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Chapter 1

Introduction

In this PhD thesis we address the question: what can we measure with the seismo-
electric effect and how? In order to do this we develop models of several possible
acquisition setups and we study the possibility of reconstructing an interface from
the seismic and electromagnetic measurements.

The seismo-electric effect is an energy transfer between seismic and elec-
tromagnetic wavefields taking place in an electrolyte saturated porous medium.
This energy transfer is logically dependent on the mechanical parameters that
affect the fluid flow in the pores and the amount of ions present, to name a few.

There are already very well known geophysical methods based on the reflec-
tion and refraction of seismic waves. Some of those methods are adapted in this
thesis to exploit the seismo-electric effect and to explore the potential of it as a
geophysical tool.

The source of the seismo-electric effect lays in the microscopic double layer
created in the pore wall of the porous medium, as in Figure 1.1. Assuming we
have a porous medium saturated with an electrolyte, the negative ions of the pore
fluid are chemically adsorbed to the silicium atoms in the pore wall. The positive
ions together with the positive side of the water molecules are then attracted
to this layer of negative ions surrounding the grains. This leaves an excess of
positive charge in the fluid.

During equilibrium, the overall charge in the porous medium is neutral since
positive and negative ions cancel each other. However, during seismic or electro-
magnetic disturbances of this equilibrium there is a movement of ions that may
generate a seismic or an electromagnetic wave. If we have a seismic wave passing
by a saturated porous medium, the regions in the wavefront where the medium is
compressed will squeeze the electrostatically charged fluid to the regions where
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Figure 1.1: The double layer: the negative ions adsorbed to the pore wall and the
positive ions and water molecules attracted to them are fixed to the wall while
those in the diffuse layer are free to move when mechanical or electromagnetic
disturbances occur.

the porous medium is expanded. This flow of charged particles generates an elec-
tric field that will travel across the porous medium inside the seismic wave. This
is the first type of seismo-electric conversion. When this seismic wave encounters
an interface in which there is a change in medium parameters as the porosity,
permeability or the ion concentration of the pore fluid an electromagnetic wave is
generated. Note that this electromagnetic wave has the frequency of the seismic

wave that generates it, it is therefore not properly a wave but an electromagnetic
diffusive field.

If we have an electromagnetic wave passing by a saturated porous medium,
the free ions in the pores oscillate with the frequency of the electromagnetic wave
generating an seismic disturbance that reaches everywhere the electromagnetic
pulse does, but not further. Similarly to the previous case, when this electromag-
netic wave encounters an interface there is a generation of a seismic wave that
will travel across the porous medium independent of the electromagnetic wave
that initially generated it.




1.1 Background

Theoretical approach

The relation between seismic and electromagnetic wavefields is known since
as early as 1936, when in an article published by Thompson [25] he described the
modulation of a current applied to the ground by the passage of a seismic wave
train. Later he described it as a change in the ground resistivity. Shortly after
that Ivanov [9] recorded electric fields generated with the passage of a seismic
wave, without applying any current to the subsurface. He used a split-spread
configuration and measured a reversal of the polarity on both sides of the source.
He explained the seismo-electric effect in terms of a double layer in the pore walls
of a saturated porous medium.

In 1944 Frenkel [6] described the seismo-electric effect in terms of electric
fields generated by the electrolyte flow in the porous matrix, thus only took into
account the field created as a compressional wave passes by, but he didn’t take
into account the full current present in Ampere's law.

In the following decades there were some scattered publications on this topic,
in 1981 Ishido and Mizutani [8] developed a theoretical model for the ( potential
and studied the interesting dependencies of this parameter with pH, pressure and
temperature.

The first attempt to derive a set of equations to model the seismo-electric
coupling came with Neev and Yeatts [15] but they failed to apply the complete
Maxwell's equations. The consequence of this is that their model does not take
into account the conversion from and to shear waves.

Pride and Morgan [20] studied the electric fields produced by the pore fluid
movement and under what conditions the electrical dissipation is significant com-
pared to the viscous shear dissipation, and they concluded that this only occurs
for low molarities and small pore sizes. Later, in 1994 Pride [18] derived a set
of coupled equations that describe the conversion of energy between the elec-
tromagnetic and acoustic wavefields, and this set of equations is going to be
the starting point of this thesis. These equations have the form of Maxwell's
equations coupled to Biot's equations, and the coupling between the seismic and
the electromagnetic wavefields lies in a frequency dependent coupling coefficient
L. This set of equations is the result of volume averaging the continuum equa-
tions applied to the grains and pore fluid. Later, together with Haartsen [19],
they solved the electro-seismic boundary-value problem and obtained plane wave
and point source solutions. In the last part of their publication they derived the
boundary conditions that we are using in this thesis.
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This thesis begins with the coupled equations derived by Pride [18] combined
with the boundary conditions derived by Pride and Haartsen [19].

More recently Beamish [2] did a very complete review on the seismo-electric
effect where he described and summarized the current state of the research in
seismo-electrics.

Fieldwork measurements

Although theoretically there have been important advances in explaining the
seismo-electric effect, there is still much work to be done in the area of fieldwork
measurements. This effect was first suggested by Louis Statham and L. W. Blau
of the Humble Company and after this, R. R. Thompson tested their assumptions
in the field [25]. Since then there have been researchers who tried to measure
and characterize the coupling of seismic and electromagnetic wavefields in the
subsurface, as well as to exploit it as a geophysical prospecting tool. Parkomenko
and Gaskarov [16] mentioned the possibility of using the seismo-electric effect
as a wellbore tool since the response depends on rock properties, and they did
some experiments in the field.

In the following decades there are some scattered publications describing field
measurements like Martner and Sparks [12] who describe for the first time the
arrival of an electromagnetic pulse that precedes a seismic wave from a source
in a wellbore, and they identify it as the seismo-electric conversion at the water
table. This is a different type of conversion of energy between seismic and
electromagnetic waves.

Thompson and Gist [24] made field measurements and recorded signals from
interfaces, that were correlated with well logs and additional seismic measure-
ments. They claim the seismo-electric arrival can be recorded from as deep as
300m, therefore making it a useful exploration tool for the subsurface. They
also measured the electro-osmotic effect, or the reciprocal of the seismo-electric,
where they injected a time dependent electric current into the subsurface and
recorded the seismic disturbance produced at an interface.

Mikhailov and Haartsen [13] performed very neat fieldwork experiments in
which they located a possible seismo-electric arrival and did good prediction with
their simulations. Later Oleg Mikhailov [14] detected fractured zones in a seismo-
electric VSEP survey from the electromagnetic arrivals. Hunt and Worthington
[7] measured also seismo-electric conversion using a similar method in a wellbore.

In a later work of Beamish [1] he studied how the different measuring con-
ditions affect the results of a seismo-electric fieldwork, he experimented with
different configurations of sources and receivers trying to find the optimal. And
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more recently Butler and Kepic [3] and [11] have written about the difficulties
of obtaining a clear seismo-electric signals in field measurements, suggesting the
use of small preamplifiers placed at the electrodes on each channel to increase
the signal to noise ratio and avoid interferences.

Laboratory measurements

After the first attempts to theoretically explain this phenomenon there were
experiments carried in the laboratory trying to control and reproduce the condi-
tions that yield a seismo-electric coupling, and trying to exploit it as a scientific
tool. Pengra et al [17] used low frequency AC seismo-electric conversion to study
rock properties. They perform laboratory experiments using AC techniques that
show advantages over the known DC methods. They present the seismo-electric
method as a useful lab tool to obtain the streaming potential coefficient and the
electroosmosis coefficient.

But prior to use the seismo-electric effect as a reliable tool it is required
that the effect is fully understood, with this approach Reppert et al. [21]- [22]
studied the AC/DC streaming potentials and the AC/DC electroosmosis and they
reconstructed experimentally the coupling coefficient L.

More recently Zhenya Zhu [29]-[30] tested the seismo-electric conversion in
laboratory, in borehole models using different materials. He obtained excellent
results with very clear electromagnetic arrivals for a boundary in a wellbore, as
well as for boundaries between wellbores.

Finally we shall mention Exxonmobile’s extensive research and fieldwork tests
on the seimo-electric effect. They have studied mainly the conversion from
electromagnetic to seismic waves in a series of experiments that include mea-
surements at the surface and inside wellbores. Some of their most recent results
are published in [4] and [23].

1.2 Thesis outline

This thesis is divided into 6 chapters. The first chapter is logically the current
chapter where we give a brief introduction to the seismo-electric effect and this
thesis. In the second chapter we present the basic theory beginning with Pride’s
equations for the coupled electromagnetics and acoustics of porous media [18].
From Pride's equations we express the vertical variations of chosen wavefields in
terms of the lateral variations of the same wavefield and we combine them into




a matrix-vector equation of the type

00
oo, =AQ+D, (1.1)

where Q is the vector with the chosen field quantities, A is an operator with
the horizontal derivatives of Q and the independent term D contains the source
quantities. Later in the chapter it is shown that for horizontally layered media
the wave equation can be rearranged for certain conditions so that it uncouples
into two independent sets of partial differential equations. These two sets of
equations show us the two existing cases in the seismo-electric coupling: the P-
SV-TM and the SH-TE cases. The P-SV-TM coupling includes the interactions
between the compressional, vertical shear and TM electromagnetic waves, while
the SH-TE coupling includes the interactions between the horizontal shear and
the TE electromagnetic waves. TM and TE stand for “transverse magnetic” and
“transverse electric” and the term refers to the polarization of the magnetic and
electric fields in the electromagnetic wave.

In the third chapter we describe the one-way wave equations and how we
transform two-way wavefields to one-way wavefields via the decomposition oper-
ator. We also describe an electro-kinetic survey by means of operators describing
each of the phenomena taking place, such as excitation, propagation and reflec-
tion. Finally we show examples of two cases where we apply the theory of this
chapter, first a simple reflection using just one-way wavefields and second a more
complex case including the simulation of the source and receivers.

In the fourth chapter we describe further applications of the one-way operators
defined in the foregoing chapter. First we derive global reflection and transmission
coefficients in a similar way as Kennett [10] does for seismic waves, and in later
sections we use them simulating a vertical seismo-electric profile (VSEP) as well
as an electro-kinetic wellbore to wellbore survey in the (x1, x3, t) domain.

In the fifth chapter we analyze the information we can actually extract from
the subsurface with a seismo-electric survey. We look at the reflections we obtain
from different types of interfaces, and the different sensitivities the wavefields
have to those interfaces. In order to do so we use a cost function with Ly norm to
compare the coefficients and the inversion of the coefficients for different ranges
of the medium parameters. Under the ideal conditions these cost functions must
have a minimum whose coordinates point at the lower medium parameters. In
this way we check theoretically how reliable is the reconstruction of the interface.

Finally, in the sixth chapter we present our conclusions on the topics investi-
gated in this thesis.




Chapter 2

Theoretical introduction

In this chapter we obtain the wave equation for electro-kinetic coupled waves,
beginning with Pride's equations for the coupled electromagnetics and acoustics
of porous media [18]. From Pride’s equations we express the vertical variations
of chosen wavefields in terms of the lateral variations of the same wavefield and
we combine them into a matrix-vector equation of the type

0Q Ao A

Oz AQ+ D, (2.1)

where Q is the vector with the chosen field quantities, A is an operator with
the horizontal derivatives of Q and the independent term D contains the source
quantities. It is shown that under proper conditions for horizontally layered media
the wave equation can be rearranged so that it uncouples into two independent
sets of partial differential equations. These two sets of equations show us the
two existing cases in the electro-kinetic coupling: the P-SV-TM and the SH-TE
cases. The first comprises both compressional waves together with the vertical
shear wave and the TM mode of the electromagnetic wave; the latter contains
the horizontal shear wave and the TE mode of the electromagnetic wave. Finally
we derive independent expressions for the operator matrix A for both cases.
Through almost all this chapter quantities are expressed in the (x,w) domain
and carry a hat (") to denote it. Only in the last subsection, in order to express
the operator matrix A in the (p1,w) domain, we perform a Radon transformation
and then the quantities carry a tilde (7) to denote it. The results of this thesis
will be shown in the (p;,7) and (x;,t) domains. In order to do this an inverse
Fourier transform will move the (p;,w) domain expressions to the (py, 7) domain,
and a double inverse Fourier transform will transform expressions in the (kq,w)
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domain to the (x1,t) domain. There is no special notation for the expressions
on these two last domains since we will only show the results.

We use Einstein’s convention for repeated subscripts. Repeated Latin sub-
scripts imply a summation from 1 to 3, hence

ov; °.
3 Z stands for ; = (2.2)

T ox;
Repeated Greek subscripts imply summation from 1 to 2, hence

2
OVq

g%z stands for ; oz, (2.3)

This convention holds only for italic subscripts, but not for roman subscripts.

2.1 Fourier Transformation

In this thesis we will use the following definition for the Fourier transformation
FUen) = foxw) = [ fexpe i, (2:4)

where w is the angular frequency, ¢ is time, j is the imaginary unit and f(t) is
the time domain function that is transformed to the frequency domain function
f(w). The inverse temporal Fourier transformation is

FHUFxw) = f(xt) = -

(e

%/OOO f(x,w)e™dw. (2.5)

when f(x,t) is real valued. Expression (2.5) transforms our quantities from the
frequency domain back to the time domain. The symbol R denotes that the real
part is taken.

2.2 Basic equations in the frequency domain

To develop this set of equations we are going to take two postulates: the grains
develop a diffussive double layer on their surface, and the net electric charge
prior to the arrival of the disturbance is zero. These equations are only valid for
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certain assumptions: the disturbances considered are linear.The pore fluid is an
ideal electrolyte. Solid grains are isotropic. Wave induced diffusion effects are
ignored. For this €& << ¢ the dielectric constant of the grains must be less
than the one of the eletrolyte and the thickness of the double layer must be much
smaller than the sizes of the grains. Finally the wave length is such that there is
no scattering from the grains.

Pride’s equations of motion for elastodynamic waves coupled to electromag-
netic waves in a porous medium [18] are an extension of Biot's equations of
motion. For an arbitrary inhomogeneous medium they are given by

o bas o foa 8%% &b

Jwp't} + jwplwn = == = 7, (2.6)
J

19J4) ~

juwpld; + Zw o =1 (2.7)
with

Wy = (0] — 7), (2.9)
P =¢p’ +(1—0)p°, (2.10)

where w; is the Biot filtration velocity and w; is the effective filtration veloc-
ity, E; is the averaged electric field strength and L is the coupling coefficient,
that accounts for the coupling between the elastodynamic and electromagnetic
wavefields. ©7 and @{ are the averaged solid and fluid particle velocities, ¢ the
porosity, %Z.bj the averaged bulk stress, p the fluid pressure, p*, pf and p’ are

respectively the solid, fluid and bulk densities, 7 is the fluid viscosity, k the dy-
namic permeability, fib and fif are the volume densities of the external force
applied to the bulk phase and to the fluid phase, respectively. Note the effect of
the electro-kinetic coupling £ in the effective filtration velocity @’ and note too
that if the coupling coefficient is changed to zero in equation (2.8), equations
(2.6) and (2.7) reduce to Biot's equations of motion, i.e. no coupling takes place
between the elastic and electromagnetic wavefields. The coupling coefficient is

1
272
4 wm d\” Jwpy
= 1+47j——(1-2— 1—dy|— 2.11
R a( A)( 0,/ (211)
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where the static coupling coefficient L is defined as

£ o (1 _ 2%) (2.12)

where o is the tortuosity, €/ is the fluid dielectric conductivity, 7 is the pore
fluid viscosity, C is the zeta potential taken from [20] which expression is

¢ =8+ 26log,c (2.13)

where the units are mV for the zeta potential and moles/| for the concentration
c. The Debye length is
L
1 (ez)* N,

— = . 2.14
d2 —1 Eolifka ( )

where z; are the valences, ez; represents the net charge and sign of each of the
species-/ ions, ; are the bulk-ionic concentrations, kj, is the Boltzmann constant
and 7' the temperature. The critical frequency is

on

= ) 2.15
Oéook?oﬂf ( )
The permeability is
4\2 - A2
~ 2
k= ko [(1 - z’i—) - z’i] with ko — 22 (2.16)
Wem We Ml
and the parameter m is defined as
pA°
= 2.17
m= (2.17)
Maxwell's electromagnetic field equations read
A s OH, .
]wDi —+ Jz - €¢jka—xj = —Ji s (218)
o OF, .
Bi+eip——m =—Jm, 2.19
Jw te Jk axj 7 ( )
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where D; and B; are the averaged electric and magnetic flux densities, H; is
the averaged magnetic field strength, J; is the averaged induced electric current
density, jf and jim are the electric and magnetic source functions and ¢;;;, is the
alternating tensor given by

1 if 4,7,k is an even permutation of 1,2,3
gijk = —1 if4, 7,k is an odd permutation of 1,2,3 (2.20)
0 otherwise.

The constitutive relations are given by [18]

D; = eoe, B, 2.21
B; = pop 2.22)
o N ~ [ OP A
i =0E; — L <a + jwpl v} — fif) 7 (2.23)
T

where €, ;o and & are respectively the permittivity, permeability and conductivity.
The subscripts  refer to the value in the vacuum, and the subscripts , refer to
the relative value of the parameter.

Note here again that if the coupling coefficient L is set to zero, equation
(2.23) turns into Maxwell’s constitutive equation for .J;. According to Pride [18]

6 =—( —€)+e, (2.24)
pr =1, (2.25)

where ., is the tortuosity, ¢/ and € are the fluid and solid dielectric constants.
The stress-strain relations read

o ov¢ ow
—jwt + diji —ax’j +6;;C a—l,: =0, (2.26)
00v¢ 0wy,
N C k M =0 2.27
Jwp + 92, + 9, , (2.27)

where d;ji;, C' and M are the stiffness parameters of the porous solid. For
isotropic media the stiffness tensor is

2
dijii = (Kg — ngr)fsij(Skl + G (01 + 6idjk), (2.28)
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and the parameters C', M, and the Gassmann's bulk modulus K¢ can be defined
in terms of the fluid, solid and grain framework bulk moduli

Ky + oK+ (1+¢)K°A

K 2.2
@ 1+ A ’ (2.29)
K/ + K°A
BTN (2.30)
K/
M=—— 231

where K* and K/ are respectively the solid and fluid compression moduli, K, is
the compression modulus of the solid framework and A is

K/

8= Sy

[(1—¢)K* — Kg], (2.32)

where Gy, is the shear modulus of the solid framework.

Substituting the constitutive relations forA lA)z BZ and JAz into Maxwell's equa-
tions (2.18) and (2.19) and then adding £ times equation (2.7) to equation
(2.18) gives

OH,

. P RN Na. Ze
Bt (6 — 2 LYE; + Ly — gt = 2.33
Jjweoe B + (0 7 VE; + ; W; — Eijk o, (2.33)
o OE; .

The equations (2.6), (2.7), (2.26), (2.27), (2.33) and (2.34) describe the
propagation of the coupled elastodynamic and electromagnetic waves through
an inhomogeneous isotropic porous medium.

2.3 Boundary conditions

At horizontal boundaries where the medium properties are not continuous the
following wave quantities have to remain continuous according to the open pore
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boundary conditions from Deresiewicz and Skalak [5]:

Normal and shear stresses in the bulk; %g, are continuous.
Normal stress in the fluid phase; p, is continuous.
Normal and horizontal velocities in the bulk; v*, are continuous.

Normal component of filtration velocity; w3, is continuous.
Tangential electric field; Eg, is continuous.

Tangential magnetic field; H,, is continuous.

All these quantities are contained in the continuous wave vector Q

Q=(—(#3)" b (Bo)' ()" s (Ho)") (2.35)
where
~b ~g
713 vy . 2 A 2
o= b | v = o ,EU:<51>,H0:< Hy ) (2.36)
~b ~S E2 _Hl
733 U3

and the superscript ¢t denotes transposition.

2.4 Wave equations in matrix form

Here we reorganize Pride's equations following the scheme in [27] in such a way
that the variations of the chosen wavefields along the x5 direction are expressed
in terms of the lateral variations of the same wavefield, as in equation (2.1).
Our aim is to obtain an equation in terms of the quantities that are continuous
over a horizontal boundary. This way we will be able to derive the wavefields
composition and decomposition operators and later define our models in terms
of one-way wavefields. We rewrite equations (2.6) and (2.7) as

orh
jwpb\A/s + jwpfdjzf)j - a—x] = fb, (237)
J
) . . A, g - op A
Jop 859 4 2l — LB + byBy)] + 5 = (2.38)
where
51i 5 )
2i

53i
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In order to formulate the stress-strain relations in a similar way we must get
rid of the term 0wy /Oxy, from equation (2.26) using equation (2.27). From the

l[atter we have

Oy, 1 00

oW _ _ + C k N
which is substituted into (2.26) yielding

o0 C
. b k . N
—JwT;; + €zjkza—xl - ]wﬁ%p =0,
where )
C
Cijki = dijki — M(Sijfskl-

The stress-strain relations are finally rewritten as

ov*® C
. oAb . o
—jwT, + C; w—0:p=0
J j + 4l aﬂfl +j Wi Jp s
ov*® oWy,
jwp + C8f— + M— =0,
JwP ké)xk al’k
where
€151 €121 €1531 0
Ci=| eyu ey eyz |,0=10 ],
€311 €3j21 €353 0
and
(Ci)ik = €ijii = S0k + G (93051 + 001,
where 9
2 C
S=Kg— -G — —.
T3 M

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

Pride's parameters S, Kq, Gy, C' and M can be expressed in terms of Biot's

parameters A, N, (Q and R according to

2
o4 @ o_Q+R R

R ¢ ¢’

2
Ka—ngrZA-FQQ‘FR, Gy =N
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In the electro-magnetic field equations we also separate the vertical from the
horizontal derivaties of the electric and magnetic fields. From (2.33) we obtain

o el
. R OH Do N
jweBy + %mawa 0 ( o2 ) = —J¢,

81’3 _(9_;1
A 0 4. ~ .
jwébs + Eﬁwg — (aiml %) Hy, = - J;,

analogously from (2.34) we obtain

- 9
. OE 2\ £ -
JWM0H0+8—$3—< 5 ) 3= —Jg’,

jwioHs — <a%2 - %) Eo = —JJ,

where .
~ (& ~ Jm
0 5 0 _Jim
and € is .
N N N A9
€ =¢pe, + —(0— =L
oo+ (= 2

Now we compile all the needed vertical derivatives

o7 o -
—2D0 — g% — jup! (Batbe + Bsiiy) + 5% + £,

8x3 8xa

Ip : s M apmgf
e —jwp! 859" — E[w?) — LE3) + ff,

ov*® C ov®

= Cg |jwil + ju—683p — C

973 33 {]WTg ‘l‘JWM 3D 38 3:1:5} 5
oW w C ov® ov® oW
il =AY _ 2%
Oxs M M Oxg Oxs Oxg

- )
OE . e\ A~ 4
=2 = —jwueHy + | By —Jg',
axg %
OH n o

0 o Ao drz \ & %e

a_xgz—jweEo—zﬁ'yawa—i— ( 8_78 ) H; — J§.
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(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
(2.57)

(2.58)

(2.59)

(2.60)

(2.61)




Now we have to express the vertical derivatives as functions of the elements
of Q and their horizontal derivatives.

