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Fundamentals of 3-D seismic survey design

SUMMARY

Three-dimensional (3-D) seismic surveys have become a major tool in the
exploration and exploitation of hydrocarbons. The first few 3-D seismic surveys were
acquired in the late 1970s, but it took until the early 1990s before they gained general
acceptance throughout the industry. Until then, the subsurface was being mapped using
two-dimensional (2-D) seismic surveys.

Theories on the best way of sampling 2-D seismic lines were not published until the
late 1980s, notably by Anstey, Ongkiechong and Askin, and Vermeer. These theories
were all based on the insight that offset forms a third dimension, for which sampling
rules must be given.

The design of the first 3-D surveys was severely limited by what technology could
offer. Gradually, the number of channels that could be used increased, leading to
discussions on what constitutes a good 3-D acquisition geometry. The general
philosophy was to expand lessons learnt from 2-D acquisition to 3-D. This approach led
to much emphasis on the properties of the CMP gather (or bin), because good sampling
of offsets in a CMP gather was the main criterion in 2-D design. 3-D design programs
were developed, which mainly concentrated on analysis of bin attributes, and in
particular on offset sampling (regularity, effective fold, azimuth distribution, etc.).

This conventional approach to 3-D survey design is limited by an incomplete
understanding of the differing properties of the many geometries that can be used in
3-D seismic surveys. In particular, the sampling requirements for optimal prestack
imaging were not properly taken into account. This dissertation addresses these
problems and provides a new methodology for the design of 3-D seismic surveys.

The approach used in this dissertation is the same as employed in my "Seismic
Wavefield Sampling", a book on 2-D seismic survey design published in 1990: before
the sampling problem can be addressed, it is essential to develop a good understanding
of the continuous wavefield to be sampled. In 2-D acquisition, only a 3-D wavefield has
to be studied, consisting of temporal coordinate £, and two spatial coordinates, shot
coordinate x,, and receiver coordinate x,. In 3-D acquisition, the prestack wavefield is
5-D with two extra spatial coordinates, shot coordinate y,, and receiver coordinate y,.

In practice, not all four spatial coordinates of the prestack wavefield can be properly
sampled (proper sampling is defined as a sampling technique which allows the faithful
reconstruction of the underlying continuous wavefield). Instead, it is possible to define
three-dimensional subsets of the 5-D prestack wavefield which can be properly
sampled. In fact, the 2-D seismic line is but one example of such 3-D subsets.

The 2-D seismic line is a multi-fold data set with midpoints on a single line only.
However, in 3-D acquisition there are many possible 3-D subsets which are single-fold
and whose midpoints extend across a certain area. These subsets are called minimal
data sets. A minimal data set represents a volume of data (sometimes called a 3-D
cube), which has illuminated part of the subsurface. If there was no noise, a single
minimal data set would be sufficient to create an image of the illuminated subsurface
volume.

Most acquisition geometries used in practice generate data that can be considered as
a collection of sampled minimal data sets. Therefore, the properties of the minimal data
sets need to be studied for a better understanding of the acquisition geometries as a
whole. This allows an optimal choice of the acquisition geometry (if there is a choice,
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often the geometry type is dictated by economic or environmental constraints) and of
the parameters of the geometry.

The continuous wavefield to be sampled can be reduced to the wavefield of the
characteristic minimal data set of the chosen geometry. Proper sampling of that
wavefield means that at least two of the four spatial coordinates of the 5-D prestack
wavefield will be properly sampled. Next, it is recommended to maximize the useful
extent of each minimal data set. Together, these two recommendations ensure a
minimum of spatial discontinuities in the total data set. Spatial continuity is maximized
and the migrated minimal data sets contain a minimum of artifacts. Other parameters of
each acquisition geometry need to be chosen so that requirements of resolution, noise
suppression and illumination are satisfied as well.

Based on these basic principles, this dissertation addresses a wide variety of issues.
It starts with a short summary of 2-D symmetric sampling, which is a recipe for optimal
sampling of the 2-D seismic line. 2-D symmetric sampling is based on a corollary of the
reciprocity theorem, which affirms that the properties of the common-receiver gather
are the same as the properties of the common-shot gather. As a consequence, sampling
requirements of shots and receivers are identical.

3-D seismic surveys can be acquired using a number of different acquisition
geometries. The most important geometries are areal geometry, parallel geometry and
orthogonal geometry. Each geometry has its characteristic 3-D basic subset. If the basic
subset is single fold, it is also a minimal data set. In areal geometry either shots or
receivers are acquired in a dense areal grid. If shots are dense, receivers are sparse or
vice versa. In the first case 3-D common-receiver gathers are acquired. These gathers
form the basic subset or minimal data set of this particular areal geometry. '

Parallel geometry and orthogonal geometry are examples of line geometries, in
which sources and receivers are arranged along straight acquisition lines, which are
more or less widely separated. In parallel geometry the (parallel) shot lines are parallel
to the (parallel) receiver lines, whereas in orthogonal geometry shot and receiver lines
are orthogonal. The basic subset of parallel geometry is the midpoint line, which runs
halfway between the shot line and each active receiver line. The basic subset of
orthogonal geometry is the cross-spread, which encompasses all receivers in a single
receiver line which are listening to a range of shots in a single shot line. The cross-
spread is a minimal data set with limited extent. The difference in properties of the
various acquisition geometries is illustrated by the difference in diffraction traveltime
surface of the same diffractor for the basic subsets of those geometries.

2-D symmetric sampling can be readily expanded to 3-D symmetric sampling after
recognition of the existence of the basic subsets of each geometry.

For imaging, it would be ideal to have single-fold data sets that extend across the
whole survey area, but which possess a minimum of spatial discontinuities so that they
would produce a minimum amount of migration artifacts. These data sets are called
pseudo-minimal data sets and can be constructed from so-called offset-vector tiles. In
orthogonal geometry the size of the offset-vector tile is determined by the area between
two adjacent shot lines and two adjacent receiver lines. The cross-spread can be split
into M disjoint offset-vector tiles (M is fold-of-coverage), in which the x- and the y-
component of the offset vector vary over a limited range.

Sampling in 3-D acquisition is usually not dense enough to record low-velocity
noise without aliasing. To reduce aliasing effects, shot and receiver arrays may be used.
The arrays may be linear or areal. For a proper choice of arrays, the properties of the
noise need be known. An analysis of the energy distribution of low-velocity scatterers
shows that in the cross-spread most energy is concentrated on the flanks of the
traveltime surface and there is less energy around the apex. Linear arrays are sufficient
to suppress the energy in the flanks. If there is much undesirable energy coming from
all directions, circular arrays can be constructed with a circular response.

Often, one of the aims in 3-D survey design is to achieve a regular offset
distribution. This is based on Anstey's stack-array approach for 2-D data, which states
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that ground roll is best suppressed in the stack by a regular sampling of offsets in each
CMP gather. However, this requires high-fold data; if the data are low fold, a random
offset distribution tends to have a better stack response. This applies in particular to 3-D
data where fold tends to be low, especially if measured in separate azimuth ranges. A
wide orthogonal geometry (maximum cross-line offset close to maximum in-line offset)
tends to produce irregular offset sampling in each CMP gather, hence tends to have a
better stack response than a narrow geometry.

The theoretical considerations and observations of the first part of the dissertation
are translated into practical guidelines for choice of geometry and selection of
parameters for orthogonal geometry. Parallel geometry looks most like 2-D acquisition,
the stack response is similar, and processing can use many of the techniques already
developed for 2-D processing. It is not suitable for analysis of azimuth-dependent
effects. Parallel geometry can be acquired efficiently in marine environment using
streamers, but on land parallel geometry is less efficient than orthogonal geometry.
Orthogonal geometry is suitable for analysis of azimuth-dependent effects. It is also
used for sea-bed acquisition using bottom cables. Processing of orthogonal geometry is
much more complex than processing of parallel geometry. Zigzag geometry is a
geometry devised for efficient acquisition in desert environments. Slanted geometry is
similar to orthogonal but the shot lines cross the receiver lines at an oblique angle. The
basic subsets of zigzag and slanted geometry are less suitable for dual-domain
processing than the basic subset of orthogonal geometry. Areal geometry is also
suitable for analysis of azimuth-dependent effects. It is applied mainly in deep waters in
case very expensive receiver units are used, such as vertical-hydrophone cables and 4-C
receiver units (3-component geophone plus hydrophone).

The main parameters of orthogonal geometry are station intervals, line intervals,
maximum in-line and cross-line offsets, and fold. These have to be selected such that
requirements of spatial continuity, resolution, mapping of shallowest and deepest
horizons of interest, and noise suppression are satisfied. The survey area is always
larger than the area to be mapped due to the fold-taper zone and the radius of the
migration operator.

In practice, a one-line roll of a nearly square template tends to be quite inefficient.
Without compromising the desired acquisition geometry, it is often more efficient to
use a full-swath roll. A multi-line roll is also more efficient, but it will create strong
spatial discontinuities.

Obstacles often prevent acquisition of straight acquisition lines. Spatial continuity
then requires the acquisition lines to be smooth. Common practice of moving shots an
integer multiple of the receiver interval to the right or to the left produces
discontinuities in the receiver gathers leading to migration artifacts. A general
requirement in acquisition of parallel and orthogonal geometry is that the receiver
gathers should look as good as the shot gathers.

In marine seismic data acquisition, the designer has to choose between streamers
and stationary-receiver systems. With streamers, multisource multistreamer
configurations are used in a parallel geometry. With stationary-receiver systems there is
flexibility in the choice of geometry. Streamers are most efficient in deep water without
any obstacles. Adjacent boat passes should be acquired antiparallel to minimize
illumination irregularities. However, illumination irregularities caused by differential
feathering are inevitable. Acquisition with stationary-receiver systems tends to be more
expensive than with streamers. Systems in use are vertical hydrophone cable, ocean-
bottom cable and node. Nodes are single 4-C units, whereas ocean-bottom cables can
be used with a dual-sensor technique as well as a 4-C technique. Repeatability of
stationary-receiver systems is better than repeatability of streamer acquisition.

Survey design for PS-waves is different from P-wave acquisition, owing to the
asymmetry of the PS ray path. Differences in PS-illumination by minimal data sets of
different geometries are much larger than P-illumination differences. For instance, a
cross-spread with a square midpoint area produces an illumination area with rectangular
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shape even for a horizontal reflector. The ray-path asymmetry leads to asymmetric
sampling requirements for shots and receivers. Shot sampling interval is determined by
P-wave velocity; receiver sampling interval by S-wave velocity. Parallel geometry
tends to suffer least from asymmetry effects whereas orthogonal geometry tends to
suffer most. For analysis of azimuth-dependent effects, areal geometry might be the
best choice.

Noise spreads or microspreads are acquired with very dense spatial sampling for an
analysis of low-velocity events. A cross-spread with very dense spatial sampling was
acquired in The Netherlands. Timeslices and cross-sections illustrate the 3-D behavior
of the ground-roll cone and of the scatterers inside the cone.

The theory of 3-D symmetric sampling was put to the test in Nigeria, where a cross-
spread test geometry was compared with the standard brick-wall geometry. The test
geometry produced better results (higher resolution and better continuity) at target level
than the standard geometry. The improvement can be attributed to larger width
(maximum cross-line offset) of the test geometry and (most likely) to its better spatial
continuity.

The same Nigerian data set is used to demonstrate that under favorable
circumstances very low fold can be sufficient to get acceptable 3-D prestack migration
results.

The minimal data sets of the various acquisition geometries also have different
resolution properties. The main factor influencing the theoretically best resolution is the
stretch effect caused by normal moveout. Therefore, zero-offset data have potentially
best resolution. Resolution is not improved by reducing the midpoint sampling intervals
while keeping the shot and receiver sampling intervals the same (bin-fractionation
technique). Carefully selected "random" coarse sampling may produce less migration
artifacts than regular coarse sampling, but in order to eliminate all artifacts, regular
dense sampling is best.

The theory of DMO correction was developed for 2-D common-offset gathers.
Initially, the success of application of DMO correction to 3-D data was not really
understood. The theory of DMO application to minimal data sets in general and to
cross-spreads in particular dispelled the mystery. The application of existing DMO
software to a single-fold data set (cross-spread) revealed serious amplitude and phase
artifacts. This prompted improvements in contractor software.

The required migration radius is often described in terms of Fresnel zone radius.
However, the Fresnel zone radius for broadband data is not large enough for complete
imaging. It is better to define the zone of influence for migration (in analogy to what
previously has been done for modeling) and to use the radius of that zone in
establishing migration-apron requirements. Most minimal data sets have limited extent
leading to edge effects in migration. However, using pseudo-minimal data sets
constructed from offset-vector tiles tend to produce better single-fold images than other
single-fold subsets of the geometry.

The ideas and results discussed in this dissertation should help to achieve a better
understanding of the structure of 3-D acquisition geometries. With this understanding,
geophysical requirements can be satisfied with an optimal choice of acquisition
geometry and its parameters. Processing techniques can be adapted to honor and exploit
the specific requirements of each geometry, especially orthogonal and areal geometry,
leading to a more interpretable end product.



Grondslagen voor het ontwerpen van 3D
seismische verkenningen

SAMENVATTING

Driedimensionale (3D) seismische verkenningen zijn een belangrijk hulpmiddel
geworden bij de exploratie en exploitatie van koolwaterstoffen. De allereerste 3D
seismische verkenningen vonden plaats in de tweede helft van de zeventiger jaren, maar
het duurde tot begin 1990 voor ze algemeen geaccepteerd werden in de bedrijfstak. Tot
die tijd werd de ondergrond in kaart gebracht met behulp van tweedimensionale (2D)
verkenningen.

Theorieén over de beste manier om 2D seismische lijnen te bemonsteren werden pas
gepubliceerd in de tweede helft van de tachtiger jaren, met name door Anstey,
Ongkiehong en Askin, en door Vermeer. Deze theorieén waren allemaal gebaseerd op
het inzicht dat de schot-ontvanger afstand (offsef) een derde dimensie
vertegenwoordigt, waarvoor regels voor het bemonsteren dienen te worden gegeven.

Het ontwerpen van de eerste 3D verkenningen werd in hoge mate beperkt door wat
de technologie te bieden had. Langzamerhand groeide het aantal kanalen dat gebruikt
kon worden, wat leidde tot discussies over de kenmerken van een goede 3D acquisitie-
geometrie. De algemene filosofie was om de lessen die geleerd waren uit 2D acquisitie
uit te breiden naar 3D. Deze benadering leidde tot grote nadruk op de eigenschappen
van het gemeenschappelijke middelpunt (common midpoint, CMP of bin), omdat goede
bemonstering van de offsets het belangrijkste criterium was bij 2D ontwerpen. Men
ontwikkelde 3D ontwerpprogramma's die zich concentreerden op de analyse van
binattributen en in het bijzonder op bemonstering van offsets (regelmaat, effectieve
bedekkingsgraad, azimutverdeling, etc.).

Deze conventionele benadering van het ontwerpen van 3D verkenningen wordt
beperkt door een onvolledig begrip van de verschillen in de eigenschappen van de vele
geometrieén die gebruikt kunnen worden in 3D seismische verkenningen. In het
bijzonder wordt er niet op de juiste manier rekening gehouden met de vereisten voor
bemonstering ten behoeve van optimale prestack (v6ér sommatie) beeldvorming.

De werkwijze in dit proefschrift is hetzelfde als in mijn "Seismic Wavefield
Sampling", een boek over het ontwerpen van 2D seismische verkenningen gepubliceerd
in 1990: voor het bemonsteringsprobleem aangepakt kan worden is het essentieel om
een goed begrip te verkrijgen van het continue golfveld dat bemonsterd moet worden.
In 2D acquisitie hoeft alleen een 3D golfveld bestudeerd te worden. Dit bestaat uit een
tijdcodrdinaat ¢ en twee ruimtecotrdinaten, een schot codrdinaat x; en een ontvanger
codrdinaat x,. In 3D acquisitie is het prestack golfveld SD met twee extra
ruimtecodérdinaten, schot codrdinaat y; en ontvanger coérdinaat y,.

In de praktijk kunnen niet alle vier ruimtecodrdinaten van het prestack golfveld op
de juiste manier bemonsterd worden (juist bemonsteren wordt gedefinieerd als een
bemonsteringstechniek die het mogelijk maakt om het onderliggende continue golfveld
correct te reconstrueren). In plaats daarvan is het mogelijk om driedimensionale
deelverzamelingen van het 5D prestack golfveld te definigren die wel juist bemonsterd
kunnen worden. In feite is het 3D golfveld van de 2D seismische lijn slechts een
voorbeeld van zo'n 3D deelverzameling.

De 2D seismische lijn is een gegevensbestand met meervoudige bedekking,
waarvan de middelpunten op één lijn liggen. In 3D acquisitie zijn er veel 3D
deelverzamelingen met enkelvoudige bedekking en waarvan de middelpunten een zeker
oppervlak in beslag nemen. Deze deelverzamelingen worden minimale
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gegevensbestanden genoemd. Een minimaal gegevensbestand bestaat uit een
gegevensvolume, dat een deel van de ondergrond belicht heeft. Als er geen ruis zou
zijn, zou één enkel minimaal gegevensbestand voldoende zijn om een afbeelding te
construeren van het belichte deel van de ondergrond.

De meest gebruikte acquisitiegeometrieén leveren gegevens op die beschouwd
kunnen worden als een verzameling bemonsterde minimale gegevensbestanden.
Daarom moeten de eigenschappen van de minimale gegevensbestanden bestudeerd
worden voor een beter begrip van het totaal aan gegevens. Deze kennis maakt een
optimale keuze mogelijk van de acquisitiegeometrie (als zo'n keuze bestaat; vaak wordt
de geometrie gedicteerd door economische beperkingen of door het type terrein) en van
de parameters van de geometrie.

Het continue golfveld dat bemonsterd moet worden kan worden gereduceerd tot het
golfveld van het minimale gegevensbestand dat karakteristiek is voor de gekozen
geometrie. Juist bemonsteren van dat golfveld betekent dat tenminste twee van de vier
ruimtecodrdinaten van het 5D prestack golfveld juist bemonsterd worden. Bovendien
wordt aanbevolen de nuttige grootte van elk minimaal gegevensbestand te
maximaliseren. Samen garanderen deze twee aanbevelingen een minimum aan
ruimtelijke discontinuiteiten in het totale gegevensbestand. Ruimtelijke continuiteit
wordt gemaximaliseerd en de gemigreerde minimale gegevensbestanden bevatten een
minimum aan onregelmatigheden. De andere parameters van elke acquisitiegeometrie
moeten zo gekozen worden dat ook aan de vereisten van resolutie, ruisonderdrukking
en belichting voldaan wordt.

Uitgaande van deze basis principes, behandelt dit proefschrift een breed scala aan
onderwerpen. Het begint met een korte samenvatting van de regels voor het optimaal
bemonsteren van een 2D seismische lijn: 2D symmetrisch bemonsteren. 2D
symmetrisch bemonsteren is gebaseerd op het reciprociteitstheorema. Als gevolg van
dit theorema zijn de eigenschappen van de verzameling gegevens met dezelfde
ontvanger gelijk aan de eigenschappen van de verzameling gegevens met hetzelfde
schotpunt. Bijgevolg zijn de vereisten voor bemonstering van schoten en ontvangers
identiek.

3D seismische verkenningen kunnen worden verkregen door gebruik van een aantal
verschillende acquisitiegeometrieén. De belangrijkste geometrieén zijn de
oppervlaktegeometrie, de parallelle geometric en de orthogonale geometrie. Elke
geometrie heeft zijn karakteristiecke 3D elementaire deelverzameling. Zo'n elementaire
deelverzameling is ook een minimaal gegevensbestand als het enkelvoudige bedekking
heeft. In de oppervlaktegeometrie worden de schoten dan wel de ontvangers dicht
bemonsterd in een oppervlakterooster. Als de schoten dicht bemonsterd worden, dan
worden de ontvangers spaarzaam bemonsterd of vice versa. In het eerste geval worden
3D verzamelingen met dezelfde ontvanger opgenomen. Deze verzamelingen vormen de
elementaire deelverzameling of het minimale gegevensbestand van de betreffende
oppervlaktegeometrie.

De parallelle geometrie en de orthogonale geometrie zijn voorbeelden van lijn-
geometrieén, waarin schoten en ontvangers gerangschikt zijn langs rechte
acquisitielijnen, die een al dan niet grote onderlinge afstand hebben. In de parallelle
geometrie zijn de (parallelle) schotlijnen parallel aan de (parallelle) ontvangerlijnen,
terwijl in de orthogonale geometrie schot- en ontvangerlijnen loodrecht op elkaar staan.
De elementaire deelverzameling van de parallelle geometrie is de middelpuntlijn, die
zich halverwege de schotliin en de ontvangerlijn bevindt. De elementaire
deelverzameling van de orthogonale geometrie is de kruisgroep (cross-spread) die alle
ontvangers omvat die luisteren naar een serie schoten in een enkele schotlijn. De
kruisgroep is een minimaal gegevensbestand met beperkte uitgestrektheid. Het verschil
in eigenschappen van de diverse acquisitiegeometrieén wordt geillustreerd door het
verschil in de oppervlakken gevormd door de looptijden van een diffractie voor de
elementaire deelverzamelingen van die geometrieén.
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2D symmetrisch bemonsteren kan eenvoudig worden uitgebreid naar 3D
symmetrisch bemonsteren nadat de elementaire deelverzamelingen van de verschillende
geometrieén als zodanig zijn herkend.

Voor het afbeeldingsproces zou het ideaal zijn om te beschikken over enkelvoudige
gegevensbestanden die zich uitstrekken over het gehele gebied dat in kaart gebracht
moet worden en die een minimale hoeveelheid ruimtelijke discontinuiteiten bevatten,
zodat zij een minimale hoeveelheid onregelmatigheden vertonen na migratie. Deze
gegevensbestanden worden pseudo-minimale gegevensbestanden genoemd en kunnen
worden geconstrueerd met behulp van zogenaamde offsetvectortegels. In de
orthogonale geometrie wordt de grootte van de offsetvectortegel bepaald door het
gebied tussen twee opeenvolgende schotlijnen en twee opeenvolgende ontvangerlijnen.
De kruisgroep kan worden gesplitst in M disjuncte offsetvectortegels (M is
bedekkingsgraad), waarin de x- en y-component van de offsetvector variéren over een
beperkt bereik.

De bemonstering in 3D acquisitie is in het algemeen niet dicht genoeg om ruis met
lage snelheid zonder aliasing op te nemen. Om de effecten van aliasing te reduceren
kunnen schot- en ontvangerpatronen gebruikt worden. Dit kunnen lineaire patronen dan
wel oppervlaktepatronen zijn. Voor een juiste keuze van de patronen, moeten de
eigenschappen van de ruis bekend zijn. Een analyse van de energieverdeling van
diffracties met lage snelheden toont aan dat in de kruisgroep de meeste energie
geconcentreerd is in de flanken van het looptijdenoppervlak en dat zich minder energie
bevindt bij de apex van dat oppervlak. Lineaire patronen zijn voldoende om de energie
in de flanken te onderdrukken. Als er veel ongewenste energie uit alle richtingen komt,
kunnen cirkelvormige patronen geconstrueerd worden met een cirkelvormige respons.

Eén van de doelstellingen van het ontwerpen van 3D seismische verkenningen is
vaak om een regelmatige offsetverdeling te verkrijgen. Dit is gebaseerd op Anstey's
stack-array (sommatie-patroon) benadering voor 2D gegevens. Deze benadering stelt
dat oppervlaktegolven het beste onderdrukt kunnen worden bij het stacken als elke
middelpuntverzameling een regelmatige verdeling van offsets vertoont. Dit vereist
echter gegevens met een grote bedekkingsgraad; als de gegevens een lage
bedekkingsgraad hebben, verschaft een onregelmatige offsetverdeling een betere stack-
respons. Dit is in het bijzonder van toepassing op 3D gegevens waarbij de
bedekkingsgraad veelal laag is, zeker indien gemeten in aparte azimutale bereiken. Een
wijde orthogonale geometrie (maximale offsetcomponent in y-richting ongeveer
hetzelfde als in de x-richting) heeft een minder regelmatige verdeling van offsets in elke
middelpuntverzameling dan een nauwe geometrie, waardoor de wijde geometrie een
betere stackrespons heeft dan de nauwe geometrie.

De theoretische beschouwingen en waarnemingen van het eerste deel van het
proefschrift worden vertaald in praktische richtlijnen voor de geometriekeuze en voor
de parameterselectie voor de orthogonale geometrie. De parallelle geometrie lijkt het
meest op 2D acquisitie, de stackrespons is soortgelijk en de computerverwerking kan
gebruik maken van veel technieken die al voor 2D ontwikkeld waren. Deze geometrie
is niet geschikt voor analyse van azimutale effecten. De parallelle geometrie kan
efficiént worden verkregen in een mariene omgeving met gebruik van sleepkabels,
maar op het land is de parallelle geometrie minder efficiént dan de orthogonale
geometrie. De orthogonale geometrie is wel geschikt voor de analyse van azimutale
effecten. Deze geometrie wordt ook gebruikt voor zeebeddingacquisitic met kabels die
op de zeebodem worden uitgelegd. De computerverwerking van gegevens verzameld
met de orthogonale geometrie is veel ingewikkelder dan de computerverwerking van de
parallelle geometrie. De zigzaggeometrie is een geometrie die ontworpen is voor een
efficiénte acquisitiec in eem woestijnomgeving. De scheve geometrie lijkt op de
orthogonale geometric, maar de schotlijnen kruisen de ontvangerlijnen onder een
scheve hoek. De elementaire deelverzamelingen van de zigzaggeometrie en de scheve
geometrie zijn minder geschikt voor computerverwerking in twee domeinen (schot- en
ontvangerdomein) dan de kruisgroep. De oppervlaktegeometrie is ook geschikt voor
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analyse van azimutale effecten. Deze geometrie wordt vooral toegepast op zee als zeer
dure ontvangereenheden gebruikt worden, zoals verticale hydrofoonkabels en
ontvangereenheden met vier componenten (een geofoon met 3 componenten plus een
hydrofoon, 4C-ontvangereenheden).

De belangrijkste parameters van de orthogonale geometrie zijn stationinterval,
lijninterval, maximale offset in twee richtingen en bedekkingsgraad. Deze parameters
moeten zo gekozen worden dat voldaan wordt aan de vereisten van ruimtelijke
continuiteit, resolutie, het karteren van de diepste en de minst diepe lagen die van
belang zijn en het onderdrukken van ruis. Het verkenningsgebied is altijd groter dan het
gebied dat in kaart moet worden gebracht vanwege de geleidelijke opbouw van
bedekkingsgraad en de straal van de migratie operator.

In de praktijk blijkt het verschuiven van het acquisitiesjabloon met €één
ontvangerlijn tegelijk (nadat alle schoten behorende bij het sjabloon zijn opgenomen)
nogal inefficiént te zijn. Zonder tekort te doen aan de gewenste acquisitiegeometrie, is
het vaak efficiénter om een sjabloon te kiezen met lange schotlijnen en om dat dan in
zijn geheel te verschuiven. Het verschuiven van het sjabloon met een aantal
ontvangerlijnen tegelijk is ook efficiénter, maar het leidt tot sterke ruimtelijke
discontinuiteiten.

Obstakels maken het vaak onmogelijk om rechte acquisitielijnen te gebruiken.
Ruimtelijke continuiteit vereist dan dat de acquisitielijnen vloeiend verlopen. Het
algemene gebruik om schoten een geheel aantal stationintervallen naar links of rechts te
verplaatsen leidt tot discontinuiteiten in de gegevens behorende bij één ontvanger en dat
geeft aanleiding tot onregelmatigheden in het migratieresultaat. Een algemeen vereiste
bij de acquisitie van de parallelle en de orthogonale geometrie is dat de gegevens
behorende bij één ontvanger er net zo goed uitzien als die van één schot.

Bij acquisitie van seismische gegevens op zee, moet de ontwerper kiezen tussen
sleepkabels en stationaire ontvangersystemen. Bij gebruik van sleepkabels worden
meerdere bronnen en meerdere kabels tegelijk achter een seismisch vaartuig
voortgetrokken, waarbij een parallelle geometrie wordt opgenomen. Met stationaire
ontvangersystemen is er meer flexibiliteit in de keuze van de geometrie. Sleepkabels
zijn het meest efficiént in diep water waar zich geen obstakels bevinden.
Opeenvolgende passages met het vaartuig dienen in antiparallelle richting te worden
gevaren om onregelmatigheden in de belichting van de ondergrond tot een minimum
terug te brengen. Onregelmatigheden veroorzaakt door het niet op koers blijven van de
sleepkabels zijn echter onvermijdelijk. Acquisitie met stationaire ontvangersystemen is
over het algemeen duurder dan met sleepkabels. Voorbeelden van stationaire systemen
zijn de verticale hydrofoonkabel, de zeebodemkabel en de cilinder (node). Cilinders
bestaan uit een enkelvoudig 4C-systeem, terwijl zeebodemkabels zowel met dubbele
sensors (geofoon plus hydrofoon) als met 4C-eenheden uitgerust kunnen worden. De
herhaalbaarheid van stationaire ontvangersystemen is beter dan die van acquisitie met
sleepkabels.

Het ontwerpen van verkenningen voor PS-golven loopt anders dan voor P-golven,
vanwege de asymmetrie van het stralenpad van PS-golven. Verschillen in PS-belichting
door minimale gegevensbestanden van verschillende geometrieén zijn veel groter dan
bij P. Bijvoorbeeld, een kruisgroep met een vierkant middelpuntgebied produceert een
belicht gebied dat rechthoekig van vorm is, zelfs voor een horizontale reflector. De
asymmetrie van het stralenpad leidt tot asymmetrie in de vereisten voor bemonstering
van schoten en ontvangers. Het schotbemonsteringsinterval wordt bepaald door de
snelheid van de P-golven, terwijl die van de ontvangers bepaald wordt door de snelheid
van de S-golven. De parallelle geometrie heeft het minste last van asymmetrieéffecten,
en de orthogonale geometrie het meeste. Voor analyse van azimutale effecten is de
oppervlaktegeometrie wellicht de beste keuze.

Ruismetingen worden opgezet met zeer dichte ruimtelijke bemonstering ten
behoeve van analyse van de golven die zich met lage (schijnbare) snelheid
voortplanten. Een kruisgroep met zeer fijne bemonstering werd opgenomen in
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Nederland. Tijdsdoorsnedes en verticale doorsnedes illustreren het 3D gedrag van de
kegel van oppervlaktegolven en van de diffracties binnen die kegel.

De theorie van 3D symmetrisch bemonsteren werd getest in Nigeria, waar een
kruisgroepgeometrie vergeleken werd met de standaard "bakstenenmuurgeometrie”. De
testgeometrie produceerde betere resultaten (hogere resolutie en betere continuiteit) op
de belangrijkste diepte dan de standaardgeometrie. De verbetering kan worden
verklaard door een grotere wijdte (grotere maximum offset in de schotlijnrichting) van
de testgeometrie en (waarschijnlijk) door de betere ruimtelijke continuiteit.

Dezelfde Nigeriaanse meetresultaten worden gebruikt om te demonstreren dat onder
gunstige voorwaarden een zeer lage bedekkingsgraad voldoende kan zijn voor het
verkrijgen van bevredigende migratieresultaten.

De minimale gegevensbestanden van de diverse acquisitiegeometrieén hebben ook
verschillende resolutie€igenschappen. De belangrijkste factor die de theoretisch beste
resolutie beinvloedt, is de vervorming van het signaal bij de correctie naar offset nul.
Daarom hebben gegevens met samenvallende schot- en ontvangerpositie (nuloffset)
potentieel de beste resolutic. De resolutie wordt niet beter door de
middelpuntintervallen te verminderen bij gelijkblijvende schot- en ontvangerintervallen
(de binfractioneringstechniek). Een zorgvuldig gekozen "aselecte" maar grove
bemonstering leidt mogelijk tot minder migratieonregelmatigheden dan een regelmatige
grove bemonstering, maar om alle onregelmatigheden kwijt te raken is een regelmatige
dichte bemonstering het beste.

De theorie voor de correctie van afwijkingen in looptijden tengevolge van hellende
lagen en als functie van offset (DMO-correctie) werd oorspronkelijk afgeleid voor 2D
gegevensverzamelingen met dezelfde offset. Aanvankelijk werd het succes van deze
DMO-correctie bij toepassing op 3D gegevens niet goed begrepen. De theorie van de
toepassing van DMO-correctie op minimale gegevensbestanden in het algemeen en op
de kruisgroep in het bijzonder ontrafeit het mysterie. De toepassing van bestaande
DMO-programmatuur op een enkelvoudig gegevensbestand (een kruisgroep) onthulde
ernstige amplitude- en faseonregelmatigheden. Dit instigeerde verbeteringen in de
programmatuur die beschikbaar is in de industrie.

De vereiste migratiestraal wordt vaak beschreven met behulp van de straal van de
Fresnel-zone. Voor breedbandige gegevens is de straal van de Fresnel-zone echter niet
groot genoeg voor een complete afbeelding. Het is beter om de invloedszone voor
migratie te definiéren (analoog aan wat eerder gedaan is voor het modelleren) en om de
straal van die zone te gebruiken om de vereisten voor de grootte van het migratiegebied
rond een verkenningsgebied vast te stellen. De meeste minimale gegevensbestanden
bedekken een beperkt gebied en dat leidt tot randeffecten bij migratie. Het gebruik van
pseudo-minimale gegevensbestanden geconstrueerd met offsetvectortegels geeft echter
betere enkelvoudige afbeeldingen dan andere enkelvoudige deelverzamelingen van de
geometrie.

De ideeén en resultaten die in dit proefschrift besproken worden kunnen het begrip
van de structuur van 3D acquisitiegeometrieén verbeteren. Met dit begrip kan aan de
geofysische vereisten voldaan worden met een optimale keuze van de geometrie en zijn
parameters. Computerverwerkingstechnieken kunnen worden aangepast om met de
specificke eigenschappen van elke geometrie rekening te houden of om die
eigenschappen zelfs uit te buiten. Dit geldt vooral voor de orthogonale en de
oppervlaktegeometrie, waardoor een beter interpreteerbaar eindprodukt verkregen kan
worden.
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INTRODUCTION

The main theme of this dissertation is to establish
the best way of selecting a seismic data acquisition
geometry and its parameters. A secondary theme is
how to honor the acquisition geometry in processing, in
particular in imaging. The dissertation is a compilation
of published and unpublished articles written earlier.
All papers have been modified to reduce overlap.

This dissertation starts with a reprint of the paper
"Symmetric sampling" published in The Leading Edge
in 1991. This paper presents some highlights and the
main concepts of symmetric sampling as described in
Vermeer (1990). Symmetric sampling is based on the
fact that the properties of the seismic wavefield in the
common-receiver gather and in the common-shot
gather are the same. Therefore, sampling requirements
are the same for shots and receivers.

In "Symmetric sampling” this concept is still
restricted to the acquisition of 2-D seismic lines. In
Chapter 2, "3-D symmetric sampling", the idea is
expanded to the acquisition of 3-D seismic surveys. In
3-D seismic data acquisition there are two more
degrees of freedom in selecting the position of shots
and receivers than in 2-D acquisition. 3-D symmetric
sampling brings structure in the overwhelming number
of possibilities by requiring that 3-D single-fold subsets
of the 5-D prestack wavefield are properly sampled.
The subsets are also called minimal data sets, because
only one such data set is necessary to produce a
complete image of the illuminated part of the
subsurface. In practice, there is only a limited number
of types of minimal data sets that can be acquired
conveniently. Each of these types with its
corresponding geometry (common-offset gather for
parallel geometry, cross-spread for orthogonal
geometry, zig- and zag-spreads for zigzag geometry,
and 3-D common-receiver gather for areal geometry) is
discussed in this chapter. In processing, it is often
desirable to avail of minimal data sets that extend
across the whole survey area. As none of the
geometries used in practice provides such data sets, this
chapter also describes ways of creating pseudo-
minimal data sets. These are single-fold data sets which
extend across the whole survey area and approach
minimal data sets as well as possible.

Noise suppression is covered in Chapter 3. This
chapter starts with a description of properties of

"For every level of mathematical ability there
exists a field of science poorly enough developed to
support original theory" (E.O. Wilson, Naturalist).

scattered waves. This serves as an introduction to the
general problem of how best to suppress ground roll
and scattered waves. The array responses of various
areal field arrays are discussed and compared. This
chapter also deals with the stack response of 3-D
geometries. It shows how multiple aliasing can be
understood by looking at the stack response, and it
demonstrates that low-fold wide orthogonal geometries
have a better stack response than low-fold narrow
orthogonal geometries, because offset sampling is more
irregular in a wide geometry.

The idea of symmetric sampling and the relation
between resolution and geometry form the starting
point in Chapter 4: "Guidelines for design of "land-
type" 3-D geometry". This chapter describes how the
geophysical requirements of a 3-D survey can be
translated into a 3-D survey design in a systematic and
consistent way. One of the geophysical requirements is
that the final data can be interpreted and that reliable
maps can be made. This requirement is taken care of by
trying to maximize "spatial continuity", rather than
using bin attributes as a major design criterion. Spatial
continuity emphasizes the spatial relationships which
exist between the data in minimal data sets. It forms an
essential ingredient in creating reliable images of the
subsurface.

Modern 3-D marine data acquisition can be either
carried out with muitisource multistreamer techniques
or with stationary-receiver techniques (sea-bottom
referenced techniques). The pros and cons of streamer
acquisition and stationary-receiver techniques are
discussed in "Streamers versus stationary receivers". It
is suggested that stationary-receiver techniques are less
susceptible to uncontrollable deviations from the
nominal geometry, hence are better suited for time-
lapse surveys in which repeatability of the acquisition
is of paramount importance.

The asymmetry in converted-wave acquisition
poses special requirements on sampling and imaging.
Chapter 6 deals with converted waves and describes
the relative merits of orthogonal geometry, parallel
geometry, and areal geometry. Regular illumination,
which is already more difficult to achieve in orthogonal
geometry than in parallel geometry for P-waves, turns
out to be even more problematic in orthogonal
geometry for converted waves.
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Chapter 7 provides some experimental acquisition
and processing results. It starts with a discussion of a
3-D microspread acquired as a densely sampled cross-
spread. This kind of data set lends itself for a thorough
analysis of the noise problems in an area and is
recommended as a test geometry for areas with noise
problems. 3-D symmetric sampling ideas were first
tested in Nigeria, where an experimental data set was
acquired across a small area also covered by a
conventional acquisition geometry. The results of this
experiment, some of which are shown here, led to the
complete changeover in Nigeria to this geometry. The
experimental data were used for some prestack
migration experiments, which are discussed in the last
part of Chapter 7. It shows that in areas with good data
quality, very low-fold (four or higher) may already lead
to interpretable results.

Many papers have been published about imaging
and resolution. Quite a few of those papers tend to be
highly sophisticated treatments of the theory of
migration and are not easily accessible for the
practicing geophysicist. In line with the motto of this
introduction, the following three chapters on imaging
and resolution are presented with a minimum of
mathematical detail. The first chapter in this group is
"Factors affecting spatial resolution". It forges a link
between resolution theory and its practical applicability
and shows how Beylkin's formula can be used for a
better understanding of resolution and its relation to
acquisition geometry.

The second chapter in this group deals with DMO.
It starts with a reprint of "DMO in arbitrary 3-D

acquisition geometries", a paper presented at the 1995
SEG Conference. This paper shows the suitability of all
minimal data sets for the application of 3-D DMO.
This is true in particular for cross-spreads, which
means that wide orthogonal geometries do not have to
be avoided for processing reasons. The theory was
tested using a synthetic cross-spread, which was sent to
most major contractors for a test on DMO. The results
of this test (some are shown in this chapter) were less
than satisfactory, and were reported at the 1996 EAGE
Conference. An epilogue describes the reaction of the
industry to these tests.

The last chapter introduces zone of influence as a
better alternative to Fresnel zone to describe the
volume of data required for complete imaging in an
output point. The chapter also highlights the problem
of imaging with data acquired with orthogonal
geometry. Techniques developed for parallel geometry
do not apply in this case. These techniques need to be
modified to allow for the fact that the trace with the
point of stationary phase is surrounded by traces with
varying offsets rather than by constant-offset traces as
in imaging with common-offset gathers. The pseudo-
minimal data sets introduced in Chapter 2 serve as
most suitable input for velocity-model analysis. The
chapter also discusses some aspects of true-amplitude
migration and irregular geometry.

Reference

Vermeer, G.J.0., 1990, Seismic wavefield sampling: Society
of Exploration Geophysicists.
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1 2-D SYMMETRIC SAMPLING

1.1 Introduction’

In the 1980s, the theory of seismic data acquisition
techniques received renewed interest. In particular,
Anstey (1986) and Ongkiehong and Askin (1988)
introduced new ideas. These authors argue that ground
roll suppression is optimal if the acquisition technique
insures a regular distribution of geophones over the
common midpoint.

Using field data examples, Morse and Hildebrandt
(1989) and Ak (1990) demonstrated the superior
performance of the stack-array approach over
techniques in which there is no such regular
distribution of geophones.

In my book Seismic Wavefield Sampling (Vermeer,
1990), I expand the idea of regularity to the sampling
of both receivers and shots. This chapter deals with
some highlights of that book, concentrating on the
concept of symmetric sampling as the best compromise
data acquisition technique.

1.2 The shot/receiver- and
midpoint/offset coordinate
systems in 2-D

This section introduces the terminology and
describes some basics of the prestack seismic data set
for a two-dimensional (2-D) line.

Along the 2-D line each shot with coordinate x, is
recorded by a receiver spread with receiver coordinates
x,. The collection of all common-shot gathers forms the
prestack wavefield W(t, x| x,), which is a three-
dimensional (3-D) data set. The prestack wavefield is
smooth and continuous (apart from shot and geophone
coupling variations).

The 3-D prestack wavefield (corresponding to a
2-D seismic line) can also be described by traveltime ¢,
midpoint x, and shot-to-receiver offset x,. These
variables are illustrated in Figure 1-1. The two pairs of
spatial coordinates are related by

' This chapter is modified after Vermeer (1991).

? With this notation the offset vector points from receiver to shot. In
the next chapter the more logical notation is used in which the
offset vector points from shot to receiver.
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Fig. 1-1. Prestack data coordinate systems. (a) The
four spatial coordinates in relation to the seismic
line. (b) Shot/receiver coordinate system. (c)
Midpoint/offset coordinate system.

X = (xs+ x,)/2 Xy = Xpt+X,/2
and (1.1)

Xo =Xg= X, Xp = Xp-X,/2

A description of a prestack seismic data set in the
two coordinate systems is shown in Figures 1-2a and
2b. Each "X" corresponds to a single trace. In Figure 1-
2a, the traces are described in terms of their shot and
receiver coordinates. This surface diagram was
introduced by Taner et al. (1974), to describe static
correction procedures. Figure 1-2b describes the same
collection of traces in the midpoint/offset coordinate
system. This representation is also called the
subsurface diagram.

By keeping one of the spatial coordinates constant,
four different subsets can be selected from the seismic
data set. These subsets are indicated in Figures 1-2a
and 2b. Note that all traces of a common-shot gather
with x; = constant are represented by a horizontal line
in the shot/receiver coordinate system and by an
oblique line in the midpoint/offset coordinate system.

By keeping the time coordinate constant, a
timeslice is generated from the prestack seismic data
set. In a timeslice, the spatial coordinates vary so that
the surface and subsurface diagrams could also be
regarded as a description of the data points in a
timeslice. |

We are inclined to think of reflections in prestack
data as hyperbolas in the common midpoints. However,
it is important to realize that each event represents a
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common-offset panels (a straight line for zero
offset), a hyperbola in the CMP, and an ellipse in
the timeslice.

not be confused with the three dimensions of the
x subsurface. In prestack data, offset is the third
x dimension. Take, for example, the reflection traveltime
surface of a dipping plane as shown in Figure 1-3. This
figure illustrates the three orthogonal cross-sections:
common midpoint, common offset, and common time.
The shape of the traveltime surface is a hyperbola in
the common midpoint and an ellipse in the timeslice.

A field data example is given in Figure 1-4. Of
course, now there is a multitude of events, all having
surface in the 3-D space of the prestack seismic data their own spatial and temporal relationships. Actually,
set. The three dimensions of the prestack data should ~ the common-offset gather in this example is a stack,

(b)

Fig, 1-2. Descriptions of prestack seismic data set in
(a) shot/receiver coordinate system and (b)
midpoint/offset coordinate system. The former is
also called a surface diagram or surface stacking
chart and the latter a subsurface diagram or
subsurface stacking chart.
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Fig. 1-4. Three cross-sections through prestack data set. Note that each event is a surface in 3-D
(&, xm, X,) Space.
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which is basically a zero-offset section with a relatively
high signal-to-noise ratio. It is possible to follow
reflections from dipping layer boundaries through all
three cross-sections.

Creating timeslices from the prestack data of a 2-D
line can be a very rewarding exercise. Timeslices
increase insight in the characteristics of the data and
allow useful diagnostics-at-a-glance of the whole data
set. Timeslices created after NMO correction allow a
quick quality control of the chosen velocities for the
level of interest.

For proper sampling of the temporal coordinate, it
is important to know the maximum frequency of the
data to be sampled. Likewise, for spatial sampling, the
maximum wavenumber of the spatial coordinates must
be known. A discussion of spatial sampling requires
the introduction of four different wavenumbers (%, &,
k.., k,) corresponding to the four spatial coordinates (x;,
X, Xm, X,). For instance, k; and k, can be defined by the
forward Fourier transform

Wt ks k) = [[, Wt %, %) expl2mikx, +k.x,)Jdxdx,,
(12)

where Q; is the range of shots and receivers included in
the integration. Equation (1.2) represents the double
wavenumber spectrum of a timeslice, whereas the
triple Fourier transform of W, x;, x,) can be written as

W(f.k k)= [ W(t kg, k,)exp[-2miftlds, (1.3)

where €, is the integration time window.

Similar to the pairs of spatial coordinates (x,, x,)
and (x,, x,), there is also a linear relationship between
the pairs of wavenumbers

ky =k, + k, k, = k2 + k,
and (1.4)
k, = (ks - k)2 ke =ky2 -k,
xS X X X X X X
* X X X X X
X X X X
X X X
X X
X
X
X X
X X X X
X X ¥ X X X
X X X x x , dx,= Recelver sampiing interval
X xxxfx ¢
XX X X X /X
7
ot X

Fig. 1-5. Shot and receiver sampling intervals in
the surface diagram.

These relationships follow directly by substitution
of the right-hand equations (1.1) into equation (1.2). It
is possible to compute (f, k)-spectra for common-shot
gathers, common-receiver gathers, common-midpoint
gathers, and common-offset gathers.

Whatever subset is considered, it is important to
distinguish the various wavenumber domains from
each other because they represent very different
physical effects. In particular, the offset wavenumber
k, describes velocity effects in the common-midpoint
gather, and the midpoint wavenumber k, describes
structure effects in the common-offset gather. For
instance, for a horizontal earth, there are only
horizontal events in the common-offset gather. So the
wavenumber spectrum of that gather only shows
energy at k,, = 0. In more practical cases, there is also
energy for positive and negative midpoint
wavenumbers.

1.3 Symmetric sampling

The data as described in the surface and subsurface
diagrams (Figures 1-2a and 2b) have already been
sampled. Figure 1-5 indicates the spatial sampling
interval used for the surface diagram. In this case, the
shot interval is the same as the receiver (or group)
interval. In this section, | want to address the question:
What is the best way of sampling the two spatial
coordinates x, and x,?

To answer this question, we must know the
properties of the 3-D prestack wavefield to be sampled.
As shot and receiver coordinates are sampled
independently, the properties of the wavefield (s, x;,
x,;) need to be examined both in the common-shot
gather and in the common-receiver gather.

The common-shot gather is the result of a physical
experiment; therefore, the properties of the wavefield
of the common-shot gather are described by elastic
wave theory. On the other hand, the traces of a
common-receiver gather are all recorded separately at
different times with different shots. So what are the
properties of the wavefield in the common-receiver
gather? Here we will use the reciprocity theorem. The
theorem says that, under certain conditions, two
seismic experiments in which the position of shot and
receiver are interchanged lead to the same recorded
trace (see, e.g., Vermeer, 1990 and Chapter 6 in
Fokkema and van den Berg, 1993). A consequence of
the reciprocity theorem is that a common-shot gather
W (¢, xp, x,) shot at point x, = xp would in its entirety be
identical to a common-receiver gather W (¢, x,, xp)
recorded in the same point x, = xp (see Figure 1-6).
Therefore, the properties of the wavefield in the
common-receiver gather, consisting of a large number
of different seismic experiments, are the same as the
properties of the wavefield of the common-shot gather
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’xS
40,
Xp common shot
]
atx,=x,
%, —_—x,

Fig.1-6. Common shot gather atx_ = x, and
common receiver gather atx, =x, are identical
because of reciprocity.

obtained in a single seismic experiment. As a
consequence, the sampling requirements of shots and
receivers are the same.

We would like to record the two spatial coordinates
without aliasing, just as we do with the temporal
coordinate. Figure 1-7 illustrates that the maximum
wavenumbers |k;|max and |kmax are determined by the
maximum frequency f,, of the event with the slowest
apparent phase velocity Vi, In three-dimensional (f,
ks, k,) space, the energy of the wavefield is confined to
a pyramid-shaped volume with its base at f = f.,,
(Figure 1-8). Alias-free spatial sampling is achieved if
the maximum wavenumbers are properly sampled,
which means that
Ax; =Ax, < ! =h';. (1.5)

In other words, these basic sampling intervals Ax;

Fig. 1-8. Energy of prestack data wavefield is
confined to pyramid shaped volume in (f; &, &,).
Base of pyramid is at f= f,,.

( ZZ2 energy present

Fig. 1-7. Regions with and without energy in £, &,
and £, k. Maximum frequency of event with
minimum phase velocity determines maximum
wavenumber and it is the same for shot and receiver
coordinate.

and Ax, should not be larger than a half-period of the
smallest wavelength. Preferably, the sampling intervals
should be somewhat smaller (oversampling) to allow a
more accurate reconstruction of the underlying
continuous wavefield, especially close to Nyquist
(Niland, 1989).

The basic sampling intervals are much smaller than
considered practical or affordable (e.g., for foux = 75
Hz, and a ground-roll velocity ¥, = 300 m/s, the shot
and receiver intervals should be < 2 m). As a
compromise, seismic field arrays are to be used which
act as spatial antialias filters and as resampling
operators. As resampling operators they allow the use
of more affordable shot and receiver intervals. As
spatial antialias filters, they aim to attenuate all energy
above the Nyquist wavenumber. Spatial antialias
filtering must be applied when sampling both spatial
coordinates. In other words, shot arrays are as neces-
sary as receiver arrays and, for optimal results, shot
arrays should be identical to receiver arrays. This
reasoning leads to the concept of symmetric sampling
as a prerequisite of consistent data handling:

e Shot interval equal to receiver interval
] Shot arrays equal to receiver arrays

I call this technique "symmetric sampling” because
it utilizes the symmetry property of reciprocity and it
preserves the inherent symmetry of the prestack
wavefield. A consequence of symmetric sampling is
that there will be as many traces in the common-
receiver gather as in the common-shot gather.

In case of a linear non-weighted array with equal
intervals between array elements, the dimension of the
array should be such as to achieve a regular
uninterrupted sampling by the array elements of the

]
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whole length of the receiver line. Basically, this means
that the length of the array should be equal to the
station interval; if shorter, the wavefield is
undersampled, and if longer, the wavefield is
oversampled, intra-array statics are larger, and the
signal may lose some of its high frequency content.
Some further remarks on array length are made in
Section 1.6.

Figures 1-9a,b,c illustrate the concept of symmetric
sampling. (In these figures the x;, x, coordinate system
has been rotated 45° for ease of display.) To keep the
pictures simple, I used only three elements per array
(when there is an array). Figure 1-9a shows an
asymmetric configuration with no shot array and three
geophones per geophone array. Each recorded trace is
the sum of three elemental traces registered by the
three geophones of the geophone array. The groups of
three elemental traces are represented by alternating
between three open circles and three closed circles.
Note that the three clemental traces for a given
recorded trace have different shot-to-geophone offsets
and different midpoint positions. Summing these
elemental traces causes some damage to the signal, but
this is the price to be paid for the antialias effect of the
geophone array. In Figure 1-9b, a symmetric sampling
configuration is shown. Now there is also a shot array
consisting of three elements so that each recorded trace
corresponds to nine elemental traces. Note that, again,
each of the elemental traces occupies a different

b

ot 1

Fig. 1-10. (a) 3-D spread of 60 channels of six
phones over 100 ft. Deep hole dynamite source (15
pounds at 60 ft). (b) Parallel line [1320 ft away from
line in (a)] of 60 channels with 24 phones laid out
over 220 ft from the same shot. The source is
between the two lines (from Newman, 2000).

position in the shot/receiver coordinate system.
Together, all the elemental traces provide a regular
two-dimensional sampling of the shot/receiver plane.
Compare this with Figure 1-9a, where whole areas of
the plane are not sampled. These empty areas may lead
to spatial aliasing in the common-receiver domain and
also in the common-midpoint and common-offset
domains.

Another, perhaps even more common, example of
asymmetric sampling is shown in Figure 1-9c. Now the
shot interval is three times the group interval. Here
even more of the shot/receiver plane is not sampled.

An interesting illustration of the need for arrays
with length equal to the station interval is given as
Figure 3 in Newman (2000) and reproduced here as
Figure 1-10. The shorter length arrays used on the left
have a wide passband in the wavenumber domain and
do not suppress much of the aliased ground-roll energy.
The arrays with length equal to station interval used on
the right have suppressed the ground-roll energy better.
There is still remaining ground-roll energy which
exhibits an odd/even effect (odd traces look more
similar to each other than to even traces) in Figure 1-
10b, because the first notch of the array response
occurs at twice the Nyquist wavenumber Fky
corresponding to the station spacing [cf. discussion in
Section 1.6 and equations (1.5) and (1.8)]. However, if
necessary, the energy passed above ky may be further
suppressed by a two-trace running mix (a convolution
with a two-point spatial filter with equal coefficients)
in processing.

Whether or not spatial aliasing occurs for a
particular  shooting geometry (symmetric or
asymmetric) and how large the effect is depends on the
distance between the array elements and on the shot
and receiver intervals. Symmetrically sampled data
may still be aliased if the sampling intervals are too
large, and asymmetrically sampled data may not show
aliasing if the sampling intervals are small enough. A
nice compromise to aim for is to use shot and receiver
intervals that would record the desired wavefield
without aliasing up to the frequency of interest. Then
arrays are only necessary to suppress noise and to
average out sampling irregularities. This technique is
called full-resolution recording and the corresponding
sampling interval is called basic signal sampling
interval.

1.4 Symmetric sampling versus
asymmetric sampling

Having established that symmetric sampling is
necessary to honor the properties of the prestack
wavefield, I shall now discuss some effects of
asymmetric sampling and enumerate advantages of
symmetric sampling.
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Fig. 1-9. Various center-spread shooting geometries with three elements per array, when there is an array.
Each symbol represents an elemental shot/receiver pair; each group of equal symbols (either open circles or
closed circles) represents one recorded trace. (a) Asymmetric configuration with shot interval equal to
receiver station interval, and a geophone array but no shot array. (b) Symmetric configuration with shot
interval equal to receiver station interval, and both geophone and shot arrays. (c) Asymmetric configuration
with shot interval three times receiver station interval. Note the large unsampled area of shot/receiver space.
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The effects of asymmetric sampling are different
for end-on shooting and center-spread shooting, For the
former, asymmetric sampling leads to differences
between updip and downdip shooting. Figure 1-11
illustrates that for updip shooting, there is less of a
difference between the arrival times of the reflections
over the length of the receiver array than there is for
downdip shooting. Therefore, with asymmetric
sampling (for instance shot array not the same as
receiver array), the reflection character is less affected
by updip shooting than by downdip shooting. This
effect would only be visible by careful inspection of
two neighboring parallel lines acquired in opposite
directions. On the other hand, in a single 2-D line
asymmetric sampling will lead to asymmetries on
either side of the apex of diffractions.

In center-spread shooting, the effect of asymmetric
sampling is less visible in the stack, as the asymmetry
of the sampling is hidden by the symmetry of the
spread. However, the differences between updip and
downdip shooting, as discussed for end-on shooting,
now occur in the recording of one and the same line.
Now the effect becomes visible in the common-
midpoint gathers. 1 have simulated the effect in the
example shown in Figures 1-12a,b. Figure 1-12a is a
CMP with equal shot and receiver arrays, whereas in
Figure 1-12b the receiver arrays are three times as long
as the shot arrays (75 m versus 25 m). I constructed the

Shot mkh;clnt recsiver array
updip
receiver array mlq:olnt shot
downdip

Fig. 1-11. Updip versus downdip shooting for an
asymmetric configuration with a receiver array but
no shot array.

right panel using a three-trace running mix in the
common-shot gathers, followed by CMP sort. In both
CMPs, the traces are sorted according to increasing
absolute offset. The right panel now shows jitter in
many reflection events. The jitter occurs for events that
dip in the common-offset gather. The explanation of
the jitter follows from the difference in averaging
effects of the arrays on either side of zero offset.

This averaging effect is illustrated in Figure 1-13 in
which the two curved lines represent constant time
lines of a dipping event in the shot/receiver plane. (As
discussed earlier, these lines are ellipses.) The lines are
symmetric with respect to the diagonal, which is the
zero-offset line. The rectangles represent traces of one
common midpoint with each trace formed by a 25 m
shot array and a 75 m receiver array. In the top left
corner, the rectangle averages across the time lines; in
the lower right corner, the rectangles run more or less
parallel to the time lines. This difference in averaging
leads to a different character between positive and
negative offsets. Similar effects can be observed with
single-hole dynamite shooting. I am convinced that
many seismic processors have noticed those effects.
Obviously, it will lead to a suboptimal stack for center-
spread shooting .

The severity of asymmetric sampling depends on a
number of factors, such as spatial sampling intervals,
degree of asymmetry, relative strength of coherent

.\. i S S et R ]
(a) tb)

Fig. 1-12. Symmetric versus asymmetric sampling
in center-spread geometry. Shot interval equals
receiver interval. CMPs are displayed with
increasing absolute offset (i.e., adjacent traces
originate from opposite sides of the spread). (a)
Symmetric data, shot array = receiver array = 25 m.
(b) Asymmetric data, shot array = 25 m, receiver
array = 75 m. Note the jitter in the asymmetrically
sampled CMP.
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Fig. 1-13. Explanation of jitter in CMP of
asymmetrically sampled data. Curved lines
represent constant time lines of a dipping event
(compare with Figure 1-3). Each rectangle is the
convolution of a short 25 m shot array with a long
75 m geophone array. The elemental traces within a
rectangle are added to form one recorded trace in
the CMP. In the top left corner, the addition takes
place'across the time lines of the dipping event,
whereas in the bottom right corner, the addition is
mostly parallel to the time lines.

noise, dip (stronger dip, larger effects), and geologic
complexity. With some further analysis, some of those
effects may be quantified (for instance, the increasing
severity with increasing dip).

On the other hand, symmetric sampling has
numerous advantages:

s  Symmetry of wavefield is preserved

e  Character independent of line direction (end-
on shooting)

L Constant character across CMP (center-spread
shooting)

e Better coherent noise suppression in the field

. Data better suited for cascaded shot- and
receiver-domain processing

e  Data better suited for highly sophisticated
processes such as AVO analysis, migration,
inversion

These advantages, in turn, lead to fewer and less
severe low quality data zones, better resolution of
complex geology, and better reservoir characterization;
in short, a more reliable and successful interpretation.
Whether or not these advantages materialize depends,
to a large extent, on the ability to even out variations in

shot strength and geophone coupling with surface-
consistent equalization.

1.5 The stack-array approach versus
symmetric sampling

Briefly, the difference is that Anstey (1986)
emphasizes a regular sampling of geophones (across
the CMP), whereas symmetric sampling calls for
regular sampling not only of geophones but also of
shots. The stack-array approach does not specify the
use of shot arrays, leading to an asymmetric sampling
technique (as shown in Figure 1-9a). The common-shot
gather is properly sampled, but aliasing may occur in
the common-receiver gathers. Nevertheless, I would
like to stress that Anstey's technique is a tremendous
improvement over older techniques using large shot
intervals (such as illustrated in Figure 1-9c¢).

1.6 The total stack response

This section investigates the combined response of
field arrays and stacking which can be called the total
stack response. This response can be written as the
product of three individual responses—the shot-array
response p (k;), the receiver-array response p (k,), and
the so-called CMP-array or stack response p (k,), or

S (km ko) =p (k) X p (k) X p (K,). (1.6)

The three responses involve three different
wavenumbers, because each array operates in its own
spatial domain. Equation (1.4) has been used implicitly
to describe the total response S (k.. k,) as a function of
two wavenumbers only. Each response can be
described by a discrete spatial Fourier transform

N N
plk;) =Y w; expQik;x;) [ 3w, 1.7
j=1 Jj=1

where N is the number of elements in the array, w; is
the weight factor for element j, k; represents one of the
wavenumbers k;, k, or k, and x; is the corresponding
spatial variable (i.e., X, X, or x,)).

For linear arrays with equal weight factors and
constant element spacing d, equation (1.7) turns into a
geometric series and can be simplified to (neglecting a
phase factor)

plky) = D) (8
Nsinnk;d

so that the first notch of this array occurs at k; = (Nd)™.

Nd is called the length of the array. [The length of the

array is not equal to (N-1)*d, which is the distance

between first and last element of the array. Doubling

the number of elements should lead to an array length
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which is twice as large, but this is not the case when
using (N-1)*d as definition of array length.] In the
forthcoming examples, I will use 50 m field arrays and
1200 m offset range, hence the first notches of the three
arrays occur at k; = 1/50, k. = 1/50, and &, = 1/1200
m’’. [This discussion does not take NMO into account;
see Ongkiehong and Askin (1986) for the effect of
NMO on the array responses.]

