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Summary

High-resolution reservoir characterization

by seismic inversion with geological

constraints

Fluvio-deltaic sedimentary systems are of great interest for explo-
rationists because they can form prolific hydrocarbon plays. However,
they are also among the most complex and heterogeneous ones encoun-
tered in the subsurface. Reservoirs in clinoform systems are difficult
to characterize because they show two main types of complexity: com-
plex sedimentology and poor seismic imaging. The former is due to
complex internal architecture with many small sedimentary elements
often at a sub-seismic scale. Poor seismic imaging occurs because the
internal layers of the clinoform often do not differ much in their acous-
tic properties, in addition, they have thicknesses that are below the
vertical resolution of seismic data, and therefore such features do not
show up very well on seismic images. Obviously, the most unfavorable
situation occurs when both conditions interact.

The static model of a fluvio-deltaic (clinoform) reservoir is extremely
important because it plays a critical role in the field development plan-

xi



xii Summary

ning. There are many ways to build a static model but the most
effective way is by integrating seismic and well data through the con-
struction of an acoustic impedance model by inversion of seismic data
within a sequence stratigraphic framework.

There are several reasons to integrate well-log data into the inverse
process in the reservoir characterization workflow, such as the inte-
gration of different sources of information in a common earth model,
the estimation of the seismic distortion (also known as the wavelet
filter), etc. In addition, the low vertical resolution of seismic data is
an important motivation to integrate well-log information into the in-
verse process and thereby complement the relatively dense horizontal
coverage of seismic data with high-resolution borehole data (Van Riel
and Mesdag, 1988; Van Riel and Pendrel, 2000; Van Riel, 2000; Bosch
et al., 2009).

Another potential benefit of seismic inversion is the ability to incorpo-
rate structural and stratigraphic information of the reservoir in order
to differentiate between similar mathematical solutions on the basis of
their geological viability.

We present two different inversion approaches for poststack, time mi-
grated seismic data and apply them to a clinoform sequence in the
North Sea.

Both inversion methods are not fully 2D, but more than a series of
independently processed 1D inversions. To stress the enforced con-
tinuity along the geological structure, we use the name pseudo 2D
inversion. The methods use well data as a priori constraints but differ
in the way they incorporate structural information. One method uses
a discrete layer model from the well that is then propagated laterally
along the clinoform layers, which are modeled as sigmoids. The second



xiii

method uses a constant sampling rate from the well data and employs
horizontal and vertical regularization parameters for lateral propaga-
tion. Both methods obtain an acoustic impedance image with a high
level of detail. The first method has a low level of parameterization
embedded in a geological framework and is computationally fast. The
second method has a much higher degree of parameterization but is
flexible enough to detect deviations in the geological settings of the
reservoir, however there is no explicit geological significance and it is
computationally much less efficient. Forward seismic modeling of the
two inversion results indicates a good match of both methods with the
actual seismic data.

The methods are especially considered to be useful when seismic data
alone do not reveal the actual detailed reservoir architecture, which
can be the case either because of their low vertical resolution or ex-
ceedingly thin layering.

Daria Tetyukhina
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Samenvatting

Hoge-resolutie reservoir karakterisatie

door seismische inversie met geologische

voorwaarden

Fluvio-delta sedimentaire systemen zijn van groot belang voor explora-
tie-geofysici omdat ze producerende koolwaterstoffen vormen. Echter,
ze behoren ook tot de meest complexe en meest heterogene syste-
men die men aantreft in de ondergrond. Reservoirs in een clinoform
sequentie zijn moeilijk te karakteriseren vanwege twee complicerende
factoren: complexe sedimentologie en slechte seismische beeldvorm-
ing. De eerste factor is te wijten aan de complexe interne architectuur
met veel kleine sedimentaire elementen, vaak op een sub-seismische
schaal. Slechte seismische beeldvorming is een gevolg van het feit dat
de akoestische eigenschappen van de interne lagen van een clinoform
onderling vaak niet veel verschillen. Bovendien liggen de laagdiktes
veelal onder de vertikale resolutie van de seismiek en daarmee verschij-
nen dergelijke interne structuren niet goed op de seismische beelden.
Vanzelfsprekend is de meest ongunstige situatie wanneer beide eigen-
schappen tegelijk optreden.

xv
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Het statische model van een fluvio-delta (clinoform) reservoir is zeer
belangrijk, omdat het een essentiële rol speelt in de planning om een
veld te ontwikkelen. Er zijn veel manieren om een statisch model te
bouwen, maar de meest effectieve combineert seismiek en put-data
bij het bouwen van een akoestisch impedantie model door middel van
inversie van de seismische data binnen een sequentieel stratigrafisch
kader.

Er zijn verschillende redenen om log-gegevens van putten te gebruiken
tijdens het inversie proces in de reservoir karakterisatie procedure, bij-
voorbeeld de integratie van verschillende put-gegevens in een gemeen-
schappelijk model van de aarde, de schatting van de seismische ver-
vorming (ook wel bekend als het wavelet-filter), enz. Ook een belang-
rijke reden om log-gegevens uit de put te integreren in het inversie
proces is de lage verticale resolutie van de seismiek, die samen met
de hoge-resolutie boorput gegevens een aanvulling geeft op de relatief
hoge horizontale dekking van de seismische data (Van Riel and Mes-
dag, 1988; Van Riel and Pendrel, 2000; Van Riel, 2000; Bosch et al.,
2009).

Een ander potentieel voordeel van seismische inversie is de mogelijk-
heid om structurele en stratigrafische informatie over het reservoir mee
te nemen, zodat onderscheid gemaakt kan worden tussen gelijkwaar-
dige wiskundige oplossingen op basis van hun geologische relevantie.

We presenteren twee verschillende benaderingen voor inversie van post-
stack, tijdsgemigreerde seismische data en passen deze toe op een cli-
noform sequentie in de Noordzee.

Beide inversie methodes zijn niet volledig 2D, maar wel meer dan een
reeks van onafhankelijk uitgevoerde 1D inversies. Om de opgelegde
continüıteit langs de geologische structuur te benadrukken, gebruiken
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we de naam pseudo-2D inversie. De methodes gebruiken put-gegevens
als a priori restrictie, maar verschillen van elkaar in de manier waarop
zij de structurele informatie verwerken. De ene methode maakt ge-
bruik van een discreet gelaagd model gebaseerd op de put-gegevens, die
vervolgens lateraal worden gedistribueerd langs de lagen van de clino-
form, die als sigmöıdes zijn gemodelleerd. De tweede methode maakt
gebruik van een equidistante bemonstering van de put-gegevens en
past horizontale en vertikale regularisatie toe voor de laterale distribu-
tie. Beide methodes leiden tot een akoestisch impedantie beeld met een
hoge mate van detail. De eerste methode heeft een lage parametrisatie-
graad ingebed in een geologisch kader en is snel te berekenen. De
tweede methode heeft een hogere mate van parametrisatie, maar is
flexibel genoeg om afwijkingen te detecteren in de geologische opbouw
van het reservoir. Echter, deze methode maakt geen gebruik van ex-
plicite geologische kennis en is rekenkundig minder efficient. Voor-
waarts seismisch modelleren uitgaande van de twee inversie resultaten
geeft voor beide methodes een goede gelijkenis met de werkelijke seis-
miek.

De methodes zijn vooral van belang voor situaties waarin de seismiek
alleen niet de daadwerkelijke gedetailleerde reservoir architectuur laat
zien, hetzij vanwege de lage verticale resolutie, hetzij vanwege de ex-
treem dunne gelaagdheid.

Daria Tetyukhina
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Chapter 1

Introduction

Three criteria should be fulfilled for oil and gas accumulations to oc-
cur, namely the presence of a porous reservoir rock with appropri-
ate geological structure, an effective seal and a mature source rock.
The search for oil and gas usually focuses on sedimentary basins since
source rocks are always sedimentary rocks (Luthi, 2008).

Although estimates of the global hydrocarbon reserves have increased
over time with improvement of technology, the rate of discovery per
year still remains smaller than the rate of consumption. Most oil and
gas fields that could be discovered by applying basic technologies, like
seismic exploration, combined with conceptual understanding of hy-
drocarbon systems, seem to have been discovered by now. The appli-
cation of these technologies to oil and gas resources which are trapped
in the remaining reservoirs is not straightforward (Cacas et al., 2008).

The availability of a large amount of 2D and 3D seismic data and
wells as well as sufficient computer potency nowadays, makes feasible
a construction of a coherent and consistent geological model of the
hydrocarbon reservoir using an advanced technology based on their

1



2 Introduction

interpretation and their integration.

Inversion of seismic data is a well known oil- and gas-industry tool used
for refining structural interpretation and reservoir geometry, property
prediction, as well as reservoir characterization.

1.1 Introduction to Inversion

The inference of subsurface properties from measured data is identi-
fied with the solution of a so-called ‘inverse problem’ and this topic
has been under development by geophysicists since the origin of their
profession. A growing body of theory, along with the ever increas-
ing computer power, were the driving forces for the improvement of
geophysical inversion methods. Until the early 1960s geophysical in-
version was carried out almost exclusively within the geophysicist’s
brain. Since then, geophysical inversion methods became much more
quantitative, versatile and efficient1.

Inversion is capable of handling different kinds of geophysical data
such as seismic, potential field, borehole data etc. For every specific
case of inversion the assumption is made that a specific physical law
holds. For the case of seismic inversion, this law is the wave equation
or one of its numerous approximations. Thus, algorithms based on this
physical law enable us to invert the measured data for the subsurface
characteristics, which gave rise to these observations in the first place.

According to Sheriff (2002), inversion can be defined as a technique
solving for a spatial distribution of parameters which could have pro-
duced an observed set of measurements. For the seismic case, the

1This section contains excerpts from an overview paper on geophysical inversion
by Treitel and Lines (2001)
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observations consist of the so-called physical signature of a subsurface
structure: the structure’s reflected (or scattered) as a wave field due
to a seismic source signal.

The inversion problem is almost always linked to forward modeling.
The ‘forward problem’, consists of the determination of the data that
would be measured for a given subsurface configuration, under the
assumption that given laws of physics hold. In the case of seismic ex-
ploration, forward modeling makes use of a mathematical relationship,
such as the wave equation, to synthesize an earth model’s response to
an excitation of a pulse of acoustic energy. It is of course crucial to
choose a proper model parameterization and a forward modeling pro-
cedure that can adequately describe the observations. Such models are
defined by a set of parameters, which for the acoustic case, are layer
velocities and layer densities. Forward modeling is then implemented
with a numerical algorithm that produces a synthetic seismogram,
such as a seismic ray tracer, a finite difference, or a finite-element
wave-equation solver. Defining the number of model parameters to be
used and their impact on the entire result is another critical issue. The
choice of the ‘right’ model is crucial and depends on the exploration
problem at hand. However, it has been shown in the literature that
even assuming that the model choice is adequate, numerous problems
still remain. In fact, Jackson (1972) referred to inversion as the ‘inter-
pretation of inaccurate, insufficient, and inconsistent data’.

Although seismic inversion in various forms has been around as a vi-
able exploration tool for more than 40 years, the discussion on inver-
sion nomenclature is still ongoing. A very good overview is given by
Pendrel (2001), who tried to classify the seismic inversion approaches
based on the form of the objective function to be minimized. Later,
Merletti and Torres-Verdin (2006) classified all seismic inversion pro-
cedures that have been reported in the open literature into two main



4 Introduction

categories: geostatistical and deterministic methods. Geoscientists
tend to use deterministic inversion methods as their first choice to
characterize seismic data and to retrieve rock properties.

Due to the ill-posedness of inverse problems, the obtained solutions are
not unique; even worse, there is an infinite number of solutions that
satisfy the data within prescribed error bounds (Cary and Chapman,
1988).

In order to find the best geophysical and geological solution from the
large number of available mathematical solutions, other conditions
should be introduced (Van Riel and Pendrel, 2000).
Deterministic seismic inversion that employs Bayes’ rule provides a
simple framework that integrates the information from all available
measurements into a consistent image of the reservoir, and constrains
these solutions to be biased toward an a priori knowledge about the
subsurface parameters. One of the ways to express those constraints is
in the form of multidimensional probability density functions, whose
dimensionality is equal to the number of parameters describing a given
model (Duijndam, 1988). Prior probability density describing prior
knowledge (or prejudices) about the model parameters is usually com-
bined with a ‘likelihood function’, which is the misfit between the
model response and the observed seismic data. A one-dimensional
example of a prior probability density function is a Gaussian curve
whose peak corresponds to the most likely value of a given model pa-
rameter. Its width determines the range of values that this model
parameter can possess. According to Bayes’ rule the peak (or peaks)
of the resulting multidimensional a posteriori probability distribution
to a given inverse problem should disclose the most likely set of model
parameter values. These values produce a synthetic model response
satisfying the observed seismic data within prescribed error bounds.
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1.2 Choice of Geological Objects

In this study, a simple yet common geological building block is used
to develop a novel approach to seismic inversion: the clinoform. ‘Cli-
noform’ is a term originally introduced by Rich (1951) to describe the
shape of a depositional surface at the scale of the entire continental
margin.

In the current geologic literature, the term clinoform refers to stratal
packages with oblique internal layering (Cattaneo et al., 2004). Cli-
noform systems are typical progradational patterns that occur over
a wide range of scales and in a broad spectrum of depositional en-
vironments, from centimeters (like sand dunes) to many kilometers
(such as entire continental shelves), all of which may be conducive to
form potential reservoirs. In the study of modern continental margins,
clinoforms are widely recognized as one of the fundamental building
blocks of the stratigraphic record.

Large-scale clinoform geometries originate when supply exceeds the
available accommodation and sediment tends to build basinwards. Cli-
noforms develop typically at the front of river deltas or in subaqueous
deltas. Subaqueous deltas are characterized by an overall sigmoidal ge-
ometry in sections perpendicular to the shore, submerged offlap break
(and lack of subaerial exposure of the topset), muddy lithology, and
high sediment accumulation rates (Cattaneo et al., 2003). Changes in
clinoform thickness, internal geometry, and style of superposition of
multiple clinoforms provide information regarding long-term margin
subsidence, sea-level change, and short-term fluctuations of sediment
supply (Cattaneo et al., 2004).
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1.3 Research Challenges

1.3.1 Statement of the Problem

Reservoirs in clinoform systems are difficult to characterize because
they show two main types of complexity: complex sedimentology and
poor seismic imaging. The former is due to complex internal archi-
tecture with many small sedimentary elements often at a sub-seismic
scale. Poor seismic imaging occurs because the internal layers of the
clinoform often do not differ much in their acoustic properties, in ad-
dition, they have thicknesses that are below the vertical resolution of
seismic data, and therefore such features do not show up very well
on seismic images. Obviously, the most unfavorable situation occurs
when both conditions interact.

The static model of a fluvio-deltaic (clinoform) reservoir is extremely
important because it plays a critical role in the field development plan-
ning (Cacas et al., 2008). There are many ways to build a static model,
from basic interpolation of well log data within a structural framework
to more advanced procedures that incorporate seismic data. The ba-
sic interpolation method is prone to large errors, especially when the
number of wells available is small. Wells may have been drilled into
particularly good or poor reservoir rocks. Extrapolation of properties
from such wells without any guidance concerning the lateral variation
in quality of the reservoir rocks may lead to significant over- or under-
prediction of hydrocarbon volumes (Marzuki et al., 2000). The most
effective way of building an integrated model from seismic and well
data is probably through the construction of an acoustic impedance
model by inversion of seismic data within a sequence stratigraphic
framework (Cacas et al., 2008). Acoustic impedance is often related
to reservoir properties such as porosity, lithology and pore fluids. How-
ever, an impedance model derived from deterministic inversion of seis-
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mic data can sometimes fail to meet all objectives of reservoir char-
acterization; specifically the layers of interest may not be adequately
resolved by the seismic impedance data. A dominant wavelength at
reservoir depth in the order of several tens of meters is quite common
for an exploration seismic survey (Yilmaz, 2000). This seriously limits
the minimum layer thickness that still can be discerned in the seismic
image. According to Widess (1973) and Badley (1985), the theoret-
ical vertical resolution of seismic data is approximately a quarter of
the wavelength.

There are several reasons to integrate well-log data into the inverse
process in the reservoir characterization workflow, such as the inte-
gration of different sources of information in a common earth model,
the estimation of the seismic distortion (also known as the wavelet
filter), etc. In addition, the low vertical resolution of seismic data is
an important motivation to integrate well-log information into the in-
verse process and thereby complement the relatively dense horizontal
coverage of seismic data with high-resolution borehole data (Van Riel
and Mesdag, 1988; Van Riel and Pendrel, 2000; Van Riel, 2000; Bosch
et al., 2009).

Another potential benefit of seismic inversion is the ability to incorpo-
rate structural and stratigraphic information of the reservoir in order
to differentiate between similar mathematical solutions on the basis of
their geological viability (Van Riel and Pendrel, 2000). Cacas et al.
(2008) have described a technique of stratigraphic modeling and in-
version through a numerical simulations of geological processes. of
the clinoforms. Specifically, their study illustrates the sensitivity of
the seismic image both to subtle features of the geological model and
to the parameters of the seismic modeling on the synthetic examples.
Merletti and Torres-Verdin (2006) performed an experiment in which
they applied deterministic and geostatistical prestack seismic inversion
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algorithms to characterize the complex progradation of a fluvio-deltaic
sequence. They found that when seismic data does not permit estima-
tion of the actual reservoir geometry, either because of its low vertical
resolution or because of the high degree of facies amalgamation, the
reliability of the inversion result becomes increasingly dependent on a
priori models as well as on the choice of the inversion parameters. In
such cases, inversion loses its ability to narrow down the likely range
of solutions in model space that simultaneously honor both the seismic
amplitude data and the well logs. The use of reliable a priori models
in combination with a solid stratigraphic framework thus effectively
decreases the degree of non-uniqueness of inversion results (Merletti
and Torres-Verdin, 2006).

1.3.2 Research Objectives

The objective of this study is to develop a comprehensive, quantita-
tive, inversion method which allows high-resolution characterization
of fluvio-deltaic sequences. Specifically, the study focuses on fluvio-
deltaic clinoform systems which are known to have complex internal
lithofacies distributions that are difficult to image with the seismic
method. However, these sedimentary systems often contain prolific
oil and gas reservoirs, and their accurate characterization is therefore
important in exploration and production.

In this study two inversion methods are developed and compared with
each other that differ in the way they employ stratigraphic constraints.
The novelty of the first method is that the seismic data and well logs
are integrated with a stratigraphic model constructed with quantita-
tive knowledge of the reservoir architecture. The innovation of the
second method lies in its goal to adopt a ‘super-resolution’ technique
that favors sparse solutions for the clinoform characterization (Van
Eekeren et al., 2008). Both inversion methods are not fully 2D, but
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more than a series of independently processed 1D inversions. To stress
the enforced continuity along the geological structure, we use the name
pseudo 2D inversion.

The potential benefits from these new approaches are that the imple-
mentation of the structural and the stratigraphic information accom-
panied by high vertical resolution well data to the acoustic inversion
technique considerably narrows the solution space of the inverse prob-
lem and increases the confidence in the final result. The inversion
methods are applied to a 3D seismic data set of an Upper Cenozoic
fluvio-deltaic system in block F3 in the North Sea.

1.4 Outline of the Thesis

The proposed approaches integrate techniques from different disci-
plines, namely geophysics, geology and image analysis, and as a con-
sequence a wide range of topics is covered in this thesis. The thesis is
organized as follows: the current chapter gives an introduction to the
research challenges and objectives of this thesis.

Chapter 2 presents an introduction to forward and inverse problems,
followed by a theoretical background of the inversion approach and
optimization techniques with respect to seismic applications.

Chapter 3 describes a 3D seismic dataset on which the methods are
tested. The data set comes from the Upper Cenozoic fluvio-deltaic
system of the F3 block in the North Sea. The chapter includes the ge-
ological framework, the available data, and their interpretation. Spe-
cial attention is paid to the selection of the seismic data to be used
for inversion tests from the total 3D volume. Since the source wavelet
was not supplied with the data set, an additional section is devoted
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to the wavelet extraction from the data. In addition, for the reader’s
convenience, the chapter is prefaced with an overview of the structures
and characteristic features of clinoform systems.