In equation (2.56) we eliminate the terms .1, and 97" /dx, combining
equations (2.43), (2.38) and (2.44)

~b
013 _
8m3

k Eop o .~ k.
—jwp 4 juwp’ 8o | jwp! ~8L v+ S Lyt By~ f
n ke n
1 0 ovs ov?® C
— jwp’s = | Cpp— + Cogo— — fjw—
Jwp 3w3+]waa[ aﬂaxﬁ‘i‘ 3 B Vi

@4+#.@&)
Substituting the term 0v*®/Jx3 by equation (2.58) yields

0w -0 gk 0p 10 [ C ov*
a—xs—a—%<ca30337—3)—j(«0p 6 - ]wMuap U

"y jw O,

k’ PR Eoos
+jw(p’Is—jw(p’)? Jdt) +]wpf53w3+]wpf£5a’yflE0—fb+jwpf55afgf

(2.63)

where
Uag = Cag - C 3C§3103g, (2.64)
U, = 5a — Cagc (53 (265)

In equation (2.57) we eliminate the term Ej with equation (2.34), which
gives

op S st n P70\
— =— o, v — = (1
s Jwp’ 85 P +€£ w3
pr 5[ 0 0\ & oY -
E — — |Hy——/—LJ5 + 2.66
(8 61'2) 0 ¢ 3 f37( )
where
=1 (2.67)
Jwk

In equation (2.59) we eliminate 0v®/0z3 and Owg/dzs with equations (2.58)

16




and (2.38) giving

O C ol . O Jw.
(9_33;? — _M6§C331 {]w‘rg —|—jwM53p} — 5P
O (k{0 o\ .. sk e c ., ov
S R ULt — LAtEy| — —u, 2 (2.
+ 9, [77 ((%g fﬁ) + jwp 7 5V — L5Eq Muﬁﬁxg (2.68)

In equation (2.60) we remove Ej using equation (2.51) yielding

. 9
0E, . - Ern 1 0 0 A
= — _ H H
03 Jwhoto + ( ai jwé \O0xr;  0Oxo 0

T2

P pe P .
8x1 AN Im 83?1 Te

dxy

In equation (2.61) we eliminate H; and 0, using equations (2.53) and (2.38)
yielding

~

OH . ; k k[ 0p L
TR0 By + Loy, | jup St + S (2L ff) — iy E,
Oxs k n n \0zq

0 0
a dz2 1 0 -0\ - Oxz2 1 .
- Jg E) — J (2,70
0t ( =9 > Jwio (83:2 851:1) 0 < 5—;91 ) Jwhg 3 ( )

oz

Equations (2.58), (2.63), (2.66), (2.68), (2.69) and (2.70) can be now com-
bined into the matrix-vector equation

0Q .
oo, ~ AQ+D. (2.71)

where

Q= (=) » (Eo) () @y (Ho)") (2.72)




A B Jwé
D= 0 (2.73)
_ 0 (kff
89% <1’] ﬂ)
. 2 . .
1
and the matrix operator A is composed by the following submatrices
A A, A, )
A= R , 2.74
( Ay Ay ( )
where
ALl A12
/Al AR AN N e
ST i An=| A2 A% A% |, (275)
03><3 03><1 03><2 fa0 A33
O2x3 Aj Aj
Al AR 050 AL 05
Agl - A%% A%% A%? , AQQ - A%% 01><3 5 (276)
0253 A%% A%?f A:Q% 023

where the dimension of Aj;, Ao, Ag and Aoy is 6x6 and 0,,,«, iS a zeros
matrix of dimension m X n. The elements of these submatrices are
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0

Al = - (C,sC3),

. ) o (C
A2 — s/ 28 — — | .-
1= Jer néaaxa 0%y <Mua)’

AL} = —jwp! L8,
1 0 ) i

— | Uyg—-| — jw(p’I3 — jw(p’)?=8,6¢

jw(?xa |: ﬁaxﬁ} ]W(p 3 jw(p ) n a)a

Al = —jup' 8y,

A% = ',

All
A12_

A§§:—2(1+pA 22),
k €
N
23 P A s )

. C
Aéf = JWMC?):% ds,
. C _
A3 = WM550331>
R C? jw 0 [k 0O
A2 — _jw—38'C3lo S [
S VEAE R I VRN R e T
0 A
A23 — L t
21 8x5 s
A 0
AP =L~ ——
21 aaxa7
A 33 s 1 9 ) N A2 ¢
A5 = —jwel +(6_x ) (_ ;)_T‘C a lao
21 J 2 a_af Jwito Oza Oz L YaY
0
Al = —CLlCy—
22 33 w@xg’
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. 0 k cC ., 0
A2 — Z (uplet) — Zul—— 2.
A3l = juwp/ L6, (2.96)

2.5 Wave equation in matrix-vector form for the
2D case

We consider a medium consisting of horizontal layers of homogeneous porous
media in which waves propagate only in the z1, x3-plane with the x3-axis pointing
downward. Consequently the derivatives with respect to x5 are zero. In that case
the previously defined matrix A is simplified to

A All A12
Ao (An Aw), o)
where
0 0 0 0 0 —jwpl L
Ap=]| -3 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
(2.98)
—jw(p® — (ZJ;;)Q)-O-j%% (1/6%1) 0
0 —ju(p — &) + L2 (Gfraxl )
A, = 0 0
0 0
0 0
0 0
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S O O O O O

0 0 0
0 0 0
—jwp’ —jwp! 0
—jwpf =1 (1 + §£2> %Eﬁa%l
AE A
0 (L) etk (M)
0 0 0
—éf:r O' 0 0
0 —éﬁ 0{ 'OC
A 0 0 —-£ i
21 = w
0 0 J{/ch W <MC;K +a7) +
0 0 0 L2
0 0 0 0
0 0
0 0
0 0
(L) 0
—jwe — 1L 0
0 —jwe = 1L2+ 5, (;%oa%
0 0 —3= 0
0 0 0 0
s\ _o
A -(£) & 0 0 0
2= o (o pleleI )
= (,ZT;' - yKi B 0 0 0
jwp! 0 0 O
0 jwpfL 0 0
where
S+ Gy
V= 4Gfr ( Kc L ) 3
K.=5+2Gg

and from equation (2.73) we have
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(2.99)

(2.100)

(2.101)

(2.102)

(2.103)




fb - jwpf%(saf(f

LT+ f]
. 0 .
=I5 = % ) s
D= 0 (2.104)

. 0 . L
—Js—( , )j;%J;L—ﬁvafé

" by

2.6 The A matrix in the (p;,w) domain

2.6.1 Generalized Radon transformation

We use the Radon transformation to decompose a two dimensional wavefield
u(z1,x3,w) into propagating and evanescent plane waves. The definition of the
Radon transformation we will use in this thesis is

R{f(xl,xg,w)} = f(p1,x3,w) = /00 f(xl,xg,w)ej“p”ldxl, (2.105)

where p; is the ray parameter, which is a measure for the direction of propagation
of a plane wave, according to

(2.106)

where @ is the propagation angle and c is the wave propagation velocity. Since
we assume that the medium where the waves propagate is horizontally layered all
derivatives with respect to x5 vanish while the derivatives with respect to x; are
replaced by —jwp;. After the transformation these plane waves are described in
the (p1,w) domain. Later through a Fourier transformation they will be expressed
in the (p1,7) domain.

2.6.2 Rearrangement of the A matrix

In this section we show how from the previous matrix-vector equation two sets of
independent equations representing two sets of independent wavefields decouple
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completely. As it is known from Biot theory, fast and slow P waves couple
together with vertically polarized shear waves, while horizontal shear waves do
not couple with other wavefields. In the electro-kinetic effect we find that the
transverse magnetic polarization (or TM mode) of the electromagnetic waves is
coupled with the fast and slow P waves and the vertical shear waves into what
is called the P-SV-TM coupling. Similarly the transverse electric polarization
(or TE mode) of the electromagnetic waves is coupled with the horizontal shear
wave into what is called the SH-TE coupling.

The uncoupling of the equations is achieved through a rearrangement of the
vectors Q and D, and the matrix A. Furthermore we transform the equations
from the (z;,w) domain to the (p;,w) domain through a generalized Radon
transformation in which the derivatives with respect to x; are replaced by —jwp;.
In the following expressions the quantities will be written with a tilde (7) to denote
the (p1,w) domain.

Hence the general wave equation in vector-matrix form in the (p,w) domain

Q
8333
and the vector Q is now arranged like

Q= <8$ ) (2.108)

is

— AQ+D, (2.107)

where Qy and Qv are
Qu = (—7y, —Hy, B2, 03)", (2.100)
Qv = (03, w3, 7'137 HZ; E17 7337p7 U1) . (2.110)

This new order in the vector-matrix equation results in a new and simpler arrange-
ment of A that finally gives way to the uncoupling of the two sets of equations:

X : A Ogs }
A= jw ixs | 2111
J |: 08><4 AV ( )
where
< 0252 Ay ) N ( Oss Ary )
A ' and Ay = ' 2.112
ne ( A2H O2x2 v Asv Osxs ( )




~ f 2
~ —pfﬁ U;;; - pb + p%Gﬁ“ ~ O — Mo
Al H = 2 Y A‘2,H = 1 0 Y
—e—pEL'Q—i—% o' L ~Gn
(2.113)
~1 c s
0 Ko MKco Digs
A C C?+ MK 2GC f
A plﬁ MKc ll’% o JQKCC b (le(c - S_)
LV =
’ A f f
VL omiE n (- F) 0
—e—pFL% 0 —nL 'L
(2.114)
0 p1ﬁ;f?E 0 Pé — o
~ —p’ —p’ P 0
Ayv = I <€+ﬁf352> . o , (2.115)
D1 0 —Glﬁ 0

where the parameters C', M, A are defined in equations (2.30-2.31), S in equa-
tion (2.47), and v and K. in equations (2.102-2.103). The subscripts V and H
stand for the P-SV-TM and the SH-TE cases respectively.

Furthermore the source vector D also is rearranged as

5 Dy
D=| = 2.11
(3" ) (2116)
where f)H and f)v are
~ A ST '
Dy = (fzb - —Efgf, —Js — 2 Jr — Lf], J{”,O) , (2.117)
P Ho
f
B b1 zr & Pz Te 3 Tm P14
Dy = (0, p—;f{, fi - p—Ef{, SRR
f E t
a P P A F
fr— p—Ef{, — L5+ f{,o) . (2.118)
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2.7 Wave equation in matrix-vector form for the
1D case

We are going to study now the one dimensional version of the Ay y matrices .
For normal incidence we know that p; = 0.
Substituting this on expressions (2.113) gives the following for matrix Ay

A 02><2 AIH )
Ag = ~ ' 2.119
" ( A2,H 0252 ( )
i D 0o —
~ P P ~ Ho
Ay = s . Agn = ( , ) . (2.120)
—@—ﬁE£2 pfﬁ ~Cn 0

and substituting p; = 0 into expressions (2.114-2.123) gives this matrix Ay

X Osxs Ay )
Av=( Y Vo) 2.121
v ( Ay Ogxs ( )
c
0 — T 0
~ 0 MCK MZQK - % 0
Av= ¢ ¢ 2.122
1,V _pfﬁ 0 0 .Lf % ) ( )
o2 TP
—e—pPL% 0 0 o' L
0 0 0 —u
i —p —p’ 0 0
Ay = L , 2.123
- (1 + %.62) 0 0 (2.123)
0 0 _Glfr

Looking at these matrices we see that Ay uncouples into two subcases: one
containing the wavefields corresponding to the compressional waves, and a second
containing the wavefields corresponding to the shear and electromagnetic waves.

0Qy

o = AYQy + Dy, (2.124)
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Q{/ - (17§,1D3, _7:??37]5>t and Q{/ - (_7:{)37 ]:127 Eh@f)t (2'125)

- 0942 Al’t
Ay = ( ) (2.126)
A27v 02><2
where
1 C _pb _pf
" K . p p
AIIV:< e Mt ) and AL, = e
MK, _MC;KC i —pf -1 (1 + %£2>
(2.127)
and
i p el 0 -
_ p = =P N 1o
Aly= A ? . and ALy = ( . ) . (2.128)
—€—0 p £ Gfr

The P-SV-TM coupling separates into two couplings, one containing the fast
and slow-P waves, or P coupling and the other containing the vertical shear
and TM electromagnetic waves, or SV-TM coupling. Note that A{, is identical
to Ay, since for vertical propagation the SV-TM coupling is just a different
orientation of the SH-TE coupling. The compressional and shear wavefields are
completely uncoupled for normal incidence and the seismo-electric coupling takes
place only among transversal waves (shear and electromagnetic waves). As the
angle of incidence increases, so does the contribution of the compressional waves
to the transversal waves in the P-SV-TM coupling. Although this is an unrealistic
case, it gives insight in the coupling mechanism between different wavefields and
its dependencies on the angle of incidence. For example, it explains why right
below the source point there is no seismo-electric conversion taking place when
using a P-wave source.

2.8 Conclusions

In this chapter we have obtained the wave equation for the coupled seismic and
electromagnetic waves in a porous medium in the frequency domain for the 3D
and 2D cases, and in the ray parameter domain for the 2D and 1D cases.

We have begun this chapter with Pride's equations for the coupled electro-
magnetics and acoustics of porous media in the frequency domain. Then we have
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expressed the vertical variations of a chosen set of wavefields in terms of their
lateral variation, and combined them into the following matrix-vector equation
9Q _ AQ+D. (2.129)
a$3

This is done first for the 3D case in the frequency domain, and second for a 2D
case where we consider a medium consisting of horizontally layered homogeneous
media. In this situation all derivatives with respect to x5 are taken zero, which
simplifies dramatically the structure of matrix A as shown in Section 2.5. At this
point we see clearly how the wave equation separates into two uncoupled partial
differential equations that will describe the two types of coupling found on the
seismo-electric effect: the SH-TE and the P-SV-TM couplings. On the SH-TE
coupling we have the horizontal shear waves coupled with the TE electromagnetic
wave. In the P-SV-TM coupling we have the compressional (fast-P and slow-P)
and the vertical shear waves coupled to the TM electromagnetic wave.

Next we Radon transformed the wave equation from the (x,w) domain to the
(p1,w) domain. Here all derivatives with respect to z; are replaced by —jwp;.

From the 2D wave equation in the ray parameter domain we derived the 1D
wave equation in the same domain. In this wave equation we found that the
P-SV-TM coupling uncouples into longitudinal (compressional) and transversal
(shear and TM electromagnetic) wavefields, therefore for normal incidence the
compressional waves do not couple with electromagnetic waves.

The final expression for the 2D case gives us a neat expression that will be
used in the following chapter to develop the composition and decomposition
operators and later the seismo-electric reflection coefficients.
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Chapter 3

One way equations for the
electrokinetic effect

3.1 Introduction

In this chapter we describe the one-way wave equations and how we move from
two-way to one-way expressions. We describe an electro-kinetic survey by means
of operators describing each of the phenomena taking place, such as excitation,
propagation or reflection.

Finally we show examples of two cases where we apply the contents of this
chapter, first a simple WRW reflection using just one-way quantities and second
a more complex case including decomposition and composition at the source and
receivers.

3.2 Decomposition of wavefields

In this section we introduce the composition and decomposition operators. We
finished the previous chapter with the two-way wave equations for the two types
of electro-kinetic coupling, the SH-TE and the P-SV-TM cases

OC . N
83: = AupQu + D4, (3.1)
OC o _
8‘2: = AyQy + Dy. (3.2)
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In this chapter we show the method of transforming two-way field quantities
into one-way wavefields via the composition operator L.

As shown in the previous chapter there are two types of electro-kinetic cou-
pling, SH-TE and P-SV-TM. We look at these couplings separately and derive
expressions for the composition operators.

3.2.1 Composition operator

The wave field represented by vector Q in equations (3.1-3.2) is decomposed in
downgoing and upgoing wavefields by using the transformation

Q=1P, (3.3)

where matrix L is the composition operator that converts the one-way wavefields
into two-way wavefields. One-way wave equations describe the propagation of a
certain wave (e.g. fast-P wave) across the medium either up or downgoing, while
two-way wave equations describe the propagation of a certain field quantity (e.g.
E; field) up and downgoing.

We see in equation (3.3) how the operator L composes the field quantities
present in Q from the up and downgoing one-way wavefields contained in P.

The composition operator contains the eigenvectors of matrix A

A~ LAL (3.4)

Substituting (3.3) and (3.4) into (3.1) or (3.2) and assuming that there are
no vertical variations of the medium parameters in a layer, we obtain

5)
— =AP+L'D. (3.5)
T3
which shows the vertical variation of the one-way wavefields present in D as a
function of the eigenvalues of A and the one-way source.

3.2.2 Coupling between SH-waves and TE-waves

When a horizontally polarized shear wave (SH-mode) propagates in the x-x3
plane, its propagation is not coupled to the other three seismic wavefields (the
fast and slow P-waves and the vertically polarized shear wave); however, the SH-
wave generates electric currents in the xo-direction and these currents couple to
the electromagnetic wavefield with transverse electric polarization (TE-mode).
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Wave velocities

The system matrix Ay in Eq. (3.1) can be used to determine the velocities
of the SH-wave and TE-wave in a homogeneous porous layer. Since the medium
is isotropic, we consider the special case of a horizontally propagating wave with
velocity c=1/p;. For this specific case the left hand side of Eq. (3.1) becomes
zero (i.e., there is no x3-dependency) and the non-trivial solution for the resulting

linear set of equations is the one for which the determinant AH‘ = }Al, H‘ ’AZ H‘

vanishes. Consequently, since ‘AZH‘ # 0, one simply has to find a horizontal

slowness p; = 1/¢ for which ‘AlH‘ is zero. We thus obtain

_ P — p%/ﬁE
c2 g

+ (£ + ppl?)pt

_2/4 . 2 2 2
\/(w — (6 + ﬁEﬁZ),u> _ 4%7 (3.6)

G G

where the plus sign is associated with the velocity of the SH-wave (denoted by
¢csn) and the minus sign with the velocity of the TE-wave (denoted by ci.).

Composition operator

As previously said, the wave field represented by vector Qg in Eq. (3.1) is
decomposed in downgoing and upgoing wavefields by using the transformation
(:QH = LyPy. By using the results of [19], we find that matrix Ly is given by

_ oo (at at a— a-) :
Ly = jw (ash, ag,, ay, ate) , in which

TinG . )
G A Lps(G —
ar = iqniyn with 4, = pAE( 5 pBC“), where n={sh,te}. (3.7)
— 15 Eppect — p
1

Here, ¢, represents the two vertical slownesses belonging to the SH-wave and
TE-wave and it is defined as

pi+Gr=1/c; with Im(G,) <0 (3.8)
hence, by combining Eq. (3.1) with the relation
Ly AyLy = diag(—Gan, —Gier Gony Gic) (3.9)
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one finds in a homogeneous porous layer

. Sha . T+ e
Py = ( Pi ) with Pj = ( dah eXp(:F?‘“{Sm)) (3.10)
H die exp(Fjwiiers)

where f’ﬂ and f’ﬁ are the downgoing and the upgoing wavefield, respectively.

3.2.3 Coupling between fast and slow P-waves, SV-waves,
and TM-waves

When a fast P-wave, a slow P-wave, or a vertically polarized shear wave (SV-
mode) propagates in the x;-z3 plane, it generates electric currents in the z1-z3
plane and these currents couple to the electromagnetic wavefield with transverse
magnetic polarization (TM-mode).