In displays of array and stack responses usually the
absolute value of equation (1.8) is taken, thus
neglecting the phase of the response. For a 2-D seismic
line, the offset distribution tends to be regular with
equal number of traces and a constant offset interval
between traces in all midpoints, but with a slightly
shifted range of offsets between neighboring
midpoints. For such data the absolute value of the stack
response is the same for all midpoints, whereas the
range shift leads to a phase variation in p (k,) causing
the checkerboard or odd/even effect (Vermeer, 1990,
Section 5.11.4).

Although the stack response is formulated
mathematically in the same way as the array response,
the desired response is quite different. The ideal array
response looks like an anti-alias filter response with a
pass-band and a cut-off wavenumber. The ideal stack
response passes all energy at k, = 0, and rejects all
energy with &, # 0.

Figures 1-14, 15 and 16 (displayed on page 175)
represent displays of equation (1.6) in the
midpoint/offset wavenumber domain for different
situations. Figure 1-14 shows the response of a 50 m
shot array combined with a 50 m receiver array and no
CMP array. Lines of constant shot and receiver
wavenumber run obliquely in the midpoint/offset
wavenumber domain. Note the diamond-shaped central
passband of the two arrays in this domain.

A common simplification is to compute the product
of the two array responses as a function of only one
wavenumber. This product describes the effect of the
arrays on a horizontal earth with no midpoint
dependence. The horizontal earth response is found for
kn = 0, i.e., along the vertical axis of Figure 1-14.
However, any dipping events will contain energy away
from the vertical axis and will be affected differently
by the field arrays. So, the correct representation uses
the double wavenumber domain.

Figure 1-15 shows the total stack response for a
symmetric sampling technique with center-spread
shooting and an offset range -1200 to 1200 m. Taking
reciprocity into account, this configuration effectively
produces a 50 m offset interval in each CMP leading to
a first alias in the stack response at k, = + 1/50 m'".
Note that the stack produces notches parallel to the
horizontal k,-axis. The diamond-shaped passband of
the field arrays has now been reduced to a narrow
passband centered on the midpoint wavenumber axis.

Everywhere else the combination of field arrays and
stack is supposed to suppress all energy. As is clear
from the picture, the suppression is certainly not
uniform although it is symmetric. There are areas of
very good suppression where all three arrays are
effective, and there are also areas of less good
suppression. (The parameters of this example should
not be taken as recommended symmetric sampling
field parameters; usually, smaller intervals are
necessary for good results.)

How much unwanted energy is left after application
of the three arrays depends on:

e  Energy distribution of the prestack wavefield

. Choice of field parameters (shot and receiver
interval, and fold)

e  Choice of pre- and poststack processing
parameters

Leaving out the shot array has a dramatic effect on
the total stack response (as shown in Figure 1-16). The
severity of not using a shot array or any other form of
asymmetric sampling depends on the energy
distribution of the original continuous wavefield in the
(kw, k,)- wavenumber domain. If there are many rapid
variations as a function of midpoint, asymmetric
sampling will do more harm than if the geology varied
more slowly.

Finer sampling (shorter shot and receiver intervals
with array lengths equal to those intervals) pushes the
filter notches out toward larger wavenumbers. As a
consequence, a larger part of the original wavefield
will fall in the passband of the combined field arrays.
In the passband, more of the suppression of the
unwanted events is then left to the stack and to other
digital processes. Digital processes such as (£ k-
filtering are usually required to compensate for the
reduced effect of the two field arrays.

1.7 Concluding remarks

This chapter serves as a summary of 2-D symmetric
sampling as described in more detail in Vermeer
(1990). Symmetric sampling is the preferred recording
technique for 2-D seismic surveys, so it should be high
on the "wish list" of every interpreter. In case an
asymmetric technique has been used in the past, for
instance with a shot interval that is larger than the
receiver interval, there is always scope for
improvement by repeating the survey with symmetric
sampling parameters.

Yet, it should be realized that the parameters of
symmetric sampling are still a compromise and need to
be established after an evaluation of the geologic and
geophysical problems at hand. In particular, time and
again improvements have been achieved by using
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smaller station spacings leading to noisier field records,
but allowing better noise removal in processing.

A better understanding and knowledge of the
energy distribution in (f; &, k,) would help predict the
effect of any choice of the acquisition parameters.
Noise spreads and very densely sampled multiple-
coverage data can be used to help gain such
information.

As a final comment of this chapter on 2-D seismic
data acquisition, I would like to mention that we are
going to very great lengths to apply the most
sophisticated processing techniques—inversion and
AVO in particular. These efforts are bound to be futile
if they are applied to data recorded in a suboptimal
way.
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2 3-D SYMMETRIC SAMPLING

2.1 Introduction’

Since the early 1980s, there has been a steady
increase in the number of acquired 3-D surveys.
Continuing improvements in technology have made it
possible to make 3-D seismic data acquisition more
and more efficient and cost-effective. Yet, a clear
theory as to what constitutes a good 3-D acquisition
geometry has not been available, and much of the
design of 3-D acquisition geometries has been based on
earlier experience—what seemed to have worked in the
past was adopted for the future—and on the
possibilities and limitations of the available equipment
(Stone, 1994). Cordsen et al. (2000) rely on some rules
of thumb and guidelines to help them "through the
maze of different parameters that need to be
considered". In this chapter, I will provide a theoretical
framework for the design of 3-D acquisition geometries
suitable for both marine and land data acquisition.

Quite rightly, many current design techniques for
3-D geometries attempt to extend to 3-D what had been
learned from the design of 2-D geometries. A
breakthrough in thinking about 2-D geometries was
provided in Anstey’s paper (1986) “Whatever
happened to ground roll?”. Anstey argued that the
combination of field arrays and stacking takes care of
adequate suppression of ground roll, provided the
offset distribution in the common midpoint (CMP) is
regular and dense, the so-called stack-array concept.
Ongkiehong and Askin (1988) proposed the hands-off
seismic data acquisition concept. They argued that the
distance between elements in an array and the length of
the contiguous arrays is fully determined by signal
velocity and required bandwidth. These ideas are
encompassed and reexplained by the symmetric
sampling theory introduced in Vermeer (1990, 1991).
In symmetric sampling, both shots and receivers have
to be sampled in the same way, including the shot and
receiver arrays. In this theory, a regular offset
distribution in the CMP gather is a consequence of the
requirement of symmetric sampling.

! The first part of this chapter is an adaptation of Vermeer (1998a),
whereas Sections 2.5 and 2.6 stem from Vermeer (2000).

Anstey’s  (1986) considerations on  offset
distributions valid for 2-D could be applied also to 3-D
marine streamer acquisition because it is basically 3-D
by repeating 2-D. However, these considerations are
not applicable generally to land-type acquisition
geometries such as the orthogonal arrangement of shot
and receiver lines, unless very high fold is used. On the
other hand, 2-D symmetric sampling theory can be
extended to 3-D for all types of common 3-D
geometries. As we shall see, symmetric sampling of the
2-D seismic line is in fact a special case of 3-D
symmetric sampling. At the 1994 SEG annual meeting,
I first proposed the 3-D symmetric sampling technique
(Vermeer, 1994). This chapter provides a more
comprehensive description.

In 2-D, the sampling problem is one of sampling
the 3-D wavefield W (¢, x,, x,) with temporal coordinate
¢, shot coordinate x, , and receiver coordinate x,. In 2-D
symmetric sampling, the two spatial (shot and receiver)
coordinates are sampled in the same way. Using
sufficiently small sampling intervals allows the faithful
reconstruction of the underlying continuous wavefield,
i.e., it maintains the spatial continuity of the wavefield
W (t, x, x,) (see also Section 1.3 and Vermeer, 1990).

In 3-D, we are faced with the sampling of a 5-D
wavefield W (¢, x,, y,, %, ¥»), now with shot y, and
receiver y, as additional spatial coordinates. It would be
prohibitively expensive to completely sample this 5-D
wavefield, as this would mean filling the whole survey
area with a dense coverage of both shots and receivers.
As a compromise, 3-D symmetric sampling settles for
the more affordable aim of correct sampling of
overlapping single-fold 3-D subsets of the 5-D
wavefield W (¢, x;, vy, X ;). Such correctly sampled
subsets are suitable for imaging of the subsurface with
the right resolution (provided the source wavelet has a
suitably wide bandwidth) using prestack migration
(Beylkin, 1985; Beylkin et al., 1985; Cohen et al,
1986; Bleistein, 1987; Schleicher et al.,, 1993). The
subsets have to be spatially overlapping (multifold
acquisition) to gain redundancy for an adequate signal-
to-noise ratio and to allow velocity analysis.

To set the scene, 1 will first show that geometries
most commonly used are either members of the class of
areal geometries or members of the class of line
geometries. The line geometries can be subdivided
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further into parallel and crossed-array geometries. In
Section 2.3 I extend some of the results of Vermeer
(1990) to a description of some properties of the
continuous wavefield and various 3-D subsets of that
wavefield. These properties are used to describe in
Section 2.4 the requirements of symmetric sampling of
the two spatial coordinates of each subset.

Having established what is intuitively a good way
of approaching the sampling problem in 3-D data
acquisition, it should be made plausible that the
subsequent processing would also benefit from
symmetric sampling. For parallel geometry this is
readily acceptable, as acquisition with parallel
geometry more or less mimicks 2-D acquisition. For
the crossed-array geometries, new processing
approaches need be considered to fully exploit the
better sampling of the input data. For those geometries,
Section 2.5 introduces new subsets in addition to the
subsets which are the core of symmetric sampling.
Section 2.6 describes how each prestack processing
step can benefit from the most suitable choice of subset
to be input to that processing step. Different processing
steps require different gathers of input data.

2.2 Classes of 3-D geometries

Alias-free sampling of all four spatial (surface)
coordinates of the 5-D prestack wavefield
W (1, xs, ys, X, y;) would mean that each shot should be
recorded by a dense areal grid of receivers and that the
shotpoints should also occupy a dense areal grid.

Virtually nobody can afford this full sampling of
W (t, x;, ¥s, X, ¥»). Instead, a wide variety of geometries
has been devised based on a sparser sampling of shots
and/or receivers.

Most solutions to the seismic sampling problem can
be classified into one of two main classes: (1) the
receivers "listening” to each shot still occupy a dense
areal grid, but the shots are sampled in only a coarse
grid (or the other way around), and (2) the receivers
listening to each shot are densely sampled along
parallel receiver lines, whereas the shots are densely
sampled along parallel shot lines. The geometries in the
first class are called areal geometries, whereas those in
the second class are called /ine geometries. Depending
on the orientation of the shot lines with respect to the
receiver lines, the line geometries can be subdivided
into parallel and crossed-array geometries. Figure 2-1
provides a pictorial description of areal and line
geometries. Note that the shot lines in the main types of
line geometries are parallel to each other, whereas the
receiver lines are also parallel to each other. In crossed-
array geometry, shot lines and receiver lines cross each
other; in orthogonal geometry the lines make an angle
of 90° with each other, whereas in slanted geometry
they cross at an angle o, either with tan o = 2 or tan o
= | in most cases. Zigzag geometry is a special case of
crossed-array geometry; in this geometry there are two
sets of parallel shot lines making an angle of +45° with
the parallel receiver lines. In this chapter only
orthogonal geometry is discussed in more detail; in
Sections 4.3.3 and 4.3.4 comparisons are made

(a)

N R

(c)

“-F-+--4-F-
-F4-bA-4-F -

(b)

(d)

Fig. 2-1. Classes of 3-D acquisition geometries: (a) areal, (b) orthogonal, (c) zigzag, and (d) parallel. Areal
geometry is based on widely spaced shot stations covered areally by receiver stations (or the other way
around). For a shot in the center of the squares in (a), the small square and the large square indicate the
midpoint area and the receiver area, respectively. Orthogonal geometry is characterized by widely spaced
parallel shot lines perpendicular to widely spaced parallel receiver lines. In zigzag geometry, two families of
widely spaced parallel shot lines make angles of +45° with widely spaced parallel receiver lines. In parallel
geometry, both shot and receiver lines are parallel to each other; the lines may or may not be widely spaced.
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between orthogonal geometry and other crossed-array
geometries.

In Vermeer (1994), I used the term “patch” for the
areal geometry. The term “patch” was adopted from the
geometry described in Crews et al. (1989). They use
areal patches of geophones listening to a sparse grid of
shots. Unfortunately, the term “patch” is used in the
geophysical industry also for particular
implementations of line geometries. Therefore, I have
now opted for the name “areal” to emphasize the
difference with line geometries. Of course, all
geometries want to achieve an areal coverage.

Virtually all commonly used geometries can be
classified as areal or line geometries. Random
geometries are characterized by the absence of
regularity in the shot and receiver positions. Random
geometries are only used when the surface conditions
(obstacles) preclude a regular layout of shots and
receivers.

2.21 Examples of various geometries

Areal geometry provides either 3-D common-shot
gathers (as defined by an areal grid of receivers
listening to a shot in the center of the grid) or 3-D
common-receiver gathers. The idea to acquire 3-D
common-shot gathers with a 2-D array of receivers was
patented as early as 1960 (Becker, 1960). Walton
(1971) called the 3-D common-shot gather “The
dream.” Part of his dream was to hover with a
helicopter over the area on a dark night and watch the
geophones light up when a sound wave hit them. [A
modern version of this idea using laser interferometry
is described in Berni (1994).] It turned out to be more
practical to invoke reciprocity and to use an areal grid
of thumper positions being recorded in a geophone
patch in the center. Esso (now Exxon) used this
technique in several surveys (Walton, 1971), but
abandoned it in favor of the more cost-effective “X”
spread technique.

The technology in the 1970s was not yet advanced
enough to allow multiple-coverage areal geometries.
This changed in the 1980s, and Crews et al. (1989)
contains an acquisition technique that is reminiscent of
multiple-coverage areal geometry. However, instead of
a full areal grid, each shot is recorded by a
checkerboard pattern of geophone stations. It would
require double the effort to acquire a true areal
geometry. On land, this is kind of a tall order, as
obstructions usually abound.

With the advent of stationary recording systems in
marine data acquisition, it is becoming feasible (though
still quite time-consuming) to record 3-D common-
receiver gathers with receiver stations located on the
sea bottom (or anchored to the sea bottom) and with
shots fired in a dense areal grid. A geometry closely
approaching the ideal areal geometry is described in

Moldoveanu et al. (1994). They used a dual-
hydrophone Digiseis system for undershooting of
platforms. An interesting aspect of this geometry is that
z,, the depth coordinate of the receiver, is sampled
twice.

In the introduction, 1 omitted the depth coordinate
from the prestack wavefield W (¢, x;, y;, x,, ,) because
this coordinate is not a variable being sampled in
surface seismic data acquisition. (Of course, in VSP
acquisition, depth is a major spatial coordinate.) An
areal geometry in which z, is sampled up to 16 times is
described in Stubblefield (1990) and in Krail (1991,
1993).

Depending on the conditions in the survey area, one
of the various line geometries is usually the most
efficient in terms of progress per square kilometer, and
this might be the decisive factor in choosing the type of
line geometry. It goes without saying that the most
efficient geometry does not necessarily produce the
best quality.

Parallel geometry is basically an extension of 2-D
geometry where the shot lines and receiver lines are
collinear. It is used mainly for marine data acquisition,
using multisource and multistreamer configurations
(e.g., quad/quad geometry; Naylor, 1990), but it has
also been used on land (e.g., Dickinson et al., 1990). In
quad/quad geometry, four sources are alternately fired
into four streamers. Each source records its own four
midpoint lines, leading to 16 parallel midpoint lines.
As the seismic vessel has to maintain speed during the
firing cycle, the distance between shots in a midpoint
line must be large, leading to relatively low fold. This
shortcoming has been solved by recent developments
in marine acquisition technology, allowing towing of
8-12 streamers by one vessel. With two sources,
modern seismic vessels can also produce 16 or more
midpoint lines in one boat pass, while doubling the fold
as compared to using four sources.

An interesting example of marine data acquisition
using parallel acquisition lines is (concentric) circle
shoot geometry (Durrani et al., 1987; Reilly, 1995). In
this geometry, shot and receiver lines are (nearly)
concentric circles. It is a typical example of a target-
oriented geometry, the center of all circular lines being
the known position of a salt dome. A similar geometry
on land is the spider-web geometry (see Section 4.3.6).
This is a geometry with radial receiver lines and
circular shot lines. Constance et al. (1999) describe a
real implementation of this geometry.

In parallel geometry, the survey area is still covered
rather densely with shots and receivers. In the 1960s, it
was already discovered that an orthogonal arrangement
of a shot line and a receiver line could produce areal
midpoint coverage without requiring an areal coverage
of shots and receivers (Ball and Mounce, 1967). In the
late 1960s, Esso acquired single-fold 3-D surveys
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consisting of single “X” spreads or cross-spreads
(Walton, 1971, 1972). Properties of the cross-spread
and interpretation techniques based on timeslices
through cross-spreads are discussed in Dunkin and
Levin (1971). In those days, the single-fold cross-
spreads were still a big burden to the interpreter but,
with the advent of digital processing, the data from
partially overlapping cross-spreads could be stacked
and migrated for easier interpretation (Dirschner,
1984). More recently, Lee et al. (1994) discussed
migration results of partially overlapping cross-
spreads.

The idea of areal midpoint coverage by orthogonal
shot and receiver lines is fully exploited in orthogonal
geometry. In this geometry, widely spaced parallel shot
lines are perpendicular to widely spaced parallel
receiver lines (see Figure 2-1b). This is typical land
geometry, allowing 3-D coverage with a minimum of
field effort. There are numerous variations on this
theme, with brick-wall geometry (Wright and Young,
1996) and cross-spread geometry (Dickinson et al.,
1990) as the two main implementations. In brick-wall
geometry, staggered shot lines are used; in cross-spread
geometry, the shot lines are sampled more or less
regularly. Orthogonal geometry may also be used for
marine data acquisition using ocean-bottom cables.

Zigzag geometry is another land geometry, but now
the shots are fired along zigzag lines between the
receiver lines. Zigzags between adjacent pairs of
receiver lines are arranged such that two sets of parallel
shot lines are obtained eventually (see Figure 2-1c).
The zigzag geometry is very efficient for data
acquisition in deserts (Onderwaater et al., 1996; Wams
and Rozemond, 1997).

A special case of the zigzag geometry is the double
zigzag (Onderwaater et al, 1996; Wams and
Rozemond, 1997). In this geometry, two zigzags (both
with the same zigzag period) are traversed instead of
one. The second zigzag is separated from the first
zigzag by one quarter of the zigzag period to produce
an optimal offset distribution (in a four-line geometry
with line spacing four times station interval). The
advantage of this geometry is the much better stack
response as compared to the single zigzag geometry.
More recently, the triple zigzag has been introduced
(Al-Mahrooqi et al, 2000). It is still a four-line
geometry but now with line spacing six times station
interval.

Another recent addition to the family of zigzag
geometries is the inverted zigzag in which the role of
sources and receivers is interchanged (Lansley et al.,
2000). This geometry was used to reduce the number
of shots relative to the number of receiver stations.

Apart from the three main types of line geometries,
the seisloop method (Ritchie, 1991)—an early attempt
at cost-effective 3-D land acquisition—may also be

mentioned. In this geometry areal midpoint coverage is
reached by distributing shots and receivers along a
closed loop of (curved) lines as, for instance, provided
by a road system.

An example of random geometry is described in
Bertelli et al. (1993), where it is applied in an area
surrounding the city of Milan, Italy.

2.3 The continuous wavefield

In the literature dealing with migration and
inversion (e.g., Beylkin et al., 1985; Cohen et al., 1986;
Schleicher et al., 1993), it is often tacitly assumed that
the seismic wavefield is a continuous function of its
temporal and spatial variables. The assumption of
continuity, of course, is justified for the wavefield
generated by a single source (apart from near-field
discontinuities in case of dynamite as a source). The
justification of the assumption of continuity as a
function of source coordinates is based on an idealized
world in which there are no source wavelet variations.
In the following, I also assume that W (¢, x;, y,, X, ¥,)
can be considered as a continuous function of its
variables.

This section deals with the properties of this
continuous wavefield to establish requirements for
proper sampling. In the acquisition of seismic data, the
5-D wavefield W (1, x5,y X,y,) is sampled at
individual source and receiver locations. The
assumption of continuity means that small shifts in
source or receiver position would lead to only small
changes in the wavefield. Proper sampling of the
continuous wavefield allows full reconstruction of that
wavefield.

2.31 The shot/receiver and midpoint/offset
coordinate systems

As in the 2-D case discussed in Vermeer (1990) and
in Chapter 1, we can express the wavefield not only in
the shot and receiver coordinates, but also in the
midpoint and offset coordinates. It is often convenient
to use half-offset rather than offset. The midpoint and
half-offset coordinates (X, h) can be expressed in the
shot/receiver coordinates (X, X;):

X, =(x, +x,)/2
h =(x, -x,)/2 2.1

in which vector notation is used for each coordinate
pair. The orientation of h (A, A,) describes the shot-to-
receiver azimuth, whereas A, and &, describe what are
also called in-line half-offset and cross-line half-offset,
respectively. The offset vector h plays an important
role in the selection of subsets discussed in Section 2.5.
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Table 2-1 Basic subsets of various 3-D geometries in 5-D prestack wavefield

Basic subset Source coordinates Receiver coordinates Acquisition geometry
Midpoint line (x5 Y)) (x;, Y>) Parallel
COV gather (X, Vs) (X, + X, p,+ 1) Parallel
3-D shot X, (Xe, V1) Areal
3-D receiver (Xs, Vs) X, ) Areal
Cross-spread (X, ys) (x;, V) Orthogonal
Slanted spread (x5, Y + tana (x; - X)) (x, Y) Slanted
Zig-spread (%, Y+x,-X) (x, V) Zigzag
X and Y are fixed, lower case coordinates vary.
2.3.2 3-D subsets of 5-D
H(H H, .
i’ g ’ (H.Hy) wavefield
Y, > (s, Y1) It is interesting to consider
Vm various 3-D subsets (cross-sections)
Y, M(XYm) of the 5-D prestack wavefield. In
R(x,,Y>) these subsets, we keep the temporal
coordinate, together with two
x Xm X spatial coordinates. For instance, in
@) b case the two varying spatial
(b) coordinates are x, and y, then the
y SCeoys) y RGyy) subset corresponds to a single shot.
It turns out that (except for random
geometry) each of the acquisition
Y Y geometries introduced in Section
R(X,Y) S(X,Y) 2.2 has its own subsets. I call these
subsets basic subsets of the
geometry. Table 2-1 lists the most
Y X Y X important basic subsets. In a
common-offset-vector (COV)
(© Y gather, the offset vector (X, Y) is the
same for each trace (in-line offset X,
y S(Xs) y S(x, Fx,-X) cross-line offset Y); it is also called
common-offset gather with constant
Y Y @ azimuth, Note that with the
R(x,.Y) R, Y) description of shot and receiver
” ” coordinates, it is assumed implicitly
that each subset is a continuous
¥ T » e < function of its variables. Figure 2-2
illustrates how the various subsets
(e) ® can be constructed, keeping two

Fig. 2-2. Generating 3-D subsets of the 5-D prestack wavefield: (a)
midpoint line, (b) common-offset-vector gather, (c) 3-D receiver, (d) 3-D
shot, (e) cross-spread, (f) zig spread (tan o = 1), or slanted spread
(usually, tan o.=1 or 2). X, Y are fixed, whereas lower case coordinates
vary in the subset; S is shot, R is receiver. Midpoint position is indicated
by a black circle. The midpoint line is a multi-fold subset, because many
shot/receiver combinations may share the same midpoint. With the
exception of the midpoint line, the midpoints of a subset can occupy any
position in (x, y), and each midpoint corresponds to a unique
combination of shot and receiver, i.e., all other subsets are single-fold
data sets.

coordinates fixed, while allowing
two other coordinates to vary.

An areal geometry is either a
collection of single-fold 3-D
common-shot  gathers or a
collection of single-fold 3-D
common-receiver gathers. For the
time being, we assume a continuous
areal coverage of receivers for the
areal geometry with widely spaced
shots and, similarly, a continuous
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shot line

receiver line

(a)

shot line shot line

for a COV gather. The contours are
displayed as a function of the (x, y)-
coordinates of the midpoints. The
traveltime surfaces in Figure 2-4a are all
versions of Cheops pyramid (Claerbout,
1985), but each one is computed in a
different 3-D subspace of the 5-D space
containing the prestack wavefield. Figure
2-4 illustrates that each subset represents a

receiver line receiver line

(b)

spatially continuous domain in the 5-D
prestack wavefield.

The COV gather (also called COA
gather, for common-offset with constant

shot line

= azimuth, Ferber, 1998) covers the whole

..........

midpoint line

oanan survey area, whereas the other subsets

.......

have a limited extent. The COV gather is

receiver line xry

© shofline, receiver line and midpoint line__\

therefore better suited for prestack
migration than any of the other subsets. As

Fig. 2-3. Basic subsets of line geometries: (a) orthogonal, (b)
zigzag, and (c) parallel. Shaded areas indicate the midpoint areas
of the subsets. The basic subset of orthogonal geometry is the
cross-spread. Zigzag geometry can be decomposed into subsets
consisting of zig- and zag-spreads. Parallel geometry has two
possible basic subsets: the midpoint line (left) or the common-
offset-vector gather (right). The latter may be acquired using

repeated 2-D surveys.

areal coverage of shots for the areal geometry with
widely spaced receivers.

Considering each shot line and each receiver line in
the line geometries as a continuous coverage of shots
and receivers along those lines leads naturally to the
basic subsets of the line geometries. A basic subset is
formed by all traces that have a shot line and a receiver
line in common. For orthogonal geometry, the basic
subset is called the cross-spread (also for brick-wall
geometry, see next section). In zigzag geometry, we
have zig- and zag-spreads (because of the two
orthogonal families of shot lines), and in parallel
geometry the combination of a shot line and a receiver
line is just the midpoint line. In the ideal parallel
geometry, the COV gather is another 3-D subset.
Figure 2-3 schematically illustrates the subsets of these
line geometries.

All basic subsets are also single-fold, except the
midpoint line. The midpoint line does not provide areal
coverage, whereas the other subsets do. The number of
overlapping single-fold subsets at any point determines
the fold-of-coverage in that point (see also Section
2.5.2).

Because each subset is generated in its own specific
way, each subset will see the same subsurface structure
in a different way. This is illustrated in Figure 2-4 for a
diffractor and for a dipping plane in a constant-velocity
medium. The traveltime contours are shown for a 3-D
common-shot gather, a cross-spread, a zig-spread, and

we shall see, however, it is virtually
impossible to acquire COV gathers at a
reasonable cost. A disadvantage of COV
gathers is the single shooting direction.
Some subsurface structures can best be
illuminated using a wide range of azimuths
(cf. O’Connell et al., 1993; Reilly, 1995).
All single-fold subsets mentioned in
Table 2-1 lend themselves to true-
amplitude 3-D prestack migration. In fact, various
authors dealing with prestack migration implicitly or
explicitly assume a 3-D single-fold subset and derive
formulas for the migration of such data sets (Beylkin et
al., 1985; Cohen et al., 1986; Schleicher et al., 1993;
Vermeer, 1995). The subsets are also suitable for
imaging with dip moveout (DMO) (Vermeer et al.,
1995; Pleshkevitch, 1996; Collins, 1997; Padhi and
Holley, 1997). Padhi and Holley (1997) named those
single-fold subsets “minimal data sets” (MDSs, i.e.,
data sets minimally required for imaging). This general
suitability for imaging of the various basic subsets
suggests that their sampling must get due attention.
Before discussing sampling, however, it will be
helpful to first discuss the subsets of orthogonal
geometry and zigzag geometry in some more detail.

2.3.3 The cross-spread

Orthogonal geometry consists of more or less
straight acquisition lines, which may be widely spaced.
In the field, the data are acquired according to
templates, which may consist of a series of shots
(sometimes called a shot salvo) shooting center-spread
into the active receivers of an even number of receiver
lines (see left part of Figure 2-5). Other template
implementations are discussed in Section 4.6. Cross-
spreads can be extracted from the orthogonal geometry
by collecting all traces that have a shot line and a
receiver line in common. Hence, there are as many
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Fig. 2-4. Traveltime contours in 3-D subsets for the case of a diffraction (a) and a dipping plane (b). The
contours are displayed as a function of the (x, y)-coordinates of the midpeints. The position of the diffractor

at (500,500,500) is indicated by the “+” symbol.
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Fig. 2-5. The same orthogonal geometry with template (left) and with cross-spread (right). Horizontal lines
are receiver lines; vertical lines are source lines. The template represents the way in which the data is
acquired in the field; in this case there are 8 receiver lines with a number of shots in the center of the
template. The cross-spread gathers all data for receivers that have listened to a range of shots along the same

source line.

cross-spreads as there are intersections between shot
lines and receiver lines.

The right part of Figure 2-5 highlights the shots and
receivers corresponding to one cross-spread in an
orthogonal 3-D survey. The gray square indicates the
midpoint area of the cross-spread. The maximum in-
line offset of this geometry is given by the distance of
the farthest active receiver from the shot line, and the
maximum cross-line offset is given by the distance of
the farthest shot from the receiver line. The ratio of
these two distances (cross-line/in-line) determines the
aspect ratio of the cross-spread, which is the same as

the aspect ratio of the template (note that for this to be
true, the cross-line dimension of the template has to be
taken as N * d, where N is number of receiver lines,
and d is interval between receiver lines; compare
discussion of array length in Section 1.6). Figure 2-5
represents a wide acquisition geometry with an aspect
ratio 1. In a narrow geometry the aspect ratio may be as
low as 0.2 or even lower. It is interesting to note that
this gathering of cross-spreads from orthogonal
geometry is the subject of a patent (Thomas, 2000).
Figure 2-6 illustrates some of the properties of the
cross-spread. The trace at midpoint M is a member of a
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Fig. 2-6. Properties of cross-spread. The half-offset
of a trace at M equals the distance to the center O of
the cross-spread (i.e., traces with same offset lie on a
circle). The trace is both part of a common-shot
gather (horizontal through M) and part of a
common-receiver gather (vertical through M). All
traces close to M correspond to neighboring shots
on the source line and to neighboring receivers on
the receiver line.

common-shot gather, a common-receiver gather, a
common-offset gather, and a common-azimuth gather.
The midpoints of the common-offset gather form a
circle; therefore, horizontal layers show up as circles in
the timeslices of a cross-spread (Figure 2-7). The
midpoints of a common-azimuth gather lie along a
straight line through the origin of the cross-spread.
Each trace in the 3-D survey is an element of a
unique cross-spread. The neighbors of the trace in the

cross-spread have been shot by the same or by adjacent
shots, and have been recorded by the same or by
adjacent receivers. In other words, the spatial attributes
of the traces around M vary slowly, making the cross-
spread a spatially continuous data set. On the other
hand, the maximum useful offset limits the extent of
each cross-spread (in a time-variant way), and the
edges of the cross-spreads form spatial discontinuities
in orthogonal geometry.

It is interesting to compare the spatial continuity of
the cross-spread with that of the template used in the
field (see Figure 2-5). The midpoint area acquired by
the template consists of small strips, each strip
corresponding to the shot salvo shooting into one of the
receiver lines. Inside these strips, there is also spatial
continuity, but the edges of each strip form spatial
discontinuities because of the jump from one receiver
line to the next. The midpoint area of the cross-spread
has the same size as that of the template, but it has no
internal discontinuities.

If staggered shot lines are used (as in brick-wall
geometry), the shot lines are only partially sampled,
leading to cross-spreads that are split into a number of
strips (the same strips as in the template). The number
of edges in this geometry is much larger than in the
continuous shot-line geometry; spatial continuity in
this geometry is therefore degraded (see also Section
7.3).

2.3.4 Subsets of zigzag geometry

In the field, zigzag geometry is acquired by
zigzagging (at 45° angles with the receiver lines) with
the sources between two adjacent receiver lines. A

Fig. 2-7. Timeslices through cross-spread. Numbers represent ms. Taken from Walton (1972).
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Fig. 2-8. Zigzag geometry. The sources (usually vibrators) follow a zigzag line (heavy line in the figure)
between two adjacent receiver lines, while (in this case) four spreads of receivers record each shot. A zig-
spread can be gathered by taking data acquired with adjacent swaths. Four zig segments make up the shot

line in the zig-spread.

swath may consist of four or more receiver lines
listening to each shot. The maximum cross-line offset
is equal to N/2 + 1 receiver-line intervals, where N is
the number of active receiver lines. Figure 2-8 shows
how the pattern of source trajectories can be arranged
such that all zig parts form continuous lines across the
receiver lines, whereas the zag parts form another set
of straight shot lines. In this arrangement, zig-spreads
as well as zag-spreads can be gathered from the
recorded data. The maximum cross-line offset in the
zig- and zag-spreads is equal to the maximum cross-
line offset in the swath.

Normally, each shot is recorded center-spread,
which means that the active receivers move with each
shot. As a consequence, the number of traces in a
common-receiver gather (in a zig- or zag-spread) is not
constant, but the number of traces in a common—in-

2000

shotline

1000

-1000

-2000

-4000 -2000 0 2000 4000
Fig. 2-9. Zig-spread with equal maximum in-line
and maximum cross-line offsets. Note that the
receiver spread moves with the shot, ensuring
center-spread acquisition for all shots. The
rhomboid gray area is the midpoint area of the zig-
spread. Horizontal lines represent common shots;
oblique lines parallel to the edges of the zig-spread
represent common-inline offsets. The ellipse
inscribed within the rhomboid represents midpoints
with offset equal to the maximum in-line offset.

line—offset gather is. Current practice is to move the
shots in the in-line direction over a distance equal to
the receiver station interval. This leads to a shot
interval that is the square root of two times the receiver
interval. In this geometry, the acquired offsets are the
same as in an orthogonal geometry with the same
spread length and the same number of receiver lines,
but the offset distribution is different.

Figure 2-9 illustrates some properties of the zig-
spread. Any trace in this spread is a member of a
common-shot gather, a common-receiver gather
(parallel to the shot line), a common—in-line-offset
gather (parallel to the edges of the zig-spread), a
common-offset gather, and a common-azimuth gather
(see also Figure 4-1b). Note that the midpoints of the
common-offset gather now form an ellipse. If the
maximum cross-line offset equals the maximum in-line
offset, the corresponding offset ellipse will touch all
four edges of the midpoint area of the zig-spread.

2.4 3-D symmetric sampling

Symmetric sampling was first introduced for 2-D
lines in my book Seismic wavefield sampling
(Vermeer, 1990). Some main points of the book are
discussed in Chapter 1. In this section, 3-D symmetric
sampling is introduced. It turns out that 2-D symmetric
sampling is just a special case of the more general case
of 3-D symmetric sampling.

One approach to 3-D survey design (e.g., mega-bin
survey technique, Goodway and Ragan, 1997) attempts
to sample all four spatial coordinates of the 5-D
prestack wavefield as well as possible. Because of the
high cost of dense sampling, this objective leads to
coarse sampling of the four spatial coordinates with
ensuing difficulties in the application of spatial filters
and prestack migration. Alias-free sampling of the
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whole 5-D prestack wavefield is clearly too expensive.
Often, it is also impractical, as it requires free access to
the whole survey area. Instead, in the 3-D symmetric
sampling approach, we attempt to properly sample the
single-fold subsets of the chosen areal or line
geometry. If we succeed in that more modest objective,
the continuous wavefield of the subset underlying the
samples can be reconstructed fully. This more modest
aim is achieved by dense enough sampling of the
varying coordinates in each subset (cf. Figure 2-2 and
Table 2-1). Usually, sampling of a subset will provide a
single-fold (except in the case of sampling the
midpoint line) data set. To achieve M-fold data, M
subsets need be overlapping in the full-fold area of the
survey.

Of all basic subsets listed in Table 2-1, only the
COV gather may extend across the whole survey area.
All other single-fold basic subsets have limited areal
extent in practice, because offset increases toward the
edges in those subsets (cf. Figure 2-6 for cross-spread)
and the target depth has a maximum useful shot-to-
receiver offset. Often the extent of those subsets is
maximized in only one spatial direction. A large extent
in both spatial directions would fully exploit the
potential of each geometry. Therefore, besides alias-
free sampling of the basic subsets, we should maximize
the (useful) areal extent of the subsets with limited
extent. This prescription maximizes the spatial
continuity in the 3-D survey and, for a given fold,
minimizes the number of edges in the survey.

Together, alias-free sampling of the basic subsets
and maximizing the extent of each subset form a
generic prescription of 3-D symmetric sampling.

The requirements of 2-D symmetric sampling—
equal shot and receiver sampling intervals, and equal
shot and receiver arrays—apply without change to the
sampling of the subsets of the various 3-D line
geometries. However, apart from the 2-D symmetric
sampling criteria, each 3-D line geometry needs some
additional criteria to fully satisfy 3-D symmetric
sampling requirements. Areal geometry has its own
requirements to satisfy the prescription of 3-D
symmetric sampling. This extension to 3-D is
discussed in the following sections.

241 Areal geometry

In areal geometry, the basic subsets are either 3-D
common-shot gathers acquired with widely spaced
shots or 3-D common-receiver gathers recorded with
widely spaced receivers. Alias-free sampling of 3-D
common-shot gathers requires that receivers be
sampled at the basic sampling interval in x as well as in
y (see Section 1.3 for definition of basic sampling
interval and basic signal sampling interval).

On land, the basic sampling interval is usually so
small that sampling at that interval becomes

prohibitively expensive. An alternative to this very fine
sampling is to use coarser receiver-station intervals,
where alias protection is provided by areal geophone
arrays. But this would mean that the whole survey area
still has to be covered with geophones. A practical
alternative to plastering the area with areal geophone
arrays might be the use of an areal shot array (with the
same dimensions as would be required for the areal
geophone arrays). Even though the effect of a single
areal shot array is not identical to that of areal
geophone arrays, it might come close. Another
alternative is to use deep shot holes so that hardly any
ground roll is generated, leading to a larger basic
sampling interval. But even then, the areal geometry is
very labor-intensive, making it much more expensive
than an equally satisfactory orthogonal geometry.

For deep-water acquisition, the basic sampling
interval is equal to the basic signal sampling interval.
In that environment, areal arrays are not needed to
suppress unwanted coherent energy. Moreover,
covering the survey area with closely spaced shots
need not be prohibitively expensive, so that the
recording of 3-D common-receiver gathers using a grid
of widely spaced stationary receivers might be
affordable.

The areal geometry can be implemented most
efficiently using a hexagonal distribution of sources
and receivers. In this sampling the sample points are
chosen at the vertexes of equilateral triangles (Figure
2-10). Hexagonal sampling of a 2-D function of which
the wavenumber spectrum is limited by a circle
requires fewer samples than rectangular sampling
(Petersen and Middleton, 1962). It leads to a reduction
of 13.4% in the number of required source points in the
areal geometry (Bardan, 1996). Similarly, a hexagonal
arrangement of the receivers allows a lower density of
receivers for the same “largest minimum offset”.
Another advantage of this geometry is that the shape of
the subsets can be arranged to be hexagonal, allowing a
better distribution of the long offsets over azimuth.

Sampling interval
of square grid

+—>
Sampling interval
of hexagonal grid

Fig. 2-10. The hexagonal sampling interval is 2/V3
times the corresponding square sampling interval.
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More efficient signal processing operators can be
designed on basis of a hexagonal grid (Merserean,
1979).

2.4.2 Line geometries

Alias-free sampling of the 3-D subsets of line
geometries requires sampling of shots and receivers
along their respective acquisition lines using the basic
sampling interval. Again, arrays can be used as anti-
alias filters and resampling operators to allow sampling
at the basic signal sampling interval. Linear arrays
along the acquisition lines are sufficient to take care of
the problem of aliasing noise with low apparent
velocities. However, if needed, noise suppression can
be improved by using areal shot and/or receiver arrays
(see Section 3.3).

2421 Parallel geometry

In parallel geometry, it is not sufficient for the
midpoint line to be sampled without aliasing; the
distance between the midpoint lines also has to be
considered. If that distance is small enough, the COV
gathers can also be sampled alias free in both spatial
dimensions. Repeated acquisition, at small intervals, of
2-D lines produces the ideal parallel geometry (for
each midpoint line, its shot line and its receiver line are
collinear; i.e., Y; = Y, in Figure 2-2a). In case of center-
spread acquisition, the COV gather is properly sampled
straightaway. In marine acquisition with end-on
shooting and equal shot and receiver intervals, the
odd/even signal pattern (checkerboarding) in the
midpoints can be remedied by de-aliasing of the
common-offset gathers (by interpolation in the
common-shot and the common-receiver gathers;
Vermeer, 1990).

Another—quite hypothetical—way of acquiring
properly sampled COV gathers is to have a constant
(nonzero) cross-line offset between the source track
and the receiver line. Moving this arrangement for the
next midpoint line over a small distance (half the basic
sampling interval) also leads to well-sampled COV
gathers. In this setup, each COV gather would have its
own shot-to-receiver azimuth.

In marine streamer acquisition, parallel geometry is
more or less the rule. Unfortunately, with this, 3-D
symmetric sampling is far from the rule. The first
marine 3-D surveys were often shot as a series of 2-D
lines, which often satisfied the 2-D symmetric
sampling criteria; but these surveys used too large line
spacings, consequently requiring later reshoots.
Modern streamer acquisition uses multisource
multistreamer configurations. Though common-in-
line-offset gathers can be extracted from such surveys,
the cross-line offset varies between midpoint lines (see
also Section 5.3.2). These geometries lead to irregular

subsurface illumination, even if the surface sampling is
regular (Beasley and Mobley, 1995; Beasley, 1996).

The potential irregularity of subsurface sampling is
illustrated in Figure 2-11, which shows illumination
patterns of various multisource multistreamer
configurations for a plane dipping layer in a constant-
velocity medium. Each graphic consists of the (x, y)-
coordinates of the reflection points for 24 adjacent
midpoints in a cross-line of the geometry. Each vertical
or near-vertical line in Figure 2-11 connects the
coordinates of the reflection points corresponding to
one midpoint, A horizontal or near-horizontal line
connects the reflection points corresponding to the
same long offset. The shape of the reflection point
trajectories can be understood if one realizes that the
reflection point moves updip, that is, toward the source
when shooting downdip (sailing updip) and away from
the source when shooting updip. Note that the cross-
line shift of the reflection points is largest for the long
offsets, even though the azimuth variation is smallest
for the long offsets.

In these multisource multistreamer configurations,
the shortest offsets sample the subsurface in a regular
way, but the longer offsets sample the subsurface
irregularly, the irregularity increasing with the range of
cross-line offsets, The irregularity also depends on the
in-line dip: the larger this dip, the more irregularly will
the reflector be illuminated. Only the single-source
single-streamer geometry samples the subsurface in a
regular way. Another reason why properly sampled
subsets are not obtained in streamer acquisition is
differential feathering between successive midpoint
lines or boat passes. This causes even more variation of
shot-to-receiver azimuth in the 3-D common-offset
gathers.

Figure 2-12 shows illumination patterns of the same
geometries as Figure 2-11, but now including random
feathering between boat passes and assuming constant
feather within a boat pass. In this case, even the
single/single geometry fails to illuminate the
subsurface in a regular way.

It may be noted that feathering turns the midpoint
line into a midpoint area that has basically single-fold
coverage. Owing to differential feathering, however,
these midpoint areas (single-fold subsets of the
“feather” geometry) do not overlap in a regular way.
Normally, the feathering is not large enough to permit
prestack migration of individual midpoint areas (i.e.,
these midpoint areas do not qualify as MDSs; Padhi
and Holley, 1997). Only if the feathering could be
made constant across the whole survey would the
single-source single-streamer geometry again be
ideally suited for prestack migration. In that case, each
3-D common-offset gather would have constant
azimuth.
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Fig. 2-11.
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Nominal illuminaton patterns of multisource multistreamer configurations in the case of downdip

shooting (left column) and updip shooting (right colurnn). Each vertical or near-vertical line connects the (x,
y)-coordinates of the reflection points as seen by one of 24 midpoints. The 24 midpoints are adjacent in the
cross-line direction. In every case, a reflector with 30° dip is illuminated in a constant-velocity medium. Depth
of reflector is 2309 m in y = 0. Maximum in-line offset is 3000 m. The short offsets sample the reflector
regularly (aty = 1000 m and y = -1000 m in left and right column, respectively). Note the irregular sampling
of the long offsets in the cross-line direction in all cases except for the single-source single-streamer
configuration.
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Fig. 2-12. Illumination patterns of multisource multistreamer configurations with feathering. For each boat
pass, a constant feathering angle was randomly selected from a uniform distribution between -2.5° and 2.5°.

Otherwise, the acquisition geometries and subsurface are the same as in Figure 2-11. Note the dramatic
departure from regularity for the single-source single-streamer configuration.

In the in-line direction, the variation in illumination
caused by both multisource multistreamer acquisition
and differential feathering is far less than in the cross-

line direction, leading to striping of the amplitudes seen
in horizon slices. Various techniques have been
proposed to correct for these irregularities (e.g.,
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Beasley and Klotz, 1992; Gardner and Canning, 1994,
Huard and Spitz, 1997; Albertin et al,, 1999), but a
fully satisfactory solution seems to be impossible [an
improvement to the technique proposed in Albertin et
al. (1999) is suggested in Section 10.7]. A better
solution would be to prevent differential feathering by
application of steerable streamers (Bittleston et al,
2000) or by using stationary-receiver systems (see
Chapter 5).

2.4.2.2

Besides equal shot and receiver intervals and equal
shot and receiver arrays, 3-D symmetric sampling of
orthogonal geometry also requires as many receivers in
the common shot as shots in the common receiver, and
the center-spread acquisition of both shots and
receivers. This recipe ensures the acquisition of square
cross-spreads (the aspect ratio of the geometry equals
one, as in Figure 2-5). The shot-line interval and the
receiver-line interval should preferably also be the
same for symmetric sampling. However, allowing
some difference in shot- and receiver-line density in
the case where shots and receivers differ in cost, would
be quite acceptable in most cases.

Figure 2-13a illustrates that a linear geophone array
mixes (mixing is filtering with positive filter
coefficients only, often with equal coefficients)
midpoints in a common-shot gather, thereby reducing
the aliasing in that gather. Figure 2-13b illustrates what
happens when a linear shot array (along the shot line)
is introduced as well: it reduces aliasing in the
common-receiver gather. Together, the linear shot and
receiver arrays ensure sampling of the whole cross-

Orthogonal geometry

N

Chapter 2

spread with minimal aliasing. It should be realized that
shot arrays are as important as geophone arrays; as
geophone arrays will not prevent aliasing in the
common-receiver gather, they are fully complementary
(see also Smith, 1997, and Section 3.3).

In addition to serving as anti-alias filters and
resampling operators, arrays also serve to suppress
noise, such as ground roll. The first arrival of the
ground roll has the shape of a cone centered on the
center of the cross-spread. A common-shot cross-
section through this cone has the shape of a hyperbola.
The ground roll near the apex of the hyperbola will not
be suppressed by the receiver arrays. This flat part of
the hyperbola is centered on the shot line. The
common-receiver gathers, however, cut the same part
of the ground-roll cone at much larger angles. Hence,
in that area, the shot arrays will suppress the ground
roll. The same reasoning can be applied with shots and
receivers interchanged. In other words, in the cross-
spread, shot and receiver arrays are fully
complementary  with respect to  ground-roll
suppression. In those places where the shot array is less
effective in suppressing ground-roll energy, the
receiver array is at its best, and vice versa. If the noise
is very strong, noise suppression may be improved by
using areal rather than linear arrays.

In areas where shots are particularly expensive,
areal receiver arrays may be considered in combination
with single shots. At least for first-arrival ground roll in
a homogeneous medium, the action of an N-element
shot array convolved with an M-element receiver array
is identical to the action of an N x M-element receiver
array convolved with a single shot (apart from shot

shotline

shot

midpoints in
common shot

receiver line

(@

shotline

recorded trace is
areal average

geophone array

(b)

"Nemna?
receiver line

Fig. 2-13. Anti-aliasing by geophone array, alone (a) and in combination with shot array (b). A geophone
array reduces aliasing in a common-shot gather, whereas a shot array reduces aliasing in a common-receiver
gather. Together, they take care of reduced aliasing in the cross-spread. To avoid clutter, only three of the
nine contributing shot/receiver segments have been drawn in (b).
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latter contours to those for the cross-
spread in Figure 2-4b. If the
maximum cross-line offset were
much smaller than the maximum in-
line offset, the spatial continuity of
the cross-spread would not be fully
exploited. Figure 2-14 also illustrates
the need for equal shot and receiver
intervals; the wavefield ‘clearly
behaves in the same way in both
spatial directions. Doubling the shot
interval would cause aliasing in the
common-receiver gathers and, hence,
largely hamper the usefulness of -
or (f, k)- filters in that domain.

Even though cross-spreads have
limited extent, it is possible to create
single-fold coverage across the
whole survey by a tiling of adjacent
cross-spreads. In such a single-fold
gather, the data would be piecewise
continuous  with  discontinuities
between the adjacent cross-spreads.
Figure 2-15 shows the illumination
by four adjacent cross-spreads of a
reflector with 15° dip and a reflector
with 45° dip. Each cross-spread
covers the reflector with its own

“blanket.” Around the edges of these

Fig. 2-14. Timeslices through a square cross-spread.

strength effects). For noise traveling in other
directions—back-scattered noise and side-scattered
noise—the response would be different. Theoretically,
an areal receiver array would not protect as much
against aliasing in the common-receiver gather as
would the combination of a linear shot array and a
linear receiver array. As far as noise suppression is
concerned, however, the areal array has a small
advantage: it will always suppress energy with slow
apparent velocity, irrespective of the traveling direction
of the energy. Therefore, if an areal geophone array is
cheaper than the combination of linear shot and
receiver arrays, such a departure from symmetric
sampling might be the best option (see further Section
3.3).

The case for center-spread acquisition and equal
maximum cross-line offset and maximum in-line offset
is supported strongly by the timeslices of a square
cross-spread shown in Figure 2-14. In the top
timeslices in Figure 2-14, the traveltime contours are
circular, corresponding to reflections from horizontal
layering, whereas in the bottom timeslices in Figure 2-
14, the traveltime contours are elliptical, corresponding
to plane-dipping reflectors. Note the similarity of these

blankets gaps and overlaps exist.

Within each blanket, illumination

can be considered as continuous
(provided the cross-spread is sampled alias free), but
illumination is discontinuous across the edge of each
blanket (see also Section 10.5).

A choice for 3-D symmetric sampling has
significant consequences for the distribution of offsets
over the offset range. This is illustrated in Figure 2-16,
which compares the offset distributions for narrow and
wide (approximately symmetric) geometries. The top
two graphs show a comparison where the area of the
cross-spread of the wide geometry was limited by the
number of available channels. In this comparison the
narrow geometry builds up fold fastest for shallow
levels (short offsets), whereas at deeper levels the fold
of the wide geometry is larger. The middle two graphs
compare geometries where the length of the receiver
lines is the same. The wide geometry has 12 active
receiver lines compared to 6 for the narrow geometry,
and the line intervals are twice as large in the wide
geometry as in the narrow geometry. The bottom two
graphs show perhaps the most realistic comparison:
fold and line intervals are kept the same. It is
interesting to note that in this case fold build-up is
fastest for the wide geometry, whereas in the
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Fig. 2-15. Illumination of 15° (a) and 45° (b) dipping reflectors by four adjacent cross-spreads. Note that
illumination fold can be considered a continuous function inside the cross-spreads, whereas it is discontinuous

across the edges of the cross-spreads.

comparison with equal receiver spread lengths, the fold
builds up fastest for the narrow geometry.

Note that in all situations, the offset density starts
building up linearly as a function of offset. This
linearity stops when the minimum of the maximum in-
line offset and maximum cross-line offset is reached.
Hence long offsets dominate in wide geometry. The
preponderance of long offsets in wide geometry gives
greater weight to the long offsets than to the short
offsets, leading to better suppression of multiples with
a small differential moveout (cf. Section 3.4.3.1). On
the other hand, resolution suffers from the NMO
stretch effect associated with long offsets. This is an
important dilemma to be solved in 3-D survey design
(see Section 4.4).

2423 Zigzag geometry

Alias-free sampling of the zig- and zag-spreads
would require that the spacing of the traces in the
common-receiver gather be the same as the trace
spacing in the common-shot gather. Similarly to other
geometries, this requirement would mean equal shot
and receiver intervals, the shot interval being measured
along the shot line.

As mentioned before, in actual practice the shot
interval is the receiver interval times the square root of
two. This means that alias-free sampling of the
common-receiver gathers would require oversampling
of the common-shot gathers. The zig- and zag-spreads
(cf. Figures 2-9 and 4-1b) have a constant number of
traces N in the common—in-line-offset gather, whereas
the number of traces in the common-receiver gathers
varies from one to V.

The maximum useful extent of the zig-spread is
reached if the offset ellipse of the maximum useful

offset touches the edges of the zig-spread as shown in
Figure 2-9. In that case, the maximum cross-line offset
equals the maximum in-line offset.

Zigzag geometry is particularly efficient in a desert
environment surveyed with vibrators. The distance to
be traveled by the vibrators is a factor square root of
two shorter than in an equivalent orthogonal geometry,
and it is much easier to avoid driving over geophones,
because no sharp turns have to be made. These
considerations only apply in case the vibrators have to
stay between two adjacent receiver lines. A full-swath
roll approach to acquisition (see Section 4.6.4) can
make orthogonal geometry acquisition very efficient.

2.5 Pseudo-minimal data sets

2.5.1 Introduction

Minimal data sets of crossed-array geometry and of
areal geometry have limited extent. Yet, for quite a few
processing steps, it would be helpful to avail of MDSs
that extend across the whole survey area. As these do
not exist in those geometries, we have to look for
pseudo-minimal data sets (pMDSs), which can be
constructed from the available data, extend across the
whole survey area and which are as close as possible to
an MDS.

The only type of MDS, which extends across the
whole survey area is the COV gather. This is the MDS
of the ideal parallel geometry and is never acquired in
practice. Yet, also for parallel geometry it is useful to
avail of single-fold data sets which extend across the
whole survey area and are as close as possible to a true
MDS.
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Fig. 2-16. Cumulative fold (left) and trace density (right) as a function of offset for wide (w) and narrow (n)
geometries. Maximum fold is 15 in the top graphs and 36 in the middle and bottom graphs. Trace density can
be viewed as the derivative of the cumulative fold function shown on the left. Top: Equal number of channels;
this is a comparison for the narrow production geometry and wide test geometry discussed in Section 7.3.
Middle: Equal maximum in-line offset. Bottom: Equal line intervals. Parameters of the geometries are given

in Table 2-2.
Table 2-2. Parameters used in geometry comparisons of Figure 2-16.

Figure 2-16 | Geometry | Max in-line offset Max cross-line | Shot-line interval Receiver-line
offset interval
Top Narrow 3000 m 700 m 400 m 350 m
Wide 2000 m 2100 m 400 m 700 m
Middle Narrow 2700 m 675 m 225 m 225 m
Wide 2700 m 2700 m 450 m 450 m
Bottom 1 1800 m 1800 m 300 m 300 m
2 2700 m 1200 m 300 m 300 m
3 3600 m 900 m 300 m 300 m
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A common feature of all MDSs is that two of the
four spatial coordinates in W{(¢, x;, y;, x, ¥,) or in WAt,
Xms Yms My, hy) are well-sampled in such data sets. In the
MDS that extends across the whole survey area, the
COV gather, these spatial coordinates are x,, and y,.
The other two coordinates A, and h, are fixed.
Similarly, for a single-fold data set to extend across the
whole survey area, x,, and y,, must be well-sampled as
well. Hence, to establish data sets that are suitable as
pMDS, A, and h, should vary as little as possible.

A logical way of constructing pMDSs from marine
multisource multistreamer data is to collect all data
recorded with the same channel, i.e., with the same 4,.
The cross-line offset 4, would vary depending on the
width of the geometry. However, this data set would
not yet have a trace in each midpoint. Depending on
the source interval and the number of sources, a
number of consecutive channels has to be combined for
complete single-fold coverage. The construction of
pMDSs can become considerably more complicated in
case of differential feathering.

In the remainder of Section 2.5, I will deal with the
construction of pMDSs in orthogonal geometry. It is
shown that a plethora of pMDSs may be constructed
from regularly sampled orthogonal geometry. With
some modification, the construction is also applicable
to other crossed-array geometries and to areal
geometry. In Section 2.6, processing with pMDSs is
discussed.

2.5.2 Building fold with basic subsets

For a better understanding of the various forms of
pMDS, it may be helpful to describe first how fold-of-
coverage is built in an orthogonal geometry.

Consider the cross-spread in Figure 2-5. The width
of the midpoint coverage in the in-line (receiver line)
direction W, is

W,=Lg!2, 2.2)

where Ly is receiver spread length. The in-line fold-of-
coverage M, equals the number of times the shot-line
interval S fits on the width of the in-line coverage

M.=W,IS. 2.3)

Similarly, the width of the midpoint coverage in the
cross-line (shot-line) direction W, is

W,=Ls/2, 2.4)

where Ly is shot spread length, which is the part of the
shot line being recorded by the receivers in the receiver
spread. The cross-line fold M, equals the number of
times the receiver-line interval R fits on the width of
the cross-line coverage

M,=W,/R. (2.5)

Total fold-of-coverage M is

M=M, M, 26)

The total fold equals the number of overlapping
midpoint areas (the gray areas in Figure 2-5) in any
point. This is further illustrated in Figure 2-17, where
overlapping cross-spreads are shown for a geometry
with M, =4 and M, = 2.

If M, or M, are not integer, then the number of
traces in the CMPs of the geometry is not the same
everywhere. Therefore, for regular fold, it is necessary
that W,=nSand W,=nR.

In Figure 2-17, coverage is shown for a single unit
cell (the dark area in the lower part of the figure). The
size of the unit cell equals the area between two
adjacent receiver lines and two adjacent shot lines.
Figure 2-17 illustrates that for fold M, the area of the
cross-spread can be subdivided into M areas with the
size of a unit cell.

Fig. 2-17. Fold-of-coverage can be found by
counting number of overlapping cross-spreads. In
this case in-line fold is four and cross-line fold is
two: there are eight overlapping cross-spreads in
each point.

Section 2.3.1 discussed that in 3-D offset can be
described by x- and y-components: the in-line offset
and the cross-line offset. Half offset as h = (k,, A,).
Therefore, an appropriate name for the unit-cell-sized
subareas in the cross-spread is offset-vector tile (OVT).
Each OVT is built from a limited range of shots along
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receiver line

source line

Fig. 2-18. Unit-cell-sized offset-vector tile in cross-
spread of 36-fold geometry. Heavy lines along
source line and receiver line indicate range of shots
and receivers contributing to OVT. Heavy line
through middle of OVT indicates average offset and
average shot/receiver azimuth.

the shot line and a limited range of receivers along the
receiver line (Figure 2-18). These two ranges restrict
the range of offset vectors to a small area. Figure 2-19
illustrates the variation of offset and azimuth of the
center of each OVT in a cross-spread. OVTs are
important building blocks for pMDSs.

An OVT can be characterized by four parameters,
OVT = OVT (h,, h,, Ah,, Ah,), where h, and h, are the
half-offset coordinates of the center of gravity of the
OVT, and Ah, and Ah, describe the range of half-
offsets in x- and y-direction. (In a cross-spread centered
coordinate system, A, and A, equal the midpoint
coordinates: x,, = A, ¥, = h,.) In a cross-spread which
is symmetric with respect to both axes (center-spread
acquisition for both receiver spread and source spread),
each OVT has counterparts in the other three quadrants
with the same absolute values of its four parameters.
Of these four OVTs, the pairs in opposite quadrants
have also opposite, i.e., similar shot-to-receiver
azimuths (cf. Figure 2-19).

2.5.3 Fold, illumination and imaging

In the previous section fold-of-coverage was
introduced on basis of coverage by a receiver spread,
not by a series of receiver points. Similarly, total fold-
of-coverage is counted by the number of overlapping
midpoint areas of the MDSs of the geometry, not by
counting the number of traces in a bin. Defined in this
way, fold is a piece-wise continuous function of the
midpoint coordinates. Discontinuities may exist at the
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Fig. 2-19. Cross-spread with its OVTs. For each
OVT, offset and azimuth of the central trace are
indicated. The OVT with heavy lines is used in
Figure 2-21 to generate a pMDS.

edges of the midpoint areas of individual MDSs.
Therefore, to achieve constant fold throughout a survey
area, the midpoint area of one MDS must take over
where another one stops.

Next to the midpoint area of an MDS, we can
define an illumination area (the area on the reflector
illuminated by all shot-receiver pairs of the MDS), and
an image area (the area on the reflector for which
correct imaging is possible). Similar to the definition of
fold-of-coverage we may define

"illumination fold": number of overlapping

illumination areas,
and

"image fold": number of overlapping image

areas.

For P-wave acquisition, illumination fold will in
general not be very different from fold-of-coverage,
though it may be locally higher or lower. Image fold is
the same as illumination fold, if we neglect edge
effects. Fold-of-coverage (in case of stacking) or image
fold (in case of prestack migration) provides a
statistical means of suppressing noise. If the data are
properly sampled and do not show spatial
discontinuities, fold is not necessary to improve the
migration result itself, because single-fold data are
sufficient for imaging.

For PS-wave acquisition, illumination fold will
differ from fold-of-coverage. Due to the asymmetric
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raypaths, illumination fold can be considerably smaller
or larger than fold-of-coverage (see Section 6.2.2).

In the previous section, fold-of-coverage was
defined on basis of the underlying continuous
wavefield. Fold-of-coverage is equal to the number of
overlapping MDSs. This means that fold-of-coverage
does not depend on the sampling density of the MDSs,
hence, is independent of binsize. Similarly,
illumination fold and image fold are independent of
binsize. Unfortunately, it is common practice to state
that fold-of-coverage or illumination fold does depend
on binsize (e.g., Cordsen et al., Sections 2.9 and 12.5,
2000). However, only stacking fold might depend on
binsize in case neighboring traces of the same MDS
turn up in the same bin. Of course, stacking of such
data is a crude process and would lead to loss of
resolution.