Chapter 4 presents a detailed description of the first, stratigraphic
model-based, low-parametrization seismic inversion method and its
application to the data set from the North Sea. The chapter is di-
vided into three parts.

The first part describes the application of the 1D inversion for the
thicknesses and acoustic impedances of the layers at the sub-seismic
scale close to the well location. The second part is devoted to pa-
rameterization of the fluvio-deltaic layers of a ‘system’, which is the
most important part of this method. The clinoform elements are geo-
metrically modeled and estimated in the area of interest. In the third
step these clinoform models guide the inversion for a comprehensive
clinoform sequence characterization. The chapter ends with the pre-
sentation of the results.

The second, model-free seismic inversion method with sparsity promo-
tion and its application on the field data set are discussed in Chapter
5. This inversion method is based on gradient operators. The objec-
tive function is modified by adding vertical and horizontal operators.
A short introduction to the mathematical background is given in the
beginning. Analogous to the structure of Chapter 4, first the 1D inver-
sion application is presented for sub–seismic clinoform characterization
close to the well location. The technique is then extended to a pseudo
2D case, followed by a discussion of the results.

Finally in Chapter 6 the advantages and limitations of both meth-
ods are discussed, followed by conclusions. Furthermore a number of
recommendations for future research is given.



Chapter 2

Theoretical Background

2.1 The forward and inverse problem

One of the main goals of geophysical sciences is to make inferences
about physical parameters of the subsurface from the recorded data1.
For a given subsurface model wave propagation theory can provide the
means for computing a simulated data set; this process is known as
the ‘forward problem’. In exploration seismic for example, the forward
model consists of a model of the subsurface, source and receiver char-
acteristics, and the laws of physics that describe seismic wave propaga-
tion. Inverse problems apply to the opposite situation, where the aim
is to reconstruct a model of the subsurface from a set of measurements.
For applications in seismic exploration, the inverse problem is formu-
lated as the problem of determining subsurface parameters, given the
recorded seismic data (including the source and receiver characteris-
tics) and the theory describing seismic wave propagation.

For seismic exploration the most straightforward and general formu-

1This section contains excerpts from two papers on geophysical inversion by
Snieder (1998) and Treitel and Lines (2001).

11
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Inverse Problem

Model m Data d

Forward Problem

Figure 2.1: The conventional division of a problem into a forward and
an inverse problem, modified from Snieder (1998).

lation leads to a full 3D non-linear inverse problem for the complete
multi-offset data set. Attempts to solve this problem have been made
already more than 25 years ago by Lailly (1983) and Tarantola (1984).
Due to the complexity of the wave propagation theory a number of
simplifying assumptions are made in the present inversion technique.
Most of these simpler approaches can be formulated as parametric in-
verse problems (Duijndam and Drijkoningen, 1997).

In practice, we always have to deal with uncertainties and therefore an
inverse problem should be formulated using probability theory. Well-
known problems in inversion are non-uniqueness, ill-posedness, and
instability. Moreover, the data, source-receiver characteristics, noise
models, forward model, data processing, etc., are imperfect. All max-
imum likelihood methods use all this information. Methods that use
Bayes’ rule, by contrast, employ prior information about the solution
to solve the problems mentioned.
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2.1.1 Forward modeling — 1D convolution model

In this study we will consider the situation that the observational
outcome of an experiment (seismic data) is given by a discrete data
set, that is gathered in a vector y. Similarly, the theory predicting
the experimental outcome (the simplification of the wave propagation
theory) consists of a set of functions, that are gathered in the vector
function g(x), with the vector x containing the model parameters.
The theory predicts the measured outcome, which is formulated in
the forward model:

y = g(x). (2.1)

The predicted values can not, in general, be identical to the observed
values for two reasons: measurement uncertainties and modeling im-
perfections. These two very different sources of error generally produce
uncertainties with the same order of magnitude, because, due to the
continuous progress of scientific research, as soon as new experimental
methods are capable of decreasing the experimental uncertainty, new
theories and new models arise that allow us to account for the obser-
vations more accurately (Tarantola, 2005). Apart from the fact that
the simplified version of the theory is not perfect, the measured data
are always contaminated by all kinds of errors. Therefore, in common
practice, a noise term n is added to the right-hand side of the equa-
tion. This yields a model that is called the standard reduced model,
given by

y = g(x) + n. (2.2)

A simple model of the seismic response is known as the 1D convolu-
tion model. In this model, the subsurface is assumed to consist locally
of a stack of near-horizontal, homogeneous layers (Figure 2.2). The
thickness of the layers is described in terms of two-way traveltimes.
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The physical property of the layers can be defined by their acoustic
impedance which, for normal incidence plane waves, is the product of
the density and the compressional propagation velocity.

Ignoring transmission effects and multiple reflections, the response s(t)
as a function of time t is the sum of reflected wavelets w(t), with time
delays τj and reflection coefficients rj. Under the assumption of nor-
mal incidence of the downgoing waves on the reflectors, the reflection
coefficients rj are determined by the acoustic impedances Zj,

rj =
Zj+1 − Zj

Zj+1 + Zj

. (2.3)

If the time delays are also unknown parameters to be estimated then
the function g(x) becomes a nonlinear function of x. The vector
g(x) yields the samples of the synthetic trace s(t) (Duijndam and
Drijkoningen, 1997),

s(t) =
nr∑

j=1

rjw(t − τj), (2.4)

where nr is the number of reflectors (the interfaces separating the
layers).

2.1.2 Existence and non-uniqueness of solution

The model that we aim to determine in geophysics, like in many inverse
problems, is in general a continuous function of the space variables,
having virtually infinitely many degrees of freedom. The amount of
data that can be used for the determination of the model, in a realistic
experiment, is by definition finite and is limited by the number of
measurements. As a result, the data cannot have sufficient information
to determine the model uniquely. Necessarily, bandwidth limitations
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Figure 2.2: The one-dimensional structure of the subsurface. Modified
from Duijndam and Drijkoningen (1997).

or other restrictions (such as a Taylor series expansion of finite order)
should limit the possible number of solutions. In the modern literature
this problem is known as ‘finite innovation rate’ of signals (Vetterli
et al., 2002).

Non-uniqueness In real world experiments when a limited amount
of data is available to reconstruct a model with possibly infinitely many
degrees of freedom, the inverse problem can become non-unique in the
sense that there are many models that explain the data equally well.
A restriction on the possible outcomes should be imposed to solve the
non-uniqueness (Vetterli et al., 2002).

Given measurements y and a forward model g(x) the only way of
saying something about x must lie in the comparison of y with g(x).
Suppose we have found two parameter vectors x1 and x2 such that
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both generate predicted data g(x1) = g(x2) that match in some op-
timal sense the measured data y. In this case we have no reason to
prefer x1 to x2 or vice versa, so we have a non-uniqueness problem.
There is not sufficient information in the combination of theory g(x)
and data y to distinguish between x1 and x2. The situation may even
be worse and an infinite set of parameter vectors x may yield the same
optimal predicted data set g(x).

In general there are three reasons why the estimated model differs
from the true model. The first reason is the discussed non-uniqueness
of the inverse problem. The second one is that real data sets are always
contaminated by noise. The third one is due to the simplifications in
the forward and inverse modeling.

Existence The second problem of the inverse theory refers to the
question of whether there is at least one model that is consistent with
the data. It may seem that if the data are obtained from real mea-
surements the existence problem is not relevant since in that case the
presence of the true model (that is responsible for the recorded data)
guarantees that there is at least one model that is consistent with the
data. However, the facts that real data are always contaminated by
noise and models are kept rather simple to keep them computationally
tractable, complicates the situation.

A large discrepancy between y and g(x) may be a reason to reject
g(x) and replace it by one that reduces the difference between y and
g(x) alternative, if available. More often, the forward model is an
approximation to the underlying laws of physics or incomplete in the
sense that it does not describe all phenomena present in the data.
Therefore, the inability to match modeled seismic data with measured
data containing noise will not immediately lead to a falsification of the
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fundamental laws of wave propagation but rather to recognize that our
modeling of the seismic experiment remains an approximation to the
real experiment and model selection is seriously hampered by noise.
As a result, it is common practice, in the case of noise-contaminated
data to not aim to fit the data perfectly but fit it within the data errors.

From a parameter estimation point of view these are fundamental
problems. In practice, these problems can be overcome by using a
priori information about the parameters to be estimated. The most
fundamental and straightforward method is the so-called deterministic
inversion approach that employs Bayes’ rule as a basis.

2.2 Theory of seismic inversion

In the seismic inversion technique that employs Bayes’ rule, the so-
lution of the inverse problem is obtained by integrating information
concerning data, a priori information about the parameters, and theo-
retical relations2. Since uncertainties in information play an important
role, probability theory is used for modeling. An excellent introduction
to inversion and reference to seismic applications was given by Duijn-
dam (1988); Debeye and van Riel (1999); Van Riel (2000); Bosch et al.
(2009).

2.2.1 About Bayes

Thomas Bayes was born in a religious family in London in 1702. His
father, the Rev. Joshua Bayes, was one of the first six Nonconformist
ministers to be ordained in England. Thomas was also ordained a

2This section contains excerpts from two tutorials on Bayesian inversion by
Ulrych et al. (2001) and Scales and Tenorio (2001) as well as from an overview
paper on Bayesian inversion by Duijndam (1988).
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Nonconformist minister and assisted his father until he became a Pres-
byterian minister in the late 1720s. Thomas Bayes died in 1761 in
England, misunderstood by many but on a probabilistic par with an
immortal, Pierre Simon Marquis de Laplace. Bayes’ theory of proba-
bility appeared posthumously in ‘Essay Towards Solving a Problem in
the Doctrine of Chances’, published in the Philosophical Transactions
of the Royal Society of London in 1764.

Bayesians versus frequentists In the Bayesian paradigm, prob-
ability distributions are the fundamental tools. Scales and Tenorio
(2001) provide a good comparison of Bayesians versus frequentists.
Bayesians speak of the probability of a hypothesis given some evidence
and conduct pre-data and post-data inferences. Frequentists, on the
other hand, are more concerned with pre-data inference and run into
difficulties when trying to give post-data interpretations to their pre-
data formulation. In other words, uncertainty estimates such as confi-
dence sets are based on the error distribution, which is assumed to be
known a priori, and on a hypothetical repetition of the data gathering
process. Goutis and Casella (1995) discuss in detail the post-data in-
ference of frequentists. The choice of prior distributions is not always
well defined and in this case it would seem more reasonable to follow
a frequentist approach. However, it may also be that the determin-
ism that frequentists rely on in defining parameters may be ill-defined
(Goutis and Casella, 1995). So, which approach is better? Bayesians
are happy to point to some well-known inconsistencies and presumed
obstacles in the frequentist methodology to use the available prior in-
formation. Some Bayesians even go as far as claiming that anyone in
his/her right frame of mind should be a Bayesian. Frequentists, on the
other hand, complain about the sometimes subjective choice of priors
and about the computational complexity of the Bayesian approach.
For colorful discussions on the comparison of the two approaches, see
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Efron (1986) and Lindley (1975). Also see Rubin (1984) for ways in
which frequentist methods can complement Bayesian inferences.

2.2.2 Bayes’ rule as a basis for inverse problems

When we try to describe an observation with a mathematical model, it
will often contain free parameters whose values have to be estimated.
These parameters can be gathered in the vector x and the vector y

contains a discretized data vector. Suppose p(x,y) reflects the state
of information on x and y before measurements for y are obtained.
When data as a result of measurements determine the values for y

then the state of information on x should be represented by p(x|y),
which is given by Bayes’ rule:

p(x|y) =
p(y|x)p(x)

p(y)
. (2.5)

Here, p(x|y) is the so-called a posteriori probability, p(y|x) the like-
lihood function for observing y given the model parameters x, p(x)
the priori probability of the model parameters and p(y) a constant
scaling factor that does not depend on x. It is important to realize
that p(x|y) contains all information available on x given the data y

and therefore is in fact the solution to the inverse problem.

2.2.3 The likelihood function

The likelihood function p(y|x) gives the probability of the data, given
the parameters x. Most inverse problems can be treated using the
standard reduced model (Bard, 1973):

y = g(x) + n, (2.6)

where g(x) is the forward model, which can be nonlinear. The vec-
tor n contains the errors or the noise. Duijndam (1988) has shown
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that the approach of Tarantola and Valette (1982a,b), which distin-
guishes theoretical and observational errors on a more fundamental
level, yields the same result as the Bayesian approach under different
interpretations of theoretical and observational errors, suggesting that
this distinction is arbitrary. Therefore, the vector n represents the
errors and noise. For a more detailed discussion about the different
noise components impact on the inversion results see Tarantola (2005).
In case the noise can be assumed to be Gaussian with zero mean and
covariance matrix Cn the likelihood function is:

p(y|x) =
1

(2π)m/2|Cn|1/2
exp

{

−
1

2
(y − g(x))T C−1

n (y − g(x))

}

,

(2.7)

where m is the number of data points.

2.2.4 A priori information

Any type of information about the parameters that is available in-
dependently of the data can be used as a priori information and is
represented by p(x). A priori knowledge about parameters can be
divided in two terms: an idea about the values, but also the uncer-
tainties in these values. A Gaussian probability density function is the
most convenient way to describe this type of information:

p(x) =
1

(2π)n/2|Cx|1/2
exp

{

−
1

2
(x − xi)

T C−1
x (x − xi)

}

, (2.8)

where n is the number of parameters, xi is the mean of the distribution
and Cx is the covariance matrix, which specifies the uncertainties.
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2.2.5 Uncertainties

The covariance matrix C is defined by its elements:

C = E(x − µ)(x − µ)T =

∫

(x − µ)(x − µ)T p(x) dx, (2.9)

where µ is the vector with expected values of x (e.g., the priors or
mean) and superscript T denotes the transpose operator. The diagonal
elements of C are the variances σ2

i = E(xi − µi)
2 of the variables xi.

In the specific case that y is the time-migrated poststack seismic data
and a 1D forward model is used in the inversion, the covariance matrix
of the noise Cn contains temporal as well as spatial band-limitations.
When the latter are neglected, Cn has a diagonal block structure con-
taining blocks Cnk

. Each block is the covariance matrix for an individ-
ual seismic trace. The number of blocks are defined by the number of
seismic traces k in y. Under the assumption of white Gaussian noise
each individual covariance matrix Cnk

is defined by:

Cnk
= diag

{
σ2

nk

}
, (2.10)

where σnk
is the variance of the kth trace. If the a priori information

for the various parameters is uncorrelated, the covariance matrix of
parameter uncertainties is a diagonal matrix:

Cx = diag
{
σ2

x

}
, (2.11)

where σx is the vector of uncertainty variances.

2.2.6 Point Estimation

The inspection of the a posteriori probability density function (pdf)
through the whole of parameter space is impractical, if not impossible.
Therefore, a so-called point estimate can be computed. To estimate



22 Theoretical Background

the parameters in a least-squares sense, the mean of p(x|y) is obtained
(Bard, 1973):

x̂ =

∫

x p(x|y) dx. (2.12)

This estimator x̂ is called the least-mean-squared error, or the Bayes
estimator. The evaluation of equation (2.12) requires the computation
of p(x|y) through the whole parameter space. In most cases, this is
practically impossible. Therefore, an alternative and more practical
solution is to choose the maximum of the a posteriori density func-
tion, a value also referred to as the MAP estimation. When p(x|y)
is symmetrical and unimodal, the mean coincides with the mode and
the least-means-squared estimator is equivalent to the MAP estima-
tor. This estimator provides the most likely values of the parameters
given data and a priori information. For a uniform, a priori distri-
bution p(x), which is often taken as the state of null information, it
is easily seen that the maximum of the a posteriori density function
coincides with the maximum of the likelihood function. The MAP
estimation is then equivalent to the maximum likelihood estimation
(MLE). For more information about the asymptotic properties of the
MAP estimation and the MLE, we refer to Bard (1973).

2.2.7 Nonlinear least-squares estimation

Analytical results of the MAP estimation depend on the form of the
probability density functions involved. Assuming Gaussian distribu-
tions for the noise and the a priori information, we find that maximiz-
ing the product of p(y|x) and p(x) is equivalent to maximizing the
sum of the exponents or minimizing the function F (x), defined by:

F (x) = (y − g(x))T C−1
n (y − g(x)) + (x − xi)

T C−1
x (x − xi). (2.13)
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The first term is the so-called data mismatch and is the weighted L2-
norm of the residuals y−g(x). The second term is a weighted L2-norm
of the deviations of the parameters from their a priori mean values xi.
From a non-Bayesian point of view this term stabilizes the solution.
It is not present in maximum likelihood estimation. The relative im-
portance of data mismatch and parameter deviations is determined
by their uncertainties as specified in Cn and Cx. The model x that
minimizes F (x) should make g(x) close to y and at the same time
stay close to the a priori model xi.

2.2.8 The probability density function selection

The important issue to consider is which type of pdf is to be used
for the noise and the a priori information. It has been shown by
Bard (1973) that the Gaussian probability density function has some
advantages, namely:

1. The distribution of the sum of a large number of identically
distributed independent random variables is Gaussian (central
limit theorem).

2. The Gaussian probability density function is able to approximate
the distribution of many repeated measurements in nature.

3. Given the mean and the covariance, the Gaussian probability
density function has the highest information content as deter-
mined by Shannon’s information measure, which is defined by
Shannon (1948), for a dimensionless pdf:

I = E
(
log p(x)

)
=

∫

p(x) log p(x) dx, (2.14)
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This shows that once the mean and the covariance are known,
we do not use more information than we legitimately know by
choosing the Gaussian pdf.

4. The Gaussian probability density function is mathematically as
well as computationally most convenient.

The first point refers to the data only. Point two may also apply to a
priori information, when information from several sources is combined.
The third point is a strong argument in favor of Gaussian pdf’s, be-
cause Shannon’s information measure has some attractive advantages
one would want to demand of such a measure. Of course, crucial ques-
tions arise whether or not a covariance matrix is available in practice.
Suppose an expert working on the problem has an idea about the un-
certainty of a priori information but it is still questionable whether the
uncertainty value is to be attributed to a standard deviation. Although
standard deviations are often used to indicate uncertainties in practice,
this usage must be based on the (implicit or explicit) assumption that
the underlying pdf has a form close to the Gaussian one. For this pdf,
the standard deviation is quite a reasonable measure of uncertainty
with the interval of (−σ, σ) corresponding to a 67% confidence inter-
val. The fourth point can be regarded as the most important argument
for us to use Gaussian pdf’s, since it is very convenient from a math-
ematical point of view, as well as because a lot of fast optimization
schemes have been introduced for the resulting least-squares problems.

The issue concerning the type of pdf for the noise present in the data
generates continuous interest. This issue represents a way of think-
ing that is typical for an objective interpretation of the concepts of
probability. In this interpretation a number of known (in the sense of
identified) or unknown processes constitutes a random generator cor-
rupting the data. There were some ideas proposed to try to find the
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pdf according to which the errors are generated. In reality however,
the dimension of the pdf is equal to the number of data points. Since
there is only one realization available, the pdf from it can never be
determined. Therefore, the assumption of repetitiveness is needed in
order to get the noise samples identically distributed, in order to be
able to say something about the form of the pdf. This assumption
however, can never be tested for its validity and is therefore meta-
physical rather than physical. It was proposed to follow another way
of reasoning in the subjective Bayesian interpretation (Barnett, 1982).
If the noise reflects our uncertainties concerning the combination of
data and theory, then the pdf should simply be selected such that our
knowledge is represented as accurately as possible. Because it is not
a trivial step by itself, the inspection of residuals after inversion may
give reason to modify the model or the parameters of the distribution
chosen.