Wave velocities ~
Similar to the SH-TE-case in the previous section, the system matrix Ay can
be used to determine the velocities of the fast and slow P-waves, SV-wave and

TM-wave: find a horizontal slowness p; = 1/c for which ‘ALV‘ ‘Az,v‘ =0. As

expected, the solution for ‘AQ’V‘ = (0 results in velocities for the SV-wave and

TM-wave as given in Eq. (3.6), in which the plus and minus sign are associated
with the SV-wave (c¢;) and TM-wave (cq ), respectively. On the other hand, the

solution for ‘ALV‘ =0 results in [19]

2 . A 4 (é+fsEﬁ2)ﬁEpB
6—2:Vj: 1/2—Z< é —p% s (311)
where 7 is )
R M (8+,6E£2)pEH C
_ PR PR 9. 12
v=peyt ;A Py (3.12)

A is defined in equation (2.32), and H = K¢ + 4Gg /3. The &£ sign in equation
(5.4) denotes from which wavefield is ¢ the velocity. The plus is associated with
the velocity of the slow P-wave (denoted by ¢,) and the minus sign is associated
with the velocity of the fast P-wave (denoted by c,).

32




Composition operator
Similar to the SH-TE-case in the previous section, the vector Qy in Eq.
(3.2) is transformed as Qv = LyPy. By using the results of [19], we find that

Ly= jw<bf,b+ b, bt b, b, b, b >where

ps? sV tm> pf» ps? sV

+GmCm Epica
+GmCmYm ipl(G - pBCi)/(Cnpf)
:F2p1(ilvamG :I:Crl(gr% - p%)G
bt — 0 . bt — 40 /cn
o _(pl Cm;}/m,ﬁEL)/&f ’ n /vLQNnCn:Yn ’
(2Gp3c2 — H — () /e —2p1Gnn G
—(C+AmM)/cm 0
P1Cm —q~nCn
(3.13)
where 7, is defined in Eq. (3.7) with n={sv,tm}, and 4, is
. H — psc?, .
= O with m={pf, ps}. (3.14)

Here, ¢, and ¢, represent the four vertical slownesses belonging to the SV-wave,
TM-wave, fast P-wave and slow P-wave, and they are defined as

Pi+aan=1/ct , with Im(Gmn) <O. (3.15)

Note that ¢y, , are the eigenvalues of Ay; hence, by combining Eq. (3.2) with
the relation

fi;lAVfJV:diag(_pra _(jpsv _(.?sva _Cjtmy (jpf» Qp& (jsva (jtm) (316)

one finds in a homogeneous porous layer

o exp(F jwipivs)
B D+ B 7+
Po=( BV ) with Pi=| % p s OXP(FJwhpss) | (3.17)
PV d exp(:F]qung)
d?m exp(Fjwiims)
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3.3 Reflection and transmission coefficients

In the following section we derive the reflection and transmission coefficients from
the boundary conditions of the interface. We will consider two types of interfaces:
porous-porous and porous-vacuum. The first will simulate an interface between
two layers in the subsurface while the second will simulate the surface of the
earth.

3.3.1 Reflection and transmission coefficients for the porous/
porous interface

In this section we derive a general expression for the reflection and transmission

coefficients of the SH-TE and P-SV-TM couplings. At the end of the section

each particular case is described in detail. This method will be used later to
obtain the coefficients for a porous/vacuum interface.

Zn
I/ \PH
Figure 3.1: Wavefields incoming and outgoing to an interface. The sign denotes

the direction of the wavefield, and the superscripts “ and ' denote the upper and
lower media respectively.

The coefficients for both coupling cases are derived via the scattering matrix.
This matrix relates the incoming wavefield to the outgoing wavefield by means
of the reflection and transmission coefficients of that interface

pout = SpP™", (3.18)

L f;_ > ( o ) (3.19)

or




where the left hand side of the equation contains the outgoing wavefields from
the interface, and the right hand side contains the scattering matrix times the
wavefields incoming to the interface.

In order to solve the equations of the system (3.19) we need the boundary
conditions from Deresiewicz and Skalak [5] presented in section 1.3. At an
interface the boundary conditions require that the elements of Q are equal at
both sides,

Q" =Q, (3.20)
Substituting equation (3.3) into equation (3.20) gives
L'P" = L'P!, (3.21)

and substituting equation (3.17) into the previous yields

L" P =1 P 3.22
(o) e

For this derivation we express L"! in terms of the eigenvalues corresponding to
down and upgoing wavefields respectively

LY = jw (& &™), where a= {H,V} (3.23)
for the SH-TE coupling
R G T (3.24)
and for the P-SV-TM coupling
é$u7l _ (5:;,1 ég:su,l ésiVuJ étinlll,1> ' (3.25)

The columns of the composition operators L' are defined in equations (3.7)
and (3.13). Substituting equations (3.23) into (3.22) gives

+u
Q" = jw (@™ a™m ( E_u ) — jw (@TPT AP, (3.26)
and
L o (aH 51 p+ _ o (sHlptl . z-1p-l
Q' =jw(a™ a) p-l jw(@"PH+a P, (3.27)

35




According to the boundary conditions (3.20), Q" in equation (3.26) and Q' in
equation (3.27) must be equal, hence

2gl-i-u]_:)—&-u + é_uP_u _ é+1P+l =+ é_IP_l, (328)
this equation can be rearranged as
éfupfu o é+lP+l — _é+uP+u + éflel’ (329)

where the left hand side of the equation contains the wavefields incoming to the
interface while the right hand side contains the outgoing wavefields. Rewriting
things back to the notation of equation (3.26), we get

(a - at) < g: ) = (—aﬂj a™) ( ?f ) . (3.30)

Comparing equation (3.30) with (3.19) gives the following expression for the
scattering matrix.

. -~ e
§—§18, — ( L ;_ ) | (3.31)

Each of the elements of S is a matrix that will have the form

~+ ~+ 7+ 7+
~+ rsh,sh Tsh,te E:t . tsh,sh tsh,te (3 32)
T'n = <4 ~+ »YH T T+ i+ )
te,te

Tte,sh Tte te te,sh
and
~+ ~+ ~+ ~+
Totpf  Tptps Tpfsv  Tpftm
st ~+ ~+ ~+
- pspf  "psps  Tpssv Tpstm
rv=1 & s s s ; (3.33)
Tsvpf  Tsvps Tsvsy  Tovitm
~+ ~+ ~+ ~+
Ttm,pf rtm,ps rtm,sv Ttm,tm
f 7+ E:i: 7+
pf,pf pf,ps pf,sv pf,tm
1 i+ 7+ 7
4 tpS,Pf tps,ps tps,sv tps,tm
WEL = E : (3.34)
sv,pf SV,ps SV,sV sv,tm

~ ~ ~
ttm,pf ttm,ps ttm,sv ttm,tm
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Figure 3.2: The conversion from seismic to electromagnetic takes place when the
seismic wavefront touches the interface, and from that point the electromagnetic
wave is generated to all the points at the surface.

where for example TtJ’m’SV is the reflection coefficient for an downgoing incoming
vertically polarized shear wave and outgoing TM mode electromagnetic wave.

Results

In the first half of this section we have derived the expressions for the reflection
and transmission coefficients for the seismo-electric effect, in this subsection we
make use of those expressions and show certain cases as examples.

We calculate all the reflection coefficients of the same type of interface: a
contrast in porosity, permeability and pore fluid ion concentration between the
upper and lower media. The medium parameters can be found in Table 3.1.

Parameter | Upper medium | Lower medium
) 0.4 0.2

k 1.28 - 1012 1.6-10713

C 1076 1072

K3 4.101 4.10'"
Kt 4-10° 4-10°
G 9.10° 9.10°

Table 3.1: medium parameters

In Figure 3.2 we see how the conversion from seismic to electromagnetic
waves takes place in a very small area around normal incidence when the seismic
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20
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Figure 3.3: When an electromagnetic source is used, the wave reaches instan-
taneously to all the points in the interface, that after conversion act as seismic
sources generating an upgoing inhomogeneous plane wave.

wavefront touches the horizontal interface. If we look at Snell’'s law

sin 6, _ sin O, (3.35)

CS Ce 11

where the subscripts ; and ., stand for seismic and electromagnetic respectively,
we see that since the electromagnetic velocity ¢y, is much higher than the seismic
velocity ¢ the critical angle for the incident seismic wave

0$ = arcsin (&) ) (3.36)

Cem

is very small, in the order of 1073, This means that for any angle of incidence 6, >
0¢ the reflected and transmitted wavefields are going to be evanescent. Only when
there is normal incidence there is a generation of homogeneous electromagnetic
wavefields.

Figure 3.3 shows a scheme of the reflection of seismic waves as electromag-
netic waves are incident at a horizontal interface. In this case the electromagnetic
wave arrives to all the points on the interface almost instantaneously, each of
those points acts as a source point of seismic waves and this generates a plane
seismic wave that propagates upwards.

If the incident angle of the electromagnetic wavefield is 90°, the angle of the
reflected and transmitted seismic wavefields is

05 = arcsin (&) (3.37)

Cem
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which is a very small angle, again in the order of 1073. This means that for almost
any angle of incidence of the electromagnetic wavefield there is generation of non-
evanescent seismic waves vertically directed to the upper and lower interfaces.

Reflection coefficients for the SH-TE coupling.

In Figure 3.4 we see the reflection coefficients for the SH-TE coupling. The
graphs in this figure are from left to right |Fesn| and |Tgnte|. On the vertical
axis we have the modulus of the reflection coefficient that is calculated as a
function of the horizontal slowness p; times the velocity of the outgoing wave
Cente- In the case of an incident seismic wave the region 0 <p;c" <1 corresponds
to reflection angles from zero to ninety degrees and for pic* > 1 the reflected
wave becomes evanescent. Since |c.| is much larger than the incident Sh wave
velocity |c4 |, the region 0 < picf, <1 also corresponds to very small incident
angles. In the case of an incident electromagnetic wave any angle of incidence
will give an almost normal reflected wave. In the right graph of Figure 3.4 we
see |Tgnte| in @ much wider range of p;, although it looks as if this coefficient
is zero for normal incidence it is just an effect of the scale used on this figure,
and there is indeed conversion for normally incident horizontal shear waves, as
pointed out in the previous chapter.

—11

186210 : : 3
1.85 2
— —
T 1.84 |
1.83 : ‘ : 0
0 0.5 1 15 2 0 0.5 1
u u
ple, | ple,|

Figure 3.4: Reflection coefficients of the SH-TE coupling. Left: conversion
from horizontal shear wave to TE electromagnetic wave for low values of the ray
parameter py. Right: conversion from TE electromagnetic wave to horizontal
shear wave for high values of the ray parameter p;.
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Reflection coefficients for the P-SV-TM coupling.

In Figure 3.5 we see the reflection coefficients of the P-SV-TM coupling.
The upper row of the four graphs in this figure are conversions from fast-P wave
and shear vertical wave to electromagnetic TM wave, i.e. from left to right we
have |Fim pf| and |Timsv|. On the lower row of graphs we have conversions from
the electromagnetic TM wave to the seismic fast-P and shear vertical waves, i.e.
from left to right we have |Tpf | and |Tsy tm]-

-10 —-11

3 x 10 | | | ; x 10
6 5
TR -
g 4 g 4
= =
2 3
0 ‘ ‘ ‘ 2 ‘ ‘ ‘ f
0 0.5 1, 15 2 0 0.5 I, 1.5 2
ple, | ple, |
10 10
(@)
: 2
X L
igs —§5
= =
0 0
0 05 ., 1 15 0 05 ., 1 15
ple_ | ple |

Figure 3.5: Reflection coefficients for the P-SV-TM coupling. Above: conver-
sions from fast-P (left) and shear vertical waves (right) to electromagnetic TM
wave. Below: conversions from electromagnetic TM wave to fast-P (left) and
shear vertical waves (right)

As in the previous results of this section, on the vertical axis we have the
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modulus of the reflection coefficient that is calculated as a function of the hori-
zontal slowness p; times the velocity of the TM electromagnetic wave c}. for the
seismic-electromagnetic reflections, and the velocity of the vertical shear wave
for the electromagnetic-seismic case.

As described by the equations derived in Section 2.7 the reflection coefficients
that include the fast-P wave are zero at normal incidence, and according to Figure
3.5 their value increases as p; does. In the upper left graph of Figure 3.5 we
have the coefficient |Fiy | for the range of p; in which this reflection generates
an homogeneous wavefield. We clearly see in this graph how the compressional
waves also generate homogeneous seismic waves. We can therefore classify the
angle of incidence in three different ranges according to the generated wavefields

(0° no conversion from compressional waves and the conversion
from shear waves produces homogeneous electromagnetic waves

< 05 the conversion from all seismic waves produces homogeneous
electromagnetic waves

> ¢¢ the conversion from all incident seismic waves produces only
evanescent electromagnetic wavefields

\

As we already saw previously, the conversion from electromagnetic to seismic
wavefields does not depend so dramatically on the angle of incidence and any
angle will generate reflected and transmitted seismic wavefields almost normal
to the interface.

Variation of the Reflection coefficients for the SH-TE case with the
porosity contrast.

In Figure 3.6 we see the variation of the reflection coefficients for the SH-TE
coupling with the porosity contrast. For this and the coming simulations we
have chosen to link porosity and permeability as related in the Kozeny-Carman
relation k = ngQ/A where A is a constant of the porous medium, in this case
A = 2.963 - 10't. On the vertical axis we find the modulus of the reflection
coefficient and on the horizontal axis the upper and lower porosities differences.
All medium parameters are equal in both media, except the porosity that in the
upper medium is 0.3 and in the lower medium ranges from 0.2 to 0.4, therefore
when A¢ = ¢ — @' = 0 both porosities are equal and there is no reflection.
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Figure 3.6: Variation of the Reflection coefficients for the SH-TE coupling with
the pore fluid ion concentration contrast.

Variation of the Reflection coefficients for the SH-TE case with the
pore fluid ion concentration contrast.

In Figure 3.6 we see the variation of the reflection coefficients for the SH-TE
coupling with the pore fluid ion concentration contrast. On the vertical axis we
find the modulus of the reflection coefficient and on the horizontal axis the ion
concentration ratio. All medium parameters are equal in both media, except the
ion concentration that in the upper medium is 10~*M and in the lower medium
ranges from 107°M to 1073M, therefore when AC = C* — C' = 0 both ion
concentrations are equal and there is no reflection.
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3.3.2 Reflection and transmission coefficients for the porous/
vacuum interface

In this section we derive the reflection and transmission coefficients for the surface
of the earth that will be simulated as an interface between an upper vacuum
halfspace and a lower porous medium. Later in the chapter we shall show how
in the wavefield decomposition at the source and in the wavefield composition
at the receiver, the reflection at the surface plays an important role.

In order to obtain these coefficients we use the scattering matrix method
presented in the previous section, but on this case assuming that no seismic
waves propagate in the vacuum, so applying equations (3.18) and (3.19) to the
vacuum /porous interface we can write

f)out _ gvacf)in

vac vac’

P U Pt
(3)-(2 £)(35)  ow

where PZ¥ contains only the wavefields that can propagate in vacuum, i.e. elec-
tromagnetic wavefields, and the coefficients with the subscript ,. take into ac-
count that no seismic wave can propagate in vacuum.

We use the same approach as in the porous/porous case, but bearing in mind
that only electromagnetic wavefields propagate in the vacuum, then PX% from

equation (3.39) is

(3.38)

or

P\:gé = ( P(:]i:u ) ) (340)
and the coefficients
- 0 0 ~ 0 0
+ p— - — ~ ~
Frac = ( 0 f:m,em ) 7tvac B ( t;m,se t;m,em ) 7 (341)
- 0 % Frose 7o
+ se,em == se,se se,em
tvac B ( 0 gtj_m,em ) 7rvac B ( 7:e_m,se fe_m,em ) ’ (342)

where the subscripts 4 and o, refer to the seismic and electromagnetic waves
from each type of coupling.

In order to solve the equations of the system (3.39) we need a number of
boundary conditions equal to the number of wavefields to which the scattering
matrix is applied, which is 3 for the SH-TE coupling and 5 for the P-SV-TM

43




coupling. From the quantities present in vector Qa, equations (2.109-2.110)
we choose —Ts3, —H, and F, to form the boundary conditions for the SH-TE
coupling, and —7y3, ﬁg, El, —1733, and p to form the boundary conditions for
the P-SV-TM coupling. Since the vacuum cannot sustain stresses, and since
horizontal components of the magnetic and electric fields should be continuous
across this interface we thus have

e lllaC = e Lac (343)
or
1 9 u _7,113 1
0 \" —To3 H,y H,
—H, = | —H and | E, = F, . (3.44)
Ey ), Ey ) 0 —Tas
0 \% p \%

We can express the two-way quantities present in the boundary conditions
as the composition of the one-way wavefields propagating in the upper or lower
media as

. \L;ac - i‘Sac]'N):/lac and Ql/ac - i‘l/acpllam (3'45)
where the composition matrix L; is
Ly =jw (a5, &, ay), &), (346)
in which 3
SEE
ar = | £G.A | where n={sh, tel. (3.47)
_:uﬁ/n

The composition operator used for the lower medium I:%{ is the one defined
in equation (3.7) but it contains only the rows corresponding to the quantities
chosen in the vector Q%{ for the boundary conditions. This way we only compose
or decompose the quantities that are present in the boundary conditions.

The composition matrix f,‘ﬁ is

- 1 0~
L =jw(ai"a) = —= | -V

5| (3.48)

— ~<ho
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The composition operator for the upper medium Lj; was extracted from [26]
where the parameter Y is

- r . / 1
Y = - and T'=wy/p?——. (3.49)
JwWHo Co

The composition matrix LY is

(3.50)

tm > ~tm

LY = jw <B+“ l~)’“> =

The composition operator for the upper medium IZ{‘, was also extracted from [26]

where the parameter Y is
_ Jweg

Y 3.51
4 (351)
The composition matrix L, is
Ly = juw by, b B, by, by by b bt ) (3.52)
where
:F2plgmcmG icn(dﬁ - p%)G
i 0 i +4n/cn
bi = _(pCm’AVm:aE'C)/(é - ﬁE'CQ) ) bvjmt = 4G Cn Y
(QGP%CIQH e ’?mo)/cm _2p1anCnG
—(C 4+ AuM) /e 0
(3.53)

The composition operator used in this occasion for the lower medium I:lv is
the one defined in equation (3.13) but it contains only the rows corresponding
to the quantities chosen in the vector sz for the boundary conditions.

From here onward the derivation of the reflection and transmission coefficients
for the porous/vacuum interface follows the same scheme as in section 3.3 where
the coefficients for the porous/porous case were derived.
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Reflection coefficients for the SH-TE coupling at a porous/vacuum
interface.

In Figure 3.7 we see the reflection coefficients for the SH-TE coupling for the
porous/vacuum case. The graphs in this figure are from left to right [r;_ | and
[Tihl- On the vertical axis we have the modulus of the reflection coefficient
that is calculated as a function of the horizontal slowness p; times the velocity
of the outgoing wave Cohte-

x 107"

9.29 " ' 8
6
9.28
_ﬁ e
(] ';j':: 4
927 o
2
9.26 : : 0 - :
0 0.5 1 1.5 0 0.5 1 1.5
u u
pllctel p1|CSh|

Figure 3.7: Reflection coefficients of the SH-TE coupling at a vacuum/porous
interface. Left: conversion from horizontal shear wave to TE electromagnetic
wave for low values of the ray parameter p,. Right: conversion from TE elec-
tromagnetic wave to horizontal shear wave for high values of the ray parameter

P1-

Reflection coefficients for the P-SV-TM coupling at a vacuum/porous
interface.

In Figure 3.8 we see the reflection coefficients of the P-SV-TM coupling for
the vacuum/porous case. The upper row of the four graphs in this figure are
conversions from fast-P wave and shear vertical wave to electromagnetic TM
wave, i.e. from left to right we have [t [ and [Ty, [ On the lower row of
graphs we have conversions from the electromagnetic TM wave to the seismic
fast-P and shear vertical waves, i.e. from left to right we have [ ;| and [T, ;|-
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Figure 3.8: Reflection coefficients for the P-SV-TM coupling at a vacuum/porous
interface. Above: conversions from fast-P (left) and shear vertical waves (right)
to electromagnetic TM wave. Below: conversions from electromagnetic TM
wave to fast-P (left) and shear vertical waves (right)
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3.4 \Wavefield extrapolators

Here we present the wavefield extrapolation operators. These operators describe
the propagation of a wavefield through a medium, they are

Wy 00 0
R+ 0 wrjfs 0 0 L (WL 0
W5 = 0 wsﬂ; 0 and Wy; = 0 ”J)tie (3.54)
0 0 0 g
where
w$7n(p17 Zry 2oy CL)) = efjWQm,n|Zr*Zo‘ (355)

where the general sign convention holds. We use the + sign in @}  when the
wavefield is downgoing, i.e. when 2, > 2, and the - sign in w,, , when the
wavefield is upgoing, i.e. when z, < zj.

3.5 Source decomposition operator

Figure 3.9: The source decomposition operator converts the two way wavefields
into up and downgoing one way wavefields at the source level

The relation between the two-way wavefields generated by the source and
the up or downgoing one-way wavefields is given by the source decomposition
operator. In this section we derive a general expression for both cases SH-TE
and P-SV-TM.
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The one-way representation of the source function S(z), in the (py,w) domain

S(z) = L7'D(z). (3.56)

where L1 is the inverse of the composition operator L defined in the first section
of this chapter. The inverse of the composition operator decomposes the different
two-way source wavefields into one-way up and downgoing source wavefields.
D(z) is a matrix containing the source vectors defined in equations (2.117) and
(2.118) that have been chosen as sources. Note that equations (3.57) and (3.58)
are not the only possible selection of source vectors and other combinations are
also available, e.g. one containing Js for the P-SV-TM coupling. The two-way
source matrix Dy (z) contains therefore two source types while Dy (z) contains
four

ﬁH:(ﬁg f)g;) (3.57)
Dy = (D} Dy DY DY), (3.58)

and substituting from equations (2.117) and (2.118) we have

ﬁgz(fQ——fQ, ﬁfg,o,oy (3.59)
DY = (o, Je,0, 0) (3.60)
D = (0,p—Ef1,f1——f1, ﬁf{,o,o,o,o)t (3.61)
D% = (0,0,0,0 fh— fg,fs, )t (3.62)
DY = (o,o, 0, —J¢,0,0,0 0) (3.63)
DY = (0 0,0,0, —Ji" 0,0 o) (3.64)

where the superscript in D shows the type and direction of the source. In the
coming two-way wave models we use some of the source types present here,
when the source is seismic we assume that the forces applied to the fluid and to
the solid are equal, therefore ff fb

For the following simulations it will be convenient to separate the up and
downgoing one-way wavefields from the source, we can therefore write equation

49




(3.56) as

(8)-(R N () 5o

Later in this chapter we make use of this operator when simulating the sources
used in a seismo-electric reflection simulation. In this case we only use the
downgoing components of the source S*(z) because we simulate a source at
the surface. The next chapter deals with more complex cases like wellbore to
wellbore where the source is placed inside a wellbore and the up and downgoing
source wavefields are used.