254 Construction of pMDSs

Even though cross-spreads have limited extent, it is
possible to create single-fold coverage across the whole
survey area by a tiling of adjacent cross-spreads. In
such a single-fold gather, the data is piecewise
continuous, with discontinuities between the adjacent
cross-spreads (see Figure 2-20). Figure 2-15 shows the
illumination by four adjacent cross-spreads of a
reflector with 15° dip and a reflector with 45° dip.
Each cross-spread covers the reflector with its own
illumination area. Around the edges of these areas gaps
and overlaps exist. Within each illumination area,
illumination can be considered as continuous (provided
the cross-spread is sampled alias free), but illumination
is discontinuous across the edge of each area.

A tiling of adjacent cross-spreads as in Figure 2-20
is the first example of a pMDS (Vermeer, 1998b). The
number of different such tilings equals the fold-of-
coverage. It is clear from Figure 2-15 that these tilings
cannot produce good images of the subsurface
everywhere. Locally, the images will show

considerable artifacts, depending on the dip of the
reflectors being imaged. Therefore, it would be
desirable to find a single-fold gather (or 100% cube as
it is sometimes referred to) using data with smaller
spatial discontinuities. As the discontinuities of the
cross-spreads are a given, the only way to reduce their
effect is by spreading the discontinuities thinly over the
survey area. This can be done by selecting tilings of
OVTs as illustrated in Figure 2-21. In such a tiling or
OVT gather, the frequency of spatial discontinuities is
much higher than in adjacent cross-spread tilings. Their
magnitude, however, is much smaller.

Cary (1999) also introduced the OVT gather as a
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Fig. 2-21. Pseudo-minimal data set constructed
from offset-vector tiles. In this case, the generating
OVT is the upper central OVT in the first quadrant
of all cross-spreads (cf. Figure 2-19). In this OVT
gather the spatial discontinuities are spread thinly
across the whole survey area.
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basic building block of wide-azimuth surveys. He
called them common-offset vector (COV) gathers,
which would be a bit too optimistic as offset still does
vary across each tile of the gather. Yet, I like the
expression "offset vector", and therefore, I introduced
here the expression offset-vector tile, which was called
offset/azimuth slot in Vermeer (1998b). COV gather is
a more appropriate name for the subset of the ideal
parallel geometry.

2.5.5 A measure of spatial discontinuity

Let us consider a subdivision of a cross-spread into
OVTs as in Figure 2-19. Then the horizontal width of
the OVT Ah, [cf. equation (2.3)]

Ahy =W,/ M,=S, 2.7
and the vertical width Ah,
Ahy =W,/ M,=R (2.8)

The offset discontinuity across the vertical edges of
an OVT equals Ah,. This discontinuity occurs along a
length Ah,. So, a representative measure of the total
discontinuity across the length of a vertical edge of an
OVT might be Ah, Ah,. The same expression is found
for the discontinuity across each horizontal edge, for a
total discontinuity of 4 Ah, Ah,. The OVT shares this
discontinuity with four other OVTs, so the average
discontinuity per OVT Dy,rmay be characterized by

DOVT= Ahx Ahy = SR, (29)

which is the area of the OVT. Hence, the spatial
discontinuity in an OVT gather per unit area equals 1.

In a tiling of adjacent cross-spreads, the spatial
discontinuity across a cross-spread Dy could be derived
in a similar way as for an OVT, leading to

Dy=W, W, 2.10)

which equals the area of the cross-spread. Therefore,
the spatial discontinuity in a tiling of adjacent cross-
spreads also equals 1.

My definition of spatial discontinuity implies that
the amount of spatial discontinuity for a given
geometry is invariable, but that its local density can be
varied. The smaller the unit cell of a geometry, the
smaller the discontinuities inside OVT gathers can be.

It should be noted that the measure of spatial
discontinuity introduced here is not sufficient to predict
the effect of the discontinuity. The effect also depends
on the average absolute offset of the OVT gather; the
larger that offset, the stronger the effect in general.
Moreover, it depends on the dip of the events, the
larger the dip the larger the discontinuities.

The measure of spatial discontinuity applied to a
multi-line roll geometry (see Section 4.6.5) would lead
to a discontinuity per unit area that is larger than 1,

suggesting that these configurations are not optimal for
spatial continuity. On the other hand, the measure of
spatial discontinuity does not discriminate against
narrow geometries; a narrow geometry acquired with
single-line roll would also have a spatial discontinuity
per unit area equal to 1. This suggests that my
(dis)continuity criterion is not sufficient as a quality
measure. It would be valuable to avail of a measure of
spatial continuity, which could be used as a
discriminator  between  acquisition  geometries.
Unfortunately, as yet, [ have not been able to find one.

2.5.6 A plethora of OVT gathers

Up till now, the cross-spread has been subdivided
into OVTs, which taken together fill the whole cross-
spread. However, a single-fold OVT gather can also be
constructed using a generating OVT (4., h,, Ah,, Ah,),
which still has the size of a unit cell, but which can be
located anywhere inside the cross-spread, i.e., OVT (A,,
hy, S, R), with |h| < (W, - S)/2 and |h,| < (W, - R)/2.
This will increase the flexibility of selecting suitable
OVT gathers considerably.

A generating OVT may also consist of n X m unit-
cell sized areas together. Taking the same area of each
cross-spread in this way will lead to n X m fold OVT
gathers. Higher fold in an OVT gather may be useful
for high-fold data, or for noisy data.

For any single-fold tiling of the survey area it is
necessary that the tiles have dimensions S X R or
multiples thereof. However, in some cases it may be
desirable to construct the tiles from smaller OVTs. For
instance, along the x-axis, OVT (A,, 0, $/2, R) may be
combined with OVT (-A4,, 0, S/2, R) to form a complete
tiling (Figure 2-22). This implies the use of an OVT
with the area of half a unit cell and its mirror image.
Similarly, along the y-axis we may combine OVT (0,
hy,, S, R/2) and OVT (0, -h,, S, R/2). It is of interest to
investigate the spatial discontinuity of these OVTs.

In the juxtaposed bottom corners of the OVT along
the x-axis, the offset vectors are (H, + S/2, -R/2) and
(-H, - 8/2, -R/2) (see Figure 2-22). Using reciprocity,
the second offset vector may also be written as (H, +
S/2, R/2). Hence, the discontinuity in offset vector at
that point equals -R. Along the x-axis the juxtaposed
offset vectors are (H, + S/2, 0) and (-H, - S/2, 0). With
reciprocity these two are the same, i.e., there is no
discontinuity along the x-axis. Using the same
reasoning for the juxtaposed top corners of the OVT,
there the discontinuity equals R. Hence, the
discontinuity along the vertical varies between 0 and R
along a distance R. So, the measure of spatial
discontinuity across the vertical equals R R /2.

Across the horizontal boundaries, the same OVTs
are found, with a constant jump of R in the y-
coordinate and no discontinuity in the x-coordinate.
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Fig. 2-22. Special case OVTs. Together, the two
rectangular OVTs (dimension %2 S X R) can be used
to construct an OVT gather with small spatial
discontinuity between the OVTs. Together, the four
chequered squares (dimension %2 S X 2 R) may be
used to construct an OVT gather in case azimuth
does not play a significant role. The locations of
these OVTs may be selected anywhere inside the
cross-spread, provided the pairs or quartets occupy
mirrored positions. The eight small squares may be
assigned the same mute time to achieve constant
fold.

Hence, along the horizontal the measure of spatial
discontinuity equals R S /2. For S = R, the spatial
discontinuity associated with each OVT again equals
its size, i.e., Dgyr = R § /2. If R < S, the spatial dis-
continuity of OVTs along the x-axis is smaller than the
OVT size, whereas for OVTs along the y-axis it would
be larger than the OVT size, and vice versa for R > S.

For situations where azimuth does not play a role,
unit-cell sized tiles may be constructed from four small
OVTs (Figure 2-22).

Figure 2-23 illustrates the tilings that can be
constructed from the smallest offset-vectors of the
geometry and the tiling that can be constructed from
the largest offset-vectors. The largest offset in the tiling
of smallest offset-vectors is sometimes called LMOS,
the largest minimum offset. The smallest offset in the
tiling of largest offset-vectors is also called minimum
maximum offset and is called X ;nmax. The reason for
this nomenclature is that in any full-fold bin of the
geometry the smallest offset is not larger than LMOS
and the largest offset is not smaller than X i, max.

=
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Fig. 2-23. Smallest and largest offset OVTs. The
four small checkered squares form a single-fold
tiling of the shortest offsets of the geometry. The
largest offset in this tiling is the maximum
minimum offset or largest minimum offset LMOS.
The four small squares in the corners can be used to
form a single-fold tiling of the largest offsets of the
geometry. The smallest offset of this tiling is the
minimum maximum offset X,;;, uax Of the geometry.

2.6 Application to prestack
processing

2.6.1 Introduction

In the following sections, ideas are put forward for
the most suitable input gathers for noise removal,
interpolation and regularization, muting, first-break
picking, residual-statics picking, velocity analysis, AvO
and AvAzimuth. Velocity-model updating and prestack
migration are discussed in Chapter 10.

As different tasks need different data gathers, either
much sorting has to be done to feed the different
gathers to the various processing steps or random
access should be available. Sorting is very time-
consuming, whereas random access is fast, but it
requires a database with pointers to the correct trace
positions. Eventually, random access is likely to take
over (Jack, 1999).

2.6.2 Noise removal

Ground roll tends to be partially aliased, because of
its slow velocity. The non-aliased part of the ground
roll (and even a bit more) can be removed by prestack
velocity filtering. The obvious input gather for this
process is the cross-spread, so that noise can be
removed either by cascaded application of shot- and
receiver-domain (f, k)-filtering, or by a 3-D velocity
filter.
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In an OVT gather with S x R sized tiles (or smaller)
the spatial discontinuities of the non-aliased part of the
ground roll tend to be even larger than across cross-
spread boundaries. Across cross-spread boundaries
there is usually no ground roll, except perhaps at larger
traveltimes. Each OVT that cuts through the ground
roll shows discontinuities in the noise at its edges.
Therefore, it is important to remove the ground roll as
much as possible prior to any spatial processes applied
to OVT gathers. A particularly powerful technique,
which also removes much of the aliased ground roll,
was discussed in Miao and Cheadle (1998).

2.6.3 Interpolation and regularization

Interpolation and regularization can be applied
easiest in a domain in which only one spatial variable
varies (Zwartjes and Duijndam, 2000). Therefore, the
cross-spread lends itself best as input gather to these
processes. If there is a missing shot, interpolation can
best be carried out in the common-receiver gathers of
the cross-spread. Interpolation may also be carried out
to generate better-sampled data for other processes; for
instance, Cooper et al. (1997) interpolated cross-
spreads for better DMO results.

2.6.4 Muting

At first sight, it might seem strange to require a
specific input sorting for an optimal mute application.
Indeed, the idea here is not to use a different sorting,
but to learn from the insights gained in Section 2.5
about the many different OVTs into which a cross-
spread may be subdivided.

The unit cell of a regular orthogonal geometry
represents the 2-D periodicity of the acquisition
geometry. Usually, the acquisition imprint shows this
same periodicity. The visibility of the acquisition
imprint may be caused by two main factors: (1)
variability of fold inside the unit cell for times where
traces with larger offsets are muted, and (2) the unit-
cell periodicity in the offset distribution. There is little
one can do about the periodicity, but the variability of
fold can be easily removed.

Consider Figure 2-22. Taking eight quarter-unit-
cell sized OVTs as indicated with the checkered
squares and the striped squares, then each of those
OVTs has the same absolute-offset distribution. The
same mute time can be assigned to all traces inside
these squares. Tapering in time of the step function
should reduce any jumps in fold caused by identical
mutes for tiles with the same offsets (but different
azimuths). If this procedure is carried out for all OVTs
with the same absolute-offset distribution, the effective
fold-of-coverage will be constant for constant time.
This should reduce the acquisition imprint of the
geometry. It would be interesting to check this using

real data acquired with a regular orthogonal acquisition
geometry.

Hill et al. (1999) show a clear correlation between
timeslice amplitude and the fold of data contributing to
the time slice. They used synthetic data acquired with
zigzag geometry. The muting proposed here for
orthogonal geometry could also be adapted to other
regular acquisition geometries. If applied to the data
discussed in Hill et al. (1999), the acquisition footprint
would be removed almost entirely.

2.6.5 First-break picking

In first-break picking, only the near-surface
variation plays a role. The time picks depend on offset
and location. By definition, the traveltime differences
due to differences in offset are zero in a common-offset
gather. Therefore, picking in common-offset gathers
has to overcome the smallest time differences; hence,
this would be easiest and most successful.

The nearest to a common-offset gather one has in

an orthogonal geometry is the OVT gather of which an
example is shown in Figure 2-21. Therefore, picking in
OVT gathers might be a good starting point. All M
OVT gathers are potential candidates for picking, but
some of them may drop out due to quality problems.
In case there are serious picking problems, it may be
beneficial to combine OVT gathers with mirror OVTs
in the opposite quadrant, as these have about the same
azimuths. It may be more difficult to combine mirror
OVTs in adjacent quadrants, as these have different
azimuths and may have different traveltimes.

An alternative to picking in gathers of (S, R)-sized
OVTs is picking on a per cross-spread basis. The
advantage of this alternative is that the area with spatial
continuity in a cross-spread is much larger than in an
OVT gather. The disadvantage is that the large spatial
discontinuity between cross-spreads might necessitate
to start picking afresh for each cross-spread.

The more flexible approach is to combine picking
in the OVT gathers with picking in the cross-spreads.
Especially in combination with the nearest-neighbor
approach to picking (see next section), this should give
the best results.

2.6.6 Nearest-neighbor correlations

Conventional first-break picking and reflection-
time picking techniques are based on a sequential
approach (Cox, 1999). Often, picking and statics
computation are combined into one operation. Here I
would propose to carry out the picking in an areal
approach, using nearest neighbors, and also to separate
the two actions: first carry out all picking and verify
the results, and then feed the verified picks to the
statics computation procedure (Marcoux, 1981;
Vermeer, 1990, Ch. 5.7).



36 Chapter 2

-------
....................................
....................................
....................................
....................................
....................................

....................................
....................................
....................................
....................................
....................................

------------------------------------

....................................
....................................
....................................
....................................
------------------------------------
....................................

------------------------------------
------------------------------------
....................................
------------------------------------
....................................
....................................

....................................
....................................
....................................
e eves (s ss0es e esess sesess; s se] S0
- e o 0o 00 ® s a s s - o s s e e s e s e s e es el ses e

-------------------------------------
------------------------------------
------------------------------------

Fig. 2-24. Unit cell with offset distribution in each
bin for a 36-fold geometry. Each square represents
a bin. The 36 dots in each bin represent traces,
which correspond to 36 different cross-spreads.
Each bin has its own (h, h,)-coordinate system
centered in the bin. Nearest neighbors inside the bin
have at least one different acquisition line.

In the nearest-neighbor approach, each trace is
cross-correlated with its eight nearest neighbors. This
has the advantage of comparing traces with a minimum
of difference in character between them. Another
advantage is that it leads to redundant picking, which
allows correction of mispicks before these are used in
the statics computation procedure. Redundancy exists
for every closed loop between traces: the sum of the
corresponding time shifts should equal zero. Once all
mispicks have been solved, all time shifts can be
integrated into a single time surface across the area of
the picked times.

This procedure was proposed in Vermeer (1990,
Ch. 5.7) for 2-D data, but it applies just as well or even
better to 3-D data. All mispicks might first be solved
for a number of single-fold OVT gathers, and by
making links between the gathers (via cross-spread
continuity), the picks might even be made consistent in
a 3-D sense (x, y, and fold).

It should be realized that the spatially nearest
neighbors in an OVT gather are not always nearest
neighbors in 5-D space, because of the spatial
discontinuity which still exists across the edges of
neighboring OVTs. Again, the picking redundancy
should help to solve any problems in linking time shifts
across these boundaries.

2.6.7 Residual statics

Picking of time shifts for residual statics analysis in
3-D data usually takes place in bins or in a small group
of bins. Each trace in a bin corresponds to a different
cross-spread; therefore, consecutive traces sorted
according to absolute offset, may have entirely
different shot-to-receiver azimuth and originate from
widely spaced cross-spreads. This is illustrated in
Figure 2-24, where trace positions are displayed
according to their (h,, h,) coordinates inside each bin.
Traces with mirrored positions inside these bins have
about the same absolute offset.

Determining time shifts between traces using
nearest neighbors (as proposed in the previous section),
ensures that the difference in character between traces
that are to be compared is as little as possible.
Moreover, it allows removal of mispicks even before
the statics computation procedure is entered.

The time differences established in nearest-
neighbor communities are not only composed of static
differences, but also of structure and velocity
differences. Moreover, there is picking noise. To
compute the statics from the time-shift surfaces across
the survey area, new algorithms are required. These
algorithms should make use of the special properties of
static differences, which are very different from
differences due to structure variations or velocity
variations. Note that velocity determination prior to
residual-statics determination is no longer necessary. A
very rough NMO correction may be applied, or no
NMO at all, prior to the time-shift measurements. This
is an advantage, especially for wide orthogonal
geometries, because velocity determination is best
carried out after DMO, whereas statics should be
determined prior to DMO.

An alternative to picking of nearest neighbors in
OVT gathers might be picking of nearest neighbors in
bins as displayed in Figure 2-24. Time shifts would be
measured only between traces with offset vectors that
differ as little as possible.

2.6.8 Velocity analysis and DMO

Conventional velocity determination after DMO
splits the input data into small offset ranges, each offset
range is DMO'ed separately, followed by gathering of
the results per bin and semblance analysis. In a parallel
geometry or in a narrow orthogonal geometry, this
procedure should work satisfactorily. However, in a
wide geometry, common-offset-range gathers have a
very irregular fold, and are not likely to produce well-
resolved DMO images. A common-offset-range gather
is shown in Figure 2-25. It illustrates the irregular fold,
and shows the many edges in such a gather. An
alternative technique is to sort the data in each bin
according to absolute offset, subdivide the traces in
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Fig. 2-25. Offset-range gather in orthogonal
geometry. Each ring represents traces in midpoint
domain with a narrow range of absolute offsets.

groups with an equal number of traces, and use those
groups as input to the DMO and velocity determination
procedure. This technique as well has the disadvantage
of grouping traces with widely different positions in
5-D prestack space.

Several authors showed that cross-spreads are
suitable for DMO (Vermeer et al., 1995; Collins, 1997,
Padhi and Holley, 1997). It should be possible to obtain
good quality DMO images for the interior part of each
cross-spread. However, offset varies inside a cross-
spread and as a consequence, each image is made up of
different offsets and the offset attached to each DMO
image is not known anymore. To determine velocity, it
is still necessary to split the data over offset ranges.
However, rather than splitting the data over absolute-
offset ranges, it should be considered to split the data
over offset-vector ranges.

The smallest offset-vector ranges, which still give
complete single-fold coverage, can be found along the
acquisition lines as indicated in Figure 2-22 with the
gray rectangles. For an in-line fold of 6, there are 6
different OVT gathers with disjoint offset-vector
ranges. If the geometry would also be 6-fold in the
cross-line direction, another 5 OVT gathers can be
made from OVTs along the shot line. For a maximum
in-line offset and a maximum cross-line offset of 3000
m, the range of offsets in any OVT gather would still
be at least 500 m. Hence, the uncertainty about the
offset at the image point is still quite large.

In a low-relief geology, the DMO shift is small, and
it would be sufficient to select points in the center of
the tiles of each OVT gather as locations for velocity
determination. The offsets in these points can be used
to estimate the velocity in those points.

In a steeper dip situation, the (unknown) offset of
the image trace and the offset of the input location will

differ considerably, and this would lead to systematic
errors in the velocity estimates. In these situations, it
may be better to try a velocity scanning procedure (i.e.,
apply DMO after many different NMO corrections)
rather than a semblance measurement. Usually, the
velocity determination is restricted to some discrete
points across the survey area. Using only a restricted
subset of the input data - the offset-vector tiles around
the acquisition lines - a scanning procedure would still
be cost-effective.

Of course, there are many variations possible on
this theme. The main point is to select good input data
gathers to ensure the best possible images with the least
amount of edge effects.

Should the total fold along the two orthogonal
directions not be sufficient for accurate measurements,
OVT gathers using different OVTs may be used, in
particular those in the far corners of the cross-spread
having the largest absolute offsets. The measurement
of velocity in OVT gathers taken along two orthogonal
directions, also allows recognition of velocity
anisotropy under suitable circumstances.

269 AvO

The determination of amplitude versus offset
(AvO) parameters from data acquired with orthogonal
geometry is one of the most challenging tasks. The
main problem is that proper common-offset gathers are
not available for analysis; moreover the trace density
per offset increases with increasing offset. It is also
difficult to give a general recipe for AvO analysis,
because there are so many different types of problems.
In some cases, one would like to scan a large time
window for possible AvO anomalies; in other cases
specific horizons are to be investigated, and then these
horizons may or may not need prestack migration.

A technique that is often used in AvO analysis is to
generate substacks of near and far offsets, or substacks
of nears, mids and fars (e.g., Purnell et al., 2000). If
absolute-offset ranges are used for those substacks,
fold variation at target levels may cause undesirable
amplitude effects. Therefore, it should be tried to
achieve regular fold in each substack. For the deeper
levels this can be achieved quite simply as indicated in
Figure 2-26. Here a 36-fold geometry has been split
into three regular 12-fold subsets, which can serve as
input to near, mid and far substacks. In more complex
geometries, different subdivisions will have to be
found, which may or may not overlap partially. If the
basic building blocks of the subdivisions are either
unit-cell sized OVTs, or pairs of rectangular half a
unit-cell sized OVTs, or quadruplets of quarter unit-
cell sized OVTs, regular fold is ensured over the full-
fold part of the survey area (cf. Figure 2-22).
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Fig. 2-26. Nears, mids and fars in 36-fold geometry.
The data set is split over three 12-fold subsets, the
nears (light gray area), mids (dark gray area), and
fars (the white areas in the corners of the cross-
spread). Stacking these subsets provides regular 12-
fold substacks across the entire full-fold area of the
survey.

The type of subdivision indicated in Figure 2-26
does not provide for regular fold of substacks at
shallower levels. These levels, if important for AvO
analysis, need subdivisions based on a smaller range of
offsets.

In the remainder of this section, I will give some
suggestions to be tried for measuring horizon
amplitudes as a function of offset. I will propose two
different approaches, both taking into account offset as
a vector. The first approach is bin-oriented and the
second approach is unit-cell oriented.

In the bin-oriented approach (Starr, 2000), the
starting point is a sorting of all traces inside a bin
according to their in-line and cross-line offset as
depicted in Figure 2-24. After picking the horizon of
interest, an amplitude map is obtained for each bin and
a 2-D surface can be fitted to this map. In this way, a
best fit can be obtained for intercept time and a 2-D
amplitude gradient. The technique is different from
conventional AvO analysis in that it takes amplitude
variations caused by shot-to-receiver azimuth variation
into account. For this approach to work, there should
be a good signal-to-noise ratio in each trace and fold
should be high to increase the redundancy of the fit.
DMO and migration move traces around and would
disturb the relationships between the traces in each bin.
Therefore, this approach would work best for
(sub)horizontal geology.

The unit-cell oriented approach to AvO analysis
would be less sensitive to fold because in this approach
all traces in a unit cell take part in one analysis. The
basic input would be OVT gathers of unit-cell sized
disjoint OVTs, i.e., M gathers of OVTs as indicated in
Figure 2-19. Depending on the problem, these gathers

would be either NMO-DMO'ed or prestack migrated,
followed by stacking.

The next step would be to pick the horizon on the
stacked data volume, followed by making horizon
slices according to these picked times in the
contributing OVT gathers. Accepting that the spatial
resolution of the AvO analysis will be restricted to
approximately the size of a unit cell, the horizon
amplitudes can now be analyzed by averaging in a
ring-shaped area corresponding to some range of
offsets as indicated in Figure 2-27.

The procedure described here will break down if
the migration distance becomes significant. Then there
will no longer be a direct relationship between position
inside a tile and the offset of the migrated image. A
solution of this problem is discussed in Section 10.6.
Tura et al. (1998) show the importance of prestack
migration for AvO analysis for data acquired with
parallel geometry.

If the tiles are small, offset does not vary much
across each tile and the average amplitude in the tile
may be considered representative for the average offset
of the tile. If shot-to-receiver azimuth variation does
not affect AvO, another acceptable way of reducing the
size of the tiles is to use M disjoint (5/2, R/2) sized tiles
as indicated by the checkered tiles in Figure 2-22.
These M quarter unit-cell sized tiles may be mapped
such onto one quadrant of a cross-spread that absolute
offset is continuous across the mapping (see Figure 2-
28).
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Fig. 2-27. Basic unit for AvO and amplitude versus
azimuth analysis. All OVTs corresponding to the
same unit-cell sized part of the survey area are
displayed next to each other for further analysis.
Amplitudes for the same offset can be averaged
along rings with a constant absolute-offset range.
Repeating this for all relevant positions in the
survey area allows to analyze the spatial variation of
the AvO effect. Azimuth-dependent effects can be
analyzed using pie-slice shaped areas, which contain
data with the same azimuth range.
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Fig. 2-28. Creating a gather, which is continuous in
absolute offset by using quarter unit-cell sized
OVTs. In the example the upper right corner of
each unit-cell sized OVT is taken. First all OVTs in
the lower half of the figure are mirrored around the
horizontal axis, next all OVTs in the upper left
quadrant are mirrored around the vertical axis.
This procedure fills the whole upper right quadrant
with OVTs. Azimuth is not continuous in that
gather, but absolute offset is.

2.6.10 Amplitude versus azimuth

For analysis of azimuth-dependent effects, the same
unit-cell oriented procedure can be applied as proposed
for AvO in the previous section. Now unit-cell sized
areas of the survey have to be split over the M different
OVTs. Pie slices taken from the collection of data
represent data with the same azimuth range (Figure 2-
27). In this case amplitude behavior has to be analyzed
on a per pie slice basis. Note that the arrows indicating
the average azimuth in each tile do not have the same
direction as the orientation of the pie slice.

2.7 Conclusions

For all intents and purposes, it is impossible to
properly sample the whole 5-D prestack wavefield.
Three-dimensional symmetric sampling prescribes the
next best alternative: the proper sampling of single-fold
basic subsets (minimal data sets) of 3-D geometries.
Such sampling allows optimal prestack processing, and
it takes care of a design criterion that is often
overlooked: spatial continuity.

The basic subsets of all common acquisition
geometries, except parallel geometry have limited
extent. This constitutes a limiting factor for the spatial
continuity that can be obtained with those geometries.
The selection of appropriate gathers of offset-vector
tiles for all prestack processing steps mitigates
problems associated with those geometries.
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3 NOISE SUPPRESSION

3.1 Introduction

A 3-D acquisition geometry should be designed
such that at the end of the acquisition and processing
sequence the desired signal can be reliably interpreted
and the noise is suppressed as much as possible. This
chapter focuses on noise suppression.

The main types of noise are multiples and low-
velocity noise such as ground roll and scattered energy.
How much low-velocity noise can be suppressed
depends on the choice of field arrays, the stack
response (implicitly also on fold) and on various
processing steps. One of the reasons to select a wide
orthogonal geometry is that it allows to tackle low-
velocity noise by filtering in shot as well as in receiver
domain. The total amount of multiple suppression
depends on the stack response (implicitly also on range
of offsets) and on the success of multiple elimination
programs, but not on field arrays. At present there is no
clear theory how much noise can be removed in
processing. As a consequence, the required noise
suppression by field arrays and stacking is relatively
unknown and to a large extent, the choice of field
arrays and fold is dependent on experience.

In this chapter, the effect of field arrays on low-
velocity noise and of the stack response on low-velocity
noise and multiples is discussed. This chapter starts
with a discussion of the properties of the low-velocity
noise as essential knowledge for the optimal choice of
field arrays (linear or areal, shot and/or receiver
arrays). Another very useful piece of knowledge would
be a quantitative assessment of the amount of noise
(ground roll and scattered energy) relative to the
desired primary energy. A potential way of determining
this relation is the acquisition of one or more 3-D
microspreads. Section 7.2 discusses an example of such
a data set.

3.2 Properties of low-velocity noise

3.21

Usually, the bulk of the energy in the so-called
ground roll cone consists of linear events traveling

"Direct” waves

more or less directly from source to receiver. The linear
events along the outside of the cone are usually
refracted shear waves (traveling close to the surface),
which have a faster velocity than the Rayleigh waves
(true ground roll) arriving later. If the near-surface
conditions do not vary rapidly, the arrival times of
these linear events tend to vary mostly as a function of
offset with only minor variation as a function of
midpoint position. This in contrast to scattered waves,
which also vary as a function of midpoint position due
to the fixed position of the scatterer.

In a cross-spread, traces with the same absolute
offset are situated on a circle (see Figure 2-6).
Therefore a constant-velocity event lies along a circle
in each timeslice through the cross-spread data, and the
3-D shape of the event is a circular cone. With several
linear events, all having slightly different velocities, the
cross-spread contains a whole suite of cones. This
property is illustrated in Figure 7-4 on page 180, which
shows two timeslices through a densely sampled cross-
spread.

The apparent velocity of the ground roll in the
midpoint domain equals ¥/2 in all directions, ¥ being
the ground-roll velocity. The directional apparent
velocity in shot and receiver domains varies from oo till
V12 (cf. Figures 7-2 and 7-3). In a wide geometry,
ground roll with apparent velocity close to infinity in
one domain will have a small apparent velocity in the
other domain. A 3-D circular velocity filter would be
most suitable to remove such noise; cascaded velocity
filtering in shot domain followed by receiver domain
would also be suitable.

3.2.2 Scattered waves

In this section, I analyze the properties of a scatterer
in the cross-spread. It turns out that these properties are
quite special due to decoupling of shot and receiver
properties in x and y.

For a cross-spread with its center in (0,0), the
traveltime surface of a scatterer with velocity ¥ can be
written as

HXpys Vs Xgs Vas2q) =t +1, =

\/(Zym -y +xG+z] +\/(2xm —xg) +yi+z}
V *

3.1)
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Fig. 3-1. Scatterer and direct wave in cross-spread. (a) Traveltime contour map of scatterer in midpoint x
and y. The circle represents the traveltime contour of the direct wave for the same time as the heavy contour
of the scattered wave. (b) Locus of apex of scatterers for constant time (diamond shape) fits inside arrival

time of direct wave (circle).

where x,,, y,, are midpoint coordinates, d = (x4, V4, z4) is
position of scatterer, and #; and ¢, are traveltime from
source to scatterer and from scatterer to receiver,
respectively.

An example of this surface is shown in Figure 3-1a.
The figure shows that the traveltime surface is pyramid-
shaped with rounded-off edges. The edges run parallel
to the x- and y-axes. For comparison, Figure 3-1a also
shows one time contour of the direct wave (the ground-
roll cone), with the corresponding time contour of the
scatterer as a heavy line. This shows that the traveltime
surface of the scatterer lies entirely inside the ground-
roll cone. Figure 3-1b shows the locus of the apices of
all scatterers with the same traveltime as the circular
arrival time of the ground roll. It illustrates that the
apex lies always close to the ground-roll cone. If in a
cross-section the (local) apex seems to be far away
from the ground-roll cone, then the cross-section must
cut through the flank of the traveltime surface of the
scatterer and the true apex must be located outside the
line of the cross-section.

The apparent velocity of the traveltime surface of
the scatterer in the x-direction is

d) = VJ(Z?,,, --xd)2 +y§ +z§
) 2(2x,, —x4) '
Note that this velocity is only dependent on the
receiver position and on the position of the scatterer d.
The apparent velocity tends asymptotically to ¥/2. The
apparent velocity in the y-direction also tends
asymptotically to ¥/2. This means that in any cross-
section parallel to one of the axes, the flanks of the
traveltime surface always tend to ¥/2. This explains the
predominance of steeply dipping events - all with about
the same apparent velocity - inside the ground-roll cone

3.2)

Vapp,x (x,,, s

(in case any events can be distinguished). In other
words, such events are not necessarily back-scatterers,
they may just as well be side-scatterers (depending on
the position of the apex). This observation applies to
any shot record with receivers along a straight line, not
just to cross-spreads.

Figure 3-2 shows the apparent velocity along the
gradient of the traveltime surface. This figure may be
used to predict what to expect from a radar analysis
inside the ground-roll cone of a cross-spread. In a radar
analysis (Regone, 1997) energy is measured as a
function of slowness and azimuth. In the directions of
the acquisition lines an apparent slowness of 2/V will
be found, whereas in all other directions the slowness
tends to 2V2/V. The energy in the flat parts of the
traveltime surfaces will show up in the center of the
radar plots.

Fig. 3-2. Apparent velocity along gradient of
traveltime surface shown in Figure 3-1.
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In (f, k)-filtering of the scattered energy there will
be a maximum apparent velocity V., in either shot or
receiver domain for which the filter will stop being
effective. Equation (3.2) can be solved to determine for
which x,, this V,,x occurs. This gives

x;, 1 X
X limit = ‘21 i‘E‘/(yg +23) (@Y IV =1) = Td £ Riimi -
(3.3)

This equation shows that — for small depth z, of
the scatterer — the width 2R;;,;, of the apex area of the
traveltime surface around x,; is proportional to the
distance |y of the scatterer from the x-axis. Of course,
the corresponding description also applies to a
maximum apparent velocity in y.

Let us now investigate the energy as distributed
across the traveltime surface of the scatterer and in
particular the ratio of the energy in the apex and the
energy in the flanks of that surface. The (surface-wave)
energy is first spread according to 1/¢; when traveling
from source to scatterer, and subsequently according to
1/r. when traveling from scatterer to receiver (r, , are
distance from source to scatterer and from receiver to
scatterer, respectively). Hence, the energy is
proportional to 1/(r,). The total energy in some range
can be described schematically as

Energy ~ H—demdym . (3-4)
Istr

Because of the separability in x, and y,, this
integral can be written as the product of two integrals.
For instance, integration along the x,-axis, centered on
the apex of the traveltime surface reads

xg/2+R 1
f

: 2
2y 12-R 2%y = Xg) + 5 + 24

energy (¥4,24,R) =

_2R ] (3.5)
ya+zj

sinh !

Substituting R with Ry, according to equation (3.3)
into equation (3.5) and squaring to take into account
the contribution along the y,-axis shows that the energy
in the apex area of the scatterer can be written as

2
1 ] (3.6)

energy(q) = sinh™!
Va* -1

where g = 2V,../V. The significance of equation (3.6) is
that the energy in the apex area of the diffraction
traveltime surface is a constant value; i.e., the energy
that cannot be removed by filtering along the x,,~ or y,,-

axis is independent of the position of the scatterer with
respect to the center of the cross-spread. This is
somewhat counter-intuitive, because one might expect
the energy to become infinite for scatterers close to shot
line or receiver line, because there the distance from
nearest shot or receiver to the scatterer tends to zero.
However, this is compensated by the narrowness of the
apex area close to the axes.

The relative amount of energy in the apex area
compared to the area of apex plus flank can now be
expressed as

energy ratio(x; /2, y,; / 2) =

(sinh(1/4/g® =1))?
.4l 2R ..o 2R
sinh™| ——2=_ [sinh ™| ==
VYa+z4 N RS

A reasonable choice of g and of R must be made to
get an idea about the relative importance of apex area
and flank area. For a ground-roll velocity V' = 1200
m/s, i.e., velocity in midpoint domain V72 = 600 m/s, it
seems safe to assume that energy with apparent velocity
above V. = 1100 m/s cannot be removed, i.e., assume
g = 1.83. On the other hand, it might be a reasonable
choice to choose R = 1800 m (in midpoint domain).
This corresponds to 3s of flank in the center of the
cross-spread, and to a smaller time window for
scatterers further away from the cross-spread center.
Figure 3-3 shows a contour plot of equation (3.7)
expressed in dB. Note that the axes of this plot

(3.7)
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Fig. 3-3. Contour plot of energy in flat part of
diffraction traveltime surface relative to total
energy in a midpoint range of 3600 x 3600 m around
the apex as a function of midpoint coordinates of
the apex. Cut-off of the apex area is at V,;, = 1100
m/s, the ground-roll velocity is 1200 m/s.
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correspond to the x- and y-position of the apices of the
diffraction traveltime surface. Outside this coordinate
range the time at the apex of the scatterer is at least 2 s.

3.2.3 Discussion

The analysis in Section 3.2.2 shows that the bulk of
the energy of scatterers is concentrated in the flanks of
the traveltime curves. Energy in the flanks can be
removed by filtering in the shot and receiver domains,
better by filtering in the computer than in the field,
provided sampling was dense enough.

The analysis shows as well that the amount of
energy in the flat parts of the traveltime curves is not
insignificant. In particular scatterers farther away from
the center of the cross-spread have relatively wide flat
parts. After the steep parts have been suppressed by 30
dB or more by linear field arrays or by velocity
filtering, the flat parts form the dominant part of the
scattered noise energy. Areal shot and receiver arrays
may have to be used to suppress the energy in those flat
parts.

3.3 Shot and receiver arrays in 3-D
data acquisition

3.3.1 Introduction

On land the basic sampling interval is not normally
the same as the basic signal sampling interval, because
the smallest apparent velocity of the ground roll is
always smaller than the smallest apparent velocity of
the signal. Only if the maximum frequency of the noise
is significantly smaller than that of the signal, might
these intervals be nearly the same. For a discussion of
sampling and definition of basic sampling interval, see
Vermeer (1990) or Section 1.3.

If the seismic data would be sampled at the basic
sampling interval, velocity filtering could be used to
suppress the ground roll. However, the shot and
receiver sampling intervals used in land data
acquisition are at best equal to the basic signal
sampling interval, but usually larger (this may change
with the advent of high-capacity recording instruments
allowing single-sensor acquisition). As a consequence
of this coarse sampling, the ground-roll energy tends to
be heavily aliased, which means that ground roll cannot
be suppressed successfully by velocity filtering.
Instead, shot and/or receiver arrays need be used to
suppress the ground roll.

For 2-D, linear in-line arrays have been discussed
extensively in Vermeer (1990) and Section 1.6
provides a summary. It was found that arrays act as
crude anti-alias filters reducing noise. The extension of
the theory from 2-D to 3-D involves the use of areal

shot and receiver arrays and needs to make a distinction
between direct arrival noise and scattered energy.
Similar as in 2-D, the effect of the arrays on the desired
signal should always be taken into account as well.

The following discussion is split over four main
parts: 1) Direct-wave noise suppression, 2) Scattered-
wave noise suppression, 3) Analysis of various array
combinations, and 4) Discussion.

3.3.2 "Direct"-wave noise suppression
Similar to the response of a linear array as given in

equation (1.6), the response of an areal array with N
array elements located in (x;, ), = 1, ..., N), can be
described by the 2-D discrete spatial Fourier transform
N N
2.2 ww expaitk,x; +k,y;))
j=11=1
plhy k) =1 —
PRINT

Jj=1  I=1

, (3.3

where k. and k, are spatial wavenumbers in x and y,
respectively, w; are weights (filter coefficients) for each
array element j. Equation (3.8) is normalized to provide
p(0, 0) = 1. Usually, the absolute value of the array
response is plotted. As an example, the contour plot of
an array is shown in Figure 3-4b with its corresponding
array elements shown in Figure 3-4a. The contour plot
can be interpreted as follows: distances along a radial
line correspond to wavenumbers as measured along its
particular azimuth and the array response for a plane
wave traveling in that direction is obtained by
projecting the coordinates of the array elements onto
that azimuth. The outer arc of the plot corresponds to
the maximum wavenumber one is interested in (e.g., the
highest frequency of the slowest event). The central
lobe of the array response constitutes the pass band of
the array, whereas elsewhere all energy should be
suppressed as much as possible. Note that it would be
sufficient to display only a semi-circular plot, because
the response for azimuth o is identical to azimuth 180°
+ .

To facilitate the coming discussion on scattered
waves, | discuss the performance of arrays for linear
events in some more detail. The amplitude of a linear
event can be described as a =g (d) w (t-d/ V), where
g(d) represents the slowly varying geometrical
spreading as a function of distance d from shot to
receiver, ¢ is traveltime and ¥ is velocity. The action of
an array is to add the signals received simultaneously at
all elements of the array. The amplitudes seen by the
different array elements are at any point in time only
dependent on the distance

d=d(x,9,,%,.9,) = (x,~x )+, - »,) - Small
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Fig. 3-4. Example of areal array. (a) Position of array elements, (b) Contour plot of array response. Contour
interval is 10 dB, (c) Polar plot of average response in range |k| = 0.02 till 0.09 m™ expressed in dB
suppression. Note relatively poor array response along the two wavenumber axes.

distance can be described by
od od od

od
Ad ==L Ax, + == Ay, + == Ax, +— Ay, Where  the
o Mty At AN,

5 §

variations  in

various A's are measured with respect to the nominal
position of shot station or receiver station, and Ax,,
Ay, << d (plane-wave assumption).

For a linear receiver array along the receiver line
Ax; = Ay, = Ay, = 0. Then for each element i

X, — X,
L Ax, ; = Ax, ;cos g, see

RS R
Figure 3-5. Effectively, the length of the array is
reduced by a factor cosg.

For an areal receiver array, the same reasoning
applies: the projections of all elements of the array on
the line SR determine the action of the array for the
given shot-receiver azimuth. For an areal shot array, the
same formulas apply as for the receiver.

The combination of an M-element linear shot array
(along the shot line) and an N-element linear receiver

S (x5, y5)9

Ax, {

Fig. 3-5. The contribution of an array element to
the suppression of a linear event is described by the
projection of the element position on SR.

array (along the receiver line) produces N X M
deviations from the nominal shot-receiver distance d.
This array is equivalent to an N X M areal receiver (or
shot) array. For equal weights w; its response p (&, &)
following from equation (3.8) can be written as the
product of the responses of the individual arrays (while
neglecting phase shifts in x and y)

Pl k) = sin medx ' sin {\lzdcydy ‘ (3.9)
Nsinnk.d, M sinrnk,d,

For instance the 25-element receiver array of Figure
3-4a is equivalent to the combination of a 5-element
linear receiver array and a 5-element linear shot array.
Most raypaths for the 25 combinations of the two linear
arrays are different from the raypaths for a single shot
into the equivalent areal receiver array. [Strictly
speaking, this should be expressed in equation (3.9):
for the combination of a linear receiver array with a
linear shot array, k, corresponds to the varying x-
coordinate of the receiver and &, to the varying y-
coordinate of the shot, whereas for an areal receiver
array both wavenumbers pertain to the receiver
coordinates.] Therefore, the underlying assumption is
that the linear event does not vary as a function of
midpoint (or shot) across the range of the array(s).

Note that the array response also assumes a constant
¢ for all elements in the array. For small offsets, Ax,,
Ay, << d does not hold, and ¢ may be different
between the different elements and the geometrical
spreading g (d) will vary strongly across the array as
well. Therefore, for small offsets the array response is
no longer equal to the discrete Fourier transform of the
position of the array elements.
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Fig. 3-6. The action of a shot array element on a
scatterer is described by the projection of the
element position on SD, whereas a receiver array
element needs to be projected onto the line DR.

3.3.3 Scattered-wave noise suppression

For a linear event the angle with which the raypath
leaves the shot is the same as the angle with which the
raypath arrives at the receiver; for a scatterer these two
angles are different (see Figure 3-6).

Hence, to investigate the effect of a shot array and a
receiver array on a particular scatterer, it is necessary to
combine the response of the shot array in the ¢-
direction with the response of the receiver array in the
@,-direction.

Now there is a significant difference between the
combination of two linear arrays and an areal receiver
array. For instance, for the shot-receiver combination
with x; = x4 and y; = y4, the angles are ¢, = 0 and ¢, =
90°. In this case there is no noise suppression by either
one of the two linear arrays, whereas the areal
geophone array does suppress energy travelling in the
@,-direction. Linear arrays, if oriented along the
corresponding acquisition line, serve as (crude) anti-
alias filter in that direction. However, in the specific
example the scatterer's traveltime function is sampled at
its apex, where it is horizontal in the shot as well as in
the receiver direction (see Figure 3-7). For that
situation no anti-aliasing is required, but suppression of
noise energy is required everywhere, also at the apex.
Hence, for the best suppression of scattered energy
areal arrays have to be considered.

These observations also mean that scatterers in a
direction perpendicular to the linear array will not be
suppressed, whereas all scatterers in-line with the array
experience most suppression. It seems that as a
consequence, the orientation of a linear array is
immaterial for the suppression of scattered energy, if
the scatterers are randomly distributed. This is further
discussed in Section 3.3.5.

@

N

Fig. 3-7. Traveltime surface of scatterer in "+"
displayed in midpoint coordinates. Note that apex
lies at midpoint between S and R.

Similar to the direct wave, the array responses for a
scatterer assume a constant ¢; and ¢ for all elements in
the arrays. For small distances of the scatterer to shot or
receiver, the plane wave assumption does not hold.

3.3.4 Analysis of various array combinations

In this section various array combinations are
discussed, some of which are based on actual arrays
implemented in the field sometime somewhere.

Figure 34 shows a square array, which can be
implemented as such, but which can also be considered
as the convolution of two linear arrays. This array
response is not quite isotropic: its suppression along the
axes is much worse than in between the axes. This is
quantified by measuring the average suppression as a
function of azimuth over a range of wavenumbers
outside the central pass-band of the array response.
Figure 3-4c shows a polar plot for the array of Figure
3-4a.

The reason that the response of the array in Figure
3-4a along the axes is much worse than in between the
axes is that the projection of all array elements onto one
of the axes effectively leads to an array of 5 elements
spaced at 10 m. It has been suggested that staggering
the array elements would reduce the azimuth
dependence of the array response. Figure 3-8a shows
the staggered array, Figure 3-8b the array response and
Figure 3-8c the corresponding polar plot. Indeed, the
array's suppression has improved along the horizontal
axis (because there are now effectively 10 elements
spaced at S m along the horizontal, with weights
alternating between 2 and 3), but at the expense of the
suppression along the diagonals, whereas the response
is still equally bad along the vertical axis.

Arrays with less azimuth-dependency can be
constructed by laying out the elements of the array
along a number of concentric circles. Figure 3-9 shows
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(a)

Fig. 3-8. 25-element staggered array. (a) Staggered array, (b) Array response, (c) Polar plot. As compared to
the square array of Figure 3-4, the staggered array shows SdB improvement along the horizontal axis, no
improvement along the vertical axis, and some 7 dB reduction in suppression along the diagonals.
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Fig. 3-9. Examples of circular arrays: (a) 19-element array, (b) its array response, (c) its polar plot of average
response for wavenumbers 0.02 till 0.09 m’, (d) - (f) same as (a) - (¢) for 28-element array. The suppression
for [k| > 0.06 is not very good in either case, though better for the 28-element array.

two implementations, one with 19 elements, and the
other with 28 elements. In both cases the azimuth-
dependency is minor, but it is difficult to find an
arrangement which has a good response across a wide
range of wavenumbers. Yet, it seems to me that this
kind of array is to be preferred over the more common
square or rectangular arrays. The practical problem of
laying out circular arrays might be solvable with some

concerted efforts. (I am not aware of anybody who has
used or is using circular arrays.)

It is always more difficult to use shot arrays than
receiver arrays. However, simple shot arrays are often
quite feasible, if only because each shotpoint is
acquired with three or more vibrators. The combination
of a four-point square shot array (in diamond-shape)
with a circular receiver array may lead to considerable
improvement in noise suppression. This is illustrated in



geophones in a string on either side of
the string) of the geophones would
help. The bottom row illustrates that
the shot array can be wused to
compensate  shortcomings of the
geophone array. The perpendicular

geophone arrangement in the third row
has the worst suppression in the in-line
direction, therefore, orienting the shot
array in  that direction, with
appropriately chosen shot element
interval, improves the response
considerably (although the response is
still a far cry from the responses shown
in Figure 3-10).

If the two arrays are not circularly
symmetric there are always scatterers
that are located on the loci of worst
suppression for both arrays. This is
illustrated in Figure 3-12, which shows

(c) -0.1 -0.05 0 0.05

0.1

@)
Fig. 3-10. Combination of four-point diamond-shape shot array with
28-point circular receiver array. (a) and (b) wide shot array, (c) and
(d) narrow shot array.

Figure 3-10 for two choices of vibrator point distances,
in Figure 3-10ab for a horizontal and vertical distance
of 25 m, in Figure 3-10cd for a distance of 12.5 m. The
imprint of the square shot array is clearly visible on the
total array responses.

Departing now from the theoretical considerations,
let us have a look at some dilemmas facing the
operations geophysicist in practice. For instance,
sometimes a series of geophone strings is used, say 6
geophones per string. Would it make much difference
whether the strings were feathered along the receiver
line, or whether they were perpendicular to the receiver
line (in the latter case, it is easier to maneuver with
vibrators from one side of the receiver line to the
other).

Figure 3-11 shows results for some different arrays
with the same number of geophone strings. Clearly, the
zigzag pattern shown in the second row is worse than
the other two arrangements shown in the top row and
the third row. There is not much difference between
feathered strings and perpendicular strings. In both
cases there is a direction for which the suppression is
not more than 10 dB on average. Adding a fourth string
would improve the result, and also staggering (alternate

a feathered geophone array combined
with a 3-point shot array. For a given
receiver station the scatterers with
worst suppression are situated on a line
making an angle tan'[-1/3] with the
positive x-axis and passing through the
receiver station, whereas for the shot
array all scatterers with worst
suppression are situated along the shot
line. A scatterer at the location where
the two lines intersect is suppressed by 10 dB only (see
figure 3-12c, d). The best suppression is experienced
by scatterers positioned on the intersection of the lines
of best suppression for the two arrays (Figure 3-12d). If
the shot array would be oriented along the shot line, the
locations of best and worse suppression change (Figure
3-12e). Note that the responses in Figure 3-12 are only
valid for a fixed difference between ¢ and @, (Figure
3-6). This angle might also be chosen so as to overlay
the best direction of one array with the worst direction
of the other. In that case another response function
would be found.

3.3.5 Discussion

The choice of shot and receiver arrays should
depend on the geophysical problem. Knowledge of the
amount of scattered energy is essential to come up with
the most cost-effective and appropriate solution.
Therefore, it is recommended to acquire one or more
3-D noise cross-spreads (with very small shot and
receiver intervals, see Section 7.2 for an example) for a
detailed analysis of the scattered energy. This analysis
would provide quantitative information on the energy
of the scatterers, the direct waves, and the primaries as
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Fig. 3-11. Top three rows describe arrays consisting of three geophene strings each. The middle row array is
clearly inferior to the other two. The bottom row describes the convolution of the array above with a three-
point shot array.
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Fig. 3-12. Effect of two arrays on scatterers. (a) Geophone array (top, same as in Figure 3-8, top) and shot
array (bottom), (b) Response of rotated shot array convolved with geophone array response. Rotation
selected such that worst directions and best directions of both array responses overlap, (c) Polar plot of
response shown in (b). In the worst direction the suppression is only 10 dB. In the best direction it is about 60
dB, compare also with polar plot at top of Figure 3-8, (d) Location of scatterers with best (B) and worst (W)
suppression for shot-receiver combination SR and shot array perpendicular to shot line, (¢) Same as (d) for

shot array oriented along shot line.

a function of wavenumber. Combined with an estimate
of the noise suppression in dB by velocity filtering,
stacking and migration, the analysis should establish
what level of array effort (how many dB suppression
across what range of wavenumbers) is required for
interpretable data.

The range of wavenumbers to be suppressed
determines the spacing between the elements of the
arrays and the areal extent of the arrays. The closer the
elements the larger the wavenumbers being suppressed
and the larger the extent the narrower the central pass

band. It is generally accepted that the first notch
(minimum) of the array response should occur at 2ky.
Then the central passband extends to 2ky, although the
noise is already suppressed somewhat between ky and
2ky by the arrays. Velocity filtering will also remove
some of the noise around ky (where it does not yet
interfere with the signal). For linear arrays this means
shot and receiver array lengths equal to station interval.
With arrays that are twice as long (fully overlapping
arrays) the first notch would occur at ky, as is
customary for anti-alias filtering, but then the desired
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signal runs the risk of being affected too much. Shorter

arrays are used as well — especially if the station
intervals are large — to avoid degradation of the
desired signal. In that case the wavefield is

undersampled, and higher fold may be required for
adequate suppression of coherent noise.

In case areal geophone and shot arrays are used, it
would be sufficient — under assumption of small
variations in the direct wave as a function of midpoint
— to have a geophone array producing a notch at 2ky
in all directions, and a smaller areal shot array, as for
instance in Figure 3-10. Whether the noise is
suppressed by the shot array or the receiver array is
immaterial, as long as the total suppression is the same.
For an equal array response, the noise that remains is
the same irrespective of the composition of the two
arrays. In practice, there will be some deviations from
this, because the linear events will not be strictly a
function of offset only. Then a small shot array and a
large receiver array will leave more aliased noise in the
common receiver than in the common shot. Yet, very
often the midpoint-to-midpoint variation of the direct
wave will be minimal. In other words, for the direct
wave it is sufficient to design an optimal response of
the convolution of the two arrays, rather than optimal
responses of the individual arrays.

The story is slightly different for scatterers. If an
array (shot or receiver) has little suppression for some
azimuth, then there will always be scatterer positions,
which are situated along that azimuth and which do not
experience much suppression (see Figure 3-12). Hence,
if there is a severe scatterer problem, it is important to
make both shot and receiver array as azimuth-
independent as possible. Yet again, a small areal shot
array may be combined with a large areal geophone
array.

In case a circular geophone array is combined with
a linear shot array, it is again immaterial how the shot
array is oriented as far as the linear events are
concerned. One might have a slight preference for
orientation along the shot line, thus reducing any extra
aliasing which might occur due to midpoint dependence
of the noise. For scatterers, there is an interesting
difference. If the shot array is oriented along the shot
line, the scatterers experiencing no suppression are
situated opposite each shot position (as D versus S in
Figure 3-7). On the other hand, if the shot array is
oriented perpendicular to the shot line, then all
scatterers with bad suppression are situated in the
vicinity of the shot line. In other words, in the latter
case the same scatterers cause the noise, whereas in the
first case scatterers all over the area take turns in
contributing to the noise. It is difficult to see which
situation is preferable for the final result. Synthetic

noise tests might show whether one or the other shot
array implementation is to be preferred.

If scatterers are not a problem, the easiest way to
get good linear noise suppression is to use a
combination of linear shot arrays and linear geophone
arrays. This solution requires the smallest number of
array elements. Smith (1997) showed with synthetic
data tests that these linear arrays (with length equal to
station interval) are essential for good noise
suppression in case the bandwidth of the noise is large.
However, if shot arrays are relatively expensive to
implement, areal (preferably circular) geophone arrays
are a good alternative. These areal geophone arrays
have the added advantage that they do not pass the
apices of the noise cones generated by scatterers.

In very serious noise situations, it might be
necessary to make the field arrays wider than long for a
better suppression of the apex areas of the diffraction
traveltime surfaces (cf. Section 3.2.2). The advent of
single-sensor recording (Baeten et al., 2000) would
allow the recording of wide receiver lines while
postponing side-scatterer suppression to the processing
stage.

The choice of arrays may also be related to the
acquisition geometry. In a narrow geometry with small
maximum cross-line offset, most of the linear noise
events travel in the in-line direction. Then most noise
energy may be suppressed if the array response is better
in the in-line direction than in the cross-line direction.
If scatterers are important, an areal geophone array may
be supplemented by a shot array oriented in the in-line
direction.

3.4 Stack responses

3.4.1 Introduction

The last part of this chapter is an extension of the
discussion in Section 1.6 on stack responses. For 2-D,
Section 3.4.2 shows that a regular offset distribution
does not necessarily lead to the best stack response, a
result which is extended to 3-D in Section 3.4.4. The
effect of multiple suppression by stacking is discussed
for 2-D data in Section 3.4.3 and also extended to 3-D
in Section 3.4.4.

3.4.2 The 2-D stack response

For a regular geometry and using equal weights for
all traces, equation (1.8) describes the 2-D stack
response (with k; = k,)

_ sinNnk,d

= , (3.10)
Nsinsk, d

S(k,)
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Fig. 3-13. Stack responses of 2-D geometries: (a)
regular 48-fold, (b) regular 24-fold, and (c)
irregular 24-fold. Horizontal lines indicate the level
of random noise suppression. The first alias in the
case of the regular 48-fold stack occurs at &k = 0.02,
where no significant coherent noise may be present.
However, the first alias of the response of the 24-
fold stack, which has double the trace interval of
(a), may pass a significant amount of noise. The
irregular 24-fold stack, which covers the same offset
range as (b) suppresses coherent energy everywhere
about as much as it suppresses random noise.

where d is now the constant interval between the traces
in the midpoint gather. Figure 3-13a shows the stack
response for 48-fold data with d = 50 m. The stack
response has best suppression around wavenumber £,

=1/ (2d) and has alias peaks for k, = n / d, n being an
integer number. The alias peaks are a consequence of
the regularity in the offset sampling. In well-sampled
2-D data, the first alias of the stack response (n = 1)
coincides with the first notch of the field arrays (though
only for horizontal events, see Figure 1-14, page 175).

For 2-D seismic data, Figure 3-13a illustrates that
stacking can suppress coherent noise much better than
random noise if the offsets are regularly and densely
sampled (Vermeer, 1990). Yet, even for 2-D data, a
regular offset distribution is not ideal in general. If the
fold-of-coverage is halved by doubling the shot
interval, the offset sampling in the CMPs doubles,
leading to a first alias peak of the stack response at half
the original wavenumber (compare Figures 3-13a and
3-13b). The first alias peak in Figure 3-13b may pass a
considerable amount of coherent noise, which was not
suppressed by the field arrays either.

For low-fold data, it is better to randomize the
offset distribution, as shown in Figure 3-13c. A random
offset distribution suppresses coherent noise about as
well as it suppresses random noise, whereas a regular
offset distribution leads to a periodicity in the offset
distribution, which allows the corresponding
wavenumbers to escape suppression. Hence, for low-
fold data, it is best to have an irregular offset
distribution, that is, the CMP should show no
periodicities in offset, yet cover the whole range of
offsets.

3.4.3 Multiple suppression by stacking

Based on the wave equation, several multiple
removal schemes have been introduced using a spatial-
temporal filter. These techniques can even be
successful in case there is no differential moveout
between primaries and multiples. However, here I
concentrate on the multiple suppression that is
achievable with the stacking process.

3.4.3.1

After NMO-correction for the primary velocity, the
moveout At of a multiple (its differential moveout) as a
function of offset can be approximated by a parabola,
provided this differential moveout is small

Multiples with small differential moveout

At = At (x,/x,)? G.11)
where x; is some fixed offset and At the differential
moveout for that offset. The stack response for
multiples is found by summing the phase-shifts of the
traces
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S(ps)= Zw exp(tqoj)/ZW —Zw exp(27ifAt ; )/Zw

=l

N
=2 w; exp(ip,(x; /xf) )/Zw (3.12)
j=1 J=l

where @ is the phase shift in radians at x; for a
frequency f, @ =271\t

Figure 3-14 shows displays of the absolute value of
the 2-D stack response, as a function of wavenumber
(left) and as a function of differential moveout at a
fixed offset (right). In the top part of Figure 3-14 equal
weights are used, whereas the bottom part has been
computed for weights proportional to offset. The offset
weighting quasi-linearizes the amplitude of the multiple
as a function of offset squared, leading to a stack
response similar to that for equal weighting of linear
noise (compare Figure 3-14a and 3-14d).
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conformable with the overall structure. Figure 3-16
shows the (f, k)-spectrum of the section shown in
Figure 3-15. It shows a secondary energy peak around
k = Yky pointing at a spatial periodicity of 4 traces.
The corresponding acquisition geometry has shot
interval 100 m, receiver interval 50 m, and 60 offsets,
leading to 15-fold data with 200 m between traces in
the CMP, and a spatial offset periodicity of 4 traces.
Figure 3-17a shows the (amplitude of the) stack
response. It has its first alias peak at k = 1/200 m™

Some algebra leads to the following expression for
the apparent velocity ¥, of the multiple with velocity
V. after correction for the primary velocity ¥,

i 3.13
/[ ,py;} 49

where ¢, , t, are the reflection times at x, for primary
and multiple, respectively. Lines for f = &, V, for

Opr e
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Fig. 3-14. Stack responses for regular 40-fold 2-D geometry with equal weights (a, b), and with weights
proportional to offset (c, d). Left: linear noise suppression, right: multiple suppression. Horizontal lines

indicate level of random-noise suppression.

3.4.3.2  Multiples with large differential moveout

In general, stacking of multiples with large
differential moveout should produce residual muitiple
energy originating from the short offsets only.
However, for low-fold data stacking may also produce
residual multiple energy originating from the long
offsets.

This is illustrated in Figures 3-15 and 3-16." In
particular in the time window 2.6 - 2.8 s, Figure 3-15
shows some steeply dipping events, which are not

"I am indebted to Cees Corsten for the data shown and
explanation given in this section.

constant x, have been drawn in Figure 3-17b. They
show that aliasing starts around 40 Hz for the largest
offsets. This is confirmed by the secondary peak in
Figure 3-16, which also starts around 40 Hz. Lower
frequencies do not alias in the CMP for this multiple.
Figure 3-17c shows a representative CMP after NMO
correction. It shows the steeply dipping multiple, which
is only partially suppressed by stacking due to the large
distance between the traces. The corresponding 30-fold
stack does not show this kind of multiple passed by
stacking, because in that case aliasing only starts at 80
Hz.
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This little case history clearly shows that peaks in
the stack response should be avoided in the
wavenumber range where strong noise energy occurs.

Yakn.
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such as the direct arrival ground
roll and near-surface multiples
in horizontal layering. In the
following, 1 assume this
condition holds.
In 3-D parallel geometry
{multisource multistreamer
2.5 acquisition), the offset
distribution is almost as regular
as for 2-D lines, except for the
sampling of the short offsets
along the outer streamers. In
other 3-D geometries
(orthogonal geometry, zigzag

3.0 geometry), the offset
distribution tends to vary
strongly  between  midpoint
gathers.

Table 3-1 lists the main
parameters of the geometries
for which the stack responses

35 are shown in Figure 3-18.