2.3 Regularization

In general inverse problems there are two positive functionals, say A
and B. The first, A, measures something like the agreement of a model
to the data, or, a related quantity like the ‘sharpness’ of the mapping
between the solution and the underlying data. When A by itself is
minimized, the agreement or sharpness may become very good (often
impossibly good), but the solution becomes unstable, wildly oscillat-
ing, or in other ways unrealistic, reflecting that the first term alone
typically defines a highly degenerated minimization problem. That
is where the second term B comes in. It measures something like
the ‘smoothness’ of the desired solution, or a related quantity, that
parametrizes the stability of the solution with respect to variations
in the data, or a quantity reflecting a priori information about the
probability of a solution. B is called the stabilizing functional or reg-
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ularization operator and its quantities may reflect a priori information
regarding the solution found. In any case, minimizing the second term
(by itself) is supposed to give a solution that is ‘smooth’ or ‘stable’ or
‘likely’ — and that has nothing to do with the measured data (Press
et al., 2007). The single central idea in inverse theory is the prescrip-
tion:

min
x

{
A(y, g(x)) + λB(xi,x)

}
. (2.15)

Varying λ for positive values yields the so-called trade-off curve by
plotting values of A versus B at the optimal point of equation (2.15)
and parametrized by λ (see Figure 2.3). From these observations one
must find the ‘best’ value for λ according to some criterion, ranging
from fairly objective to entirely subjective (Press et al., 2007). Equa-
tion (2.15) has a natural Bayesian interpretation.
Perhaps the most common regularization scheme is the Tikhonov reg-
ularization. A weighted sum of A and B is formed using a weighting
factor λ and then the image xλ which minimizes this sum is found,

xλ = argmin
{
‖A‖2 + λ‖B‖2

}
. (2.16)

The regularizing parameter λ can be thought of as controlling the bal-
ance between minimizing the data misfit term and the regularizing
term. When λ is small, there is little weight put on the regulariz-
ing term, the data is described well and the solution is in general not
sparse. Conversely, when λ is large, the regularizer dominates the
minimization and the reconstructed image is smooth at the expense
of not fitting the data so well.

In the previously described method of Duijndam (1988) the relative
importance of data mismatch and parameter deviations is determined
by their uncertainties as specified by Cx and Cn. This only holds
when the estimation of the parameters’ uncertainties can be done quite
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Figure 2.3: Almost all inverse problem methods involve a trade-off
between two optimizations: agreement between data and solution, or
‘sharpness’ of mapping between true and estimated solutions (here de-
noted as A), and smoothness or stability of the solution (here denoted
as B). Among all possible solutions, shown here schematically as the
shaded region, those on the boundary connecting the unconstrained
minimum of A and the unconstrained minimum of B are the ‘best’
solutions, in the sense that every other solution is dominated by at
least one solution on the curve (Press et al., 2007).

accurately, otherwise some additional regularization is required. For
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such a case we can replace equation (2.13) by

F (x) = (y− g(x))T C−1
n (y− g(x)) + λ(x−xi)

T C−1
x (x−xi). (2.17)

The big question now is how to choose λ. For a linear inverse prob-
lem, perhaps the most convenient graphical tool for setting λ is the
well-known ‘L-curve’ method. When we plot log ‖y − g(x)‖2

2 versus
log ‖x − xi‖

2
2 we often get a characteristic L-shaped curve with a dis-

tinct corner separating the vertical and horizontal part of the curve
(Figure 2.4).

The rationale for using the L-curve is that regularization is a trade-off
between the data misfit and a penalty for solutions that violate the
prior knowledge we may have regarding the solution. In the vertical
part of the curve, the (x − xi) term is a very sensitive function of
the regularization parameters, because the solution is undergoing large
changes with λ in the attempt to fit the data better. On the horizontal
part of the curve, the solution is not changing much as λ is changed.
However, the data misfit is increasing sharply with more filtering. It
is desired to choose a solution which lies not too far to the right of the
corner (Figure 2.4). Here, both terms have approximately the same
importance, with a small preference for fitting the measurements.

2.4 Optimization

The measured and the theoretical geophysical responses are matched
by the use of a suitable optimization algorithm. All such algorithms
are designed to minimize the functional F (x) like defined in equation
(2.17). It is typical for many schemes to start out with an initial guess
of the model parameters, from which an initial model response can be
computed. As a second step, the optimization algorithm yields a set
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Figure 2.4: The generic form of the L-curve (Tan and Fox, 1996).

of updated parameter estimates, which are afterwards used as input
to the theoretical model, and the resulting new theoretical response
produces an improved match to the real data. If this happens, the
inversion is said to converge; if not, there are numerous alternative
means to achieve convergence, although none of the existing methods
always works. Due to the non-linearity of the model response as a
function of the model parameters, it is necessary to do these calcula-
tions iteratively, that is, the above procedure must be applied many
times in succession until a satisfactory degree of agreement between
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the theoretical and the recorded seismic responses has been achieved.

Although, in principle, any optimization technique that finds the min-
imum will do, in practice efficiency considerations usually make the
proper choice of an optimization algorithm a very important one.
Many textbooks have appeared on the subject of (local) optimiza-
tion, for example Gill et al. (1982); Scales (1985), or more recently
Tarantola (2004) and Griva et al. (2009).

Finding the minimum of the penalty function is an art in itself. In gen-
eral, one either uses a (steepest) descent method where one iteratively
updates an estimate of the model that minimizes the penalty function
by moving ‘downhill’ in one way or another, or one employs techniques
that sample the model space in many different locations as a way of
minimization. Descent methods can relatively easily be implemented
for large-scale inverse problems. The main drawback of this approach
is that for nonlinear inverse problems the penalty function may have
several minima (Figure 2.5). A descent method may lead to a model
estimate that corresponds to a local estimate of the penalty function
rather than the global minimum.

2.4.1 Simplex method

The simplex method is a direct search method that does not use nu-
merical or analytic gradients. The methodology of the simplex method
is given in Nelder and Mead (1965), with a discussion given in Gill et al.
(1982) and Woods (1985). It works on the principle of evaluating the
merit function on a set of M + 1 points called an M simplex. A sim-
plex is the simplest entity which encloses a ‘volume’ in M dimensions,
and the idea is to try to enclose the position of the minimum of the
merit function within the volume of the simplex. By applying a series
of transformations based on the function values at the vertices, the
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Figure 2.5: (a) The least-squares misfit function for a linear problem.
(b) The conventional view of the misfit function for a nonlinear inverse
problem (Snieder, 1998).

simplex moves downhill and shrinks until it is small enough to specify
the minimum position to the desired accuracy. The main advantages
of the simplex method are its simplicity, in that it only requires func-
tion evaluations, and its robustness to non-smooth merit functions.
This method uses only function values (no derivative values), and is
especially suitable for noisy functions. The disadvantage is its often
prohibitively slow speed when M is moderate or large (Tan and Fox,
1996).

2.4.2 Gradient-based method

In the Newton optimization methods both first and second order deriva-
tives of the cost function to be minimized are used. Derivatives should
be given whenever possible, as suggested by Scales (1985). When they
are not available they can be generated with finite difference tech-
niques. For second order derivatives, however, this may be too ex-
pensive and attractive alternatives are the quasi-Newton methods. In
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these methods, the Hessian matrix or its inverse is approximated at
each iteration, using an updating formula that uses the changes in
the gradient vector at subsequent iterations. Under the assumption of
Gaussian distributions for noise and a priori information, the process
of finding the maximum of the a posteriori probability leads to a (non-
linear) least-squares inverse problem. Special quasi-Newton methods
like Levenberg-Marquardt (Moré, 1978) can be devised when the func-
tion to be minimized is a sum of squares, which defines the maximum
of the a posteriori probability under Gaussian assumptions. The cost
function in the framework of the Levenberg-Marquardt method has a
format like minβ

∑N
i (χ − χi(β))2, where χ is the measurement and

χi(β) is the estimate depending on parameter β.

The (general) nonlinear problem is typically solved by an iterative
application of a given optimization algorithm. The problem is that in
order for convergence to the ‘correct’ subsurface model to take place,
the initial guess must be ‘close’ to the true solution. More generally,
there is a trade-off between resolution and noise suppression: a better
resolved (sharper) solution is achievable only at the price of poorer
noise suppression, and vice-versa. To put this yet in another way, we
always face a trade-off between a solution’s resolving power and its
ability to describe the observed data.



Chapter 3

Field Data Set

Fluvio-deltaic sedimentary systems are of great interest for explo-
rationists because they constitute potential hydrocarbon reservoirs.
However these systems are among the most complex and heteroge-
neous ones encountered in the subsurface. Geological bodies of inter-
est can have dimensions close to, or below the resolution of the seismic
dataset, which means only some of them are recognizable in a seismic
image.

3.1 Clinoform Systems

Stratigraphic signatures and stratal patterns in the sedimentary rock
record are a result of the interaction of tectonics, eustasy and cli-
mate. Tectonics and eustasy control the amount of space available for
the sediment to accumulate (accommodation), and tectonics, eustasy
and climate interact to control sediment supply and how much of the
accommodation is filled1. Clinoforms systems can result from these

1This section contains excerpts from a book on sequence stratigraphy by Emery
and Myers (2005).

33
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processes; they are a common feature in a basin-margin setting and
commonly have relatively flat topsets, sloping foresets (often termed
simply clinoforms) and relatively flat bottomsets (Figure 3.1).

Figure 3.1: Typical profile of a prograding basin-margin unit, compris-
ing topsets and clinoforms separated by a break in slope, the offlap and
bottom sets. Modified from Emery and Myers (2005).

Topsets are found at the proximal portion of the basin-margin profile
and are characterized by low gradients (< 0.1 degree). They often
effectively appear flat on seismic data and generally contain alluvial,
deltaic and shallow-marine deposits. The main break in slope in the
depositional profile occurs between the topset and the clinoform and
is called the offlap break. The shoreline can be located at any point
within the topset; it can coincide with the offlap break or may oc-
cur hundreds of kilometers landward. The clinoform forms the steeper
dipping portion of the basin-margin profile (> 1 degree) located basin-
ward of the topset. Clinoforms generally contain deeper water deposits
characteristic of the slope. The slope of the clinoform generally can
be easily seen on seismic data.

The bottom set describes the portion of the basin-margin profile at
the base of the clinoform characterized by low gradients and contain-
ing deep-water deposits.
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The profile of a clinoform system results from the interplay between
sediment supply and wave, storm and tidal energy in the basin. Sedi-
ment enters the proximal end of the profile through river systems and
is distributed across the topset area by wave- and/or current-related
processes. These may include fluvial currents, tidal currents, storm
currents, etc. However, the topset transport processes are effective
only at relatively shallow depths of up to few tens of meters. At its
edge, a slope develops that allows sediment transportation by gravity
process into deeper water. The clinoforms build up to an angle needed
to transport sediment downslope. This is strongly influenced by sedi-
ment size: coarse-grained sediment, with a higher angle of repose, will
build up steeper slopes than fine-grained sediment (Kenter, 1990).

3.1.1 Basin architecture

The rate of sediment supply controls how much and where accom-
modation is filled. The balance between sediment supply and rela-
tive sea-level rise controls whether facies belts prograde basinwards
or retrograde landwards. In order to understand the behavior of a
topset/clinoform margin through time it is necessary to consider the
balance between the rate of sediment supply and the rate of creation of
topset accommodation volume. The rate of change of accommodation
volume is a function of the magnitude of the sea-level rise multiplied
by the topset area (Milton and Bertram, 1995). If, during the same
time interval, the basin margin is supplied with a greater volume of
sediments, then the topset accommodation volume will be completely
filled, and sediment will deposit on the clinoforms causing the offlap
break to prograde basinwards (Figure 3.2)
Progradational geometries therefore occur when sediment supply ex-
ceeds the rate of creation of topset accommodation volume and facies
belts migrate basinwards. On seismic data progradation is expressed
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Figure 3.2: The increment of topset accommodation volume caused by
a rise in relative sea-level is equal to the product of the rise in relative
sea-level and the topset area. Modified from Emery and Myers (2005).

as clinoforms that show a basinwards migration of the offlap break.
Regression is a term that is used to refer specifically to a basinwards
movement of the shoreline. Aggradational geometries occur when sedi-
ment supply and rate of creation of topset accommodation volume are
roughly balanced. Facies belts stack vertically and the offlap break
does not migrate landward or basinward. Retrogradational geome-
tries occur when sediment supply is less then the rate of creation of
topset accommodation volume. Facies belts migrate landward and the
former depositional offlap break becomes a relict feature. Transgres-
sion is a term used to refer specifically to the landward movement of
the shoreline. These different types of clinoform profiles are shown in
Figure 3.3.
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Figure 3.3: Depositional architecture as a function of accommodation
volume and sediment supply (Emery and Myers, 2005).

3.1.2 The log response in clinoform systems

Trends in log response at any scale reflect trends in depositional energy,
and thus with patterns of sedimentary infill. Typical log trends are
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illustrated in Figure 3.4.

Figure 3.4: Idealized log trends, assuming saltwater-filled porosity.
The sonic assumes no cementation. Porous sands are slower than
shales in this example (Emery and Myers, 2005).

The cleaning-up trend shows a progressive upward decrease in the
gamma ray reading, representing a gradual upward decrease in clay
content. In shallow marine settings the cleaning-up motif is usually
related to an upward transition from shale-rich to sand-rich lithologies,
owing to an upward increase in depositional energy, upward shallowing
and upward coarsening.

The dirtying-up trend shows a progressive upward increase in the
gamma ray reading related to a gradual upward increase in the clay-
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content. This could be a lithology change, for example from sand
to shale, or an upward-thinning of sand beds in a thinly interbedded
sand-shale sequence. Both imply a decrease in depositional energy. In
shallow marine settings the dirtying-up trend often reflects the retreat
or abandonment of shoreline-shelf systems, resulting in upward deep-
ening and a decrease in depositional energy.

Boxcar log trends (also known as cylindrical motifs) are sharp-based
low-gamma ray units with an internally relatively constant gamma ray
reading, set within a higher gamma ray background. The boundaries
with the overlying and underlying shales are abrupt. The sonic read-
ing from the sand may be either a higher or a lower transit time than
in the shales, depending on cementation and compaction.

The bow trend (also known as barrel trend or symmetrical trend) con-
sists of a cleaning-up, overlain by dirtying-up trend of similar thickness
and with no sharp break between the two. It is generally the result of a
waxing and waning of clastic sedimentation rate in a basinal settings,
where the sedimentation is unconstrained by base level.

Irregular trends have no systematic change in either base line, and lack
the clean character of the boxcar trend. They represent aggradation
of a shaley or silty lithology, and may be typical of shelfal or deep wa-
ter settings, a lacustrine succession, or muddy alluvial overbank facies.

The log response of a system tract thus can vary significantly, de-
pending on where the well passes through the clinoform system. A
clinoform unit can be inferred from a cleaning-upwards pattern that
reflects upward shallowing. The base of the cleaning-up pattern can be
equivalent to a downlap surface. Confirmation that this log response
represents a prograding clinoform pattern could come from core or
biostratigraphic data supporting an upward-shallowing trend, because
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in clastic systems this can occur only through progradation, except
in special circumstances. Additional confirmation is best sought from
seismic data, with subsidiary data from dipmeter studies, and the in-
ferred setting within the basin and the stratigraphy (e.g., between
basinal facies below and basin-margin facies above).

The base of a clinoform unit is a downlap horizon. This may be
recognized as a distinct base to the cleaning-up unit, often with log
facies diagnostic of marine condensation, such as a high-gamma ray
shale, or a cemented horizon. In other cases the downlap surface is
more difficult to identify. The top of a cleaning-up clinoform trend
may be marked either by an abrupt increase in shale content (gamma
ray reading), resulting from abrupt deepening across the transgres-
sive surface, or it may be overlain by topsets. The log responses of
basinal units tend to be more symmetrical than the log response of
clinoforms or topsets. The exact nature of the log response depends
on the nature of the sediments; mud-rich basinal units tend to show a
symmetrical bow response, whereas sand-prone systems tend to show
a box-car or cylindrical log trend. In units thick enough to be resolv-
able on seismic data, breaks in the cleaning-up log profile generally
tie with breaks within the clinoforms. An abrupt increase in shale
content within the clinoform trend implies an abrupt upward jump to
a deeper facies, resulting from lobe switching or transgression during
relative sea-level rise. Similarly an abrupt decrease in the gamma ray
response may imply an abrupt jump to a shallower facies, and thus a
sequence boundary, a normal fault or a slump. The thickness of the
clinoform interval on the logs gives an approximate measure of the
clinoform height, and thus the basin water depth (modified by com-
paction, the effect of syn-depositional subsidence and other factors).

Topset units are formed by repeated cycles of filling of accommodation
space between the offlap break and the coastal onlap point, and they
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are seen as small-scale cycles on logs. Most common is the cleaning-up
motif, widely recognized in parasequences from marine settings. In the
cleaning-up motif the shale content decreases upwards, whereas pri-
mary porosity and bed thickness (as determined from microresistivity
logs) may increase upwards. On the gamma ray log the parasequences
are small-scale cleaning-up units, and the marine flooding surfaces are
abrupt upwards increases in gamma reading. Progradation, aggrada-
tion and retrogradation of the basin-margin system may be recogniz-
able from the way units are stacked into sets.

3.2 Geological Framework

The data set used in this study is from the F3 block in the Dutch
sector of the Southern North Sea. The entire North Sea region in the
Cenozoic era (Figure 3.5) is characterized by a thermally subsiding
epicontinental basin that was confined by land-masses apart from a
narrow seaway connecting the Norwegian-Greenland Sea in the North2.
At the end of the early Paleocene mainly chalky sediments were de-
posited in the region, but following it a sudden increase in supply of
siliciclastics occurred because of thermal uplift of the British Isles and
the compression of the central European Alpine foreland (Laramide
tectonic phase). Hence, the deposition of chalky sediments ceased
(Ziegler, 1990).

The Ringkobing-Fyn High had acted as a structural high since Per-
mian times and influenced the depositional patterns in the Cenozoic
(Figure 3.6). It separates the central and the southeastern North Sea
into two parts as the northern and the southern embayments respec-
tively.

2This section contains excerpts from two papers on Cenozoic deposits in the
North Sea by Sørensen et al. (1997) and Steeghs et al. (2000).
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Figure 3.5: The Cenozoic time period.

These embayments were connected towards the West by a deeper sea-
way located in the Central Graben area. The northern embayment
comprises the Norwegian-Danish Basin and the northern part of the
central Graben area. The southern embayment comprises the North
German Basin and the southern part of the Central Graben area. In
the northern embayment, the maximum depth to the Mid-Miocene
unconformity (MMU) in the Central Graben is approximately 1500 m;
these depths decrease considerably towards the east in the Norwegian-
Danish Basin and above the Ringkobing-Fyn High, where the Up-
per Cenozoic deposits are truncated by younger strata of Quaternary
age. In the central part of the southern embayment, the depth to the
Mid-Miocene unconformity is approximately 1000 m, from which it de-
creases towards the present Dutch and German coasts and towards the
southern rim of the Ringkobing-Fyn High. During the Middle Pleis-
tocene the Ringkobing-Fyn high lost its influence on sedimentation.

The Paleocene in the North Sea Basin reflects a deep-water stage re-
sulting from crustal subsidence combined with a general rise in the
eustatic sea level. However, the southern embayment was only lit-
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Figure 3.6: Mesozoic structures of the North Sea Basin, modified
from Ziegler (1988). The location of the study area is schemati-
cally indicated by the square (F3 block coordinates: N 54◦52’0.86 / E
4◦48’47.07).

tle influenced by regional subsidence. The transition from Paleocene
to Eocene was characterized by explosive volcanic activity that was
related to the northern North Atlantic-Norwegian-Greenland rifting.
This extensive volcanism resulted in well-correlatable ash falls in the
North Sea Basin. During the Late Eocene and Oligocene the North
Sea Basin was cut off from the Tethys ocean by the uplift of the British
Isles. This activity resulted in further regional uplift and relative sea
level fall, resulting in a local break on sedimentation. The shallow,
marine period continued until the Mid-Miocene. The Mid-Oligocene
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and Mid-Miocene sea level low-stands are reflected by truncational and
onlap surfaces. The Miocene succession is generally condensed away
from the coast.

During the Neogene, sedimentation rates exceeded considerably the
subsidence rate and the North Sea Basin was characterized by a pe-
riod of rapid deposition and shallowing of the basin (Van Boogaert
and Kouwe, 1993). The most important geological event in that pe-
riod was the developing of deltaic systems from the Fennoscandian
Borderline prograding towards the south and southwest into the basin
(Ziegler, 1990). The delta systems in the Southern North Sea region
can be categorized into two groups according to their sediment source.
Until the Early Pliocene, the main transport agent was the Baltic river
system that eroded the Fennoscandian High, transported it into the
present Baltic Sea and deposited coarse fluvial sediments (Kay, 1993).
Thereafter German rivers became the main transport agents in the
southern North Sea.

