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Summary

Acoustic wave propagation through porous media is affected by the properties of
the pore fluid and the matrix material. Acoustic velocity and travel times are
extensively used for imaging of subsurface strata, and to predict petrophysical
properties such as porosity, fluid type and saturation. In contrast the attenuation
(loss of wave energy) is not routinely used for these predictions.

This thesis reports the influence of fluid inhomogeneities (gas bubbles) on wave
attenuation in fluid-saturated porous media. It is well-known that the Biot theory
accurately predicts velocities at seismic and cross-well frequencies (1-1000 Hz), but
largely underestimates attenuation. This discrepancy is mainly due to mesoscopic
inhomogeneities in the frame (e.g., interbedded shales) and the fluid (e.g., gas
bubbles or layers). The term mesoscopic is to be understood as larger than the
typical pore size but smaller than the seismic wavelength. The inhomogeneities
can be grouped together and described by local pressure equilibration models.
The passing seismic wave causes local pressure differences between the gas and the
surrounding liquid. These differences are equilibrated by local, mesoscopic, flow.
For frame inhomogeneities, these models are known as double-porosity models,
whereas for fluid inhomogeneities they are called patchy saturation models.
Patchy saturation models do incorporate the slow Biot wave on the mesoscale as
the pressure equilibration is essentially diffusive. Yet, on the macroscale where the
seismic waves propagate and the attenuation is governed by viscous flow induced
by pressure differences on the scale of the wavelength, the slow Biot wave is av-
eraged out. The effect of frequency on patchy saturation models was investigated
for gas layers in porous media. It was found that for frequencies smaller than the
Biot rollover frequency, inertia terms may be neglected, and the dynamic perme-
ability may be approximated by the Darcy permeability. At higher frequencies,
system resonances occur. The patchy saturation models describe rollover from
low-frequency Wood (iso-stress) behavior, towards high-frequency Hill behavior,
where the high frequencies are to be taken lower than the Biot rollover frequency.
In this high-frequency limit, gas and liquid act as if they were sealed from each



other because there simply is not enough time for pressure equilibration.

An alternative to the patchy saturation model is the Rayleigh-Plesset-Biot ap-
proach, which essentially averages over fluid properties only, thus leaving intact
the two-phase fluid-solid concept at the macroscopic level. Here the fluid is to be
understood as the liquid-gas mixture. It was found that the Rayleigh-Plesset-Biot
model predicts two compressional waves at the seismic scale, whereas patchy sat-
uration models have only one. It was also found that the seismic wave is more
attenuated than in the patchy saturation model. Applying the Rayleigh-Plesset-
Biot model to literature data of resonant bar experiments on rock samples at fre-
quencies from 0.6 to 6 kHz, a very good match between the reported and predicted
attenuation was found.

Using a gas-injection technique, a single bubble was created in an oil-saturated
porous sample. The procedure was tested by visualization by means of refractive
index matching. At 500 kHz, it was found that in this case the patchy saturation
model gives a better prediction than the Rayleigh-Plesset-Biot model. However,
so-called squirt flow, describing pressure equilibration on the smaller, microscale,
may also contribute to attenuation, at these frequencies. The attenuation mea-
surements were performed using the Spectral Ratio Data Analysis, where two
otherwise identical samples of different length were used in the experiments. The
phase velocities of 45 natural rocks and artificial porous samples also measured in
this way, were calibrated against conventional ultrasonic measurements where first
arrival picking was applied. It was also confirmed that for the phase velocities, the
Biot theory is accurate. For the attenuation, it is not. At these frequencies, meso-
scopic attenuations probably do not play a significant role, but inhomogeneities
on a smaller scale (microcracks in the grains or at the grain contacts) may become
dominant. This is, however, beyond the scope of this thesis.

The same 45 samples were also used for Differential Acoustic Resonance Spec-
troscopy (DARS) measurements. In these experiments the compressibility of a
sample is determined by the change in the resonance frequency of a tube due to
the introduction of the sample. DARS experiments on non-porous samples confirm
the perturbation theory by Morse and Ingard. For sealed porous samples, good
agreement between Gassmann and DARS moduli was obtained. For open-pore
samples the DARS moduli could not be interpreted in terms of frame and fluid
moduli, because the compressibility is governed by the relative fluid motion at
the outer wall. Another challenge is to quantify the attenuation of porous samples
using DARS. Measurements based on more realistic in-situ conditions (pressurized
samples with multi-constituent properties) should lead to revisions of the theory,
and enhance the use of attenuation for reservoir characterization.