3.6 Receiver composition operator

Figure 3.10: The relation between the two-way wavefield recorded at the receivers
and the one-way wavefields is given by the receiver composition operator

The relation between the two-way wavefield recorded at the receivers and the
one-way wavefields arriving there is given by the receiver composition operator,
that combines all the up and downgoing one-way wavefields into the measurable
two-way wavefields we are interested in. For example the signal we can mea-
sure with electrodes placed on the surface in the x; direction will be composed
of the conversion of compressional and shear waves at some interface, plus the
electric fields that these waves will carry along, thus we need the receiver com-
position operator to compose these two-way wavefields (E;) from the one-way
wavefields that arrive to the receivers (fast-P, vertical shear and electromagnetic
TM waves). In this section we derive a general expression for the receiver com-
position operator. Later this expression will be particularized and used for the
cases in the forward simulations.
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From chapter 2 we know that the composition of two-way wavefields from
one-way wavefields is done by the composition operator L(z) by means of the
transformation

Q=LP, (3.66)

where Q contains the two-way wavefields and P the one-way wavefield that
contains the upgoing and downgoing waves.

The derivation of the receiver composition operator in the coming lines re-
quires that the vector Q has certain order, so the second half of it contains
two-way wavefields that we want to measure in the field. This allows us to sep-
arate the composition matrix L into easier to handle submatrices for the coming
derivation.

For the SH-TE coupling we do not need to rearrange Qy since QQ,H already
contains the measurable two-way quantities we want

Qu = <~§H QéH)t = <_7Z2bs — Hy Es ﬁiq)t (3.67)

where Qo = (Ez @g)t (3.68)
However for the P-SV-TM coupling this is no longer the case since
Qu=(8 @ -7y Hy Ei -7 p &) (3.69)
and the Qy vector we need is

- t
~b ~b ~5  ~§
(—p Ws Ti3 Ts3 Ho Ei 03 v1>

Qi) = (Qi() Qi)

(3.70)
where Q5 y(2) is
Q(z) = (M) Bi(z) () () - (3.71)
Thus we need to do the following transformation
Q' (2) = Ty Qy(z) and L, (2) = IyLy(2) (3.72)
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where IIy is

<
I
cCoocococ oo

(3.73)

O OO oo oo

SO OO OO oo

OO R OO o oo
|

_ O OO oo oo

SO OO oo —Oo
SO OO O+ O O
DO oo+ OO o

Note that if the order in Q, should be changed to fit another set of measurable
quantities, e.g. to simulate hydrophones as receivers, the row order in L, and
ITy should change accordingly so it would include p in Q) y/(z).

Once we have the required arrangement in Q, and L, we can express the

composition operator as
SV Ve
L’:( 21 J)’ (3.74)
Ly L
where each of the submatrices is a 2x2 matrix for a=H and 4x4 for a=V. Sub-
stituting equation (3.74) into (3.66) gives

Q! Li" Ly \ ( P*
= = = - - 3.75
(&) (i i) (& (379)
where Q’2 contains the set of quantities from Q' that we have selected to be
measured by the receivers. Let's assume a generic receiver at depth z, where the
up and downgoing wavefields P~ and P respectively arrive, then on the one
hand we can write
Q/2<Zv') = Cj(zr)f""(zr) + C;(ZT>P_(ZT)7 (3.76)
And on the other hand from the lower row of equation (3.74) we can write
Q’z(zr) = I~/2+]_5+(zr) + f/{f”(zr), (3.77)
comparing this with equation (3.76) yields the receiver composition operators

C, =L, and Cf =L (3.78)
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Figure 3.11: One-way reflection model

3.7 Results: Reflection model in the (z1,t) do-

main

In this section we present some of the results obtained using this approach to the
electro-kinetic effect and its use in a geophysical survey. We show first the results
of a one-way wavefield case in which we use neither decomposition, nor compo-
sition, just up and downgoing wavefields and the reflection at the porous/porous
interface. Later we show the effects of the composition and decomposition in a
more complex case. This forward simulation has been calculated in the (k1,w),
and then Fourier transformed to the (1,t) domain where the results are shown.

For our simulation we use as a time source function the Ricker wavelet, that
in the frequency domain is

- Zge ()
Sw)=—="zexp| — |, 3.79
W=7 13 519
where fj is the peak frequency and has been set to 800 Hz. We can see in Figure
3.11 the setup for our simulation. We consider an interface at a depth of 50m
with the same contrast as the one defined in Table 3.1. There are 32 receivers at

each side of the source (split-spread configuration), with 1m separation between
receivers.

3.7.1 One-way Reflection model in the (z;,t) domain

In this section we present results of a simple reflection simulation as in Figure
3.11. We compute the propagation of waves down to an interface, the reflection
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and its propagation up to the surface. Note that in this subsection’s figures
there are only one-way wavefields represented. This is a very simple approach
to a seismo-electric reflection, but it helps understanding the interaction of the
different wavefields, and it will be a reference for the two-way reflection model
results that follow the current subsection. The expression that describes this
one-way seismo-electric simulation is

P(z0,2,) = W (20, 2,)T (2, )W (2, 20) (3.80)
where W= is a matrix containing the wavefield extrapolators defined in section
3.4 that propagate the wave from the surface to the interface level 2z, and back
to the surface, and r is a matrix containing the reflection coefficients defined in
section 3.3 that describe the reflection and conversion between different wave-
fields. To follow the ray path in this expression, it must be read from right to left,
so the first wavefield extrapolator V~V+(zr, 2p) describes the propagation of the
wave from the surface to the interface, the reflection coefficient r(z,) describes
the reflection and conversion of wavefields, and finally the leftmost term in the
right hand side of the equation, the wavefield extrapolator W~ (zg, 2,) describes
the propagation of the converted wave from the interface to the surface.

In order to understand the results of this section we have to keep in mind
Figures 3.2 and 3.3. In the coming figures we show the result of our model for
both types of conversion.

In Figure 3.12 we see the results of the one-way reflection model applied to the
seismo-electric conversion of wavefields for the SH-TE coupling. In the left graph
we see the conversion of a horizontal shear wave to an electromagnetic TE wave,
and in the right one the conversion of an electromagnetic TE wave to a horizontal
shear wave. Note that both arrivals occur at the same time, which is one-way
vertical seismic travel time. In the left figure we have a conversion taking place
right below the source point and from there the electromagnetic wave is radiated
to all the receivers in the surface. In the right figure we have a conversion of an
electromagnetic wave that arrives to all the points in the interface, from there a
seismic plane wave is radiated up to the receivers above them. If there was a dip
in the interface, it should be very visible in the conversion from electromagnetic
to seismic (right graph in Figure 3.12) because the response would show as a
dipped flat arrival. However in the conversion from seismic to electromagnetic
as soon as the interface was slightly dipped the incidence would not be normal
and the flat arrival from the seismo-electric conversion would dissappear.

In Figure 3.13 we see the results of the same one-way reflection model applied
to the seismo-electric conversion of the P-SV-TM coupling wavefields. In the
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Figure 3.12: Seismo-electric conversion of wavefields for the SH-TE coupling: in
the left graph we see the conversion from shear horizontal wave to TE electro-
magnetic wave, in the right graph we see the conversion from TE electromagnetic
wave to shear horizontal wave.

upper left graph we see the conversion of a fast P-wave to an electromagnetic TM
wave, and in the upper right one the conversion of an electromagnetic TM wave
to a fast P-wave. It is clear from these two graphs that at normal incidence there
is no conversion between the compressional and the electromagnetic wavefields.
Note also how the polarity at both sides of the source is opposite. In the lower
graphs we show the same cases in logarithmic scale. Note that in this case we
can also see a hyperbolic event with the same arrival time as the seimo-electric
flat arrival otherwise invisible due to the difference in amplitude.

In Figure 3.14 we see now the conversion of a vertical shear wave to an elec-
tromagnetic TM wave, and in the right one the conversion of an electromagnetic
TM wave to a vertical shear wave. Note that both arrivals occur at half-way
shear wave travel time. Note also that as predicted in the last section of previ-
ous chapter at normal incidence there is conversion between the shear and the
electromagnetic waves.

There is a notable feature in all the figures presented on this section, al-
though barely visible in most of them except the conversion from TM to fast-P
wave. All of them contain together with the flat seismo-electric event a hy-
perbolic event with the same arrival time, one way travel time. This occurs in
both types of conversions, from seismic to electromagnetic and vice versa. As
a incident seismic wave hits normally the interface there is a conversion and an
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Figure 3.13: Seismo-electric conversion of wavefields for the P-SV-TM coupling:
in the left we see the conversion from fast-P wave to TM electromagnetic wave,
in the right vice versa. The lower graphs show the same cases in logarithmic
scale.

electromagnetic wave is generated at the interface. As the wave continues prop-
agating downwards the reflected electromagnetic wave becomes evanescent but
due to the high diffusive character of the seismo-electric there is indeed certain
amount of energy radiated from this post-critical conversion that can reach the
surface if the interface is sufficiently shallow. This conversion takes place in the
intersection between the seismic wavefront and the interface, and it moves along
the interface with the velocity of the seismic wave. When the incident wave is
an electromagnetic wave first there is a conversion and a plane seismic wave is
generated at all the points of the interface where the electromagnetic TM wave
arrives. However the amplitude of the TM wave is not constant with offset and
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Figure 3.14: Seismo-electric conversion of wavefields for the P-SV-TM coupling:
in the left graph we see the conversion from vertical shear wave to TM electro-
magnetic wave, in the right graph we see the conversion from TM electromagnetic
wave to vertical shear wave.

this creates an imbalance at the interface surface and contiguous point sources
will not cancel completely creating a seismic wave. This would show as an hy-
perbolic event in the receivers, in the hypothetical case of having very sensitive
receivers in an almost completely noise-free environment.

3.7.2 Two-way Reflection model in the (z1,t) domain

In this section we present results of a seismo-electric reflection that includes the
properties of the source and the receivers. This scheme includes the decomposi-
tion of the two-way wavefields into one-way wavefields at the source as well as
the composition back to two-way wavefields at the receivers. We use the same
medium as in the previous section.

In sections 3.5 and 3.6 we derived a general expression for the composition
and decomposition operators that has to be specified for this case. Because we
place our source and receivers at the surface, the wavefields coming out of the
source are only downgoing seismic waves and up and downgoing electromagnetic
waves. In any case we use as source wavefields those that are downgoing. The
source decomposition operator we use is defined in equation (3.56)

S(z) = L7'D(2). (3.81)
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and the downgoing one-way wavefields are
St = N}, D, (3.82)

All the wavefields from the source will be downgoing thus we only use S+,

The two-way source wavefields D1 (z) are given in equations (2.117-2.118).
These expressions for the two-way source terms are expressed as a function of
the external force applied to bulk and fluid, f’ = fif and of the electric and
magnetic source functions, J¢ and J/". By turning on and off these terms we
can select the sources we want to use for the model.

In our model we have assumed that the receivers are also at the surface,
therefore there is no ghost wave reflected from the surface and all the wavefields
arriving at the receiver are upgoing. Note here that this is a ficticious surface
since we do not take surface waves into account. The receiver composition
operator we use is defined in equation (3.76)

Qy(z,) = C.(2,)P(2), (3.83)

where .
C, =L;. (3.84)

The expression for the complete simulation including source and receivers is

Q=C/ W itWTs+, (3.85)
where St is defined in equation (3.82) as the downgoing one-way wavefields
from the source, W+ and W~ are the extrapolation operators that propagate
the wavefield from the source level to the interface and back to the receivers, r
contains the reflection coefficients and Cr_ is the receiver composition operator
that composes the two-way wavefields from the upgoing one-way wavefields ar-
riving at the receivers. If this expression is read from right to left we can follow
the path of the wavefields. This reflection model does not take into account
surface waves.

In Figure 3.16 we see two graphs, on the left we have the measurement with
electrodes in the y direction (E5) and the source is fo = f2f in the x4 direction.
In the right graph the measurement with geophones in the x, direction (vy)
and the source is a source current j§ In both graphs we see two arrivals, one
at zero time and a second at 0.025 s. In the left graph the first arrival is the
seismo-electric conversion at the source, that arrives at zero time. At one way
travel time we find the conversion from Sh to TE waves at the interface. The
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amplitude of these arrivals do not let us see a third arrival that arrives after these
conversions at two way travel time, it is the electric field that travels with the Sh
wave velocity. In the right graph the first arrival is the mechanical disturbance
associated with a TE wave. At one way travel time we find the conversion from
TE to Sh waves at the interface. Finally there is also a third arrival not seen
because of the low amplitude which is the seismo-electric conversion at the source
that arrives at two way travel time and has the shape of a hyperbola.

Next we show the results of the two-way wavefields model of the P-SV-
TM coupling. The TM-TM reflections have been filtered out. All figures are
organized in the same manner, we show the measurements of the receivers H,
and FE; if the source is seismic and the measurements of the receivers vs and v
if the source is electromagnetic.

In Figure 3.17 we have two graphs of the seismo-electric conversion of wave-
fields for the P-SV-TM coupling. Left to right we see the measurements from the
H; and F); receivers. The source is an external force applied to the bulk and fluid
phases in the z; direction, f} = flf. In this case the seismo-electric conversion
at the source radiated as a TM wave has been filtered out. In the left graph we
see several events. The first visible arrival is the seismo-electric conversion from
a Svto TM a TM at the interface, that arrives at the one-way seismic travel
time for the shear wave. Below this one we see other weaker arrivals with a clear
hyperbolic shape resulting from being seismic-seismic reflections that carry an
electric field inside. These arrivals are a fast-P-fast-P reflection followed shortly
by a Pf-Sv reflection. In the right graph we see three events, a seismo-electric
conversion from a Sv to TM a TM at the interface, and the electric fields inside
the three different seismic reflections, i.e. fast-P-fast-P, fast-P-Sv and Sv-Sv
reflections. In this case the seismo-electric conversion at the interface is much

Zr

Figure 3.15: Two-way reflection model
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Figure 3.16: Seismo-electric conversion of wavefields on the SH-TE coupling.
Here we see the measurements of the E5 receiver on the left and the vy receiver
in the right graph. The sources are an external force applied to the bulk and
fluid £} and f2f on the left graph and j§ on the right graph.

weaker and barely shows.

If we look at the composition matrix in equation (3.13), the fifth row in
bE and b gives the E; component of the electric field contained in an up or
downgoing fast-P wave and vertical shear wave respectively. And the first and
last rows of Bf give the contribution of the TM wave to the velocity fields v3 and
Uy respectively. This explains the presence of those EM fields traveling with the
seismic waves and the mechanical fields traveling with the EM waves. In fact,
by looking at the composition matrix we see that almost all one-way wavefields
have a contribution into all of the two-way wavefields, with two exceptions: the
longitudinal waves do not carry a magnetic field along, and the transversal waves
do not generate changes in the fluid pressure as they pass through a saturated
porous medium. This makes sense since in the former case the electric field
contained inside a longitudinal wave goes only in the direction of the compression
and rarefaction of the medium, which is the direction of propagation. This is
the reason why we cannot measure the conversion from fast-P waves with the
H, receiver. In the latter case because fluids cannot hold shear stresses, there
cannot be a contribution from a transversal wave to a pressure field inside a fluid.

In Figure 3.18 we see two graphs of seismo-electric conversion of wavefields
for the P-SV-TM coupling, from left to right we see the measurements from H,
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Figure 3.17: Seismo-electric conversion of wavefields for the P-SV-TM coupling,
left to right we see the measurements from the H, and E receivers. The source
is o and f! in the x, direction.

and E;. The source is an external force applied to the bulk and fluid phases in
the x3 direction, ff = f:{ In the left graph we see several events. The first
visible arrival is the seismo-electric conversion at the source, next we find the
conversion from a vertical shear to TM wave at the interface that arrives at the
one way travel seismic time for the compressional wave. Note that in both of
these arrivals the amplitude is zero for normal incidence. In the right graph we
see again a seismo-electric conversion at the source and the conversion from a
fast-P to TM at the interface. Below this one we see another arrival with a clear
hyperbolic shape resulting from being a Pf-Pf reflection that carries an electric
field inside, followed by a fast-P-Sv reflection.

In Figure 3.19 we use the current .J¢ in the z, direction as a source and
the receivers measure v3 and vy respectively. In the left graph we see first the
mechanical disturbance associated with the TM wave at time zero followed by
the seismo-electric conversion from the TM to fast-P waves at one way travel
time. Finally we find the two hyperbolas at two way travel time coming from
the seismo-electric conversion at the source where a TM wave converted into a
fast-P and vertical shear waves. In the right graph we find a similar case, the
mechanical disturbance associated with the TM wave at time zero followed by
a very weak seismo-electric conversion at the interface from the TM to vertical
shear waves and at two way travel time we finally have two hyperbolas coming
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Figure 3.18: Seismo-electric conversion of wavefields for the P-SV-TM coupling,
left to right we see the measurements from the H, and E receivers. The source
is fo and f] in the x5 direction.

from the conversion at the source to fast-P and vertical shear waves. In Figure
3.20 we use v3 and vy geophones, and the source is Jgn In the left graph we see
first the mechanical field associated with the TM wave and the conversion from
TM to fast-P wave at the interface at one way fast-P travel time. Note that since
there is no conversion between TM and compressional waves at normal incidence
when using a J3" source the amplitude of the v3 geophone measurements of the
seismo-electric conversions at normal incidence is zero. In the right graph we
only find the mechanical field associated to the TM wave that travels down and
up almost instantaneously.

Reciprocity theorem applied to the two-way Reflection model in the
(z1,t) domain

The two-way seismo-electric reflection from a horizontal interface follows the
reciprocity theorem of the convolution type described in [19] and [28]. Here we
are going to check the two-way reflection model for reciprocity. The theorem
applied to the two-way reflection of the SH-TE coupling says that

Ezp(xa,w)/sp(w) = |¢vg 4(xp,w) + (1 = 9)v5 4(xp,w) | /s4(w), (3.86)
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Figure 3.19: Seismo-electric conversion of wavefields for the P-SV-TM coupling,
/eft~ to right we see the measurements from the vs and vy receivers. The source
is JY in the x; direction.

where the left side of the equation is the electric field in the x5 direction at x4
generated by a force in the x5 direction at xp divided by the source wavelet.
The right side of the equation is the velocity in the x5 direction at xp generated
by an electric current in the x5 direction at x4 divided by the source wavelet of
the current. Note that in the right side of the equation we have the fluid and
solid particle velocities weighted by the porosity, this is the macroscopic velocity
which is measured by the vy receiver. However in our theoretical model we are
actually measuring v3, so in order to check reciprocity theorem in our model we
momentarily set to zero the seismic sources on the fluid f2f = 0 to eliminate the
need for a vg receiver. Then we have that for our model without mechanical
force applied on the fluid the reciprocity theorem says

By p(Xa,w)/s8(w) = (1 = ¢)v; 4(xp,w)/sa(w), (3.87)

and if we look at Figure 3.16 we see that the measurements from the E5 and
the v3 receivers give the same result. Note that we are comparing the graphs
of Figure 3.16 where the source used was f¢ = fo, however both cases give a
very similar result begin the only difference in the amplitude of the arrivals. If
we apply the reciprocity theorem to the P-SV-TM coupling we have for example
that

E1p(xa,0)/sp(w) = ¢} o(xp,0) + (1 = 9)v 4(xp,w)| [sa(w), (3.88)
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Figure 3.20: Seismo-electric conversion of wavefields for the P-SV-TM coupling,
/eft~ to right we see the measurements from the vs and v, receivers. The source
is J3* in the x5 direction.

and canceling the fg source as in previous case leads to
By p(xa,w)/sp(w) = (1 — @)vs 4(xB,w)/s54(w). (3.89)

Comparing the E receiver graph from Figure 3.18 with the v3 receiver from
Figure 3.19 we see the combinations of sources and receivers that equation (3.90)
refers to, and how they follow the reciprocity theorem. Note that here in Figure
3.18 the source was f£ = f; instead of f; = 0, but again there is little difference
between both sources and Figure 3.18 serves well for comparison purposes.

The reciprocity theorem can also be applied to other combinations of sources
and receivers as

Hs p(x4,w)/sp(w) = (1 — qﬁ)viA(xB,w)/sA(w). (3.90)

In this case we have to look at the H, receiver in Figure 3.18 and at the v,
receiver of Figure 3.20 and see that again they give the same result.