Pt 1 = 20

[ s anfiuepitfonpuinicfspngig oo

Fig. 3-17. Explanation of multiple aliasing. (a) Stack response as function of  Because the offset distribution
offset wavenumber with alias band at &, = 1/200 m™, (b) apparent velocity in  varies across the midpoint

(/. k,) of multiple after NMO correction for various offsets, according to

gathers of the geometry, each

equation (3.13) for zero-offset time 2.6 s, V, = 3000 m/s, and V,,, = 2100 m/s, gather has its own stack

(c) NMO-corrected CMP with primary velocity showing aliased multiples

below 2.4 s.

3.44 3-D stack responses

For 3-D, offset is two-dimensional, hence the stack
response is two-dimensional and can be defined as

N N
Ske) = w, exp(27zik0.xoj)/z W;, (3.14)
Jj=1 J=l
where k, and x,; are now the two-dimensional offset
wavenumber and offset, respectively. For coherent
noise that only depends on the shot-to-receiver offset,
i.e., is not azimuth-dependent, the stack response can
be computed as a function of absolute offset. To a large
extent this condition holds for various types of noise,

response. Rather than drawing
all stack responses of a
geometry, the average stack
response is plotted, together with the standard deviation
in the stack response on both sides of the average.

The observation that the 2-D stack of a regular
offset distribution suppresses coherent noise better than
random noise (Figure 3-13a) has led to the widespread
belief that 3-D survey design should aim for regular
offset distributions. However, as shown by the
comparison of Figure 3-13b and 3-13c, low-fold data
should not have a regular offset distribution for
optimum noise suppression.

Table 3-1 Parameters of 3-D geometries

1d name cross-line x in- receiver line shot line aspect Figure
line fold interval interval ratio

1 | 4-line orthogonal 2x15=30 200 m 200 m 0.13 3-18a,b

2 | 4-line brick 2x15=30 200 m 200 m 0.13 3-18¢cd

3 | 4-line double zigzag 2x15x2=60 200 m 200/2 m 0.13 3-18e,f

4 | 12-line orthogonal 6x6=36 450 m 450 m 1.0 3-18g,h




58

Fig. 3-18. Average stack responses (heavy lines) for the four acquisition geometries listed in Table 3-1.
Standard deviations in each average are indicated as well. Left column: Amplitude of stack response for
linear noise suppression. Right column: Amplitude of stack response for suppression of multiples with small
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In 3-D surveys, the fold-of-coverage is usually
much smaller than in 2-D. If so, a regular offset
distribution would produce peaks in the stack response,
through which coherent noise events could pass.
Narrow geometries tend to produce periodicities in the
offset distribution, leading to peaks in the stack
response. This is illustrated in Figure 3-18a for
geometry 1. The brick-wall geometry 2 with the same
offsets as geometry 1 has a better stack response than
geometry 1, because its first peak in the stack response
is much weaker than for geometry | (Figure 3-18c).
The other peaks of the two stack responses virtually
coincide.

Double-zigzag geometry represents a special case.
For a small aspect ratio, each CMP in this high-fold
geometry has a nearly regular offset distribution,
leading to a very good stack response (the first strong
peak in the stack response occurs at a high wavenumber
due to the high fold). Figure 3-18¢ shows the stack
response of a double-zigzag geometry. It should be
realized that in a wide double-zigzag geometry the
offsets would be distributed less regularly, leading to a
random-noise type suppression.

Selecting a wide orthogonal geometry leads
automatically to an irregular offset distribution, making
the stack responses of the various CMP gathers as flat
as possible on average (Figure 3-18g).

In geometries 1-3 the offsets are distributed quite
evenly across the total range of offsets (apart from
some periodicities in geometry 1 and 2). This means
that their ability to suppress multiples with small
differential moveout is about the same, as illustrated by
the figures on the right side of Figure 3-18. In wide
orthogonal geometry, there is a preponderance of long
offsets leading to a similar effect as offset-weighting for
the 2-D stack response as shown in Figure 3-14d.
Figure 3-18h shows that the multiple suppression using
a wide geometry is better than the multiple suppression
by narrow geometries.

3.4.5 Discussion

It should be emphasized again, that the stack
responses of the 3-D geometries were made for

absolute offset. This means that they are only valid for
events, which are not azimuth-dependent.

In the figures the stack response is always shown as
a function of offset wavenumber k, starting at k, = 0.
To judge the effect of stacking it is also necessary to
know the energy distribution as a function of
wavenumber of the data. Some 3-D survey design
programs incorporate this possibility by allowing the
user to specify the range of wavenumbers for which an
average stack response must be computed.

The stack response is by no means the one and only
criterion by which to judge the quality of an acquisition
geometry. For instance, in a wide geometry, dual-
domain (shot and receiver) (f; k)-processing or 3-D
velocity filtering can take care of much of the ground-
roll energy that is not going to be suppressed by the
stack. Also migration suppresses much of the energy
that does not fit the migration model (Smith and
McKinley, 1996). Therefore, the not-so-good stack
response of wide geometries (although better than the
stack responses of narrow orthogonal and narrow brick
geometry) can be compensated to some extent in
processing.
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4 GUIDELINES FOR DESIGN OF "LAND-TYPE" 3-D GEOMETRY

4.1 Introduction

In this chapter the symmetric sampling criteria are
expanded into guidelines for parameter selection for the
survey geometry.

Often, geophysicists dealing with the design of 3-D
seismic surveys concentrate on the properties of the
bin: offset distribution, azimuth mix, midpoint scatter.
In my approach, even more emphasis is put on the
spatial properties of a geometry across the bins. These
spatial aspects are so important because most seismic
processing programs operate in some spatial domain,
i.e., combine neighboring traces into new output traces,
and because it is the spatial behavior of the 3-D seismic
volume which the interpreter has to translate into maps.

These guidelines start with a brief description of the
knowledge base, which has to be built to allow a
satisfactory choice of all parameters. The first choice to
be made is the type of geometry. In general, orthogonal
geometry is the geometry of choice for land data
acquisition and for marine data acquisition in
combination with ocean bottom cables. Yet, other
geometries may also be selected, and a short review
outlines pros and cons of various geometries that may
be chosen.

This chapter focuses on orthogonal geometry. If
3-D symmetric sampling is taken as a starting point, the
choice of parameters for this geometry is simplified
considerably. Instead of having to decide on the shot
interval and on the receiver interval, a decision need
only be made as to the sampling interval. Similarly, the
maximum in-line and maximum cross-line offsets can
be made equal. It is also recommended to see what the
consequences are of making the shot line interval and
the receiver line interval the same. Another benefit of
symmetric sampling is that the designer does not need
to worry about the offset distribution: 3-D symmetric
sampling automatically leads to a reasonable offset
distribution.

The choice of the various parameters depends on
the geophysical requirements, which in turn are often a
trade-off between what the interpreter would like to see
and what the budget will permit. In my view, the most
important geophysical requirements are: spatial

continuity, resolution, shallowest horizon to be
mapped, deepest horizon to be mapped, and the signal-
to-noise ratio. These requirements and their
consequences for parameter choice are discussed
extensively in this chapter.

Although symmetric sampling is a starting point for
survey design, there are often good reasons for
deviating from it. Various situations are sketched to
describe reasons for and consequences of using
asymmetric sampling. This chapter is rounded off with
a discussion of attribute analysis and model-based
survey design.

4.2 Preparations

4.21 Objective of survey

The designer of a 3-D seismic survey should be
familiar with the objectives of the survey. A rough
classification of objectives is

e structural interpretation
e  stratigraphic interpretation
e reservoir characterization
= porosity
= porefill
® fracture orientation
e  timelapse
In practice, these objectives need to be refined with

a detailed description of the geological and geophysical
problem.

4.2.2 Know your problem

Before the design task can start, some groundwork
has to be done to collect and quantify the information
that is available for the survey area. Information that
will be needed is listed below:

e  Time/depth of shallowest event of interest (for
statics or for mapping)

e  Time/depth of
(prospective level)

shallowest objective
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e Time/depth of deepest objective or main
objective

e Required resolution, or maximum frequency at
those levels

e Steepest dips at those levels

o Representative velocity function(s) (several
may be needed if there is strong lateral
variation)

e Representative mute function (might be
computed from velocity function)

e Information on data quality problems
(multiples, scatterers, groundroll, statics)

¢ Interpretable survey area

o Interpreted seismic sections

e Raw shots

e Terrain conditions

e  For complex geology: model(s) of the structure

Sometimes more information will be useful, e.g., for
AvO analysis it would be very helpful to know the main
petrophysical parameters around reservoir level.

Much of the information listed above will be
referred to explicitly in the design discussion in this
paper. Some other information will be used only
implicitly, important is a thorough familiarity with the
objectives and the problems so that a survey design can
be recommended with confidence in the outcome.

4.3 The choice of geometry

In general, the orthogonal geometry is the geometry
of choice for land data acquisition. However, there are
situations in which it may be preferable to choose a
different geometry. In this section the parallel
geometry, the zigzag geometry, the slanted geometry
and the areal geometry are compared with the
orthogonal geometry, and target-oriented geometries
are discussed. Here, I assume acquisition of P-wave
data; a discussion of 3-D survey design and choice of
geometry for converted waves is given in Vermeer
(1999b) and is expanded into a full-size discussion in
Chapter 6.

4.3.1 Parallel geometry versus orthogonal
geometry

A detailed discussion of the pros and cons of
streamers (parallel geometry) versus stationary
receivers (orthogonal or areal geometry) is given in
Vermeer (1997) and reprinted as Chapter 5.

In land data acquisition, parallel geometry would
normally be too expensive, because the acquisition line
spacings have to be small for good cross-line sampling

intervals. The close line spacing also requires virtually
unlimited access, which is only available in specific
environments (deserts, tundra's, etc). Therefore, only in
very rare situations, parallel geometry is used on land.
Schroeder et al. (1998) use the data of a parallel
geometry acquired on land to study the effect of fold
and binsize on quality.

Similar as in the marine situation, parallel geometry
on land is acquired using swaths composed of a few
source lines and a few receiver lines. Usually, the
cross-line fold is 1, which may lead to decoupling of
statics in the cross-line direction. Irregular illumination,
which is inherent in this configuration (see Section
5.3.2.4), is less severe than in the marine situation in
case center-spread acquisition is applied. Moreover,
feathering, which is a main disadvantage of parallel
geometry using streamers, does not occur on land.
Therefore, on land, advantages of the parallel
geometry, such as a better stack response than that of
orthogonal geometry, can be fully exploited.

Parallel geometry and orthogonal geometry have in
common that common-receiver gathers can be sampled
similarly as common-shot gathers provided symmetric
sampling is applied. This distinguishes these two
geometries from other geometries (slanted, zigzag) for
which receiver gathers tend to be of variable length
(here, as usual, I refer to receiver gathers as part of the
basic subset of the geometry; i.e., the shots in the gather
are located on a single source line). The main
distinction between parallel and orthogonal geometry is
that parallel geometry is basically single azimuth,
whereas orthogonal geometry is wide azimuth. Usually,
this difference has little consequence for the imaging
capabilities of the two geometries. Only in very
complex geology, somie shot-receiver azimuths are not
very suitable for illumination (cf. dip/strike decision,
Section 5.3.1.1). In those situations, orthogonal
geometry may be at an advantage as it will always
include shot-receiver azimuths that are most suitable.
Parallel geometry is not suitable for investigation of
azimuth-dependent effects, unless this geometry is
acquired in two or more different directions.

Apart from a better stack response for linear noise
suppression, parallel geometry has some more distinct
advantages over orthogonal geometry. First, for the
same fold, parallel geometry has better potential
resolution than orthogonal geometry, because of
relatively more short offsets, i.e., it suffers less from
NMO stretch effects. More short offsets also leads to
better imaging of the shallow data (although this
advantage may be lost in case a wide swath is used).
Processing parallel geometry data is much more
straightforward than processing orthogonal geometry
data. Vermeer (1998b, see also Chapter 10) discusses
the problem of creating common-image gathers from
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data acquired with orthogonal geometry. AvO analysis
using paraliel geometry tends to be easier as well, and it
can have higher resolution, because it has virtually the
same offset distribution (apart from minor variations in
the short offsets) in all CMPs (cf. discussion in Section
2.6.9).

Dickinson et al. (1990) discuss a comparison
between data acquired with parallel geometry and
orthogonal geometry. The final results were not very
different, but the CMP gathers of the cross-spread data
looked much noisier than those of paraliel geometry.
This can be attributed to the noise, which may look
very incoherent in CMP gathers of orthogonal
geometry because of the range of azimuths and also
because of the irregular offset sampling.

432 Zigzag geometry versus orthogonal
geometry

The zigzag geometry is most efficient in open areas
such as deserts. The distance to be traveled by the
vibrators is V2 shorter than for an equivalent orthogonal
geometry with the added advantage that it is easier for
the vibrators to avoid running over the geophones
(equivalent orthogonal geometry: the orthogonal
geometry with the same maximum in-line and cross-
line offsets as the zigzag geometry, and effectively the
same shot line interval and the same receiver line
interval, i.e., with the same trace density).

All current processing packages are based on
binning, and the common perception is that processing
works best if all midpoints are located as much as
possible in the bin center (yet, in DMO the DMO-
correction traces cannot be forced into bin centers
anyway). Therefore, the in-line move-up of the shots is
made equal to the receiver station interval. Another,
perhaps even more compelling, reason for this choice
of shot move-up is that it allows center-spread
acquisition for each individual shot by moving the
active spread together with the shot. As a consequence,
the shot interval is V2 times the station interval. For
alias-free recording of the common-receiver gathers in
the zig- and zag-spreads (see Section 2.3.4), the shot
interval has to be equal to or less than the basic signal
sampling interval, but then the common-shot gathers
would be oversampled. The equivalent orthogonal
geometry would be oversampled in both shots and
receivers, i.e., fewer shots and receivers would be
needed in the orthogonal geometry to achieve alias-free
sampling of the same maximum frequency. This
reasoning suggests that a zigzag geometry is perhaps
not as efficient as it seems to be.

Prestack processing of the zig- and zag-spreads has
to deal with lower apparent velocities than orthogonal
cross-spreads. This can be seen from the contour plots

in Figure 2-4. For the same contour interval the
contours in the zig-spreads are locally closer than in the
cross-spreads.

The same sampling disadvantage applies to the
double zigzag geometry (defined in Section 2.3.4).
However, the double-zigzag geometry does have the
attractive property that its average stack response
approaches the stack response of a high-fold 2-D
geometry (see Figure 3-18e).

The very good stack response of the double-zigzag
geometry is only possible by maintaining a small
number of closely spaced receiver lines. Therefore, this
geometry has a very high shot density, and it has many
short offsets.

In a wide orthogonal geometry the average stack
response is not very good, but at least it does not have
any peaks (see Figure 3-18g). Suppression of ground
roll in that geometry can be achieved mostly by dual-
domain (f, k)-filtering or 3-D wvelocity filtering. In
double zigzag geometry, (f, k)-filtering can only be
applied satisfactorily in the common-shot gathers, not
in common-receiver gathers. In other words, there is no
clear reason why suppression of ground roll can be any
better achieved in a double-zigzag geometry than in a
wide orthogonal geometry.

Multiples with small differential moveout with
respect to the primaries are better suppressed by
stacking in a wide orthogonal geometry than in the
narrow double =zigzag. This is caused by the
preponderance of long offsets in the wide geometry
(compare Figure 3-18f with 3-18h. Similar as for 2-D
processing (cf. Figure 3-14), offset weighting in the
double zigzag geometry may lead to better suppression
of multiples with small differential moveout.

The energy of multiples with large differential
moveout is spread out along the offset wavenumber
axis, and is best suppressed by a dense equidistant
offset sampling in the CMP. For those multiples, if
strong, the double-zigzag geometry is at an advantage,
unless the multiples could be suppressed satisfactorily
by some prestack multiple elimination.

Some multiple elimination programs assume that
the multiples have hyperbolic moveout as a function of
offset. In case such programs are the only ones
available for multiple elimination, this may have some
consequence for the choice of geometry. Hyperbolic
moveout may be assumed for horizontal geologies and
for not too complicated geologies provided the azimuth
does not vary. For horizontal geologies there should be
no difference between a wide geometry and the double-
zigzag geometry in the suitability for multiple
elimination with such programs. However, for wide
geometries and in dipping geologies, moveout of
multiples will not vary smoothly as function of absolute
offset, because it will also be dependent on azimuth.
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For such geologies, the double-zigzag geometry will be
at an advantage, as the azimuth variation is very limited
in that geometry.

An advantage of double zigzag geometry and
parallel geometry is that the relatively larger number of
small offsets leads to better resolution as compared to
all wide geometries which have a preponderance of
long offsets and suffer more from NMO stretch.

4.3.3 Slanted geometry versus orthogonal
geometry

Slanted geometry (sometimes called slash
geometry) represents a modification of orthogonal
geometry, in particular of brick-wall geometry (for a
discussion of brick-wall geometry, see Section 7.3). In
this geometry the shot lines are non-orthogonal to the
receiver lines. The geometry is an improvement over
the brick geometry because the shot line is no longer
discontinuous. Instead of cross-spreads, slanted spreads
are the basic subsets of the geometry.

For low-fold, and similar to brick-wall geometry,
slanted geometry tends to have a better distribution of
the sparse offsets across the total offset range for each
bin, thus reducing the geometry imprint. This
advantage is quite irrelevant in areas with some dip,
and reduces as well for high fold. Depending on the
angle of the shot lines with the receiver lines, LMOS is
smaller than in an equivalent orthogonal geometry.
(LMOS is defined in Section 2.5.6. The smaller LMOS,
the better the shallow coverage, see Section 4.4.3.)

An attribute comparison of slanted geometry with
orthogonal geometry is given in Section 4.6.6. The next
section compares the subsets of slanted geometry,
zigzag geometry and orthogonal geometry in more
detail.

4.34 Comparison of sampled minimal data
sets of crossed-array geometries

- Figure 4-1 shows the midpoints of the MDSs of the
orthogonal geometry, the zigzag geometry and the
slanted geometry for 16 shots recorded in 16 receivers.
These numbers have been kept small to avoid clutter of
points. Maximum cross-line offset is the same as
maximum in-line offset in all three cases.

In the zig-spread the in-line range of midpoints is
much larger than in the cross-spread, because the active
spread moves with the shots. Whereas in the cross-
spread the number of midpoints in the common receiver
is constant, the number of points in the common
receiver of the zig-spread varies. Moreover, the
sampling interval in the common receivers of the zig-
spread is V2 times that in the common shot. Lines
parallel to the edges of the zig-spread represent
common-in-line-offset gathers. This gather contains a

trace from each shot in the zig-spread, just like the
common receiver in the cross-spread, but the sampling
interval is two midpoints in the in-line direction.

The slanted spread has many features in common
with the zig-spread. Again the common receivers do
not all have the same length, and the sampling interval
in the common receiver is larger than in the common
shot.

A consequence of the variable length of the
common receivers in zig-spread and slanted spread is
that dual-domain filtering is not really practical. Hence
advantages of spatial continuity cannot be fully
exploited in these cases.

The slant of the shot line in zigzag geometry and in
slanted geometry also leads to lower apparent velocities
of the diffraction traveltime surfaces in the cross-line
direction. This can be seen by inspection of Figure 2-
4a. This may sooner lead to aliasing of the migration
operator in these geometries than in orthogonal
geometry.

In the cross-spread the shot line and the receiver
line split the midpoint area in four quadrants of equal
size. In zigzag and slanted geometry the midpoint area
is split into unequal areas. Without a special effort to
true-amplitude processing, this will lead to geometry
effects in prestack-migrated amplitudes.

Another problem with zig-spreads and slanted
spreads is that splitting over OVTs is more difficult to
arrange. It can be done, however, and it is interesting to
note that an OVT in the zig-spread will have the same
offset and azimuth range as the equivalent OVT in the
cross-spread.

Summarizing, the commonly applied asymmetric
sampling in zigzag and slanted geometry leads sooner
to aliasing. Dual-domain filtering cannot be carried out.
Amplitudes are more difficult to control. On top of this,
shot lines are longer in these geometries. Depending on
the terrain this may increase cost. Although the spatial
continuity of these geometries is much better than of a
brick-wall geometry, they are still inferior to orthogonal

geometry.

4.3.5 Areal geometry

Areal geometries with a very coarse grid of receiver
stations and a dense grid of shots are becoming more
important, especially in marine data acquisition. It is
the geometry of choice for deployment of vertical
hydrophone cables. Each vertical hydrophone cable is a
self-contained recording system, consisting of 12 or 16
hydrophones at regular intervals along a cable kept
vertical in the water. The data are recorded in a floating
recording unit (see also Vermeer, 1997 and Section
5.4.2).
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Fig. 4-1. Midpoints of MDSs of crossed-array geometries. (a) Cross-spread, (b) Zig-spread, (c) Slanted
spread. Common shots are rows of horizontal midpoints, common receivers are parallel to shot line and are

indicated. In zig-spread, each next shot moves a stati

on interval to the right together with the receiver spread,

hence two midpoint positions. In slanted spread (with tan o = 2), pairs of shots shoot into the same spread, for
the next pair the spread moves one station to the right. Note variable length of common-receiver gathers in
zig-spread and in slanted spread. In zig-spread the common-in-line-offset gather (constant A,) contains a

constant number of traces.

Another acquisition technique, using the same
geometry, is based on OBS (ocean-bottom
seismometer) systems. These systems may be equipped
with a hydrophone and a 3-component geophone for
recording of the complete wavefield at the sea bottom.
Two systems are in use: one type of OBS uses gravity
for deployment, and buoyancy for retrieval, and a more
modern type — based on SUMIC experience (Berg et
al.,, 1994) — uses an ROV (subsea robot) to plant the

geophones and to retrieve the equipment from the sea
floor.

A similar approach to marine acquisition is used in
the Teal South Project (Ebrom et al.,, 1998). Here 6
four-component receivers are placed at 200 m intervals
in four receiver lines with a receiver line distance of
400 m. Shots are fired every 25 m in both x- and y-
directions.

Disadvantages of streamer acquisition such as
striping, are overcome by this type of acquisition
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geometry. Moreover, in case of multi-component
recording shear-wave information is becoming
available. Similar to the orthogonal geometry used on
land and in OBC acquisition, the shallow subsurface
will not be completely illuminated, now owing to the
distance between the recording units.

Another interesting application of areal geometry
may develop in combination with shallow VSPs. A
number of holes is drilled in which multi-component
sensors are permanently installed well below the
weathering zone, but not too deep. Then the area is
covered with shots in a dense grid. The data acquired in
this way will suffer less from ground roll, and as
attenuation of high frequencies takes place mainly in
the very shallow subsurface, the data will perhaps
contain more usable high frequencies. The technique
would be expensive, but might be very appropriate for
seismic reservoir monitoring (time-lapse seismic).

A disadvantage of areal geometry is the lower
resolution of the 3-D receiver gathers compared to
other geometries for the same migration operator radius
(Vermeer, 1999a, and Chapter 8). In particular PS-data
acquired with areal geometry suffers from low
resolution (Vermeer, 1999b, and Chapter 6).

4.3.6 Target-oriented geometries

In the remainder of this chapter orthogonal
geometry is used as a starting point to show how the
geophysical requirements should influence the choice
of parameters of that geometry. For instance, in a
complex geology it is more important to use small
sampling intervals than in a geology which is basically
flat. However, there are also situations in which the
complexity of the geology requires a local adaptation of
the chosen geometry or even a different choice of
geometry.

In some situations, the shallow subsurface may vary
rapidly locally. In general, this would require a dense
acquisition-line spacing such that these variations can
be mapped. In case the location of the anomaly (such as
a shallow top of a salt dome) is known from earlier
surveys, it may be sufficient to opt for a locally higher
density of acquisition lines.

It may also be necessary to adopt an entirely
different geometry. The main example of this situation
is a subsurface with reservoirs being truncated (and
sealed) by the flanks of more or less circular salt
domes. It has been demonstrated that in that case a
concentric circle shoot leads to better imaging of all
flanks than a parallel geometry (Reilly, 1995). There
are two reasons for this difference: (a) in the circular
geometry the raypaths stay outside the salt, whereas in
the parallel geometry there are many raypaths with one
leg through the salt, and (b) the existence of so-called

prism waves, consisting of raypaths that are reflected
twice, once against the salt flank and once against the
clastic sediments, before returning to the surface. These
waves can have large energy and travel in a vertical
plane more or less perpendicular to the salt flank. The
prism waves are difficult to process properly, but are
mostly avoided in the circular geometry.

In orthogonal geometry all shot-receiver azimuths
are present, so that each CMP also receives
contributions from raypaths striking the salt flank. On
the other hand there are also shot/receiver combinations
that are unfavorable for imaging. Rather than
suppressing such traces in processing, it may also be
tried to avoid acquiring them. To some extent this may
be achieved by what may be called "spider-web
geometry” (see Figure 4-2), in which the shots are
located along circular lines around the salt dome, and
receivers along radial lines (Holland, 2000). The same
geometry might be acquired by interchanging locations
of shots and receivers; this geometry is not covered in
Holland's patent. Constance et al. (1999) describe a real
implementation of this geometry, where it is also
combined with acquiring 3-D, 3-C VSP data in two
well-bores. Bloor et al. (1999) illustrate the benefit of a
clever migration-amplitude equalization technique
using the surface data described in Constance et al.
(1999).

Fig. 4-2. Conceptual spider-web geometry for salt-
dome delineation.

4.4 Design criteria and parameter
selection

This section reviews the criteria, which have to be
satisfied in 3-D survey design and it discusses the
consequences of each criterion on the selection of
parameters for the nominal geometry. The criteria to be
discussed, and the related parameters are listed below:

Though these criteria are discussed separately, they
are of course also interrelated. Data with a good deal of
spatial continuity will in general also allow good noise
suppression, and the fold resulting from the third and
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Table 4-1 Relation design criteria and parameters of geometry

shallowest horizon to be mapped
deepest horizon to be mapped
noise suppression

Requirement Parameter
spatial continuity symmetric sampling
resolution shot and receiver station intervals,

maximum frequency

line interval

maximum offset, spread lengths
fold and offset distribution

fourth requirement, is often large enough for adequate
noise suppression.

Table 4-1 suggests that the shallowest horizon to be
mapped always determines the line spacing. However,
there are exceptions to this general rule, and therefore it
is prudent to establish the required line interval,
maximum offset, station interval and maximum
frequency for a number of different horizons or time
levels. This will lead to a number of different values for
each of those parameters, from which the designer of
the 3-D survey will have to make a judicious choice. .

4.4.1 Spatial continuity

Resolution and spatial continuity are important
objectives to be met in 3-D geometry design.
Resolution is directly dependent on the shot and
receiver station intervals, but indirectly also on spatial
continuity. Artifacts reducing resolution in the final
data may be caused by spatial discontinuities in the
acquisition geometry. Therefore, 3-D geometry design
should aim to minimize spatial discontinuities.

A problem with orthogonal geometry is that the
basic subset of this geometry, the cross-spread, is of
limited extent, due to the maximum useful offset at any
level. If the data is well-sampled, each cross-spread is
spatially continuous, i.e., each point of the underlying
continuous wavefield can be reconstructed. However,
each cross-spread boundary represents a spatial
discontinuity in the 3-D data set. Therefore, it is
important to maximize the (useful) extent of each
individual cross-spread in order to minimize the overall
spatial discontinuity.

Maximizing the extent of a data set that is limited
by the maximum offset, means that the useful offset has
to be maximized in all directions. Basically, this would
lead to circular cross-spreads, but for creating regular
fold and OVT gathers it is essential to have square
cross-spreads.

Maximizing the spatial extent of each cross-spread
optimizes the quality of cross-spread oriented prestack
processing, such as first-break picking, dual-domain
filtering, and statics determination. Improved quality
also means improved spatial continuity of the final
product.

Because symmetric sampling is tantamount to
proper sampling of sources and receivers and to
maximizing the useful extent of the basic subsets
(cross-spreads), spatial continuity is best served by
choosing symmetric sampling as a starting point in 3-D
geometry design.

442 Resolution
4.4.2.1  Resolution requirements and maximum
frequency

The maximum frequency that can be recorded and
processed determines to a large extent the achievable
resolution. Often, this maximum frequency is taken for
granted, and no efforts are spent on identifying the
resolution requirements. However, the frequency
content of the source wavelet can often be influenced
(source depth, size of air guns, range of sweep
frequencies of vibrators, small or large charges).
Therefore, it may be tried to establish resolution
requirements such as: what is the minimum layer
thickness to be interpreted, or what should be the lateral
accuracy of fault positions, and to relate those to the
maximum frequency which is needed to achieve that
resolution. If the maximum required frequency appears
not to be achievable, then the resolution requirements
will have to be revised, or the survey will have to be
cancelled.

The required maximum frequency depends on the
maximum wavenumber that can be achieved. A

practical formula to establish the maximum
wavenumber is given by
Keg.max =<, 4.1)

Rll
where R is the user-specified minimum resolvable
distance, o indicates direction (x, y or z), ¢ is some
constant, and kg, is the required maximum
wavenumber in direction a. The justification to use this
very simple formula is based on the work published in
Kallweit and Wood (1982) and is further discussed in
Vermeer (1999a) and in Chapter 8.

Resolution is about the resolvability of two events
that lie closely together. Figure 4-3 illustrates two
events which are just resolved according to the
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Fig. 4-3. Rayleigh criterion, c = 0.715

Rayleigh criterion, for which ¢ = 0.715 in equation
(4.1). In this situation the first negative lobe of one
(sinc) wavelet coincides with the peak of the other
wavelet. Figure 4-4 illustrates vertical resolvability
using a pinchout, but similar reasoning would apply to
horizontal resolution. At the end of this section, the
choice of a value for c is discussed further.

Next, the maximum wavenumber must be derived.
Other parameters playing a role are the maximum dip
angle used in migration, and the type of geometry.
(Note that the maximum dip angle used in migration
should not be confused with the maximum dip angle
assumed to occur in the subsurface.) The type of
geometry determines the offset and azimuth mix, which
influence resolution. These different parameters can be
taken into account in two ways:

1. Determine maximum wavenumber and
corresponding required maximum frequency for zero-
offset data, followed by a compensation for the loss of
resolution caused by NMO stretch as dependent on the
mix of offsets.

2. Determine maximum wavenumber and
corresponding required maximum frequency for the
various pseudo-minimal data sets of an initial guess of
the geometry. Then select the maximum frequency,
which is the largest of all frequencies found in this way,
or select a reasonable average of all maximum
frequencies.

Whatever method is chosen, it is important to
compensate for the resolution loss due to the NMO
stretch effect. In the following I will discuss the
derivation of maximum frequency for the situation of a
COV gather, followed by a generalization to cross-

..............

Fig. 4-4. Pinch out model, the
thick curve indicates the position
where the events are just resolved

spreads. A more elaborate discussion of resolution
aspects can be found in Chapter 8.

The maximum wavenumber can be derived by
raytracing through a representative velocity model, with

k=k +k, 4.2)

where k is the sum of shot and receiver wavenumber
vectors. In any subsurface point P, the direction of k,
and k, can be found from the direction in P of the
raypath from shot, receiver to P, and the magnitude (K|
of each wavenumber from k| = f/ v, v being the
velocity in P. To find the maximum value of k in any
direction o the corresponding shot/receiver pair has to
be found. For the x-direction, £, is (usually) maximum
for the farthest shot/receiver pair that still contributes to
the migration result in the output point P. Similarly, in
the y-direction. The largest component of k in the z-
direction will usually be found for a shot/receiver pair,
which is located directly above P on the surface.

This description of finding kqms leads to simple
formulas. For shot/receiver pairs in a COV gather
oriented in the x-direction (see Figure 4-5), the
formulas are

kymax = (2f e sin@cosi)/ v,
Kk, ax = (2 Sin@cosi)/v,
k. ax =2 [ COSD/ v

43)

In these equations, @ is the maximum dip angle
being illuminated by the shot/receiver pair, and i is the
reflection angle for the situation which produces the
maximum value of the k-component. This means that 8

]
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Fig. 4-5. Situation for maximum wavenumber in x (a), y (b) and z (c). Note differences in definitions of 8 and
i. In x the shot/receiver pair which is farthest from P determines maximum wavenumber, in z it is the
shot/receiver pair closest to P, whereas in y the maximum wavenumber is determined by the shot/receiver

pair with the largest y,,, and the smallest x,,.

and / do not have the same value in the three equations.
Only for zero-offset sections i= 0 in all three
directions. Note that equation (4.3) applies to any
velocity model for which the raypaths are perpendicular
to the wavefronts; it is not just valid for constant
velocity as Figure 4-5 might suggest.

In a constant velocity medium the NMO stretch
factor S = t#/ty with ¢t reflection time and #, normal-
incidence time. From Figure 4-5b and 4-5¢ #t, =
RP/MP = 1/cos i, hence cos i in equation (4.3)
represents the NMO stretch effect.

Combining ecquations (4.1) and (4.3) gives the
required maximum frequency as

c v 1
=—.—.——— (a=xory)and

o =3 R sinboosi” ¢ » @.4)
c v 1

S " 2'R.cosi

It follows from equation (4.4) that horizontal
resolution depends on a processing parameter: 6, the
maximum reflection angle (angle of incidence)
included in the migration process. Vertical resolution
only depends on the acquisition parameters, and is
always better than the horizontal resolution. (Note that
the resolution discussed here is potential resolution; the
achievable horizontal and vertical resolution depend on
many more processing parameters; see Chapter 8.)

In a COV gather, the determination of i is fairly
straightforward, because offset and azimuth of all
shot/receiver pairs are constant. If OVT gathers are
used as pseudo-minimal data sets of the orthogonal
geometry, offset and azimuth do not vary much. In that
case the average offset and azimuth of the pMDS may
be used to determine #, and equation (4.4) also applies
reasonably well to these OVT gathers.

A choice of cos i = 0.9 would approximately
correspond to the maximum-offset-equals-depth
criterion, which is often used as a rule of thumb in
determining the maximum offset. A migration aperture
of 8= 30° is often a good compromise, it will capture

most of the diffracted energy. However, steeper dips
require a larger migration aperture.

The quantity v in equations (4.3) and (4.4) is the
local interval velocity. To reach the same vertical
resolution at deeper levels with higher interval
velocities, higher frequencies are required.

In exceptional cases, much better resolution than
suggested by ¢ = 0.715 in equation (4.1) may be
possible. This might be so when extra knowledge about
the subsurface may be assumed, e.g., the assumption
that all parameters, except thickness, around a horizon
of interest hardly vary, would allow to attribute any
change in horizon attributes to thickness variations.
Another such situation may occur with the detection of
subtle faults in an otherwise smooth reflector. A factor
of ¢ = 0.25 (one quarter wavelength resolution) might
be used in such cases.

4.4.2.2  Resolution
sampling

The resolution formulas in equation (4.4) assume
proper sampling of the minimal data sets of the chosen
acquisition geometry. Sampling can be regarded as a
means of representing the integrands in the migration
formulas, therefore, the migration result depends on the
sampling quality and the theoretically best possible
resolution can only be obtained with proper sampling
of the data to be migrated. A more detailed discussion
of the relation between sampling and migration is given
in Section 8.3.7. An important conclusion is that proper
or alias-free sampling of the input data leads to a well-
behaved migration operator response.

On land, alias-free sampling of the total wavefield
of a minimal data set is not affordable. As a (first)
compromise, alias-free sampling of the desired
wavefield rather than the fota/ wavefield may be chosen
as a starting point for a decision on the sampling
interval. This requires that the station spacings As and
Ar should be equal to the basic signal sampling interval
(cf. Section 1.3)

requirements and  spatial
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14

As=Ar=-—""0

2o 4.5)
in which ¥, ;, is minimum apparent velocity of the
P-wave data in the common-shot gather, and f,, is
maximum frequency. The undesired part of the
wavefield, such as ground roll and perhaps converted
and shear waves, will be aliased and may have to be
tackled by field arrays (see Section 4.4.5.5).

For a modest aim of recording and imaging up to 40
Hz, and with ¥V, ;, = 2000 m/s, the shot and receiver
station intervals should not be larger than 25 m.

The common-shot gathers used to pick V, . are
dominated by the NMO effect, whereas the NMO-
correction tends to de-alias the steep events. Hence,
rather than looking for the minimum apparent velocity
in the field data, the minimum apparent velocity is
more often determined in the zero-offset domain or
stack domain. In these domains the minimum apparent
velocity V,mn 1S determined by the diffractions.
Equation (4.5) is then modified into

\ A Vm,min
x = y = 2f ax > (46)
m;

where Am, and Am, are the midpoint intervals in x and
»-

For the determination of the sampling intervals
from equation (4.6), it is simplest to measure the
apparent velocity of diffractions on existing unmigrated
stacked data. An alternative is to use a representative
velocity distribution as a starting point for the analysis.

Equation (4.6) is quite a stringent requirement,
because it looks for the minimum value of the apparent
velocity throughout. Usually, the flanks of diffractions
will be steepest at shallow levels. As a compromise, it
may be decided to accept some aliasing at the shallow
levels and relax the requirement for alias-free sampling
to the levels of interest. A further compromise is to
accept some aliasing of the steepest parts of the
diffractions and aim only for alias-free sampling of the
diffractions included in the migration aperture.

In case the overburden may be approximated by
horizontal layering, Snell's law may be invoked, and V,,
for various levels of interest can be estimated from the
interval velocity V;, and the departure angle @ (see
Figure 4-6), leading to

Am, =Am, = L 4.7
4 £ nax SINE

The angle 8 in equation (4.7) should be interpreted

as the largest of maximum dip angle and the migration

aperture. As a rule of thumb, a migration aperture of

30° is adequate, because it would use about 95% of

total aiffraction energy. Hence, in areas with low
geological dip, diffractions dictate the sampling
interval, whereas in areas with dips larger than 30° the
dip angle determines sampling interval.

If in an area with low geological dip the dip of the
steepest reflection would be used to determine the
sampling intervals, rather than the migration aperture, a
relatively large sampling interval would result from
equation (4.7). This might lead to a lot of migration
noise depending on the steepness of the migration
operator. To prevent generating this migration noise,
the steepness of the migration operator should be taken
into account and used in equation (4.7). In areas of
complex geology, it may be necessary to carry out
raytracing to find the apparent velocity at various
levels.

4.4.2.3  Statics and spatial sampling

Sand dunes in desert areas and mountainous terrain
may cause rapid variations in statics. Statics may also
vary rapidly in other areas where changes in the near
surface occur across small distances. In combination
with arrays the intra-array statics may cause loss of
high frequencies of the desired wavefield. In such cases
the magnitude of the statics may be another criterion to
use in the selection of the station spacings. A smaller
station spacing than otherwise necessary may have to
be used, or it may have to be considered not to use field
arrays, and to increase fold for noise suppression.

4.4.24  Other
sampling
Next to migration, (f; k)-filtering is another multi-
trace process that may suffer from aliasing in the input
data. The finer the sampling, the better signal and noise
will be separated in the (f, k)-domain, and the more
successful the filter will be. Moreover, if the sampling
interval is small enough, an (f; k)-filter will be better in
removing noise than field arrays. Therefore, in areas
with much low-velocity noise, a small sampling interval

processing  requirements  and

_sin#; sin@ Vint
v v,

I int

Fig. 4-6. Determination of apparent velocity of event
defined by "appropriately” selected departure angle
@, in case of horizontal layering above event.
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may be essential to accommodate the requirements of
(f; k)-filtering.

4.4.2.5  Discussion on spatial sampling

It turns out that different areas with a similar
velocity distribution may have totally different quality.
Often this is related to the complexity of the subsurface.
"Fit-for-purpose” sampling intervals do not only
depend on the velocity distribution and the
corresponding apparent velocities, but also on the
energy distribution of the wavenumber spectra. In some
areas, heavy faulting may lead to many diffractions
with much energy for high wavenumbers. In those areas
it is much more important to stick to the rules of alias-
free sampling than in more benign geological areas.
What may seem overkill in one area, may be just right
for another.

It should be realized, that the more the requirements
are relaxed, the more one relies on fold to suppress the
migration noise produced by coarse sampling. There
are areas which used to show “no data™ zones, that
turned into good data zones after reshooting the data
with smaller sampling intervals and higher frequencies.

Very powerful interpolation techniques (e.g., Huard
and Spitz, 1998) have been developed to compensate
for undersampling. These techniques cannot really
interpolate "beyond Nyquist", unless additional
information is provided. Whether such techniques
should be relied upon to relax spatial sampling
requirements is open to debate.

Up till now, examples of overkill in sampling are
hard to come by. The objective of getting things “just
right”, is often not met due to pressure for keeping the
costs down.
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4.4.3 Shallowest horizon to be mapped

The smallest offsets in an orthogonal geometry
occur at midpoint positions close to the intersections
between shot and receiver lines. In the middle of the
rectangular area between adjacent shot and receiver
lines the smallest offset is about equal to the length of
the diagonal of the rectangle. This is the largest
minimum offset (LMOS) of the geometry (see Figures
4-7 and 2-23). The larger the distance between the
acquisition lines the larger LMOS. As small offsets are
needed to illuminate the shallow subsurface, the
distance between the acquisition lines determines the
shallowest mappable level. Therefore, the seismic
interpreter has to identify the shallowest horizon that
needs to be fully mappable for an adequate geologic
picture of the subsurface.

Experiments have shown (see Section 7.4) that
prestack migration of four-fold data acquired in Nigeria
may already give a tremendous improvement in signal-
to-noise ratio, to the extent that it should be possible to
map such data. Now this observation would certainly
not apply in all imaginable cases, though the quality of
the Nigeria data is comparable with that in other areas
in the world. If not sure, this is typically something that
could be tested with not too much effort, for instance
by an exercise such as carried out by Mobil (Lee et al.,
1994). (They acquired a long shot line across a number
of receiver lines perpendicular to the shot line.)

In my opinion the criterion of the shallowest-level-
to-be-mapped is more objective than “the shallowest
level at which complete single-fold coverage should be
present”. Anyway, the one follows from the other, or
vice versa. In some regions in the world the shallow
horizons are steeply dipping. Then the shallow-horizon-

Hltersection shot and receiver line

A

at least single-fold data
below this level

l traveltime

(b)

Fig. 4-7. Largest minimum offset is about equal to length of diagonal in rectangle between adjacent pairs of
shot and receiver lines (a), and determines level below which at least complete single-fold data is present (b).
The cross-section in (b) is taken along the diagonal of a unit cell (see Section 2.5.2 for definition of unit cell).
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Table 4-2. Procedure to establish line interval

1. Establish shallowest horizon to be mapped. Example
Assume M-fold coverage required. M=4
2. Determine shallowest time £, of that horizon. ty, = 1000 ms
3. Find maximum offset xg, for #,. X =2000 m
4a. Line interval g . _*sh M<9) S=707Tm
v2M
4b. Line interval g~ *sh. ’l (M>4)
2 VM
5. Choose S as nearest multiple of As S=700m

criterion cannot be used, and the single-fold criterion
has to be used. It is a crucially important design
criterion. If the level is chosen too shallow, the distance
between acquisition lines might be chosen too small,
making the cost of the survey unnecessarily high.

To translate the design criterion of shallowest-level-
to-be-mapped into a choice of shot and receiver line
intervals, it is necessary to have a representative mute
Junction of the survey area. The mute function
determines the maximum offset that contributes to the
stacked or migrated section at each traveltime. The
mute function should be gleaned from earlier data
acquired in the area. If not known, or if it is not
completely known (due to small maximum offset in
previous surveys), it may be computed from a
representative  velocity function, assuming some
acceptable maximum NMO stretch. The mute function
is also important for the next design criterion to be
discussed, the deepest-horizon-to-be-mapped.

The procedure to establish the acquisition line

Xmin  Xsh x Xdp

time

(a)

interval is described in Table 4-2 and illustrated in
Figure 4-8. This procedure assumes the same distance S
between shot lines as between receiver lines. In case the
shallowest level with complete single-fold coverage 7,
is used as a criterion, LMOS has to be used. Then
LMOS has to be chosen equal to the maximum offset at
toin, and S = LMOS AN2. The formula used under 4a in
Table 4-2 ensures that the fold at shallow levels equals
at least M. The formula under 4b is based on average
fold M at the specified level. This formula may be
generalized to any level with mute offset x, provided
the maximum in-line and cross-line offsets are larger
than x.

The general procedure described in this section may
lead to very small line intervals in case of a need to
image shallow salt domes. As a cost-effective
alternative it may be considered to use non-seismic
techniques for imaging the shallow subsurface. Den
Boer et al (2000) describe the use of magnetotellurics
for resistivity imaging of shallow salt and show very

next shot line

shot line

next receiver line

receiver line

(b)

Fig. 4-8. The relation between coverage of shallow objective and acquisition line spacing via mute function.
(a) mute function, (b) how to achieve at least four-fold coverage at ¢.,.
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Table 4-3. Procedure to establish spread lengths

3. Find maximum offset x,, for #,,

1. Establish deepest horizon to be mapped

2. Determine deepest time 7, of that horizon

4a. Choose L/2 as nearest multiple of S

4b. Choose X inmax = Xdp and find corresponding L

Example (S = 700 m)
Ly = 2200 ms
Xgp=3300m

L =7000m

L =5600m

convincing results. The application of this technique
allowed the generation of a better depth model leading
to much improved prestack depth migration results.

4.4.4 Deepest horizon to be mapped

The deepest horizon to be mapped provides an
upper limit to the maximum offset to be used in the
survey. The required maximum offset leads to a choice
of receiver spread length Ly and shot spread length Lg
(shot spread length is length of shot line being recorded
in a single receiver line). For the time being, I will
assume symmetric sampling with spread length L = L,
= Ls. The mute function provides the maximum offset
x4 for the deepest horizon corresponding to the largest
time #,4, of the horizon (see Figure 4-8). Depending on
the requirements of the 3-D survey, there are two
different ways of establishing L (see Table 4-3).

The first way is used if azimuth-dependent
amplitude analysis is to be carried out for the target
horizon. Then, for that horizon, the full range of
azimuths should be available for the full range of
offsets. This means that the absolute offset should be
equal to or larger than x,,. This requirement leads to L
= Lg = 2 xg4p. If this procedure is followed, there will be
a large collection of traces not contributing to the
deepest horizon of interest. These traces are situated in
the corners of the cross-spreads, outside the circle with
radius xg, /2.

An alternative way of establishing L is to require
that there should at least be one trace with offset x > x,,
throughout the full-fold area of the survey. This means
there should be an OVT gather with all absolute offsets
larger than x,. This requirement is fulfilled if the
minimum maximum offset Xpinmax = X4, (cf. discussion
in Section 2.5.6 of Figure 2-23). Figure 2-23 can be
used to find an expression for Xy, max

Xnninmax = S L5128/ Lg)? + 3(1-2R/ L), (4.8)

Equation (4.8) can be used to verify whether a
particular choice of Ly and Lg satisfies the requirement
for Xpinmax- If this second procedure is followed, not
many traces will be muted at the deepest level of
interest.

The first procedure is optimal as far as velocity
determination is concerned. In particular, if DMO is
needed as part of the velocity determination, it will be
helpful if the rectangular OVT gathers located around
the acquisition lines (see Figure 2-22 and Section 2.6.8)
contain all offsets for the target level. On the other
hand, from a resolution point of view, it is best to
choose the maximum offset as small as possible,
because the theoretically best possible resolution is
reached for zero-offset and reduces with increasing
offset (Chapter 8).

There are in general a few other compelling reasons
to use long offsets next to velocity-determination
requirements:

1. Without some range of offsets it would not be
possible to reach sufficient fold for noise reduction,

2. Long offsets may be needed to create sufficient
differential moveout between primaries and multiples
for multiple suppression,

3. AvO analysis needs long offsets.

As a consequence, the maximum offset has to be
large enough to satisfy all of the applicable
requirements. There is no point in choosing the
maximum offset any larger than the maximum useful
offset determined from the mute function for the
deepest event of interest.

445 Noise suppression

4451 Fold as
parameter

Often the designer of a 3-D survey will have a
reasonable idea of the required fold to achieve an
adequate signal-to-noise ratio. In that case he may want
to use fold as an independent (input) parameter to the
design process. His knowledge might even extend
farther, allowing a specification of desired fold at all
levels of interest.

On the other hand, the survey parameters following
from the considerations in Sections 4.4.3 and 4.4.4 will
also lead to some fold-of-coverage, because line
spacing and maximum offset fully determine the fold of
the survey (see Sections 2.5.2 and 4.4.6). Viewed in
this way, fold is a dependent parameter. Strictly

dependent or independent
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speaking, fold is always an independent parameter,
because when determining line spacing in Section 4.4.3
we had to specify fold for the shallowest level of
interest.

It follows from these considerations that another
way of arriving at survey parameters would be to
specify required fold and maximum offset for each
level of interest. This would lead to a line spacing for
each level of interest. Selecting the smallest line
spacing and the maximum of all maximum offsets
would lead to a geometry which satisfies all
requirements, but which might lead to a very large full
fold of the survey.

4452

Unfortunately, this important question does not
have the clear answer one would like to find in a book
on 3-D survey design. Some general remarks are
offered instead.

In principle, single-fold data should be adequate for
imaging, fold is only necessary to suppress recorded
noise. Therefore, 3-D survey design should avoid
spatial discontinuities and it should select station
intervals that are small enough not to generate
migration noise. If sampling is too coarse, fold is also
necessary to fight migration artifacts.

The simplest way to determine fold is to consider
fold as a dependent parameter (see previous section):
select line interval (or LMOS) and maximum offset, and
fold follows from these two (or four, in case of
different cross-line and in-line parameters) parameters.

The pragmatic approach is to base the choice of
fold on past experience. Use the success or failure of a
given fold in 3-D surveys acquired in similar, perhaps
nearby, terrain as a guideline. In case no 3-D surveys
are available in the area of interest, the fold used for 2-
D lines may be used as a guideline. Krey (1987)
provides as a rule of thumb that 3-D fold may be taken
as 2-D fold times frequency of interest/100 (provided
station spacings are the same in 3-D as in 2-D). The
more accurate formula (Krey, 1987) is based on a
computation of the relative suppression of random
noise by the two types of survey. In poststack
migration, signal is proportional to the number of traces
within the zone of influence (see Section 10.2) and
noise is proportional to the square root of the number
of traces in the migration aperture. Furthermore, the
signal-to-noise ratio improvement by stacking is
proportional to the square root of fold. For the same
signal-to-noise ratio for 3-D as for 2-D, lower 3-D fold
suffices because of the relative difference in number of
traces contributing to 3-D migration as compared to 2-
D migration.

A weak point in Krey's formula seems to be that it is
derived for random noise, whereas usually the main

How to determine desired or required fold

noise problem is shot-generated noise. However, the
aliased part of that noise could be considered random,
whereas the non-aliased part is suppressed much better
than random noise. Therefore, taking Krey's rule of
thumb may still form a reasonable starting point for a
decision on what fold to use.

This decision can further be modified by some of
the following considerations:

1. Any reduction in the chosen station interval
improves the ability to remove noise in
processing. This means that the required fold
depends implicitly on station interval: better
sampling allows lower fold. Ideally, one would
like to keep trace density the same for a
reduction in spatial sampling interval, i.e., fold
proportional to bin area. However, this might be
a bit too optimistic.

2. Migration is a very powerful way of reducing
noise. Noise can also be suppressed by other
pre- or poststack processing steps. In all cases
the success in removing noise will be increased
with more spatial continuity, i.e., a wide
geometry and smooth acquisition lines. Taking
these steps should also reduce the need for high
fold.

Another way of determining required fold is by
model-based noise analysis. The analysis can be carried
out using mode! studies with simulated noise or by
using 2-D data (Egan, 2000; Mathewson and Savage,
2000). Both approaches have advantages and
disadvantages, so it is best to use a combination of the
two. For a proper evaluation, it is necessary to simulate
the best possible processing sequence. For instance,
with wide geometries that are well-sampled it is
possible to remove more noise in prestack processing
than with narrow geometries in which the receiver
gathers are too short for filtering purposes.

Finally, the most thorough way of determining
required fold is to acquire high fold 3-D test data and to
carry out decimation tests. This is the most expensive
method, but it might well be justified in case large areas
have to be covered with 3-D seismic data.

4.4.5.3  Fold as an instrument to suppress multiples
Multiple elimination through stacking works best,
for a given fold, in a square geometry. This applies to
multiples with a small differential move out with
respect to primaries and in general also to multiples
with a large differential move out (see Section 3.4.3).
Increasing fold for better multiple suppression needs
only to be considered if the geometry is already square.
However, there is one exception to this rule: multiples
with large differential moveout are best suppressed by a
narrow-azimuth high-fold 3-D stack-array geometry
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(double zigzag, narrow orthogonal, or parallel
geometry, of which parallel geometry is best). A high-
fold narrow geometry tends to have a more regular
offset distribution, thus providing much better linear
noise than random noise suppression by stacking.
Therefore, in case of severe multiples with large
differential moveout, a high-fold narrow geometry may
have to be considered. Sections 4.3.1 and 4.3.2 deal
with this aspect of geometry choice in some more
detail, including the effect of prestack multiple
elimination.

4.4.5.4  The importance of regular fold

Sections 4.4.3 and 4.4.4 specified to select the line
interval S as a multiple of station spacing, and to select
maximum in-line (cross-line) offset X, as a multiple
of shot line (receiver line) interval S. As follows from
the formulas in Table 4-4 and Table 4-5, this choice
leads to integer values of in-line and cross-line fold.
This means that the nominal geometry leads to constant
full fold (apart from the edges of the survey area).

The data set can also be considered as a collection
of single-fold cross-spreads. Hence, if fold is constant,
this means that where the midpoint area of one cross-
spread stops, another cross-spread takes over. In other
words, the whole survey area can be covered with
single-fold adjacent cross-spreads. Such a collection of
minimal data sets is called a pseudo-minimal data set
(pMDS, Section 2.5). Constant fold in a regular
geometry (the same maximum cross-line offset for all
cross-spreads and the same maximum in-line offset for
all  cross-spreads, i.e.,, identical cross-spreads
throughout the survey area, except the edges) also
means that the survey area can be covered with a tiling
of single-fold offset-vector tiles. Each tile has the size
of a unit cell. Each of these tilings is again a pMDS
(see Section 2.5.4).

Fold-of-coverage, illumination fold and image fold
are closely tied (for a definition of these terms see
Section 2.5.2). Usually, image fold will not be very
different from fold-of-coverage (a notable exception is
illumination and imaging with PS-waves, see Chapter
6). However, at cross-spread edges image fold tends to
be irregular because there will be discontinuities in the
illumination. The steeper the dips the larger the
discontinuities tend to be. The pMDSs formed with
OVTs suffer less from discontinuities across the edges
of each tile than pMDSs formed from complete cross-
spreads (the discontinuities between the OVTs are
more abundant but smaller). All this means that regular
fold-of-coverage does not guarantee regular image fold,
but it certainly helps to minimize irregularities. More
about these considerations in Chapters 2 and 10.

Above the level of full fold (the position of the
largest offset in the mute function), the mute function

takes away the longer offsets. Probably the best way to
make fold-of-coverage a constant for each time level
would be to select a separate mute function for each
offset-vector tile sized “4-unit cell as defined in Figure
2-22 and discussed in Section 2.6.4. The mute should
be a single step function inside the tile.

The irregularities in image fold may lead to visible
acquisition footprints. Once it has been decided to use
orthogonal geometry, 3-D symmetric sampling will
minimize the acquisition footprint.

4.4.5.5  Shot and receiver arrays

The main purpose of shot and receiver arrays is to
suppress ground roll. Smith (1997) demonstrated that
aliased ground roll can be reduced considerably by the
use of linear shot and receiver arrays located along the
acquisition lines. Assuming that linear shot and receiver
arrays are used, the survey parameters following from
earlier considerations would normally be sufficient for
adequate noise suppression.

In areas where shot arrays would become unbearably
expensive, single shots combined with areal receiver
arrays may be considered instead. Also in case the
number of shots per shotpoint has to be small (e.g.,
because of length of vibrator trucks), this might be
compensated by using a larger number of geophones in
the cross-line direction of an areal geophone array. -

Only in areas with a severe noise problem it is
necessary to increase efforts for noise suppression. The
increased efforts can take the shape of areal (preferably
circular) receiver and/or shot arrays, increased fold,
i.e., smaller shot and receiver line intervals, or reduced
spatial sampling intervals. Which one of these options
stands the best chance of success may be established
with a careful noise test. Chapter 3 gives an extensive
discussion of shot and receiver arrays in 3-D data
acquisition.

There may be areas where the amount of groundroll
is hardly a problem (perhaps also because deep
shotholes are used). Then it may be considered not to
use geophone arrays, but bunched geophones instead.
Any aliased noise would have to be suppressed in
processing. An advantage of this approach would be
that the signal would not be affected by the geophone
arrays, in particular intra-array statics would not
degrade the signal. A corollary of all this is that if it
would turn out that data quality is adequate while using
only linear receiver arrays and no shot arrays, then it is
likely that using bunched geophones might have been
adequate as well.

446 Other survey parameters

Table 4-4 lists various formulas which apply to
orthogonal geometry. Note that number of channels and
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Table 4-4 Formulas for survey parameters (equal line spacings)

Parameter Formula Example

Station spacings As, Ar 25m

Maximum in-line and cross-line offset | X 3500 m

Line interval S 700 m

Bin size b=AsAr/4 b=125x 125 m’
Spread length L =2 Xpnax L=7000m
In-line fold M,=L/2§ M;=7000/1400=5
Cross-line fold M. =M, M. =5

Fold M=MM, M=25

Number of receiver lines Np=2 M, Nz=10

Number of channels per line Noi=2 Xax | Ar Ny =280

Total number of active channels Niot = Ny Ny Ny = 2800
Number of shots/km? Sens = 1000000/(As 5) S sens = 57.1/km®
Distance to build to full-fold D = (Xnax-S)/ 2 D=1400 m

Table 4-5 Formulas for survey parameters (unequal line spacings)

Parameter Formula Example

Station spacings As, Ar 25m

Maximum in-line offset Konax il 3600 m
Maximum cross-line offset Xinaxxi 2000 m

Shot line interval S 600 m

Receiver line interval R 500 m

Bin size b=AsAr/4 b=125x12.5m’
Receiver spread length Lg =2 Xpax inl Lz=7200m

Shot spread length L =2 Xoax i Ls=4000 m
In-line fold M;=Lg /28 M;=17200/1200= 6
Cross-line fold M,=Lgs/2R M,=4

Fold M=MM, M=24

Number of receiver lines Nr=2 M, Nz=8

Number of channels per line New =2 Xpax i | Ar Ny =288

Total number of active channels Niot = Ny Ng Ny, = 2304
Number of shots/km? Siens = 10%(As S) Sdens = 66.7/km’
Distance to build to full-fold Dipy = (Xnaxint - S)/ 2 D;y=1500 m
Distance to build to full-fold Dy = (Xmaxx1 - R)/ 2 Dy=750m
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Table 4-6 Equivalence conditions for orthogonal and areal geometry

Orthogonal geometry Areal geometry

Shot line interval = Grid interval receivers in x

I

Receiver line interval Grid interval receivers in y

I

Shot station spacing Grid interval shots in y

Receiver station spacing Grid interval shots in x

Maximum in-line offset Maximum in-line offset

I

Maximum cross-line offset Maximum cross-line offset

number of shots depend on bin size, whereas fold is
independent of bin size. The formula for the distance
required to build to full fold is derived in Section 4.5
(Figure 4-11).

The formulas in Table 4-4 demonstrate the
importance of a correct choice of S, the shot line
interval, and of X,,. If for some reason a smaller § is
chosen or needs to be chosen, for instance S = 500 m,
then fold would soar to 49, and number of channels to
3920. Similarly, if the maximum required offset would
be 4900 m instead of 3500 m, fold would also soar to
49, but number of channels would skyrocket to 5488.
Fortunately, there are also ways of achieving the same
geometry using fewer channels (see Section 4.6.4).

On the other hand, it is interesting to realize that in
cases where shallowest level of interest and deepest
level of interest coincide, a four-fold geometry might
be adequate for mapping the objective level.

Table 4-5 lists the formulas for survey design with
unequal line spacings.

447 The selection of acquisition
parameters for areal geometry

The design of the parameters of an areal geometry
follows directly from the equivalent orthogonal
geometry (Figure 4-9). Equivalence conditions are
listed in Table 4-6.

If these conditions are met, the offset distribution of

3

......... shot line

i' s shot positions
@ receiver lines

* receiver stations

3 %

s

fixed point
receiver

Fig. 4-10. Equivalent offsets between orthogonal
and areal geometry. The cross-spread shot/receiver
pair (S, R.) in M has the same offset as the 3-D
receiver shot/receiver pair (S, R) in M.

the two geometries is identical (see Figure 4-10). The
only difference is the azimuth distribution. With
symmetric sampling the shot and receiver grids will be
square and the maximum offsets will be the same in in-
line and cross-line direction. However, a more efficient
sampling scheme for areal geometry is to use hexagonal
sampling for both receiver stations and shot positions
as described in Section 2.4.1.

* shot positions

* receiver positions

(b)

Fig. 4-9. Equivalent geometries. (a) orthogonal geometry, (b) areal geometry. See text for conditions of

equivalence.
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4.5 The survey grid and the survey
area

The conventional approach to determine the
required extent of a survey is to establish the area that
has to be mapped, add the migration radius to this area
in all directions (the migration apron), and then require
that full-fold should be acquired in this extended area.
With a wide geometry, run-in to full fold is larger (at
least in the cross-line direction) than in a narrow
geometry, hence the requirement of full-fold for
migration adds a large area of acquired data to the area
to be mapped.

It is helpful to look at the unmit cell of a geometry
with its contributing shot and receiver stations to get a
better insight in the fold build-up. Figure 4-11 shows
the unit cell for a 16-fold geometry with all its
contributing shots and receivers. In order to acquire full
fold, shots and receivers have to be located at most 1.5
line intervals from the edge of the unit cell. For an in-
line fold M; (M; -1)/2 shot line intervals would be
needed.

This observation leads to the recommendation to
use a closed grid of acquisition lines. In this closed grid
the midpoints cover the same area as the acquisition
lines, whereas the smallest offsets occur along the
perimeter of the survey, i.e., the closed grid maximizes
the useful midpoint area.

This recommendation to use a closed grid leads to
incomplete cross-spreads around the edges of the
survey. However, the smallest cross-spread (in the
corners) is still equal to one quadrant, so that
reasonable cross-spread oriented processing may be
carried out.