Chapter 1

Introduction

Understanding the physics of acoustic wave propagation in porous materials affects
a wide range of applications from the exploration of the Earth’s crust to the design
of sound-absorbing materials and the nondestructive testing of fractured materials.
This research concentrates on wave propagation through porous rocks that are
fully or partially filled with liquid and gas. The central point to be inferred from
this thesis is that the interpretation of compressional wave propagation provides
information about the pore fluids and their presumed mobility in a porous material.

1.1 Background literature

Far more information about the constitution of the Earth is obtained from seismic
than from all other geophysical methods combined. Of the two main aspects of
wave propagation - velocity and attenuation - knowledge of velocities has provided
most of our information about the Earth (Winkler et al., 1979). Attenuation data
of seismic waves is of much more limited use, partly because it is difficult to obtain,
but mainly because it is so difficult to interpret in terms of rock properties. This is
still due primarily to our lack of understanding of the physical processes involved
in attenuation.

Attenuation refers to the total loss of energy of a sound wave along its propagation
path resulting from all mechanisms responsible for such losses, including but not
limited to, absorption, scattering, and diffraction. Absorption refers to the loss
of energy of an acoustic wave that results in an increase in temperature in the
propagation medium and is associated with relaxation phenomena. Scattering
and diffraction result in a redirection of wave energy from the original propagation
direction. In this study, we are not considering apparent attenuation caused by
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geometrical spreading, partial reflections, multiple scattering and so on, but we
are only interested in intrinsic attenuation processes, where seismic wave energy
is converted into heat due to the presence of pore fluid(s).

Sound waves are affected by the heterogeneity in the material through which they
travel. The major goals of the interpretation of exploration seismic data are the
identification of pore fluids and the mapping of hydrocarbon deposits in the geolog-
ical structure. Predictive knowledge of acoustic properties in natural sandstones
is useful in the search for economic natural gas and oil reservoirs. Recent devel-
opments in borehole acoustic measurements and subsea geophone arrays make it
feasible to conduct high-resolution surveys to detect pockets of unswept reserves
and to monitor the progress of enhanced recovery by gas and water injection (Helle
et al., 2003). Because the inversion from seismic to petrophysical characteristics
is far from unique, this task requires seismic parameters, such as seismic velocity,
impedance, and Poisson’s ratio.

The inclusion of seismic absorption in this list could add complementary informa-
tion. For example, absorption may be more sensitive to clay content than seismic
velocity (Klimentos and McCann, 1990) and the shear to compressional wave ab-
sorption ratio has been found to be a better indicator of fluid saturation than the
corresponding velocity ratio (Toksoz et al., 1979; Winkler and Nur, 1982). How-
ever, in practice, seismic absorption is difficult to measure, particularly over depth
intervals as short as most reservoir intervals.

Understanding the physics of elastic wave propagation in porous rocks partially
saturated with liquid and gas is thus important for exploring and exploiting hy-
drocarbon reserves. Unraveling the intrinsic effects can be a robust tool in the
quantitative interpretation of well and seismic data, e.g. for acoustic logging and
for computing true-amplitude synthetic seismograms in time-lapse seismic studies.
The underlying rock physics controlling intrinsic loss can give us valuable insight
into the stratigraphy, lithology, and fluid content of the survey area. Oil, water,
and gas commonly coexist in prospective reservoirs, and an accurate assessment
of the gas content is needed to assert the economic value of the reservoir. Distin-
guishing the nature of reservoir fluids by their acoustic signature is a key issue in
seismic exploration and reservoir monitoring.

In the past decades, different techniques have been used to study the attenuation
of acoustic waves propagation through rock. Although much data have been col-
lected, no well-defined mechanism of energy loss has yet been firmly established
on both experimental and theoretical grounds other than those reported by Biot
(1956a,b).

Before the eighties, one of the most intuitively appealing and widely discussed
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mechanisms proposed for seismic energy loss was based on simple Coulomb friction
(Winkler et al., 1979). In this mechanism the passing wave causes sliding at
grain boundaries or across crack faces, thereby converting seismic energy into heat.
Friction also seems to explain why the introduction of cracks into a crystalline
solid increases attenuation. Using both theoretical arguments and experimental
results, several authors (Savage and Hasegawa, 1967; Mason et al., 1978) have
expressed doubts about the validity of a frictional attenuation mechanism. Despite
these criticisms, frictional losses have often been used to interpret experimental
observations (Birch, 1975; Lockner et al., 1977; Johnston et al., 1979).