3.8 Fieldwork

During this project we have done measurements at the fieldwork. However we
faced several problems that kept us from measuring a clear seismo-electric arrival.
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As mentioned in the published literature about seismo-electric fieldwork, only
one of the two types of seismic to electromagnetic conversions is measurable with
a good s/n ratio, we are refering to the electric field trapped inside a seismic
wave. The other type of seismo-electric conversion, i.e. the EM pulse when a
seismic wavefront hits an interface, is more difficult to detect. The reasons are
two: first the coupling is very weak and typical signals range in the order of a few
millivolts and second the steel electrodes used for picking up these signals do also
pick up many other electromagnetic noise present in the field, and most of these
are stronger than the sought after pulse. A good example of this is the 50 Hz
radiation and its harmonics from the electric grid. It is not uncommon then to
find in the measurements strong periodic peaks that complicate the processing.

The first of our serie of fieldwork tests took place at a landfill in the neighbor-
hood of Boxtel, The Netherlands. There we used two parallel lines of electrodes
and geophones arranged as in figure 3.21. The receivers are electrodes composed
of two vertical steel rods spaced 1m, and a geophone placed in between the rods
of each electrode. These sets have 2m separation between the center point of
each other, and there are 32 in total. The source was placed at the center and
at the ends of the line. The electrodes were oriented in the direction of the
profile, thus they measured the E; component of the electric field. The source
is a seismic shotgun buried .5m and pointed downwards.

We can see in Figure 3.22 a comparison between the electrode and geophone
measurements taken. The source is at the left end of the line, 2m from the
first geophone. The graph at the left shows the electrodes measurements and
the one at the right the geophone measurements. The first thing we see is the
remarkable similarity between the geophone and electrode measurements. This
is due to the electric field traveling with the compressional wave generated at
the explosive source. The geophones measure the vertical velocity of the ground
while the electrodes measure the Ej, and this is why these two measurements
differ, because the electric field inside the wave prolongs itself a bit further ahead
of the wavefront, and therefore it is detected before by the electrodes than the
actual seismic wavefront by the geophones.

There is an extra feature in most of the electrode recordings that is not
present in the geophone measurements, it is the zero move out event arriving
at the very beginning of the left graph, with changing polarity along the offset.
Although this arrival looks like a potential seismo-electric conversion, there is a
good reason for it not to be. Real seismo-electric conversions when measured
with E; electrodes have opposite polarity on each side of the source, and remains
constant at each side with increasing offset. So if this is not a seismo-electric
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conversion, what is it? A. Kepic and K. Butler [11]-[3] have also described this
effect on their field measurements, and they explain it as cross-talk from the
trigger cable picked up by the electrodes. This explains the consistent occurring
of this event at the first samples.

In the Figure 3.23 we see a comparison between the geophone and electrode
measurements of traces 5, 8 and 12 from the previous shot. We see here that
there is a trend followed by the recordings of both receivers, however the first
oscilations of the geophones are not detected by the electrodes due to, possibly,
their low electrical content.

Electrodes

S [91 [P0 , 91 [9]
i’xl \/Us Source

Geophones

Figure 3.21: Fieldwork setup: The geophones measure v3 and the electrodes
measure E;. The separation between the centres of pairs of electrodes is 2m.

In figure 3.24 we see another set of measurements of the FE; electrodes
recorded at the same location. In line AA’ we have another example of cross-talk
between the receivers and the source cable. Events BB’ and CC' are the seismic
waves that carry an electric field inside. Finally events DD’ and EE’ are another
case of cross-talk, and although tempting cannot be taken for seismo-electric
conversions. The reasons are two, in the first place, as well as with event AA’
the polarity should be oposite at both sides of the source, and remain constant
along the offset, and this is not the case. Second, the frequency content of this
arrival should be close to the seismic frequency range, and we see here that this
row of spikes has much higher frequencies than those typical of seismic events.
This must be an interference from a distant source that was picked up by the
electrodes.
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Figure 3.22: Comparison between electrode and geophone measurements.

3.9 Conclusions

In this chapter we have defined the one-way operators that are to be used in our
seismo-electric survey simulations. We began defining the composition operator
that composes the two-way wavefields from one-way wavefields and its inverse
that decomposes the two-way wavefields back to one-way wavefields. This is
done for the SH-TE and P-SV-TM couplings.

With the composition operator we have determined the reflection and trans-
mission coefficients in the (p;,w) domain via a scattering matrix. This has been
done for porous/porous and porous/vacuum interfaces. Next we have shown
and discussed some results where we see the dependency of the coefficients with
the horizontal slowness. We have seen how the conversion from different inci-
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dent wavefields takes place and it strongly depends on p;. We have also shown
reflection coefficients depending on the contrasts in certain medium properties,
namely ion concentration, porosity or permeability. From this we have seen how
the seismo-electric response of an interface is proportional to the contrast in the
media properties.

We have constructed a very simple one-way reflection model with the reflec-
tion coefficients and the wave extrapolation operators where we can already see
the arrival times of reflections and conversions between different wavefields. This
model is done in the (k;,w) domain, and via a Fourier transformation the results
are shown in the (z,t) domain. This first step is a simplistic approach, yet it
greatly helps understanding the seismo-electric reflection.

In the next section we have derived the composition and decomposition of
wavefields at the source and receivers. In our next model the two-way source
parameters were decomposed at the source into the one-way wavefields that
propagate in our previous model. When these one-way wavefields are reflected
back to the surface they are composed back to the two-way wavefields measured
at the receivers. Via these operators we not only can simulate any receiver,
but also swicht on and off certain wavefields to better study the interaction of
different combinations of wavefields, as well as sources and receivers.

Finally we showed a couple of examples, one-way and two-way reflections from
SH-TE and P-SV-TM couplings. From these we conclude that there are indeed
multiple interactions between the seismic and electromagnetic wavefields in both
directions, i.e. seismic to electromagnetic and vice versa, making this effect
a more complicated case than just conversion from fast-P to electromagnetic
waves.

In the coming chapter we will see how we organize the one-way operators to
simulate a vertical seismo-electric profile and wellbore to wellbore seismo-electric
measurements.
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Figure 3.23: Trace to trace Comparison between electrode and geophone mea-

surements.
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Figure 3.24: F, electrodes measurements.
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Chapter 4

The Reflectivity method

4.1 Introduction

In the previous chapter we described the one-way operators to simulate a seismo-
electric survey. In this chapter we describe further applications of the same one-
way operators defined in the previous chapter. First we use these operators to
derive global reflection and transmission coefficients in a similar way as Kennett
[10] does, and in later sections of the chapter we use them to simulate a vertical
seismo-electric profile (VSEP) and an electro-kinetic wellbore to wellbore survey.

4.2 Global reflection and transmission responses
including internal multiples

In this section we derive recurrent relations for the global reflection and trans-
mission coefficients. Local and global scattering matrices are defined by

Pu- N\ (F to, put
(ﬁgt)‘(f?zn i )\ pis (*1)

PL, ) (Re, To ) (B
(rit )= (2 w2 ) (52) (42

where ¥+ and t are the local reflection and transmission coefficients at inter-
face n respectively, and R and T are the global reflection and transmission
coefficients for the complete stack of layers from zy to z,. The local coefficients

and
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take into account only the properties of the media right above and below the
interface, just like those calculated in the previous chapter, while the global co-
efficients take into account all the reflections and transmissions among the layers
above the n'* interface, including the internal multiples.

4.2.1 Upgoing waves
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Figure 4.1: Global reflection coefficient
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Figure 4.2: Global transmission coefficient

In the case of an upgoing source wavefield below interface z, substituting
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| vt M, P
()= (i) (87 ) ()

M, = W,/ R, W, (4.4)

where M, is

From the upper row of equation (4.3) we have
. . N B
pu = (I - f«;Mn) t-pl- (4.5)

If we substitute this into the lower row of equation (4.3) we obtain an equation
that holds for any P.~ and yields the upgoing global reflection coefficient
~ |~ ~ ~ -1
R, =i, + M, (1 - f;Mn> i (4.6)
To obtain the global upgoing transmission coefficient we will assume we know
the one for level 2,4, T, ;. Then we can define P as

n—1-
Py =T, ,w,P%" (4.7)
and substituting f’;n from equation (4.5) into equation (4.7) gives
. . . NS N
Py =T, W, (I - f;Mn> t-pl- (4.8)

_ Applying equation (4.2) to interface z, gives f’j — T PL~, then substituting
P, into equation (4.8) gives us an expression for T, as a function of the upgoing
global transmission coefficient of the previous interface

~ ~ ~ ~ -1
T =T, w. (I - f-;an> i (4.9)

n

4.2.2 Downgoing waves

For a source downgoing wavefield at z, equation (3.19) together with PLt =
T, PJ reads

Py~ \ [ F
TPy ) \t

Lar R

0

S+3%

- = ++ Pt [ Pu.—
n ) ( WaTno1Po +MaPa ) (4.10)
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Figure 4.4: Global transmission coefficient

From the upper row of (4.10) we have

N - NS - -
pu- = (I - f«;Mn> Pt T P (4.11)

If we substitute this in the lower row of (4.10) we obtain an expression that
holds for any P§. From that expression we can extract the downgoing global

transmission coefficient




Applying the upper row of equation (3.31) to the (n — 1) interface, and

substituting Pf;:l =w,_ P~ yields
P, =R, P;+ T, w,P"". (4.15)

Substituting f’}f from equation (4.11) gives us an expression that holds for any
P_ and therefore gives the downgoing global reflection coefficient

~ ~ -1 ~
R =R/, +T, W i (I . Mnf+> wiTt . (4.16)

n

In the expressions for both the global reflection and transmission coefficients
we find the term (I — M,,t;7)~!. If we use the series expansion

(l—e)t=14+e+e++4+ .. (4.17)
then we have that
(I—M,iH) ™ =14+ M, + M, &M, 55 + M, it M, 5 M5 + ... (4.18)
Taking into account that M,, = wR__ W, then

T_M +H)-! T4 R =3t R ~— 2t TR = —nt
I-M,r) " =I+w'R, w7, +wW, R, 1w W R, W, T +

TR =t TR <+t R s~ nt
w,R,_.w, I W, R, W, T W, R, W, T +.. (4.19)

We see now how the series expansion of this term describes the internal multiples
reflecting on each layer.

In the next sections we make use of these global coefficients for a VSEP
simulation, a multilayered medium and a wellbore to wellbore survey.

4.3 Vertical Seismo-Electric Profile

In this section we describe the use of the global coefficients to model a VSEP
survey. Unlike in the previous chapter, this forward simulation will be calculated
in the (k1, z3,w) domain, and then Fourier transformed to the (21, x3,t) domain
in which the results are shown.
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4.3.1 One-way Vertical Seismo-Electric Profile

In the Vertical Seismo-electric Profile we use electrodes along the well as receivers
and a seismic source at the surface, or the other way around, geophones in the
well as receivers and an electromagnetic source at the surface.

In the previous sections we have calculated the global coefficients for a generic
stack of n layers. In the present section we derive an expression for the up and
downgoing wavefields in a VSEP survey. To do this we need to know all the
global reflection and transmission coefficients of all the different stacks of layers
in a multilayered medium.

M

—
avavd
any

Figure 4.5: Vertical seismo-electric profile
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We will use the index m to denote the level from which we are calculating
the coefficients, and move it from top to bottom and back to top. This way we
obtain the coefficients from all different levels. Next we can calculate the up and
downgoing wavefields for the VSEP model.

Two wavefields arrive at each receiver, up and downgoing, denoted as

Pi(z,) = f’f(zm) + lsl_(zm) (4.20)

where these two are
P () = (i~ R(zm_1>f{+<zm))_1 T (20n) (4.21)
P (z) = (I~ f{+(zm)f{_(zm_1)>l Re*(2)T* (20 (4.22)




where the coefficients R*(z,,) and T*(z,,) are the global coefficients from level
Zm and they correspond to the complete stack of layers between the level z,, and
the bottom of the multilayered medium for R*(z,,) and T+ (z,,), or between the
level z,, and the top for R™(z,,) and T~ (z,,). At this stage we no longer use
the subscript with the set of layers to which the coefficients are calculated since
it is always done between the layer z,, and the top or bottom and it is redundant.

Looking at figure 4.6 we understand these equations if we follow the direction
of the arrows in the figure and look at the equations from right to left. On the
left graph we see the wavefields taken into account for P in equation (4.21), i.e.
the downgoing wavefield recorded at level z,,. In the first place we use ’i‘j{ the
global transmission coefficient from the surface where the source is, to the IerI
where the receiver is followed by the multiples on that level (i — f{ifi;l
This is similar to equation (4.17), but in this case the propagators are already
included in the global coefficients.

We see on the right of figure 4.6 the wavefields taken into account for f’;
in equation (4.22). We find the same elements as in the previous plus the
global reflection coefficient R that includes the reflection of the wavefield in
the interface at z,,.

So far we obtain the one-way VSEP. In order to obtain the two-way VSEP
we need to decompose the two-way source and compose back at the receivers.
For that we need the source decomposition and receiver composition operators.
In this model we simulate neither the effects of the wellbore nor the waves that
propagate inside the wellbore itself.

4.3.2 Two-way Vertical Seismo-Electric Profile

In this section we include the effects of the source and receivers into the previ-
ously derived one-way VSEP wavefields. This way we obtain the results of the
simulation in measurable two-way wavefields.

In the previous chapter we derived an expression of the source decomposition
operator and receiver composition operator for the seismo-electric coupling. In
this chapter we use the expressions derived there and we specify them for this
case in particular.

In a vertical seismo-electric profile we put the source on the surface and the
receivers along the wellbore. This means that the wavefields coming out of the
source are all downgoing while the receivers at the wellbore measure wavefields
coming from above and below their level.
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Zm-1 R (z-1) . R (Zp_1)
. VN \VAY.
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Figure 4.6: Left and right we see a scheme of the up and downgoing wavefields,
respectively in the vertical seismo-electric profile as described by equations (4.21)
and (4.22).

This survey setup allows to use the same source decomposition operator we
defined in section 3.7.2. When it comes to using a receiver composition operator
for a VSEP survey simulation things are different since we need to compose the
up and downgoing waves separately. Therefore we use two operators, C; for
upgoing and (Njff for downgoing wavefields.

<y

Figure 4.7: Receiver in a well in a VSEP setup

The receiver composition operator we use comes from section 3.6,

Ql?,a(’ZT) = C;a(zT)lS; (zr) + é:a(zr)ls;@?“)? (4.23)
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where CF are defined in equation (3.78).

4.3.3 Results

In this section we show the results of our vertical seismo-electric profile simula-
tions. First we present the results of the one-way VSEP models in the (x3,¢) and
(21, 23,t) domains followed by the results of the two-way VSEP models again
in both domains. As mentioned before we performed all the calculations in the
(z3,w) and (ky,x3,w) domains and the results were Fourier transformed to the
(x3,t) and (x1, z3,t) domains respectively.

*

¢ =04, C=10"2mol/l
ko = 1.28 - 10712 m?

¢»=02, C=10"2mol/l

ko =1.6- 10713 m?

4|14 4 44

¢»=02 C=10"°%mol/l
ko =1.6-10"1 m?

Figure 4.8: VSEP setup, we use this configuration for all of the models.

We apply all the VSEP propagation models and later, all wellbore to wellbore
models to the same medium, so they can be easily compared and referred. A
sketch of this medium can be seen in figure 4.8. This medium is composed of
three layers and two interfaces in between. The first interface between the upper
and the middle layer is a contrast in porosity, from ¢ = 0.4 to ¢ = 0.2. The
second interface, between the second and the third layer is a contrast in pore fluid
ion concentration, from C' = 1072M to C' = 107%M. Table 4.1 contains the rest
of the medium parameters, these parameters remain constant in all directions of
space. There are 30 receivers placed along the wellbore every 5m and the source
is at the surface. The interfaces are located at depths of 40m and 120m, where
the receivers 8 and 24 are.
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Parameter | value
P 2.5-10° kg/m?
n 1072 Pa-m
K 4-10' Pa
Kt 4-10° Pa
G 9-10° Pa
Kt 2.2-10° Pa

Qoo 3
m 8
el 80
€ 4

Table 4.1: Medium parameters for the VSEP and wellbore to wellbore simulations

One way VSEP simulations in the (z3,t) domain.

In this section we present the results of the one-way vertical seismo-electric profile
simulations in the (x3,t) domain.

Although the interactions between different seismic wavefields is not within
the scope of this research, in the coming one-way results the complete range of
posible reflections between different wavefields are shown. This is done to help
identifying the different arrivals in the VSEP two-way results where, for simplicity,
we have selected the most relevant results of each case, i.e. those that contain
the seismo-electric conversion.

In Figure 4.9 we see the one-way vertical seismo-electric profile of the SH-TE
coupling wavefields in the (z3,t) domain. There are four graphs, in the upper two
graphs we see the horizontal shear waves reflected from incident horizontal shear
and TE waves, respectively, and in the lower two graphs we see the reflected TE
waves from incident horizontal shear and TE waves, respectively.

In the first graph we see the downgoing horizontal shear wave and very lightly
the reflection from the first interface. The reflections take place at the 8 receiver
and 0.02s and at the 24" receiver and 0.06s. On the upper right graph we see the
horizontal shear waves generated at both interfaces when a TE wave travels down
from the surface. Because this wave travels at very high velocities the up and
down horizontal shear waves generated appear to be generated simultaneously.

In the lower left graph we see the TE waves generated when a horizontal shear
wave travels down from the surface and crosses the two interfaces where con-
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version takes place and up and downgoing electromagnetic waves are generated
at both spots. The times and receivers where the conversion takes place are the
same as in the upper left graph, which is logical since both cases are reflections
from downgoing horizontal shear waves. In the lower right graph we see a TE
wave reflected when a TE wave travels down along the receivers. Due to the
velocity of the electromagnetic wave this arrival appears to be instantaneous.
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Figure 4.9: Plane wave response for the one-way VSEP simulation of the SH-TE
coupling.

In figure 4.10 we see the one-way vertical seismo-electric profile of the P-
SV-TM coupling. This is a similar arrangement as the one in previous figure:
there are three columns of graphs. On the first column we find the Sv and TM
wavefields generated as a fast-P wave travels down the wellbore. On the second
column we see the same as an Sv wave travels down the wellbore, and in the
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last column we find the fast-P and Sv wavefields generated as a TM wavefield
travels down the wellbore and hits the interfaces. Note that in the third graph of
the second row there are indeed two conversions from TM to Sv, but the second
one is weaker than the first and therefore it does not show so clearly. Note also
how the polarity changes when the shear wave generates a TM wavefield, same
as in the SH-TE coupling, but not when the incident wave is a fast-P wave.
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Figure 4.10: Plane wave response for the one-way VSEP simulation of the P-
SV-TM coupling.
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One-way VSEP simulations in the (z,z3,t) domain

In this section we present the results of the VSEP simulation in the (xy, z3,t)
domain. We have included the propagation in the x; direction to the previous
simulation. This way the model gives us information on the direction perpen-
dicular to the wellbore. Effectively this will be as if we placed a line of receivers
in the x; direction for each x3 level as can be seen in figure 4.11. This ex-
tra dimension implies that we do the calculation in the (k;,x3,w) domain, and
from there we Fourier transform to the (z1,x3,t) domain. The solution comes
finally as a datacube in x1, x3 and t where we see how the wavefields propagate
through the z, x3 plane with time. Since we take x; into account the wavefields
are no longer plane waves, but cylindrical waves with geometrical spreading that
propagate through the x1, 3 plane and show attenuation due to the geometrical
spreading.

SO IR N
SO IR N
< |9 Q4 Q<
< |9 4 Q<
< |9 4 Q<

Figure 4.11: Setup for the (x1,x3,t) VSEP simulation.

In Figure 4.12 we present results similar to Figures 4.9 and 4.10, but in this
case, as we said before, we are looking at the (x3,t) slice of a (x4, 23, t) datacube.
The main difference between the previous VSEP and the current VSEP results
is the attenuation of the arrivals in the vertical direction. This is due to the
fact that we take the propagation of the wave into account in two direcctions of
space x; and x3.
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Figure 4.12: Line source response for the one-way VSEP simulation.
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One-way VSEP Timeslices

In this section we show some images of the zyx3 plane of the one-way VSEP
datacube. The x,x3 planes can be seen as a series of snapshots of the one-
way wavefields propagating along this plane. We have chosen the timeslices of
certain interesting wave conversions, like between horizontal shear and TE waves,
or between fast-P and TM waves. There are other interesting conversions to be
looked at like those from electromagnetic to seismic waves where seismic plane
waves are reflected back to the surface, but to keep things simple we show just
the two conversions first mentioned.

In Figure 4.13 we show a serie of x1x3 snapshots of the VSEP datacube in the
SH-TE coupling. The pictures show when the conversion from horizontal shear
to TE wave takes place. Note how after the wavefront touches the interface a
headwave develops and progressively moves away along the interface. Note also
that there is conversion of energy all the time at the interface, but only when
the wavefront hits most of the energy of the conversion is radiated up and down.
Note also how the polarity of the TE waves oscilates, this is due to the source
wavelet used for the seismic wavefield, a Ricker's wavelet composed of a peak
between two valleys. It is also important here that the polarity of the downgoing
wavefield is opposite to the one of the upgoing wavefield. This happens with
conversions among transversal waves, but not with compressional waves.