As discussed in Section 7.4, prestack migration may
lead to good signal-to-noise ratio already for four-fold
data. If this is the case, and prestack migration is part of
the processing plan, the requirement that the survey
area should be large enough to allow full-fold migration
into the area to be mapped, can be relaxed. Four-fold is
present everywhere inside the area enclosed by the
outer acquisition lines, except in the corners. Because
all short offsets are present, this area is the required
area for migration.

An alternative is to extend the acquisition lines up
to one line interval outside the closed grid. Then four-
fold is present anywhere inside the area enclosed by the
outer acquisition lines.

The four-fold requirement for adequate imaging is
an extreme case. On the other end of the scale is that
full-fold is purely defined by requirements of signal-to-
noise ratio. In other words, all data are required for an
acceptable image. In that case the fold-taper zone,
given by (M) -1)/2 shot line (receiver line) intervals,
should be included to compute the survey area. In
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intermediate cases a smaller part of the fold-taper zone
needs to be included.

Note that the migration radius is the sum of
maximum migration distance and the maximum zone of
influence (see Section 10.2.2).

4.6 Practical considerations and
deviations from symmetric
sampling

There may be many practical reasons to use unequal
shot and receiver line intervals, or to use unequal
maximum in-line and cross-line offsets. Generally
speaking, there are no really valid reasons for selecting
different shot and receiver station intervals. Exceptions
are PS-acquisition and oversampling of one of the two
intervals (as in receiver sampling in marine streamer
surveys). The nominal geometry as decided upon may
be implemented in the field in different ways,
depending on logistical considerations. Topography
and obstacles may require deviations from nominal
geometries.

4.6.1 Logistics and terminology

It is not the intention of this book to serve as a
manual for dealing with practical aspects of the
acquisition of 3-D surveys. The writing of such a
manual had better be left to the people with real
experience. Yet, some appreciation of practical aspects
is essential for the designer of a 3-D survey.

The procedures followed in the field can only be
described while using some jargon. Unfortunately,
there is no universally established terminology.
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Therefore, the reader should be aware that my jargon
may deviate from somebody else's.

The starting point in a description of the field
procedures is the template, which was introduced in
Section 2.3.3. The template consists of the collection of
active receivers listening to a series of shots. Usually,
this series of shots (also called salvo) is located on a
single shot line, but not necessarily so. The receivers
are located along a number of receiver lines. When all
shots of the template have been fired, the template is
rolled (moved) to its next position. Usually, the
template is first rolled in the in-line direction. The in-
line roll is equal to the shot-line interval S. In-line
rolling continues until the width of the survey (or width
of zipper, see below) has been covered. The collection
of all templates rolled in-line is called the swath.
Sufficient stations should be available to lay out the
whole swath in one go. The required number of
channels in the recording instrument equals the number
of receivers in the template (times the number of
components per receiver in case of multi-component
recording).

After the whole swath has been acquired, a cross-
line roll is performed. The number of receiver lines
picked up in a cross-line roll may be one (single-line
roll), many (multi-line roll) or all (full-swath roll). Pros
and cons of the various cross-line rolls are discussed in
Sections 4.6.4 and 4.6.5.

There may not be enough stations for laying out a
swath across the whole width of the survey area. Then
the survey area is split into a number of zippers, each
zipper consisting of a strip narrow enough to lay out a
full swath. At the boundary between two zippers care
must be taken that the nominal geometry can be
reconstructed from the overlapping parts of the two
zippers. This may be implemented in different ways,
either by overlapping the receiver lines or by shooting
outside the swaths or some combination of these two.

The above description of template and in-line roll
does not match actual practice of acquiring zigzag and
slanted geometry. In these geometries it is attempted to
fire each shot center-spread. In the zigzag geometry this
means that the active stations in the swath move one
position for each next shot, and in the slanted geometry
the active stations move one position each time
consecutive shots have moved one station interval in
the in-line direction.

4.6.2 Harmonizing all requirements

As mentioned in Section 4.4.5.1, the parameters
fold, maximum offset, and line interval are interrelated
(see also Tables 4-4 and 4-5). The ideal choice for
maximum offset and line interval may lead to too large
or too low a fold. Virtually always, some compromise

has to be found between the "ideal" choices for each
individual parameter.

This selection of the best compromise for all
acquisition parameters could be viewed as an
optimization problem (Liner et al., 1999). Liner et al.
(1999) propose to use target values for some main
parameters, and to find an acquisition geometry that
minimizes a cost function based on the weighted
deviations from those target values. Their formulation
of the optimization problem might be modified
somewhat to ensure even better solutions. In the first
place, it would be advisable to include also a measure
for the ratio between shot line interval and receiver line
interval, the optimal ratio being 1.0. A further
refinement might be the optimization for different
target levels, each level having its own requirements.
Yet, the idea is worthwhile pursuing also for symmetric
sampling solutions. A proper choice of constraints,
including a factor weighing the cost of each survey,
should lead to an optimal parameter choice. This will
need further work.

4.6.3 Deviations from symmetric sampling

The use of a wide-azimuth geometry requires more
receiver lines than a narrow-azimuth geometry. This
requires a rethink of the optimal procedures in the field.
A template is square in a geometry with maximum in-
line offset equals maximum cross-line offset. This
means that rolling in-line or rolling cross-line involves
the same number of receiver stations per roll, i.e., as
many as present in a single receiver spread. Not only
the number of active stations is large, but also the
number of required additional staions for rolling.

Acquisition on land is often shot-constrained, i.e.,
the shot density determines progress and cost of the
survey. In that case a somewhat larger shot line interval
may be compensated by a smaller receiver line interval.
For instance, in the example of Section 4.4.6 (Table 4-
4) use 800 m instead of 700 m for the shot line interval,
and use 600 m instead of 700 m for the receiver line
interval. This makes LMOS slightly larger (1000 m
instead of 990 m). Choosing 3200 m as maximum in-
line offset giving in-line fold 4, and 3600 m as
maximum cross-line offset giving cross-line fold 6,
would lead to a total fold of 24, close to the original 25,
and would require 12 receiver lines.

The difference between shot line interval and
receiver line interval should not become too large, as
this would lead to irregular fold at shallow levels. For
instance, if the shot line interval would be twice as
large as the receiver line interval, 3-fold data would
already be acquired around the line intersections, when
single-fold is just reached at the midpoint where LMOS
(see Figure 4-7a) is reached. For larger factors between
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the two line intervals, the variation in fold becomes
larger, whereas in a geometry with equal shot and
receiver line intervals, the fold variation would be
minimal.

In case shots are extremely expensive, it may be
considered to use areal geophone arrays instead of a
combination of linear shot and linear receiver arrays.

4.6.4 Different ways of
nominal geometry

Because of the relatively larger receiver effort in a
wide geometry than in a narrow geometry, wide land
geometries may be easily receiver-constrained. This
was the case for survey A in Nigeria, where all
equipment had to be picked up at the end of each day.
To reduce planting effort in such a situation, the
number of receiver lines can be halved if shots are fired
from both sides of the spread (see Figure 4-12a). This
means that each shot location has to be visited twice. A
further reduction of planting effort can be achieved by
halving the spread length, and shooting from all four
commers of the remaining lay-out. Then all shot
locations have to be visited four times, eventually. This
technique could also be used if the number of available
channels or units is limited. Another way of making the
most out of the available number of stations is the WAS
technique proposed in Hastings-James et al. (2000). In
the WAS technique Figure 4-12a is extended with two
series of shots on either side of the spread at a distance
equal to number of receiver lines times receiver line
interval.

Another constraining factor can be downtime
caused by faulty receiver stations. The more receivers
the larger the chance for this kind of downtime. To
minimize this downtime, it may be considered to lay
out only a limited number of receiver lines in a swath,
say six, and then apply a full-swath roll (Figure 4-12b).
Now the salvo of shots for a template has to extend far
enough outside the swath to allow recording of the
required maximum cross-line offset. It requires
repeated shooting of the same shotpoint (into different
swaths), instead of repeated planting of geophones. The
full-swath roll can be highly efficient, for dynamite
acquisition as well as vibroseis. With dynamite
shooting, many shooting crews can work
simultaneously on the same shot line; with vibroseis
acquisition, the additional advantage is that there are
fewer time-consuming moves (including turns) from
one shot line to the next. A disadvantage might be that
the statics are decoupled for some statics programs.

In the full-swath roll it tends to be more convenient
to let all receivers in the template listen to all shots
along the shot line. This leads to asymmetry of the
cross-spreads in the cross-line direction. The cross-
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Fig. 4-12. Swaths for cross-spread geometries used
in Nigeria (a) survey A, (b) survey B.

spreads can (should) be made symmetric again in the
processing center. As a consequence, the fold acquired
in the field is higher than the nominal fold prescribed
by the nominal geometry. In Figure 4-12b the cross-line
fold is 8.5, whereas the nominal cross-line fold equals 6
(M, = Y2 Lg / R). Discarding the redundant traces in the
processing center seems to be a waste, yet it avoids
strong discontinuities in the attributes of the geometry,
which may cause a serious geometry imprint. A typical
expression of this irregularity is that it is not possible to
split the field data into as many regular OVT gathers as
the field fold. Note that the number of receiver lines in
this technique can be chosen to fit the available
receiver equipment. In a single-line roll, regular fold
requires the use of an even number of receiver lines,
but in the full-swath roll an odd number of receiver




Guidelines 81

lines may also be chosen. The more receiver lines in the
full-swath roll the smaller the shot repeat factor (=
number of times the shooting crew has to visit the same
shotpoint location). In the example of Figure 4-12b the
shot repeat factor equals 2.83.

4.6.5 Multi-line roll

The multi-line roll is a technique that is sometimes
used to speed up acquisition. In this technique, the
range of shots (shot salvo) fired into each swath
extends over several receiver line intervals. As many
receiver lines are rolled as there are receiver line
intervals in the shot salvo. This means that each
shotpoint location has to be visited only once (unlike in
the full-swath roll technique), whereas the number of
shots firing into each template is increased. For an
equal number of recorded traces, this technique tends to
be more efficient than the single-line roll. However,
with this acquisition technique, the cross-spreads are
asymmetric in the cross-line direction.

The difference with the full-swath roll technique is
that in that case the cross-spreads are oversized
(maximum cross-line offset larger than the nominal
maximum cross-line offset), whereas in the multi-line
roll the cross-spreads are undersized (at least one
extremum in cross-line offset is smaller than desirable
maximum cross-line offset; (desirable: for Ny receiver
lines the desirable maximum cross-line offset equals N
/2 receiver line intervals). The asymmetry can only be
remedied by discarding a large number of non-
redundant traces. See next section for a comparison of
multi-line with one-line roll geometries.

4.6.6 Attribute analysis of one-line roll
versus multi-line roll geometries and
orthogonal versus slanted geometries

In this section deviations from the standard
symmetrically sampled orthogonal geometry are
investigated. We will look at the slanted geometry and
the multi-line roll.

Figures 4-13 - 4-16 (displayed on pages 176 - 179)
each show some major attributes of one of the four
geometries being investigated. Figures 4-13b - f show
attribute displays for a 20-line geometry, whereas
Figure 4-13a shows the template of this geometry,
highlighted in a red rectangle. Figure 4-13b shows the
"full-fold" display for the whole survey, this display
includes all offsets. Figures 4-13c - ¢ show limited-
offset displays, Figure 4-13c for offsets up to 800 m,
Figure 4-13d for offsets up to 2500 m, and Figure 4-
13e for offsets up to 3000 m. These displays clearly
show that even though full-fold is entirely regular
across the central part of the survey area, the limited
offsets are always irregularly distributed with a range of

fold values. The irregularity stems from the fact that
fold is built up from overlapping circular areas, each
area representing the range of offsets for a given cross-
spread. At each time level, the mute function
determines the maximum offset used at that level,
hence fold is not constant at any time level below the
full-fold level (unless the mute function is defined as
described in Section 2.6.4).

Figure 4-13f shows two global displays,
offset/azimuth and offset density and one bin-oriented
display, bin offset distribution. The offset/azimuth
display shows for the whole survey the number of
traces as a function of offset and azimuth, whereas the
offset density function displays the relative abundance
of traces as function of offset. The bin offset
distribution shows the offset for six rows of bins inside
a unit ceil. All bins in the left hand division are close to
a receiver line, whereas the next divisions move toward
the center of a unit cell. The rightmost division, located
near the center of the unit cell, shows relatively large
white areas in the center. This means that for those bins
offsets tend to occur in clusters. This is an effect of
symmetry inherent in this geometry.

Figure 4-14 shows the attribute displays for a 20-
line slanted geometry acquired with a one-line roll. In
this example the shot lines make an angle tan™'(2) with
the receiver lines (other angles are used as well).The
patterns shown in Figure 4-14c - e look quite different
from those in Figure 4-13c - e. Yet, the number of
different fold values contributing to each offset range is
about the same between the two geometries. The
slanted geometry shows more striping (along the
receiver lines), whereas the orthogonal geometry shows
a grid pattern due to symmetry between shot and
receiver lines. The main reason why a slanted geometry
is chosen instead of an orthogonal geometry is that it
breaks symmetry (if chosen instead of a brick-wall
geometry it introduces spatial continuity). This
manifests itself in a better offset distribution in the
center of the unit cells, as shown in the rightmost
division of the bin offset distribution display in Figure
4-14f. There the white areas are not as large as in the
corresponding display for the orthogonal geometry.
Another reason put forward to choose a slanted
geometry is the smaller geometry imprint associated
with variations in fold. However, the fold variations
between the two geometries may show different
patterns, but the range of fold values is about the same.

A slanted geometry has some disadvantages as well:
it takes more shot lines to cover the survey area
(compare Figure 4-13b with 4-14b), and the slanted
spreads have incomplete receiver gathers (the swath
moves with the shot line, so that not all shots along the
shot line of a slanted spread shoot into the same
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receivers). See also discussion in Sections 4.3.3 and
434,

Figure 4-15 illustrates a 16-line orthogonal
geometry with an 8-line roll. This means that the next
swath in the cross-line direction shares only 8 (= 16 - 8)
receiver lines with the previous swath. At first sight
(Figures 4-15b and c) this change does not make much
difference. However, Figures 4-15d and ¢ show a much
wider range in fold values, whereas strong
discontinuities in fold (blue against yellow or orange)
also occur. Such a large variation in fold for any offset
range may lead to serious geometry imprints. The bin
offset distributions in Figure 4-15f are dependent on the
position of the roll boundaries with respect to the bins.
In this geometry the concept of unit cell tends to lose its
meaning. The shape of the cross-spreads in this
geometry depends on their position with respect to the
roll. They are all asymmetric with respect to positive
and negative cross-line offsets. As a consequence, not
all offset-vector tiles as defined in Section 2.5.2 are
capable of a complete single-fold tiling of the survey
area, leading to much larger migration artifacts than in
a regular one-line roll geometry. Although this
geometry takes much less time and effort to acquire in
the field, it should be considered inferior as compared
to the geometries shown in Figures 4-13 and 4-14.

Finally, Figure 4-16 illustrates a 16-line slanted
geometry with an 8-line roll. Fold irregularity for this
geometry is similar as for the orthogonal geometry with
8-line roll. An additional disadvantage is that the shots
of a slanted spread do not shoot in the same range of
receivers.

It would be nice if attribute analysis programs
would be able to analyze attributes such as symmetry
and suitability for dual-domain filtering of the basic
subsets of each geometry.

4.6.7 Conflicting requirements between
structural interpretation and AvO

Structural interpretation requires the acquisition of
square cross-spreads, because this ensures the same
quality and appearance of the data in the cross-line
direction as in the in-line direction. At the same time,
the longer the offsets which contribute to the final
stacked and migrated data the lower the resolution,
because the NMO stretch reduces the potential
resolution. Therefore, for structural interpretation, the
maximum in-line and cross-line offsets should not be
chosen larger than necessary to achieve a satisfactory
signal-to-noise ratio.

On the other hand, AvO analysis tends to be most
successful, if the offsets are as large as possible. The
maximum useful offset is determined by noise
dominating the longer offsets. The structural

interpretation requirements and the AvO requirements
may be in conflict with each other (not always, e.g. a
severe multiple problem may also require the use of the
largest possible offsets).

If there is a conflict, different methods may be
considered to meet AvO requirements in addition to
structural requirements:

1. Increase maximum in-line
maintaining maximum cross-line offset,

This is the purist solution, both requirements are
met, yet without unduly enlarging maximum cross-line
offset to maintain symmetry. Maximum in-line offset is
chosen to suit AvO requirements, maximum cross-line
offset to suit structural interpretation requirements. In
processing for optimal structural interpretation results,
the maximum in-line offset should be truncated to equal
the maximum cross-line offset. On the other hand, for
AvO processing, the maximum cross-line offset may be
truncated to reduce the impact of azimuth variation on
AvO analysis. AvO processing should take the typical
nature of the orthogonal geometry into account as
discussed in Section 2.6.9.

2. Increase maximum in-line offset while reducing
maximum cross-line offset,

This is the pragmatic solution. The requirements of
structural processing are not fully met, but at least the
signal-to-noise ratio should be sufficiently high.

For any reduction in number of receiver lines the
efficiency of each shot is reduced, because the number
of listening receiver stations is reduced and shot energy
is lost. The redundancy in shot and receiver statics will
be different. Nevertheless, the impact of a reduction in
width of a geometry need not be too dramatic, as long
as the smaller common-receiver gathers can still be
filtered, i.e., as long as the two spatial dimensions can
be exploited in processing.

A useful criterion might be the minimal requirement
to fully record the ground-roll energy in the two spatial
dimensions. Then dual-domain (f, k)-filtering or 3-D
velocity filtering can still get rid of most energy
traveling with low apparent velocity in all possible
directions. If the phase velocity of the fastest noise is
for instance 750 m/s, and the deepest level of interest is
3 s, then the maximum cross-line offset should at least
be 2250 m.

3. Acquire a grid of 2-D lines along a subgrid of the
3-D survey.

This solution might be considered when the very
long offsets required for AvO are absolutely
unnecessary for structural interpretation.

offset while
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46.8 Deviations from nominal due to

topography and obstacles

Once a nominal geometry has been decided upon, it
may not be easy to realize the geometry without
modifications. In particular in heavily built-up and
cultivated areas such as in The Netherlands, acquiring
3-D is a daunting task, and sticking to nominal would
be impossible. As discussed, spatial continuity of the
grid of acquisition lines is of great importance,
therefore, it should be tried to acquire common-receiver
gathers and common-shot gathers that can be filtered
without creating artifacts.

The number of discontinuities in the acquisition
lines should be minimized. A first step to achieve this
can already be set in the preplanning phase: make use
of the natural grain of the area in which data are to be
recorded. This involves roads, rivers, canals, and may
vary across the survey. An important consideration is
that continuity is more important than having pieces of
straight lines. It is perfectly acceptable for filtering
purposes to record data along smoothly curved lines.
Moreover, sinuous lines have less impact on the
environment, because they can wind around large trees
(Williams, 1993). The smoothness criterion given in
Lindsey (1991) for the acquisition of crooked 2-D lines
can be applied in a similar way to 3-D acquisition lines.
A similar solution is suggested in Figure 4-17.
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In practice, smooth lines are difficult to survey.
Figure 4-18 suggests approximating the smooth line by
a few straight lines.

The requirement of smoothness can reduce costs in
hilly areas. Shot lines may be chosen to follow
elevation contours with receiver lines following
gradient lines.

Current practice in the presence of obstacles is to
aim for regular fold as counted in bins (Donze and
Crews, 2000). This regularity is achieved most easily
by locating shots and receivers as close as possible to
the nominal grid point position. If a shot cannot be
located at that point, the standard prescription is to
move the shot station over an integer number of station
intervals to the right or to the left (Figure 4-19a), and to
move the receiver spread over an equal number of
stations in the opposite direction. This prescription
maintains fold and it maintains midpoints in bin
centers, but it produces spatial discontinuities in the
common-receiver gathers or common-shot gathers.

To achieve a smooth shot line, shots must be shifted
a non-integer number of station intervals to the right or
to the left (Figure 4-19b). Figure 4-20 illustrates the
benefit of smoothness in an intuitive way. The
smoothness criterion may also be formulated as the
requirement that the cross-spreads remain minimal data
sets. This means that the acquisition lines should not be
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Fig. 4-17. Suggested smoothness criterion for skirting aound obstacles. This figure shows the function
r cos?(x/2r), with r =150 m. The planned acquisition line runs along the horizontal axis, but an obstacle
prevents it being laid out as planned. The obstacle is not shown, but the idea is that the smooth replacement

line stays as close as possible to the planned line.
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Fig. 4-18. Practical implementation of smoothness criterion. Bends in shot lines can be no greater than 26.6°.
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Fig. 4-19. Procedures for dealing with obstacles. (a) Midpoint-centering solution, (b) Smooth solution. The

smooth solution preserves spatial continuity.

contorted such that the illumination areas of the cross-
spreads are more than single-fold in some places.
Moving some shots to the left also moves the
midpoint area of all corresponding cross-spreads to the
left. This also has consequences for the cross-spreads
adjacent to the affected cross-spreads. The cross-
spreads to the left will now have partially overlapping
midpoint areas with the shifted cross-spreads, whereas
there will be a gap in midpoint coverage between the
shifted cross-spreads and the cross-spreads to the right.

Yet, it is important to maintain a regular fold (Section
4.4.5.4). The overlap can be taken care of in processing
by appropriate weighting, but the gaps should
preferably be filled in acquisition.

It is also important that the number of receivers for
each shot in a cross-spread stays the same, and that the
number of shots for each receiver is constant. This
allows filtering in shot and receiver domains. The best
way to accomplish regular fold and "rectangular” cross-
spreads in a geometry with curved receiver and shot
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Fig. 4-20. Common-receiver gather illustrating discontinuity in reflection times due to jump in shot positions

and effect of smooth positioning of shots.




Guidelines 85

lines, is to acquire a number of extra stations on either
end of the spread or template. Similarly, curvature of
receiver lines may be regularized, if some additional
shots are fired into each receiver line. (This would be
quite expensive in a one-line roll geometry, but easily
doable in a full-swath roll.) These extensions of the
shot and receiver spreads allow the creation of regular
fold in processing (by interpolation to a square bin grid,
and discarding or weighting of traces in regions with
too high a fold).

The acquisition of redundant receivers and
redundant shots might be considered part of the
acquisition strategy, even in areas without obstacles. It
is good signal-processing practice to try and soften hard
discontinuities. With redundant traces outside the
nominal edges, (f, k)-filtering across the edges may
reduce the discontinuities, in particular those caused by
coherent noise. This action would minimize migration
artifacts.

A possible solution for skirting along a large
obstacle (no obstacle for the receiver lines) is given in
Figure 4-21. However, a better solution is to acquire all
reciprocity traces by interchanging shot and receiver
positions for those shots which cannot be acquired
otherwise (Jerry Davis, personal communication). With
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Fig. 4-21. One way to shoot around a large
obstacle. Rather than placing many compensation
shots close to the obstacle, this spreading out of the
lines would produce a better offset distribution. Yet,
to maximize coverage under the obstacle, it is
necessary to also acquire shots along the
interrupted shot line. However, shooting reciprocity
traces is a better technique (see main text).

this solution only the short offset data inside the no-go-
area-for-shots are not acquired.

If it is not possible to avoid an obstacle by skirting
around it, and the obstacle would lead to only two or
three missing shots, make-up shots should be placed
along the planned shot line, just a bit closer together
than nominal. This should improve the chances of
successful interpolation of shots across the obstacle.

If it is not possible to avoid an obstacle by skirting
around it, and the obstacle would lead to four or more
missing shots, then some make-up shots should still be
placed along the planned shot line, but it should also be
considered to insert an additional short shot line,
depending on the gap to be compensated.

To minimize problems while surveying the planned
lines in the field, it is essential to avail of complete and
recent maps that show all obstructions. A 3-D design
program should be used that allows the planning of the
survey grid on top of satellite maps, topo maps, maps
showing power lines and pipelines and no-access areas,
etc.

4.7 Testing

In various places in this document the subject of
testing has been touched upon. Testing may be
necessary to find out about the minimally required fold
at some level to be interpreted (Section 4.4.3); to
determine optimal choice of shot and receiver arrays
(Section 4.4.5.5), and to develop a better feel for the
influence on quality of virtually any other parameter in
survey design.

Testing what type of geometry is best, is perhaps
the most demanding task. Section 7.3 describes the
comparison between a brick-wall geometry (the then
current technique) and a cross-spread geometry (the
proposed technique). It is a fine example of getting
very valuable results for a minimum of test effort.

The acquisition of a number of 3-D microspreads
(cross-spreads with small shot and receiver intervals)
could be used to measure the amount of scattered
ground roll for a definition of field array suppression
requirements. A field example of a 3-D microspread is
discussed in Section 7.2.

Testing may also be carried out to determine the
influence of parameters which are not discussed in this
document, such as depth of shot holes, number of
sweeps per shotpoint, length of sweeps, etc. In all
testing it is important to base judgment on the results of
fully processed data. Thomas and Hufford (1998)
demonstrate the effect of reducing the number of
sweeps; the raw shot records show a large difference
between shots with different number of sweeps,
whereas after full processing, including stack and
migration, the differences become minimal. In the
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discussed case the reduction in acquisition cost easily
outweighed the cost of testing.

Because theory will not always be able to predict
the outcome of a particular choice of parameters,
experiments are often the only way to obtain a
definitive answer.

4.8 Discussion

This chapter outlines a methodology for 3-D
seismic survey design. It is based on the recognition of
the existence of basic subsets or minimal data sets for
all common geometries. In general, application of this
methodology should lead to fully satisfactory 3-D
survey designs. Other approaches to survey design used
in the industry use experience (what worked in the past,
should work in the future) often coupled with attribute
analysis of proposed geometries, model-based design,
optimization techniques (Liner et al., 1999), or focal-
beam analysis (Berkhout and Ongkiehong, 1998;
Volker et al., 1998; Berkhout et al., 2000; Volker et al.,
2000). None of these techniques takes into account the
basic subsets of the various acquisition geometries and
their imaging properties. Section 4.8.1 discusses
attribute analysis and Section 4.8.2 model-based
design.

4.8.1 Attribute analysis

Currently, none of the existing 3-D design packages
(e.g., Mesa, Omni, Reflex) allows the design of 3-D
surveys according to geophysical requirements. Instead,
they provide the user with means for attribute analysis
of a proposed geometry. The attribute analysis is
focused on bins rather than on spatial continuity.
Examples of attribute analyses are given in Figures 4-
13 - 4-16 (made with Omni). However, attribute
analysis of a geometry proposed on basis of symmetric
sampling requirements is hardly necessary as the
attributes will just be fine. The attribute analysis may
just serve to convince the unconvinced. Attribute
analysis is very important for tutorial purposes. In this
way Figures 4-13 - 4-16 were used to show that a multi-
line roll produces strong discontinuities in coverage
and that slanted geometries have no major advantage
over orthogonal geometries. Attribute analysis is also
valuable in analyzing changes made in a nominal
geometry to allow for obstacles. Most 3-D design
packages also allow the preparation of scripts to be
followed for the actual recording in the field.

It should be easy to add front ends to existing
design packages for the implementation of the design
rules given in this chapter. Some companies are making
modest attempts in this direction. The actual attribute
analysis might be expanded with mapping out the basic
subsets of the geometry (similar to the "templates"

which can be shown). In particular, it should be
possible to test solutions for obstacles on their
robustness with respect to the pseudo-minimal data sets
(see Sections 2.5 and 4.6.8).

4.8.2 Model-based survey design

The objective of the acquisition of 3-D surveys is to
get a better picture of the subsurface. In this chapter I
have outlined how subsurface information and other
geophysical knowledge can be incorporated in the
design of 3-D surveys. This information included
resolution requirements, maximum dips, velocity
distribution, etc. Often, all this information together
would allow the construction of a subsurface model.
The objective of the survey would then be to illuminate
and image that model in an optimal way. Various
authors have come up with proposals for model-based
survey design (Slawson et al, 1995, Salehi and
Kappius, 1998). The approach is to take a proposed
geometry and to analyze subsurface illumination (of the
model) using raytracing.

In my opinion these raytracing approaches are not
necessary for many geological situations. Usually, it
will be sufficient to have a good look at what is
necessary for the steepest dips and the shallowest
targets in the area. On the other hand, very complex
geology may benefit from reassurance about a proposed
geometry obtainable with raytracing. For instance, for a
locally shallow target, such as around salt domes, one
may want to know whether a variable line spacing
would be called for, narrow line spacing across the
localized shallow target, and a wider line spacing
elsewhere.

Up till now illumination analysis for a whole
geometry is very time consuming, because the various
procedures are based on raytracing for individual
shot/receiver pairs. [llumination is measured in terms of
"number of hits per subsurface bin". However, the
raytracing approach could benefit a great deal from
exploiting the concept of minimal data set and
illumination area as discussed in Section 2.5.3.

Rather than counting hits per bin, it is sufficient to
count the number of overlapping illumination areas
corresponding to the minimal data sets. Each
illumination area can be established by tracing a limited
number of rays. For mild geologies, it is sufficient to
raytrace only for the edges of the minimal data sets, for
more complex geologies, some additional shots and
receivers may have to be analyzed, until the
illumination area can be established with sufficient
accuracy.

Often, it is not so much the illumination capability
of a survey design that needs to be established, but
more its capability of delivering data with adequate
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signal-to-noise ratio. Modeling the capability of an
acquisition geometry to suppress noise is discussed in
Section 3.3.5.

4.9 A summary of what to do and not
to do in 3-D survey design

There are many ways of acquiring 3-D seismic data,
but only parallel geometry and orthogonal geometry
can provide optimal spatial continuity by ensuring that
the common-receiver gathers have as many shots as the
common-shot gathers have receivers. In parallel
geometry common-in-line-offset gathers ensure spatial
continuity in the cross-line direction. The properties of
areal geometry with sparse receivers listening to a
dense grid of shots are about the same as those of
orthogonal geometry. The spatial continuity is now
ensured by proper 2-D sampling of shots.

On the other hand, it is strongly recommended not
to use brick-wall geometry, because its common-
receiver gathers are very discontinuous. Slanted
geometry is an improvement over brick-wall geometry,
but it has no real advantages over orthogonal geometry,
whereas its shot interval is larger than in an equivalent
orthogonal geometry. Similarly, zigzag geometry has
even larger shot intervals and is not recommended.

The multi-line roll offers improved efficiency as
compared to the single-line roll, but at the expense of
greater spatial discontinuities that may manifest
themselves as a strong acquisition footprint. Often the
full-swath roll will also provide gains in efficiency, but
this geometry can be trimmed down to provide the
same nominal geometry as the single-line roll.

Wide orthogonal geometry (aspect ratio larger than
0.5) provides similar quality in cross-line as in in-line
direction. Narrow geometry will have more spatial
discontinuities in the cross-line direction and may show
more migration artifacts in that direction.

The single most important parameter currently
limiting quality of 3-D seismic is the station spacing.
Coarse sampling intervals of 50 or 60 m still seem to be
the rule in 3-D acquisition, whereas it has been shown
in 2-D data acquisition that much smaller intervals can
provide tremendous gain in quality. In 3-D the same
shot and receiver gathers are acquired as in 2-D and the
sampling requirements are the same. If finer sampling
is used, fold is not necessary anymore to compensate
for migration artifacts generated in processing, but is
only required to separate noise from signal. Although
single-sensor recording is becoming technologically
feasible, using 20 or 25 m station spacings with
correspondingly shorter field arrays would already
provide a great improvement over current practice.

The acquisition lines in parallel and orthogonal
geometry should preferably be straight, but in case of

obstacles smooth lines should be selected skirting the
obstacles, rather than shifting shots an integer number
of station spacings to the right or to the left, thus
creating discontinuous shot lines. Solitary shots should
be avoided as much as possible, it is always important
to check the spatial continuity in the receiver gathers.
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5 STREAMERS VERSUS STATIONARY RECEIVERS

5.1 Introduction’

Marine 3-D seismic data acquisition technology is
progressing rapidly. On the one hand, there has been a
very rapid increase in the number of streamers that can
be towed by modern seismic vessels, and on the other
hand, the variety of stationary-receiver (sea-bed)
systems is mushrooming. As a consequence, 3-D
seismic acquisition surveys may be carried out using
quite different techniques, and the question which
technique is most appropriate for a given problem
needs to be addressed. This chapter reviews pros and
cons of the various techniques.

There is a great deal of similarity between a 2-D
grid of seismic lines acquired either on land or
offshore. In both cases sources and receivers are
arranged along coinciding straight lines leading to
seismic traces all having the same shot-to-receiver
azimuth within one seismic line. The main difference —
as far as geometry is concerned — is that in streamer
acquisition an end-on geometry is used whereas in land
data acquisition a center-spread geometry is possible.

With the advent of 3-D acquisition, marine and land
data acquisition geometries started to diverge. In
marine acquisition, 3-D was most efficiently achieved
by repeating the 2-D geometry, whereas on land
sources and receivers can be decoupled so that other
geometries such as orthogonal and zigzag geometries
are also feasible, and in fact more cost-effective.

Acquiring parallel lines in 3-D marine acquisition
means that at the start of the survey a decision has to be
made on the best direction of those lines. Assuming a
dominant dip and strike direction, various authors have
discussed the pros and cons of dip or strike acquisition
(Larner and Ng, 1984; Manin and Hun, 1992; Arbi et
al., 1995).

Considerable gains in efficiency have been reached
in marine acquisition with the introduction of
multisource multistreamer (MS/MS) techniques, and
even multi-boat operations (Davidson and Bandell,
1990; Sande and Veggeland, 1995; Cramer et al., 1995;

' This chapter modified after Vermeer (1997).

Duey, 1996). A record of 10 streamers (Cramer et al.,
1995) was soon superseded by a new record of 12
streamers (Duey, 1996) and at present it might be even
higher. Basically, these configurations have maintained
the dominance of the chosen acquisition direction in the
shot-to-receiver azimuths, thus maintaining the question
what shooting direction gives the best seismic results. It
has been realized that the greater efficiency of MS/MS
techniques is achieved at the expense of regular
illumination of the subsurface (Vermeer, 1994; Beasley
and Mobley, 1995). The presence of obstructions such
as production platforms, reduces the efficiency of the
MS/MS techniques and requires the use of a two-boat
operation (Egan et al., 1991). Uncontrollable feathering
forms another reason for irregular illumination of the
subsurface.

Bottom cables have been in use for quite some time
in transition zone waters. Only after the re-discovery
that the combined use of pressure and velocity
detectors would allow the necessary removal of the
receiver ghost — the dual-sensor technique — could the
use of bottom cables be extended into deeper waters
(Barr and Sanders, 1989; Barr, 1997). In particular in
areas with many obstructions and in shallow waters, the
use of bottom cables (frequently called OBC technique
for ocean-bottom cable, though SBC for sea-bed cable
might be more appropriate) is now really taking off
(Barr, 1994, 1997, Sanders et al.,, 1994; Cafarelli,
1995; Meunier et al., 1995; Carvill et al., 1996).

A very special bottom-cable technique was
developed by Statoil (Berg et al., 1994; Johansen et al.,
1995; Sonneland et al., 1995). In this SUMIC (subsea
seismic) technique 3-component geophones are
attached to the cable and planted in the sea bottom by
an ROV. A hydrophone is also part of the system,
therefore this kind of acquisition is sometimes referred
to as 4-C (four-component). With SUMIC not only P-
waves but also S-waves are recorded, and a gas-
chimney which would be uninterpretable on a P-wave
section may be resolved in the P-S section (Granli et
al., 1999). The technique is not suitable for 3-D, but
investigations are underway to adapt it to 3-D (Berg
and Arntsen, 1996).

Other 4-C techniques are also emerging, and are
discussed in Section 5.4.4.
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An interesting stationary-receiver technique is the
vertical hydrophone cable (VHC) (Krail, 1991, 1994).
In this technique some 12 to 16 hydrophones are
arranged along a vertical cable which is anchored to the
sea bottom.

Another stationary-receiver technique is the ocean-
bottom seismometer (OBS) in use by academia for
some twenty years already, but now also considered for
use in 3-D seismic data acquisition. An OBS is a self-
contained receiving and recording unit residing at the
ocean-floor (literally this time: OBSs are even used in
waters exceeding 3000 m!) for the duration of the
survey. Unless a technological breakthrough comes
forth, VHC and OBS are only suitable for use in an
areal geometry in which the receivers are arranged in a
widely spaced areal grid, whereas the shots are
arranged in a densely spaced areal grid.

In the following I will expand on the discussion of
various marine data acquisition techniques, and
compare their relative merits. An important aspect is to
what extent the stacked and migrated data is
representative of the acoustic impedance of the
subsurface. Therefore, the influence the acquisition
geometry may have on the final seismic amplitudes is
discussed first. Next, streamer acquisition is discussed,
the dip/strike question and the effect of using MS/MS
techniques. The stationary-receiver techniques are
reviewed with an emphasis on the various geometries
that are suitable with those techniques.

5.2 Geometry imprint

Timeslices and in particular horizon slices of
stacked or migrated seismic data often show an
amplitude pattern which is typical for the acquisition
geometry used in the 3-D seismic survey. This
amplitude pattern is often referred to as geometry
imprint or acquisition footprint.

For streamer surveys, the geometry imprint
manifests itself as a striping effect: slow variation of

amplitude in the in-line direction (the shooting
direction) and rapid variation in the cross-line
direction. An example of striping is given in Figure 5-1.
In land geometries the shot and receiver line pattern
may be visible in the seismic amplitudes. Shallow data,
having lower fold than deeper data, tend to have the
strongest geometry imprints. These effects of geometry
on amplitude are most undesirable, in particular for
lithology and porefill prediction, but also for a reliable
structural interpretation. Therefore, it is important to
choose an acquisition technique and a geometry with
which such effects can be minimized.

The geometry imprint is directly related to the
offset distribution as a function of CMP position.
Systematic variations in offset sampling or periodicities
in the offset distribution may create corresponding
variations in amplitude. (I will use the term “offset
sampling” for the sampling of offsets within a CMP,
and the term ‘“offset distribution” for the variation of
offset sampling across the CMPs.) The effect is also
known from 2-D seismic data; for instance, the
odd/even effect in streamer data acquisition with equal
shot and receiver station intervals is linked to the fact
that the offset sampling of the even CMPs differs from
that of the odd CMPs. Why the offset sampling affects
the seismic amplitudes might be discussed on basis of
Figure 5-2.

The left side of Figure 5-2 shows an NMO-
corrected CMP gather with a very regular offset
sampling and virtually constant shot-to-receiver
azimuth. The gather shows many events running across
the NMO-corrected primaries, and stacking should be
able to suppress most of this noise. The right side of
Figure 5-2 shows various stacked traces. Splitting the
odd and even traces of the CMP over two separate
gathers, followed by stacking leads to two different
stacked traces, as the noise events have been sampled at
different offsets. A similar reasoning applies to the
primaries: as amplitude varies with offset (AvO) and
the stack is an average of all sampled offsets, the

Fig. 5-1. Amplitude striping in
4/4 geometry. The geometry
imprint has a periodicity of 16
in the crossline direction.
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averaged amplitude of the primary also depends on the
offset sampling, even if there were no noise.

Often, the noise events do not change rapidly as a
function of CMP position. Hence, if there is a
periodicity in the offset distribution, then the noise will
be sampled at the same offsets periodically, leading to
periodicities in the seismic amplitude. Similarly, if
there is a systematic change in the way offsets are
sampled from CMP to CMP, then the amplitude effect
will be systematic. Yet, in situations where there is no
systematic variation in offset sampling, or no
periodicity in the offset distribution, the stacked
amplitudes are still affected by noise or amplitude
variations with offset, even though it is more difficult to
recognize the effect.

The ideal way of reducing the geometry imprint to a
minimum is by fine and regular sampling of offsets in
each CMP. Unfortunately, in streamer acquisition
regularity of sampling is not achievable due to
uncontrollable feathering of the streamers, and in
stationary-receiver techniques the offset sampling is
usually highly irregular.
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5.3 Streamer acquisition

A main feature in 3-D marine data acquisition using
streamers is the decision that has to be made on the
shooting direction. Another aspect is that MS/MS
configurations produce irregular illumination of the
subsurface, =~ whereas  uncontrollable  feathering
compounds the illumination problem. In the following
these aspects of streamer acquisition are discussed in
some detail.

S

Fig. 5-2. NMO-corrected

P

CMP gather with five
different stacks.
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5.3.1 Shooting direction

The choice of shooting direction is sometimes
referred to as dip/strike decision, but other factors,
unrelated to dip or strike, often play a role as well.
These other factors could be the presence of a nearby
coastline, obstacles in a certain pattern, main current
direction and more. If a rectangular survey area is much
longer than it is wide, it is usually more economical to
shoot parallel to the long sides of the rectangle than to
the short sides. In the latter case it may still be decided
to shoot in another direction, if there are good reasons
to do so. At any rate, prior to the start of a streamer
survey one has to commit to a fixed shooting direction,
and many considerations can play a role.

In an area with many obstacles, logistics may
dictate the shooting direction. Part of the survey will
have to be carried out using an undershoot technique, in
which the shooting vessel travels on one side of the
obstacle, and the vessel towing the streamer on the
other side. The streamer vessel should always remain
on the same side (port or starboard) of the shooting
vessel (Egan et al., 1991). In that way the shot-to-
receiver azimuths all have about the same orientation,
which is best for illumination of dipping layers and for
DMO.

Often, the undershoot part of the 3-D survey and the
regular part are designed to create adjacent midpoint
coverage. However, this may lead to illumination gaps
in the subsurface, because of the difference in shot-to-
receiver azimuths between the two parts. To avoid
these gaps, the two parts should have some overlapping
midpoint coverage, depending on maximum dip.
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To prevent cross-currents causing differential
feathering, i.e.,, variation in feathering between
neighboring streamers, the shooting direction may be
chosen to coincide with the main current direction, if
any. Unfortunately, a clear and stable current direction
does not occur often.

5311

To start with, often there is no dip direction that is
dominant in the whole survey area. And even if the
dipping layers were oriented in some main direction,
the fault planes and corresponding diffraction patterns
might be mainly oriented at right angles to the dip
direction. In all those cases the relevance of the
dip/strike decision is reduced.

In case there is a dominant dip direction, there are
always some reasons to favor dip shooting, and other
reasons to favor strike shooting. The reasons may be
truly geophysical, but there may also be reasons related
to positioning accuracy and sampling deficiencies.

A geophysical reason to shoot along strike is the
imaging of a salt flank. Shooting along strike keeps
both legs of the raypath outside the salt dome, making
imaging fairly easy, whereas when shooting dip one leg
of the raypath passes through the salt requiring an
accurate estimate of the position of the salt flank for
proper imaging. Moreover, much of the energy that
should travel through the salt will be reflected before
entering the salt, so that less energy is available for
reflection against the sedimentary layers. The geometry

Dip/strike decision

problem 1is illustrated in Figure 5-3 which shows a
horizon amplitude map around a salt dome. There is a
clear correlation between reflection amplitude and
shooting direction.

Prism waves (raypaths with a double bounce:
against reflector and salt flank before returning to the
surface) form another complicating factor in dip
shooting (Reilly, 1995). In case the position of the salt
dome is fairly well known, a concentric circle shoot
survey or a spiral survey can be carried out (Durrani et
al., 1987; Marschall, 1990; Hird et al., 1993;
Maldonado and Hussein, 1994; Reilly, 1995). With this
geometry complicated raypaths are avoided as much as
possible.

Another geophysical reason to shoot strike is for
AvO analysis. The angle of incidence for a given offset
would depend on variations in dip, requiring some
correction. When shooting strike this complication can
be avoided.

An interesting reason to shoot dip is the existence of
a gas chimney along the crest of an elongated anticline.
In strike lines along the crest of the anticline the low-
velocity anomaly would create a time delay which is
difficult to deal with in processing, whereas in dip lines
undershooting of the anomaly would take place (Sonny
Lim, 1992, personal communication).

Larner and Ng (1984) list a number of practical
reasons to shoot dip. First, the economics of streamer
acquisition favor a finer midpoint sampling in the in-
line direction than in the cross-line direction. It is better

Fig. 5-3. Horizon amplitude map
around salt dome. Dark amplitudes are
l weak. Left and right of the salt dome

¢ strike acquisition provides better
illumination of the horizon. White line
outlines area of weak amplitudes.
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to sample finely in the direction where it matters most,
i.e. in the dip direction, and if coarse cross-line
sampling requires interpolation, this can be carried out
best in the strike direction. Another reason — which is
no longer of great importance due to the increased
positioning accuracy of modern streamers — used to be
that positioning accuracy tended to be better in the in-
line direction than in the cross-line direction. For strong
dips in the cross-line direction positioning errors would
lead to mis-stacking.

Larner and Ng (1984) also list reasons to shoot
strike: Velocity analysis is easier in strike lines, and
steeply dipping coherent noise may be removed more
easily from sections in which the reflections do not
show much dip.

Various authors have investigated the effect of dip
versus strike acquisition. The Bullwinkle survey
reported in O'Connell et al. (1993) consisted of
shooting a survey in two orthogonal directions. A
reason to shoot in two different directions was that
during 3-D survey design it became clear that no single
acquisition direction was optimal. The result confirmed
that imaging quality depends on shooting direction,
with neither of the two directions being best for all
features. Imaging of events was worse when complex
raypaths were involved in creating the image, then
strike shooting was best. For situations in which such
complex raypaths did not play a role, it turned out that
steep dips were best imaged with dip shooting. This
result might be due to the better sampling in the in-line
direction, hence better sampling of the fast variations
with dip shooting, an argument pro dip shooting also
given in Lamner and Ng (1984). Whether dip shooting
would also be better in case of equal binsize in both
directions could not be decided from the Bullwinkle
experiment.

In a water tank experiment two orthogonal
directions were used to find an answer to the dip/strike
question for square bins (Arbi et al., 1995). In this
experiment “it was found that the dip survey data
produce superior time image results of the target
features compared to the strike survey data”.

11

21 2/2 2/3
313 3/4

Unfortunately, the binsize used in that experiment was
very large causing aliasing on input. Aliased input data
tends to generate migration noise and incomplete
imaging, hence a general conclusion cannot be drawn
from that analysis.

Following intuition, I would guess that the imaging
capability of well-sampled common-offset gathers with
constant shot-to-receiver azimuth would in general not
depend on azimuth. Only in complex geologies with
complex raypaths and azimuth-dependent transmission
effects one might expect measurable dependencies on
orientation. But then it is best to include all azimuths in
the acquisition geometry, because there would not be a
clear-cut dip direction.

5.3.2 Multisource multistreamer acquisition

The first marine 3-D surveys were carried out with
the conventional 2-D geometry of a single boat towing
one source (array) and one streamer. To increase
efficiency in recording 3-D surveys, the industry has
seen a gradual increase in the number of midpoint lines
(also called bin lines) recorded in one boat pass. The
newest vessels can tow eight or even more streamers
allowing efficient single-boat operations.

The increase in number of midpoint lines recorded
in one boat pass leads to undesirable side effects. This
section first describes various MS/MS configurations,
followed by a discussion of the undesirable side effects.

5321

Figure 5-4 provides a schematic display of some
common MS/MS configurations. The sources,
represented by black circles in this figure, are always
kept as close as possible to the boat to minimize the
length of the umbilicals (pressure hoses from vessel to
airgun arrays). The number of midpoint lines recorded
by these geometries equals the product of number of
sources and number of streamers. Very often the
distance between midpoint lines is chosen as 25 m.
Then the distance between adjacent sources is always
50 m (except in the 4/4 configuration), the distance
between streamers is 100 m for configurations with two

Multisource multistreamer configurations

2/4

0

Fig. 5-4. Schematic description of various acquisition geometries. Black circles represent sources, vertical
lines represent streamers. For 25 m between midpoint lines, pairs of shots always are at a distance of 50 m
(except the inner two in 4/4). With two or four sources streamers are 100 m apart, with three sources 150 m.
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5.3.2.3  Cross-line-offset variation
n n Each midpoint line in a MS/MS
11 17 configuration is acquired by a unique
2/1 12 source/ streamer combination having a
constant cross-line offset (if there is no
21 12 feathering). The variation in cross-line
A AP D2 o~ 113 offset between adjacent midpoint lines
leads to wvariation in shot-to-receiver
SNV 212 | A 13 azimuths of traces with the same absolute
N N N T ‘ A 174 offset across the survey. Interchanging
source and receiver position leads to
NN 213 PN 114 different azimuths, hence cross-line

offset is to be described by a signed
value, e.g., receiver x minus shot x for
sailing in the y-direction. For example,
the cross-line offsets of the 3/3 geometry
are: (-100, -150, -200, 50, 0, -50, 200,
150, 100 m, for a streamer separation of
150 m).

Figure 5-5 illustrates cross-line offset
as a function of midpoint line for various
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Fig. 5-5. Cross-line offset displayed in cross-line direction for
various multi source/ multi streamer configurations. On the right

only single source configurations are displayed.

or four sources, and 150 m for configurations with 3
sources. Duey (1996) describes a configuration with 24
midpoint lines.

5.3.22  Multi-source effect on fold

A disadvantage of using several sources is the
reduced fold in the individual midpoint lines. This is
caused by the time interval needed between successive
shots. In that time interval the vessel moves some
distance, so that in practice shot intervals smaller than
about 18 m are difficult to achieve. The distance
between successive shots in a midpoint line is then n
times 18 m, » being the number of sources.

Multiples with large differential moveout with
respect to the primaries may be severely undersampled
— even after NMO-correction — due to the low fold of
multi-source configurations (Hobson et al., 1992;
Wombell and Williams, 1995; Manin and Spitz, 1995;
see also Section 3.4.3.2). Various interpolation
techniques have been devised to cure this problem
(Jakubowicz, 1994; Huard et al., 1996). Impressive
examples are shown in Wombell and Williams (1995)
and Manin and Spitz (1995). Nevertheless, there is a
tendency to prevent the problem by using not more than
two sources in modern MS/MS configurations.

MS/MS configurations. Each graph

W al4 5 antiparallel describes the cross-line offset for 48
= npanllel adjacent midpoints, except the graph for

the 3/3 configuration which describes 45

adjacent midpoints.
Sailing adjacent boat passes in
opposite directions (antiparallel

acquisition) instead of in the same
direction provides the adjacent midpoints of the two
boat passes with exactly opposite shot-to-receiver
azimuths (see Figure 5-6), because it reverses the sign
of the in-line offset between passes. Because of
reciprocity, opposite shot-to-receiver azimuths produce
exactly the same raypaths. Therefore, antiparallel
acquisition may significantly reduce the average
azimuth variation. Figure 5-7 charts the variation in
cross-line offset (defined as the rms of the differences
in cross-line offset between adjacent midpoint lines) for
various geometries. (Strictly speaking, the graphs in
Figure 5-5 and 5-7 are not correct for antiparallel
acquisition. The cross-line offsets of the two adjacent
midpoints of adjacent boat passes still have opposite
sign, but the in-line offset also changes sign. In the
computations and graphs, the sign of all cross-line
offsets in every other boat pass has been reversed for
antiparallel acquisition.)

Figures 5-5 and 5-7 also illustrate differences
between single-source and multi-source geometries.
The cross-line offset in single-source geometries varies
smoothly within one boat pass, whereas in multi-source
geometries it shows in general some rapid jitter. The
Jitter corresponds to pairs or triplets of sources shooting
into the same streamer followed by the same sequence
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(a)

Fig. 5-6. Two adjacent boat passes in 2/8 geometry. Solid lines indicate streamers, stipled lines indicate
source tracks. Four of the eight streamers follow the same track in the two boat passes to achieve single cross-
line fold. Lines connecting sources with the farthest receiver groups indicate the shot-to-receiver offsets for
the outer midpoint lines of each boat pass. The vertical row of dots indicates midpoint positions. (a) Parallel
acquisition. The adjacent midpoints in the center of the picture have opposite cross-line offset, hence different
shot-to-receiver azimuths. (b) Antiparallel acquisition. The adjacent midpoints in the center of the picture
have opposite cross-line offset and opposite in-line offsets, hence identical shot-to-receiver azimuths.

of sources into the next streamer. Note also the large
effect antiparallel acquisition has on the variation in
cross-line offset for the single-source configurations
(Figure 5-7).
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The discontinuous behavior of cross-line offset
leads to irregular illumination of the subsurface. As
discussed before in Section 2.4.2.1, this can be
illustrated using the illumination pattern of a geometry
as in Figure 5-8. Here 48 midpoints adjacent in the
cross-line direction are selected. The model consists of
a plane reflector with 45° dip and a dip direction of 45°
with respect to the cross-line direction in a constant
velocity medium. The depth of the reflector is 2000 m
in (0, 0). For each midpoint the (x, y) coordinates of the
reflection points are plotted for in-line offsets ranging
from 0 to 3000 m. As expected, for the 1/1 geometry
the curves behave in a regular way, whereas for the
other geometries there is a great deal of irregularity. In
the 4/4 geometry (Figure 5-8b), there are some areas of
the reflector that are never sampled by the large offsets,
whereas other areas are sampled more than once. Note
that the variations are largest for the large offsets,
despite the fact that there the azimuth variations are the
smallest. Figures 5-8c and d illustrate that with a
smaller number of midpoint lines in one boat pass the
illumination becomes less irregular, and that
antiparallel acquisition also reduces the irregularities.

Irregular illumination
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Fig. 5-7. Variation in cross-line offset for various
marine 3-D configurations. Top: multi source/ multi
streamer configurations, bottom: single source/
multi streamer configurations. Note that sailing
adjacent boat passes in opposite directions often
leads to a significant reduction in the cross-line
offset variation.
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Fig. 5-8. Illumination patterns of some acquisition geometries. Shown are (x, y)-coordinates of reflection
points on a dipping interface with 45° dip and azimuth 225°, Each curve represents the reflection points of
one midpoint. The curves are shown for 48 adjacent (in the cross-line direction) midpoints. Streamer length is
3000 m. Sailing direction from South to North. Reflector depth is 3000 m in origin. (a) single source/single
streamer geometry provides regular subsurface illumination, (b) 4/4 geometry (three boat passes), note big
gaps in subsurface illumination halfway in each group of 16 midpoints, and oversampling in between, (c) 2/4
geometry (6 boat passes) showing smaller gaps, and also oversampling in between the gaps, (d) 2/4 geometry,
but now acquired in antiparallel mode. In this case antiparallel shooting leads to less irregular subsurface
illumination. In b, ¢, d illumination irregularity increases with offset (longest offsets have moved farthest

updip into NE-direction).
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Fig. 5-9. Effect of random differential feathering on illumination pattern, (a) 1/1 geometry, (f) 2/4 geometry.
In this case the curves still correspond to particular source/ streamer combinations, but do no longer

correspond to single midpoints as in Figure 5-8.

The case for anti-parallel acquisition is also made by
Brink et al., (1997) and Hoffmann (1999).

Differential feathering leads to additional
irregularity. In a single boat-pass the various streamers
usually show about the same feathering, which is quite
helpful for not getting the streamers tangled up.
Significant differential feathering occurs mainly
between adjacent boat passes. In the following
experiments a uniform distribution of random

feathering angles ranging from -1.75° to +1.75° is used.
The feathering angle is assumed constant during a boat
pass and the same for all streamers.

Figure 5-9 shows that differential feathering may
have a dramatic effect for the 1/1 geometry, whereas in
this case feathering hardly affects the subsurface
illumination by the 2/4 geometry. With the assumption
of constant feathering inside a boat pass, effects of
differential feathering are only important between
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adjacent boat passes. Feathering tends to increase the
irregularity of the subsurface illumination in the sense
that it reduces irregularity in some places whereas it
increases irregularity in other places.

In Figure 5-9 random feathering with zero average
has been assumed. But even if feathering tends to be in
a single direction (e.g., caused by prevailing cross-
currents), then antiparallel acquisition is still
recommended as a means to reduce subsurface
illumination irregularities.

5.3.2.5

Due to differential feathering, the offset sampling in
the cross-line direction can become quite variable,
whereas offset sampling in the in-line direction will
vary much more gradually. Therefore, differential
feathering is a major cause of in-line striping in
streamer data acquisition. Feathering that is not
different between neighboring streamers is no cause of
striping and is quite acceptable.

Unlike irregular illumination caused by the varying
cross-line offset in MS/MS acquisition, the irregular
illumination caused by differential feathering is not
repeatable. As a consequence, the effect of differential
feathering on amplitude differs between the baseline
survey and repeat surveys in time-lapse studies, making
it more difficult to analyze amplitude variations caused
by hydrocarbon production. A recent development is
the steerable streamer allowing feathering angle
corrections up to 3° (Bittleston et al., 2000; Austad et
al., 2000). With this technology, it should be possible
to get closer to the feathering angles of the baseline
survey in the repeat surveys, thus reducing the
difference in acquisition imprint between subsequent
surveys.

Even without feathering, MS/MS configurations
illuminate the subsurface in an irregular way. Figures 5-

Effects of irregular illumination

5 and 5-7 suggest that the effect increases with the
width of the geometry and that the largest jumps in
cross-line offset should create the largest effects. Figure
5-10 shows a timeslice through the stacked data of a
4/4 geometry (see Figure 5-4). In this timeslice
discontinuities occur at the position of the largest jump
in cross-line offset (between midpoint lines 8 and 9).
The discontinuities are largest where the time contours
make an angle of 45° with the sailing direction. In that
situation adjacent midpoint lines sample different parts
of the reflector (cf. Figure 5-8b), leading to sizable
differences in stack times. With dip sailing or strike
sailing, there would be no differences between the
traveltimes of lines 8 and 9.

Apart from the time discontinuities as in Figure 5-
10, the stack will not normally give much cause for
concern, as every shot/receiver combination contributes
reflection energy to the stack. However, after DMO, the

acquired with 4/4 geometry. Note discontinuities
every 16th East-West midpoint line (a horizontal
gridline is drawn every tenth midpoint line).
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Fig. 5-11. Cross-line acquired with 2/4 geometry and feathering after DMO including equalization. The offset

range was 1000 - 1500 m.
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situation may change drastically. As DMO moves data
back to their normal-incidence point, the illumination
gaps discussed for Figure 5-8 will show up as weak
seismic amplitudes in the DMO stack. Beasley and
Mobley (1995) illustrate this with a synthetic data set.
A similar result is shown in Figure 5-11. What has not
been illuminated cannot be imaged, therefore DMO
equalization techniques (Beasley and Klotz, 1992)
cannot solve this problem completely, neither will
migration correct for the deficiency.

The irregular illumination of the subsurface affects
migration and imaging in two ways: first, the images
for areas that have not been illuminated by the long
offsets will be incomplete, and second, the cancellation
of energy along the flanks of the migration operators
will be suboptimal leading to migration noise. Both
effects cause loss of resolution (see Chapter 8).

The effect of irregular illumination on amplitude is
illustrated in Figure 5-12 using horizon amplitude slices
of a reflector with 15° dip. Figure 5-12a shows the
result for a COV gather. Apart from the edge effects,
there is only minor variation in amplitude in this
horizon slice. Figure 5-12b shows the result for a 2/4
acquisition geometry. To achieve complete single-fold
coverage, a range of offsets had to be used. Such a data
set is called a pseudo-minimal data set (pMDS) and
was introduced in Section 2.5. For this configuration,
the effect on amplitude is small. In a wider acquisition
geometry the effect on amplitude can be considerably
more severe as shown in Figure 5-12c for a 2/8
geometry. The contour interval is 12 amplitude units
(twice as large as the color interval). Figure 5-12d
shows with the same color scale and contour interval as
in Figure 5-12c that antiparallel acquisition
considerably reduces the severity of the amplitude
variations as compared to parallel acquisition. In
Figures 5-12a through c sailing is updip, Figure 5-12¢
shows the result for strike acquisition, again for a 2/8
configuration. In this case there is hardly any effect of
the cross-line offset variation on amplitude.

Using two sources rather than one leads to a more
irregular behavior of the cross-line offset as illustrated
in Figures 5-5 and 5-7. A zigzag pattern of two
midpoint line intervals is superposed on the general
trend in cross-line offset variation caused by the width
of the configuration. Therefore, one might expect that a
1/16 streamer configuration (streamer separation 50 m)
would produce better images than a 2/8 configuration
(streamer separation 100 m). However, the result for a
1/16 configuration shown in Figure 5-12f is virtually
identical to the result for a 2/8 configuration shown in
Figure 5-12d. This means that short wavelength (two
midpoint line intervals) sampling irregularities have - at
least in this case - less effect on the imaging result than
the longer wavelength illumination variations caused by

the width of the acquisition geometry. Apparently, the
irregularity caused by using two sources is evened out
by the averaging of amplitudes in the zone of influence
(see Section 10.2) around each image point. The main
(only?) benefit of using a 1/16 configuration would be a
doubling of fold as compared to a 2/8 configuration.

5.3.2.6

Hlumination by MS/MS configurations is inherently
irregular. The wider the configuration, the larger the
effects. An obvious remedy to minimize the effects is to
limit the width of the geometry. However, a 3-D survey
acquired with a narrow geometry is more expensive in
general than a survey acquired with a wide acquisition
geometry. As an alternative, antiparallel acquisition
should be considered. In antiparallel acquisition, the
shrinking of the illumination area caused by downdip
shooting in one boat pass is compensated by the
expansion of the illumination area by updip shooting in
the next boat pass. In this way, no serious illumination
gaps occur anymore, only areas of higher or lower
illumination density. The corresponding amplitude
variation in the imaging result as illustrated in Figures
5-12d and f can be corrected for in processing using the
technique proposed in Albertin et al (1999). See
Section 10.7 for a discussion of this technique.

Increasing fold will in general not do much to
reduce illumination irregularities. In particular,
illumination gaps by downdip shooting will not
disappear. Yet, in a higher-fold geometry, the pMDSs
(cf. Section 2.5.1) can be constructed from a smaller
range of offsets leading to slightly better sampling of
the pMDSs and also to better imaging. One way of
increasing fold is to reduce the interval between shots
by sailing into the current, if there is a strong
predictable current. Using only one source rather than
two doubles the fold-of-coverage. It has the
disadvantage that the streamers have to be towed very
close together. This can only be done safely if steerable
streamer configurations are used (Bittleston et al,
2000). Another way to achieve single-source
acquisition while ensuring sufficiently small cross-line
sampling intervals is to use an interleaved acquisition
technique (100% overlapping boat passes, i.e., a
planned 100% infill). Interleaving doubles trace density
(fold), and reduces illumination irregularity on average.