In the Quaternary period, the first glacial stage (Pretiglian) caused
a lowstand and consequently an important sedimentary hiatus at the
Plio-Pleistocene boundary. The deltaic deposition continued into the
Pleistocene with shifting depocentres that were influenced by sea level
fluctuations due to repeated glaciation and deglaciation cycles.

The structural development of the region was controlled mainly by
inversion tectonism in the Paleogene due to compression exerted from
the collision of the Apulia and the European plates (Laramide Phase).
On the other hand the local structural features are mainly gravity-
driven which caused syn-depositional halokinetic movements of the
Zechstein evaporates and salt-induced faulting (Clausen and Korstgard,
1993).
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3.3 Seismic Data

The seismic data available for this study are from the Dutch block F3
and were acquired to explore for oil and gas in Upper Jurassic–Lower
Cretaceous strata (Figures 3.7 and 3.8).

Figure 3.7: The Netherlands North Sea sector showing the location of
the F3 block. Modified from Schroot et al. (2005).

The 3D seismic survey is covering an area of approximately 16×24 km2.
The data set of this study covers only the younger sequences and has
become publicly available, accompanied by a monograph of Amin-
zadeh and de Groot (2006). The seismic data are post-stack time-
migrated data and therefore a function of two-way travel time. A
standard seismic data processing sequence was applied to the data.
The data volume consists of 646 in-lines and 947 cross-lines. The in-
line length is 23678.35 m and the in-line interval is 25 m. The cross-line
length is 16124.43 m and the cross-line interval is 25.03 m. The sam-
pling rate is 4 ms and the number of samples per trace is 462. The
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Figure 3.8: The northern part of the Dutch sector of the North Sea.
Block F3 is seen to the right. Locations of oil, gas and condensate
fields are indicated in gray. Modified from Schroot et al. (2005).

data was resampled with sampling rate 1 ms. The survey basemap is
shown in Figure 3.9.

3.4 Well Data

Well logs from four wells are available in the area. Their locations are
shown on the basemap of the seismic survey (Figure 3.9) and the well
names and coordinates are summarized in Table 3.1.

All wells have sonic and gamma-ray logs and only two wells (F02-01
and F03-02) have density logs measured. These logs were used to train
a neural network that was then applied to the wells F03-04 and F06-
01 to predict densities from sonic and gamma-ray logs (Figure 3.10).
Porosity (φ) was in all cases calculated from density (ρ) assuming a
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Figure 3.9: Basemap of the seismic survey.

Well name Surface X Surface Y Start depth End depth
m m m m

F03-04 623256.0000 6082586.0000 30.0000 1899
F06-01 607903.0000 6077213.0000 29.2608 1699
F03-02 619101.0000 6089491.0000 30.0270 2139
F02-01 606554.0000 6080126.0000 30.0000 3150

Table 3.1: Location of the wells
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matrix density of 2.65 g/cc, using the relation:

φ = (2.65 − ρ)/(2.65 − 1.05). (3.1)

Figure 3.10: Data from the wells: F03-04, F03-02, F02-01, F06-01.
From left to right for each well: Sonic, Density and Gamma ray logs.

3.5 Data Interpretation

The Cenozoic succession can be subdivided into two main packages,
separated by the Mid-Miocene Unconformity MMU (Figure 3.11).
They are distinct in their reflection characteristics, i.e., an indication
for different environments of deposition3.

3This section contains excerpts from a paper on Cenozoic deposits in the North
Sea by Steeghs et al. (2000).
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Figure 3.11: Summary of the main seismic sequence boundaries and
seismic sequences in the data volume. Modified from Steeghs et al.
(2000).

The seismic reflections between the base-Tertiary and the Mid-Miocene
unconformities are classified as package one, which corresponds to the
Lower Cenozoic succession. The reflections from the Mid-Miocene un-
conformity up to the sea bottom reflection form the Upper Cenozoic
Succession. This was further subdivided into two main packages, as
package two and package three. Package two consists of the reflections
from the layers between the unconformity and the Plio-Pleistocene
boundary. The Plio-Pleistocene boundary is the first parallel reflec-
tion to the unconformity after a thick zone of divergent reflections.
Package three corresponds to the Quaternary succession. Package two
is of most interest for us and therefore a more detailed seismic inter-
pretation is given in the following.

Package two consist of Neogene sedimentary units of the Upper Ceno-
zoic. The geometry of the reflection in it is much more complicated
than that in the Lower Cenozoic Succession. The sequence boundaries
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of the package on the seismic sections are identified by onlaps in the
up-dip direction and by downlaps in the down-dip direction. Package
two is a deltaic sequence which is subdivided into three sub-sequences,
subsequently termed Units 1, 2, and 3 and corresponding to three dif-
ferent stages of delta evolution in chronological order (Figure 3.12).

Figure 3.12: Map showing the position of the offlap break during Late
Miocene to Quaternary. The offlap break migrated hundreds of kilo-
meters into the southern embayment. From Sørensen et al. (1997).

Unit 1: This unit belongs to the first phase of the delta evolution above
the unconformity. The lower part of it is considered to consist of an
Upper Middle Miocene strata which onlaps onto the Mid-Miocene un-
conformity in the eastern part and downlaps to the west. The source
of sediment supply is in the eastern part of the area. In the direc-
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tion of downlap there is an increasing nondepositional hiatus above
the unconformity surface. This is determined by the successive termi-
nations of downlapping strata towards the west. The Upper Middle
Miocene strata fill a subtle depression caused by a salt diapir. Above
the Late Middle Miocene onlapping and downlapping units, a prograd-
ing reflection configuration shows significant deposition due to lateral
outbuilding. The middle segment of the Unit 1 has clinoforms, with
a shingled reflection pattern. A shingled reflection configuration is a
thin prograding seismic pattern, commonly with parallel upper and
lower boundaries (topsets and bottom sets) and with gently dipping
parallel internal reflectors, i.e., clinoforms that terminate by apparent
toplap and downlap. The successive clinoforms within unit 1 show lit-
tle overlap with each other and are evidence of progradation into shal-
low water. The angle and the height of the clinoforms provide an idea
on the water depth during deposition. Measurements show that their
height varies between 4 and 10 ms two-way travel time (≈ 3 − 9 m),
which indicates a very shallow water depth during deposition. The re-
flection strength values do not vary considerably along the clinoforms,
which is an indication for relatively homogeneous sedimentary mate-
rial. The high values of the reflection strength can indicate highstand
deposits (Gregersen, 1997).

Unit 2: This sequence belongs to the second phase of delta evolution.
The direction of progradation is towards the southwest during the
deposition (Sequence V in Figure 3.12) . The inclination of the reflec-
tion pattern is steeper than in other delta units and decreases towards
the North. It consists of sigmoid progradational reflection configu-
rations. This unit shows a prograding clinoform pattern formed by
superimposed sigmoid reflections. Stratigraphically it is interpreted
as thin, gently dipping strata with upper and lower segments-topsets
and bottomsets, and more steeply dipping thicker middle segments-
clinoforms. The topsets have a concordant relation with the overlying
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surface. The clinoforms form a lens-shaped depositional unit prograd-
ing in the downdip direction. The bottomsets approach to the under-
lying surface at very low angles where the strata become very thin.
The concordant relation of the topsets with the overlying unit shows
that the aggradation of the topsets was coincident with the prograda-
tion of the clinoform. This configuration is evidence of the relatively
low sediment supply and rapid basin subsidence to allow deposition
and preservation of the topset units. It is also attributed to the rela-
tively low energy sedimentation regime. The reflection strength values
of Unit 2 increase upwards.

Unit 3: This unit belongs to the end phase of delta evolution. The
reflection configurations of the unit are characterized by divergence.
The areal extent of the unit has a wedge shape. The divergent char-
acteristic of the unit is attributed to the lateral variation in the rate
of the deposition. In the West and Southwest the strata are thinning
and locally getting below the resolution of the seismic. The lower se-
quence boundary of the unit onlaps onto the upper sequence boundary
of Unit 2 in the East, which is an indication for a relative sea level
rise. This toplap is evidence of a nondepositional hiatus, sedimentary
bypassing, or erosion. It is related to the sea level fall during the first
glacial period at the Plio-Pleistocene boundary. The truncation of the
reflections at this boundary is associated with the occurrence of chan-
nels.

Hummocky clinoforms are observed in the bottom segment of Unit 3,
at the left side of the lower segment of the sigmoidal clinoforms from
Unit 2. This configuration consists of subparallel reflection segments
with non-systematic reflection terminations. This package represents
a syn-sedimentary deformation that was caused by the reactivation
of the Permian salt dome. The hummocky clinoforms also indicate a
transitional phase from high-energy basin conditions to a much lower
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energy regime. The interpretation of the well data was taken from
the monograph of Aminzadeh and de Groot (2006). The principal
horizons of the Upper Cenozoic package were correlated between the
wells. For the sake of convenience the names of the seismic horizons
are the same as in the monograph.

3.5.1 Clinoform Mapping

Figure 3.13: The two-way travel time values of the mapped clinoform
surfaces.

The clinoforms of the Lower Pliocene (Unit 2) were first analyzed by vi-
sual inspection. For a systematic sequence stratigraphic interpretation
several horizons were selected in the clinoforms to map the progra-
dational direction and the patterns of the clinoforms. The mapped
clinoform surfaces are displayed in Figure 3.13.
The two-way travel time values along the clinoforms are increasing
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towards North and Northwest and the clinoforms are prograding from
East-Northeast towards West-Southwest. These results coincide well
with the geological history of the region (see Figure 3.13).

3.6 Seismic Data Selection for Inversion

The selection of a seismic line from the total data volume is performed
on the basis of several criteria:

• Unit 2 should be present.

• The seismic line should cross Unit 2 along the progradational
direction, so that the sigmoidal shapes of deltaic sediments have
an optimum expression.

• Internal structures of Unit 2 should clearly be visible, so that
high-resolution inversion technique can be tested.

• The line should be close to at least one well so that a priori
information for the inversion is available.

3.6.1 Reference Reflections

Reference reflections are required to clearly indicate the position of the
inversion interval on the seismic data. A look at the seismic in-line
section, which coincides with the progradational direction of the cli-
noform sequence, reveals the presence of two strong seismic reflections
confining the target zone, i.e., Unit 2.

First, the older horizon ‘MFS4’ is highlighted on Figure 3.15 in white
and forms the base of the clinoform package. The second, younger re-
flector ‘Truncation 1’ is the top of the clinoform package. ‘Truncation
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1’ together with ‘MFS4’, forms the bottom and the top of the target
zone (Figure 3.15).

3.6.2 Proximity of Wells

The selected and interpreted 3D horizon of the prograding clinoforms
of the Lower Pliocene and the locations of four available wells are
displayed in Figure 3.14(a). A seismic line connecting the wells F03-
04, F03-02, F02-01, and F06-01, with the main horizons correlation
applied is shown in Figure 3.14(b).
The wells F02-01 and F06-01 are located in the southwestern part of
the F3 block, at the bottom set of the clinoform sequence. The well
F03-02 is situated to the North and at the topset of the sequence. The
well F03-04 is located in the Eastern part of the block, at the clinoform
part of the sequence.

Based on the analysis of the well locations and the clinoform propaga-
tion direction the seismic section (in-line 441) displayed in Figure 3.15
was chosen for further analysis. Preference was given to this in-line
section because it coincides quite well with the propagation direction
of the clinoform sequence. The well F03-04 is located close to this
line, and is the only well that penetrates the target Unit 2 completely.
A deficiency of this well is that the density log was not acquired in
situ but recomputed from the sonic log. Most of the seismic section is
in the clinoform part of the sequence and therefore contains internal
structures. Additionally, the section is of good quality.

The sonic, gamma ray and recomputed density logs of the Well F03-04
are rather spiky and required some smoothing. A box-shaped averag-
ing filter was therefore applied with a length of 2 m and in which the
central sample was replaced by the average of all samples within this
window. The smoothening filter was applied to the entire length to re-
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(a)

(b)

Figure 3.14: (a) The interpreted 3D horizon of the prograding clino-
forms and the locations of four available wells (F06-01, F02-01, F03-02
and F03-04), together with the location of the seismic section selected
for inversion (in-line 441); (b) a seismic line connecting these four wells,
with the main horizons shown in colors (Aminzadeh and de Groot,
2006). ‘Truncation 1’ (blue dashed) and ‘MFS4’ (pink) indicate the
top and bottom of the clinoform package (the target zone). The ver-
tical axis is the two-way travel time in ms; the horizontal axis shows
the in-line and cross-line numbers. Blue are negative and brown are
positive polarities.
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Figure 3.15: The seismic section used for the inversion (in-line 441). The vertical axis is
the two-way travel time in ms; the horizontal axis shows the cross-line numbers, spaced
25 m. Reference reflections ‘Truncation 1’ and ‘MFS4’ (white dashed lines) indicate the
position of the inversion interval on the seismic data.
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and acoustic impedance logs of the well F03-04. ‘Truncation 1’ and ‘MFS4’ indicate the
top and the bottom of the clinoform package (target zone).
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duce noise and remove spikes. The smoothed logs are shown in Figure
3.16.
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Figure 3.17: A crossplot of the gamma-ray values against acoustic
impedances values within the target zone; the color scale is assigned
to the points as a function of depth (in meters). For discussion see
text.

Figure 3.17 shows a crossplot of the gamma-ray values against acoustic
impedance values (computed from the velocity and density logs) within
the target zone; the color scale is assigned to the points as a function of
depth to demonstrate the correlation between the two logs. There are
two types of sediments that can be clearly distinguished from the plot:
shale-rich sediments with generally higher gamma-ray values (bluish
cloud, correlation coefficient 0.53) that belong to the upper part of
the target zone (694–750 m) and sand-rich sediments with generally
low gamma-ray values (reddish cloud, correlation coefficient 0.56) that
belong to the lower part of the target zone (750–850 m). In addition,
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the compaction effect of the sediments can be observed, because the
deeper sediments on the plot are generally characterized by higher
acoustic impedance values.

3.7 Wavelet Extraction

There are several methods to extract wavelets from seismic data when
the source wavelet is not available. The statistical extraction method
used in estimating the wavelet assumes that the autocorrelation of the
wavelet is the same as the truncated autocorrelation of the seismic
trace. There are many factors that affect the quality of a wavelet,
but mainly the quality of the seismic and the used logs. The average
autocorrelation from several seismic traces is used to provide a more
representative estimate. As a result, the following steps are performed:

1. Compute the Fourier transform of the autocorrelation of all se-
lected seismic traces,

2. Average the Fourier Spectra,

3. Compute the inverse of the averaged spectra as zero-phase esti-
mate of the wavelet.

A seismic trace can be represented by the convolutional model (equa-
tion (2.4)), which can be written as:

s(t) = w(t) ∗ r(t) + n(t), (3.2)

where s(t) is an observed seismic trace, w(t) is a wavelet to be ex-
tracted, and n(t) is the error of the noise. The assumption here is
that the noise does not correlate with the reflectivity and therefore is
an additive component.
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The equation can be rewritten in terms of power;

∣
∣S2(f)

∣
∣ =

∣
∣W 2(f)

∣
∣
∣
∣R2(f)

∣
∣ +

∣
∣N2(f)

∣
∣ . (3.3)

For a single trace, all elements that compose the seismic trace are
present in the wavelet, the reflectivity series and the noise. By aver-
aging several traces together over a sufficiently large (statistical) sum,
the following conditions may occur:

|R2(f)| tends roughly towards a white noise spectrum caused by the
random occurrence of r(t) distributed in space. The closer r(t) is
to a random (i.e., ‘white’) series, the more |R2(f)| becomes constant
and affects less the multiplicative operations on the average spectrum.
|N2(f)| tends to some average noise spectrum. Its effect will mainly
depend on the signal/noise ratio of the input s(t). In good, strong sig-
nal areas, noise will be a negligible factor and have a minor additive
component, which can be ignored. Given these conditions, |S2(f)| is
a good representation of the average power spectrum of the seismic
wavelet |W 2(f)|. The wavelet w(t) can be computed in the time do-
main using the inverse Fourier transform of the square root of |W 2(f)|
under the assumption that the wavelet is zero phase. It has been tested
that this assumption is valid for the post-stack time-migrated seismic
data set from the North Sea, Dutch block F3.

The adoption of the convolutional model implies the assumption that
the wavelet is constant in time, which is only reasonable for a small
target zone. Therefore, the seismic data cube was cropped to a sub-
volume of 100 in-lines by 100 cross-lines around the well in the lateral
directions and from 670 to 900 ms (the target zone Unit 2) in the ver-
tical direction. The sampling rate of the points describing the wavelet
is 1 ms. The overall operator length of the wavelet in time is 70ms.

The extracted wavelet is a zero-phase, symmetrical wavelet with a
central frequency of 55 Hz and is shown in Figure 3.18(a) together
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Figure 3.18: (a) The extracted wavelet and (b) its spectrum.

with its spectrum in Figure 3.18(b).



Chapter 4

Stratigraphic model-based,

low-parametrization seismic

inversion

4.1 Introduction

For this method, three major steps are performed (Figure 4.1). First,
the thickness and acoustic impedance of the layers that compose the
clinoform package are estimated from well logs with a resolution in the
order of tens of cm. Second, the entire clinoform package is geometri-
cally modeled based on the seismic data in the area of interest. Third,
the clinoform models will guide how the a priori knowledge derived
from the well logs propagates from trace to trace away from the well.
The geometric clinoform model is also used to map the solution of the
last processed trace to the initial guess of the next trace. This way the
complete clinoform sequence is characterized at a sub-seismic scale.

63
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Figure 4.1: The workflow of the stratigraphy-based, low-
parameterization seismic inversion method.

4.2 1D Inversion

Getting a structural image of the main layer structure from which the
properties of the clinoform sequence can be retrieved is the primary
focus in this step of single trace inversion.

4.2.1 Formulation of the inverse problem

The inversion method described in Chapter 2 is used as a basis for
single trace inversion. We use a one-dimensional convolution between
a layered model and the wavelet as forward model (equation (2.4)).
The wavelet extracted from the measured data set (Chapter 3) serves
as the source wavelet. The subsurface is assumed to consist of a stack
of locally planar, homogeneous layers. The time thickness of the layers
Tj, is derived from the two way travel time τj, as follows

Tj = 0.5(τj − τj−1). (4.1)

The parameter vector x consists of the acoustic impedances Zj and



1D Inversion 65

the corresponding time thicknesses of the layers Tj.

x = [Z1, . . . , ZN , T1, . . . , TN ], (4.2)

where N is the number of layers.

4.2.2 A priori Information

A prior mean

We use the sonic and density logs (recalculated from the sonic log)
of the well F03-04 as source of a priori information. The sonic log
and check shots are used to convert the well data from depth to time
in order to relate the well data to the seismic. In order to extract as
much a priori information as possible from the well data an impedance
log computed from the velocity and density logs serves as the a priori
mean vector xi (see equation (2.8)).

xi = [Zi
1, . . . , Z

i
n], (4.3)

where n = 1200 is the number of samples in the log.

A priori uncertainties

The expected uncertainties in the parameters to be estimated can be
represented by the a priori covariance matrix. In case when only a
single well is available in the area of investigation, we use a histogram
of a well log obtained from the target zone only. We use the stan-
dard deviation of the best-fit Gaussian distribution to the histogram
of the acoustic impedances as an estimate of the uncertainty. Based
on equation (2.11), the a priori covariance matrix is:

Cx = σ2
xi

I, (4.4)
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with I the identity matrix. The noise covariance matrix is estimated
from the seismic trace y,

Cn = σ2
yI. (4.5)

4.2.3 Initial Model

As explained in Chapter 2, the optimization scheme starts with an
initial guess x0 of the model parameters, from which an initial model
response can be computed. The initial model x0 is a layer model at
the location of the well and is therefore called ‘Well Model’.

x0 = [Z0
1 , . . . , Z

0
N , T 0

1 , . . . , T 0
N ]. (4.6)

This model is a ‘blocked log’ in which each interval with constant
properties represents a layer with a particular lithofacies.