In Figure 4.14 we show x1, 3 snapshots of the VSEP datacube in the P-SV-
TM coupling. The picture shows when the conversion from fast-P to TM wave
takes place. Contrary to what we saw in the previous case, here the polarity of
the generated electromagnetic wavefield is equal above and below the interface,
but it is opposite at both sides of the source. Here we also see that most of the
energy is converted when the fast-P wavefront touches the interface; later there
is only conversion at the headwave that moves away along the interface, but no
radiating fields are generated after the initial conversion.
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Figure 4.13: Timeslice simulation for the VSEP in the SH-TE coupling. We see
the TE wave generated when the horizontal shear wave encounters the upper
interface. The snapshots are taken from 0.009 s to 0.025 s.
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Figure 4.14: Timeslice simulation for the VSEP in the P-SV-TM coupling. We
see the TM wave generated when the fast-P wave encounters the upper interface.
The snapshots are taken from 0.006 s to 0.022 s.
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Two-way VSEP simulations in the (¢) domain

In this section we include the decomposition at the source and composition at the
receiver to the results from the previous subsections. The source composition
operators will decompose the two-way wavefields into the one-way wavefields,
and the receiver operators will compose them back to two-way wavefields.
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Figure 4.15: Plane wave response for the two-way VSEP simulation of the SH-
TE coupling. Left graph: the sources are external forces in the x5 direction and
the receivers measure F,. Right graph: the source magnetic source currents in
the x, direction respectively and the receivers measure v,.

In Figure 4.15 we see the two-way VSEP simulation of the SH-TE coupling.
In the left graph the receivers measure F, and the source are an external force
applied to the bulk and fluid phases in the x, direction, f¢ and f2f Note that
following the scheme of previous section, in the remaning part of this chapter
when using seismic sources the forces applied to blulk and fluid are equal, there-
fore fb = fo. In this graph we see two events at 0.02s and 0.06s that are TE
waves reflected from the upper and lower interfaces. Note that the polarity of
the generated TE waves changes when crossing an interface in the medium prop-
erties. However when these wavefields are generated have the same polarity at
both sides of the interface.

In the right graph of Figure 4.15 the receivers measure v, and the source
are the magnetic source functions in the z; direction, J". We see a straight
event at Os that corresponds to a mechanical disturbance that travels with the
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electromagnetic wave and leaves such a trace on the vy receiver. Right after
this event we see the Sh waves generated at both interfaces just as in figure 4.9.
There is also the possibility in this coupling of using a J3" source. Both sources
give the same result with a difference in polarity of the generated wavefields due
to the different orientation in space of the sources Ji" and J3".
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Figure 4.16: Plane wave response for the two-way VSEP simulation of the P-
SV-TM coupling. The source is an external force applied to the bulk and fluid
phases, f? and flf on the upper graph, and f5 and fg on the lower one. The
receivers measure H, and E;.

In figure 4.16 we see the two-way VSEP simulation of the P-SV-TM coupling.
The source is an external force applied to the bulk and fluid phases, f? and f{
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in the upper graphs and f2 and fgf in the lower graphs. The receivers measure
H, for the two left graphs and E; for the two right ones.

In the upper left graph we see the magnetic field contained in the traveling Sv
wave. When this wave hits the interfaces two TM waves are generated and are
shown in the graph together with the very close conversion from fast-P to TM.
In the upper right graph we see clearly the TM reflection from both interfaces
when a fast-P waves hits them.

In the lower left graph we see the conversion from an incident vertical shear
wave, in this case the conversion from the first interface is much stronger than
the one on the second interface. Finally in the lower right graph we just see the
electric field travelling with the fast-P wave recorded in the F; electrodes.
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Figure 4.17: Plane wave response for the two-way VSEP simulation of the P-SV-
TM coupling. The source is electric current densities J;. The receivers measure
vs and vy.

In figure 4.17 we see two similar graphs: two-way VSEP simulation of the P-
SV-TM coupling. In both graphs the source is electric current densities J;. The
receivers measure vs in the left graph and vy in the right graph. In both graphs
we see a clear TM-TM electromagnetic reflection source that carries along a
mechanical disturbance that is recorded in the v3 and v; geophones. This arrival
almost eclipses further seismo-electric events, except the conversion of these TM
waves from the source into vertical shear waves.
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Two way VSEP simulations in the (z1,x3,t) domain

E2 v,
0
$— 0 4\#ﬁ/\,\/ﬂvA

< N

N — A
5] % w2 A\
=1
3 s 3
~ 20 ‘:,% R 20

0 0.05 0.1 0 0.05 0.1
Time (s) Time (s)

Figure 4.18: Line source response for the two-way VSEP simulation of the SH-
TE coupling. In the left graph the source is an external force in the x5 direction,

5’ tIn the right graph the source is a magnetic current in the x; direction, Ji".
The receivers measure Fs in the left graph and vy in the right one.

In Figures 4.18 to 4.19 we see the x4, t slices of the two-way VSEP simulation
in the (21, x3,t) domain. Figure 4.18 shows two wiggel graphs, in the left graph
we see the measurement from a F, receiver of a seismic source fY and ff in
the x4 direction. The first arrival we see is the electric field contained in the
horizontal shear wave. As this wave hits the upper interface it generates a TE
electromagnetic wave that shows weakly in the graph.

In the right graph of Figure 4.18 we see the seismo-electric response to the
electromagnetic source J". The graph show the seismic disturbance traveling
with the TE electromagnetic wave, but we can barely see the conversion from
TE to horizontal shear wave at the upper interface. In Figure 4.19 we see the
two-way VSEP simulation of the P-SV-TM coupling. In the upper left graph
we see the measurement from a H, receiver of a seismic source ff’f in the x4
direction. The only seismoelectric conversion we see here is the magnetic field
traveling with the horizontal shear wave, other seismo-electric conversion are not
shown due to the difference in amplitude. In the right upper graph we have
the measurements of the E; receivers of the same source, but in this case the
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Figure 4.19: Line source response for the two-way VSEP simulation of the P-
SV-TM coupling. The source is an external force in the x1 and x3 directions,
f? = f& in the two upper graphs and f°> = fi in the two lower graphs. The
receivers measure H, in the left graphs and E; in the right graphs.

conversion at the interfaces is strong enough to appear. Note that we also see
the conversion at the lower interface.

In the lower graphs of Figure 4.19 we see the electric and magnetic fields
traveling inside the fast-P wave created at the source.

In Figure 4.20 we see the two-way VSEP simulation of the P-SV-TM coupling
in the (x1,t) domain. The receivers are geophones measuring v3 and v, respec-
tively. The source is and electromagnetic source J7 in the z; direction. The
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Figure 4.20: Above: Line source response for the two-way VSEP simulation of
the P-SV-TM coupling in the (x1,t) domain. The source is an electric current
in the x;y directions, J;. The geophones measure v in the left graph and vy in
the right graph. Below: Same case as above with the TM wave arriving to the
receivers filtered out to show later arrivals.

upper graphs show mainly the mechanical disturbance induced from the source’s
electromagnetic blast, and that is the only feature we see. In the lower graph we
have set to zero the elements in the receiver composition operator responsible
for processing the TM electromagnetic wavefield. By doing this we remove the
seismo-electric conversion at the receivers and we can see the seismo-electric
conversion at the interface from the incident TM wave.
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Two-way VSEP Timeslices

We have previously seen the one-way timeslices where the evolution of certain
one-way wavefields along the xx3 plane was presented. Here we look at the two-
way wavefields along the same plane. We have chosen images of the electric,
magnetic and particle velocity fields moments before and after the seismo-electric
conversion at the upper interface of the medium defined in figure 4.8. In the
coming figures we will see the electric field traveling inside seismic waves, as well
as the plane seismic wave generated at an interface when an electromagnetic
wave is incident.

0 0 Wo——

-20 0 20
X

Figure 4.21: zy, x5 timeslice simulation of the SH-TE coupling. Graphs show the
propagation of the two-way wavefield FEy with time.
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In Figure 4.21 we show z1, x3 snapshots of the datacube when the horizontal
shear wave generates a TE wave at the upper interface. What we see here
is the E5 component of the electric field. We find the electric field is carried
inside the horizontal shear wave as it propagates downwards, but also as the
wave encounters an interface there is a conversion and part of the wavefield's
energy is radiated as an electromagnetic diffusive field. Note how the polarity
of the converted TE field matches with the polarity of the part of the wavefront
crossing at that moment the interface, and how the TE wave radiated upwards
has opposite polarity than the one radiated downwards.
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Figure 4.22: Timeslice simulation of the P-SV-TM coupling. Graphs show the
propagation of the two-way wavefield E, from a f3 source with time.
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In Figure 4.22 we show x1, 3 snapshots of the datacube when the conversion
from fast-P to TM wave takes place at the upper inerface. In this figure we see
the E; component of the electric field traveling inside a fast-P wave. When the
seismic wavefield hits the interface there is a conversion and a TM electromag-
netic wave is generated. Note that also in this case the polarity of the generated
electromagnetic field has the same polarity as the lobe of the seismic wavefront
that generated it. Note also that the polarity of the electric field traveling inside
the fast-P wave has opposite polarities at both sides of the source in the x;
direction. The special color that the electric field inside the fast-P wave has in
these graphs is due to the difference in amplitude of the two conversions, the
grey scale of the much stronger FE field inside the fast-P wave has been saturated
to black and white to allow the weaker TM wave to be seen.

In Figure 4.23 we show x, x3 snapshots of the datacube when the conversion
from fast-P and vertical shear to TM wave takes place at the upper inerface. This
figure shows the H, component of the magnetic field from a f3 source. Similarly
to the previous figure, here we see the magnetic field generated at a seismo-
electric conversion as well as traveling inside the vertical shear wave. Although it
doesn’t show here, there is a fast-P wave ahead of this vertical shear wave. When
the fast-P wave hits the interface there is a conversion and a TM electromagnetic
wave is generated before the shear wave reaches the interface. Naturally, there
is also a conversion from the vertical shear wave as we have already seen in the
one-way timeslices. In the last two graphs of this serie we also find the head
wave generated by the fast-P wave due to the Hy; component of the magnetic
field in them.

In Figure 4.24 we show x, x3 snapshots of the datacube when the conversion
from TM to fast-P wave takes place at the upper inerface. In this figure we see
the v3 component of the particle velocity across the x1, 3 plane when the source
is J;. Note how in the first snapshot we can see the electromagnetic source
disturbing the mechanical field for the time the source wavelet lasts, and note
also the odd polarity of the source and the generated seismic waves along the
offset z1. At time zero there is a generation at the interface of up and downgoing
compressional plane waves.

In Figure 4.25 we show x1, 3 snapshots of the conversion from TM to shear
wave taking place at the upper inerface. In this figure we see the v; component
of the particle velocity across the z1,z3 plane when the source is JJ*. Note
the similarities with previous figure, and how in this case the wavefields have
an even polarity along the offset x;. Note also that at time zero, as soon as
the source is triggered, there is a generation of a plane shear wave at the upper
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Figure 4.23: Timeslice simulation of the P-SV-TM coupling. Graphs show the
propagation of the two-way wavefield H, from a f; source with time.

interface. In theory, since the J3" reaches both interfaces at the same time there
is also a generation of shear waves at the lower interface, but it is of much lower
amplitude and it does not show on the graph.

97




=50 0 50 =50 0 50

X X

Figure 4.24: Timeslice simulation of the P-SV-TM coupling. Graphs show the
propagation of the two-way wavefield vs from a J{ source with time.
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Figure 4.25: Timeslice simulation of the P-SV-TM coupling. Graphs show the
propagation of the two-way wavefield v, from a JJ* source with time.
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4.4 Wellbore to wellbore seismo-electric survey

In this section we describe a seismo-electric wellbore to wellbore model. In this
type of survey receivers are placed along a wellbore and the source is in a different
nearby wellbore at a certain depth. This allows us to study the properties of layers
that are too deep to be studied with sources at the earth’s surface.

In the previous sections we have derived all the operators and coefficients for
the VSEP survey. In this section we base our wellbore to wellbore model on the
previously derived VSEP model.

4.4.1 One way wellbore to wellbore seismo-electric survey

The model we present for the wellbore to wellbore survey is composed by two
VSEP problems interconnected in an iterative expression. We separate the
medium in which we need to model the wellbore to wellbore survey into two
auxiliary media as in figure 4.26. In medium U we have all the layers that origi-
nally were above the source level plus a homogeneous porous halfspace below the
source level z, whose medium properties are those of the layer right below the
interface. In medium L we have all the layers that originally were below z; plus
a homogeneous porous halfspace above it whose medium properties are those of
the layer right above the interface.

Medium U Medium L
20 20

Halfspace T

zs kK l zs %k |

Jr
Halfspace s

Figure 4.26: wellbore to wellbore auxiliary mediums U and L.

On each step of the iteration we feed each medium’s outgoing wavefields
into the opposite medium. This way we ensure the continuity of all wavefields
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across the source level. The iterated VSEP simulation on medium U will model
the upper half of the wellbore to wellbore simulation while the iterated VSEP
simulation on medium L will model the lower half of it. Finally both wavefields
are summed to yield the full wellbore to wellbore model.

Applying the equations for the VSEP problem (4.20-4.22) to these two media
provide us with all the up and downgoing wavefields at all the layers. From
those we can extract the up and downgoing wavefields that propagate across z;.
These two wavefields are important because they serve as “source wavefields”
for the opposite medium on the next iteration. After running the algorithm once
we obtain PV that will be propagated into medium L and P;" that will be
propagated in medium U.

. R (zn) . R (z)

AN S
i Rfme)) 0 ) R (2my1)
e TG /o

Figure 4.27: Left and right we see a scheme of the up and downgoing wavefields
respectively at the medium U.

All this is done inside the first iteration loop. The first time we run this
algorithm we use equations (4.21-4.22) as they are defined in the previous section.
From those wavefields we extract PV (z,) and P~%(z,) and we use them into
the second step as the starting wavefields according to
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Figure 4.28: Left and right we see a scheme of the up and downgoing wavefields,
respectively in medium L

and

P (z) = (i _ R_(mel)f”(zm)) -1 T (20) P (25) (4.26)

Py () = (T= R Gp)R (5)) - R (o) T ()P V(20) (427)

where the subscripts ; and 5 are the iteration indexes and the superscripts Y
or I denote the auxiliary field in which the wavefields are propagating.. Using
equation (4.20) we have for the second iteration

PY () = (P (2m) + P10 () ) P (20) (4.28)
P(z) = (PTH(2n) + PT () ) PTV(20) (4.29)

We can write this in a more compact form

P}j('zm) = PE(Zm) Z f):%(ZS) (4.30)

l
ISZL(Zm) = ?%(zm) Z P:P(Zs) (4.31)

and finally we sum all the wavefields as

Pi(2m) = PY(2n) + PF(2) (4.32)
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4.4.2 Two-way wellbore to wellbore seismo-electric survey

In this section we introduce into our wellbore to wellbore simulation the effects of
the source and receivers. To do that we use the composition and decomposition
operators defined in sections 3.5 and 3.6.

In this case we use the source decomposition operator for the up and downgo-
ing wavefields, since we assume the source is placed in the middle of the wellbore.
We also use the receiver composition operator for up and downgoing wavefields
arriving to the receivers since the receivers are place along the wellbore.

QIU(Zm) = éy(zm)lslU(zm)g_U(zm) (4.33)
QlL(Zm) = é%(zm)f)%(zm>g+7L(zm) (4.34)

where CV(z,,) are the receiver composition operators and C*(z,,) and C;Y(z,,)
are the source decomposition operators. We have to apply the composition and
decomposition operators to the up and downgoing waves separately, since both
will be different for up or downgoing waves. After applying the composition and
decomposition to the wavefields, we substitute PV(z,,) and P;"(z,,) into (4.32)
to obtain the full two-way wavefield.

4.4.3 Results

In this section we show the results of our wellbore to wellbore simulations. First
we show the plane wave one-way wavefields, i.e. the interaction among diferent
pairs of wavefields along the wellbore. In the next section we include the two-way
to one-way decomposition at the source and the one-way to two-way composition
at the receiver. We apply all the wellbore to wellbore propagation models to the
same medium configuration as the VSEP.

Note that due to the fact that we can consider VSEP as a particular case of
wellbore to wellbore survey in which the source is at the top of the well, many
of the figures shown on this section do resemble those shown in section 4.3.3.

One-way wellbore to wellbore simulations in the (z3,¢) domain

Here we show the results of the one-way wellbore to wellbore simulations in
the (¢) domain. Although this is not properly a wellbore to wellbore simulation
(source and receivers are in the same well), we call it this way because it serves
as a first step for later, proper wellbore to wellbore simulations. The model is
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applied to the same medium as the vertical seismo-electric profile, the data of
this setup can be found in Figure 4.8 and Table 4.1.
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Figure 4.29: Plane wave response for the one-way wellbore to wellbore simlation
of the SH-TE coupling

In figure 4.29 we see the one-way wellbore to wellbore simulation of the
SH-TE coupling. Similarly to the results of the VSEP simulation the graphs are
organized in a matrix. In the left column we see the up and downgoing wavefields
generated as a horizontal shear wave hits both interfaces from the source point
which is at receiver 15. In the lower left graph we see four conversions, two from
the horizontal shear wave from the source, and two more from the horizontal
shear wave reflected from the surface and propagated back to the interfaces.
We can also see how the upgoing wavefields are reflected back from the surface,
in this model we have added the reflection from the source using the reflection
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coefficients derived in Section 3.3.2.

At the right column of graphs we see the two wavefields generated as a
downgoing TE hits both interfaces, horizontal shear and TE electromagnetic
respectively. In the upper graph it can be seen clearly how horizontal shear
waves are generated at the same time on both interfaces and are reflected at
the surface. Finally in the lower graph we have the TE wave reflected from the
incident TE wave.
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Figure 4.30: Plane wave response for the one-way wellbore to wellbore simlation
of the P-SV-TM coupling

In figure 4.30 we see the one-way wellbore to wellbore simulation of the P-
SV-TM coupling. These graphs are organized similarly to figure 4.10. In the left
column of graphs we see the three wavefields generated as an up and downgoing
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fast-P wave hits the interfaces, fast-P, vertical shear and TM electromagnetic
waves respectively are generated. It is specially interesting to see how the con-
version between seismic waves takes place only at the upper interface, while the
seismo-electric conversion occurs at both interfaces. Although in the lower graph
we see only one conversion from fast-P to TM wave, there is a second one that
doesn’t show because the interface is of a different type and the amplitude of
the reflection is much weaker.

In the three graphs of the middle column we see the wavefields generated
as an up and downgoing vertical shear wave hits the interfaces, fast-P, vertical
shear and TM electromagnetic waves respectively. Note the similarities with the
wavefields generated by the fast-P wave. Note also how the conversions at both
interfaces from vertical shear to TM have similar amplitudes, unlike when the
incident wave is a fast-P wave.

In the rigth column of graphs we see the three wavefields generated as an
up and downgoing vertical TM wave hits the interfaces. It is important to see
here how the incident TM wave generates at both interfaces fast-P waves of
comparable amplitude, but not vertical shear waves.

One-way wellbore to wellbore simulations in the (1, z3,t) domain

In this section we present the results of the wellbore to wellbore simulation in
which we have included the dependency on the offset as well as the effects
from the source and receivers. As in previous cases of two-way simulations
we have seen how the composition and decomposition operators combine the
already known one-way wavefields into the two-way wavefields that are actually
measurable by the receivers.

We see in Figures 4.31 and 4.32 the seismo-electric conversion at a wellbore.
In Figure 4.31 we find the conversion at interfaces from a seismic source along a
wellbore. We saw at Chapter 3 that for a seismic incident wave only angles close
to normal incidence will generate an homogeneous seismo-electric conversion,
therefore in this case only points at the interface very close to the wellbore will
generate electromagnetic waves that will be radiated to all the receivers in the
opposite well. As the seismic wave continues propagating it will generate a
headwave at any interface that will propagate forward in the x; direction. This
headwave does not radiate but it contains an electric field that will be picked up
by the receivers place along the opposite well.

In Figure 4.32 we find the conversion at interfaces from an electromagnetic
source along a wellbore. We saw at Chapter 3 that for this case any angle of
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incidence will generate a normally reflected seismic wave, so in this case plane
up and downgoing waves will be detected by the geophones placed along the left
wellbore.

X

l:v:s

EM wavefront

Seismic
source

Receivers

N ENERERN REES

Figure 4.31: Seismic to electromagnetic conversion in a wellbore to wellbore
simulation. We assume that both wells are drilled in the same medium.

In figure 4.33 we see a one-way wellbore to wellbore simulation of the SH-TE
coupling, with the media parameters described in Table 4.1 and for a wellbore
separation of 30m. In the left graphs: the incident wavefield is seismic and the
reflected wavefields are seismic above and electromagnetic below. In the right
graphs: the incident wavefield is electromagnetic and the reflected wavefields are
seismic above and electromagnetic below.

If we compare these results with those in the (z3,t) domain from Figure 4.29
we find several differences, on the first place there is a geometrical spreading in
this case that logically is not present in the (x3,t) domain. Besides, the current
case has the source in a different wellbore 30 m apart. This makes the times of
the first seismic arrival to be delayed proportionally to the wellbore separation,
and the shape of the seismic arrival turns into a hyperbola. Since we assume
that both wells are in the same set of media, this delay does not affect to the
seismoelectric arrivals, regardless the separation between wellbores since it only
depends on the vertical distance between the source and the interface.
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Figure 4.32: Electromagnetic to seismic conversion in a wellbore to wellbore
simulation. We assume that both wells are drilled in the same medium.

Bear in mind that our model only considers discontinuities along x3, but in a
realistic medium, if there was a discontinuity along x; there would be a seismo-
electric conversion at that interface that would naturally affect the arrival time
of the converted wavefields.