The illumination irregularities are most severe for
steeply dipping reflectors while sailing in the updip or
downdip direction. Therefore, the irregularities can be
minimized by sailing strike to the steepest reflectors
(Budd et al., 1995).

The most drastic remedy for irregular illumination
caused by  cross-line-offset  variations  and
uncontrollable feathering is to use a stationary-receiver
technique.

Remedies
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Fig. 5-12. Horizon amplitude slices of migrated pMDSs. All input pMDSs have a regular midpoint grid of 25
x 25 m. Reflector dip is 15°. (2) COV gather with offset 2375 m, (b) 2/4 configuration, shooting downdip,
parallel acquisition, in-line offsets 2350 and 2400 m, (c) 2/8 configuration, shooting downdip, parallel
acquisition, in-line offsets 2350 and 2400 m, (d) As (c) with antiparallel acquisition, (¢) As (¢) shooting strike.
(f) 1/16 configuration, antiparallel acquisition, in-line offset 2375 m. Displays (a), (b), and (e) have the same
color bar, whereas another color bar is used for displays (c), (d) and (f). In all displays contour interval is
twice the amplitude step size in the color bar.
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5.3.2.7  Operational aspects

There is no doubt that in open waters the MS/MS
acquisition technique is highly efficient and cannot be
beaten — certainly not in terms of square kilometers per
day — by stationary-receiver techniques. On the other
hand, the seismic vessels for multi-streamer operations
must be very powerful, hence are expensive to operate.
Towing eight or more streamers is not easy, especially
the outer streamers are difficult to control.

A restriction on the production is the amount of
time that has to be spent on line turns. In a typical
North Sea 3-D survey (an interleaved 1/8
configuration) line turns took about 2.5 hours on
average. Deployment of the cables took some 9% of
total survey time (see also Figure 5-13). With steerable
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Fig. 5-14. Various stationary-receiver techniques.
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Fig. 5-13. Relative time spent on various activities
during interleaved 1/8 survey in North Sea. Note
lack of infill due to interleaving. Downtime due to
equipment failure and maintenance not included.

streamers (Bittleston et al., 2000; Austad et al., 2000)
the time needed for line turns can be reduced, because
steering can be used to force the streamers sooner into
place.

Around obstacles MS/MS configurations must leave
a large gap in the area of coverage as the streamers
have to stay away from the obstacles. This needs to be
compensated by a special undershooting survey (a two-
boat operation), which is time-consuming and
expensive. In the above-mentioned survey, 18% of the
survey needed undershooting, at 36% of total cost.
Again, this problem can be reduced with steerable
streamers.

5.4 Stationary-receiver techniques

Figure 5-14 provides a pictorial overview of various
stationary-receiver acquisition techniques. A common
factor in all of these techniques is that the receivers are
referenced in one way or another to the sea bottom.
Another common feature is that there is a separate
source vessel.

An important distinction between the various
stationary-receiver techniques is the geometry that is or
may be used. This part of chapter S starts with a
description of the possible geometries, followed by a
description of various stationary-receiver techniques.
5.4.1 Geometries for stationary-receiver
techniques

The use of stationary receivers allows the
decoupling of the source from the receiver as in land
data acquisition. In other words, there is more freedom
in the choice of geometry, typical land-type geometries
may be used, and there is no physical offset limitation.

The main types of geometry available to the
designer of a 3-D marine survey with stationary
receivers are parallel geometry, orthogonal geometry
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and areal geometry (see Section 2.2). In parallel
geometry the source lines and the receiver lines run
parallel to each other. The MS/MS configurations
described in the first part of this chapter use parallel
geometry. With bottom cables similar geometries can
be arranged (Sanders et al., 1994).

A main reason to use parallel geometry with
stationary-receiver systems is the familiarity with the
geometry in marine circumstances and the possibility to
tie in to a similar geometry of an adjacent streamer
survey. Yet, there are also good geophysical reasons to
prefer parallel geometry over orthogonal geometry. The
discussion in Section 4.3 comparing various geometries
was intended for land acquisition, but applies to a great
extent to marine acquisition as well. Of course,
feathering does not play a role in stationary-receiver
systems; moreover, acquisition can be center-spread,
alleviating some of the problems associated with the
variation in cross-line offset in a geometry with parallel
shot and receiver lines. One problem might be drifting
of the source vessel due to side currents causing gaps in
midpoint coverage. Drifting of the source vessel is
much less serious in orthogonal geometry.

For techniques employing very expensive receiver
units, areal geometry is the preferred geometry, as it
requires fewer receiver units for a given survey area.
The disadvantage of areal geometry is that it requires a
very dense source sampling which is both time-
consuming and expensive.

A disadvantage of areal geometry is the sensitivity
to obstacles: where there is an obstacle, there will be a
hole in the common-receiver gathers. An interesting
opportunity offered by carpeting the survey area with
shots is that a short streamer might be towed behind the
shooting vessel, thus providing a separate short-offset
3-D cube without much additional cost. Due to the
distance between the receiver units in areal geometry,
shallow coverage is poor, but with a short-offset 3-D,
shallow coverage is taken care of, even allowing a
larger distance between the receiver units. Carpeting
the survey area with shots also allows the simultaneous
recording of high-density gravity profiles (N.N., 1996).

Orthogonal geometry and areal geometry do not
really commit to a particular shooting direction, all
shot-to-receiver azimuths may occur. Hexagonal
sampling of areal geometry provides the least
dependence of the 3-D survey on direction. The
presence of a full range of azimuths also offers the
scope for amplitude versus direction (AVD) analysis
(MacBeth and Li, 1997).

5.4.2 Vertical Hydrophone Cable (VHC)

The VHC technique (Figure 5-14 top) was
developed and patented by Texaco (Stubblefield, 1990;

Krail, 1991, 1994). A vertical cable along which a
string of 12-16 hydrophones is distributed, is anchored
to the sea bottom and pulled into a vertical position by
a buoyancy sphere. The sphere is kept below the zone
of wave action. The signals received by the
hydrophones are stored in a storage device located in a
recording buoy.

As the patent title (Stubblefield, 1990) suggests, the
technique was meant to provide a walkaway VSP
without the need of drilling a hole. But it was soon
discovered that the technique could also provide an
alternative to conventional streamer data acquisition.
Because of the expensive nature of the device and the
relatively low cost of marine shooting, the use of an
areal geometry (Figure 4-9b) is the logical choice for
this technology. At the same time this choice would
allow the acquisition of the full range of azimuths
which might be helpful for imaging in complex
geologies.

The 12-16 hydrophones provide as many 3-D
common-receiver gathers, each one recording a slightly
different signal. VSP type processing may be applied to
separate upgoing and downgoing energy (energy
reflected at the sea surface), and may reduce the data
set into two representations (up- and downgoing each)
of the wavefield at the location of the VHC. This would
eliminate the receiver ghost. A high signal-to-noise
ratio should be possible with the VHC technique,
because a) the hydrophones are located below the zone
of wave action, b) there are many elements in the
hydrophone array, and c) water-borne noise arrives at
all hydrophones at about the same time, hence can be
discriminated against easily.

Several full-scale surveys have been carried out
with this technique (Havig and Krail, 1996). One of
them is the 3-D Strathspey survey in the North Sea in
waters of about 145 m. Processing results are very
encouraging. Due to the limited number of available
systems, the Strathspey survey had to be split over 2 x 3
adjacent swaths of 3 x 4 VHCs each. This necessitated
considerable overlap of the shot areas between adjacent
swaths. For a reasonably sized survey, some 100 to 200
receiver units would be necessary for application of a
roll-along technigue without repeating shots.

The VHC technique also has a number of
shortcomings. First, with the recording buoys it creates
its own obstacles, leading to gaps in the pattern of
shots. In a storm, wave action may get hold of the
recording buoys and displace the whole system.
Unloading tapes and changing batteries has to be
carried out while shooting continues, also leading to
some missed shots. Another problem is that changing
currents will move the cable around, especially the
shallowest part, thus violating the assumption of a
single receiver position. Improvements in the design
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should be able to mitigate these problems considerably.
However, emerging altemative stationary-receiver
techniques are overtaking the VHC technique in
importance.

A much cheaper version of the VHC technique is
the dual-hydrophone Digiseis (Moldoveanu et al,
1994). In this system only two hydrophones are
attached to a vertical cable, allowing immediate radio-
transmission of all received data to a recording vessel.
It has been used to supplement streamer acquisition in
the vicinity of obstacles. In the reported survey an
irregular areal geometry was used with a rectangular
grid of 350 m x 320 m for the Digiseis units, and a
rectangular grid of 40 m x 25 m for the shots. It is not
clear to what extent this technique is capable of
removing the receiver ghost.

5.4.3 Dual-sensor OBC

In dual-sensor OBC, acquisition bottom cables are
provided with a pressure and a velocity detector at
regular intervals. Barr and Sanders (1989) presented a
field test of the dual-sensor system. In their paper they
argue that the water reverberations have opposite
polarity, allowing the suppression of reverberations by
summation of the signals of the two sensors in one
location. This principle is also explained in Barr
(1997). Many papers describe techniques for the
combination of the hydrophone and geophone signals
(Paffenholz and Barr, 1995; Soubaras, 1996; Ball and
Corrigan, 1996).

5.4.3.1  Ghosting

In marine streamer acquisition source and streamer
depths must be carefully selected to ensure that the first
ghost notch occurs at high enough frequencies. For
vertically traveling waves, this notch occurs at f=v,, /
(2d), where v, is the wave speed in water, and d is the
depth of source or streamer. In OBC acquisition the
depth of the cable equals water depth, so that the first
ghost notch may occur at a very low frequency and
many higher notches will be present in the frequency
range of interest.

The ghost phenomenon can be described as

G(f)=1+rexp(-i2nf7), (5.1)

where r is the reflection coefficient at the water surface,
and 7is the time difference between primary signal and
ghost (7= 2d / v,)). In the Fourier domain the recorded
wavefield equals the product of the wavefield without
ghosts and the source and receiver ghosts as described
by equation (5.1). The dual-sensor technique exploits
the fact that hydrophones measure pressure p and
geophones measure a component of the particle
velocity v. At the surface, the sum of the pressures of
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Fig. 5-15. Illustration of dual-sensor principle
(copied with permission from Western Geophysical
brochure). Wavelets are shown on the left with their
corresponding spectra on the right. From above: the
source wavelet, the wavelet plus ghost seen by the
geophones, the wavelet plus ghost seen by the
hydrophone, and the ideal result after combining
the hydrophone and geophone signals.

up- and downgoing wavefield must be zero, p =
Putpa= 0, causing r = -1, whereas vertical particle
velocity for up- and downgoing wavefield must be the
same, v, = vy, causing r = 1. This means that the zeroes
of equation (5.1) for the pressure signal occur at the
maxima of equation (5.1) for the vertical particle
velocity and vice versa. Figure 5-15 illustrates the
ghosts as seen by the geophones and by the
hydrophones.

In processing, the two components can be combined
to obtain a smooth spectrum without any notches.
Because water-bottom reverberations also have
opposite polarity (Barr and Sanders, 1989), these can
be tackled in the some process.

Although the dual-sensor technique was developed
to compensate for the notches in the spectrum for
recordings at greater depth, it is also useful for shallow
waters. In that case, the geophone signal can be used to
compensate for the very weak pressure signal at low
frequencies (notch at zero frequency).

5.4.3.2  Geometry

The OBC can be used most efficiently with
orthogonal geometry. The implementation of this
geometry can be done in various ways. The number and
length of the receiver lines which are laid out in one
“patch” varies, and shot lines may start beyond or
within the reach of the receiver lines. Figure 5-16
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250 m

Fig. 5-16. Typical patch used in OBC acquisition
with 6 cables and 20 shot lines. For the next patch
cables will be moved to adjacent positions (no
receiver overlap), but sources will have to overlap
partially.

shows a patch used by Chevron offshore West-Africa
(Sanders et al., 1994). A similar patch is reported in
Meunier et al. (1995). A very long and narrow patch is
described in Carvill et al. (1996). [Here the authors use
the word “swath” to describe the patch, whereas
elsewhere (Sanders et al., 1994) swath is reserved for
acquisition with a parallel geometry. Nomenclature in
this field has not been settled yet.] The patches are
repeated to generate a full 3-D coverage of the survey
area.

Whatever patch is used, to maintain a reasonably
efficient operation, the recorded cross-spreads will
inevitably be asymmetric and different. This may lead
to highly variable offset samplings in the CMPs and a
noticeable geometry imprint. It is always possible to
chop off outside traces in processing in order to create
square cross-spreads (or at least rectangular cross-
spreads with symmetry around the shot and receiver
axes), but in order to make this not too much of a
waste, it has to be planned already in geometry design
(cf. discussion of full-swath roll in Section 4.6.4).

During deployment, the cable is launched
overboard without much control over where it will go
beyond that point. This leads to variations in station
spacing. In actual practice, it does not make much
difference as demonstrated in a repeatability
experiment reported in Beasley et al. (1997).

5433

Operating an OBC survey is a complicated matter:
four to six vessels are needed for efficiency: a
recording boat, a shooting boat and several cable
deployment vessels (Sanders et al.,, 1994). A balance
has to be struck between the shooting vessel not having
to wait for the next patch to be ready, and the next
patch being ready while shooting of the previous patch

Logistics

has not been completed. Because laying cables is very
time-consuming, cables should be laid out only once at
the same spot, necessitating repeat visits of the sources
to the same locations. The larger the number of stations
available, the smaller the shot repeat factor can be.

In the mid 1990s there was still a water depth
limitation of some 150 m to the use of conventional
dual-sensor cables. The main problem is the retrieval
system, not the strength of the cables. Gradually, better
retrieval systems are allowing extension to greater
water depths.

5.4.4 Four-component marine data
acquisition
The advent of four-component (hydrophone plus
3-C geophone) marine acquisition techniques could
have a great impact on the E&P business. Application
of four-component technology may lead to improved

e lithology and pore fill prediction,
fracture density and fracture orientation
determination,
e  seismic reservoir monitoring, including
compaction analysis,
s  imaging inside and below gas chimneys,
imaging structures with low P-wave contrast and
better PS-wave contrasts.
e imaging below salt /basalt
e imaging, where there is a strong P-wave multiple
(Johansen et al., 1995; Kristiansen, 1998).

Until recently, only 2-D 4-C experiments had been
carried out. In the following some recent developments
are reviewed.

5441  SUMIC

Statoil has released results of their experiments with
the SUMIC technique (Berg et al., 1994; Johansen et
al., 1995; Berg and Arntsen, 1996; Granli et al., 1999).
In this technique a bottom cable is connected to a
recording vessel, but unlike conventional OBC, the
receiver units are external to the cable, and are planted
in the sea bottom using a remotely operated vehicle
(ROV) or underwater robot. The units contain a
hydrophone on top, two orthogonal horizontal
geophones and a vertical geophone. In their
configuration the receiver units were spaced quite
closely along the cable, allowing the recording of high-
fold 2-D lines.

Berg et al. (1994) and Granli et al. (1999) show
imaging of gas chimneys as the main application of the
technique. The PS-wave data produced sections
suitable for structural interpretation, whereas the P-
wave sections only produced jumble across the gas
chimneys.
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Fig. 5-17. Common receiver panel acquired with SUMIC
technique (courtesy Statoil)

Johansen et al. (1995) also show a display of
common-receiver records acquired with SUMIC
(reproduced here as Figure 5-17). This record and other
records shown in presentations show a remarkable
quality of the horizontal components, sometimes even
better than the hydrophone data. The quality of these

records can be attributed not only to the quiet
environment at the sea bottom, but also to the
planting of the receiver unit by the ROV,
leading to better coupling than possible with
gravity-controlled coupling.

Early 1997 a survey was carried out in the
North Sea using an adapted version of the
SUMIC technique. Instead of keeping a small
distance between the receiver units, these were
spaced at 600 m intervals, and linked via a
wired cable to a recording vessel (see Figure 5-
18). Sources were fired every 25 m. Hence,
this geometry is the same as would be used
with a 4-C 3-D OBS survey (see Section
5.4.4.4). Due to logistical problems, only about
half of the planned shot lines were acquired.

Although it is now possible to apply this
acquisition technique in 3-D  surveys
(Pettenati-Auziére et al., 1997), the cost of this
technique is still too high to make it a viable
alternative to 4-C cable techniques based on
gravity-coupling, even though the coupling of
the receivers is more reliable with planting by
ROV. '

5.4.4.2  Other 4-C bottom-cable techniques

A somewhat hybrid technique involving 6
gimbaled geophones from a VSP tool used in
OBC mode plus two hydrophones was carried
out in 1300 m deep waters offshore Norway
(Brink et al., 1996a). Brink et al. (1996b)
discuss in detail the coupling conditions of this
experiment.

Another technique being rapidly developed
is the dragged bottom cable. Rather than
retrieving the cable between deployments, this
cable is made strong enough that it can be
dragged to its next position. Perceived
advantages of this technique are a better
coupling to the sea floor than possible with
conventional OBC deployment, and a constant
distance between stations (no slack).

Full-scale tests of this technique for 3-D/4-
C surveys have been reported for three
different surveys acquired in the North Sea
(Kristensen et al., 1999; McHugo et al., 1999;
Rosland et al., 1999). The geometries of these
surveys were all different and are reviewed in
Chapter 6.

The 3-component geophones in an ocean-bottom
cable should show vector fidelity (Tree, 1999). A
seismic acquisition system exhibits vector fidelity when
it accurately records the magnitude and direction of a
seismic wave in three dimensions. Tree (1999) reports
that the x- and y-components of several tested 3-C
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wavefield, the geophones would have
to be external (as in Figure 5-14

bottom).
Alternatives to the internal
geophones would be a gravity-

deployed external three-component
geophone, or a receiver unit planted
by ROV as in the SUMIC technique.
For applicability to 3-D, the system
should be capable of listening during a
sufficient length of time, have enough
battery power and storage capacity.

Fig. 5-18. Areal geometry of 4-C receiver units planted by ROVs.

geophones do not respond equally to the ground
motion. This "vector infidelity" is probably due to the
nature of the cable with a large dimension along the
direction of the cable and a small dimension across.
The node systems (Pettenati-Auziére et al., 1997),
planted by ROV, tend to show better vector fidelity.
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Concern that the required repeatability for time-
lapse surveys cannot be reached with streamer
acquisition has led to some tests with buried cables. In
1995 BP/Shell acquired data using a buried cable over
their Foinaven field (Godfrey et al., 1998). However, in
this case the cables were only equipped with
hydrophones (densely spaced). The airgun array source
was fired in a dense areal grid.

In the 1997 Teal South 4-C/4-D survey, the
4-component receivers were spaced at 200 m, whereas
the buried cables were spaced at 400 m (Ebrom et al.,
1998). Again an areal geometry was used, with a dense
25 x 25 m grid of sources.

54.44

For more than twenty years, academia has been
using OBS units for wide-angle refraction and
reflection profiling (WARP). These self-contained units
are lowered (by gravity) to the ocean-bottom, left there
for two weeks or so while shooting takes place, and
then retrieved again. The systems usually consist of a
glass sphere, which contains a 2-6 channel recording
instrument plus batteries, and sometimes one or three
geophones; the (external) hydrophone is standard.
Unfortunately, even though gravity may firmly plant the
whole system on the bottom, internal geophones cannot
record the undisturbed seismic wavefield. In particular,
the horizontal geophones suffer severely from rotations
of the whole system, induced by the height and size of
the set-up (Sutton and Duennebier, 1987; Duennebier
and Sutton, 1995). For reliable recording of the seismic

4-C acquisition with buried cables

Ocean-bottom seismometers

And the recording fidelity should be
state-of-the-art. All these requirements
lead to considerable unit cost of such
OBSs, necessitating the use of an areal geometry as
with VHCs. Moreover, planting of the geophones using
an ROV would be time-consuming and expensive.
Nevertheless, a 4-C 3-D OBS survey would be similar
in cost as a VHC survey, but easier to handle with the
added benefit of shear-wave data.

5.5 Overview and conclusions

This chapter provides a review of currently
available marine seismic data acquisition techniques. A
major observation is that MS/MS acquisition is
superior as far as cost and operation in deep waters are
concerned, but that for the highest quality it may be
worthwhile to consider one of the stationary-receiver
techniques. In a comparison between MS/MS
techniques and dual-sensor OBC a similar conclusion is
drawn (Barr et al., 1996). Yet, technology in streamer
acquisition and seabed acquisition is progressing
rapidly, so that by the time this dissertation will be
published some observations may have become
obsolete.

The advent of 4-C marine recording capabilities
opens up a new range of opportunities for the E&P
business. SUMIC results have shown that high-quality
shear-wave data may be recorded in the marine
environment. Further developments and
commercialization of those techniques are taking place
rapidly.

Processing techniques will also have to be
developed to deal with orthogonal and areal acquisition
geometries. Processing of full-azimuth shear-wave data
provides yet another challenge. Eventually, the
achievements on shear data acquisition and processing
that can be anticipated for the marine environment, may
give a new push to shear-wave recording and
processing on land.
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6 CONVERTED WAVES: PROPERTIES AND 3-D SURVEY DESIGN

6.1 Introduction’

Multi-component surface seismic has a long history
on land, whereas multi-component marine data
acquisition was virtually unheard of, until a few years
ago. Then, the interest in multi-component marine data
acquisition received a great stimulus by the pioneering
work of Statoil with their SUMIC technique (Section
5.4.4.1; Berg et al., 1994; Johansen et al., 1995; Berg
and Arntsen, 1996; Granli et al., 1999). Imaging of gas
chimneys was the main application of the technique
(Berg et al., 1994; Granli et al.,, 1999). The PS-wave
data produced sections suitable for structural
interpretation, whereas the P-wave sections only
produced jumble across the gas chimneys.

In SUMIC, ROVs were still used to plant the
geophones, but now a less expensive technique, based
on using a dragged bottom cable, is rapidly being
developed. This technique was first tested for 2-D/4-C
applications (Kommedal et al., 1997; Kristiansen,
1998). Kristiansen (1998) lists a large number of
applications for 4-C (3 geophones plus hydrophone)
data.

Full-scale tests of the dragged bottom cable
technique for 3-D/4-C surveys have been reported for
three different surveys acquired in the North Sea
(Kristensen et al., 1999; McHugo et al., 1999; Rosland
et al., 1999). The geometries used in these surveys
were all different.

In all marine applications, P-wave energy converted
to S-wave energy at the reflecting horizons is the main
wave type being analyzed. These PS-waves have
asymmetric raypaths leading to special requirements of
the survey geometry. Only a few papers seem to have
been published on the design of 3-D/3-C seismic
surveys. Lawton (1995), and Cordsen and Lawton
(1996) deal mainly with binning issues, in association
with the asymmetric illumination by PS-waves. In my
opinion, binning issues are better left to processing, in
particular when spatial interpolation to neighboring bin
centers (Herrmann et al., 1997, Beasley and Mobley,
1997) becomes more generally accepted. Ronen et al.

! This chapter is an expanded version of Vermeer (1999).

(1999) discussed the irregular illumination by cross-
spread 4-C surveys and argued that a careful analysis
of this effect is required to plan an optimal survey.

The asymmetric illumination by PS-waves is the
major reason that the design of 3-D surveys for
converted waves is more complicated than for P- or S-
waves. Symmetric sampling requirements (Chapters 1
and 2) do no longer apply. To find out what does apply,
this chapter looks at some properties of the PS-
wavefield in the minimal data sets of various
acquisition geometries. The behavior of apparent
velocities in the MDSs is discussed to determine
sampling requirements. Illumination, resolution, and
imaging of converted waves are compared for the
different MDSs. In the second part of the chapter, the
results of the first part are applied to discuss the
suitability of various geometries for PS-wave
acquisition. It is found that parallel geometry is most
suited for PS-wave acquisition, whereas other
geometries tend to have problems with illumination,
resolution or both.

The analyses in this chapter are carried out for a
simple isotropic medium with constant P-wave velocity
V, and constant S-wave velocity V.

6.2 Properties of the PS-wavefield

6.2.1 Traveltime surfaces and apparent
velocity

The difference between ¥V, and V, leads to
asymmetry between the P- and the S-angles of
reflection according to Snell's law. As a consequence,
the raypaths are different if shot and receiver are
interchanged, and traveltime curves are different in
common-shot gathers and common-receiver gathers.
For a horizontal reflector, the traveltime curves are still
the same, even though the raypaths are different.

Similarly, the diffraction traveltime as a function of
offset is different between common-shot diffractions
and common-receiver diffractions. In the common shot
the diffraction is much steeper because the slow V; de-
termines the change in traveltime. Figure 6-la
illustrates the traveltime behavior for PP- and PS-
reflections from a horizontal reflector and it shows PP-
and PS-diffraction traveltimes for shot and receiver
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Fig. 6-2. PS-reflection in common shot (1) and common receiver (2) for 15° dip. Depth of reflector at position
of shot, receiver is 2000 m. (a) Traveltimes. (b) Apparent velocity. The common shot has the steepest curve
and the smallest apparent velocity.

gathers. The corresponding apparent velocities (as
measured in the surface coordinate systems) are plotted
in Figure 6-1b. All apparent velocities seem to be
controlled by the P-wave velocity only, except the PS-
diffraction in the common shot, which has very low
apparent velocities tending towards the S-wave ve-
locity.

The asymmetry in PS-acquisition becomes more
apparent for dipping reflectors. This is illustrated for a
reflector with 15° dip in Figure 6-2. Note that the
reflection time curve is steepest for positive offsets in
the common shot; there it has an apparent velocity
smaller than the P-wave velocity.

Figure 6-3 shows contour plots of the diffraction
traveltimes for the common receiver, the common shot,
the common-offset-vector gather (COV) and the cross-
spread. In the common shot the S-wave velocity
determines the slopes of the curves, whereas in the
common receiver the P-wave velocity determines the
slopes. The curves in the common-offset gather have
some intermediate slope. This can be understood by
realizing that the apparent velocity ¥, in the zero-offset
gather would tend to 1/V, = 1/ ¥, + 1/ ¥ for large
distances from the scatterer. Note that - unlike a PP-
diffraction - the apex of the PS-traveltime surface in
the COV gather is offset from the diffractor position.
The cross-spread shows a mixed behavior: steep flanks

-1000 -500 o 500 1000

shot line

W( f/{// ;\r\\\\ eer
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(@
Fig. 6-3. Diffraction traveltime contours for various
minimal data sets plotted in midpoint coordinates.
Contour interval is 250 ms. Position of diffractor in
(250, 250, 500) is indicated by a "+", V, = 2400 m/s,
Vs = 800 m/s. (a) Common receiver. (b) Common
shot. (¢) COV gather (600 m). (d) Cross-spread.
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in the in-line (receiver) direction and gentle slopes in
the cross-line (source) direction.

6.2.2 Illlumination

In P-wave acquisition the midpoint coverage is the
same as subsurface coverage of horizontal reflectors.
Therefore, fold-of-coverage is fairly representative for
illumination fold, even for areas with gentle dips. This
is quite different for PS-wave acquisition due to the
asymmetry in the raypaths. For three different minimal
data sets Figure 6-4 shows a comparison of their
midpoint area (the same for all three MDSs) with the
illumination areas of a horizontal reflector for ¥,/ V=
1.5 and ¥, / ¥, = 3. The 2000 x 2000 m square in
Figure 6-4 is the midpoint area. This square also
represents the PP-illumination area for a horizontal
reflector. The other curves represent the conversion
point curves corresponding to the midpoints along the
outline of the square. The cross-spread shows
asymmetry: the illumination area is wider in the in-line
direction and narrower in the cross-line direction than
the midpoint area. The 3-D shot has the largest
illumination area and the 3-D receiver the smallest.

For dipping reflectors the illumination areas will
shift updip. The illumination area of a COV gather is
not shown in Figure 6-4 to prevent clutter. It would be
a square illumination area with the same size as the
midpoint area, but shifted towards the receivers.

Often, illumination fold is measured by counting
the number of hits per bin. Then, for a binsize equal to
the natural binsize of the geometry, illumination fold of
a single cross-spread might vary between 0 and 3,
whereas there is only a single-fold illumination area.
Counting the number of hits per bin neglects the spatial
relationship that exists between groups of traces, such
as a cross-spread. Counting the number of overlapping
illumination areas gives a better measure of imaging
capabilities and image fold (see also Figure 6-13 and
Section 2.5.3).

6.2.3 Resolution

The wavenumber spectra of different MDSs can be
used to compare the resolution that can be reached with
those MDSs (Chapter 8). The spectra are composed
from the contributions to the spectrum by all individual
shot/receiver pairs. For PP-wavefields, the contribution
of each shot/receiver pair to the resolution in a point P
is described by

- v
k =k, +k, v, (u, +u,), 6.1
where k,, Kk, are shot, receiver wavenumber
respectively, f is frequency, and ug and u, are unit
vectors (see Figure 6-5a). For PS-wavefields, a similar
relation holds, but now V; enters the equation as well
(see Figure 6-5b and c)

u u
k=k, +k, =f(—=+-7),
K =S+

P s

(6.2)

It follows from equation (6.2) that for the PS-
wavefield |k, is larger than |k{. This leads to
asymmetry in illumination and resolution, depending
on the relative position of shot and receiver as
illustrated in Figure 6-5b and c. In Figure 6-5b the
vertical component of k is larger than in Figure 6-5c,
whereas it is the other way around for the horizontal
component. Another consequence of equation (6.2) is
that - for the same frequency - the components of k for
PS-waves are larger than for PP-waves. The collection
of all shot/receiver pairs in an MDS illuminate a wide
range of dip angles 6, and span a wide range of
wavenumbers, indicative of resolution. For different
MDSs, the wavenumber spectra are illustrated in
Figure 6-6 for a PP-wavefield, and in Figure 6-7 for a
PS-wavefield.

Figure 6-6 shows that the wavenumber spectra of
the 3-D receiver and the 3-D shot are identical for PP-
waves, whereas Figure 6-7 illustrates that the PS-
wavenumber spectrum of the 3-D shot spans a much
wider range than that of the 3-D receiver. The cross-
spread PS-spectrum has a hammock shape, indicative
of the asymmetry between in-line and cross-line

Fig. 6-4. Illumination areas on
horizontal reflector of 3-D shot
(bounded by the two widest curves),
3-D receiver (the two curves in the
center), and cross-spread (the two
elongated curves) for ¥,/ ¥, =3 and
Ve ! V=15, The 2000 x 2000 m
square represents the midpoint area
of the three minimal data sets. The
depth of the reflector is 2000 m.
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8=(6,+6,)/2
i=(6.-6,)/2

.....

(2)

Fig. 6-5. Ilumination of subsurface point x by single shot/receiver pair (S, R) and corresponding
wavenumbers. k; and k. point in the direction of the raypaths ending in x. @is the dip illuminated by (S, R),
and i, j are the corresponding reflection angles. (a) PP-situation. (b) PS-situation with R closest to x. (c) PS-

situation with S closest to x. V,/V;=2.

k.

Fig. 6-6. PP-wavenumber spectra for a subsurface point below the center of each one of four minimal data
sets. All data sets have the same 1000 X 1000 m midpoint area. The surfaces correspond to constant input
frequencies 25 Hz (upper surfaces) and 50 Hz. From left to right: 600 m COYV gather, 3-D shot, 3-D receiver

and cross-spread.

Z

Fig. 6-7. Same as Figure 6-6 for PS-situation with V,/V; = 3. Note that the wavenumber ranges in this figure
are larger than in Figure 6-6; the 3-D receiver spectrum has the same size as in Figure 6-6.

direction.

Figure 6-8 shows the projections on the horizontal
plane of wavenumber spectra of various minimal data
sets for PP- (left) and PS-waves (center and right).
Notable is the invariance of the 3-D receiver resolution
to ¥, / V.. This is because ¥, is kept constant, whereas
the V,-leg of the raypath fully determines the
resolution in the 3-D receiver. The asymmetry in the
cross-spread leads to less resolution in the cross-line
(source) direction than in the in-line direction. There is
also asymmetry in the resolution of the COV gathers.
The resolution is best for the downdip shooting part of
the wavefield (positive x, y map onto negative k,, ky,

hence a shot-receiver combination with positive
coordinates, source to the left of the receiver, maps to
negative k).

Figure 6-8 shows that - except for the 3-D receiver
gather - the resolution of PS-data is better than the
resolution of PP-data for the same frequency and the
same aperture (midpoint range). In practice, PS-data
tend to have lower maximum frequency than PP-data,
thus reducing or even losing the relative advantage.

6.24 Imaging

Next to the range of wavenumbers that is available
for the imaging process, it is of interest to investigate
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Fig. 6-8. Projection in horizontal wavenumber plane of the (common-frequency) spectra of six different
minimal data sets with the same 1000 X 1000 m midpoint area for PP (left), PS with ¥, = 1600 m/s (center)
and PS with ¥, = 800 m/s (right). ¥, = 2400 m/s in all cases. 1= cross-spread, 2 = 3-D receiver, 3 = 3-D shot, 4
=600 m COV gather, 5 = 1000 m COV gather, 6 = zero offset. The PS zero-offset is hypothetical, as PS-waves

have zero amplitude for zero-offset.

the imaging process itself, and compare the ability of
various MDSs for imaging of the PS-wavefield. For
this investigation, it is helpful to consider migration as
a two-step process (see Figure 6-9), similar to the
discussion of the effect of sampling density on the
migration result in Section 8.3.7 and Figure 8-14.

In the first step, the seismic section is modified to
flatten the diffraction traveltime surface corresponding
to the output point. In this process, reflections are
turned into bowl-shaped events, with the apex at the
point of stationary phase. In the second step, all data of
the diffraction-flattened gather are summed and
provide the image trace. Similar as for forward
modeling (Briihl et al., 1996), the zone of influence can
be defined (see also Section 10.2.2). The zone of
influence encompasses all traces around the point of
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stationary phase, which contribute —constructively or
destructively— to the amplitude of the migrated event
at the depth of the image point. The width of the zone
of influence depends on the length of the wavelet, on
the curvature of the migration-corrected event, and on
the domain in which the zone is measured, midpoint
domain or subsurface domain (see below). The data
outside the zone of influence cannot contribute to the
required image and should be canceled in the second
step of the migration process.

In 3-D, the migration-corrected reflections become
truly bowl-shaped events. To describe the shape of
these events in 3-D, contour plots are used in Figures
6-10 and 11. Figure 6-10 shows that for P-wave data
the zone of influence is not very different between the
various MDSs. (If the output point does not coincide

distance
-1000 -500 0 500 1000

.l Zone of influence

(a) ' (b) (©)

Fig. 6-9. Migration as a two-step process illustrated with a zero-offset section. (a) Input showing diffraction
(heavy curve), a dipping reflection (thin dotted curve), and a horizontal reflection (thin drawn curve). (b)
Diffraction-flattened gather. In the first step, the input data are realigned according to the diffraction
traveltimes in the output point. Shown is the realignment for the output point at x = 0, which is the position of
the diffractor. Note that the apex of the curve for the horizontal event is located at x = 0, whereas the apex for
the dipping event is located toward the left. The location of these apices corresponds to the position of the
zero-offset shot/receiver pair, which has illuminated the reflector at x = 0. (c) In the second step, the realigned
data are summed (stacked) and phase-corrected to form the image trace.
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- The zone of influence contains more data
points (traces) in the cross-spread than in the
3-D shot. This would lead to a larger
amplitude for cross-spread data than for 3-D
shot data. True-amplitude migration should
take these effects into account. The zone of
influence of the 3-D receiver contains the
largest number of traces, giving the 3-D
receiver an advantage with respect to noise
suppression.

In Figure 6-12 the zones of influence are
plotted as a function of reflection point x and
y, rather than in terms of midpoint x and y as
in Figure 6-11. Figure 6-12 shows that the
area of the reflector contributing to the

200 400 400 -200

TR YT w0 a0 o

Fig. 6-10. Contour maps in (x,,, y,) of diffraction-flattened PP-
traveltimes of horizontal reflector for output point in center of
six different MDSs. Top row: COV gather, 3-D receiver, and
slanted spread. Bottom row: Cross-spread, 3-D shot, and zig-
spread. The central (white) area in each map may be considered
to represent the zone of influence. Depth of reflector 1000 m. V,

= 2400 m/s. Contour interval 25 m.

w0 a0 o

400 200 0 200 400

400 -200

200 40

Fig. 6-11. As Figure 6-10 for PS-reflection with V,/V, = 2. Top
row: COV gather, 3-D recciver, and slanted spread. Bottom
row: Cross-spread, 3-D shot, and zig-spread. The zones of
influence are very different for the different MDSs. These zones
give a representation of the number of reflection points being

"stacked" into the output point.

with the center of the minimal data set, the differences
become larger.) Figure 6-11 shows that for PS-data
large differences exist between the various MDSs.

For proper imaging, it is essential to have complete
zones of influence in the migration summation. The
elongated shape of the zone of influence in the cross-
spread requires more traces in the cross-line direction
than in the in-line direction. This suggests acquisition
of asymmetric cross-spreads with much longer shot
lines than receiver lines, and it suggests that an
asymmetric migration operator range should be used.

200 400

200 400

migration amplitude in the output point is
about the same in all cases. There are small
differences, depending on the offset mix
contributing to the area of the zone of
influence. Larger differences would occur if
the output point did not coincide with the
center of the MDSs.

6.3 3-D survey design for PS-
waves

6.3.1 Choice of geometry

Very often the choice of geometry will be
dictated by circumstances such as available
budget. On land, this tends to lead to
orthogonal geometry or some derivative
thereof (e.g. slanted shot lines), for marine
streamer acquisition to parallel geometry and
for OBC work to orthogonal geometry.
Nevertheless,  geophysical requirements
should play a role as well, and need to be
properly understood. In the first part of this
chapter we have seen that illumination
depends strongly on which minimal data set
is used, hence on acquisition geometry. For
equal aperture, resolution between the various
MDSs is also very different. In this part I will
discuss the consequences of the properties of
the PS-waves in the various MDSs for 3-D/3-
C survey design.

There is a large difference in the properties of
parallel geometry as compared to the properties of all
other geometries. In its ideal form, the parallel
geometry is a franslational geometry, i.e., its properties
do not depend on location, whereas all other
geometries are non-translational, i.e., their properties
vary from point-to-point. This difference manifests
itself most clearly in the MDSs. The COV gather
extends across the whole survey area, whereas the
MDSs of all other geometries have limited extent,
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Fig. 6-12. Central contours at 975 m for each graph in
Figure 6-11 replotted as function of reflection point x and y
(dots). Top row: COV gather, 3-D receiver, and slanted
spread. Bottom row: Cross-spread, 3-D shot, and zig-spread.
The drawn circle with the same radius in all plots has been
added as a reference. The areas inside the dotted curves give
a better representation of the range of reflection points being
"stacked" into the output point than the zones of influence
plotted in Figure 6-11. (The contours are plotted as a series
of dots rather than as drawn lines, because of difficulty to
compute contours; each dot represents a point in a narrow
range around 975 m.)

because the shot/receiver offset increases away from
the center of those minimal data sets until being cut off.

6.3.1.1
For P-wave acquisition and processing, the problem

Orthogonal geometry
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of MDSs of limited extent can be solved quite
reasonably by the introduction of pseudo-
minimal data sets (pMDS, Section 2.5). For a
regular orthogonal geometry, OVT gathers are
most suitable as pMDSs (Section 2.5.4).
Between the tiles in each OVT gather spatial
discontinuities exist, but these discontinuities
tend to be of limited significance. If the
illumination of a reflector in the subsurface is
considered, the illumination by adjacent tiles in
an OVT gather will be nearly continuous
(depending on the size of the tiles, and the
curvature of the reflector), with small overlaps
and small gaps (cf. Figure 10-12). This approach
tends to work for P-wave data because the
illumination area of each cross-spread is about
equal in size to the midpoint area of the cross-
spread; these areas have exactly the same size
when a horizontal reflector in a constant-
velocity medium is illuminated.

These considerations do not apply to PS-
wave acquisition and processing. Now the
illumination area of each cross-spread is very
different from the midpoint area, even for a
horizontal reflector in a constant-velocity
medium (see Figure 6-4). As a consequence,
regular fold-of-coverage does not lead to regular
illumination fold. Figure 6-13 illustrates the

variation of illumination fold for a 16-fold square
orthogonal geometry and V,/V; = 2. For larger V,/V,,
the variation in illumination fold would be even larger.
It is still possible to construct single-fold tilings (100%
cubes) across the whole survey area by taking

Fig. 6-13. Overlapping illumination areas for 16-fold orthogonal geometry. V,/V; = 2. Gray area indicates
illumination area of one cross-spread. In narrow horizontal strip PS-illumination fold varies between 15 and
18, whereas in broader horizontal strip illumination fold varies between 10 and 12.
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— better in the receiver line direction than in
o 1 the shot line direction. In case of a dominant
dip direction, it is advisable to orient the

. — receiver lines in that direction.

6.3.1.2  Parallel geometry

of / o The ideal parallel geometry consists of a
collection of pure COV gathers in which

T each COV gather has indeed constant in-

line offset and constant cross-line offset

— —_— (constant absolute offset and constant
= azimuth). The ideal geometry can only be
acquired by acquisition of each midpoint

- i line separately (repeated 2-D). Acquiring
the seismic data in this way is highly

I S - expensive; therefore, parallel geometry is
=y / always acquired with a number of shot and
L o receiver lines in one pass. In streamer

~500 2 500 1000

a0 acquisition, the configuration often consists

. . . . of two shot lines (produced by two source
Fig. 6-14. PS-illumination of horizontal reflector by single-fold arrays towed behind the vessel) and 4 to 12

tiling of offset-vector tiles for V,/V, = 2. The offset-vector tiles streamers. In this way 8 to 24 midpoint lines
correspond to the upper right-hand corners of 16 cross-spreads are acquired in one boat pass.

similar as described in Figure 2-21. Even though fold-of-coverage Because laying cables is time-
is exactly 1 throughout, illumination fold varies between 0 and 2. consuming and shooting sources is

relatively cheap, OBC acquisition tends to
be carried out the other way around: there the
configuration (a swath) is formed by a few receiver
lines (often two cables) and many shot lines. Figure 6-

rectangles from the same location in each cross-spread,
but their illumination areas are strongly discontinuous
as shown in Figure 6-14. Similar reasoning applies to

all other non-translational geometries. 15 shows an arrangement in which the cables are laid

As a consequence, it is impossible to obtain 2 out at a distance of 210 m from each other. If the next
regular PS-illumination of the subsurface using one of two cables are shified over 420 m, the total width

th‘?t. n?t;tl:anslgtional!‘. gef? rlr(lietx}es. The pro(l;lem bis covered by the shot lines must be 840 m in order to
mitigated by using a high fold-of-coverage, and may be produce regular midpoint coverage in the cross-line

f““i‘er r:tﬁ““d bly careful P’°°essli“gf' - the rocei direction. This leads to 315 m width of shot lines
n orthogonal geometry, resolution in the receiver oo o

line direction is determined by the S-wave velocity and The geometry of the swath was selected such that

}Fh thi. shot hxﬁe dlrgcti:qn by 6t§e P-V;'at\./e Yelocm;; the midpoint lines of one cable can be interleaved with
erelore, as shown In Figure 6-9, Iesofution 1S muc those of the other cable. In our example, setting the

L A’ B’ 1
Swath 2 g -
Swathi g 315m A 21om B 315m

PP-illumination A ” I l “J I

PP-illumination B ””

PS-illumination A } Vp/Vs=2
PS-illumination B

PS-illumination A R _
PS-illumination B I . } VRV

Fig. 6-15. Illumination with swath acquisition. In swath 1 two cables A and B are laid out at the sea bottom at
210 m distance. The range of shot lines equals 840 m. Swath 2 is shifted over 420 m with respect to swath 1.
Illumination of a horizontal reflector for swath 1 is indicated with vertical shading, for swath 2 with diagonal
shading. This geometry ensures regular midpoint coverage, i.e., regular PP-illumination of a horizontal
reflector. PS-illumination is not regular and even shows gaps in case of large V,/V..




Converted waves 117

~4000 -3000 ~2000

-1000 Qo

Fig. 6-16. Overlapping illumination areas for 16-fold areal geometry. V,/V; = 2. Gray area indicates
illumination area of one common receiver. In narrow horizontal strip PS-illumination fold varies between 6
and 9, whereas in broader horizontal strip illumination fold varies between 4 and 6.

origin halfway the two cables, the cables are at
locations +/- 105 m, and the shot lines should be at +/-
30 m, +/- 90 m, etc, until +/- 390 m, assuming 60 m
shot line interval. This leads to 840/60 = 14 shot lines
and 14 x 2 = 28 midpoint lines with 420/28 = 15 m
cross-line interval. In this way cross-line fold is always
one, and the total fold only depends on the in-line
parameters. (Note that the arithmetic requires setting
the width of the geometry at 840 m, which is number
of shot lines times shot line interval, rather than taking
the distance between the two outside shot lines which
is 780 m.)

Figure 6-15 illustrates that PS-illumination with
this acquisition geometry is no longer regular, because
the illumination ranges for each cable are narrower
than the 420 m midpoint range. For large V,/V; values,
there are even illumination gaps. The gaps are largest
for large in-line offsets (as can be understood by
inspection of the illumination area of a cross-spread as
shown in Figure 6-4). For the situation of Figure 6-15
(V,/V, = 3, depth of reflector is 2000 m), the
illumination gap equals =53 m for zero in-line offset,
larger for larger in-line offsets. By adding a few shot
lines on either side of the swath, complete illumination
can be achieved. Yet, the remaining density variation
in illumination will lead to amplitude striping, unless
very careful processing is carried out.

It tends to be faster to roll only one cable at a time,
rather than both cables as suggested in Figure 6-15.
However, with this kind of shot-line configuration,
some shot lines would have to be repeated for the cable
that is not rolled. A more efficient technique, requiring
a smaller total number of shot lines, is to acquire the
survey in two passes: first acquire cable positions 1, 3,
5, etc., followed by acquiring cable positions 2, 4, 6,
etc.

6.3.1.3

The areal geometry is also a non-translational
geometry. It is the geometry used in the Teal South
time-lapse experiment (Ridyard et al., 1998). The use
of areal geometry tends to be practical only with 3-D
receiver gathers and not with 3-D shot gathers.
Unfortunately, the illumination area of a 3-D receiver
is relatively small, whereas resolution tends to be lower
than achievable with PP-data. This requires a relatively
high density of 4-C receivers. An advantage of this
geometry is that it is most suitable for analysis of
azimuth-dependent effects.

Figure 6-16 illustrates the illumination fold of a 16-
fold areal geometry for V,/V, = 2. The geometry is
equivalent to the orthogonal geometry used to produce
Figure 6-13, i.e., the distance between receiver units in
x and y is equal to the acquisition line intervals of the
orthogonal geometry, and the maximum in-line and

Areal geometry
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Fig. 6-17. PS-illumination of horizontal reflector by
single-fold tiling of offset-vector tiles for V,/V; = 2.
The offset-vector tiles correspond to the upper
right-hand corners of 16 common-receiver gathers
similar as described for cross-spread geometry in
Figure 2-21. Even though fold-of-coverage is exactly
one throughout, illumination fold varies between 0
and 1.

cross-line offsets are also equal to those of the
orthogonal geometry. Illumination fold varies between
4 and 9 and fold would be even smaller for larger
Vp/V,. The distance between the receiver units would
have to be reduced considerably to reach illumination
folds of 16 on average.

Figure 6-17 illustrates the illumination by the top-
right corner of each common-receiver gather for the
geometry illustrated in Figure 6-16. Similar as in
Figure 6-14, the midpoints of this data set form a
continuous coverage of the survey area. Figure 6-17
shows that illumination is far from continuous.

6.3.1.4  Parallel versus orthogonal geometry and
areal geometry

Ilumination appears to be the most important
property determining which geometry is to be preferred
for PS-acquisition. Irregular illumination cannot be
avoided by either parallel (except repeated 2-D) or
orthogonal geometry. Yet, it appears that taking the
irregularity into account in processing is easier with
parallel geometry than with orthogonal geometry. The
reason is that in parallel geometry common in-line
offset gathers are continuous in the in-line direction
and can be made to have some overlapping
illumination in the cross-line direction. Hence, it can be

attempted to regularize the illumination areas of each

common-in-line-offset gather by removing overlaps
(interpolation might be more difficult). In orthogonal
geometry or areal geometry it does not seem to be

possible to create (continuous) single-fold illumination
gathers from the data. '

For resolution, parallel geometry is to be preferred
over orthogonal and areal geometry as well. In parallel
geometry, horizontal resolution is better for downdip
than for updip shooting, whereas vertical resolution is
better for updip than for downdip shooting (cf. Figures
6-5b and c). This asymmetry can be taken care of by
center-spread acquisition. On the other hand, in
orthogonal geometry, resolution of cross-line dips is
inferior to in-line dips. This problem might be
alleviated by using an asymmetric migration operator
radius, with a considerably larger radius in the cross-
line direction than in the in-line direction. However,
resolution is also affected by the large spatial
discontinuities between the illumination areas of
separate cross-spreads. These lead to migration
artifacts.

Hence, parallel geometry tends to be better
geometry for PS-acquisition than orthogonal or any
other crossed-array geometry. Apart from a cost
benefit, the only advantage of orthogonal geometry is
that it allows analysis of azimuth-dependent effects
such as fracture orientation. This would require two
orthogonal acquisition passes with parallel geometry.
However, if anisotropy is only a nuisance, making life
of the processor difficult, then parallel geometry will
suffer least from its presence. An advantage of areal
geometry over orthogonal geometry might be that the
irregularities in areal geometry are symmetric,
including more symmetry in azimuth-dependent
effects.

Areal geometry can be sampled more efficiently
using a hexagonal sampling grid, both for the receiver
units and the shotpoints (see Section 2.4.1).

All  geometries suffering from irregular
illumination, the imaging result should benefit from
application of the migration-equalization technique
proposed in Albertin et al. (1999). See also Section
10.7.

6.3.2 Sampling

The sampling interval in any spatial domain is
determined by the smallest apparent velocity and the
largest frequency. This means that for equal maximum
frequency the sampling of the receivers in a common
shot depends on the S-wave velocity requiring denser
sampling than P-wave acquisition, whereas the
sampling of the shots in a common receiver can be the
same as for P-wave acquisition. This leads to
asymmetric sampling requirements.

Sampling parallel geometry is of special interest.
Here again, proper sampling of the field data requires a
smaller sampling interval for the receivers than for the
shots. The required midpoint sampling of the COV
gather (see Figure 6-3) depends on the harmonic
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average of P-wave and S-wave velocities, hence seems
to be less strict than in the 3-D shot gather. However,
to realize the required midpoint sampling for each
offset, shot and receiver sampling intervals would have
to be equal to the required midpoint sampling interval,
because each offset only occurs at every other mid-
point. Therefore, proper sampling of COV gathers can
best be achieved by interpolation of properly sampled
shot and receiver gathers.

6.4 Discussion

In this chapter some theoretical considerations have
been given on the design of 3-D/3-C seismic surveys.
A very simple model was used. It will be interesting to
see whether these theoretical considerations can be
confirmed by analysis of the 3-D/3-C surveys acquired
up till now.

Chevron's Alba survey was acquired with parallel
geometry (McHugo et al, 1999). The cross-line
midpoint range of their geometry was 1050 m (42
source lines times 50 m interval / 2), for a cross-line
shift between swaths of 800 m, giving a 250 m
midpoint overlap between adjacent swaths. This
geometry ensures full PS-illumination in the cross-line
direction of horizontal reflectors for V,/V, ratios up to
3. lllumination-density variations in the cross-line
direction are inevitable and need be addressed in
processing. The geometry has large cross-line offsets,
leading to gaps in the shallow illumination. The authors
report that "the converted wave processing gave an
excellent image of the target zone".

Amoco's Valhall survey was acquired with
orthogonal geometry (Rosland et al., 1999). One reason
to use orthogonal geometry was that 2-D tests in the
area showed weak but non-negligible cross-line energy,
possibly caused by azimuthal anisotropy (Thomsen et
al., 1997). However, the 3-D processing results
reported up till now were obtained without exploiting
this cross-line energy (Brzostowski et al., 1999).

Statoil's Statfjord survey was acquired with a very
dense coverage of shots across 8 4-C cables of 5 km
each and 300 m between the cables (Kristensen et al.,
1999, Rognoe et al., 1999). This survey lends itself to
simulation of orthogonal geometry and areal geometry.
Parallel geometry might also be simulated.

The authors of the publications on all these data
sets are encouraged by results obtained thus far, but
acknowledge that more work needs to be done to fully
exploit the vector-information contained in the data and
to assess the potential of these methods. I expect that
further work will also provide confirmation of
predictions based on the theoretical work of this
chapter.

6.5 Conclusions and
recommendations

In multi-component data acquisition the converted
waves, i.e., PS-waves, have asymmetric raypaths
leading to asymmetry in the requirements for optimum
parameters. Some conclusions are:

e Receiver sampling is determined by S-wave
velocities, and shot sampling by P-wave velocities.

e Illumination, even of horizontal reflectors, is
asymmetrical  with  cross-spreads,  whereas
common-offset gathers with constant azimuth have
regular illumination.

e Horizontal resolution in cross-spreads is much
better in the receiver line direction than in the shot
line direction (for maximum cross-line offset
equals maximum in-line offset).

s Common-offset gathers have better resolution for
downdip shooting than for updip shooting.
Therefore, the parallel geometry should be
acquired with center-spread shooting, so that
negative as well as positive offsets are acquired.

much  more
Some general

Obviously, PS-acquisition is
complicated than P-acquisition.
guidelines are:

¢ If possible, notably in OBC work, choose paraliel
geometry rather than orthogonal or areal geometry,

¢ Areal geometry might be best for azimuth-
dependent analysis. The strong asymmetry of
orthogonal geometry might make azimuth-
dependent analysis particularly difficult.

¢ Harmonize requirements of P-wave acquisition
with those of PS-wave acquisition (after all, they
are acquired at the same time),

¢ Parallel geometry:
e  Best to use center-spread

¢ Orthogonal geometry:

e receiver lines to be oriented in the dip
direction,

e receiver line interval to be smaller than shot
line interval,

e use illumination plots for typical targets to
verify illumination and imaging capability of
geometry,

e use illumination plots also in processing to
regularize illumination fold.
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7 CASE HISTORIES OF 3-D SYMMETRIC SAMPLING

7.1 Introduction

In this chapter some field data examples are
discussed. In Section 7.2 results are shown for a 3-D
microspread, i.e., a single cross-spread acquired with
small shot and receiver station intervals. Section 7.3
discusses the first test of symmetric sampling which
was carried out in Nigeria in 1992. Finally, Section 7.4
illustrates some low-fold migration results using data
from the Nigeria test.

7.2 3-D microspread

7.21 Introduction

Traditionally, a microspread or noisespread has
been the tool for detailed investigation of the properties
of the wavefield to be recorded in 2-D seismic data
acquisition. Ideally, the noisespread consists of a single
shot recorded by a receiver spread with receiver station
intervals that are small enough for alias-free recording
of the total wavefield, including ground roll. Such a
data set allows analysis of the noise in relation to the
signal and serves as a tool for the design of field arrays.
Examples of noisespreads are shown in Figure 4.16 of
Vermeer (1990).

In 1979, a noisespread with extremely fine receiver
station sampling was acquired in the Paris basin by the
field crew of Shell's E&P Lab. With its 0.25 m
sampling interval, it was appropriately called the
nanospread. Berni and Roever (1989) used this dataset
to illustrate the effect of statics variation across field
arrays (intra-array statics). This paper showed an
important application of noisespreads: the investigation
of recording effects which cannot be analyzed after
acquisition with usual spatial sampling intervals and
arrays.

A disadvantage of the 2-D noisespread is that it
does not allow the investigation of 3-D effects. Instead,
one would need a 3-D microspread. Therefore, in the
context of Shell's research project "Fundamentals of
3D seismic data acquisition", it was decided to acquire
such a data set. Originally, the idea was to acquire a
3-D shot with a dense coverage of geophone stations
around it. This would involve months of acquisition

time. Then we discovered the cross-spread as the basic
subset of the orthogonal geometry, and we realized that
such a cross-spread would be far easier to acquire,
while still providing insight in the 3-D effects.

First some pilot 2-D microspreads were acquired to
find a location where sampling requirements would not
be too demanding for the number of available channels.
We also wanted to acquire the data along the roadside
to avoid permitting problems. Hence we needed two
roads crossing each other at straight angles. Finally, an
appropriate location was found in the Noordoostpolder,
one of the polders in the former Zuiderzee in The
Netherlands.

The 3-D microspread was acquired in May 1992,
Processing was carried out by Justus Rozemond. In the
following, I will discuss the acquisition parameters of
the survey and show some processing results.
Unfortunately, owing to other tasks coming up,
processing of the data set was never fully completed.

7.2.2 Acquisition
microspread

The acquisition lay-out is sketched in Figure 7-1.
960 shots fired into 960 receivers with the shot and

parameters of 3-D

shot line

receiver line

Fig. 7-1. Lay-out of 3-D microspread. 960 shots
fired into 960 receivers. Shot and receiver station
intervals were 2 m.
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Fig. 7-2. Shot gather for shot with cross-line offset = 1 m. This section is analogous to a 2-D microspread.

receiver intervals being 2 m. The nearest shots to the
receiver line had a cross-line offset of 1 m. As the
number of available channels was only 480, the data
set was acquired in two passes along the shot line: first
the left half of the receiver spread was acquired,
followed by the right half. Maximum in-line offset was
959 m. This configuration allowed for the recording of
the full ground-roll cone up till 3 s. A vibrator was
used as the source. The source signature consisted of a
single 27 s linear sweep ranging from 8 to 60 Hz. Each
receiver station consisted of a single geophone.

The data quality of the acquired 3-D microspread
was excellent. There were no missing shots nor any
missing receivers. '

7.2.3 Cross-sections and timeslices

Figure 7-2 shows a shot gather for a shot with 1 m
cross-line offset. Note that noise which might look
random with coarse sampling turns out to be coherent
virtually everywhere with this fine sampling. It should
be mentioned that the noise cone which is conveniently
called ground roll, does not only consist of Rayleigh
waves; the least steep events are not surface waves but
body waves, i.e., refracted shear waves. The Rayleigh
wave velocity is about 180 m/s, whereas the apparent
velocity of the shear waves ranges from 250 to 420
m/s. Given the 2 m spatial sampling interval and a
maximum frequency of 60 Hz, the Rayleigh waves are
still aliased above 45 Hz, but the shear waves are

1.0

e

sampled without aliasing. The first break comes in at a
velocity of 1670 m/s.

Figure 7-3 shows a shot gather for a shot with 901
m cross-line offset. The refracted shear now comes in
at 2.5 s and has much higher apparent velocity in this
cross-section. Note the clean P-wave data above the
noise cone.

Figure 7-4 (displayed on page 180) shows two
timeslices through the 3-D microspread. The slice at
596 ms cuts mostly through P-wave energy. This data
is rather flat, hence the timeslice shows long apparent
wavelengths. On the other hand, the slice at 3596 ms
cuts mostly through the ground-roll cone with much
steeper events, hence this slice shows much energy
with short apparent wavelengths. The inside of the
ground-roll cone contains many events extending only
across a small distance. These events tend to look more
continuous in the cross-section of Figure 7-2.

The most striking features of these timeslices are
the circular behavior of many events, and the spatial
continuity of the data. Of course, the circular behavior
is caused by the traveltimes of many events being a
function of offset only, whereas constant offset is
represented by a circle in the timeslice (cf. Figure 2-6).
The shot-to-shot variation is minimal; continuity in the
horizontal direction (the common-receiver direction) is
as good as in the vertical direction. A rather large
discontinuity can be seen in the upper part of Figure 7-
4a at shotpoint 540, and another strong discontinuity at
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Fig. 7-3. Shot gather for shot with cross-line offset = 901m.

receiver 870. These discontinuities may be caused by
positioning errors or statics.

7.24 (f, k)filtering results

Figure 7-5 shows a receiver gather for a receiver at
1 m in-line offset. Note again, the near perfect
continuity across this gather, even though each trace is
the result from a different physical experiment. The
section looks very similar to Figure 7-2, except for a
mysterious coherent event with an apparent velocity
between that of the P-wave first break and the shear-
wave first break. Unfortunately, I have no explanation
for this event.

Figure 7-6 shows the same receiver gather as in
Figure 7-5, but now after (f k)-filtering in the shot
domain. The parameters of the (f, k)-filter were chosen
to reject all steeply dipping energy and to pass the
reflection energy. At first sight nothing has changed,
but closer inspection reveals that inside the ground-roll
cone the steeply dipping events are more abundant. In
the unfiltered receiver gather, there are many
interfering scattered events. By (f, k)-filtering in the
shot domain the steep events perpendicular to the
receiver section have been removed, leaving behind the
components, which dip steepest in the common
receiver. This emphasizes again the 3-D nature of all
events and in particular that of the scatterers.

Finally, Figure 7-7 shows the receiver gather of
Figure 7-5 after (f, k)-filtering in the common-receiver

domain. Now all steep events in the receiver gather
have been removed. The strong smearing of the data
indicates the inability of the (f k)-filter to carry out the
surgical action which is really desired: removing the
steep events while not affecting the less steep events.

7.2.5 Discussion

The figures of the 3-D microspread shown here
illustrate that much of the energy which may be
considered random in conventional acquisition, appears
to be coherent upon fine sampling. Also, shot-to-shot
variations were minimal in this case, so that the
common-receiver gathers in this data set look as nice as
the common-shot gathers. Even though only small
maximum in-line and cross-line offsets were used in
this experiment, it still suggests the reasonableness of
the recommendation to acquire data with equal
maximum offset in both directions. There is no
preference for one or the other direction.

3-D microspreads could be useful in making 3-D
survey design decisions. First, it should be possible to
measure the relative strengths of the noise and the
signal. Together with an estimate of the noise
suppression by stacking and migration, it should then
be possible to define the required amount of noise
suppression for the combination of shot and receiver
arrays, for a given station spacing. This is clearly an
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Fig. 7-5. Receiver gather for receiver at in-line offset =1 m.