Several other processes have been eliminated as dominant loss mechanisms, includ-
ing frictional grain sliding (Mavko, 1979), intrinsic shear and structural relaxation
in the pore fluid (Hornby and Murphy, 1987), thermo elasticity (Jones and Nur,
1983), and interfacial relaxation (Clark et al., 1980; Tittmann et al., 1980). Other
potential sources of attenuation in partially saturated media, e.g. the squeeze film
phenomenon (Stoll, 1985) and contact line movement (Miksis, 1988), will not be
considered here. No single mechanism nor any combination of these mechanisms
can coherently explain the experimental results (Murphy et al., 1986).

1.1.1 Scales of heterogeneities

Most natural porous materials, such as rocks and sediments in the Earth, are
heterogeneous in the porous-continuum properties at nearly all scales larger than
the typical grain size £. The typical dimension of a sandstone grain is 100 um. The
seismic wavelength A\ used for exploration of the Earth’s subsurface is typically in
the range from 1 to 100 m. There is thus a wide range of length scales that are
larger than the microscopic grain size £, but smaller than than the macroscopic
acoustic wavelength A. This typical length scale of a heterogeneity in the porous-
continuum properties is the so-called mesoscopic length scale L (Pride et al., 2004).
In figure 1.1 we see that A > L > £. Examples of heterogeneities in rocks are a
sudden transition in: elastic modulus, density, permeability, fluid content, etc.
Recent studies by Pride et al. (2004) have shown that the major cause of attenu-
ation in porous media is wave-induced fluid flow, which occurs at three different
spatial scales: macroscopic, mesoscopic, and microscopic.

The first type of intrinsic attenuation takes place on the scale of the wavelength
(macro-scale). Local pressure equilibration is obtained between the peaks and
troughs of a passing wave by means of viscous pore-fluid flow induced by the
macroscopic pressure gradient. This type of attenuation is commonly known as
the Biot attenuation (1956a; 1956b; 1962a; 1962b). The original Biot theory is
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Figure 1.1: Schematic representation of the length-scale relation A > L > ¢, where A\
is the wavelength of the acoustic pulse, L is the length-scale containing a
mesoscopic-scale heterogeneity in the local porous-continuum properties, and
¢ is a characteristic size of a grain.

applicable to media where a homogeneous porous frame is composed of a single
solid phase and saturated by a single fluid. The relaxation time 7 of this process
is A2/D, where ) is the wavelength and D is the pore-pressure diffusivity of Biot’s
slow wave. In a rigid porous continuum, the diffusivity is well approximated by
koKt/n¢, where kg is the Darcy permeability, ¢ the porosity, and n and Ky the
viscosity and bulk modulus of the saturating fluid, respectively (Smeulders, 2005).
Maximum energy dissipation occurs when the oscillation time 1/w. just equals the
relaxation time 7. Interestingly, the frequency w. is of the same order of magnitude
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as the Biot critical frequency wg
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which describes the transition from low-frequency viscosity dominated flow to high-
frequency inertia dominated flow. Here a., denotes the tortuosity, and pf is the
fluid density. Equation (1.1) shows that the transition frequency moves toward
higher frequencies with increasing viscosity and decreasing permeability. This
contradicts the experimental data of Jones (1986). Another apparent drawback of
the Biot theory is that the macroscopic flow mechanism underestimates the velocity
dispersion and attenuation in rocks (Mochizuki, 1982; Dvorkin et al., 1995; Arntsen
and Carcione, 2001).

Several authors extended the Biot theory to include an additional solid or fluid
phase (Stoll and Bryan, 1970; Bedford and Stern, 1983; Garg and Nayfeh, 1986;
Berryman et al., 1988). Pham et al. (2002) generalized the model of Carcione et al.
(2000), based on a Biot-type three-phase theory, that considers the coexistence of
two solid phases (sand and clay) and a fluid mixture to include effects of partial
saturation by a modified empirical fluid mixing law proposed by Brie et al. (1995).
Additional attenuation in their model is described by a constant @-model (Kjar-
tansson, 1979) and viscodynamic functions obtained by Johnson et al. (1987) for
high-frequency behavior. Masson et al. (2006) modeled Biot’s poroelastic equa-
tions by discretizing a discontinuous medium with small continuous cells. Other
approaches to account for the effects of gas bubbles in a liquid, e.g. Brandt (1960);
Gregory (1976); Domenico (1976); Toksoz et al. (1976) and Lopatnikov and Gor-
bachev (1987) assume the porous solid to be saturated by an (effective) single fluid
whose properties are determined by averaging the properties of the liquid and the
gas constituents.