In figure 4.36 we see the results of the one-way wellbore to wellbore simulation
of the P-SV-TM coupling, with the media parameters described in Table 4.1
and for a wellbore separation of 30m. In the left graphs the incident wavefield
is a fast-P wave and the reflected wavefields are from top to bottom fast-P,
vertical shear and TM electromagnetic waves. In the middle and right columns
of graphs the incident wavefields are a vertical shear and a TM electromagnetic
wave respectively. The reflected wavefields are arranged as in the left column
of graphs. If we compare this figure with Figure 4.30 we find again the same
similarities as in the SH-TE case.
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Figure 4.33: Line source response for the one-way wellbore to wellbore simulation
of the SH-TE coupling in the (x1,23,t) domain. The wellbore separation is 30 m
and the media parameters are those of Table 4.1.
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Figure 4.34: Line source response for the one-way wellbore to wellbore simulation
of the P-SV-TM coupling in the (z1,x2,t) domain. The wellbore separation is 30
m and the media parameters are those of Table 4.1.
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Two-way wellbore to wellbore simulations in the (z, z3,t) domain
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Figure 4.35: Line source response for the two-way wellbore to wellbore simulation

of the SH-TE coupling in the (x1,x2,t) domain. The wellbore separation is 30

m and the media parameters are those of Table 4.1. Left graph: the receivers

measure FE5 and the source is a bulk and fluid force in the x5 direction, f§ and

fo . Right graph: the receivers measure vy and the source is an electric current
in the x4 direction, Js.

In Figure 4.35 we see the two-way wellbore to wellbore simulation of the SH-
TE coupling in the (z1,23,t) domain. The wellbore separation is 30 m and the
media parameters are those of Table 4.1. In the left graph the receivers measure
FE5 and the source is a bulk and fluid force in the x5 direction, f5. In the right
graph the receivers measure vy and the source is a electric source current in the
x4y direction, J5. We can see on the left graph the electric field contained in
the horizontal shear wave as an hyperbola. The arrival time of this wavefield to
the receiver at the source level is the wellbore separation divided by the shear
wave velocity. As this horizontal shear wave crosses both interfaces there are
seismo-electric conversions that generate TE waves that are recorded in the F,
receivers as the one at the lower interface that arrives at 0.02s.

On the right graph of Figure 4.35 we show the measurements of the v
receivers. Here we see first the seismic disturbance that is propagated with the
electromagnetic wave. When this TE wave crosses the interfaces two horizontal
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shear waves are generated. These can be seen in the right graph as the wavefields
generated at the interface level and propagating up and downgoing.
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Figure 4.36: Line source response for the two-way wellbore to wellbore simulation
of the P-SV-TM coupling in the (x1,x2,t) domain. The wellbore separation is 30
m and the media parameters are those of Table 4.1. Upper graphs: the receivers
measure Hy and E, and the source is a bulk and fluid force in the x, direction,
1Y and flf . Lower graphs: the receivers measure vs and vy, and the source is an
electric current in the 1 direction, J;.

In Figure 4.36 we have the two-way wellbore to wellbore simulation of the
P-SV-TM coupling in the (x,z3,t) domain. The wellbore separation is 30 m
and the media parameters are those of Table 4.1. In the upper graphs we show
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the measurements from the receivers Hy and FE respectively, while the source
is a bulk and fluid force in the x; direction. In the lower graphs we show the
measurements from the receivers v3 and v; respectively, while the source is an
electric current in the x; direction, J5.

In the upper left graph we have the H, field measured from a f; source.
Here we see several arrivals. The first one is the electromagnetic pulse from the
mechanical source that arrives to all the receivers at the same time. Next arrival
is the electric field contained inside the fast-P wave and finally the seismo-electric
conversion at both interfaces from the shear wave, although the vertical shear
wave is not visible with this receiver.

In the upper right graph we have the FE; field measured when using a f;
source. Here we see two very close arrivals, these are the electric field travelling
with both seismic waves, vertical shear and fast-P waves. Note that when the
shear waves encounters the interfaces at receivers 8 and 24 there is a conversion
that can be seen in the previous graph.

In the lower left graph we have the v; field measured from a J; source. In
this case the amplitudes of the traces have been normalized in order to show
the fast-P waves generated at the interfaces. What we find here without the
normalization is just two strong pulses at the receivers close to the interfaces,
and from there the fast-P waves attenuate very rapidly.

In the lower right graph we have the v; field measured from a J} source. Here
we see the mechanical disturbance that travels along with the electromagnetic
wave generated at the source. In this case there are seismic waves generated at
the interfaces, but due to the difference of amplitude they don't show on the

graph.

4.5 Conclusions

In this chapter we have derived global reflection and transmission coefficients, and
based on them we have built models for VSEP (vertical seismo-electric profile)
and wellbore to wellbore surveys.

In the second section we have derived the global reflection and transmission
coefficients for the seismo-electric effect based on the work by Kennett. Unlike
the local reflection coefficients derived in the previous chapter, these coefficients
take into account all the reflections and transmissions among the layers above
and below the n'" interface, including the internal multiples.

In the following section we have used the global coefficients to derive ex-
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pressions to model a vertical seismo-electric profile (VSEP), where we see how
wavefields travel down a wellbore and are measured by different types of receivers
after being reflected and refracted in the interfaces between media. This sim-
ulation has been done in the (xy,z3,t) domain, this means that the result is a
x1,x3,t datacube that we can slice in different directions. One interesting result
is to study the evolution of the one-way and two-way wavefields along the x, x5
plane with time, as shown in section 4.3.3.

In the next section we have developed a wellbore to wellbore model. This
model has been contructed as two VSEP one on top of the other. The upper
one has the source at the bottom and the lower one has the source at the top.
These two VSEP setups are connected using the outgoing wavefields of one as
input fields in the other in an iterative loop. This model has also been done in
the (1, x3,t) domain.

By comparing the results of the VSEP and the wellbore to wellbore simulations
we logically find similarities. One of them is that the arrival time for a seismo-
electric conversion is the same in both cases (assuming that both wells are in the
same media and both sources at the same depth), since this will be produced as
soon as the incident wave crosses the interface. This means that the wellbore to
wellbore seismo-electric survey, or a walk-away VSEP would not give better results
than a normal VSEP setup for a horizontally layered medium where the only
discontinuities are among the layers. If we have to consider discontinuities in the
x1 direction then the wellbore to wellbore setup could improve the measurements.

In the next chapter we will analyze the information we can actually extract
from the subsurface in a seismo-electric survey and what kind of medium para-
meter contrasts we can detect better than others.
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Chapter 5

Sensitivity analysis of inverted
reflection coefficients

5.1 Introduction

In the previous chapters we have seen simulations of different kinds of seismo-
electric surveys. Each of them has certain advantages and disadvantages, and the
reason to choose one over the another configuration is to optimize the information
about the medium parameters we can extract of the surrounding area. However
this is obviously not as easy as it sounds and there are actually very strong
limitations in this method. In this chapter we analyze the information we can
actually extract from the subsurface in a seismo-electric survey and its limitations
as a geophysical tool. We look at the reflections we obtain from different types
of interfaces, and the different sensitivities the seismo-electric coupling has to
those contrasts in the medium parameters.

First we compare the reflection coefficients with their inverted counterparts
as functions of the ray parameter p. There we see how only for low values of the
ray parameter there is a match between both coefficients.

Next we use a cost function to compare the forward and the inverted coeffi-
cients for different types of interfaces. There we see the dependency of the cost
function with the type and magnitude of the medium parameter contrast.

Finally we try to reconstruct a reflection coefficient from synthetic measure-
ments. For this we use an optimization routine that searches for the medium
parameters that give the minimum difference between the coefficient calculated
from the field data and the modeled one.
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5.2 Inversion of the seismo-electric reflection co-
efficient

In this section we compare the inverted reflection coefficients with the forward
reflection coefficients. This way we check the reliability of the inverted seismo-
electric reflection coefficients.

In Section 3.7 we presented a one-way reflection model that will be the basis
of our inversion. This model describes the one-way wavefields that arrive to the
surface after a reflection at a shallow interface. It is described by equation (3.80)
and can be seen in Figure 3.11,

P =W i"WT (5.1)

Writing the coefficient r' as a function of the one-way wavefield arriving to the
surface P~ yields

i — (w)‘l P (vv+)‘1 (5.2)

where the superscript ! denotes inverted reflection coefficient, opposed to the
superscript f for the forward reflection coefficient, which calculation has been
described in section 3.3. In the coming expressions we skip the use of the + or -
superscript in 7' since we only consider the reflection coefficients from downgoing
incident waves. Equation (5.2) gives the reflection coefficient as a function of the
one-way wavefield P~. This means that from the reflected wavefield arriving to
the surface and assuming that we know the depth of the interface we can derive
the reflection coefficient from that interface, and since we know the medium
parameters from the layer above it, we can derive the properties of the layer
below the interface.

Next we calculate the forward and inverted coefficients of different types of
contrasts. For this we choose a setup similar to the one used in Section 3.7,
where there are two porous media separated by a horizontal interface. All the
medium properties are the same for both media and equal to those of medium
2 in Table 3.1 except the contrast property. In a porosity contrast ¢" = 0.4,
in an ion concentration contrast C* = 1075 N and in a shear modulus contrast
G =9-10® Pa.

Once we obtain the inverted reflection coefficients I we compare them with
their corresponding forward coefficients to see how well can they be reconstructed
from measurements, and what contrasts are detectable in a reliable way.
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After doing all this we see that in the inverted seismo-electric reflection co-
efficients match perfectly the corresponding forward coefficient for values of p
corresponding with the homogeneous reflected wave.

5.3 Cost Function

In the previous section we have defined the inverted reflection coefficient from
the arriving wavefield P~ in equation (5.2). In this section we study the behavior
of the inverted reflection coefficients as functions of the medium parameters ¢,
C, and G*. To do this we use a cost function with L, norm where we compare
the forward with the inverted coefficients

1/2

Z ‘frfn,n<p17 w, ¢, C, Gfr) - ,Fin,n(pl’ w) ‘2
C’m7n(¢7 07 Gfr) = ne Z

p1,w

, (53)

flirn,n(phw)}Q

where ffn’n(pl, w, ¢, C, G™) is the forward reflection coefficient derived in Section
3.3 and fimn(pl,w) is the reflection coefficient inverted from the synthetic data
in previous section, equation (5.2). The letters of the subscripts ,, stand for
m,n = {Ps, P, S,, TM} for the P-SV-TM coupling, or m,n = {S,,TE} for
the SH-TE coupling. Therefore we obtain a cost function for every type of
reflection, e.g. Crars, (¢, C,G™) gives us the cost function of the reflection
coefficients for an incident vertical shear wave and a reflected electromagnetic
TM wave as a function of the porosity, ion concentration and shear modulus. In
this Lo norm we sum the reflection coefficients over p; and w. The range of p;
goes from normal incidence until the reflected wave becomes evanescent, while
the range of w goes from 100Hz till 1kHz. This way we use all the information
available in all the useful incidence angles as well as in the different frequencies
contained in the mentioned frequency range. We produce a cost function that
is a function of the medium parameters ¢, C' and G™ to study the sensitivity of
the different reflection coefficients to contrasts in these medium properties.

In order to observe this we use a setup similar to the one used in section 3.3.1,
but in this case we use a range of values for the lower medium while keeping the
parameters in the upper medium constant to simulate a seismo-electric survey
where we know the properties of the uppermost layer (the Earth’s surface), but
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certain properties of the layer below the interface are unknown. The values for
these parameters can be found in Table 5.1. The forward reflection coefficient
(¢, C,G™) is used in the cost function as a function of the medium parameter
ranges found on the second column of Table 5.1, while the inverse reflection
coefficient 7' is used with the medium parameter values found in the third and
fourth columns of Table 5.1. The cost function is finally a function of ¢, C and
G, and in the following figures we will show 2D slices of this function.

We expect the cost function to give us a measure of the difference between the
forward and the inverted reflection coefficients. We assume that the parameter
values for those used in 7 are inside the range used in 7 (¢, C, GT). At the point
where both coefficients are equal or their values are closest, there is a minimum
in the cost function. The coordinates of this minimum give us the values of these
parameters in the lower medium.

Parameter Lower medium Lower medium | Upper medium
range value value
0] 0.1-04 0.17 0.25
C 1071 —=10"* mol/l | 5-107% mol/I | 5-10~* mol/I
G 10% — 10* Pa 5.33-10° Pa | 1.15-10° Pa

Table 5.1: medium parameters

5.3.1 Cost functions for the reflection coefficient of the
SH-TE coupling

In this section we present the cost functions of the SH-TE coupling reflection
coefficients. The figures of the cost functions shown in this section only include
the reflection coefficients of the conversion from seismic to electromagnetic. We
show a series of figures composed of two graphs, the one in the left shows a
grey scale image of the cost function as a function of two of the lower medium
parameters, and the graph on the right shows a profile of the cost function across
the minimum, so it is shown clearly where the minimum is. This is necessary in
some cases where the position of the minimum that points to the lower medium
parameter value is not clear.

These grey scale images in the coming graphs are shown in logarithmic scale
to expose a position of the minimum that is not always visible. Similarly the
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sampling for the shear modulus and the ion concentration are logarithmic. Al-
though this hinders the easy reading of the axis, it makes sure that the sampling
of the cost function is done in relevant steps. As mentioned before, at the point
where (¢, O, GT) equals T the cost function is zero, and log(0) = —oo. This
is the reason why there is a small gap at the minimum in the profile plots.

log (C . ) log (C ) profile of minima
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8 9 10 11 01 02 03 04
log, (G 0

Figure 5.1: Left: Cost function Ci.q(6, GT). Right: Profile of the minima line
of the left graph where we see the minimum of this line pointing to the porosity
value of the lower medium.

On the left graph of Figure 5.1 we see the cost function Ci (), G™) for
a porosity and shear modulus contrast. The shear modulus and the grey scales
are logarithmic. We see in this graph a very clear minimum that fits with the
medium value shown in Table 5.1. On the right graph we see a profile of this
cost function along the ¢ direction where it becomes clear where the minimum
is located.

It must be noted here that the shape of the cost function around the minimum
is not the same depending on the direction of the reflection. In this case the
reflection occurs from high to low values of the porosity and the shear modulus.
These results would be different if, for example the reflection was in the opposite
direction, i.e. R~ instead of R .

In the next case, the cost function for an ion concentration and shear modulus
contrast C.sn(C,G) on figure 5.2, the area of the cost function around the
minimum is extended into a trench rendering the minimum difficult to locate
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Figure 5.2: Left: Cost function Cy,+(C,G). Right: Profile of the minima line
of the left graph where we see the minimum of this line pointing to the ion
concentration value of the lower medium.

among the aparent local minima. However if we look at the profile we can
clearly find the minimum pointing at the corresponding lower medium value.

log(C te,sh) log(C e Sh) profile of the local minima
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Figure 5.3: Left: Cost function Cg (¢, C). Right:Profile of the minima line
of the left graph where we see the minimum of this line pointing to the ion
concentration value of the lower medium.

In the last cost function of the SH-TE coupling Cicsn(¢, C), for a porosity
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and ion concentration contrast, we see a similar structure around the minimum
as in the previous case. On the left graph of Figure 5.3 we see a long trench
connecting the low porosity and ion concentration with the high porosity and ion
concentration values. In this case the location of the minimum in the left graph
is impossible to identify due to the many local minima and we need to look at
the plot in the right graph that points to the correspondent lower medium value.
However note that even the profile doesn't point to the minimum as clearly as
in previous figures, and the overall difference between the inverted and forward
coefficients is less pronounced in the range.

5.3.2 Cost functions for the reflection coefficient of the
P-SV-TM coupling

Here we present the cost functions of the P-SV-TM coupling reflection coeffi-
cients. In addition to the interaction between shear and electromagnetic waves,
this coupling contains also conversion from and to compressional waves. Since
compressional and shear waves have different sensitivity to certain medium para-
meters, this coupling gives us more information on the medium parameters than
the previous where only two wave types were exchanging energy. Here we also
choose the cost function to depend on ¢, C', and G for all the seismo-electric
conversions. This way we compare the cost functions of both couplings.

In this coupling we have more wave types, thus more data to be fed into the
cost function. We combine the cost functions as

) 1. 1. 1/2
Cpsvrm = §|Ctm,pf\2 + Q‘Ctm,SVF ) (5.4)

where Ctm’pf and étmsv are obtained as in equation (5.3). This way we produce
a more accurate cost function that gives better results than the individual cost
functions. In the coming figures there are some results for the same contrasts
used for CSHTE.

In figure 5.4 we find the cost function Cpgyrn (9, C) for the ranges of ¢ and
C mentioned in table 5.1. At the right hand side we have the profile of this
cost function that crosses the minimum as a function of the ion concentration.
Note the similarity with Figure 5.3 where Csurr is shown for the same type of
interface. However, in this case the location of the minimum in the cost function
is more defined.

121




log, /(C Loyt log, (C by Profile of minima

0.1
0.2 1.5 ~
Ol
< =
0.3 g
0.5
0.4

10glo(C) log, (C)

N
\S]

—_

Figure 5.4: Left: Cost function CPSVTM(qﬁ, () for a contrast in porosity and ion
concentration. Right: Profile of cost function across the minimum as a function
of log,,(C).
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Figure 5.5: Left: Cost function CPSVTM(Gfr, (') for a contrast in porosity and ion
concentration. Right: Profile of cost function across the minimum as a function
of log,,(C).

In figure 5.5 we have the cost function CPSVTM(Gﬁ, C) for the ranges of G
and C shown on table 5.1, and its profile across the minimum as a function of
log,o(C'). According to our model, the minimum in the cost function should be
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pointing to an ion concentration in the lower medium of 0.17 mol/I and a shear
modulus of 5.33-10% Pa. The location of the minimum is very clear and without
much correlation along any of the parameter’s axis.
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Figure 5.6: Left: Cost function CPSVTM(¢, Gfr) for a contrast in porosity and ion
concentration. Right: Profile of cost function across the minimum as a function
of ¢.

In figure 5.6 we have the cost function Cpgyrai(¢, GT). In both graphs we
see a very clear minimum that points exactly to the values of Table 5.1. The
results for this type of contrast are also very similar to those of the SH-TE
coupling.

5.4 Simulated field data example

Finally we simulate the actual data process from the measurement on the field
until we obtain the medium property value. We will show next how we can obtain
the depth, porosity and ion concentration of a certain layer from seismo-electric
measurements and what combination of sources and receivers are most suited
for this purpose.

We assume we have a homogeneous medium saturated with water in which
there is a contrast in the medium properties at a certain depth. We also assume
that our measuring setup is split-spread with different kinds of sources, therefore
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we use the results of Chapter 3 as our measurements. The reflection model we
use is

Q= C,W it W*S = C,P-§, (5.5)
where Q and P~ contain the two- -way and one-way wavefields respectively, and
S and Cr contain all the source and receiver types respectively. As we already
saw, the result of this model comes in the form of a 4 x 4 matrix with the 16
combinations of source and receiver types defined in Chapter 3, Section 3.7.2.

In order to simulate real measurements we reduce the number of receiver posi-
tions to 64 and we truncate the computer model values of the measurements to 3
digits after the decimal point. Additionally we normalized the amplitudes coming
from the different receivers in order to simulate the stacking of measurements,
and finally we added noise to reduce the s/n ratio.

With this synthetic but realistic data set we pass to the processing stage.
The dataset is Fourier transformed from (z,t) to the (k,, w) domain. Once in
this domain we can invert and extrapolate the fields back to the interface. First
we decompose the two-way wavefields into one-way wavefields as

P~ =C;'Q S, (5.6)
and then we invert the wave extrapolation back to the interface level
_ PN N LNl
- (W—> p- (W+> . (5.7)
This could also be done in one step

. . -1 . . . R 1
- (W—> Clg S (W+) . (5.8)
Once we obtain the reflection coefficient we use a cost function as we did

in previous section. We combine the cost functions of the different reflection
coefficients as

1 - 2 1 - 2 1/2
G = | g1Coma? + 51Cinl] (59)
~ o 1 - , 1 - ) 1/2
psvtm — §|Cpf,tm| +§|Osv,tm| s (510)

where C inside previous expressions are the different cost functions for the differ-
ent types of reflections denoted in the subscript, and the superscripts ** stand
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for conversion from seismic to electromagnetic and vice versa respectively. These
cost functions are obtained as in equation (5.3). This way we combine all the
information available giving better results than the individual cost functions.

In the following figures we show the cost functions resulting from the deriva-
tion mentioned above. We assume a medium as the one described in Table
3.1. As a first approximation we use the full forward model without introducing
noise or truncating the dataset. The figures contain two graphs, on the left we
compare the conversions from seismic to electromagnetic and on the right vice
versa.
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Figure 5.7: Cost function C’psvtm(c). The figure shows the cost functions as
defined in equations (5.9) and (5.10) as a function of the ion concentration.

In Figure 5.7 we have the cost functions of the P-SV-TM coupling reflection
coefficients. These cost functions are expressed as functions of the ion concen-
tration C'. In this case the ion concentration at the lower medium is set to 1072
mol/l, and we see how the minimum points to the correct value of the lower
medium.

In Figure 5.8 we have again the cost functions corresponding with the P-
SV-TM coupling reflection coefficients. These cost functions are expressed as
function of the porosity ¢. In this case the porosity at the lower interface is set to
0.2, and we see how the minima point to the right ¢ value of the lower medium.

As we have seen in Figures 5.7 and 5.8 as well as in the first sections of
this chapter the properties of the medium under the interface can be in theory
reconstructed. However there are many other factors playing a role in these cost
functions and in the coming figures we show the effect of some of these factors
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Figure 5.8: Cost function C‘psvtm(qﬁ). The figure shows the cost functions as
defined in equations (5.9 and 5.10) as a function of the porosity.
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Figure 5.9: Upper graphs: C(z,c). Lower graphs: C(z,¢). The figure shows

the P-SV-TM coupling cost functions as functions of the interface depth that
ranges from 10 m to 40 m.
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like the depth of the interface, the truncation of the dataset or the noise in the
measurements.