Lithofacies

The log interpretation is conducted by traditional comparison of the
gamma-ray and compressional velocity logs, because an in-situ mea-
sured density log was absent. A basic rule for gamma-ray log interpre-
tation is that the lower log values correspond to more sand-rich layers
and higher values correspond to more shale-rich layers (Luthi, 2001).
The layer identification was complicated because shale and sand had
comparable acoustic properties. In addition, the vertical resolution of
the seismic data is in the order of tens of meters, whereas the resolu-
tion of the well data is in the order of tens of centimeters. As a result,
the ‘Well Model’ was derived consisting of N = 27 individual layers
with typical thicknesses of 3–14 m and with layer-lithologies alternat-
ing between different proportions of shale and sand. The acoustic
impedances of the ‘Well Model’ were then averaged (arithmetic mean)
within each layer. Figure 4.2 shows the log data and a schematic
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Figure 4.2: The ‘Well Model’, with yellow denoting sand-rich and gray
denoting shale-rich layers. ‘Truncation 1’ (yellow) and ‘MFS4’ (blue)
indicate the top and the bottom of the clinoform package (target zone).
The curves on the right are the compressional velocity, bulk density
and gamma ray logs.

representation of the ‘Well Model’. In the seismic traces, only lay-
ers situated within half the wavelength upwards and downwards from
the target zone have an impact on the measured seismic reflection in
the target zone. Therefore the transitions just below and just above
the target zone were included in the ‘Well Model’. The ‘Well Model’
properties are summarized in Table 4.1. The initial ‘Well Model’ su-
perimposed on the impedance log is shown in Figure 4.3. It shows
not only the layering but also the increase in acoustic impedance with
depth (time) due to compaction.
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Figure 4.3: The initial ‘Well Model’ (based on well data) superim-
posed on to the impedance log (blue).

Seismic validation

The initial ‘Well Model’ was based on the interpretation of well logs
and is independent of the seismic data. To validate the model, the
lithofacies log was superimposed on in-line 441 of the seismic data
(Figure 4.4(a)) as well as to the closest cross-section 1006 (Figure
4.4(b)). Figure 4.4 shows a good correlation between the measured
seismic data and the lithofacies log; thereby supporting the choice of
the ‘Well Model’.
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(a) inline section 441

(b) cross-section 1006

Figure 4.4: The ‘Well Model’ lithofacies log (with yellow denoting
sand-rich and gray shale-rich layers) superimposed (a) on in-line sec-
tion 441 of the seismic data as well as (b) on the closest cross-line
1006(b) to validate the choice of the model. Scales and axes as in
similar previous figures.
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TVD Thickness Thickness AI Reference
m m ms (kg/m2s) Horizon

626 9 5 4419941
635 14 6 4708836 Truncation 1
649 8 4 4730456
657 8 4 4683224
665 11 5 4743428 Top foresets
676 9 4 4693192
685 10 5 4767017
695 8 3 4733769
703 11 5 4801555
714 9 4 4675278
723 9 4 4791077
732 4 2 4672978
736 3 1 4825122
739 4 2 4749050
743 8 3 4824060
751 6 3 4638937
757 5 2 4830608
762 3 1 4721810
765 4 2 4765329
769 7 3 4656473
776 10 5 4887751
786 8 4 4728999
794 10 4 4934651
804 7 3 4746176
811 4 2 4946307
815 11 5 4882398
826 11 5 4992362 FS6
837 52 23 5013720
889 13 6 4719054 MFS4

Table 4.1: The properties of ‘Well Model’.
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4.2.4 Optimization

The position of internal boundaries of the clinoform sequence can be
quite ambiguous. Therefore, after the ‘Well Model’ is established,
the model parameters are iteratively refined by minimizing equation
(2.17). Due to the absence of gradient information we used a simplex
optimization method as described in Section 2.4.1.

The absolute scale of the wavelet is often unknown due to the fact that
the source wavelet is estimated from the seismic signal and that arbi-
trary scaling factors may have been used in data processing. Therefore
the resulting amplitude of the wavelet extracted from the seismic data
(Chapter 3) was scaled in such a way that it minimizes the difference
between the processed seismic data y and synthetic data g(x).

4.2.5 Regularization

As was mentioned in Chapter 2, for a linear inverse problem the op-
timal value for the regularization parameter λ can be found by con-
structing and analyzing a so-called ‘L-curve’. Although we are han-
dling a non-linear inverse problem, a similar approach was applied.
Taking into account the fact that the data mismatch term and a priori
mismatch term are of the same order of magnitude, we expect that
the optimal λ value will lie around 1. This led to a choice of λ values
for the ‘L-curve’ test as described below:

• λ from 0.0 to 0.1 with a step size of 0.01;

• λ from 0.1 to 2 with a step size of 0.1;

• λ from 2 to 10 with a step size of 1;

• λ from 10 to 100 with a step size of 10;
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Very small and very large values of λ were chosen to illustrate the ef-
fects when the data are fitted well but the reconstructed image is not
smooth and vice versa. For the given range of λ values log ‖y − g(x)‖2

2

and log ‖x − xi‖
2
2 were computed. The results are plotted on a dou-

ble logarithmic scale, λ values are increasing from the top-left to the
bottom-right in Figure 4.5. As can be seen, the bend in the curve is
not sharp, and therefore it is not easy to determine an optimal solu-
tion. Instead, a group of solutions inside the circle of Figure 4.5 was
selected. These solutions lie slightly to the right of the position of
largest upwards-pointing curvature. This set of solutions corresponds
to λ values ranging from 0.3 to 0.9.

10
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Figure 4.5: log ‖x − xi‖
2
2 versus log ‖y − g(x)‖2

2 for λ values in the
range from 0.001 to 100 (increasing from the top-left to the bottom-
right). A group of possible optimal solutions are indicated inside the
circle.

We extended the range for the 1D inversion results of the seismic trace
closest to the well to values in the range from 0.1 to 1.1. The results
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for all tests are shown in Figure 4.6 in two columns. The left column of
Figure 4.6 illustrates the difference between the ‘Well Model’ (green)
and the estimated model (red) superimposed on the actual impedance
log from the well (blue). The right column of Figure 4.6 shows the
synthetic seismic based on the ‘Well Model’ (green) and the synthetic
seismic (red), respectively, superimposed on the measured seismic data
(blue).

4.2.6 Results

The estimated impedances and layer thicknesses for different values of
λ within the chosen range of optimal regularization parameters yield,
in general, a good correlation with the well data (the left column of
Figure 4.6). The exceptions are solutions for λ = 0.1 and λ = 0.2,
that are situated outside the red zone in Figure 4.6 and were included
only for the sake of completeness. A good correlation was obtained
even though the impedance models have blocky structures. The only
exception was the part in the range of TWT 849–894 ms which was
not modeled explicitly. We allow this error to occur since those layers
are outside the clinoform sequence. In addition, the results for the
given range of λ yield a good match between the lithofacies log and
the seismic trace, except for the above-mentioned part (the right col-
umn of Figure 4.6).

The resulting vertical resolution of this method is quite high and is
better than the seismic resolution. From Figure 4.6 we can observe
that layers with thicknesses down to 1/10th of the source wavelength
(≈ 40 m) are well resolved. This is substantially smaller than the clas-
sical resolution of one-quarter of the wavelength (Badley, 1985).

From the output of the inversion procedure we have enough confi-
dence that the optimal regularization parameter is situated within the
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Figure 4.6: Results of 1D inversion for values of λ in the interval
[0.1 − 1.1]. The ‘Well Model’ (green), the estimated model (red),
aligned on the actual impedance log (blue) (the left column) are dis-
played next to the synthetic seismic traces based on the ‘Well Model’
(green), the synthetic seismic based on the estimated model (red) and
the measured seismic data (blue).
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selected zone. The choice of the best λ value based only on 1D inver-
sion results remains difficult. In view of the fact that our main focus is
the 2D clinoform sequence characterization we base the choice for the
optimal value of the regularization parameter on the complex analysis
of the 1D inversion results in combination with the pseudo 2D results
(for the selected range of regularization parameters).

4.3 Clinoform Geometry Estimation

Once the parameters of the layer model (the acoustic impedance and
layer time thickness) are estimated at the well location, the next step
is to extrapolate this knowledge in the lateral direction along the clino-
form package. For this, we first have to determine the exact clinoform
shapes with the goal to parameterize them using a limited number
of parameters. The set of parameters extracted can then be used to
predict the presence of similar objects in this environment.

The advantage of using this method above a standard approach is the
significantly smaller number of parameters that needs to be estimated.
We use a small number of parameters to model the entire clinoform
sequence that are later estimated in the inversion procedure instead
of the standard way in which every point of the clinoform is shuffled.
In addition, the outcome may serve as a predictive tool for the areas
where seismic resolution is too low to distinguish objects in the seismic
image.

4.3.1 Geological Model

The F3 data set offers a good opportunity to develop models for high-
resolution characterization of clinoform sequences because it contains a
large-scale bedding in the clinoform parts of the sequence that converge



Clinoform Geometry Estimation 79

to sub-seismic scale in the top- and bottom-set parts (Figure 3.15 and
Figure 3.16).

4.3.2 Mathematical Model

Our goal is to describe a clinoform by a limited number of parameters.
From a geometrical point of view a clinoform sequence can be roughly
approximated by a set of translated sigmoidal curves. A sigmoid func-
tion fj(X) can be described by four parameters:

fj(X) = cj +
bj

1 + e−(X−dj)/aj
, (4.7)

where aj is a lateral scaling, bj is a depth scaling, cj is a depth off-
set, dj is a lateral translation and the index j identifies the clinoform
number in a clinoform sequence.

Figure 4.7 illustrates the sigmoid curve transformation for two succes-
sive curves.

4.3.3 Formulation of the inverse problem

A next step is to relate the mathematical parameters of the sigmoid
with relevant geological processes. This relationship will serve as a
basis for clinoform system modeling. Based on an examination of the
clinoform sequence, progradation can be associated with the lateral
translation parameter and aggradation with the depth offset (Figure
3.3). We assume that geological objects are not random structures,
but that they follow certain typical patterns caused by the depositional
processes that formed them. Therefore, we can presume that for every
subsequent clinoform within a fluvio-deltaic system, the lateral scal-
ing and the depth scaling parameters, stay approximately constant,
whereas the depth offset (aggradation) fluctuate a bit and the lateral
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Figure 4.7: The dependence of the sigmoid curves on the scaling pa-
rameters.

translation (progradation) is strongly varying. As a result, the whole
clinoform sequence can be modeled by means of just a few parameters.
The parameter vector to be estimated is constructed by consecutive
series of constant parameters (a and b) followed by varying parameters
(cj and dj) for every curve.

x = [a, b, c1, . . . , cJ , d1, . . . , dJ ], (4.8)

where J is a number of clinoforms.

4.3.4 Optimization

The seismic objects extracted from the Unit 2 data set are partially
eroded or otherwise affected by post-depositional processes. In addi-
tion, at the topsets and bottomsets the layers are thin and often poorly
resolved on seismic images, leading to tuning effects. Refining the cli-
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noform structures is performed by model fitting. The objective (cost)
function to be minimized is represented by the sum of the individual
objective functions for every clinoform in the package. Each objective
function is represented by a likelihood function only, due to absence
of data independent a priori information.

4.3.5 Initial Model

An initial model of the parameters describing the sigmoid functions
of the sequence was estimated from the seismic section by visual in-
spection with regard to the geological model of the sequence. Special
attention was paid to the lateral translation parameter dj which shows
the largest variations from one clinoform to the next. We introduced
a lateral shift ∆dj to the initial model x0 for every subsequent curve,
where ∆dj is equal to a small fraction of the length of the clinoform

x0 = [a0, b0, c0, . . . , c0

︸ ︷︷ ︸

J

, d0, d0 + ∆d1, . . . , d
0 + ∆dJ−1]. (4.9)

4.3.6 Results

The sigmoid model was fitted to four clinoforms (J = 4) within the
entire sequence. The results are depicted in Figure 4.8 (dashed line),
together with a semi-automated pick from the seismic section (solid
lines). It can be seen that the clinoform shapes were estimated quite
accurately. This supports our choice to model the clinoforms by a
sigmoid function.
The results were superimposed on the seismic image in Figure 4.9
(the color scheme is kept the same) where the two main geological
processes (progradation and aggradation) are very well observed. The
quantative measurements for these processes are summarized in the
Table 4.2. It can be seen that progradation is by far the most dominant
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Figure 4.8: The estimated sigmoids of the four (partly eroded) clino-
form curves (dashed lines), together with semi-automated picks from
the seismic section (solid lines). The black line denotes the initial
model.

Lateral Value Depth Value
scaling (m) scaling (m)

a 930 b 240

Aggradation Progradation

Depth Value Lateral Value
offset (m) translation (m)

c1 (red curve) 650 d1 0
c2 (blue curve) 670 d2 260
c3 (green curve) 670 d3 770
c4 (orange curve) 690 d4 910

Table 4.2: Measurement of the progradation and the aggradation rates
resulting from the fitting of sigmoids to the clinoforms.
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Figure 4.9: The same curves as in Figure 4.8, superimposed onto the seismic section. Scales
and axes as in similar previous figures. Black rectangles refer to Figures 4.11 and 4.10.
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process in this sequence, with aggradation proceeding at a very steady
rate.

There are seismic events of parts of the geological layers that are at
subseismic scale, particularly at the topset and bottomset of the se-
quence, and cannot be tracked on the seismic image. The acoustic
impedance contrast is very low between the layers in those areas, mak-
ing boundary identification nearly impossible from the seismic image.
The modelled sigmoids can trace the layers from the clinoform part
to these regions and serve as guides to characterize these sub-seismic
layers.

Enlarged versions of the bottomset and the topset of the clinoform
layers are depicted on Figure 4.10 and Figure 4.11, respectively. The
black arrows indicate areas where the clinoform layers converge to an
extent such that inversion is only possible through guidance by the
sigmoidal model (dashed lines).

In addition, the estimated depths of the four clinoform curves (for
which the colors are kept the same as in previous figures) are super-
imposed onto well F03-04 (Figure 4.12).

4.4 Inversion of the Clinoforms

4.4.1 Formulation of the inverse problem

In our approach, the inversion of a seismic section is done trace by
trace. The technique is the same for each trace and is described in the
previous section. The parameters to be estimated for every trace are
the acoustic impedances and the time thicknesses of the layers

xk = [Zk,1, . . . , Zk,N , Tk,1, . . . , Tk,N ], (4.10)
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Figure 4.10: Enlargement of the left black rectangle in Figure 4.9,
with the black arrows indicating areas of strong convergence of the
reflectors. For discussion see text.

Figure 4.11: Enlargement of the right black rectangle in Figure 4.9,
with the black arrows indicating areas of strong convergence of the
reflectors. For discussion see text.
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as in Figure 4.9. ‘Truncation 1’ (yellow) and ‘MFS4’ (blue) indicate the top and bottom
of the clinoform package.
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where N = 27 is the number of layers, k = 1, . . . , K, where K is the
number of traces in the sequence to be inverted. A seismic section
containing K=70 traces, situated on the left-hand side of the well,
was chosen for the test (Figures 3.14 and 3.15). Analogously to the
1D case, the well log data are used as a priori information.

4.4.2 Structural Information Incorporation

A central issue of this method is the incorporation of geological infor-
mation into the inversion process. The structural information which
we integrate is a mathematical description of the clinoform shapes.
These shapes are used to steer the trace inversion along the sequence,
i.e., they serve as hard constraints (two-way travel time horizons vs
X-coordinates).

The inversion process starts from the trace closest to the well. In this
case the ‘Well Model’ can again serve as an initial model.
For the sake of convenience we assume that the number of layers (de-
fined in the ‘Well Model’) between two hard boundaries (estimated
clinoform horizons) is kept constant throughout the entire sequence.
Although this may be a questionable assumption we can vary the num-
ber of layers using the technique presented in Chapter 5.

Once the first trace is inverted, then the result (estimated parame-
ters) can be used as an initial model for the next trace. In addi-
tion, structural information (retrieved from the estimated clinoform
shapes) provides knowledge about the trace-to-trace variation. Since
the time thickness between estimated clinoform shapes —the hard
constraints— varies from trace to trace, a normalization (stretch or
compress) factor is applied to adjust the initial model to the next
trace. The normalization factor is defined by the ratio of the time
lapse between the estimated shapes (hard constraint) of the current
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seismic trace (to be inverted) and the previous seismic trace (just in-
verted).

4.4.3 Regularization

The range of the possible values for the regularization parameters λ
was selected based on the analysis of the ‘L-curve’ for the 1D inver-
sion. In Figure 4.13 we present the pseudo 2D inversion results for the
selected zone. The left column demonstrates the estimated acoustic
impedance models of the clinoform sequence, while the right column,
provides the synthetic seismic responses of the impedance models.

4.4.4 Results

Unfortunately, in practice, when data always contain noise and the for-
ward model is oversimplified, there is no technique which is capable to
find the optimal value of the regularization parameter for a non-linear
inverse problem. The aforementioned ‘L-curve’ method only helps to
isolate a set of possible optimal solutions. Since there is no objec-
tive way of determining the optimal regularization parameter from
the selected group, a subjective approach can be applied afterwards.
A subjective approach can for example be based on the expertise of a
geologist, who can choose the most realistic solution from a geological
perspective. Of course, it is important to analyze both the 1D and
pseudo 2D results, since the influence of a priori information on the
inversion process decreases with the distance to the well. 1D inversion
results for a selected set of the regularization values λ are shown in
Figure 4.6; Figure 4.13 shows pseudo 2D inversion results.

From a geological point of view, the 1D inversion as well as the pseudo
2D results for the value of λ = 0.3 appear to be the most realistic. The
estimated impedance model for λ = 0.3 is shown in Figure 4.14(a).
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Figure 4.13: Results of pseudo 2D inversion of the clinoform section
for values of λ in the interval [0.1 − 1.1]. The estimated impedance
models (left column) are displayed together with the synthetic seismic
(right column). The black arrows indicate those areas where the layers
seen on the seismic image (Figure 4.14(c)) are well observed on the
impedance model.
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The model reveals that the internal layers of the clinoform sequence
gently follow the estimated clinoform shapes. Some layers appear or
disappear in the middle of the section and follow the sequence while
on the right hand side layers overlap each other. At the same time,
the properties of the layers are slowly changing in the lateral direction,
driven by seismic data. The black arrows indicate the areas of interest,
where the details(layers) that are present on the actual seismic image
(Figure 4.14(c)) are well observed on the impedance model.

The simulated seismic sections computed from the impedance model
of Figure 4.14(a) is displayed in 4.14(b). The figures illustrate that
the method gives a good match with the field seismic, but it has to be
kept in mind that the blank areas were not modeled explicitly since
they fall outside the clinoform sequence (the integration of the struc-
tural information was performed between clinoform shapes only). For
comparison, the field seismic is displayed in Figure 4.14(d) and Figure
4.14(c).

The resulting impedance models for higher values of λ were found to
reveal too much influence of the a priori information. High λ val-
ues do not allow the properties (acoustic impedances as well as time
thicknesses) to deviate much from the well data. As a consequence
the impedance models expose that properties do not change much in
the lateral directions. On the contrary, low values of λ give too much
freedom for properties to change in the lateral direction but deviate
significantly from the well data. As a result, the lateral continuity of
the impedance models for those λ values is quite poor. In conclusion,
the synthetic seismic for both the lower and the higher λ values show
a slightly worse correspondence to the actual seismic than the selected
optimal one.
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Figure 4.14: The pseudo-2D inversion results for the optimum regu-
larization with λ = 0.3: (a) the impedance model of the clinoform
sequence; (b) the simulated seismic section based on the estimated
impedance model; (c) the actual seismic section in the target zone
with the interpreted clinoform layers; and (d) the actual seismic sec-
tion in the same color scheme as (b). Scale and axes as in similar
previous figures.