Fig. 7-6. Receiver gather of Figure 7-5 after (f, k)-filtering in shot domain.
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Fig. 7-7. Receiver gather of Figure 7-5 after (f; k)-filtering in receiver domain.

area where very useful research could be carried out,
also as a supplement to work published in Krey (1987).

Another application of 3-D microspreads is as an
analysis tool of scatterer energy to answer the question
whether or not areal arrays are necessary for adequate
suppression of the scatterers. In this particular case, it
is clear from Figure 7-6 that most of the energy
remaining after removal of steeply dipping events in
the common-shot gathers consists of steeply dipping
events in the common-receiver gathers. In other words,
the amount of energy concentrated in the apices of the
scatterers is relatively small compared to the amount of
energy in the flanks of the scattered events. Therefore,
in this case, it would be sufficient to have a
combination of linear shot and receiver arrays, perhaps
followed by a 3-D velocity filter (Smith, 1997).

The advantage of the 3-D microspread is that it is
fully representative of the noise that is going to be
encountered when using the orthogonal geometry
(apart from variations in character through the survey
area). Up till now, the box test (Regone, 1997) is
commonly used for this purpose. However, the box test
is quite a special survey, not fully representative of the
noise that is going to be acquired; moreover, it uses
small arrays which already tackle some of the noise
one wants to know the details of.

7.3 Nigeria 3-D test geometry results

7.3.1 Introduction

In brick or brick-wall geometry the shot lines are
staggered such that the pattern of shot lines and
receiver lines resembles the pattern of bricks in a brick
wall (Figure 7-8b). The geometry was introduced in the
late 1980s. According to Wright and Young (1996),
brick geometry is "one easy way to insure superior
offset sampling”. With the staggering, the offsets of the
traces in each bin are changed into a pattern which is
more evenly spread across the offset range than in the
equivalent continuous shot-line geometry (Wright and
Young, 1996). This expresses itself also in a smaller
LMOS for the brick than for the continuous geometry
as illustrated in Figure 7-8. Moreover, as Figure 3-18
shows, (narrow) brick geometry has a better stack
response than narrow continuous geometry.

However, with an increasing width of acquisition
geometry (larger maximum cross-line offset), most of
these advantages disappear (except the LMOS
advantage), whereas the advantage of using continuous
shot lines increases with the width of the survey
geometry. With brick geometry, the common-receiver
gathers are broken into small segments, whereas in the
continuous shot-line geometry, the receiver gathers are
continuous; in fact they are not any different from the
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(a)

(b)

Fig. 7-8. Comparison of LMOS for continuous shot-line geometry (a) and brick-wall geometry (b). For the

same line intervals, LMOS is larger in (a) than in (b).

common-shot gathers (see Figure 7-9). One of the
objectives of 3-D survey design should be to keep the
number of spatial discontinuities in the acquired data to
a minimum. In brick geometry, the character of the in-
line data will be different from the character in the
cross-line direction, as is clearly shown in Figure 7-10,
copied from Moldoveanu et al. (1999). The difference
is mainly due to discontinuities in the recorded noise,
leading to discontinuities in the stacked cross-line
section. These discontinuities will turn into extra
migration smiles after migration.

At the 1992 Shell Geophysical Conference I
presented a paper (with co-author Justus Rozemond)
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with the message "Don't use brick". In the audience
was Paul Wood, then head of acquisition in Shell
Petroleum Development Company (SPDC) in Nigeria.
He felt personally addressed by this message, because a
few years earlier SPDC had changed from narrow
continuous geometry to narrow brick geometry for all
3-D surveys. He gave us the benefit of the doubt, and
decided to acquire a small test geometry across part of
the 3-D survey currently being acquired. At the next
Geophysical Conference in 1993 he showed some
preliminary results of the test. He framed his
presentation between the "Bricklayer's prologue" and
the "Bricklayer's epilogue", here reproduced as Figure
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Fig. 7-9. Comparison of synthetic cross-lines, (a) continuous shot lines, (b) staggered shot lines. For the
purpose of this example the input data have been stacked (2-fold) without NMO correction. The model

consists of three reflectors.
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Fig. 7-10. Comparison of in-line section with cross-line section for brick geometry with coherent noise. Left:
In-line, Right: Cross-line. (from Moldoveanu et al., 1999). Note choppy character of noise in the cross-line

section.

7-11. It took until late 1994 before the data were fully
processed and interpreted. Then the results appeared to
be at least as good as the production data at about 60%
of the cost. As a consequence, SPDC decided to shoot
two production surveys with the "cross-spread
technique", and once these proved to be successful, all
3-D surveys are now being acquired with the
continuous shot-line technique.

In the following I will describe the old and the new
acquisition geometry, followed by some processing
results and the key interpretation results. Some results
were shown earlier in Vermeer (1998).

7.3.2 Acquisition geometry

The survey area is the Niger delta, which is
characterized by mangrove swamp, jungle, and a
multitude of narrower and wider creeks. The creeks
provide for an easy means of transporting material, but
would produce numerous gaps in the survey if these
were considered as obstacles for shot and receiver
placement. Therefore, an airgun array vessel takes care
of the shots in water, and hydrophones replace
geophones locally. The source on land is either deep
single-hole dynamite or a shallow-hole linear dynamite
array.

The conventional acquisition geometry used in
Nigeria in 1992 is described in Figure 7-12a. The
template consists of four 6000 m active receiver lines
spaced at 350 m. The distance between the shot-line
segments is 400 m. Shot and receiver station spacings
are 50 m. The maximum in-line offset of this geometry
is 3000 m, and the maximum cross-line offset is 700 m.
Aspect ratio = 0.23. LMOS = 403 m. In-line fold = 7.5,
cross-line fold = 2.

The main limitation for selecting an alternative
geometry was the availability of only 480 channels.
Fortunately, the target zone started below 1.7 s.
Therefore the distance between the receiver lines could
be doubled to 700 m without affecting the target levels
too much. The selected test geometry is shown in
Figure 7-12b. The maximum in-line offset is reduced to
2000 m, and the maximum cross-line offset is
increased to 2100 m. Aspect ratio = 0.95, LMOS = 806
m, in-line fold = 5, cross-line fold = 3. The test,
consisting of 10 shot lines and 6 receiver lines, was
acquired such that 60 complete cross-spreads were
gathered. It took only ten days to acquire the test.

Figure 2-16 (top) shows a plot of cumulative fold
and trace density for the two geometries. The trace
density plot can be compared with the histograms made
using the actually recorded data shown in Figure 7-13.
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These curves illustrate that fold buildup is much faster
in the narrow production geometry than in the wide test
geometry. The azimuth distribution is very peaked for
the narrow geometry and more evenly spread for the
wide geometry. The peaks in the azimuth distribution
of the wide geometry stem from the corners of each
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Fig. 7-11. The bricklayer’s tale by Paul Wood.

cross-spread. If the midpoint area of the cross-spread
were circular, then the azimuth distribution would be
completely flat.

7.3.3 Some processing results
After some initial processing by SPDC, including

]700 m

(b)

10 shot lines
6 receiver lines
480 channels

-

4

4000 m

Fig. 7-12. Acquisition geometries used in Nigeria. Heavy lines indicate acquisition lines in the template. (a)
Production survey geometry, (b) complete test geometry. Shot and receiver station spacings are 50 m in both

geometries.
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Fig. 7-13. Histograms describing offset and azimuth distributions for production survey (a) and test

geometry (b).

refraction statics, a copy of the test data was sent to
Shell's research lab in The Netherlands. In the lab, we
tried to apply some cross-spread oriented processing
techniques, whereas SPDC applied their standard
processing sequence to the test data. In the next
section, the final processing results of SPDC are
discussed. As part of the research work, much time was
spent on  surface-consistent residual statics,
deconvolution and on a new algorithm for applying
DMO. Here, I can only show a few of the results.

The quality of the seismic data acquired in this area
is quite good. This is illustrated in Figure 2-14 by some
timeslices taken from one of the cross-spreads. These
timeslices also confirm that up till 1.7 s the geology is
still horizontal with target areas only below that level.

Figure 7-14 (displayed on page 181) shows a
diagnostic display used in the surface-consistent
deconvolution process to check on quality of individual
receivers and shots. Each trace in each one of the 60
cross-spreads produces a pixel of which the color
represents some seismic attribute for that trace. In this
case it is the absolute maximum sample value in a 1000
ms window starting just before the first break. The data
have been arranged such (a clever trick devised by
Justus Rozemond) that all pixels for the same shot
position are arranged along vertical lines, and all pixels
for the same receiver position along horizontal lines.
Note that surface consistency is shown clearly in this
display. Weak receivers show as narrow horizontal
stripes crossing over between neighboring cross-
spreads. Missing shots appear as white vertical stripes.

The type of display shown in Figure 7-14 was also
used for diagnosing the statics. Picking errors become
immediately obvious upon inspection of a display
showing all static corrections.

Figure 7-15 shows the benefit of dual-domain (f, k)-
filtering. The production data did not allow (f; k)-
filtering in the cross-line direction, but the cross-spread
data did. However, the difference between dual-domain
filtering and single-domain filtering was no longer
visible after application of DMO. Apparently, the
DMO process also has a beneficial effect on the same
noise which is tackled by (7, k)-filtering.

7.3.4 Interpretation results

SPDC carried out a careful comparison between the
production survey and the test geometry, both
processed with their standard processing sequence. Not
surprisingly, the results at shallow levels were better
for the production geometry: fold at shallow levels is
higher for the production survey. On the other hand,
the results at target level for the test geometry was at
least as good as for the production survey, even though
no special cross-spread oriented processing had been
attempted. A comparison of some significant results is
shown in Figures 7-16 and 7-17 (both figures displayed
on page 182). In Figure 7-16, an illumination display of
a target horizon is compared for the two geometries.
The main features are the same, but the test geometry
produced a cleaner looking resuit.
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Fig. 7-15. Benefit of dual-domain filtering. (a) No filter applied, (b) After common-receiver (f; k)-filter, (c)
After common-receiver and common-shot (f, k)-filter.
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In Figure 7-17 the amplitudes are compared for the
same horizon. Blue indicates the no-pick areas from the
automatic tracker. In the test geometry the blue areas
are smaller, producing better defined faults than in the
production geometry. The irregularities around the
edges of Figure 7-17b are caused by the edge effects of
the small test survey. Figure 7-17a does not show these
effects as it is just a small part of the larger survey.

Based upon the results of this interpretation, it was
decided to shoot one of the next 3-D surveys with the
continuous shot-line geometry. This decision was made
quite easy by the fact that shooting with the new
geometry parameters was considerably cheaper,
because of the wider receiver line spacings and the
straight shot lines.

7.3.5 Discussion
The question remains: is the better quality at target
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Fig. 7-18. Cross-section along diagonal of migrated
cross-spread. The midpoint range of the cross-
spread is to the left of the vertical black line. Note
the updip shift of the deeper data and the edge
effects on both sides. Arrow indicates position of
output point for which timeslices through the
diffraction-flattened gather are shown in Figure 7-
19.

level a result of the continuity of the shot lines, or is it
due to the wider geometry, or both? It is impossible to
give a definite answer to this question. One thing that
may be said is that going from brick to continuous
without changing the width of the geometry would
likely have produced worse results than the original
brick. This may be expected because of the worse stack
response of the narrow geometry (see Figure 3-18),
which is not compensated by the ability for filtering in
the common-receiver gathers. So, the width of the
geometry is definitely a contributing factor.

I am convinced that the improved result is not only
due to the wider geometry, but also to the greater
spatial continuity provided by the continuous shot
lines. Unfortunately, this data comparison cannot prove
this conviction.

An important learning point from this exercise is
that deep targets allow wide line spacings; not always,
but definitely in this case. Basically, the original
geometry was oversampled as far as receiver-line
interval and shot-line interval were concerned. After
this exercise SPDC decided to increase fold from 15 to
30, which only marginally increased the acquisition
cost as compared to the brick geometry.

7.4 Prestack migration of low-fold
data

7.4.1 Introduction

Single-fold well-sampled 3-D data sets (minimal
data sets) are suitable for migration. Although this
property is always exploited when migrating stacked
data, it is not generally appreciated that the property
also applies to prestack data. Of course, the result of
migrating single-fold prestack data might be quite
noisy; multi-fold data is needed to suppress more noise.
However, for imaging it is sufficient that the data set
has been well-sampled, which means that (for each
reflector) there is an illumination area corresponding to
the midpoint area of the data set (see Section 2.5.3).

In the following, I will discuss migration of a single
cross-spread followed by prestack migration of low-
fold data. :

7.4.2 Migration of a single cross-spread

A cross-section along the diagonal of a prestack
time migrated cross-spread is shown in Figure 7-18. It
is immediately clear that a single cross-spread does not
illuminate much of the subsurface; the image extends
across a small range only. Furthermore, this range
becomes smaller and smaller for shallow levels. In the
shallow center of the cross-spread the image suffers
from the presence of ground roll. Apart from that, the
image (where there is one) looks surprisingly good.
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Fig. 7-19. Timeslices through cross-spread after
flattening of diffraction traveltime surfaces for a
position A indicated with an arrow in Figure 7-18.
Time is increasing downward in steps of 4 ms. The
data of each slice is summed to form one output
sample of the trace at A. The zone of stationary
phase is in each timeslice. The strong black leop
around 2 s in Figure 7-18 is composed from the
timeslices at 2008 - 2016 ms with the maximum at
time 2012 ms.

This single cross-spread already shows that the
geology in this area is rather flat up till 1.7 s, with
gradually increasing dips from there to deeper levels.
Of course, the deeper steep events have migrated
updip, away from the midpoint area of the cross-
spread. Along the flanks of the image area, incomplete
images are visible. These incomplete images signify
the edge effects of the cross-spread. Part of these edge
effects may still contribute to the image forming of the
collection of cross-spreads, depending on the shot- and
receiver line intervals. Another part of the edge effects
is just noise, which has to be suppressed by the action
of overlapping cross-spreads.

Each trace in the migration result shown in Figure
7-18 is composed of contributions from all traces in the
original cross-spread. Each output sample is the
summation of the amplitude values that can be found
along the diffraction traveltime surface for the position
(t, x, y). It is instructive to look at those amplitude

values before summation. This can be done by
flattening the diffraction traveltime surface and then
making timeslices. (See also the discussion of
migration as a two-step process in Sections 6.2.4 and
8.3.7, and the discussion of diffraction-flattened
gathers in Section 10.4). Figure 7-19 shows a number
of flattened diffraction traveltime surfaces for the
strong reflection around 2 s. The zone of stationary
phase of the strong reflector is located in the lower left
corner of the cross-spread. This is the position where
reflection and diffraction traveltime surface coincide
and have about the same slope. The timeslice at 2012
ms produces the maximum amplitude of the strong
reflection. There the diffraction traveltime surface cuts
through a large number of positive reflection
amplitudes.

Figure 7-19 illustrates that the zone of stationary
phase with its slowly varying amplitude is competing
with many other amplitude values whose average
amplitude value should be zero for the cleanest result.
A good migration program should taper out the deepest
parts of the diffraction traveltime surfaces to suppress
truncation effects.

Figure 7-19 also illustrates the need for equal shot
and receiver sampling. If the shot interval would be
twice as large as the receiver interval, the near-circular
zones of stationary phase would shrink into ellipses,
whereas spatial aliasing would occur in the common-
receiver gathers (in the direction of the short axis of the
ellipses), leading to less clean results.

7.4.3 Low-fold prestack migration

In this section I will take five cross-spreads with
partially overlapping midpoint areas for a test on low-

8G0 m

1700 m

o

1234567890
Fig. 7-20. Cross-spreads in test geometry used for
migration test. Heavy line in center indicates
position of migration results shown in Figures 7-21
and 7-22.
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4.0

Fig. 7-21. Contribution of cross-spreads to the output line indicated in Figure 7-20.

fold migration. Figure 7-20 shows the arrangement of
the input data. Along the diagonal through the five
cross-spreads, the fold-of-coverage varies between 1

Fig. 7-22. Comparison migration result with
stacked data. (a) Migration result from 5 partially
overlapping cross-spreads indicated in Figure 7-20.
(b) Corresponding stack (mostly 2-fold).

and 3. The migration result is computed along the
heavy black line in Figure 7-20 for each of the five
cross-spreads. The individual contributions of the five
cross-spreads are shown side-by-side in Figure 7-21.
Similar to the migration of a single cross-spread in the
previous section, all traces of each cross-spread can
potentially contribute to the migration result, i.c.,
Figure 7-21 shows the result of 3-D migration.

Inspection of these results shows that cross-spread
5 hardly contributes, whereas cross-spreads 2 and 4 fill
up the edges of the result for cross-spread 3. Cross-
spread 1 contributes some images of steeply dipping
events around 3 s. In other words, when these results
are stacked the image fold is never more than 2. Figure
7-22a shows the stack of the five migration results. Tt
can be compared with the straight stack in Figure 7-
22b. The stacking fold varies between 2 and 3. Below
about 1.6 s, the migration result starts to look like real
geology, which is quite remarkable for this very low-
fold data. Above 1.6 s, edge effects and ground-roll
effects disrupt the continuity of the result.

7.4.4 Discussion

In the previous two sections it is shown that 3-D
prestack migration of low-fold data may produce quite
reasonable results. Of course, it should be granted that
the quality of the input data was very good.
Nevertheless, this is not a unique situation, as shown
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Fig. 7-23. Comparison of two data sets, (a)
Conventional 2-D data, (b) Low-fold 3-D data (from
Lee et al., 1994).

by Figure 7-23, which is reproduced from a paper by
Lee et al. (1994). Figure 7-23b shows the result of a
test carried out by Mobil. The test consisted of a single
shot line, intersected by a number of perpendicular
receiver lines. According to the authors, the 3-D result
is even cleaner than the high-fold 2-D result shown in
Figure 7-23a. This is attributed to the absence of side-
swipe energy in the 3-D result.

It may be concluded that in good data quality areas,
low-fold 3-D data may be adequate for certain
purposes, e.g, for reconnaissance 3-D. Low-fold 3-D
may give an interpretable 3-D result at a cost
comparable to a grid of 2-D lines, in particular for deep
targets. It should be realized, that sparse acquisition
should not be achieved by increasing shot station
intervals, but by increasing shot and receiver line

spacings while keeping the station spacings of shots
and receivers the same (and adequate for purpose).

Very often, the quality at shallow levels is much
better than at deeper levels. Again, this may mean that
the required fold for shallow levels is much smaller
than for deeper levels, and in some cases, 4-fold data
may be adequate for mapping high-quality shallow
data.
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8 FACTORS AFFECTING SPATIAL RESOLUTION

8.1 Introduction’

The theory of spatial resolution has been dealt with
in great detail by various authors on prestack migration
and inversion (e.g. Berkhout, 1984; Beylkin, 1985;
Beylkin et al., 1985; Cohen et al.,, 1986; Bleistein,
1987), and on diffraction tomography (e.g., Wu and
Toks6z, 1987). Despite all this work, the practical
consequences of the theory are still open to much
debate.

Von Seggern (1994) discusses resolution for
various 3-D geometries, and concludes: “Uniform 3-D
patterns, asymmetric patterns, and both narrow and
wide swath 3-D patterns all produce nearly equivalent
images of a point scatterer, without significantly better
resolution in one or the other horizontal direction.”
These results were obtained using quite a coarse
measurement technique; moreover, fold varied across
the midpoint range. As a consequence, the considerable
differences in resolution that do occur between
different geometries were overlooked.

Neidell (1994) submitted that coarse sampling, if
compensated by high fold (24-fold or higher), does not
sacrifice resolution. His conjecture led to a flurry of
reactions (Vermeer, 1995; Neidell, 1995; Ebrom et al.,
1995b; Markley et al., 1996; Shin et al., 1997).

Ebrom et al. (1995b) and Markley et al. (1996)
investigate resolution using a tank model consisting of
a number of vertical rods. The timeslices at the level of
the top of the rods are compared for various sampling
intervals and folds of coverage. Whereas Ebrom et al.
(1995b) showed that the resolution in the timeslice
could be finer than the acquisition common midpoint
(CMP) binning, Markley et al. (1996) conclude that
finer CMP binning improves the image significantly

compared to coarse binning with the same number of -

traces, thus contradicting Neidell’s conjecture. Shin et
al. (1997) illustrate that fold can partially compensate
for coarse sampling.

The issue of sampling is expanded further with the
introduction of quasi-random sampling (Zhou and
Schuster, 1995; Sun et al., 1997; Zhou et al., 1999).
Zhou and Schuster (1995) and Zhou et al. (1999)

! This chapter modified after Vermeer (1999).

demonstrate that quasi-random coarse sampling may
lead to less migration artifacts than regular coarse
sampling. Sun et al. (1997) conclude that migration of
data sampled with the quasi-Monte Carlo technique can
reduce the computational work load by a factor of 4 or
more. These results might be interpreted as “random
sampling is superior to regular acquisition for purposes
of noise reduction” (Bednar, 1996), a statement which
assumes that the (coherent) noise is coarsely sampled.
Sun et al.'s (1997) conclusion is questioned in Vermeer
(1998b).

Apart from the authors mentioned in the first
paragraph, none of the above authors mentioned
Beylkin’s formula for spatial resolution, even though it
had already been published in 1985 (Beylkin, 1985).
The present chapter uses Beylkin’s formula to derive
resolution formulas for simple cases, and to explain
results obtained for various configurations. Lavely et
al. (1997) and Gibson et al. (1998) also use Beylkin's
formula as a starting point for resolution analysis.

Levin (1998) provides a lucid narrative of the
resolution of dipping reflectors. The present chapter -
although not dealing explicitly with reflectors -
confirms many insights offered in that paper, which is
recommended for further reading.

In conventional seismic  acquisition the
measurements are carried out at or close to the surface,
basically in one horizontal plane. This measurement
configuration leads to quite a difference between the
resolution in the vertical direction and the resolution in
a plane parallel to the measurement plane. This chapter
deals only with such configurations; hence, it does not
discuss the resolution of measurements at various depth
levels, such as made with vertical seismic profiling
(VSPs).

Resolution is about the resolvability of two close
events. This resolvability is determined by the width of
the main lobe of the wavelet, and by the strength of the
side lobes relative to the main lobe. In this discussion, I
will leave the effect of side lobes mostly aside and
concentratc on measurements of the width of the
wavelet after migration. [For a detailed discussion of
the effect of side-lobes, see Berkhout (1984). In
particular if two events have different strengths, side
lobes of the strong event may mask the main peak of
the weak event.] The wider the wavelet, the larger the
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distance between two events needs to be for their
resolvability. The smallest distance for which two
events can still be distinguished is called the minimum
resolvable distance.

The theory of resolution leads to a potential
resolution (i.e., the best possible resolution for a given
source wavelet), velocity model, shot/receiver
configuration and some position of the output point.
The potential resolution can only be achieved if the
wavefield is properly sampled. Next to potential
resolution, this chapter also uses achievable resolution,
which is defined as the best possible resolution that can
be achieved in practice. Events which do not satisfy the
velocity model, migration noise caused by coarse
sampling, and other types of noise all affect
resolvability, hence the achievable resolution is not as
good as the potential resolution.

How to measure temporal resolution has been the
subject of various papers. In a classic paper Kallweit
and Wood (1982) discuss how various criteria
(Rayleigh, Ricker, Widess criteria) can be used to
describe the width of a wavelet as a measure of
temporal resolution. They conclude that (potential)
resolution is proportional to maximum frequency
(strictly speaking, to frequency bandwidth; Knapp,
1990). In this chapter their results are extended into the
realm of spatial resolution, i.e., spatial resolution is
proportional to maximum wavenumber, and the
minimum resolvable distance is inversely proportional
to maximum wavenumber.

This chapter starts with a summary of the main
points on spatial resolution as made in Beylkin et al.
(1985) and applies this theory to a constant-velocity
medium. This leads naturally to similar resolution
formulas (for 2-D data) as given in Ebrom et al.
(1995a) with an extension to offset data. In the next
part, I will illustrate various aspects of spatial
resolution (aperture, offset, acquisition geometry) using
a single diffractor in a constant-velocity medium (the
same model as used in von Seggern, 1994). The width
of the spatial wavelet after migration is used as a
measure in the resolution comparisons. Finally, I will
discuss why sampling is important, even though the
sampling interval does not appear in the resolution
formulas, and I will discuss the influence of fold. A
poster version of this chapter was published in
Vermeer (1998a).

8.2 Spatial resolution formulas

8.21 Spatial resolution - the link with

migration/inversion
In the literature true-amplitude prestack migration
formulas have been derived for single-fold 3-D data
sets with two spatial coordinates & and &, and

traveltime ¢ or frequency f as the third coordinate. The
coordinates & and & describe the shot/receiver
configuration. That is, for fixed X and fixed Y, x, = (X,
Y, 0) and x, = (&, &, 0) describe a 3-D common-shot
gather, and x, = (£, Y, 0) and x, = (X, &, 0) describe a
cross-spread. Note that these data sets are the same data
sets encountered earlier as subsets of various 3-D
geometries in Chapter 2, and which are also called
minimal data sets (Padhi and Holley, 1997).

Beylkin (1985) and Beylkin et al. (1985) derive
formulas to compute ("reconstruct”) acoustic
impedance contrast as a function of position x = (x, y,
z) from seismic measurements with limited aperture.
The limited aperture is defined by the range of § = (&,
&). They show that in this process, the observed data
are transformed into reconstructed data using a
mapping of (&, &, /) (the coordinates of the observed
data) to (k, &y, k,) (the coordinates of the reconstructed
data). The mapping is given by

k =/ V. 4(x5), @.1)

in which k = (k, k,, k) is the wavenumber vector in
the reconstructed (migration) domain, and ¢(x, &) is the
traveltime surface (also called migration operator) of a
diffractor in x for shot/receiver pairs described by E.
V.#(x, &) represents the derivative of #(x, E) with
respect to the point of reconstruction (output point) x;
#(x, &) has to be computed from the background model
(velocity model).

Equation (8.1) maps the 5-D traveltime surface
#(x, &) to 3-D wavenumber. This mapping corresponds
to the fact that in prestack migration, each input trace
described by & is used in the reconstruction of a volume
of output points (x, y, z). Equation (8.1) determines the
region of coverage D, in the spatial wavenumber
domain (the 3-D spatial bandwidth). Beylkin et al.
(1985) state: “the description of D, is, in fact, the
estimate of spatial resolution.” The larger the region of
coverage in K, the better the potential resolution.

To further explain the meaning of equation (8.1), it
is worthwhile quoting Beylkin et al. (1985) (with minor
modifications to reflect the notation used in this
chapter):

The mapping equation (8.1) is of fundamental
importance with respect to inversion algorithms. It
shows how the total domain of integration (&, &, /)
on which our data are defined is related to region of
coverage in the domain of spatial frequencies.

To summarize, the spatial resolution at a given
point x defined by the region D, depends on
i) the total domain of integration, which is
determined by the configuration of sources and
receivers and the frequency band of the signal, and
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i) the mapping equation (8.1) of this domain into
the domain of spatial frequencies, which is
determined by the background model and can be
obtained numerically by raytracing. This mapping
is different for each point of reconstruction.

Together i) and ii) determine the limits on
spatial resolution at each point of reconstruction
given the configuration of experiment and the
background model.

Beylkin's formula [equation (8.1)] makes analysis
of potential resolution quite simple: It should be
possible to explain many resolution tests by analyzing
the spatial gradients of the diffraction traveltime
surfaces @(x, €) in the given experiment configuration.

It is not (always) necessary to analyze the full
coverage in k. As follows from Kallweit and Wood
(1982), the maximum wavenumber [corresponding to
maximum gradients of ¢(x,E)] can give a fair
indication of resolution, provided k= 0 is part of the
wavenumber range.

The diffraction traveltime ¢(x, &) can be described
as

HxE) = XX + UXX) = T + Ty (8.2)

where 7(X, y) is the traveltime from surface position y
to subsurface position x. Similarly, k can be written as
the vectorial sum

k=k +k, (8.3)

where Kk, k, are the contributions of shot and receiver,
respectively, to the wavenumber vector k. It can be
shown that the directional derivatives of the traveltimes
T, and 1, with respect to x are in fact the directions of

s M R

Fig. 8-1. Nlumination of diffractor D by
shot/receiver pair S/R. The directions of the
raypaths at D determine the shot and receiver
wavenumber components of total wavenumber k.
SD and RD are also the reflection raypaths for a
reflector through D with dip angle 8= (6, + 6,)/2.
The raypaths make an angle i = (8, - 8,)/2 with k.

the corresponding raypaths in x. Hence k, and Kk, point
in the direction of the raypaths at x (see Figure 8-1).
Each shot/receiver pair in the geometry corresponds to
a point k in wavenumber space. Taking all
shot/receiver pairs of a configuration and all
frequencies leads to a collection of points which
determines the region of coverage D, in wavenumber
space.

This mapping of a geometry configuration to
wavenumber space is also the subject of many papers
dealing in particular with VSP- and crosswell
resolution analysis (Devaney, 1984; Wu and Tokséz,
1987; Goulty, 1997; Lavely et al., 1997). Goulty
(1997) provides a very readable description of this
approach. Beylkin’s formula describes this mapping in
a concise way.

In zero-offset data Kk, and Kk, coincide so that for this
configuration |k| has the largest value. As a
consequence, zero-offset data can produce potentially
the highest resolution.

Before taking the next step, | want to mention that
sampling considerations do not appear at all in above
discussion. Beylkin et al. (1985) assume, in fact,
continuous variables & and &. In other words, because
in practice sampling is inevitable, sampling should be
dense enough to allow accurate evaluation of the
integrals involved in migration. The resolution that can
be obtained in that case is the potential resolution as
introduced earlier.

8.2.2 Spatial resolution formulas for
constant velocity

It is illuminating to investigate D, for a medium
with constant velocity v and zero-offset geometry.

For a point x; = x, = (§,, &, 0), substitution of
equation (8.2) into equation (8.1) leads to

X6 Y8 z 8.4

k =2( T ,d)f/v, (8.4)
where d is the distance from the coinciding shot and
receiver to the subsurface point x. The vector in the
parentheses is the unit vector pointing from x, to x. The
left side of Figure 8-9 depicts equation (8.4)
graphically.

Now consider a 2-D zero-offset geometry laid out
along the x-axis (see Figure 8-2). Then the maximum
values for &, and &, can be written as

kx,max = 2fmax sin ex,max v,
kz,max =2f ax Vs (8.5)

where 6, .« 1s the angle between the vertical and the
raypath from the output point to the farthest
shot/receiver pair and f,,, is maximum frequency.
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kz, max kz

Fig. 8-2. 2-D zero-offset geometry (heavy line) laid
out along x-axis with wavenumber space in
subsurface point x. For each frequency a circle arc
with radius |k| = f/v forms the mapping of surface
geometry to wavenumber space. Arcs are drawn for
{K| = fmax/v and for |k| = Y%ifi.,/v. Maximum
wavenumber in vertical direction & jay = finax/Vs
whereas maximum wavenumber in x-direction X, .,
is limited by 6, pa;.

Note the difference between horizontal and vertical
resolution: k. reaches its maximum for the maximum
value of d in the x-direction, i.e., for a shot/receiver
pair at maximum distance from x, whereas k, reaches
its maximum for the minimum value of d, i.e., for a
shot/receiver pair at zero lateral distance from x, then d
= z. A corollary of these observations is that horizontal
resolution can be improved by using a larger migration
aperture (migration radius), thus including a steeper
part of the diffraction traveltime curves, whereas
vertical resolution does not depend on aperture.

Kallweit and Wood (1982) show that a practical
limit for temporal resolution, i.e., the minimum
resolvable time interval R, is given by the tuning
thickness of.a zero-phase wavelet, which is the distance
between peak and first trough (Rayleigh criterion). For
a Ricker wavelet they show that

-1  (8.6a)
267,

where f; is the peak frequency of the Ricker wavelet.
For a sinc wavelet Kallweit and Wood (1982) show
that

t

1 c
Re=tar—=7
'fmax fmax

where f,,x is the maximum frequency, and the
proportionality factor ¢ = 0.71.

(8.6b)

Analogously, for spatial frequencies, the minimum
resolvable distance in a particular direction « follows
from Ry = ¢/komax- Using equation (8.5), this yields
R, = —CV__ , (8.7a)

2f max S10 gx,max

and
R, =—2 (8.7b)
2fmax

These two equations may be rewritten to provide a
relation between horizontal and vertical resolution as
__ R (8.7¢)

sin 6 max

P

This relation is also given in Denham and Sheriff
(1980). With ¢ = !4, equations (8.7a) and (8.7b) lead to
the same formulas for horizontal and vertical resolution
as given in Ebrom et al. (1995a). For measurements
based solely on peak-to-peak or peak-to-trough
distances, ¢ = ' is too optimistic. However, "below the
tuning thickness limit, amplitude information encodes
thickness variations provided the entire amplitude
variation is caused by tuning effects, and amplitude
calibration then permits ... thickness calculations for
arbitrarily thin beds" (Kallweit and Wood, 1982).

[A different, but questionable formula for
resolution, is presented in Safar (1985) and quoted in
Neidell (1995). Using the same notation as above,
equation (7) in Safar (1985) reads

_ 1.4v (8.8)

* 4f max tanax,max

which means that unlimited resolution would be
achievable with unlimited aperture.]

Using similar reasoning as for the 2-D zero-offset
gather above, it follows that for a 2-D common-offset
gather (acquired along the x-axis) the minimum
horizontally resolvable distance becomes

_ cv , (8.9)
fmax (sin es,max +sin gr,max )

X

where 6, ;. and 6, ., are the angles of the vertical with
the raypaths as indicated in Figure 8-1 for the
shot/receiver pair with the largest distance of its
midpoint to the output point. Note that equation (8.9)
also applies to a 2-D common-offset gather acquired
along a line parallel to the x-axis. In that case, the
angles are measured in the plane through acquisition
line and output point.
Equation (8.9) can also be written as (see Figure 8-
1))
R, = : v , (8.10)
2 finax SIN O yax COSI
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where 6, max = (Gemax T Gmax)/2 (i.€., the maximum dip
angle illuminated by the shot/receiver pairs), and i =
(G max - G max)/2 (the angle of incidence of the raypaths
for the maximum dip angle).

Note the similarity between equations (8.7a) and
(8.10): for i = 0, equation (8.10) reduces to equation
(8.7a). Both equations show that the maximum
horizontal resolution is closely coupled to the
maximum dip angle that can be illuminated.

The vertical resolution that can be reached with a
COV gather can be written as
R = v 8.11)

© 2 fmax COSI

where i is now the angle for the shot/receiver pair with
6, = - 6 (i.e., for constant velocity, this shot/receiver
pair has its midpoint located vertically above the output
point). Cos / in equations (8.10) and (8.11) describes
the NMO stretch effect, which reduces fux tO fuax €OS i
As a consequence, for a given midpoint range the
minimum resolvable distance achievable by offset data
is larger than for zero-offset data (i.e., resolution is best
for zero-offset data).

Equations (8.5) till (8.11) are also valid for media
with v = v(x, y, z), not just for constant velocity. The
geometry of the raypaths at the subsurface point x fully
determines the orientation of k; and k.. In the formulas
v is the local velocity in x. Raytracing is necessary to
link the geometry of the raypaths in x to the acquisition
geometry at the surface.

Comparison of equation (8.10) with equation (8.11)
shows that vertical resolution is better than horizontal
resolution. Potential horizontal resolution also depends
on the maximum illumination angle 6 y.x, Which in its
turn depends on the choice of migration radius.

Before discussing spatial resolution measurements,
I would like to make a link with discussions on
migration stretch (Tygel et al., 1994; Levin, 1998).
Figure 8-1 illustrates that each shot/receiver pair
corresponds to a wavenumber vector k, which is
normal to the plane illuminated by the shot/receiver
pair. For a plane dipping in the x-direction with angle
6, k = (ky, ky, k;) = 2f/ v (sin @cos i, 0, cos Gcos i),
where i is the angle of incidence. The factor 1/
(cos @cos i) is sometimes called the migration stretch
factor, or vertical pulse distortion (Tygel et al., 1994).
Similarly, the factor 1/ (sin 8 cos i) might be called the
horizontal pulse distortion. The larger @ the larger k,,
hence the better the horizontal resolution. & ., is
determined by the range of input data, or, what is about
the same, the migration radius. As argued in Levin
(1998), the pulse distortion as a function of @ is only an
apparent distortion, because the magnitude of k in the 8
direction is not affected by it. Only the cos i factor
(NMO stretch factor) affects all components of k, and

means a reduction in resolution in all directions. An
extensive discussion of these insights is given in Levin
(1998).

A corollary of the discussion in the previous
paragraph is that the vertical pulse distortion is not a
good measure on which to base any migration stretch
limitation. A distinction must be made between the sin
6 cffect and the sin i effect. The migration stretch limit
should only depend on the NMO stretch factor and
should not include the dip stretch effect.

8.3 Spatial resolution measurements

8.3.1 Procedure for resolution analysis

Next, I will illustrate various issues relating to
resolution based on a model consisting of a single
diffractor d = (0, 0, 500) in a constant-velocity medium
with velocity = 2500 m/s. The source wavelet is a
Ricker wavelet with peak frequency f, = 50 Hz. The
same model and isotropic source wavelet was used in
von Seggern (1994). The starting point is a modified
version of von Seggern’s equation (1), which was
derived from equation (21) of Cohen et al. (1986)

f(x) =& d&,h(x,E)plo(x.§) - 9(d,8)], (8.12)

where f(x) is image in x, p[f] is source wavelet, and
h(x,E) is Jacobian of coordinate transformation
corresponding to equation (8.1). ¢ (d,&) is the
traveltime surface [Equation (8.2)] of the actual
diffractor, the data, whereas ¢ (x, §) is the traveltime
surface of a diffractor in the output point, i.e., the
integration path. p[¢ (x, ) - ¢ (d, &)] picks the value of
the wavefield at the correct point in the source wavelet.
Amplitude factors normally occurring in the migration
formulas cancel in this case as the output point is close
to the actual diffractor (von Seggern, 1994).

In von Seggern (1991), it was shown that, for a
point scatterer, migration of surface data recorded with
a Ricker wavelet as a source pulse produces a Gaussian
spatial wavelet in the horizontal directions, but
maintains the Ricker wavelet in the vertical direction.
Figure 8-3 displays the source wavelet and the
corresponding Gaussian along the same scale. The
Gaussian represents the ideal horizontal wavelet.

In the following I will concentrate on
measurements of the width of the spatial wavelet in the
horizontal direction, this width being representative of
the minimum resolvable distance in that direction.

8.3.2 2-D resolution in the zero-offset model

For a varying line length, a constant sampling
interval of 25m, and using coinciding shots and
receivers along the x-axis, Figure 8-4 displays the
amplitude of a horizontal trace at the depth of the
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Fig. 8-5. Widths of spatial wavelets shown in Figure
8-4 plotted against sin 6, with @being the maximum
angle between diffractor and shot/receiver pairs.
Each square is labelled with its corresponding
aperture width. The drawn curve corresponds to
equation (8.13).

aperture width in m
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Fig. 8-4. Horizontal resolution in a 2-D zero-offset
geometry for various apertures and a diffractor in
(0, 0, 500). Starting with the widest, the wavelets
correspond successively to aperture widths 600,
1000, 1500, 3000, and 6000 m. The horizontal line in
the center of the figure indicates the level at which
widths have been measured for Figures 8-5 and 8-6
(width of ideal wavelet is 12.5 m).

diffractor (500 m). The maximum amplitude of all
traces has been normalized to 1. The ideal spatial
wavelet is also displayed. It virtually coincides with the
wavelet found for a line length of 6000 m. Figure 8-4
shows that limiting the line length (migration aperture
width) leads to wider spatial wavelets. This wavelet
stretch is an expression of the horizontal pulse
distortion introduced earlier. ‘

I will now introduce a measure of width of the
various wavelets by defining the width of the ideal
wavelet as 12.5 m (horizontal line in Figure 8-4).
Figure 8-5 tests the hypothesis that this width is
representative of maximum wavenumber and of spatial
resolution. The squares indicate the measured widths of
the wavelets shown in Figure 8-4, whereas the drawn
line represents predicted widths according to

-30

distance in m

Fig. 8-3. The basic spatial wavelets used in this
chapter. The Ricker wavelet and the Gaussian
wavelet have been drawn for a peak frequency of 50
Hz and a velocity of 2500 m/s. The Gaussian wavelet
is the narrowest achievable bell in prestack
migration for the horizontal coordinates.

we— Y (8.13)
4f, SN0, oy

The choice of proportionality factor ' ensures w =
12.5 m for siné, ,,, = 1. According to Equation (8.7a)
the right-hand side of equation (8.13) is proportional to
minimum resolvable distance (fnax is proportional to
Jfp)- The near-perfect agreement between measured
width and predicted width confirms the hypothesis.

8.3.3 2-D resolution in offset model

In Figure 8-6, the results of different offset
experiments have been brought together. As in Figure
8-5, the widths of the spatial wavelets are measured at
the same normalized value (squares), and also
computed on basis of a modification of equation (8.9)
(solid curves)

e v (8.14)
2f,(sinf; +sin6,)’

Each curve represents the results for a single
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Fig. 8-6. Widths of spatial wavelets as a function of
offset for line lengths 1000 (top), 1300, 1700 and
2500 m. The drawn curves correspond to equation
(8.14).
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midpoint range. In this case, the agreement between
predicted value and measured value is not as good as
for the zero-offset data in Figure 8-5. However, the
main trends are caught reasonably well, with increasing
discrepancies for increasing line lengths.

For line length 2500 m the width of the spatial
wavelet tends to decrease with increasing offset. For
even wider apertures, the width becomes even smaller
than the ideal width (12.5 m) corresponding to the
input wavelet. I suspect that this is caused by non-
linear effects for large apertures. Line lengths of 2500
m and more are unrealistically long compared to the
depth of the diffractor at 500 m. This causes distortion
of the wavelet.

8.3.4 Asymmetric aperture

In the previous sections, the diffractor was placed at
the center of the midpoint range. It is of interest to
investigate what happens for an asymmetric
configuration, which may occur along the edge of a
survey. Also, in single-fold 3-D data sets with limited
extent (such as the cross-spread or a 3-D common-shot
gather), the resolution may depend on the position of
the output point with respect to the center of the data
set.

line of observations
< —»
500 m *

500 m

1 2 3 L 4 5
. .............. . ............... @ “...‘....u.u...........

position of diffractors

Fig. 8-7. Geometry for the asymmetry test.

Figure 8-7 describes a series of zero-offset
experiments with constant midpoint range (500 m) and
varying position of the diffractor. Figure 8-8 shows the
resulting spatial wavelets for these experiments. The
ideal spatial wavelet is also shown. The widest wavelet
is obtained for the symmetric aperture (diffractor 1),
whereas diffractors 2 and 3 lead to the "better
resolution" represented by the next two wavelets.
(Actually, resolution is better for reflectors dipping
toward the left, but reflectors dipping toward the right
are less well resolved.) The spatial wavelet for
diffractor 3 is virtually the same as for a symmetric
experiment with line length 1000 m (cf. Figure 8-4).
With diffractor 3 we deal with a perfect one-sided

distance in m

Fig. 8-8. Asymmetry test results. The spatial
wavelets have been computed for the five diffractors
shown in Figure 8-7, but have been plotted on top of
each other for easier comparison. The width of the
central loop becomes progressively smaller for
diffractors 1 - 5. All curves are virtually
symmetrical. The ideal spatial wavelet is drawn as a
dashed line for reference.

operator producing a response, which — at least in the
actual diffraction point — is identical in shape (but half
its true amplitude) to the response that would have
been obtained had the line extended also 500 m in the
other direction.

For even larger aperture angles (diffractors 4 and 5)
the central lobe continues to become smaller, at the
expense of developing side lobes. For these diffractors,
k. = 0 does not occur in the wavenumber range
anymore, leading to incomplete spatial wavelets.

These results reveal a limitation of the resolution
analysis using the spatial wavelet of a diffractor only as
measured along the horizontal through the diffractor.
Analysis of the full image would show its asymmetry
for asymmetric input (Margrave, 1997). Mapping the
configuration in the wavenumber domain would also
show the asymmetry.

8.3.5 3-D spatial resolution

Up to this point, I have discussed spatial resolution
results for 2-D input only. Next, I will compare
resolution of different minimal data sets. For a fair
comparison, the midpoint areas of the different
configurations are equal to 1000 x 1000 m in all
experiments. The diffractor is chosen in the center of
the configuration at a depth of 500 m. Figure 8-9 shows
the wavenumber spectra (computed from Beylkin’s
formula) for four different minimal data sets for two
different input frequencies. The four boxes all have the
same scale and, for ease of comparison, the positions of
two corresponding points are indicated. The zero-offset
wavenumber spectrum lies on a sphere with radius |k| =
2f/ v [c.f. equation (8.4)]. For the wavenumber spectra
of the other minimal data sets, |k| < 2f/ v, because of
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Fig. 8-9. Wavenumber spectra for four minimal data sets. All data sets have the same 1000 x 1000 m
midpoint area with the diffractor in the center. The surfaces correspond to two constant input frequencies.
From left to right: zero-offset gather, 1000-m COV gather, cross-spread, and 3-D shot.

the NMO stretch effect. The 1000-m offset spectrum is
strongly asymmetric; it is much wider in the cross-line
direction than in the in-line direction.

It is interesting to note that a single input frequency
gives rise to a wide range of horizontal wavenumbers,
including k, = 0 and k, = 0. This should not be taken to
mean that a single frequency is sufficient for optimal
horizontal resolution (Vermeer, 1998a). It just means
that the given midpoint range allows resolution in a
wide range of directions (cf. Figure 8-1). For good
resolution, it is still necessary to have a broad input
spectrum, leading to a broad range of wavenumbers in
all those directions which have been illuminated by the
range of input data. In other words, it is necessary that
a volume of wavenumbers is generated by the
measurement configuration, rather than only a surface
as is the case with a single frequency.

The maximum vertical wavenumber k,p., of the
zero-offset data, the cross-spread data, and the
common-shot data is reached in the center of the plot:

0,03 - -

cross-spread
3-D shot

| (k)= (0.0

(. ) = (300,0)
(hes hy) = (500,0)

Fig. 8-10. Coverage in the horizontal wavenumber
domain by five different minimal data sets with the
same 1000 x 1000 midpoint area. The largest
wavenumbers are reached for the zero-offset
section; hence, this section has the best spatial
resolution.

kimax = 2f | v. For f = fi., this value gives an upper
limit to the potential vertical resolution of any data set.
Note, however, that the cross-spread and the 3-D shot
reach this high value only for an output point right
below the center of the data set. For output points away
from the center, the maximum vertical wavenumber
will be smaller, with correspondingly smaller potential
resolution. The value at the center for the 1000-m
offset data can be derived from equation (8.11) (and R;
= ¢/2k,ma), and equals 2f/(w2). The maximum
value of k, is somewhat larger in this case and is
reached some distance from the center (see Figure 8-9).

The projections on the horizontal wavenumber
plane of the wavenumber spectra shown in Figure 8-9
are drawn in Figure 8-10. The spectrum for 600-m
offset is included as well. Figure 8-10 allows the
prediction of the outcome of resolution tests for the
five minimal data sets. The zero-offset section shows
the broadest wavenumber range, followed by the 600-
m offset data. Note the strong asymmetry of the
spectrum for the 1000-m offset data. The 1000-m
offset, the cross-spread, and the 3-D shot all have the
same maximum wavenumber along the k,-axis. This
does not mean that these three data sets all have the
same resolution in x. The maximum wavenumber as a
function of k, also plays a role. Maximum &, does not
vary as a function of k, for the cross-spread, but it
becomes smaller for the 1000-m offset gather and the
3-D shot; smallest for the 3-D shot.

Figure 8-11 shows the results of the numerical
computation of the spatial wavelets for the five
minimal data sets discussed in Figure 8-10. For ease of
comparison, the wavelets are not shown in an areal
sense; only the wavelets for the x-coordinate are
shown. The wavelet for the 1000-m offset data
acquired in the y-direction [(h,, A,) = (0, 500)] nearly
coincides with the wavelet for the in-line 600-m offset.
This confirms once more that the resolution of the
COV gather is better in the cross-line direction than in
the in-line direction. The sequence of wavelet widths
shown in Figure 8-11 is predicted by the wavenumber
ranges shown in Figure 8-10.
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Fig. 8-11. Spatial wavelets for various minimal data
sets. The zero-offset gather produces the narrowest
wavelet, the 3-D common-shot gather the widest.
The curves for 600-m in-line common offset and
1000-m cross-line common offset nearly coincide.
The relative widths of the wavelets confirm
predictions based on Figure 8-10.

The worst potential resolution is obtained for the
3-D shot. At first sight, this might be surprising
because the diffraction traveltime surfaces as we know
them are steeper for a common shot than for a zero-
offset gather. However, this is the behavior of the
diffraction traveltime curves on input, as a function of
midpoint (x, y), whereas Beylkin's formula says that
spatial resolution depends on the steepness of the
traveltime curves as a function of the output
coordinates.

The results of Figure 8-11 confirm that the
maximum wavenumber is not sufficient to predict the
resolving power of a 3-D data set. Rather than the
maximum wavenumber, it is the average maximum
wavenumber taken for all &, that turns out to determine
the resolution in x. This can be understood by realizing
that the result of the 3-D experiment can be considered
as the average of the results of many 2-D experiments,
each 2-D experiment consisting of data with constant y.
The 2-D data with the largest y have a maximum #k,
which is (usually) smaller than the data with y = 0 and
hence produce a wider spatial wavelet. Mathematically,
the spatial wavelet of the whole 3-D data set is the
normalized sum of the spatial wavelets of the
contributing 2-D data sets,

The spatial wavelets shown thus far have all been
normalized to the same maximum value to allow
comparison of their relative widths. However, the
discrimination against noise is also important. To get
an idea about resolving power in the presence of noise,
Figure 8-12 shows the “true amplitude” spatial
wavelets for which no normalization has taken place.
The small peak value and the relatively large tail value
of the 3-D shot suggest that this configuration also
scores worst as far as noise suppression is concerned.
This aspect of geometry comparison is not further
pursued here.

0.03 - - (hx hy)=(0.0)
" b h,)=(300,0
//,/ / ¥ ( }

cross-spread

3-D shot
(hx h,)=(500,0)
{h. hy)=(0, 500)

-30 -20 -10 ) 10 20 30
Fig. 8-12. “True amplitude” spatial wavelets for
same configurations as in Figure 8-11. The two solid
curves with the same maximum at 0.01 correspond
to the in-line and the cross-line resolution of the
1000-m offset gather.

8.3.6 Sampling and spatial resolution

The formulas for spatial resolution do not contain
the sampling interval, because these formulas have
been derived for a continuous wavefield. If sampling
takes place (which is inevitable, regardless whether we
carry out modeling or field experiments), we will
sample the integrands of the migration formulas such
as equation (8.12). If sampling is not rapid enough to
keep up with the variations of the integrand (i.e., the
integrand is aliased), unreliable results are produced,
and resolution will suffer (see also the next section).

Despite the obvious importance of adequate
sampling, there has been much discussion on the
relation between sampling and resolution (Neidell,
1994, 1995; von Seggern, 1994; Ebrom et al., 1995a, b;
etc.). Some of the results even seem to indicate that
resolution is not significantly impaired by coarse
sampling.

Coarse sampling does not influence the resolution

1
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} distance in m

Fig. 8-13. Independence of spatial wavelet from
spatial sampling. The two nearly coinciding outer
wavelets correspond to 5 samples at 200 m and to 80
samples at 12.5 m. The narrow dotted curve is the
ideal spatial wavelet. 6 rather than 5 samples at 200
m (von Seggern, 1994) would give a narrower
wavelet.
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Fig. 8-14. Migration as a two-step process illustrated with 2-D zero-offset section. (a) Input showing
diffraction (heavy curve) and two dipping events (thin curves). (b) In the first step, the input data are
realigned according to the diffraction traveltimes in the output point. Shown is the realignment for the output
point at x = 0, which is the position of the diffractor. (c) In the second step, the realigned data are summed
(stacked) to form one output trace. The response of the second step depends on the sampling of the input data

and is illustrated in Figure 8-15.

of some model experiments, because of the simplicity
of the model. This can be illustrated with another
simple experiment. In Figure 8-13, the spatial wavelets
are shown for two 2-D geometries with the same line
length of 1000 m, but different sampling intervals of
12.5 and 200 m. The wavelets are virtually identical
except for the far end. The reason for this seemingly
odd result is that the model only consists of the single
diffractor. In output points close to the diffractor, the
integrand in equation (8.12) varies only slowly as a
function of & [the difference ¢(x, E) - ¢(d, &) is a slowly
varying function of & the other elements in the
integrand vary slowly as well]. Hence, in this case, the
large sampling interval of 200 m is dense enough to
follow the variations of the integrand.

A similar reasoning can be applied to the results in
von Seggem, (1994, Figures 4 and 5). Those results
seem to indicate even better resolution for the coarser
sampling intervals, but that effect can be attributed to
the fact that in that paper the effective spread length
(the product of number of samples and sampling
interval) of the experiments increases with increasing
sampling interval.

8.3.7 Sampling and migration noise

In the previous section it was shown that coarse
sampling does not have much effect on resolution as
measured with a single scatterer. However, migration
of coarsely sampled input data produces so-called
migration noise. In this section, the relation between
sampling and migration noise is investigated.

To understand the effect of sampling on the
migration result (and hence on spatial resolution), it is
useful to describe the migration process as a two-step

procedure (see Figure 8-14). First, the data along the
diffraction traveltime curves corresponding to the
output point are flattened. This process converts all
data contributing to that output point into a new data
set, the diffraction-flattened gather, in which the
diffraction produced by a diffractor in the output point
is turned into a horizontal event (Figure 8-14b). A
dipping event is turned into a bowl-shaped event with
its apex at the position that has illuminated the output
point, and with flanks that may be steeper than the dip
in the input. The second step is to stack all this data
into a single trace at the output point (Figure 8-14c).
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Fig. 8-15. 2-D stack responses of regular dense
sampling (sampling interval 25 m, first alias band at
k = 0.04, thin line), regular coarse sampling
(sampling interval 50 m, first alias band at k = 0.02,
dotted line), and random coarse sampling (sampling
interval 50 m on average, average of 50 realizations,
no passbands, heavy line). Horizontal line indicates
level of random noise suppression. Note that
random sampling removes strong peak(s), but
cannot match rejection of regular dense sampling in
central part of wavenumber axis.
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The response of this second step can be described
as a stack operator that depends on sampling (see
Figure 8-15). For regular sampling, this operator has a
passband around k = 1/d, d being the spatial sampling
interval. If the input data is coarsely sampled, it will
contain energy above ky = 1/2d. Then the migration
operator moves some of this energy to higher
wavenumbers and also to the passband at k = 1/d,
allowing that energy to enter in the output. The stack
operator of irregularly sampled data only shows a
passband at £ = 0 (d is not constant), hence may better
suppress energy above k=0 than regularly sampled
data. Therefore, random coarse sampling can be better
than regular coarse sampling because it avoids the large
peak in the response. On the other hand, if the input
data is well-sampled, there will not be any energy
moving all the way to the passband at k = 1/d. Instead,
with regular sampling, suppression of energy in the
flanks of the operator benefits from the very low
response around k = 1/2d, whereas the reward for
doubling the sampling density in random sampling is
only a reduction of 3 dB in the overall response.
Hence, regular dense sampling gives much better
suppression above k = 0 than random dense sampling.

This reasoning is put to the test with the
experiments described in Figure 8-16 for a horizontal
event recorded by a 2-D zero-offset configuration. It
shows vertical spatial wavelets with maximum
amplitude normalized to 1. [Equation (8.12) does not
include a phase-shift correction, therefore the reflection
at 500 m is no longer zero phase.] The three leftmost
wavelets have been produced by migrating input data
sampled at 12.5 m, 25 m, and 33.3 m. The sampling
interval of the other two wavelets was 33.3 m on
average with random shifts of maximally 11.1 m on
either side of the target sample points (the random
shifts were generated using a uniform distribution).
The figure illustrates that the event itself is
(reasonably) well imaged in all cases, but that coarse
sampling leads to migration noise above the event. The
two rightmost wavelets illustrate the findings in Zhou
and Schuster (1995) and in Zhou et al. (1999) that
quasi-random sampling may reduce migration noise.

In practice (assuming that quasi-random sampling
is a practical proposition, which I doubt), apparent
velocities in the wavefield made up of reflections and
diffractions may be larger than those of coherent
ground roll events. In that case, the desired signal may
be properly sampled by using a dense sampling,
whereas the coherent noise is still undersampled.
Under these conditions, the coherent noise would be
better suppressed by quasi-random dense sampling,
whereas the desired signal would be best served with
regular dense sampling. This dilemma is not solved
here.
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Fig. 8-16. Effect of sampling interval on migration
noise for horizontal reflection. Input spatial
sampling intervals are (from left to right): 12.5 m,
25 m, 33.3 m, and two random samplings with 33.3
m interval on average. The two rightmost curves
(random sampling of input) show somewhat less
migration noise than the central curve for which the
input data were regularly sampled at 33.3 m. Note
that regular sampling with a smaller sampling
interval of 25 m (second curve from the left)
produces less migration noise than the random
input.

The suppression of random noise, of course, is
independent of the sampling regime; it would only
depend on the number of samples contributing to each
output sample.

8.3.8 Bin fractionation

Bin fractionation and flexi-bin are acquisition
techniques for orthogonal geometries which achieve
finer midpoint spacing than the natural binsize
following from the shot and receiver station intervals.
Figure 8-17 illustrates the bin-fractionation technique
(GRI, 1994; Flentge, 1996). In the flexi-bin technique,
a finer distribution of midpoints is achieved by
choosing line intervals which are a noninteger multiple
of the station intervals (Cordsen, 1993; Flentge, 1996).
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Fig. 8-17. Sampling schemes in orthogonal
geometry. Left: conventional, right: bin fractiona-
tion. Squares and triangles represent shotpoint- and
receiver locations, respectively. Diamonds represent
the midpoint positions. The distance between
midpoints with bin fractionation is one quarter of
the distance between the stations (in this example).
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Fig. 8-18. Migration noise for different acquisition
strategies, measured on a dipping event. The thin
curves represent coarsely sampled configurations
with sampling interval of 33 m. From left to right:
four zero-offset data sets, four regularly sampled
cross-spreads, and four cross-spreads sampled as
indicated in Figure 8-17 on the right. The heavy
curves are the averaged results of each group of
four coarsely sampled data sets. The rightmost
curve is the result for a single cross-spread with
16.5-m shot and receiver station spacings. Note that
bin fractionation does not lead to a significant
reduction of migration noise.

The question is: will the finer midpoint spacing lead to
better resolution?

With the bin-fractionation technique, the same
cross-spreads are acquired as with conventional
acquisition with shot and receiver locations not
staggered. The only difference are the sample
positions. From the discussion in this chapter, it should
be clear that potential resolution (being independent of
sampling) cannot be improved with the bin-
fractionation technique. If an improvement in
resolution is to be achieved, it should be the result of
less sensitivity to coarse sampling, ie., bin
fractionation should produce less migration noise for

the same coarse sampling intervals.

- The interleaving of cross-spreads using the bin-
fractionation technique may be compared with the
interleaving of zero-offset data sets. Two or more
coarsely sampled but interleaved zero-offset data sets
form a new zero-offset data set with finer sampling.
The migration result of the combined data set will
show less migration noise than each of the original
zero-offset data sets, because their migration noises are
largely in antiphase. However, overlapping and
interleaved cross-spreads do not form a new and better
sampled single cross-spread. Therefore, the migration
noises of the cross-spreads will in general not be in
antiphase with each other, and just reduce each other
according to rules of fold. Even though the midpoint
sampling has improved, the sampling of the subsurface
(illumination) has not in general improved.

This reasoning is tested in Figure 8-18. It shows
that coarsely sampled interleaved zero-offset sections
lead to a significant reduction in migration noise when
merged (leftimost curves). Also, a densely sampled
cross-spread does not produce much migration noise
(rightmost curve). On the other hand, regular coarse
sampling of cross-spreads and staggered coarse
sampling of cross-spreads produce similar amounts of
migration noise, also after merging (central curves).

Claims (Cordsen, 1993; GRI, 1994; Flentge, 1996)
that the finer midpoint sampling would lead to better
resolution can be dismissed. Likewise, using a larger
station spacing on basis of bin fractionation would
produce more migration noise, hence, reduce
achievable resolution. These conclusions apply as
much to flexi-bin acquisition as to bin fractionation.

8.3.9 Fold and spatial resolution

The analysis of spatial resolution as given in
Beylkin et al. (1985) deals with single-fold 3-D data.
As discussed above, it assumes implicitly that the
temporal and two spatial coordinates have been
sampled properly. If N-fold data are used, ideally the
data can be split into N such well-sampled single-fold
subsets (cf. Section 2.5). For each subset, the potential
resolution can be analyzed. The resolution of the stack
of the N migration results will be some average of the
resolutions of the contributing subsets (in the absence
of any noise that does not satisfy the velocity model;
otherwise, such noises would influence the
resolvability of close events). As the best possible
resolution for a given midpoint range can be obtained
with a 3-D single-fold zero-offset gather, the resolution
of the stack will be less good than the resolution of that
zero-offset gather. More on this subject can be found in
Levin (1998), where minimal data sets are called
"nonredundant data subsets".

In case each contributing subset of an N-fold data
set is undersampled, giving rise to migration noise for
each subset, then the stack of the N single-fold
migration results would reduce the noise. Now the
achievable resolution (in any direction) of the stack of
the N migration results should be better than the
achievable resolutions of the contributing subsets. Yet,
even with very large N, resolution cannot become
better than the limit imposed by the maximum
frequency in the input data. In an interesting physical
modeling experiment, Markley et al., (1996) show that
fold improves resolution of coarsely sampled data, but
that the result cannot match the resolution of well-
sampled single-fold data.

