversie van seismische
data hebben we een laag-afpelmethode ontwikkeld en deels geimplementeerd die
toepasbaar is op lateraal varierende media, waarvoor geen voorkennis over de on-
dergrond benodigd is en waarmee direct de snelheidparameters in de ondergrond
kunnen worden bepaald uit de gemeten data.

De afleiding van de driedimensionale afpelmethode is gebaseerd op een combinatie
van een methode om een laag te vervangen door een ander medium gebaseerd op
het reciprociteitstheorema en een beeldvormingsvoorwaarde (imaging condition) die
gebaseerd is op causaliteit. De beeldvormingsvoorwaarde bepaalt de verhouding
tussen de op- en neergaande golfvelden vlak boven een grensvlak en het snelheid-
scontrast over dit grensvlak. In de afleiding van de beeldvormingsvoorwaarde wordt
gebruik gemaakt van de randvoorwaarden over het grensvlak en het principe van
causaliteit. Om deze reden is de beelvormingsvoorwaarde alleen geldig in het ti-
jdsinterval waarin er nog geen opgaande golven onder het grensvlak zijn, in andere
woorden voor het tijdsinterval waarin de neergaande golven onder het grensvlak
nog geen andere reflecterende grensvlakken hebben bereikt. Gebruik makend van
de beeldvoormingsvoorwaarde kunnen we de voortplantingssnelheid bepalen in een
virtuele horizontale laag die dun genoeg is om te kunnen aannemen dat de ma-
teriaaleigenschappen van deze laag alleen varieren in horizontale richting en niet in
verticale richting. Met behulp van het reciprociteitstheorema kunnen we de akoestis-
che golfvelden in een bepaalde staat relateren aan de akoestische golfvelden in een
andere staat met een andere mediumconfiguratie. In dit geval definieren we een
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staat die overeenkomt met de ware situatie en een staat waarin de bovenste dunne
laag is vervangen door een laag met een bekende en homogene voortplantingssnel-
heid. Beginnend met de gemeten velden op het aardoppervlak, die kunnen worden
opgedeeld in een opgaand een neergaand gedeelte, kunnen we de beeldvormingsvoor-
waarde toepassen en de snelheid in de bovenste virtuele laag bepalen. Door het
reciprociteitstheorema toe te passen kunnen we deze bovenste laag verwijderen en
vervangen door een laag met homogene achtergrondsnelheid en de golfvelden vlak
onder deze laag bepalen. Nu kunnen we de hele procedure herhalen en de lagen
één voor één afpellen totdat we het gewenste snelheidsprofiel hebben gevonden. We
hebben de theorie afgeleid voor het driedimensionale, lateraal varierende geval en
hebben het vereenvoudigd voor het tweedimensionale geval, het tweedimensionale,
horizontaal gelaagde geval en tenslotte voor het ééndimensionale geval.

De theorie voor het ééndimensionale geval is als eerste geimplementeerd. Nauwkeurige
resultaten zijn behaald voor verschillende ééndimensionale ondergrondsmodellen door
de energie van de golfvelden in de beeldvormings voorwaarde te gebruiken. We
hebben laten zien dat de dikte van de afgepelde laag verband houdt met de tijdstap
van de metingen en dat de resolutie van de methode voornamelijk athangt van de
bandbreedte van de data. De interne meervoudige reflecties in de data worden op de
juiste manier behandeld. We hebben laten zien dat er ook nauwkeurige resultaten
kunnen worden behaald voor schuine hoeken van inval. De methode is vergeleken
met een andere laag-afpelmethode, het Schur algoritme, dat alleen toepasbaar is
op horizontaal gelaagde media. We hebben aangetoond dat onze methode een sta-
bieler resultaat geeft, vooral in de aanwezigheid van ruis. Onze afpelmethode is
toegepast op een 'time-lapse’ probleem. De methode heeft potentieel om toegepast
te worden om de kwantitatieve veranderingen in een reservoir te bepalen, die zijn
ontstaan tijdens een bepaalde tijdsspanne. Dit wordt gedaan met behulp van twee
verschillende metingen, gescheiden door die tijdsspanne. We hebben onze methode
ook toegepast op een lateraal varierend ondergrondsmodel met behulp van common-
midpoint technieken. De implementatie van de methode voor het meer-dimensionale,
lateraal varierende geval dient nog te worden uitgevoerd.

De beperkte bandbreedte van seismische data is een limiterende factor wanneer
er geprobeerd wordt direct uit de data het snelheidsprofiel van de ondergrond te
bepalen. De spectrale informatie van dit profiel bevat kleine golfgetal componen-
ten, die alleen kunnen worden bepaald als er ook laag frequente informatie in de
data zit. Dit is echter niet het geval voor seismische data. We hebben een methode
voorgesteld om dit probleem om te lossen door middel van het nemen van de ab-
solute waarde of omhullende van de data. Goede resultaten zijn behaald door deze
methode toe te passen zolang de events in de data elkaar niet overlappen. Als de
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absolute waarde of omhullende van de data wordt genomen verliest de data haar
teken, alles heeft dan een positieve waarde. Om dit te compenseren hebben we
een methode ontwikkeld die gebruik maakt van mediaan filters. Met deze methode
wordt het teken van een event bepaald voordat de absolute waarde of omhullende
wordt genomen en dit teken wordt dan toegepast op het geheel positieve resultaat.

We kunnen concluderen dat veelbelovende resultaten zijn behaald met het ontwer-
pen en deels implementeren van een volledig data-gedreven methode die theoretisch
toepasbaar is op lateraal varierende media.
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