Chapter 5

Grid-based Seismic Inversion

5.1 Introduction

The assumption made in the model-based inversion of the previous
chapter regarding a constant number of layers in the ‘Well Model’ is
a serious limitation because that approach does not support layers
to (re)appear/disappear along the clinoform sequence. Observation
of the seismic data set showed that this assumption is valid in some
parts of the sequence but not in others. The method introduced in
this chapter overcomes this problem by abandoning the explicit layer
model of the previous chapter. Again a trace-by-trace inversion is
applied, starting from the well, to characterize the 2D clinoform se-
quence. All acquisition parameters (including the extracted wavelet)
are kept constant w.r.t. the method in Chapter 4. The well data re-
mains as a source of a priori information, but in a completely different
representation.

To enforce a sparse solution we adopted a method by Van Eekeren
et al. (2008) that was successfully applied to obtain ‘super-resolution’

95
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reconstruction of small moving objects from a low-resolution under-
sampled image sequence.

This method differs from the well-known sparse spike acoustic inver-
sion algorithms (Pendrel and van Riel, 1997; Debeye and van Riel,
1999) in the employed sparsity promoting factor. Instead of commonly
used techniques such as Lp deconvolution (Debeye and van Riel, 1999),
mixed norms methods (Alliney and Ruzinsky, 1994), Cauchy criterion
(Amundsen, 1991), Sech criterion (Crase et al., 1990), Huber crite-
rion (Huber, 1981), etc, we employed a Total Variation (TV) criterion,
which is a modified L1-norm (Rudin et al., 1992; Li and Santosa, 1996;
Farsiu et al., 2004). The norm provides excellent constraints (a priori
knowledge) for problems with sparse solutions.

This method uses the same data misfit term as in equation (2.17),
but employs regularization terms that favor sparse solutions, i.e., so-
lutions for which ‖∇x‖ ∼= 0 holds for the majority of samples. The
regularization within one trace is performed by the so-called verti-
cal operator. This vertical operator favors a sparse inversion solution
within the trace. In addition to the vertical operator we also introduce
a so-called horizontal operator that favors continuity of the pseudo 2D
inversion results and supports propagation of the well data along the
sequence.

5.2 Mathematical Background

5.2.1 Super Resolution Reconstruction of Small

Moving Objects

Recently, Van Eekeren et al. (2008) introduced a method for multi-
frame super-resolution (SR) reconstruction of small moving objects
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(i.e., objects that consist solely of boundary pixels). This method is
used to improve the visibility, detection as well as automatic recogni-
tion of small moving objects. This approach simultaneously estimates
a sub-pixel precise polygon boundary as well as a high-resolution in-
tensity description of a small moving object. The method is split into
three parts:

1. Constructing a background model and detecting the moving ob-
ject,

2. Fitting a model-based trajectory for object registration,

3. Obtaining a high-resolution object description, containing a sub-
pixel accurate boundary and a high-resolution intensity descrip-
tion, by solving an inverse problem.

The method attracted our attention since the last step (3.) shows some
resemblance to our inverse problem. The cost function of the inversion
method, apart from the data misfit, includes a term which regularizes
the amount of intensity variation within the object according to a
criterion similar to the Total Variation (TV) criterion (Li and Santosa,
1996).

5.2.2 Total Variation Criterion

One of the most successful regularization methods for denoising and
deblurring is the total variation (TV) method (Rudin et al., 1992; Li
and Santosa, 1996; Farsiu et al., 2004). The TV criterion penalizes
the total amount of change in the image as measured by the L1-norm
of the magnitude of the gradient and is defined as

ΥTV (x) = ‖∇x‖1 , (5.1)
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where ∇ is the gradient operator. The most useful property of the TV
criterion is that it tends to preserve edges but suppresses numerous
small fluctuations in the reconstruction. The small fluctuations are
often a result of the ill-posedness and noise. The use of an L1-norm for
this purpose is crucial. An L2-norm as in Tikhonov regularization does
not work, because relatively small fluctuations in x are not penalized
sufficiently. Following this argument would lead to the use of an Lα-
norm with α in the interval [0,1]. However, choosing α smaller than
1, yields a non-convex problem which cannot be solved by the current
state-of-the-art optimization techniques.

5.2.3 Optimization

The minimization is done in an iterative way using the Levenberg-
Marquardt method. The cost function in the framework of this method
has a form like minβ

∑N
i (χ−χi(β))2, where χ is the measurement and

χi(β) is the estimate depending on parameter β. The method assumes
that the cost function has first and second order derivatives that exist
everywhere. However, the L1-norm does not satisfy this assumption.

Hyperbolic Norm

To be able to apply the Levenberg-Marquardt method in combination
with an L1-norm we use the hyperbolic norm (‖ • ‖H) introduced by
Van Eekeren et al. (2008). This norm is defined as

‖x‖H =
∑

(√

x2
i + α2 − α

)

. (5.2)

The hyperbolic norm has the same properties as the L1-norm for large
values (xi � α) and it has first and second derivatives that exist
everywhere.
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5.3 1D Inversion of the Clinoforms

The goal of the method is similar to that of the previous chapter,
namely to get a structural image of the clinoform sequence by identi-
fying its main layer structure and properties.

5.3.1 Formulation of the Inverse Problem

There are several approaches to the subject of forward modeling and
a priori information incorporation that were successfully implemented
in the previous chapter and thus are employed here as well:

• The basic one-dimensional convolution given in equation (2.4) is
used as forward model.

• The wavelet extracted from the real data set (Chapter 3, Figure
3.18) serves as a source wavelet.

• The well data serves as a source of priori information.

A significant difference between this method and the previous one is
that instead of creating an initial well model for 1D inversion based
on lithofacies analysis of the well logs (method described in the pre-
vious chapter), the logs (impedance in our case) are resampled with a
constant step and used as an initial model instead.

Sampling

The sampling of the well data can be performed either in the spatial
domain or in the time domain. Sampling in the spatial domain may
appear more straightforward since the log data are measured in the
spatial domain (depth) as well. However, sampling in the time do-
main is more convenient in case the post-stack seismic data are the
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time-migrated data. The convenience comes from the fact that the
sampling step can be related to the desired details that can be de-
tected from the resulting estimated impedance models.

The current inversion method is tested on the North Sea seismic data
set, which is sampled as a function of two-way travel time. Hence the
vertical resolution is defined in the time domain. As a result, the log
data were re-sampled in the time domain, with a constant time step
T (equation (4.1)). This procedure performed by averaging the log
values (in our case, the values of the impedances) within each time
sample Tj in the target zone. Then, the initial model x0 based on the
log sampling is as follows:

x0 = [Z0
1 , . . . , Z

0
M ], (5.3)

where M is the number of samples per trace. Consequently, the param-
eter vector x to be estimated is constructed by the acoustic impedances
Z only, since Tj = T is set constant

x = [Z1, . . . , ZM ]. (5.4)

The vertical time window to which the inversion of the previous chap-
ter was applied, is bounded by two fixed boundaries, namely the top
and the bottom of the target Unit 2. The current method is different
in the sense that the inversion is carried out in a predetermined time
window. Taking into account the propagation of the clinoform in the
horizontal direction, the vertical time window for the analysis was set
from 650 to 950 ms.

To decide on a proper sampling, the impedance log (only the part
which belongs to the predetermined time window) was resampled with
a range of different time steps T . By proper sampling we understand



1D Inversion of the Clinoforms 101

a sampling which sets a balance between keeping the number of pa-
rameters to be estimated (M) relatively low (equation (5.4)) while
maintaining a good resemblance between the initial model and the
original log.

To keep the number of parameters to be estimated relatively low,
T = 4 ms was chosen to be the maximum time step. On the other
hand, T = 0.5 ms was chosen as the minimum time step to achieve
more accurate sampling of the log. Two intermediate values, T = 2 ms
and T = 1 ms, were included in the range.
Figure 5.1 illustrates the sampled impedance log (green) of the initial
model superimposed on the original impedance log (blue) for the se-
lected range of time steps.

The initial model for a time step T = 4 ms (M = 75) does not offer
sufficient level of detail to faithfully represent the lithofacies. The log
becomes too smooth and their layers are suppressed. On the other
hand, the initial model for a time step T = 0.5 ms (M = 600) samples
the log with too much detail. Note that every detail remains visible.
Both the initial models with time steps T = 2 ms (M = 150) and T =
1 ms (M = 300) provide a good trade-off between the two conflicting
requirements: a small number of parameters and a good resemblance
with the original log.

5.3.2 Vertical Operator

As stated in the introduction, in the present method, the original cost
function F (x) is modified by including two additional terms. The first
additional term is the sum of absolute differences between adjacent
samples (gradient magnitudes) of the solution vector of the trace. For
the sake of convenience, this is further referred to as the ‘vertical
operator’. This term favors solutions in which the sum of gradient
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(d) T = 0.5 ms

Figure 5.1: The sampled impedance log (green) of the initial model,
superimposed on the original impedance log (blue) for time sampling
with time steps of T = 4 ms, 2 ms, 1 ms and 0.5 ms.

magnitudes is small; these are called ‘sparse solutions’. It is well known
that the L1-norm is favoring a sparse solution. For our application
the hyperbolic norm has a preference since it allows the Levenberg-
Marquardt optimization method to be used for minimization of our
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function. The values of acoustic impedances to be estimated (x) are
much larger than 1, hence, by setting α equal to 1 the hyperbolic norm
has the same properties as the L1 norm. The hyperbolic norm also
tries to minimize the number of inverted layers by penalizing absolute
differences between adjacent samples. Layers are no longer modeled
explicitly, but must show up in the resulting trace as a result of the
fact that the output of adjacent samples should be similar, except
at layer boundaries. Based on the TV criterion, the trace (the log
and the acoustic impedance model) sampling should be such that we
have many samples inside a single layer, i.e., the number of layers is
much smaller than the number of samples M per trace. The model
parameters are found by minimizing

F (x) = (y − g(x))T C−1
n (y − g(x)) +

+ λ(x − xi)
T C−1

x (x − xi) + (5.5)

+ µ
∑

j

(
√

(xj − xj−1)2 + 1 − 1),

where j is a sample index and x are the acoustic impedances (stored
in a vector) we are looking for. It was shown in Chapter 4, that
when applied to our case, the covariance matrix from equation (2.11)
transforms to a scalar (equation (4.4)). For the sake of convenience,
the last term in equation (5.5) is normalized with the same factor σ2

xi

(equation (4.4)).

Number of Identified Layers

To get an idea of the number of layers in a trace after minimizing
F (x) (equation (5.5)), the following method was proposed. As de-
scribed above, the layering is controlled by the vertical operator that
favors sparse solutions, meaning that acoustic impedances that have
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similar properties are clustered together, thereby forming a layer. Con-
sequently, the layering shows up as series of maxima and minima of the
estimated impedance curve. Estimating the amount of layers therefore
comes down to counting the number of maxima and minima within
the desired time interval (Figure 5.2). This can easily be counted
by counting the number of sign changes in the first derivative of the
estimated impedance curve. However, the method is quite sensitive
to small layer fluctuations. A well-known method to regularize the
differentiation operator is to apply it in scale space. Effectively this
corresponds to replacing the derivative operator by a convolution with
the derivative of a Gaussian function. The scale of the Gaussian (i.e.,
its standard deviation) can now be used to suppress small fluctuations.

5.3.3 Regularization

Minimization of a cost function, including the modified version in this
chapter, is an ill-posed problem, and therefore regularization needs
to be applied. In the original cost function (equation (2.17)), the
parameter λ balances the data misfit and the difference between the a
priori information and solution misfit. In the modified version of the
cost function (Equation 5.5), the parameter λ preserves its original
meaning but does not regulate the balance anymore, as the function
F (x) contains the additional term, the so-called ‘vertical operator’.
The weighting coefficient µ in front of the vertical operator term re-
stricts the amount of layers in the inverted trace. Moreover, it penal-
izes fluctuations inside each layer.

A central issue in this section is how to select the weighting coefficients
λ and µ in front of the terms. As indicated in Chapter 4, there is no
technique which is capable to find the optimal value of the regular-
ization parameter for non-linear inverse problems in practice. Instead,
the tool called ‘L-curve’ method was proposed, that helped to isolate a
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Figure 5.2: The sketch showing how the number of layers (the gray
blocks) in the resulting acoustic impedance model (solid black line) is
estimated.

set of possible optimal solutions. Clearly, in case of the modified cost
function (equation (5.5)), even the ‘L-curve’ method does not seem to
work. In this case, the only potential way to select an optimal regu-
larization is empirical.

The understanding of the physical background of the weighting coef-
ficients and their relationships helps steering the search. Before the
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optimal regularization can be found, tests on the sensitivity of the pa-
rameters are necessary. The tests are expected to provide information
regarding dependence between the parameters.

Taking into account the role of the covariance matrices Cx (equation
(4.4)) and Cn (equation (4.5)), the selection of the λ values for the test
was driven by common sense. The values λ = 0.5, λ = 1 and λ = 2
were selected and are expected to exhibit the low and the relatively
high influence of the a priori term.

Due to its different nature, a broader range of values form µ were
tested: µ = 0.5, µ = 1, µ = 2, µ = 4, µ = 8. We expect that this
range of µ values is able to demonstrate the effect of restricting the
number of layers in an acoustic impedance model.

The last parameter, that does not show up explicitly in equation (5.5)
but which is playing an important role, is the sampling step T (equa-
tion (4.1)) and associated with it, the number of samples M (param-
eters to be estimated, equation (5.4)). Based on the outcome of the
analysis of the sampling rates (Figure 5.1), T = 2 ms and T = 1 ms
values were selected for the test.

For convenience, the values of the all parameters for the sensitivity
tests are summarized in Table 5.1. The sensitivity tests for each com-
bination of parameters (λ, µ, T ) were performed separately.
The outcome of the sensitivity test is a set of 1D inversion results of
the seismic trace closest to the well. For convenience, the results for
all tests are organized in a similar manner as Table 5.1, they are put
in figures consisting of two columns. The left columns show the initial
models (resampled impedance log) in green, the estimated models in
red, superimposed on the actual impedance log in blue. The right col-
umn permits the comparison of several traces: the synthetic seismics
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Sampling rate T = 2 ms Sampling rate T = 1 ms

λ µ λ µ
0.5 0.5 1 2 4 8 0.5 0.5 1 2 4 8
1 0.5 1 2 4 8 1 0.5 1 2 4 8
2 0.5 1 2 4 8 2 0.5 1 2 4 8

Table 5.1: Parameters in the 1D sensitivity tests.

based on the initial model (resampled impedance log) in green, the
synthetic seismics in red and the actual seismic data in blue. For a
systematic approach, the analysis of the test results is performed ac-
cordingly, i.e., first, the influence of the regularization parameters on
the estimated acoustic impedance models is described followed by an
analysis of the synthetic seismic traces.

λ Sensitivity The influence of λ on the result of 1D inversion of the
clinoform package was examined for the given range of λ = 0.5, λ = 1
and λ = 2. For the sake of consistency, the other two parameters were
kept constant i.e., µ = 2, T = 2 ms.

Figure 5.3 shows the outcome of the test. The left column illustrates
that the estimation of the impedance model, with λ increasing from
0.5 to 2, is not much affected, except for the intervals of two way travel
time (TWT) 0.65–0.7 s and 0.83–0.9 s. The increase of λ values gives
slightly better results in these regions. These intervals are character-
ized by an alternation of thin layers with similar acoustic properties.
A close look at the estimated impedance model at TWT 0.83 s in Fig-
ure 5.3(a) (λ = 0.5) reveals the presence of a single layer, while the
same layer is being split into two separate thin layers for λ = 2 (Figure
5.3(e)). This indicates that thin layers are mostly affected by the λ
parameter.
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The effect of λ on the estimation of the corresponding seismic traces
from the right column is relatively low. The comparison of Figure
5.3(b) and Figure 5.3(f) reveals that the mismatch between the syn-
thetic seismic trace and the actual one is slightly higher when λ in-
creases.

What can be concluded from this test is that, although an effect of
λ regularization is observed, especially on thin layers, the influence
of the λ parameter, within the given range, on the results of the 1D
inversion is not substantial.

µ Sensitivity For the determined range of µ values (µ = 0.5, 1, 2, 4, 8)
a sensitivity test was performed. Following considerations similar to
the previous case, the other two parameters were kept fixed (λ = 1
and T = 2 ms).

Figure 5.4 illustrates the results of the test. From the sequence of
plots presented in Figure 5.4, an effect of the parameter µ on both the
estimated impedance section and the synthetic seismic section can be
clearly observed. As expected, increasing µ restricts the fluctuations
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(e) λ = 2
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Figure 5.3: λ sensitivity test (µ = 2; λ = 0.5, 1, 2; T = 2 ms;
M = 150). Results of 1D Inversion of the Clinoforms. Left column:
the initial model (resampled impedance log, green), the estimated
model (red), superimposed on the actual impedance log (blue). Right
column: seismic traces of the initial model (resampled impedance log)
based synthetic seismic (green), the synthetic seismic (red) and the
actual seismic data (blue).
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(i) µ = 8
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Figure 5.4: µ sensitivity test (µ = 0.5, 1, 2, 4, 8; λ = 1; T = 2 ms;
M = 150). Results of 1D inversion of the clinoforms. Left column: the
initial model (resampled impedance log, green), the estimated model
(red), superimposed on the actual impedance log (blue). Right col-
umn: seismic traces of the initial model (resampled impedance log)
based synthetic seismic (green), the synthetic seismic (red) and the
actual seismic data (blue).
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allowed inside the layers. Moreover, the estimated impedance models
tend to exhibit a more distinct layer structure with an increase of the
value for µ. An increase of the µ value limits the number of layers
in the estimated models. To be more precise, Figure 5.4(a) (µ = 0.5)
shows that two separate thin layers can be distinguished on the es-
timated impedance model at TWT 0.83 s, while Figure 5.4(i) depicts
that those two layers have been merged into a single thicker layer for
a high value of µ = 8. The reason why this effect is only observed
at one location can be easily explained. The properties of these two
separate layers show the smallest difference from an acoustic point of
view, for the entire model (Figure 5.4(a), TWT 0.83 s). Hence these
two layers were the first to be affected by an increasing value for µ = 8,
i.e., they were forced to be merged. Nevertheless, the same behavior
is expected for the remaining layers in the acoustic impedance model
but for much higher µ values.

In addition, the amplitude difference of the entire estimated impedance
models decreases for the high µ values, i.e., the impedance models show
a tendency to flatten, compare Figure 5.4(a) and Figure 5.4(i).

The analysis of the seismic section (right column) reveals that the
overall mismatch between the actual seismic and the estimated syn-
thetic traces increases with an increase of µ values, as was expected.
The mismatch is mainly seen as a difference in the absolute values of
the seismic amplitudes. This holds especially for the models with high
µ = 4 and µ = 8 values (Figure 5.4(h) and Figure 5.4(j)). The out-
put is consistent with the results of the estimated impedance models
(left section), that show flattening of the estimated impedance model
amplitudes for the mentioned µ values. In particular, the effect is
clearly observed, when tracking the seismic response of the estimated
impedance models for the different µ values of the aforementioned
thin layers at TWT 0.83 s. In case of a low µ = 0.5, two layers can



1D Inversion of the Clinoforms 113

be distinguished (Figure 5.4(b)) and the seismic amplitude mismatch
between the actual trace and the estimated synthetic trace is much
lower, compared to mismatch for the high µ = 8 value (Figure 5.4(j)).

T Sensitivity The regularization parameters λ, µ and the sampling
step T are believed to be dependent. Hence, the T sensitivity test
is divided into two parts. In the first test, the µ parameter is kept
constant and λ is kept fixed in a second test, respectively. These tests
are expected to show the behavior of the estimated impedance models
and the synthetic seismic traces depending on a finer sampling step
T = 1 ms.

Figure 5.5 shows the result of the first test. To depict the difference in
behavior of the estimated impedance models and the synthetic seismic
traces for the finer sampling (T = 1 ms), the results should be com-
pared to Figure 5.3 (T = 2 ms).

What can be observed is that the estimated impedance models have a
somewhat more blocky structure. This outcome can be related to the
condition of the TV criterion, that assumes that the trace sampling
should be fine enough, i.e., there are many samples inside a single layer.
Hence, the more successive samples in the impedance model that have
similar acoustic properties, the more a distinct layer is formed. The
parameter λ enforces the a priori information on those layers. Again,
the effect is especially well observed on the thin layers with similar
acoustic properties. Unlike the inversion result for the moderate sam-
pling T = 2 ms (Figure 5.3(a)), in case of the finer sampling T = 1 ms,
the above mentioned layer at TWT 0.83 s is split into two thin layers,
even for the lowest λ = 0.5 (Figure 5.5(a)).