8.4 Discussion

All observations and conclusions in this chapter
have been derived for a simple constant-velocity
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model. As such they provide valuable insight into
various factors affecting spatial resolution, but what
about more complex models? In my opinion, the results
of this chapter can be used as a first-order
approximation to more complex situations. In case of
doubt about the applicability to more complex models,
it is recommended to apply Beylkin’s formula to those
models. The main requirement is that the diffraction
traveltimes can be computed for the given velocity
model and measurement configuration (acquisition
geometry and source wavelet). To avoid that fold will
confuse the issue, it is important to investigate
resolution for separate minimal data sets.

The treatment of resolution in this chapter did not
include the effect of errors in the velocity. Of course,
velocity errors will lead to mispositioning of the data,
and velocity errors are likely to affect resolution as
well (Lansley, 2000).

The theoretically best possible resolution (the
potential resolution) cannot be improved by better
sampling, because it already assumes perfect sampling.
This truism applies to any measurement model, not just
to the simple model investigated in this chapter.
However, it tends to be overlooked in discussions on
the relation between sampling and resolution. Neidell
(1997) denies the truism: "According to the Huygens'
approach, achievable resolution can be increased
almost without limit if we increase the redundancy of
the wavefield sampling." Indeed, redundancy may
increase achievable resolution by reduction of noise
and a more accurate evaluation of the migration
integrals, but the limits set by Beylkin's formula
(maximum frequency of the source wavelet and
steepest time dips in the diffraction traveltime surfaces)
cannot be tresspassed.

On the other hand, Beylkin's formula only sets
limits on the range of wavenumbers. How this
translates into minimum resolvable distance depends
on the proportionality factor c¢. If amplitude
information can be used [see remark following
equation (8.7b)] or if additional information is
available [e.g., well information (Levin, 1998), or
smoothness of an interface], ¢ may be considerably
smaller than the value 0.71 following from the
Rayleigh criterion. This elusiveness of ¢ might be the
reason of much confusion in resolution discussions.

The nature of the surface seismic acquisition
technique causes a difference between vertical and
horizontal resolution. It also causes a difference
between the wavelets. In our case, the Ricker wavelet
remains a Ricker wavelet in the vertical direction, but it
turns into a Gaussian in the horizontal directions.
Different wavelets lead to different resolution
measurements (Kallweit and Wood, 1982). This
difference leads to a complication when trying to
compare horizontal and vertical resolution on basis of

measurements of the width of the main lobe of the
wavelet. 1 have dodged this issue by comparing only
wavelets in the horizontal direction for various
situations; I only looked at the vertical direction to
investigate migration noise. Beylkin's formula is
available to compute the range of wavenumbers in (k,,
ky, k,)-space allowing a comparison of those ranges in
x,yand z.

The results for the bin-fractionation technique show
that the sampling of the minimal data sets of the
geometry (cross-spreads in this case) determines the
achievable resolution, and not the sampling density of
the midpoints. On the other hand, increasing the
midpoint sampling density of the zero-offset gathers
did help, because now the midpoint sampling also
determines the sampling of the minimal data set. This
raises an interesting question about some intermediate
situations. In marine streamer acquisition, the fold-of-
coverage is smaller than the number of different offsets
(for single streamer, and source interval equal to or
larger than the group interval). This means that each
offset is undersampled, and full single-fold coverage
can only be achieved by combining two or more
neighboring offsets. Would the migration noise
produced by the merged common-offset gathers be
similarly reduced as for the zero-offset gather in Figure
8-17, or would it be more like the results for the two
sets of cross-spreads shown in that figure? I suspect
that the merged gather is close enough to a minimal
data set to benefit from the denser midpoint sampling,
but this needs confirmation by further research.

In the treatment of resolution for 3-D acquisition, I
assumed perfect minimal data sets as input. In practice,
perfect MDSs across the whole survey area do not
exist. Instead, pseudo-minimal data sets may be found
which constitute a more or less good approximation of
ideal MDSs (see Chapter 10: common-offset gathers
with  discontinuous  azimuths in  multisource
multistreamer ~ acquisition; offset-vector tiles in
orthogonal geometry). These pMDSs suffer from
spatial discontinuities, which produce irregularities in
the diffraction traveltime curves used in migration. To
what extent the spatial irregularities of these pMDSs
influence achievable resolution is a matter of further
research.

8.5 Conclusions

In this chapter, I have linked the description of
spatial resolution given in Beylkin et al. (1985) to the
more heuristic approach to spatial resolution as given
in, for example, Ebrom et al. (1995a). The simple
resolution formulas that apply to 2-D data provide a
lower limit to the minimum resolvable distance that
can be achieved with 3-D data.
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Potential resolution (theoretically best possible
resolution for a given geometry and a correct velocity
model) is determined by the spatial gradients of the
diffraction traveltime curves and the source wavelet.
Beylkin's formula links these gradients to spatial
wavenumbers.

Surface seismic data produce spatial resolutions
which are different in the horizontal and vertical
directions. In this chapter, only constant-velocity
models have been investigated. For those models,
horizontal resolution is determined mainly by aperture
of the seismic experiment and by the maximum
frequency in the source wavelet. The horizontal
resolution also depends on the seismic experiment
configuration: for the same range of midpoints,
common-offset data have lower potential resolution
than zero-offset data, and in the in-line direction
resolution of common-offset data is lower than in the
cross-line direction. Cross-spreads have better potential
resolution than 3-D common-shot gathers, but have in
general worse resolution than common-offset gathers.
This puts some ranking on the corresponding
acquisition geometries. The vertical resolution does not
depend on aperture, but does depend on maximum
frequency and offset.

Potential resolution assumes perfect sampling.
Sampling influences the correctness of the migration
process to a large extent because sampling is a way of
approximating the migration integration formulas as
derived for continuous shot and receiver variables.
Invalid migration results are obtained as soon as the
integrand in those formulas varies more rapidly than
sampling can follow, i.e., as soon as the data are
aliased along the integration paths.

Migration noise (caused by coarse sampling) can
also be reduced by using quasi-random sampling
instead of regular sampling. However, as dense regular
sampling would minimize migration noise, quasi-
random coarse sampling cannot match the quality
obtainable with regular dense sampling.

Staggered sampling of the acquisition lines (the
bin-fractionation technique) produces a denser
sampling of midpoints, but it does not compensate for
coarse sampling.

Noise in the data will reduce the achievable
resolution. Therefore, increasing fold will virtually
always improve achievable resolution, even though it
would in general not improve potential resolution. This
applies to noise in the form of ambient noise, ground
roll and multiples, as well as to migration noise caused
by coarse sampling.

All results and conclusions are based on
investigations using a simple constant-velocity model.
As such it provides some valuable insights, which
might also apply to more complex models.
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9 DMO

9.1 Introduction

In this chapter the paper "DMO in arbitrary 3-D
acquisition geometries" is reproduced (Vermeer et al.,
1995). It describes the result of research carried out in
1992 within the context of Shell Research's project
"Fundamentals of 3-D seismic data acquisition". The
initial project results pointed at advantages of using
wide geometries in case an orthogonal geometry was
chosen for the 3-D survey. However, there was a
general feeling that DMO would produce best results
for narrow-azimuth geometries. For instance, Beasley
and Klotz (1992) wrote "for DMO purposes, good
offset distribution within each azimuth range should be
a survey design goal", and: "... wide-azimuth surveys
should be higher in fold than narrow-azimuth surveys
to avoid artifacts from applying 3-D DMO." In 1988,
den Rooijen had written a Shell report, which
advocated the use of narrow-azimuth geometry because
of DMO. Because this prescription did not fit in with
the budding theory of 3-D symmetric sampling, den
Rooijen and I set out to investigate DMO in cross-
spreads, and soon we found that DMO can indeed be
applied successfully in those single-fold data sets.

Already in 1989, Padhi published the theory of
DMO in cross-spreads and other minimal data sets in a
Shell Oil research summary. In that summary also the
term minimal data set was introduced. Unfortunately,
the significance of that work was not recognized on our
side of the ocean, so that we had to reinvent the wheel.
Collins (1997a, 1997b, submitted to Geophysics in
April 1994) elaborated on Padhi's work and Padhi and
Holley (1997) provides a simplified version of Padhi's
original paper.

Quite independently, Pleshkevitch (1996) also
published a paper on DMO in cross-spread.

Our paper is reproduced in Section 9.2, as it fits in
well with the general theme of this dissertation: the link
between acquisition geometry and imaging. The
sampling problems discussed in Section 9.2.7 became
the subject of a paper presented at the 1996 EAGE
Conference (Vermeer, 1996). The results of a variety of
programs of applying DMO to a synthetic data set
consisting of some dipping events and also a horizontal
event in a cross-spread were shown at that conference.

151

The expanded abstract of that paper, supplemented
with some figures shown in the oral presentation is
reproduced as Section 9.3.

This chapter is rounded off with an epilogue. It
discusses the reaction of the contractor's world to the
problems discussed in the EAGE paper, and considers
the use of pseudo-minimal data sets for an improved
application of DMO and subsequent velocity
determination.

The justification to put this much emphasis on the
application of DMO to single-fold data sets lies in the
quality improvement that can be obtained. If good
methods are available to apply DMO to single-fold
data, one does not have to rely on multi-fold to iron out
the artifacts. Eventually, it might even allow data
acquisition with lower fold than would be necessary
otherwise.

9.2 DMO in arbitrary 3-D acquisition
geometries

9.21 Summary

Section 9.2 provides a theory for the application of
3-D dip moveout (DMO) to data with varying shot-to-
receiver offsets and azimuths.

We will derive a general expression for the DMO-
corrected time of a plane, dipping event in a constant-
velocity medium. Inspection of that expression shows
that DMO can be applied successfully to 3-D single-
fold subsets of arbitrary 3-D acquisition geometries,
provided those subsets are sampled alias-free.

We will illustrate this for the data of a cross-spread,
the single-fold basic subset of the orthogonal geometry.
In this data set the midpoints of the traces contributing
to an output point fall along a hyperbola in the (x, y)-
plane. The hyperbola contatns exactly one shot/receiver
pair that has illuminated the footpoint of the normal-
incidence ray at the output point. This footpoint is
found through DMO.

Correct sampling of the hyperbolas is difficult to
achieve. Therefore, even in regularly sampled data sets,
the result of 3-D DMO for data with varying shot-to-
receiver azimuths is usually suboptimal.



152

Chapter 9

reflector

Fig. 9-1. Geometry of plane dipping reflector. Putting d = OA and with OS : OR=SD : RD=AS: AR, it

follows that (h-r)(h+r)=dr.

9.2.2 Introduction

The dip moveout (DMO) operator is intended to
correct for reflection point smear of traces in the same
midpoint gather. It was originally devised for pure 2-D
data, which are acquired with shots and receivers
located on the same straight line. The extension to
marine 3-D was straightforward insofar as common-
offset gathers are also common-azimuth gathers. But,
as far as we know, no satisfactory theory has been
published that justifies the application of the DMO
process to more general 3-D acquisition geometries, in
which shot-to-receiver azimuths vary over all possible
values. Despite this lack of a theoretical basis, 3-D
DMO is often applied to land seismic data with
surprisingly good results. For instance, Forel and
Gardner (1988) demonstrated that 3-D DMO deals
adequately with synthetic data having random azimuth
variations. Similarly, Yao et al. (1993) used a physical
model to show that the operation can handle wide
azimuth data as well as narrow azimuth data. Those
results and actual processing practice call for a theory
of 3-D DMO in arbitrary geometries.

A noteworthy feature of 2-D DMO is that it
"works" for single-fold common-offset gathers. For
cach output point; every gather always contains a
single trace that has illuminated the same point on the
reflector as the normal-incidence trace for the output
point (assuming dense sampling). All other traces in
the gather either contribute to the zone of stationary
phase around that trace, or cancel each other along the
flanks of the output operator. Here we show that a
similar process operates in other single-fold data sets,
— particularly in the cross-spread.

On our way to this result we will first derive a
general expression for the time of a DMO-corrected
event. This expression allows us to postulate a general
criterion for successful 3-D DMO in single-fold 3-D
data sets. Then we will derive, for the cross-spread, the
locus of midpoints that contribute to an output point.
We will prove that the single-fold cross-spread data are
suitable for imaging with DMO. Finally, we will make

some remarks about other geometries and discuss some
sampling-related problems. In our work we assume the
reflectors have a constant dip in a constant velocity
medium.

9.2.3 The time of a DMO-corrected event

Figure 9-1 illustrates the reflection point smear that
DMO is supposed to correct. The shot/receiver pair (S,
R) records a reflection from the depth point D which is
posted at the midpoint M. The DMO-operation has to
move the reflection to the normal-incidence point O
and give it the normal-incidence time of O. As the
subsurface dip is unknown, DMO is an imaging
process in which all traces that can contribute to a
particular output point O are moved to that point after
application of the DMO-correction. We will call the
collection of traces contributing to the output point a
DMO panel.

If 3-D DMO is to be successful in imaging an
event, then (in analogy to 2-D DMO) the DMO panel
should meet three conditions:

e It should have a point of stationary phase.

The DMO-corrected time in that point should
be equal to the normal-incidence time for the

e The DMO panel should contain a well-
sampled collection of traces around the point
of stationary phase.

We want to establish in this paper which single-fold
data sets may produce DMO panels that satisfy these
conditions.

To achieve this, we first compute the DMO-
corrected time for a trace moved from M to O (Figure
9-2). Suppose the subsurface contains a dipping
reflecting plane

©.1)
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Fig. 9-2. Contributing source-receiver pair for
output point in the origin.

and g, ¢, are reflector dip and azimuth. The normal-
incidence reflection time in the origin O is

tp=2alc, 9.2)

where c is the constant propagation velocity.
We now consider a shot at (x_,y ) and a receiver at

) and half-
(hesh)=((x, —x)/2,(y, = ¥,)/ 2). The
reflection traveltime is given by

2
r= E[(a T Xy TRV )2 - (”xh.\' + "vhv)2 + h2]1 ’ (93)

c ) »

where =/ hf. + };‘ . Application of the NMO-
correction with dip-independent velocity ¢ leads to

ty = %[(a ~ Ny Xy =Yy P (n.h, + nyh, )2]1/2

(x,,v,) with corresponding midpoint (x,,y
offset

04

As already indicated in Figure 9-2, the shot/receiver
pair can only contribute to the DMO output in the
origin if the shot-to-receiver segment passes through O.
We introduce r and ¢: r is the distance from O to M; r
> 0 if O lies between M and S, and r<0 if O lies

between M and R; || < h. @is the angle measured from
positive x-axis to or. Then, expressing X, Vs, and
h, in terms of r,h and ¢ and expressing »_,n_ in terms
of g, and ), we get

/2

t :%[(a—rsinﬁ)z —h?sin? e]’ (9.5)

Here @ is the apparent dip along azimuth ¢ ; it is
defined by sin 8=sin 8, cos(p- @,).

The DMO-corrected time ¢, is found by
multiplying the NMO-corrected time 7 by the DMO-
correction factor (Deregowski, 1982)
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Combining equations (9.5) and (9.6) yields the
DMO-corrected time at the output point

(9.6)

1/2
9.7

2 25 . 2
2a [ar+(h‘~r )smﬁj
lg=—il-
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Note that this formula is valid for arbitrary shot-to-
receiver offsets and azimuths, the only requirement
being that the output point lie on the shot-to-receiver
segment. Equation (9.7) shows that the DMO-corrected
time at an output point for a plane, dipping event is
always less than or equal to the true normal-incidence
time at that point. The DMO-corrected time is equal to
the normal-incidence time only if

ar+(h* =r?)sin@ =0. (9.8)

In the case =0, the solution of equation (9.8) is
r=0, ie., midpoint and normal-incidence point
coincide for a horizontal reflector and also for shooting
along strike. Otherwise, equation (9.8) can be written
as (h—r)h+r)y=d |r|, where d=a/|sinf (see Figure
9-1). This is exactly the same equation as that for a
shot/receiver pair that has its reflection point at the
footpoint of the normal-incidence ray at the output
point. This equivalence expresses the property that
DMO removes reflection-point dispersal (Deregowski,
1982).

Equation (9.8) can be solved only if » has a sign
opposite to that of sin@. Therefore, in order for DMO to
image the normal-incidence event for positive and
negative dips, the DMO panel must contain traces on
both sides of the output point.

Now we postulate that the main criterion for a
successful 3-D DMO in single-fold 3-D subsets of
arbitrary acquisition geometries is that the subsets
should be properly sampled. Proper sampling allows
construction of DMO panels for each output point with
the property that the midpoints of the traces in the
DMO panel are distributed along a smooth curve
passing through the output point. This curve is called
the locus of contributing midpoints.

Basically, our criterion of proper sampling means
that the spatial variables vary smoothly in the data set.
This ensures that somewhere along the locus
equation (9.8) is satisfied (the point of stationary
phase), whereas elsewhere the DMO-corrected events
follow a smoothly varying curve according to equation
(9.7) (zone of stationary phase and flanks).

A formal proof of the suitability of certain 3-D
single-fold data sets for 3-D DMO would include a
description of allowable locations of the output point.
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Here we restrict ourselves to proving that
equation (9.8) has a solution for the single-fold cross-
spread.

9.24 Contributing traces in cross-spread

The cross-spread is a 3-D single-fold data set
consisting of all traces that have a shot line and an
orthogonal receiver line in common. For the time being
we consider the cross-spread as a continuous data set,
i.e., shots and receivers occupy all positions along the
acquisition lines.

The DMO panel at an output point O in a cross-
spread consists of those traces whose shot-to-receiver
segment passes through that point. Take any shot S
along the shot line and connect it with O (Figure 9-3).
The line SO intersects the receiver line at R. The
corresponding midpoint M is a point on the locus of
contributing midpoints, provided O lies between R and
S, i.e., only midpoints in the same quadrant of the
cross-spread as the output point can contribute to this
point. Taking O as the origin of our coordinate system
and (X, Y) as the center of the cross-spread, we can
describe the locus by the equation

My LAY 9.9
(im =) 0m =)=~ ©.9)

Hence, the DMO panel is formed by traces whose
midpoints lie on an orthogonal hyperbola passing
through O, with asymptotes halfway between O and the
shot and receiver lines.

Using equation (9.9), X = pcos §, Y = psin § and
géometric relations (see Figure 9-3), one can

Fig. 9-3. Orthogonal cross-spread acquisition
geometry. Locus of contributing midpoints of an
output point O is a hyperbola through O.

parameterize r and 4 of a midpoint on the locus in
terms of the shot-to-receiver azimuth ¢

rg)=p TELD, ©.10)
Woy=p L0 ©.1)

9.2.5 The DMO-corrected time in the cross-
spread

Equations (9.7), (9.10), and (9.11) together describe
the time ¢, (¢) of the dipping event in the DMO panel.

We rewrite equation (9.7) as

t4(@)=to1-7%(9), (9.12)

where

_ ar + (h? —r2)sin90 cos(9 — @) (9.13)

7o) ah

Substitution of the expressions for r(¢) and h(g)
into equation (9.13) gives
_ —asin(p+ )+ psin2fsin 6, cos(¢— @) (9.14)
asin(p~ f) '
The stationary point ¢ _of the DMO panel, defined
by

)

a0 _o 9.15)
P s,

is attained for ®(¢,) =0, i.e., 1,(¢,)=1,- We find

tan @ =_Y(a‘2"xX) __Smﬂ(a—chosﬁsmeo cos @)

X(a-2n,Y)  cosf(a—2psinBsinbysingy)
. (9.16)

This shows that there is a stationary point at ¢ =1¢,,

which proves that the proper normal-incidence time
can be found by the application of DMO to cross-
spread data, provided the extent of the cross-spread is
large enough. Note that there is only one stationary
point for each output point.

Figure 9-4 shows some graphs computed along the
locus of midpoints of contributing traces as a function
of DMO shift r. These graphs describe the DMO
operation in orthogonal geometry.

9.26 Extension to other geometries

We have shown that the DMO operation can be
applied successfully to single-fold cross-spread data in
which the locus of contributing midpoints is an
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Fig. 9-4. Graphs computed in cross-spread along locus of contributing midpoints for dipping reflector.
Horizontal axis is (signed) distance r from midpoint to output point. (a) Reflection time, equation (9.3), (b)
NMO-corrected time, equation (9.5), (¢) DMO factor, equation (9.6), (d) DMO-corrected time, equation (9.7).
(Center of cross-spread X = -500 m, Y = -300 m; reflector ty=2 s, 6,= 30° ¢y = 189.

orthogonal hyperbola. Our derivations can be easily
extended to geometries in which shot and receiver lines
cross at arbitrary angles. Then the loci are oblique
hyperbolas with asymptotes parallel to the acquisition
lines.

In parallel geometry the hyperbolas reduce to
straight lines, provided the distance between shot and
receiver lines is kept constant. Then DMO can operate
in common-offset gathers with constant shot-to-
receiver azimuth. However, our analysis does not cover
DMO in wide multisource multistreamer
configurations, because no alias-free single-fold 3-D
subsets can be constructed for those geometries.

Not only oblique cross-spreads are suitable for
DMO, in fact all 3-D single-fold data sets with an areal
distribution of midpoints are suitable for 3-D DMO,
provided they are alias free. These data sets include
3-D common-shot and common-receiver gathers as
well as cross-spreads acquired with smooth rather than
straight acquisition lines. Also the combination of a
straight shot line with a feathered streamer produces a
single-fold data set suitable for 3-D DMO.

9.2.7 Sampling problems

Conventional DMO programs use output bins
rather than output points. All traces with a shot-to-

receiver segment that cross the output bin may
contribute a DMO-corrected trace to that bin
(depending on the sampling along the shot-to-receiver
segment). This is illustrated in Figure 9-5 for the cross-
spread. In Figure 9-5a two hyperbolas are drawn, each
of which is a locus of contributing midpoints for one
corner of the bin. All midpoints that lie between the
two hyperbolas have shot-to-receiver segments that
pass through the bin; hence, they are potential
contributors to the DMO panel for the bin. These
midpoints are plotted in Figure 9-5b. Application of the
DMO-correction to these traces leads to time jitter in
the DMO panel.

An ideal DMO output would be obtained if the
locus of midpoints could be properly sampled.
However, resampling to obtain new samples along
each and every locus of contributing midpoints is a
very expensive exercise. A good compromise is to use
finer sampling of the midpoints in the cross-spread. An
alternative solution will be discussed in Section 9.4.1.

In marine data acquisition (with streamers) the
DMO panels have to be equalized to correct for
irregular sampling (Canning and Gardner, 1992;
Beasley and Klotz, 1992). In land data acquisition
(with the orthogonal geometry) it is not necessary to
equalize DMO panels. Instead, regular alias-free cross-
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Fig. 9-5. Loci of contributing midpoints for one output bin, represented by black square. (a) Area between
hyperbolas contains all midpoints contributing te bin, (b) Actual input midpoints.

spreads should be acquired; alternatively, the cross-
spreads should be regularized.

9.2.8 Conclusions

We derived an expression for constant-velocity
DMO in arbitrary acquisition geometries. From this
expression it follows that well-sampled single-fold 3-D
data sets are suitable for 3-D DMO, irrespective of the
shot-to-receiver azimuths in the data set. We have
proved this for the cross-spread, the basic subset of the
orthogonal geometry.

9.3 DMO in cross-spread: the failure
of earlier software to correctly
handle amplitudes

9.3.1 Introduction ‘
The cross-spread is the basic subset of the

shot line

receiver line

Fig. 9-6. The midpoints of shot/receiver pairs that
can contribute to the DMO result in an output point
P lie on a hyperbola through P.

orthogonal geometry. It is a single-fold 3-D data set,
which is suitable for DMO (Section 9.2). The
midpoints of the traces contributing to the DMO result
in an output point lie on a hyperbola (Figure 9-6). In a
constant velocity medium, there is always a point on
the hyperbola that has illuminated the footpoint of the
zero-offset trace in the output point. This is the point of
stationary phase for the output point. The other traces
along the hyperbola either contribute to the zone of
stationary phase or to the flanks of the DMO panel.

9.3.2 Sampling problem

The hyperbola in Figure 9-6 is computed with the
assumption of continuous shot- and receiver
coordinates. In actual fact these coordinates are
sampled in a square grid (if shot and receiver intervals
are the same). As a consequence the hyperbola for an
output point runs between the sample points. In Figure
9-7 the nearest midpoints to the hyperbola are drawn
for four output points with the same x-coordinate but
different y-coordinate. The corresponding shot-to-
receiver segments of these points do run through the
bin defined around the output point, but most segments
do not run through the output point itself. Conventional
3-D DMO programs do not take these sampling
problems into account. This bin smear leads to
irregularly sampled DMO panels, loss of high
frequencies, and erratic amplitude variations. The
systematic deviation of the samples from the hyperbola
in Figure 9-7a,b is typical for points close to the
acquisition lines, and leads to systematic amplitude
variations. Figure 9-8 shows the corresponding DMO
panels (DMO-correction traces of one output point).
The horizontal axis in these displays is r, the signed
distance between the contributing midpoint and the
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Fig. 9-8. DMO panels of synthetic data corresponding to midpoint positions in Figure 9-7. The leftmost panel
corresponds to Figure 9-7a, etc. The arrows indicate the DMO output trace corresponding to each panel. Note
the big gap in the leftmost panel: there are no midpoints in Figure 9-7a corresponding to this range. The

irregularity of the DMO panels causes amplitude variations in the reflections and noise above the reflection
events.
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output point. Note the irregular sampling of those
panels.

9.3.3 Geometry effect

The DMO correction factor 4/1-r?/h*, which
squeezes the traveltimes of a trace [equation (9.6)], is
not only dependent on haif-offset &, but also on r. The
behavior of this factor varies across the cross-spread.
This leads to varying curvature of the events in the
DMO panels of which Figure 9-8 is an example.
Therefore, the width of the zone of data contributing to
the amplitude in the output point (zone of influence, cf.
Section 10.2) depends on the position of the image
point with respect to the center of the cross-spread. So,
even if it would be possible to perfectly sample the
hyperbolas, there would still be a geometry effect to
cope with. This effect is strongest close to the
acquisition lines.

9.3.4 Example

We sent a synthetic cross-spread to several seismic
processing contractors. Their 3-D DMO results showed
considerable variation, but also great similarities.
Figure 9-9 (displayed on page 180) illustrates the
horizon slices after DMO for a horizontal reflector for
six different DMO programs. If the DMO algorithm
were perfect all amplitudes should be the same.
However, all results have amplitudes, which show
point-to-point variations caused by the sampling
problem, and also variations with a longer wavelength.
The latter are caused by a combination of sampling
problems and the geometry effect. The result with the
least jittery amplitude is due to a mixing effect of the
DMO program causing loss of high frequencies.

9.3.5 The ideal 3-D DMO program

The ideal 3-D DMO program would compute traces
along the hyperbola of each output point, and take the
geometry effect into account. Unfortunately, proper
resampling is a very expensive exercise. However, it
turns out that improved results can be obtained using
sampling theory (Section 9.4).

9.3.6 Conclusion

In theory cross-spreads are suitable for DMO.
However, it is difficult to correctly handle the seismic
amplitudes. There are two reasons for incorrect
amplitudes produced by current 3-D DMO programs:
shot-to-receiver segments do not pass through the
center of the bins, and the cross-spread requires
geometry-specific amplitude-correction factors. An
alternative technique would be necessary to produce
correct DMO amplitudes.

9.4 Epilogue

9.41 New DMO programs

Within a year after Figure 9-9 was shown at the
1996 EAGE Conference, various authors presented
much improved results after adapting either the
procedure (Cooper et al., 1996) or the DMO program
(Beasley and Mobley, 1997a; Herrmann et al., 1997a).

Cooper et al. (1996) produced much improved
results by first interpolating the cross-spread in the shot
and receiver domains. After DMO, the data were high-
cut filtered in x and y and resampled to the original
sampling interval. This procedure highly reduces the
loss of high frequencies and amplitude variations
caused by the bin-smear effect.

Beasley and Mobley (1997a,b) and Herrmann et al.
(1997a,b) found an even better solution. They argued
that a two-dimensional sinc function was required for
every DMO-corrected trace to find its amplitude values
at the surrounding bin centers. Of course, this
theoretically correct solution would be horribly
expensive if implemented to the full. As a compromise,
they decided to use only the amplitudes of the sinc
function at the four nearest neighbors. This already
gave a much-improved result over the earlier results.
As a bonus, it turned out that this procedure produced
better results for all 3-D DMO situations, because the
line segment connecting shot and receiver never runs
exactly through the bin centers, so that this bin-smear
correction always applies.

All major contractors now offer this improved 3-D
DMO algorithm as an option to their clients.

9.4.2 DMO in pseudo-minimal data set

Although the cross-spread is suitable for DMO, it
has limited extent causing edge effects. The traces that
need DMO most — the long offsets — are closest to the
edges, and are most likely not completely imaged.
Fortunately, the problem is less serious than it seems to
be at first sight. The chances of reasonably good
images are much improved by using OVT gathers as
introduced earlier in Section 2.5.

In this case, OVT gathers are not really necessary
for imaging the inside parts of the cross-spreads. The
cross-spreads by themselves already give good images.
However, the edges are more likely to produce good
images when using tilings of matching OVTs.
Although the locus of contributing midpoints will be
discontinnous across the edges of the OVTs,
continuous stretches of contributing midpoints are
likely to be present in one or the other neighboring tile.
The results might be further improved by applying
equalized DMO (Beasley and Klotz, 1992) to the OVT
gathers.




DMO

The use of OVT gathers would also come a long
way toward the problem of velocity determination after
DMO for data acquired with the orthogonal geometry.
Each gather has a central offset, which could be taken
as the representative offset of the gather. This
procedure would be much better than splitting the data
over fixed absolute-offset ranges, as is often done.

This section mentions some — as yet — untested but
promising ideas. More work is necessary to test the
ideas and improve on them.
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10 PRESTACK MIGRATION

10.1 Introduction

The relation between acquisition geometry and
imaging is of great interest as the Leitmotiv of this
dissertation. First and foremost is the influence of
sampling on a good imaging result. The relation is also
apparent in the velocity-model updating procedure,
when subsets of the data have to be selected for
imaging. True-amplitude migration can only be
successful with a good understanding of the properties
of the acquisition geometry. This chapter focuses on
this relation between acquisition geometry and
imaging. It is based on three earlier papers (Vermeer,
1998a, 1998b, and 2000).

The influence of sampling on the imaging result
was already mentioned at various places in this
dissertation. In particular Section 8.3.7 illustrated that
coarse sampling generates migration noise. Section 4.5
mentioned that the size of the survey area depends on
the migration distance and the zone of influence. Often,
Fresnel zone is used in this context, but Fresnel zone
has a very specific meaning and does not quite express
the zone around the imaging point that is required for a
complete image. The expression "zone of influence" is
a better term for this requirement. It was introduced in
Briihl et al. (1996) for modeling and can readily be
extended to migration.

The process of velocity-model updating can be
subdivided into two major steps: (1) the creation of
images using subsets of the total data set, followed by
(2) an analysis procedure to find an improved velocity
model. The collection of all image traces for a given
output point is called common-image gather (CIG).
The analysis procedure first measures the imaged time
or depth for a particular reflection. If this time or depth
is the same for all images in a CIG, the velocity model
is assumed to be correct (although this is not
necessarily so). If the images are not horizontal in the
CIG, the velocity model has to be updated.

For a successtul velocity-model updating
procedure, it is essential that the images produced in
step 1 are clean and do not suffer from artifacts. In
parallel geometry, the obvious subset for creating CIGs
is the common-offset gather. Firstly, it should produce
clean images (usually a small range of offsets has to be

taken as input to ensure complete coverage), and
secondly, errors in velocity can directly be related to
offset (Deregowski, 1990, Liu and Bleistein, 1995).
Examples of horizon slices taken from migrated
common-offset gathers are shown in Section 5.3.2.5.
As discussed before and shown in Figure 2-25, proper
common-offset gathers cannot be extracted from an
orthogonal geometry. This will pose considerable extra
challenges for the velocity-model updating procedure
to be used for this geometry.

It is tempting to use complete cross-spreads for
imaging as each cross-spread is capable of producing
clean images for a large part of the volume which it has
illuminated. However, the area where clean images
occur for a cross-spread is unpredictable without
further analysis (it might be predicted using the current
velocity model), and that area would be different for
different overlapping cross-spreads. Using a tiling of
adjacent cross-spreads as in Figure 2-20 would produce
clean images in some places and strong artifacts in
other places. A better alternative might be to use OVT
gathers as described in Figure 2-21.

In the following, 1 will first discuss the zone of
influence as an alternative to Fresnel zone. Next, I will
discuss prestack migration using single MDSs,
followed by a discussion of prestack migration using
pMDSs. The discussion is illustrated with horizon
slices of migrated dipping reflectors. For those
situations where the pMDSs are not that good an
approximation of COV gathers, the vector-weighted
diffraction stack (Tygel et al., 1993) and the MITAS
technique (Harris et al., 1998) are discussed as a means
to estimate the offset of the image trace. This offset can
be used in conventional migration-velocity analysis.
Finally, true-amplitude migration will briefly be
discussed.

10.2 Fresnel zone and zone of
influence

10.2.1 Modeling

Fresnel zones were originally defined only for
monochromatic waves. Briihl et al. (1996) show that
the idea of first Fresnel zones can be readily extended
to broadband data. It is defined as the area around a
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Fig. 10-1. Illustration of Fresnel zones for different wavelets. On the left the input wavelets are shown, all
with central frequency of 37.1 Hz, on the right the energy as function of the radius of a circular reflector. The
reflector depth is 1000 m, the velocity is 2000 m/s. The radius of the Fresnel zone F is in all cases defined by
the maximum of the energy function. (a) monochromatic wavelet, (b) narrowband wavelet, (c) broadband
Ricker wavelet. In (c) an estimate I of the radius of zone of influence is indicated as well (modified from Briihl

et al., 1996).

specular point, which leads to maximum (reflected)
energy. Briihl et al. discuss Fresnel zones only from a
modeling point of view, but their discussion can readily
be expanded to migration (see next section). In
modeling, the reflected energy is measured as a
function of the radius of the reflecting circular disk. In
migration, the energy of the migrated reflection can be
measured as a function of the migration radius. In both

situations, the energy starts from zero for zero radius,
then increases to some maximum value, and next
oscillates until some stable energy level is reached. In
both cases the first Fresnel zone corresponds to the
radius which produces the maximum energy. For
modeling, this is illustrated in Figure 10-1.

The energy considered in Briihl et al. consists of a
reflected wavelet from the circular disk itself, and a
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Fig. 10-2. The reflected wavelet as a function of the radius of a circular reflector. (a) Input wavelet, (b)
Reflected wavelet for smallest radius for which normalized energy equals 1 (point A in Figure 10-1c¢ right), (c)
Reflected wavelet with maximum normalized energy, i.e., for radius corresponding to radius of generalized
Fresnel zone, (d) Reflected wavelet for radius which is large enough to allow separation of desired reflected
wavelet and truncation effect, i.e., for radius, which is larger than radius of zone of influence. Note that only
in (d) the correct wavelet shape is reproduced (after Briihl et al., 1996).

diffraction wavelet from the edge of the disk. Only if
the radius of the disk is large enough, the two wavelets
will be separated, as illustrated in Figure 10-2. The
length of the wavelet and the difference in traveltime
between specular point and disk edge determine when
the two wavelets are fully separated. Briihl et al. define
the zone of influence as:

The zone of influence is the area on the reflector for
which the difference between the reflection traveltimes
and the diffraction traveltimes is less than the length
At of the wavelet.

In the example of Figure 10-1c, the radius of the
zone of influence / is a factor 1.8 larger than the radius
of the Fresnel zone F.

10.2.2 Migration

The discussion in the previous section on modeling
can readily be extended to migration. As a starting
point, it is instructive to use the description of
migration as a two-step process as discussed in Section
8.3.7 and Figure 8-14. In the first step, the whole
seismic section is modified so as to flatten the
diffraction traveltime curves in the output point. In this
step the reflections are turned into bowl-shaped events
(Fig. 8-14b). In the second step, the whole modified
section is stacked into one output trace (not mentioning

phase shifts and weights). In this step, the apices of the
bowl-shaped events provide the image of the reflector
at the output point, whereas the steeper parts of the
bowls should cancel in the ideal situation (Figure 8-
14c).

The question to be answered here is: when is the
image of the reflector complete? Figure 10-3 provides
the answer. In this figure a bowl-shaped event is
enlarged to show various relationships. Let us assume
for the time being that the event corresponds to a
horizontal reflector. The insert in Figure 10-3 shows
the behavior of the energy of the migrated result as a
function of the migration radius. For zero migration
radius the output energy must be zero. Then, by
increasing the migration radius, constructive
interference increases the total energy until a maximum
value has been reached. At that point the migration
radius equals the radius of the Fresnel zone in exactly
the same way the maximum energy in modeling was
reached for some radius of the reflecting disk.
Increasing the radius further produces destructive
interference, in the sense that the energy of the wavelet
is reduced, until a point is reached after which an
increase in migration radius does not change the energy
of the image anymore, but only adds energy above the
image. Hence, we can define the zone of influence for
migration as:
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Fig. 10-3. Fresnel zone and zone of influence. A
horizontal event is shown after flattening of the
diffraction traveltime. Start and end of the wavelets
is indicated by drawn curved lines. Data beyond the
zone of influence cannot contribute to the migration
result in the point of stationary phase. Data beyond
the Fresnel zone is still needed for a complete image

with correct phase and amplitude.

The zone of influence is the area in data space
around the image point (point of stationary phase) for
which the difference between the reflection traveltimes
and the diffraction traveltimes is less than the length
At of the wavelet.

The term Fresnel zone is universally used in the
industry as a measure of how far to extend the
migration radius, i.e., Fresnel zone is equated to zone
of influence, whereas in actual fact the Fresnel zone is
always smaller than the zone of influence. The zone of
influence rather than Fresnel zone is to be included in
3-D survey design to define the migration fringe area.

The above discussion assumed a horizontal
reflector. A dipping reflection is aiso turned into a
bowl-shaped event, but now the apex is situated at the
migration distance from the output point. Migration
radius as used above should be changed into distance
from the apex of the bowl-shaped event. In summary,
to obtain a correct image of a dipping reflector, the
migration radius and the migration fringe should at
least be equal to the sum of migration distance and
radius of zone of influence.

The Fresnel zone and the zone of influence are
closely coupled. They depend on the spectrum of the
source wavelet, the depth of the reflector, and also on
the acquisition geometry. A 2-D line has a different
Fresnel zone than a 3-D zero-offset section, because
the interference effects are different (this is also
evident from the different phase correction needed in
2-D and 3-D migration). The effect of an incomplete
Fresnel zone also depends on the distribution of the
missing energy, because the Fresnel zone depends on
interference effects of the wavelet with itself (the zone
of influence only depends on traveltime differences
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Fig. 10-4. Horizon slice for horizontal reflector in
migrated zero-offset volume of limited extent. Edge
of slice corresponds to edge of illumination area.
Note that amplitude builds up from the edge until a
maximum is reached, followed by a decrease in
amplitude until a plateau value is reached. Distance
F from edge to maximum amplitude corresponds to
radius of Fresnel zone, distance I from edge to inner
contour corresponds to radius of zone of influence.

between reflection and diffraction). This is illustrated
in Figure 10-4, which shows a horizon slice through
the migration result for a horizontal reflector recorded
with a zero-offset geometry. The area shown is equal to
the midpoint area. On the edge of that area exactly half
of the zone of influence is available for imaging. This
leads to an amplitude of the event which is equal to
half the amplitude as obtained with a complete zone of
influence. Moving toward the inside of the area, the
area of data contributing to the result increases, leading
to an increased amount of energy until a maximum is
reached. The distance from the edge to this point could
be called the radius of the Fresnel zone for an edge.
Further inside the illumination area, the amplitude
drops again until a plateau is reached where the
amplitude is constant. The edge of the plateau defines
the radius of the zone of inluence. In the corners of the
display of Figure 10-4 the interference patterns differ
from the rest of the _edges, because here data is missing
in two directions.

10.3 Description of model experiments

In the following sections imaging results of some
model experiments are shown. To avoid repetition, the
parameters for the model experiments are described in
this section. The model consists of a reflector with an
easterly 15° dip in a 3000 m/s constant velocity
medium. The depth of the reflector is approximately
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Fig. 10-5. Ilumination and imaging with minimal
data sets. The MDS is a COV gather with 1500-m
offset and shot-receiver azimuth parallel to the x-
axis. The model consists of a single 30° dipping
reflector at around 2000 m in a medium with
constant velocity 2000 m/s. Contour plots are shown
for a 2400 x 2400 midpoint area. (a) Depth contours.
(b) Reflection traveltimes. (c¢) Diffraction
traveltimes for a point R on the reflector with
surface coordinates (0,1000). (d) Reflection times
after diffraction-flattening in output point R. In (c)
and (d) the (x,y)-coordinates of R are indicated by a
"+". Contour interval is 100 m in (a) and (d) (thin
lines), and 100 ms in (b) and (c). The heavy line in
(d) represents an extra contour at 60 m above the
apex of the depth surface. It might be taken as the
boundary of the zone of influence.

-500

3000 m in the center of the model (the horizon slice of
Figure 10-7c was computed using a horizontal reflector
at 3000 m in the same medium). In all models the
source and receiver station intervals were 50 m, and an
isotropic source emitted a 30 Hz Ricker wavelet. For
orthogonal geometry, the additional parameters are 400
m source and receiver line spacings, and 2400 m
maximum in-line and cross-line offset. Output traces
were computed for a 25 x 25 m grid. The migration
velocity was equal to the medium velocity.

10.4 Prestack migration with minimal
data sets
By definition, all MDSs are suited for migration
and capable of producing a single-fold image of the

illuminated part of the subsurface. The migration
result, i.e., vertical and horizontal resolution, is
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Fig. 10-6. Same as Figure 10-5, but now the
minimal data set is a square cross-spread. Note the
different shape of the zone of influence.

dependent on the source wavelet, the velocity model,
and on the acquisition geometry. If, however, these
data sets have been properly sampled, then the result
will be independent of sampling (Section 8.3.6:
Vermeer, 1999).

The dependence of the migration result on the
acquisition geometry is illustrated with Figures 10-S
and 6, which allow comparison of illumination and
imaging by a COV gather and by a cross-spread.
Figures 10-5d and 6d represent the shape of the
reflection traveltime surface after conversion to depth
z according to the migration condition

W22 +s? +22 1)V =div, (10.1)

where s (r) is the distance from shot (receiver) position
to surface position of output point (x, y, z), d is the
length of the raypath from shot to receiver via the
reflector, and V is the velocity of the medium. The left
side of equation (10.1) represents the diffraction
traveltime surface for the output point (x, y, z) as
shown in Figures 10-5¢ and 6c; the right side of the
equation represents the reflection traveltime surface
across the MDS as shown in Figures 10-5b and 6b.
Figures 10-5d and 6d may also be said to describe the
reflection traveltime surface after flattening of the
diffraction traveltime surface (i.., the first step of
migration as a two-step process described in Section
8.3.7). I call such data sets diffraction-flattened gathers.
Timeslices through a diffraction-flattened gather of a
cross-spread acquired in Nigeria are shown in Figure 7-
19.
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The migration result in the output point (x, y, z) is
just the (weighted) horizontal summation of all data
described by the contoured surfaces of Figures 10-5d
and 6d. The apex of this surface in the diffraction-
flattened gather corresponds with the depth of the
reflector z in the output point. It is the point of
stationary phase in the migration integral. The heavy
curve in Figures 10-5d and 6d is a depth contour 60 m
above the apex. If the length of the seismic wavelet is
60 ms (= 60 m for ¥ = 2000 nmv/s), then all reflections
inside the heavy curves contribute to the migration
result at depth z. As discussed in Section 10.2.2, the
area inside the heavy curve may be called "zone of
influence". All energy outside of the zone of influence
contributes only to the flanks of the migration operator.
This energy should cancel in the migration summation,

which it does to a large extent, provided that the data
are properly sampled.

Figure 10-7 shows migrated horizon slices for
different MDSs. Figure 10-7a shows the result of
migrating a zero-offset section. Because a small input
data set was chosen, the image shows edge effects.
Figure 10-7b is the same as Figure 10-7a but now for a
COV gather as input with offset-vector (2375, 0) m.
The amplitudes are larger than in Figure 10-7a, because
the zone of influence is larger for larger offset. Figure
10-7c and 7d show the migration result for a cross-
spread, Figure 10-7c for a horizontal reflector and
Figure 10-7d for the same model as in Figure 10-7a.
Note again the edge effects. In the interior of the
horizon slice of Figure 10-7c the amplitude varies
slightly because of changing offset; the interior
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d 20 40 60 80

Fig. 10-8. Comparison of ideal geometry with two sources four streamers geometry for constant-velocity
medium and north-south 30° dipping reflector at around 2000 m. Shown are contours for the reflection times
converted to depth according to equation (10.1) for an in-line offset of 2000 m. Contour interval is 50 m,
heavy contour at 60 m above the apex. (a) COV gather result. (b) Two sources four streamers geometry for
output point in the middle of a vessel pass. (c) As (b) for output point on the edge between two vessel passes.
Vertical alignments in the contours are visible where the cross-line discontinuities are largest.

amplitude in Figure 10-7d varies because of depth and
offset variation.

It is important to realize that the edge effects seen
in Figures 10-7a and 7b can be pushed as far out as
desirable by choosing a larger survey area, whereas the
location of the edge effects seen in Figures 10-7¢ and
7d is fully determined by the maximum useful offset.

10.5 Prestack migration with pseudo-
minimal data sets

10.5.1 Parallel geometry

Marine 3-D acquisition is most frequently carried
out using multisource multistreamer configurations.
Also OBC data are often acquired with a configuration
in which the shot lines are parallel to the receiver lines.
In these parallel geometries the cross-line component
of the offset vector (= distance between source track
and streamer track) is different for the various midpoint
lines, which are acquired in one vessel pass. This
means that common-offset gathers are not common-
offset-vector gathers.

The discontinuities in the cross-line offset lead to
irregular illumination as illustrated in Figure 2-11 for
various multisource multistreamer configurations.
Between vessel passes large gaps in illumination may
exist when shooting downdip and overlaps when
shooting updip. Feathering may compound the
problem, whereas antiparallel acquisition (sailing
adjacent vessel passes in opposite directions) and
sailing strike to the steepest dips reduce the impact of
the discontinuities in cross-line offset (Vermeer, 1997;
Brink et al, 1997; Section 5.3.2). Figure 10-8
illustrates the behavior of the diffraction-flattened
gather of a dipping event for equal in-line offsets.
Figure 10-8a shows the diffraction-flattened gather for

ideal input, Figures 10-8b and 8c show the effect of the
discontinuities in the geometry on the diffraction-
flattened gather. The differences between Figures 10-
8b and 8c lead to amplitude and phase variations of the
migrated event.

Results of migrating single-fold data extracted from
various multisource multistreamer configurations are
shown in Figure 5-12.

10.5.2 Orthogonal geometry

Orthogonal geometry poses a much larger problem
to migration-velocity analysis than parallel geometry.
In the first place, COV gathers cannot be assembled
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Fig. 10-9. Horizon slice for all absolute offsets in
range 700 - 850 m of orthogonal geometry.
Irregular illumination leads to strong amplitude
variations in this display. Over a short distance, five
contours cover a range of 100 amplitude units, as
compared to average amplitude of about 170.
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Fig. 10-11. Single-fold imaging with OVT-gathers. Shown are top-right tiles with size 1/16th of a cross-
spread. Same subsurface as in Figure 10-10. (a) Traveltime surface across 4 x 16 tiles, contour interval 50 ms,
(b) Diffraction-flattened contours for output point in "+". Contour interval is 50 m. The image points for the
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level of 60 m above the depth in the output point. Note the larger number of discontinuities than in Figure 10-
10b, though the discontinuities in the center are smaller than in Figure 10-10b.

from that geometry, and in the second place, the MDSs
of this geometry, the cross-spreads, have limited
extent.

Figure 2-25 illustrates that it is impossible to
generate single-fold COV gathers from orthogonal
geometry. Not all offsets are present everywhere,
moreover they have a wide variety of azimuths. Figure
10-9 shows a horizon slice for absolute offsets ranging
from 700 to 850 m. The corresponding fold-of-
coverage varies between 0 and 4. Very strong
amplitude variations are the result of migrating this
collection of data, which is not really suitable for
image analysis.

The simplest way to generate single-fold coverage
across the entire survey, i.e.,, a pMDS, is to make a
tiling of cross-spreads (MDSs) with adjacent midpoint
areas. In a regular geometry, it is possible to construct
as many single-fold tilings as the fold count. However,
even though the midpoint coverage of each tiling can
be complete and regular in this way, the illumination of
the subsurface will not be regular, because of the
discontinuities in shot-receiver azimuths across the
edges of the cross-spreads. This irregular illumination
is illustrated in Figure 2-15. Figure 10-10a illustrates
the discontinuities in the traveltime surface of the same
dipping event across four adjacent cross-spreads, and

]
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Figure 10-10b shows that the diffraction-flattened
gathers are discontinuous across the edges as well.

A characteristic of tiling with cross-spreads is that
reflection times behave smoothly in the inside areas of
each cross-spread, but may show large discontinuities
from cross-spread to cross-spread. An alternative to
tiling with cross-spreads is tiling with OVTs, as
described in Sections 2.5.2 and 2.5.4. The advantage of
this pMDS is that there are no big jumps in shot-
receiver azimuth in this data set as in the cross-spread
tiling, in particular if the unit cell is small. A
disadvantage is that there are a lot more edges, all of
which produce discontinuities in the diffraction-
flattened gathers.

Figure 10-11 illustrates imaging with OVT gathers.
Figure 10-11a shows the traveltime surface, and Figure
10-11b the contours after diffraction flattening for one
output point. This figure suggests that OVT tiling is
more robust than cross-spread tiling. An additional
advantage of OVT tiling is that it is easier to handle the
shallow data (just apply the muting scheme as
described in Section 2.6.4).

Figure 10-12 shows illumination by various OVT
gathers. Except for Figure 10-12f; the reflector always
dips in an easterly direction. Figure 10-12a used the
OVT from the upper right corner of each cross-spread
with average h = (1000, 1000). In this case the spatial
discontinuity between the OVTs translates in vertical
illumination gaps and horizontal overlaps. The reverse
is the case with the OVT from the opposite side of the
cross-spread shown in Figure 10-12b. The illumination
by these two OVT gathers is the most discontinuous of
all possible gathers. It is interesting to see that their
combination leads to an almost regular 2-fold
illumination as shown in Figure 10-12c.

Figure 10-12d shows that illumination by complete
cross-spreads is more continuous overall. However, the
overlaps and the gaps are larger than in the case of the
OVT gathers. Figure 10-12¢ and f show illumination
by pairs of rectangles at the far end of the receiver line
(average |h| = (1100, 0)). In Figure 10-12f the reflector
makes an angle of 45° with the receiver line. In Figure
10-12e two-fold and zero-fold illumination alternate in
thin horizontal strips, whereas everywhere else
illumination is single-fold. In Figure 10-12f the
irregularities are spread even more thinly.

Figure 10-13 shows  migration  results
corresponding to Figure 10-12. Each figure shows a
horizon slice through a migrated reflection. Not
unexpectedly, the images show a clear correspondence
to the illumination areas. Although the relative
amplitude variation in Figures 10-13a and b is quite
large, it is still about 50% less than in Figure 10-9. Yet,
the OVTs in the far corners of the cross-spread have
the largest discontinuities of all OVTs; note also that
the offsets used in Figure 10-9 are much smaller than

in Figurc 10-13a and b. Combining the two opposite
far corners gives a much improved image as shown in
Figure 10-13c. It is interesting to note that the
amplitude variation in Figures 10-13¢ and f is smaller
than in Figures 10-13a and b, which means that OVT
gathers composed from OVTs along the acquisition
lines produce better images, hence are most suitable for
application in velocity-model updating (also because
the range in absolute offset in these tiles is smaller than
in tiles away from the acquisition lines). The very weak
amplitudes in the center of Figure 10-13d reflect the
illumination gap shown in Figure 10-12d.

10.5.3 Irregular geometries

Often, acquisition geometry, even if nominally
regular, is very irregular in practice. In other cases it
may be regular, but coarscly sampled. Then it is
impossible to collect properly sampled MDSs from the
geometry, and the construction of pMDSs may be quite
impractical. As a consequence, the conditions for good
single-fold images are not met. Firstly, the zone of
influence around each point of stationary phase is not
well sampled, so that amplitude and phase of the image
are not correct. Secondly the flanks of the migrated-
depth surface are not well sampled either, leading to
incomplete cancellation, i.e., migration noise, further
reducing the possibility of picking reliable images.
This reasoning underlines the importance of proper
sampling techniques in acquisition.

However, even if it is impossible to generate
reliable single-fold images, it may still be possible to
obtain reasonable images from the total data set.
Statistical averaging of noise and amplitude variations
has to compensate for the irregular sampling. Velocity
model updating of such data has to resort to geological
knowledge and velocity scanning as discussed in e.g.,
Schmid and Bouska (1997). Amplitude compensation
for irregularities can be achieved by the Albertin
technique (Albertin et al., 1999), discussed in Section
10.7.

10.6 Velocity-model updating

Whether cross-spreads or OVT gathers are used for
imaging, the problem remains that the offset of the
imaging trace (i.e., the trace at the point of stationary
phase) is not known without further action. This is
caused by the variation in offset that occurs across a
cross-spread and still occurs across the OVT gather.
Earlier I proposed to use the vector-weighted
diffraction stack (Vermeer, 1998b) to determine the
offset corresponding to each image. Tura et al. (1998)
applied that technique for AvO analysis. They did not
use it to determine the offset in the image (they were
using common-offset gathers as input, hence knew the
offset already), but to determine reflection coefficient
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and reflection angle. The recipe of the vector-weighted
diffraction stack is given in Tygel et al. (1993) who
expanded an earlier idea proposed in Bleistein (1987).
Unfortunately, the vector-weighted diffraction stack is
quite sensitive to noise, because it depends on
measurements made on prestack data.

A better way to find the offset in the image point
might be a modification of an idea proposed in Harris
et al. (1998). In their MITAS procedure they consider
the volume of data being used to build a single image
trace. The procedure consists of the following steps:

1. Flatten the diffraction traveltime curves in the
input volume, ie., create a diffraction-flattened
volume; this will lead to bowl-shaped events for the
reflections (cf. Figures 10-5d, 6d, and 7-19);

2. Stack the new volume in two orthogonal
directions; this will improve the signal-to-noise ratio of
the data to be analyzed;

3. Determine the points of stationary phase of the
major reflections in both stacks; the two points for each
reflection will determine the position in the input
volume of the image point.

Harris et al. (1998) use this procedure to determine
an area around the image point that will be included in
the imaging process, whereas the data outside this area
will be discarded. In this way migration aliasing noise
is avoided and a cleaner image can be produced, in
particular for coarsely sampled data. However,
knowing the position of the image trace also means that
its offset can be retrieved and be used for further
analysis in the velocity-model updating procedure.

Using OVT gathers for this analysis provides the
best chances for clean images and also allows the
determination of the offset in the image point. Yet, the
irregularities associated with the spatial discontinuities
in the OVT gathers may still hamper an accurate
analysis, especially if the image point is close to the
edge of an OVT. To compensate for that situation, it
may be considered to carry out the analysis as well for
OVT gathers based on OVTs shifted over (SLI/2,
RLI/2). Again, to minimize the amount of work to be
carried out for this analysis, it should be considered to
restrict the analysis to discrete locations and to specific
target horizons.

10.7 True amplitude prestack
migration of regular and irregular
data

In this section, a synthesis is made of ideas
described by Harris et al. (1998, see previous section),
Albertin et al. (1999), Bloor et al. (1999), and
Rousseau et al. (2000), supplemented with some
further ideas.

Albertin et al. (1999) describe that for most
acquisition geometries, even if acquired in a rather

regular way, it is difficult to give an analytic
expression of the Beylkin determinant (Bleistein,
1987), needed in true amplitude migration. Instead,
they introduce the idea of measuring the dip angles
being illuminated in the output point by all the
shot/receiver pairs in a data set. The dip angle
illuminated by a single shot/receiver pair and its
corresponding wavenumber vector is illustrated in
Figure 8-1. All shot/receiver pairs together (Figure 8-2)
determine the range of dips that can be illuminated by
the data set. Albertin et al. (1999) propose to equalize
the distribution of angles across the unit sphere in the
output point by weighting according to the local
density of wavenumber vectors on the unit sphere.
They show that this is equivalent to applying Beylkin's
determinant. The technique not only corrects for
irregular geometry but also for refraction effects in the
overburden.

Bloor et al. (1999) apply Albertin's method to data
acquired with a spider-web geometry (see Section
4.3.6). They show that this technique will lead to
considerable improvement of data quality. In this
application no distinction is made between data with
different offsets or coming from different subsets: each
shot/receiver pair in the total data set contributes its
own angle and its own point on the unit sphere. Figure
2 in Bloor et al. (1999) shows the midpoints for all
traces with a small offset range. It leads to a similar
figure (overlapping rings) as shown in Figure 2-25.
This means that the spider-web geometry, even though
apparently quite irregular, does have some regularity
attached to it as well.

Rousseau et al. (2000) carry Albertin's idea a bit
further and suggest to apply it to the MDSs of the
acquisition geometry. They illustrate this with
common-offset data retrieved from a parallel geometry.
Applying the technique to subsets of the data makes it
suitable for better AvO analysis, and it does not mix up
effects from widely different shot/receiver pairs. On
the other hand, the low fold of an MDS may easily lead
to gaps in the range of dips being illuminated.
Weighting of the traces around such gaps has two
effects: (1) if the gap occurs in the flat part of the bowl-
shaped reflection events (after application of
diffraction traveltime surface flattening, see previous
section), then weighting will ensure a better amplitude
of the image, but (2) if the gap occurs in the steep part
of the bowl-shaped reflections, weighting of the traces
will increase aliasing artifacts. This is clear from
Figure 3 in Rousseau et al. (2000), where not only
reflection amplitude is improved by weighting but an
artifact caused by some missing in-lines is enhanced as
well.

The ultimate synthesis of all ideas is to use OVT
gathers (pairwise, as discussed for AvO analysis), to
establish the point of stationary phase using Harris et
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al.'s (1998) method, and applying aperture limitation
around that point, followed by Albertin weighting in
the remaining area (where aliasing does not occur).

10.8 Discussion

Next to the introduction of the zone of influence as
a better alternative to Fresnel zone, this chapter has
highlighted the use of pMDSs as single-fold data sets
to be used in velocity-model updating and in amplitude
regularization. For orthogonal geometry it seems best
to choose OVT gathers as input data sets for these
applications. Nevertheless, these gathers still show
considerable amplitude and phase variations in the
migrated output. The artifacts can be minimized by
selecting gathers based on OVTs centered around the
acquisition lines as illustrated in Figure 10-13e. Of
course, the artifacts can be further reduced by reducing
the acquisition line intervals, but this has significant
impact on the cost of a survey. It should be realized
that the artifacts of the OVT gathers, which are not
situated along the edges of a cross-spread, are fully
compensated when adding the result of migration of all
input data. In the final output only artifacts associated
with the cross-spread edges remain, and these are
reduced by the averaging effect of fold. They may be
further reduced by Albertin weighting. The artifacts in
parallel geometry are far less severe than in orthogonal
geometry; this may be a reason (together with the
easier processing overall) to select parallel geometry if
one can afford it, and whenever possible (e.g., desert
areas).

This chapter has only scratched the surface of
geometry-related imaging problems. Additional work
is needed to investigate the proposed velocity-model
updating technique (or anything else that might work).
In particular tests with erroneous migration velocities
are still called for. Yet, I hope that the interested reader
is stimulated to try out some ideas and will expand on
them.
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Fig. 1-14. Combined response of shot and receiver arrays in midpoint/offset wavenumber domain. Oblique
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Fig. 1-15. Total stack response for a symmetric sampling technique. The notches of the CMP array run
parallel to the %, axis.

-0.06 0 — 0.06
kn in m’
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Fig. 4-14. Attributes for 20-line slanted geometry acquired with 1-line roll. (a) Template (inside red
rectangle) together with templates of Figures 4-13, 15 and 16, (b) full fold of survey, (c) fold for offsets 0 - 800
m, (d) fold for offsets 0 - 2500 m, (e) fold for offsets 0 - 3000 m, (f) other attributes as labeled.
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Fig. 4-15. Attributes for 16-line orthogonal geometry acquired with 8-line roll. (a) Template (inside red
rectangle) together with templates of Figures 4-13, 14 and 16, (b) full fold of survey, (c) fold for offsets 0 - 800
m, (d) fold for offsets 0 - 2500 m, (¢) fold for offsets 0 - 3000 m, (f) other attributes as labeled.
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Fig. 4-16. Attributes for 16-line slanted geometry acquired with 8-line roll. (a) Template (inside red
rectangle) together with templates of Figures 4-13 - 15, (b) full fold of survey, (c) fold for offsets 0 - 800 m, (d)
fold for offsets 0 - 2500 m, (e) fold for offsets 0 - 3000 m, (f) other attributes as labeled.
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Fig. 7-4. Timeslices through 3-D microspread, (a) 596 ms, (b) 3596 ms. Common-shot gathers are vertical
lines, common-receiver gathers are horizontal. Arrows in (a) indicate discontinuities.

Fig. 9-9. Horizon amplitude map after DMO was applied to the same horizontal input reflection using
different 3-D DMO programs. The bar in the top right corner of each map is caused by interference with a
dipping event crossing the horizontal reflector. Amplitude differences for one program might be as large as a
factor 2 and standard deviation in amplitude up to 20%. The smooth result of the center panel of the bottom
row was achieved at the expense of the higher frequencies.
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Fig. 7-14. Diagnostic display of 60 cross-spreads. Common shots are horizontal lines, common receivers are
vertical lines. The shot points of adjacent shotlines partially overlap in this display. Likewise the receiver
points of different receiver lines. Shown is maximum absolute sample value for a 1000 ms window starting

just before the first break on each trace.
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Fig. 7-16. Illumination displays for target horizon. (a) Brick geometry, (b) Cross-spread geometry. The result
for the cross-spread geometry is cleaner, hence more reliable than the result for the brick geometry.

Fig. 7-17. Amplitude displays for target horizon. (a) Brick geometry, (b) Cross-spread geometry. The faults
in the cross-spread result are sharper defined.
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