In figure 5.9 we see the cost functions C’(z,c) and C’(z, ¢) where the cost
function is plotted as a function of the interface depth and the porosity ¢ in the
upper graphs and the ion concentration c in the lower graphs. The two graphs
on the left show the cost function for the conversion from electromagnetic to
seismic and the two on the right for the opposite conversion. If we slice these 3D
surfaces in the “interface depth” direction we would obtain plots as in Figures
5.7 or 5.8 where the cost function is shown for a fixed depth, in this case 20 m.
If we look at Af)szm(z, ¢) we see that the depth has not much effect on this cost
function and that its shape remains very constant along the “interface depth”
axis. If we look now at A;z’vetsm(z,c) we find that for the first 30 m the cost
function does not change much with the interface depth, but afterwards rises
about one order of magnitude for the seismic to electric conversion, and less for
the opposite conversion.

Our next step is to fully simulate the fieldwork measurements by truncating,
adding noise and filtering the results of the two-way reflection model. We be-
gin simulating the limited amount of information the receivers can gather. Our
computer simulations are done in double precision, this means the use of float-
ing point for all computations, including the simulated measurements and their
processing. Therefore we are going to reduce the sampling of the simulation
results and truncate the number of decimal figures. With this we simulate the
geophone spacing in the measuring line and the limited number of figures the re-
ceivers can record. In Figure 5.10 we see the effect the truncation of the data set
has on the cost functions. Again these cost functions are presented as a function
of the ion concentration and the porosity. We observe clearly in these figures
how the cost functions increase as we use less decimal figures of the dataset.

The next stage in the simulation of the seismo-electric data acquisition is the
introduction of noise. For this case we have used only white noise without a
specific frequency content or harmonics assuming that we have eliminated it in
the preprocessing. In Figure 5.11 we show the effect of the noise introduced in
the dataset. We find that logically with decreasing signal to noise ratio the cost
function increases, and the location of the minimum shifts towards higher values
of the porosity or the ion concentration. It is interesting in this case to note
that the conversion from seismic to electromagnetic resolves better the porosity
of the ion concentration than the opposite conversion, from electromagnetic to
seismic.
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Figure 5.11: Cost functions C(s/n, c). The figure shows the P-SV-TM coupling
cost functions as a function of the ion concentration and the signal to noise ratio

of the noise introduce in the dataset.
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5.5 Conclusions

In this chapter we have studied the sensitivity of the reflection coefficients of the
seismo-electric conversions to contrasts in medium properties, and the reliability
of the inverted reflection coefficients. The object of this is to theoretically test
if we can actually obtain any useful information from the subsurface using data
from the seismo-electric conversions that take place there.

We have compared the forward with the inverted coefficients for a certain set
of medium property values using a cost function with norm L,. The cost function
shows the difference between these two coefficients, and more importantly it
shows where it is minimal. The coordinates of that minimum point are the
values of the lower medium parameters. We show in the cost function graphs
that there is actually a region where the cost functions is minimal, and within
that region there is indeed a minimum, but often difficult to find.

Finally we have simulated a real data set from a fieldwork where we use differ-
ent sources and receivers. We have transformed these data to the (k;,w) domain
and there we have extrapolated the one-way wavefields back to the interface level
to obtain the reflection coefficient. When we use the full two-way model dataset,
we find the values of the medium property responsible for the contrast after us-
ing a cost function. We have considered in some examples the role of factors as
the interface depth, realistic receivers or noise in the measurements in the cost
functions and we have seen that naturally for a deeper interface, poorly recorded
signal or high noise the cost function becomes larger making the determination
of the medium properties more difficult.
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Chapter 6

Conclusions

We began this PhD. thesis addressing the question: what can we measure with
the seismo-electric effect, and how? To orderly present our results we divided
this thesis in five chapters plus the current one, six. The first chapter contains
the usual general introduction and the literature review to put the reader into
perspective.

In the second chapter of this thesis we obtained the wave equation for the
coupled seismic and electric waves in a porous medium. We did it in the frequency
domain for the 3-D and 2-D cases, and in the ray parameter domain for the 2-D
and 1-D cases. We began with Pride’s equations for the coupled electromagnetics
and acoustics of porous media in the frequency domain [18], and expressed the
vertical variations of chosen wavefields in terms of their lateral variation, and
combined them into the matrix-vector equation

0Q <A -

oz, AQ+D, (6.1)
where Q is a vector that contains the two-way wavefields that according Dere-
siewicz and Skalak [5] remain continuous across an interface. This was firstly
done for the 3-D case, and later to simplify our model we applied it to a 2-
D situation. In this case we considered a medium of horizontal homogeneous
layers of porous media. In this medium the waves propagate only in the xjx3
plane, therefore all the derivatives with respect to x5 are zero. This simplified
dramatically the structure of matrix A as it can be seen in equations (2.98)-
(2.101). At this point the wave equation separated into two uncoupled partial
differential equations that described the two types of coupling to be found on
the seismo-electric effect: the SH-TE and the P-SV-TM couplings.
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Next we Radon transformed the wave equation from the (x,w) domain to the
(p1,w) domain, this replaced all derivatives with respect to x; by —jwp;. We
then rearranged the matrix A and the vector Q in such a way that the coupling
between the compressional, the vertical shear and the TM electromagnetic waves
on one hand, and the horizontal shear with the TE electromagnetic wave on the
other hand became clear.

This rearranging yielded Ay and Ay and consequently the vectors QH and
QV and a simpler and more compact expression of the wave equations. We pre-
sented them in equations (2.111) to (2.117). In the last section of the chapter
we looked at the 1-D case, where we proved how the vertical shear and TM
electromagnetic waves decouple from the compressional waves in the P-SV-TM
coupling. This leaves the compressional waves uncoupled from the electromag-
netic waves for normal incidence.

In the third chapter we defined the one-way operators that were used in our
seismo-electric survey simulations. We began defining the composition operator
that composes the two-way wavefields from one-way wavefields and its inverse
that decomposes the two-way wavefields back to one-way wavefields. Once we
got the composition operators we could calculate the reflection and transmission
coefficients in the (p;,w) domain via an scattering matrix. This was done for two
types of interfaces: porous/porous and a porous/vacuum. The former simulates
two layers in the earth’s subsurface while the later simulates the surface of the
earth. Next we produced some results where we saw the dependency of the co-
efficients with the horizontal slowness for certain contrasts in medium properties
as the pore fluid ion concentration, porosity or permeability. From these results
we saw how the seismo-electric response of an interface is proportional to the
contrast in the media properties.

With the reflection coefficients and the wave extrapolation operators we con-
structed a very simple one-way reflection model where we already observed the
arrival times of reflections and conversions between different wavefields. This
model was done in the (k1,w) domain, and via a Fourier transformation the re-
sults were shown in the (z,t) domain. This first step was a simplistic approach,
yet it helped understanding the seismo-electric conversion at an horizontal inter-
face in the subsurface.

In the next section we derived the decomposition and composition of wave-
fields at the source and receivers. In our next model the two-way source parame-
ters were decomposed at the source into the one-way wavefields that propagated
in the previous model. When these one-way wavefields were reflected back to
the surface, they were composed back to the two-way wavefields measured at
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the receivers. Via these operators we not only simulated any receiver, but also
cancel certain wavefields to better study the interaction of different combinations
of wavefields, as well as sources and receivers.

Finally we show a series of examples, one-way and two-way reflections from
SH-TE and P-SV-TM couplings. From these we conclude that there are in-
deed multiple interactions between the seismic and electromagnetic wavefields
in both directions, i.e. seismic to electromagnetic and vice versa, making the
seismo-electric effect a more complicated case than just conversion from fast-P
to electromagnetic waves.

In the fifth chapter we derived the global reflection and transmission coeffi-
cients based on the work by Kenneth [10]. Unlike the local reflection coefficients
derived in the previous chapter, these coefficients take into account all the re-
flections and transmissions among the layers above and below the n'” interface,
including the internal multiples.

Next we used the global coefficients to derive expressions to model a vertical
seismo-electric profile (VSEP), where we saw how wavefields travel down and up
a wellbore and were measured by different kinds of receivers after being reflected
and refracted in the interfaces between media. As well as in previous chapter,
the models were derived using just one-way wavefields, and also composing and
decomposing the two-way wavefields at the source and receivers. The next step
was to include the z; dependency in our VSEP model, this way we simulated a
complete 2D grid of receivers spread along the x;x3 plane. The result of this
model was a t,x1,r3 datacube where we could look at three types of slices:
(t,x1) as the results of Section 3.7.1, (t,xz3) as the VSEP results of Section
4.3.1 or (x1,x3) which gives us snapshots of the wavefields as they propagate
with time along the x1, 3 plane as the results of Section 4.3.3.

In the second part of Chapter 5 we derived expressions to model a wellbore to
wellbore survey based on two complementary VSEP models. Each of these two
models simulated the propagation of wavefields above and below the source level.
Each of these two models was fed iteratively with the outgoing wavefields of the
opposite model to ensure the continuity of wavefields along the 3 direction. We
simulated a wellbore to wellbore survey in which two wellbores are 30 m apart,
and we use several sources and receivers in both of them.

In the final chapter we studied the sensitivity of the reflection coefficients of
the seismo-electric conversions to contrasts in medium properties, and the relia-
bility of the inverted reflection coefficients. The object of this was to theoretically
test if we can actually obtain any useful information from the subsurface using
data from the seismo-electric conversions that take place there.
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We compared the forward with the inverted coefficients for a certain set of
medium property values using a cost function with norm L,. The cost function
showed the difference between these two coefficients, and more importantly it
showed where it was minimal. The coordinates of that minimum point are the
values of the lower medium parameters. We showed in the cost function graphs
that there is actually a region where the cost functions is minimal, and within
that region there is indeed a minimum, but it was often difficult to find.

Finally we simulated a real data set from a fieldwork where we use different
sources and receivers. We transformed these data to the (k;,w) domain and there
we extrapolated the one-way wavefields back to the interface level to obtain the
reflection coefficient. When we used the full two-way model dataset, we found
the values of the medium property responsible for the contrast after using a cost
function. We considered also in some examples the role of factors as the interface
depth, realistic receivers or noise in the measurements. we saw that naturally for
a deeper interface, poorly recorded signal or high noise the cost function became
larger making the determination of the medium properties more difficult.
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Summary

Seismo-electric profiling is gaining interest as a potential geophysical tool to ex-
tract information from the subsurface. In recent years we have seen developments
in this field that make us believe that in a relatively short time it will be exploited
as a geophysical method. lIts sensitivity to changes in pore fluid chemistry makes
it ideal for environmental applications as well as a wellbore tool. Besides, if
we take into account that in every seismic or electromagnetic survey there are
seismo-electric conversions and reflections generated, it makes this method an
excellent complement to already known methods.

The objective of this thesis is to study the potential of the seismo-electric
effect in known survey methods, and the actual possibilities it offers to retrieve
information of the subsurface. We do this by developing a set of operators to
describe our models of a simple split-spread shallow survey, VSEP and wellbore
to wellbore measurements.

We begin with Pride's equations [18] for the coupled electromagnetics and
acoustics of porous media. From Pride’s equations we express the vertical varia-
tions of chosen wavefields in terms of the lateral variations of the same wavefield
and we combine them into a matrix-vector wave equation.

It is shown that for horizontally layered media where the waves propagate
in the x1,z3 plane the wave equation can be rearranged so that it uncouples
into two independent sets of partial differential equations. These two sets of
equations show us the two existing cases in the seismo-electric coupling: the P-
SV-TM and the SH-TE cases. The P-SV-TM coupling includes the interactions
between the compressional, vertical shear and TM electromagnetic waves, while
the SH-TE coupling includes the interactions between the horizontal shear and
the TE electromagnetic waves. TM and TE stand for “transverse magnetic” and
“transverse electric’ and the terms refer to the polarization of the magnetic and
electric fields in the electromagnetic wave.

We describe the composition operator as a means to compose the two-way
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wavefields from the one-way wavefields. We also describe the one-way wavefields
as the up or down going individual wave types, and the two-way wavefields as
the superposition of up and downgoing wavefields measurable in the field.

We define a seismo-electric survey by means of one-way operators describing
each of the phenomena taking place, such as excitation, propagation and reflec-
tion. Finally we show examples of two cases where we applied the theory of this
chapter, first a simple reflection using just one-way wavefields and second a more
complex case including the simulation of the source and receivers.

The next step is to develop a more complex survey model such as a multi-
layered medium. We derive the seismo-electric global reflection and transmission
coefficients in a similar way as Kennett [10] does for seismic waves. Combining
these coefficients we simulate a VSEP (Vertical Seismo-Electric Profile) in the
(3, t) domain and later in the (z1, 3, t) domain. This last result has the form
of a datacube into which slices can be extracted to better observe the seismo-
electric conversion. Not only we obtained VSEP and split-spread results, but also
timeslices where we see how the wavefields propagate and the conversion evolves
with time in the 1, x3 plane.

The wellbore to wellbore model is constructed by concatenating two existing
VSEP models. One of the VSEP models simulates the medium between the
surface and the source in the well, while the second of the VSEP models simulates
the medium between the source and the bottom of the well. In order to ensure
the continuity of wavefields across the source level we feed the upgoing one-way
wavefields from the lower VSEP model into the upper one, and consequently we
also feed the downgoing wavefields from the upper VSEP model into the lower
one. This finally gives us the results of a wellbore to wellbore simulation in the
(1, z3, t) domain for any well separation with all the features described in the
previous paragraph.

Finally we analyze the information we can actually extract from the subsurface
with a seismo-electric survey. We look at the reflection coefficient as a function
of the upgoing one-way wavefield arriving to the surface from the same reflecting
interface as in Section 3. After checking this coefficient with the forward coeffi-
cient we make use of a cost function to find certain parameters from the lower
medium in the interface. In the cost function we compare the inverted reflection
coefficients from the previous section with forward reflection coefficients that are
a function of a range of values of certain medium parameters, in this case ¢, G
and C. The results show how certain types of interfaces present more difficulties
than others when trying to obtain lower medium properties.

To conclude this thesis we simulate an electro-seismic survey and we try
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to obtain ¢ and C from the lower interface. For this we take into account the
different sources and receivers, as well as noise, bad sampling and interface depth.
We present the results as surfaces that showed how close we are from the real
values of the sought parameters when the interface depth, data truncation and

signal to noise ration change.
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Samenvatting

Er bestaat een groeiende interesse voor het meten van het seismo-elektrisch effect
als een geofysisch hulpmiddel om informatie over de ondergrond te verkrijgen.
Recente ontwikkelingen in dit veld maken het aannemelijk dat deze methode bin-
nen afzienbare tijd zal worden gebruikt als geofysische exploratie techniek. Door
de gevoeligheid van de methode voor veranderingen in de porie vloeistofchemie is
het ideaal voor gebruik in milieuverontreiniging problemen. Daarnaast is de me-
thode zeer geschikt om te worden gebruikt vanuit boorgaten. De methode is een
excellente uitbreiding op bestaande methodes omdat het seismo-elektrisch effect
altijd optreedt bij al bestaande seismische en elektromagnetische meetmethoden.

Het doel van het onderzoek waarover in dit proefschrift wordt gerapporteerd
is het onderzoeken van de mogelijkheden die het seismo-elektrische effect bieden
in bekende meetmethoden en de mogelijkheid daadwerkelijk nieuwe informatie
over de ondergrond te verkrijgen. Hiertoe hebben we een aantal operatoren
ontwikkeld die ons model beschrijven van een drietal zogenaamde split-spread
metingen. De eerste heeft zowel de zender als ontvangers aan het oppervlak, de
tweede de zender aan het oppervlak en de ontvangers in een boorgat (VSEP), of
omgekeerd, en de derde met de zender in een boorgat en de ontvangers in een
ander boorgat (boorgat naar boorgat).

We beginnen met de vergelijkingen van Pride [18] voor de gekoppelde beschrij-
ving van elektromagnetische en akoestische golven in poreuze media. Deze
vergelijkingen worden zodanig herschreven dat verticale veranderingen in bepaalde
golfveldgrootheden worden uitgedrukt in de laterale veranderingen van deze golfveld-
grootheden. Deze vorm wordt gecombineerd in een stelsel golfvergelijkingen in
matrix-vector vorm.

Voor het geval waarbij de golven propageren in het x1, x3-vlak in een horizon-
taal gelaagde configuratie wordt aangetoond dat dit stelsel van parti€le differen-
tiaalvergelijkingen ontkoppelt in twee onafhankelijke kleinere stelsels van partiéle
differentiaalvergelijkingen. Deze twee stelsels beschrijven de twee verschillende
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mechanismen van seismo-elektrische koppeling: de P-SV-TM en de SH-TE kop-
peling. De P-SV-TM koppeling beschrijft wisselwerking tussen akoestische druk-
golven (P) en vertikaal gepolariseerde akoestische schuifgolven (SV) met de
transversaal magnetisch (TM) gepolariseerde elektromagnetische golven. De
SH-TE koppeling beschrijft de wisselwerking tussen horizontaal gepolariseerde
akoestische schuifgolven (SH) met de transversaal elektrisch (TE) gepolariseerde
elektromagnetische golven.

Met behulp van een decompositie operator wordt het zogenaamde tweeweg
golfveld ontbonden in twee zogenaamde éénweg golfvelden. Een tweeweg golfveld
bestaat uit meetbare grootheden terwijl een éénweg golfveld uit een superpositie
van opgaande en neergaande golfvelden bestaat die elk zijn opgedeeld in de
verschillende golftypen. Een compositie operator reconstrueert uit de éénweg
golfvelden weer de fysische golfveldgrootheden.

Een seismo-elektrische meting wordt nu beschreven met behulp van de éénweg
golfvelden waarbij onderscheid wordt gemaakt tussen de verschillende onderdelen
zoals, de excitatie, golfvoortplanting en reflectie. Dit deel wordt afgesloten met
voorbeelden van twee gevallen om de beschreven theorie te illustreren. Eerst
wordt een enkele reflectie getoond, berekend met de éénweg golfvelden, gevolgd
door een meer ingewikkeld voorbeeld waarbij de excitatie en ontvangst mecha-
nismen zijn meegenomen in de modellering.

De volgende stap is het modelleren van het meer ingewikkelde model van
een meting in een configuratie met horizontaal gelaagde media. De globale
seismo-elektrische reflectie- en transmissiecoéfficienten worden afgeleid op basis
van het seismische algoritme van Kennett [10]. Door deze twee coéfficiénten
te combineren zijn we in staat een vertikaal seismo-elektrisch profiel (VSEP) te
simuleren. Deze afleiding wordt eerst gedaan in het x3,# domein en daarna in
het x1,x3,t domein. In dit laatste domein wordt een datakubus gegenereerd
waaruit vlakken kunnen worden uitgesneden om de seismo-elektrische omzettin-
gen beter te kunnen observeren. We kijken niet alleen naar oppervlaktemetingen
met ontvangers aan weerszijde van de bron en de VSEP meetopstelling, maar ook
naar doorsneden in het x1, x3-vlak op vaste tijdstippen, zogenaamde tijdsneden,
zodat de ontwikkelingen in de tijd van zowel de golfvoortplanting als de seismo-
elektrische wisselwerking kunnen worden gevolgd in het gehele propagatievlak.

De boorgat naar boorgat configuratie wordt het meest eenvoudig gemo-
delleerd door twee VSEP modellen aan elkaar te koppelen in een iteratief schema.
Het eerste VSEP model modelleert het deel tussen het oppervlak en de diepteposi-
tie van de bron, terwijl het tweede VSEP model de configuratie tussen de diepteposi-
tie van de bron en de onderste halfruimte modelleert. Door de simulatie van de
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neergaande golfvelden van het eerste VSEP als invoer voor het tweede VSEP
te nemen en de opgaande golfvelden van het tweede model te nemen als invoer
voor het eerste VSEP model wordt zo het hele golfveld exact gemodelleerd na
optelling van alle resultaten. Hierdoor kunnen we in het gehele x, x3, t-domein
een boorgat naar boorgat configuratie exact modelleren voor iedere gewenste
afstand tussen de boorgaten.

We hebben de informatie geanalyseerd die we werkelijk uit de ondergrond
kunnen halen met behulp van de seismo-elektrische meetmethode. Door de
reflectiecoéfficiént te destilleren uit de gesimuleerde metingen aan de hand van
dataprocessing stappen op basis van ons model, zijn we in staat een kostfunctie
te definiéren die geminimaliseerd kan worden door een bepaald aantal onbekende
parameters te schatten. Dit is aangetoond door de oplossingruimte te bekijken
in het geval dat porositeit, schuifmodulus en ion concentratie van de laag onder
de reflector worden gekozen als de te schatten parameters. De resultaten laten
zien dat niet elke reflector even gemakkelijk leidt tot goede schattingen van de
medium parameters.

Uiteindelijk hebben we een werkelijke seismo-elektrische meting gesimuleerd
zodanig dat de keuze van het aantal bronnen en ontvangers per bron positie,
de tijdbemonstering, de diepte van de te analyseren reflector en het ruisniveau
overeenkomen met een realistische acquisitieconfiguratie. Op basis van deze data
hebben we geprobeerd de porositeit en ion concentratie van de laag onder de
reflector te schatten. De resultaten hebben we gepresenteerd als oppervlakten
die laten zien hoe dicht we de werkelijke waarden benaderen als functie van
de signaalruis verhouding, de diepte van de reflector en de totale hoeveelheid
beschikbare data.
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