In addition, the combination of the finer T = 1 ms sampling step and
high λ = 2 values allows layers that have smaller time thickness to be
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estimated. For example, a thin layer at TWT 0.79 s was found (Figure
5.5(e)), whereas it remains indicated in Figure 5.3(e) (T = 2 ms).

The amplitudes of the estimated impedance models are less flattened
for the finer sampling step T = 1 ms compared to the same results
for T = 2 ms. The estimated amplitudes of the layer at TWT 0.77 s
indicated on Figures 5.5(e) and 5.3(e) is a good example.

As expected, the results of the corresponding synthetic seismic traces
for different values of λ given in Figure 5.5 reveal that an increase of
the sampling rate does not influence this estimation much, see Figure
5.3 for the comparison.

The results of the second T sensitivity test are given in Figure 5.6 and
are compared with results for the lower sampling step T = 2 ms (Fig-
ure 5.4). In agreement with the outcome of the first test, the layers on
the estimated acoustic impedance models are more distinct for a finer
T = 1 ms sampling step due to the TV criterion.

Analogous to the result of the µ sensitivity test for T = 2 ms (Fig-
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Figure 5.5: Sampling rate T sensitivity test (µ = 2; λ = 0.5, 1, 2;
T = 1 ms; M = 300). Results of 1D Inversion of the clinoforms. Left
column: the initial model (green), the estimated models (red), super-
imposed on the actual impedance log (blue). Right column: seismic
traces of the initial model (resampled impedance log) based synthetic
seismic (green), the synthetic seismic (red) and the actual seismic data
(blue).
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Figure 5.6: Sampling rate T sensitivity test (λ = 1; µ = 0.5, 1, 2, 4, 8;
T = 1 ms; M = 300). Results of 1D inversion of the clinoforms. Left
column: the initial model (green), the estimated models (red), super-
imposed on the actual impedance log (blue). Right column: seismic
traces of the initial model (resampled impedance log) based synthetic
seismic (green), the synthetic seismic (red) and the actual seismic data
(blue).
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ure 5.4) a flattening effect of the amplitudes of the entire estimated
impedance models with increasing µ is observed in Figure 5.6. How-
ever, this effect is much weaker for the finer sampling step T = 1 ms.
A good example is a layer at TWT 0.84 s on the estimated impedance
model for a high µ = 8 parameter and fine sampling T = 1 ms (Fig-
ure 5.6(i)) that is not recognizable anymore on the corresponding plot
(Figure 5.4(i)). Another evidence is given by two layers at TWT 0.77 s
and TWT 0.79 s on the estimated impedance model plotted in Figure
5.4(i). These layers have much lower amplitudes than the ones on the
corresponding plot for a high µ = 8 and fine sampling T = 1 ms given
in Figure 5.6(i). The reason behind it is as follows: when the num-
ber of samples used in the impedance model is getting smaller, then
the sensitivity of the model to the small fluctuations in the acoustic
properties is reduced. As a consequence the values of the samples are
forced to approach the average.

Another interesting feature that can be noted from the result of this
test is that for the fine sampling very thin layers can be estimated.
Two examples can be selected to illustrate this. The first one holds
for the low µ = 0.5 regularization. Comparison of Figure 5.4(a) and
Figure 5.6(a) depicts that there were a number of thin layers estimated
for the finer sampling T = 1 ms at TWT 0.76 s, TWT 0.81 s, TWT
0.84 s, while those layers can not be distinguished on the correspond-
ing plot for the moderate sampling T = 2 ms. The second example
is for the higher µ = 8 parameter. Two thin layers at TWT 0.78 s
plotted in Figure 5.6(i) were estimated, whereas on the corresponding
plot in Figure 5.4(i) for the moderate sampling they do not show up.
We believe that, in case of the finer sampling T of the model, there is
enough freedom for the vertical gradient to form an intermediate layer
for a group of successive samples, that have slightly different acoustic
properties from the surrounding layers. This effect is stronger for the
cases when the lower µ values are applied, since the influence of the
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TV criterion is smaller. This means that the neighboring samples in
the model are less forced to group in one layer, even though these
samples have similar acoustic properties.

The behavior of the synthetic seismic traces for the finer sampling step
T = 1 ms (Figure 5.6) is similar to the corresponding synthetic seismic
traces for a moderate sampling step T = 2 ms (Figure 5.4). Namely,
the mismatch between the actual and the synthetic seismic traces in-
creases with increasing µ values (while the corresponding estimated
impedance models tend to level).

5.3.4 Results

The acoustic impedance models obtained with the method described
in this chapter have in general a good correlation with the well data
for the different λ, µ and T values, within the chosen range of the
regularization parameters (Table 5.1). The 1D inversion results yields
a good overall match with the actual seismic trace as well. In addi-
tion, the vertical resolution of the current method is high, and lies
beyond the seismic resolution. The results shows that details (layers)
with thicknesses as small as 1/10th of the source wavelength are well
resolved.

Unlike the previously presented method, more than one regulariza-
tion parameter is involved in the cost function of the current method.
Moreover, those regularization parameters are dependent on each other.
Theoretically, the choice for the optimal regularization parameters
should be based on the complex analysis of the 1D inversion results
together with the pseudo 2D inversion results, similar to the method
given in Chapter 4. However, in that case, the number of regular-
ization parameters to be perturbed and investigated in the pseudo 2D
inversion test is very high (90 combinations). In addition, this method
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is computationally expensive since a much larger number of parame-
ters needs to be estimated. Preferably, the possibility to fix one, or,
if possible more of the parameters, based on the output of the 1D in-
version tests, is highly desired. Therefore, the main goal of these tests
was to investigate the level of sensitivity of the inversion procedure to
the parameters λ, µ and T . Based on the λ sensitivity tests it appears
that this parameter has the least influence on the 1D inversion results.
Hence, λ equal to 1 was picked and will be used in the subsequent
pseudo 2D inversion tests. The results of the T sensitivity tests show
that T equal to 1 ms allows more distinct layering to be formed, i.e., it
provides a more accurate estimation of the acoustic impedances than
the ones with T = 2 ms. Evidently, therefore, T = 1 ms should be
used in the pseudo 2D inversion test. The µ sensitivity tests indicated
the general influence of this parameter only. A unique choice of the
optimal regularization parameters based on the 1D inversion tests can
not be made, as it is still quite difficult to predict the influence of the
parameter on this pseudo 2D inversion procedure. Consequently, the
entire range of µ = 0.5, µ = 1, µ = 2, µ = 4 and µ = 8 is retained and
will be used for the pseudo 2D inversion tests.

5.4 Inversion of the Clinoforms

5.4.1 Formulation of the Inverse Problem

The parameter vector to be estimated for every trace consists of the
acoustic impedances, sampled with a constant sampling rate T (equa-
tion (4.1)):

xk = [Zk
1 , . . . , Zk

M ], (5.6)

where M = 300 is the number of samples per trace, k = 1, . . . , K,
where K is the number of traces in the sequence to be inverted. Again,
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the seismic section containing K = 70 traces, situated on the left-hand
side of the well was chosen for the test.

Similar to the method described in the previous chapter, the inversion
of a seismic section is done trace by trace. However, the inversion
technique is not the same for every trace. The inversion procedure is
different for the seismic trace closest to the well, in the sense of the
cost function and its regularization terms.

Inversion of the Seismic Trace Closest to Well Analogous to
the method presented in Chapter 4, the inversion process starts from
the trace closest to the well. The inversion procedure for this trace
employs the modified cost function F (x), given in equation (5.5), and
described in the previous section. Like in the 1D case, the well log
data are used as a priori information.

Inversion of the Remaining Seismic Section The inversion pro-
cedure for all the remaining seismic traces along the clinoform se-
quence, starting from the trace that is second closest to the well, em-
ploys again an altered modified cost function. In this method, as
mentioned in the introduction, we propose to modify the original cost
function F (x) (equation (2.17)) by including two additional terms.
The first additional term was a vertical operator that favors a sparse
solution. The second additional term in F (x) is a so-called horizontal
operator and is explained below (equation (5.7)).

The initial model for the trace second closest to the well is the result (in
terms of estimated acoustic impedances) of the first trace closest to the
well. In contrast to method presented in Chapter 4, no normalization
of the initial model is needed, due to a constant sampling step of the
traces. In a similar manner, the resulting estimated parameters of the
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just inverted traces serve as the initial models for all the successive
traces.

5.4.2 Horizontal Operator

The horizontal operator is a sum of absolute differences between lat-
eral neighboring samples in the current (k) and the previous (k − 1)
seismic trace. This term accomplishes two tasks at once. First, it
promotes continuity of the inversion results along the clinoform se-
quence. Second, it propagates the a priori knowledge from the well
to the current trace. Based on the aforementioned consideration, a
hyperbolic instead of the L1-norm is used. The original second term
in the cost function, which is the weighted L2-norm of the deviations
of the parameters from their a priori values, can be omitted starting
with the second seismic trace from the well. The horizontal operator
propagates the well data to the current trace and takes lateral varia-
tions of the impedances along the sequence into account at the same
time. The functional to be minimized is

F (xk) = (yk − g(xk))T C−1
n (yk − g(xk)) +

+ µ
∑

j

(
√

(xk
j − xk

j−1)
2 + 1 − 1) + (5.7)

+ γ
∑

j

(
√

(xk
j − xk−1

j )2 + 1 − 1),

where k > 1 is a trace number. Similar to the vertical operator case
(equation (5.5)), the last term in equation (5.7) is also normalized by
a factor σ2

xi
(to keep the correspondence with equation (4.4)).
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5.4.3 Regularization

The cost function F (x) given in equation (5.7) includes two regular-
ization parameters: µ and γ. The first one, µ, in front of the vertical
operator term, restricts the number of layers in the inverted trace
and penalizes fluctuations inside each layer. The second one, γ, in
front of the horizontal operator term, enforces lateral continuity of the
impedances. In other words, it controls variations allowed from trace
to trace.

The aim of this section is to investigate how to select the appropri-
ate values for µ and γ. Due to the absence of a technique that could
provide an indication of the optimal values for these parameters, the
choice is made empirical, i.e., similar to the previous cases (see Chap-
ter 4).

The difference between the pseudo 2D inversion tests performed in
the method described in the previous chapter (they were focused on
finding an optimal λ regularization) and the current method, is that
there are now two weighting coefficients in the cost function F (x) in-
volved (equation (5.7)). In addition, the physical significance of these
weighting coefficients is different. Hence, a sensitivity tests of the pa-
rameters are needed. Taking into account that weighting coefficients µ
and γ are dependent, sensitivity tests cannot be performed separately
for each one (like in the method described in Chapter 4).

Based on the 1D inversion sensitivity tests the entire range of µ values
was selected for the pseudo 2D tests, i.e., µ = 0.5 − 8. We presume
that an optimal restriction of the number of layers in the acoustic
impedance model is within this range.

Taking into account that the horizontal operator is also normalized
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by a factor σ2
xi

(equation (5.7)) the following range of γ values was
selected: γ = 0.5, γ = 1, γ = 2. These values are expected to exhibit
the low and the relatively high influence of the horizontal operator
term.

The weighting coefficient λ is used in inversion of the first trace, clos-
est to the well, only (equation (5.5)), but it still plays an important
role in transferring the well data information into the entire sequence.
Based on the output of the 1D sensitivity test, λ = 1 is used in all
pseudo 2D inversion tests. Another parameter that was fixed, based
on the 1D inversion analysis, is the sampling step T = 1 ms (equation
(4.1)) and the corresponding number of samples M = 300 (number of
parameters to be estimated, equation (5.4)).

The values of all parameters for the pseudo 2D sensitivity tests are
summarized in Table 5.2.

λ γ µ

0.5 0.5 1 2 4 8
1 1 0.5 1 2 4 8

2 0.5 1 2 4 8

Table 5.2: Parameters in the pseudo 2D sensitivity tests, sampling
rate T = 1 ms

Sensitivity: µ and γ Since there are many parameter combina-
tions to be investigated, the analysis of the sensitivity test will be
performed in the following order: first, the extreme cases are consid-
ered, second, a group of the potential optimal combinations is selected
and investigated closer.
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Figure 5.7: Pseudo 2D µ and γ sensitivity test (µ = 0.5, 1; γ = 0.5).
Results of the inversion of the clinoforms: left column – the estimated
acoustic impedance models, right column – the synthetic seismic, cen-
ter column – the actual seismic.
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Figure 5.7 illustrates the pseudo 2D inversion results for the combi-
nation of the very low values of the parameters µ = 0.5 and γ = 0.5
(upper row). As can be observed on the estimated impedance model
(left), the layer distinction and the continuity are at a low level. The
estimated impedance model for the combination of the next value of
the parameter µ = 1 at the same low value of the parameter γ = 0.5
is shown in the lower row in Figure 5.7. A similar output is observed,
namely a low layer distinction, but to a lesser extent.

The corresponding seismic sections (right column) have in general a
good correlation with the real seismic sections but still minor mis-
matches can be detected.
The result of the pseudo 2D inversion for a combination of the low
value of the parameter µ = 0.5 but a high value of the parameter
γ = 2, is shown in the upper row in Figure 5.8. It appears that the
continuity term plays a dominant role in this combination, i.e., ar-
tificial horizontal layering is created. The dominance of the lateral
continuity term is still obvious, but to a smaller extent than when a
slightly higher value of the parameter µ = 1 and the same high value
of the parameter γ = 2 were used (the lower row in Figure 5.8). How-
ever, the layering characteristics of the estimated impedance model is
improved.

The effect of the very high lateral continuity prevalence can also be
observed in the corresponding seismic sections (the right column).
The number of the identified layers in the estimated acoustic impedance
as a function of the seismic trace along the sequence, for combinations
of the regularization parameters (µ = 0.5, γ = 0.5; µ = 1, γ = 0.5;
µ = 0.5, γ = 2; µ = 1, γ = 2) is shown in Figure 5.9. As can be ob-
served, the mean number of layers identified (dashed line) fluctuates.
The rapid increase in the average number of layers towards a value of
44 occurs when a low parameter µ = 0.5 and high parameter γ = 2
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Figure 5.8: Pseudo 2D µ and γ sensitivity test (µ = 0.5, 1; γ = 2).
Results of inversion of the Clinoforms: left column – the estimated
acoustic impedance models, right column – the synthetic seismic, cen-
ter column – the actual seismic.
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Figure 5.9: The number of identified layers in the target zone vs trace
number (γ = 0.5; µ = 0.5, 1).
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(Figure 5.9(c)) are applied. The average number of layers for other
combinations fluctuate around 35. This output correlates with the
previous conclusions, i.e., when the influence of the vertical operator
is relatively low compared to the one of the horizontal operator, a form
of artificial layering is created.

Once the combinations of regularization parameters µ and γ that cause
artificial effects were discarded, the group of potential optimal combi-
nations was investigated more thoroughly. The pseudo 2D inversion
results are organized in a three-by-three matrix, with parameter µ (2,
4, 8) increasing from left to right and parameter γ (0.5, 1, 2) increasing
from top to bottom. In the lateral direction the amount of layers is
restricted and in the vertical direction continuity is promoted.
The estimated impedance models for these combinations of the param-
eters and the corresponding synthetic seismic sections are displayed in
Figure 5.10 and Figure 5.11. Figure 5.12 presents the number of the
identified layers for those combinations of the regularization parame-
ters.

There are two attributes that have to be investigated. The first one
is the layering and associated with it, the level of detail (vertical di-
rection) of the resulting impedance models. The second attribute is
the continuity of the estimated impedance models. The analysis of
the corresponding seismic sections (Figure 5.11), and their compari-
son with the actual seismic is very important since it could assist in
the validation process.

Layering. As expected, the general trend for all combinations shows
that with an increase of the µ value, from µ = 2 (first column) to
µ = 4 (second column) the layering gets more distinct. The following
increase of the µ value, from µ = 4 (second column) to µ = 8 (third
column), causes a flatness effect of the impedance models, i.e., the
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Figure 5.10: Pseudo 2D 3×3 sensitivity test, the estimated acoustic
impedance section (λ = 1; µ = 2, 4, 8; γ = 0.5, 1, 2).
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Figure 5.11: Pseudo 2D 3×3 sensitivity test, synthetic seismic section
(λ = 1; µ = 2, 4, 8; γ = 0.5, 1, 2).
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(i) γ = 2;µ = 8

Figure 5.12: The number of identified layers in the target zone vs trace
number(γ = 0.5, 1, 2; µ = 2, 4, 8).
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vertical operator levels the estimated impedances to an average. In
that way, layers that are relatively thin are being grouped in a single,
thick layer. This effect was also detected on the 1D µ sensitivity test.

The analysis of the corresponding seismic sections (Figure 5.11) shows
that if µ increases from µ = 2 (first column) to µ = 8 (third col-
umn), then the seismic phases that correspond to different reflection
times (depth) tend to have equal time thicknesses. The effect is espe-
cially well observed for combinations with a low value of the parameter
γ = 0.5 (first row).

Continuity. This attribute can be described by means of two criteria,
the intensity of the amplitudes of the estimated acoustic impedance
models, and their structures.

As expected, the general trend for all combinations is that the con-
trast of the acoustic impedance models decreases when the γ value
changes from γ = 0.5 (first row) to γ = 2 (third row). This trend is
especially visible for the combinations with a low parameter µ = 0.5
(left column) and almost negligible for the combinations with a high
parameter µ = 8 (third column).

Structure-wise, the tendency is that the thicknesses of the particular
layers fluctuate less and exhibit better stability along the sequence
with an increase of the γ value from γ = 0.5 to γ = 2 (first and third
rows). Again the effect is better observed for the low value of the pa-
rameter µ = 0.5 (first column) and it decreases for the higher µ values.

The two aforementioned attributes are less evident in the synthetic
seismic sections (Figure 5.11), but are still recognizable. The ampli-
tudes of the seismic sections overall decreases when γ values rise from
γ = 0.5 (first row) to γ = 2 (third row). Similar to the estimated
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acoustic impedance sections, the effect is better seen for low µ = 0.5
values (first column) and almost disappears for the high µ = 8 values
(third column).

The augmented layering with the increase of the parameter γ from
γ = 0.5 to γ = 2 is very well observed for the combination with a low
value of the parameter µ = 0.5 (first column). In particular, tracing
the lower left corner of the seismic images belonging to the first col-
umn from the top to the bottom, it is evident that the seismic phase at
TWT 0.9 s almost disappears on Figure 5.7(b), whereas it is forcedly
prolonged for the higher γ = 2 value (Figure 5.11(g)). Increasing the
parameter γ from γ = 0.5 to γ = 2 in combination with a high value of
the parameter µ = 8 (third column) reveals another effect: the entire
layer structure of the synthetic seismic image becomes exaggeratedly
horizontal (Figure 5.11(i)). In addition, the thicknesses of the seismic
phases that correspond to different reflection times are constant along
the sequence.

The number of identified layers for the above mentioned combinations,
given in Figure 5.12, shows that the average fluctuates around 35, but
for the given combinations the span is not substantial.

5.4.4 Results

Since there is no objective way to determine the optimum values of
the regularization parameters, a subjective approach was applied in
the approach presented here. Due to the fact that the number of the
regularization parameters to be selected is quite high, the approach is
divided into three steps.

First, a 1D sensitivity test of the regularization parameters, λ, in front
of the a priori misfit term, µ, in front of the vertical operator term
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given in equation (5.5), and the sampling step T (equation (5.4)) was
applied. This test allowed us to select the optimum parameter λ equal
to 1, and the optimal parameter T equal to 1 ms. Those values were
used in the pseudo 2D test.

Second, a pseudo 2D sensitivity test of the weighting coefficients in
front of the vertical and horizontal operators was performed. The test
permits us to select the group of the potential optimal combinations
of the regularization parameters. Both the 1D and pseudo 2D sensi-
tivity test helps to understand the dependence on the parameters and
thereby assisted in guiding the search for the optimum values.

The last step is the expertise of a geologist who can choose the most
realistic solution from a geological perspective, from the selected group
of the potential optimal regularization combinations.
Based on this approach, the following combination of the regulariza-
tion parameters was chosen as optimal: T = 1 ms, λ = 1, µ = 4, γ = 1.
Figure 5.13 shows the estimated impedance model, the corresponding
synthetic seismic section for the optimal regularization parameters, to-
gether with the actual seismic and the number of the identified layers.

The choice was made based on several criteria: a good match of the
synthetic seismic section and the actual seismic section, and a realistic
geological interpretation of the resulting 2D impedance model, based
on the resulting vertical resolution and its lateral continuity.

The corresponding synthetic seismic section (Figure 5.13(b)) reveals
a good match with the field data (Figure 5.13(d)), in the sense that
the seismic amplitude values and the seismic phase thicknesses show
a good correlation between the sections.

From a geological point of view, the chosen optimal regularization com-
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Figure 5.13: Pseudo 2D seismic inversion results with the optimal
regularization applied: T = 1 ms, λ = 1, µ = 4, γ = 1.

bination provides the acoustic impedance model with realistic prop-
erties. The layers gently overlapping each other follow the sigmoidal
shapes. The properties of the layers do not differ much from the well
data, which are regarded as ground truth. At the same time, given
the length of the chosen seismic section to be inverted (70 traces, with
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25 m steps in between), lateral changes occur, both in the impedance
values and in the thickness of the layers. The layers realistically appear
and disappear in accordance with what can be expected in a clinoform
sequence.

We observe that the chosen impedance model is characterized with a
high level of details that can be observed from the resulting image.
A good example to demonstrate this are three consecutive, relatively
thin layers at TWT 0.75 s, trace numbers from 1 to 35, that are well
observable on the acoustic impedance model (Figure 5.13(a)).

We suppose that the continuity of the chosen impedance model is close
to optimum. It propagates the well data along the sequence, but at
the same time it allows changes in the layers properties in the lateral
direction. Overall, the amplitude intensity of the entire model corre-
sponds to the well data, meaning that acoustic impedance values do
not change drastically along the sequence. At the same time, some rea-
sonable fluctuations are detected. The same applies to the thicknesses
of the estimated layers, i.e., in general they remain in accordance with
the well data, but are able to change along the profile within a sensi-
ble range. The optimum combination of the regularization parameters
used in this estimated acoustic model, does neither create artificially
continuous layering nor false, horizontally leveled structures.

The best pseudo 2D inversion result (when the optimal combination of
the regularization parameters is applied) is situated right in the middle
of the selected group (three-by-three matrix) of parameters. In gen-
eral, all pseudo 2D results do not differ drastically from each other.
However, moving from the selected middle cell (the acoustic model
with the optimal regularization applied) to any other result within the
three by three matrix of the pseudo 2D results (Figure 5.10), reveals
that those results fail to satisfy one or more of the selection criteria.
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For example, moving towards high µ = 8 values (third column) shows
the insufficient level of detail in the resulting model, i.e., the thin layers
are merged with surrounding layers. A shift towards the low µ = 0.5
values (first column) fails to comply with the geological criterion, i.e.,
the impedance values change unrealistically much along the clinoform
sequence. Moving towards the higher γ = 2 values (third row) fails to
satisfy both the geological criterion, i.e., the impedance models have
artificial horizontal layering, and the match with the actual seismic
deteriorates, i.e., the seismic amplitudes and phases’ thicknesses have
artificial constant values. A shift in the direction of the low γ = 0.5
values (first row) results in problems to fulfill either the sufficient level
of detail criterion or the geological realism criterion, depending on
the µ values, i.e., layers either have unrealistically big changes in the
impedance values along the sequence or are suppressed too much.

In view of these facts, we believe that our choice of the optimum com-
bination of the regularization parameters is reasonable and acceptable,
although we have to mention that it still contains a certain degree of
subjectivity.



Chapter 6

Discussion, conclusions, and

recommendations

The present study has resulted in two inversion methods which allow
characterization of a clinoform sequence at the subseismic scale. The
methods are interdisciplinary, and quantitative. The methods are es-
pecially considered to be useful when seismic data alone do not reveal
the actual detailed reservoir architecture, which can be the case either
because of their low vertical resolution or exceedingly thin layering.

The proposed inversion methods are not fully 2D, but are more than
a series of independently processed 1D inversions. Although it is triv-
ial to rewrite it as true 2D inversion, we choose to implement it as a
‘recursive’ series of 1D inversions to substantially reduce the compu-
tational costs. To stress the enforced continuity along the geological
structure, we call it pseudo 2D inversion.

The choice for a deterministic inversion technique was equally moti-
vated by two aims. The first one is the possibility of including struc-
tural information —in this case the clinoform shapes— into the inver-
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sion process. The second one is the possibility to incorporate the well
information into the technique and thereby to increase the vertical
resolution of the inversion results and to integrate different sources of
information into a common earthmodel.

The integration of seismic data, well data and geological knowledge of
the reservoir architecture allowed us to construct high-resolution, 2D
impedance models of the subsurface.

Both seismic inversion methods presented here show encouraging re-
sults and show a good match with the measured seismic data and
with the well information. The methods are consistent with the initial
models (well-log), are constrained by it and yet are flexible enough to
detect deviations from the models which are dictated by the seismic
data and due to changes in the geological settings of the reservoir.

A benefit of both methods is that the resulting acoustic impedance
models are layer models rather than reflection boundaries. We chose
acoustic impedance as a characteristic property because it can be
linked to reservoir properties such as porosity and, in some instances,
fluid saturation. Moreover, acoustic impedance models can be in-
terpreted by geophysicists, petrophysicists, geologists and petroleum
engineers.

The inverted impedance models exhibit a vertical resolution between
the resolution of the well logs and the vertical resolution of the seismic
data. Compared to the seismic data, the increase of vertical reso-
lution improves the interpretation of the internal architecture of the
clinoform.
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6.1 Stratigraphic model-based, low-param-

etrization seismic inversion

The novelty in this method is the integration of the lateral high-
resolution seismic data with the vertical high-resolution well data and
a stratigraphic geological model, into the framework of a determinis-
tic inversion method, using only a small amount of parameters. The
geological models are constructed from quantitative knowledge of the
reservoir architecture. This multi-disciplinary approach pays special
attention to a proper parameterization of the 2D geological objects.
These geological objects guide the inversion, reducing the solution
space and increasing the confidence in the final reservoir model.

Since the addressed inverse problem was ill-posed, regularization played
an important role in this method. First, a ‘L-curve’ technique was used
on the seismic data and the a priori misfit to analyze the 1D results.
This technique helped to constrain the range of possible values for the
trade-off parameters. Then, more subjectively, pseudo 2D results were
analyzed by a geological expert, choosing the best model, correspond-
ing to a specific trade-off parameter. In this way, we did not only
attempt to generate accurate results, but also made the method more
geologically driven.

The presented seismic inversion method, integrated with stratigraphic
geological modeling, showed encouraging results when it was applied
to a clinoform sequence from the North Sea. The acoustic properties
of the internal layers of the fluvio-deltaic sequence were estimated at a
subseismic scale, with layer thicknesses as thin as 1/9th of the seismic
wavelength. From the estimated acoustic parameters and the layer
thicknesses, a 2D depositional model was constructed that demon-
strated a high level of detail.
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Advantages

• The method is capable to parameterize clinoform systems and
describe their geometry using a very small number of parameters.

• The estimated sigmoid models provide sufficient extrapolation
of the well data along the clinoform sequence and assist in the
characterization of the model.

• The estimated sigmoid models are used to steer the 1D trace
inversion along the clinoform sequence.

• The method allows lateral changes of impedance properties of the
layers along the clinoforms, which typically occurs when going
from topset to foreset to bottomset of the clinoforms.

• There are parts of the clinoform that can not be tracked on the
seismic image due to the low vertical resolution of the data or
convergence of the layers. This effect is especially prominent on
the topset and the bottomset parts of the clinoform sequence.
The method is able to extrapolate the well information to the
disconnected parts of the clinoforms, as well as to the events at
the subseismic scale.

• The method offers to be a predictive tool for further occurrences
of similar clinoform objects in the sequence. The estimated sig-
moid parameters can be used to predict the geometry of a clino-
form layer with incomplete information.

• The estimated sigmoid parameters are a useful tool to charac-
terize the changes in clinoform thickness, internal geometry, and
style of superposition of multiple clinoforms, that in turn can po-
tentially provide information regarding short-term fluctuations
of sediment supply, long-term margin subsidence, and sea level
changes.
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• As a result of the parametrization using a small number of pa-
rameters, the computational cost of the method is very low.

Limitations

• In the present study, only one specific environment has been
investigated, i.e., a clinoform sequence in a presumably fluvio-
deltaic setting. This limits the wider application of the method,
but a similar approach could be applied to characterize other
systems, e.g., channelized sequences.

• The methodology to parameterize objects is more or less limited
to the sedimentary environment of the data set, but it is scale-,
and —to some extent— shape-independent.

• For this method, it is compulsory that the clinoform structures
are at least partially present at the seismic scale.

• Upscaling (smoothing) method of the well data performed in
Chapter 3 (Section 3.6.2), could be a potential source of error
when finely layered media with detail far below the seismic res-
olution are studied (simple filtering and re-sampling change the
gross behavior of the finely detailed medium). For correct upscal-
ing of detailed log information, effective medium theory should
be applied (this topic was beyond the scope of this project). The
industry standard method is Backus averaging of moduli. For
more information, see Lindsay and van Koughnet (2001).

• The wavelet estimation was done with a zero phase assumption,
for simplicity. The wavelet was later checked by visual compar-
ison of the synthetic (the well data (reflectivity) convolved with
the estimated wavelet) and the real, close to the well, seismic
traces. The good correlation between these two traces was ex-
plained by the assumption that the real data set could have been
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filtered with the zero-phase filter during the processing stage. In
practice, the assumption of a zero phase wavelet is not always
valid and the wavelet (including the wavelet scaling) needs to
be thoroughly checked by tying the wells to the seismic. This is
especially the case when finely layered media are studied.

• The method includes the lithological interpretation of the well
log used to create a 1D initial model of the reservoir. As a
consequence, a user-introduced bias is unavoidable.

• In the current method, while constructing the 1D initial model,
the number of layers composing the clinoform sequence is defined
at the well location, which is maintained along the sequence.

• The method has strict requirements to the data, i.e., the avail-
ability of at least one well in the target zone of the clinoform
sequence. The required logs are sonic and gamma ray logs. A
density log is preferable for more accurate results but not manda-
tory. A poststack (time or depth) migrated 2D seismic section
is required.

• The starting point for the pseudo 2D inversion process is from
the closest trace to the well.

6.2 Grid-based Seismic Inversion

The innovation of this method is the implementation of a technique re-
cently introduced by Van Eekeren et al. (2008) into a seismic inversion
setting.
Van Eekeren et al. (2008) introduced a super-resolution (SR) recon-
struction of small moving objects from a low-resolution undersam-
pled image sequence, which we used here to characterize the clinoform
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data set. To this end, the original objective function was modified by
adding two additional terms, i.e., the vertical and the horizontal oper-
ator. The vertical operator favored an inversion solution, with sparse
layering. The horizontal operator favored continuity of the inversion
results in the horizontal direction.

Similar to the stratigraphic model-based method, this method inte-
grated the well data, that have a high vertical resolution, and the
seismic data that have a high lateral resolution. The resulting inver-
sion model is a consistent, 2-D high-resolution impedance model of the
clinoform sequence.

The implementation of the hyperbolic norm with a first and a second
order derivative that exist everywhere allowed us to use the more so-
phisticated Levenberg-Marquardt optimization method.

Minimization of the modified version of the cost function, employed in
the current method, is still an ill-posed problem. Similar to the previ-
ous inversion method, the ill-posed nature of the inversion technique
was handled by regularization of the inverse problem. The modified
version of the cost function contained several terms that needed to be
regularized. The regularization was applied in an empirical manner.
The understanding of the physical background of the weighting coeffi-
cients and their relationships helped steering the updates. In addition,
extensive tests on the sensitivity of the parameters were performed
to provide information regarding mutual behavior of the parameters.
Similar to the stratigraphic model-based method, this regularization
technique made the inversion method being driven by the geology.

This seismic inversion method, by adopting the multi-frame super-
resolution reconstruction method of small moving objects, integrates
the seismic data and the well data. It showed encouraging results
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when applied to a clinoform sequence from the North Sea. Similar
to the results of the previous method, the acoustic properties of the
extracted internal structures of the sequence were at the sub-seismic
scale. The estimated details (layers) had thicknesses up to 1/10th of
the seismic wavelength. The high resolution 2D geological model of
the clinoform reservoir was created based on the estimated acoustic
parameters.

Advantages

• The method employs the Total Variation criterion that enforces
sparse inversion solutions and thereby allows to present results
as a 2D impedance layered model of the clinoform reservoir.

• The cost function of the method includes the horizontal operator
that provides sufficient propagation of well data from trace to
trace along the clinoform sequence starting from the trace closest
to the well.

• The forward modeling technique used in the method has the
capability to increase the level of detail of the resulting 2D ge-
ological model to a higher level. The vertical resolution of the
seismic data was increased by incorporating the well data.

• The method does not require an interpretation of the well data
in order to create the 1D initial model of the subsurface. Instead,
a well log (impedance in our case) is sampled with a constant
time step. As a consequence, the constant time step sampling
of the well log prevents the user-introduced bias to occur and
greatly simplifies the inversion process.

• The method overcomes the main limitation of the previous method,
namely, it permits the fluctuation in the number of strata that
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can be interpreted from the resulting impedance model of the
clinoform sequence. This results in more realistic 2D geological
models of the clinoform sequence and makes this method more
data-driven.

• The method also overcomes another important limitation of the
stratigraphic model-based method, because there is no strong
restriction in the application of the method concerning the sed-
imentary environment of the data set.

Limitations

• The structural geological information (the estimated clinoform
shape) is no longer used explicitly in the method, but only im-
plicitly (provided by the horizontal operator).

• The trace sampling of the well log and the acoustic impedance
model assumes many samples inside a single layer, i.e., per trace
the actual number of layers is much smaller than the parameter-
ized number of samples.

• Upscaling (smoothing) method of the well data performed in
Chapter 3 (Section 3.6.2), could be a potential source of error
when finely layered media with detail far below the seismic res-
olution are studied (simple filtering and re-sampling change the
gross behavior of the finely detailed medium). For correct upscal-
ing of detailed log information, effective medium theory should
be applied (this topic was beyond the scope of this project). The
industry standard method is Backus averaging of moduli. For
more information, see Lindsay and van Koughnet (2001).

• The wavelet estimation was done with a zero phase assumption,
for simplicity. The wavelet was later checked by visual compar-
ison of the synthetic (the well data (reflectivity) convolved with
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the estimated wavelet) and the real, close to the well, seismic
traces. The good correlation between these two traces was ex-
plained by the assumption that the real data set could have been
filtered with the zero-phase filter during the processing stage. In
practice, the assumption of a zero phase wavelet is not always
valid and the wavelet (including the wavelet scaling) needs to
be thoroughly checked by tying the wells to the seismic. This is
especially the case when finely layered media are studied.

• Similar to the stratigraphic model-based method, this method
has strong data requirements, i.e., it needs at least one well in
the target zone of the clinoform sequence, the compulsory logs
are sonic and gamma ray logs, with a density log preferable for
more accurate results, and a poststack (time or depth) migrated
2D seismic section.

• The regularization technique used in the method leads to inver-
sion results that contain a certain degree of subjectivity.

• Similar to the previous method, the starting point of the pseudo
2D inversion process has to be the trace closest to the well.

• The forward modeling technique in this method needs a parametriza-
tion of the clinoform sequence with a large number of parameters,
and therefore this method has a high computational cost.

6.3 Geological Significance

Both impedance models reveal that the sediments with higher impedances
are found at the bottom of the sequence (except for the part that was
not modeled explicitly in the stratigraphic model-based method (TWT
866–894 ms)). This can be explained by an increase in the degree of
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shaliness of these layers, in line with the findings from the well model,
according to which the shales have lower impedances than the sand-
rich layers. Moreover, an alternation of sand- and shale-rich sediments
is observed in both impedance models, and they correlate well with
each other. This testifies to the heterolithic nature of such clinoform
sequences, and the results may form a useful tool to identify sand-rich
layers that might form potential reservoirs.

Thus, the 2D static impedance model obtained from the stratigraphic
model-based low parametrization inversion method can provide valu-
able quantitative information on changes in reservoir quality across
the field, but, in comparison, the model-free seismic inversion method
with sparsity promotion provides far more accurate quantitative infor-
mation about such possible reservoir layers.

Both types of impedance models could potentially improve reservoir
management through proper drilling strategies, reduced economic risks,
increased recovery, and more reliable reserve calculations.

6.4 Recommendations for further research

In view of the foregoing, we have three recommendations and several
suggestions for improvements on the methods for further research.

First of all, a so-called blind test is advised, where the results of the in-
version are validated at well(s), that were not involved in the inversion
procedure. Due to the absence of a second well in the area of interest
of this study such a blind test could not be performed to validate the
methods.

Second, we suggest to apply an industrial inversion package to perform
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an inversion on this clinoform sequence. This test can expose the mer-
its and shortcomings of the methods presented here and at the same
time serve as an additional validation criterion of the inversion results.

Third, we recommend to apply a more rigorous quality control (QC)
procedure of the well log synthesis, the forward modeling and the qual-
ity of the inversions, which was beyond the scope of this project but
undoubtedly plays an important role in the reservoir characterization
workflow.

In general, we believe that the integration of the two methods has the
best potential to improve the results of the seismic inversion procedure.

In cases where more than one well is available in the area of interest we
recommend to account for the a priori uncertainties in a more accurate
way. Instead of using the standard deviation of the best-fit Gaussian
distribution to the histogram of the single acoustic impedances log to
estimate the uncertainties for every layer (stratigraphic model-based
method) or every sample (model-free method), several logs should be
involved, thereby making it possible to estimate the uncertainties for
each layer (or sample) individually.

Apart from these more general remarks, we propose several improve-
ments that are explicitly aimed at the two methods.

Stratigraphic model-based, low parametrization seismic in-

version

• Since the influence of the well data on the inversion results
decreases with the distance from the well, we advise to make
the regularization parameter λ variable along the clinoform se-
quence, having the highest impact in the beginning.
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• A compaction effect of the sediments was detected in the well
data, i.e., the deeper sediments are characterized by higher acous-
tic impedance values (Chapter 3, Section 3.6.2). A ‘detrending
procedure’ of the log data is advised to compensate the com-
paction effect.

• The method can be extended to areas where the clinoform shapes
are revealed only partially on the seismic image due to the low
vertical resolution of the seismic data. By using the predic-
tive capabilities of the method, those partly exposed clinoform
shapes still can be estimated and integrated into the inversion
procedure. However, in this case we advise to use them as soft
constraints that will guide the 1D inversion, rather than as hard
boundaries.

• Because no significant changes in the geological settings are ex-
pected between neighboring seismic traces (spaced at 25 m), we
propose to modify the original cost function by adding a third
term that regularizes the amount of variation in the properties
allowed from trace to trace.

• In the current state of the method the initial model, called ‘Well
Model’, is constructed based on log analysis of the lithofacies and
their layering, causing a certain degree of user bias. In order to
increase the confidence in the initial model, the number of layers
in the clinoform sequence that are identified in the model-free
seismic inversion method can serve as an additional constraint
in the ‘Well Model’ construction.

Grid-based Seismic Inversion

• Structural geological information is not used explicitly in this
method, but only implicitly via the horizontal operator. We
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propose to extend or replace this horizontal operator with an op-
erator that incorporates the structural information provided by
the estimated clinoform models. This new operator also should
favor sparse solutions, but now in the direction of the clinoforms.

• We recommend to make the method a full 2D inversion proce-
dure. For the horizontal operator, or the new geologically driven
operator, it makes more sense to use several traces or even the
entire clinoform sequence. As a 2D initial model, one can use the
static impedance model obtained by optimizing the stratigraphic
model-based inversion method.

• Since there is no restriction in applying the method to other geo-
logic settings, expanding the method to other geological macrostruc-
tures, e.g., channels can be recommended
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