The second type of intrinsic attenuation takes place on the grain scale (micro-
scale). It is common to invoke non-Biot attenuation mechanisms to explain low-
frequency (seismic and sonic) attenuation in rocks (Carcione and Picotti, 2006).
These mechanisms are the so-called local fluid flow or squirt flow mechanisms,
which have been extensively discussed in the literature (O’Connell and Budiansky,
1974; Budiansky and O’Connell, 1976; Mavko and Nur, 1979; Dvorkin and Nur,
1993; Dvorkin et al., 1995; Mavko et al., 2003). When the pore pressure increases
due to a passing seismic wave, there will be pressure equilibration between the
pore space and the micro cracks in the grains and at the grain contacts. In this
mechanism, fluid-filled microcracks respond with greater fluid-pressure changes
than the main pore space. Fluid will be squeezed in and out of these cracks.
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The resulting flow at this microscopic level is responsible for the energy loss. The
equilibration time 7 of this process is R?/Dy, where R is the length of the micro
crack. The crack diffusivity Dy, is given by Kh?/n, with h the crack aperture.
Microscale inhomogeneities in the grains have been identified as contributors to
dissipate wave energy. For example, Palmer and Traviolia (1980) fitted the mea-
surements of absolute attenuation and saturation dependence at kHz frequencies
in undersaturated gas sands by Gardner et al. (1964) assuming squirt flow. Sams
et al. (1997) assume squirt flow attenuation to model their seismic-to-ultrasonic
attenuation measurements. These models have the proper dependence of viscosity
with frequency, however it has been shown that by applying realistic crack aspect
ratios, the microscopic squirt flow model of Dvorkin et al. (1995) is not able to
predict the observed levels of attenuation in exploration work (Diallo et al., 2003;
Pride et al., 2004). The squirt flow attenuation would need quite small crack aspect
ratios in the order of h/R < 10™* to predict maximum attenuation lying in the
seismic band. However, the attenuation level itself is also influenced by the crack
aspect ratio, and these small ratios yield unrealistically low attenuation levels.
The third pressure equilibration process takes place on the scale larger than the
grains but smaller than the wavelength (meso-scale). Pride et al. (2004) have
shown that attenuation and velocity dispersion measurements can be explained
by the combined effect of mesoscopic inhomogeneities and energy transfer be-
tween wave modes. They refer to this mechanism as mesoscopic loss. Fixing the
mesoscopic scale by the length of the inhomogeneity L, maximum loss occurs at
1/we = L?/D, where D is again the slow-wave diffusivity. On this scale, there
are always heterogeneities in the frame, in the pore fluid, or in both. Inhomo-
geneities in the frame structure, e.g. interbedded shales and sands or zones or
pockets of weakly cemented grains, are analyzed in double-porosity theories, that
are - although generalized - completely consistent with Biot’s theory of poroe-
lasticity (Berryman and Wang, 1995, 2000; Pride and Berryman, 2003a,b). In-
homogeneities in the fluid, where e.g. gas pockets larger than the grain size are
embedded within a liquid host phase, can be modeled by the definition of an
effective medium or the definition of an effective pore fluid.

Traditionally, the influence of an inhomogeneity in the fluid (partial gas satura-
tion) on seismic speeds and attenuation in rocks is computed by the approach
proposed by White (1975) and White et al. (1975). Patches of non-uniform satu-
ration occur at the gas-oil and gas-water contacts in hydrocarbon reservoirs. Also
during production, gas may come out of the solution creating pockets of free gas.
As demonstrated theoretically by White (1975) and White et al. (1975), wave
velocity and attenuation are substantially affected by the presence of partial gas
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saturation, depending mainly on the size of the gas pockets (saturation), frequency,
permeability, and porosity.

White’s idea of enhanced attenuation in the presence of even small volume frac-
tions of gas in the pore fluid has been experimentally confirmed by, among others,
Murphy (1982a,b); Murphy et al. (1984, 1986), Cadoret (1993); Cadoret et al.
(1995, 1998), Knight et al. (1998); Knight and Nolen-Hoeksema (1990), and Win-
kler (1979, 1983, 1985, 1986); Winkler and Murphy (1995); Winkler and Nur (1979,
1982); Winkler et al. (1979). Partial saturation effects on acoustic properties have
been observed in the laboratory, among others, by Yin et al. (1992), Gist (1994a,b),
Lucet and Zinszner (1992), and Bourbie and Zinszner (1985). The most exciting
result from the laboratory measurements from Murphy (1982a) is that attenua-
tion is found to be very sensitive to partial gas saturation. Experimental evidence
of the affection of the acoustics in marine sediments by the presence of gas bub-
bles in the saturating liquid is given by the review of Anderson and Hampton
(1980a,b). Recently, Lebedev et al. (2009) performed simultaneous measurements
of P-wave velocity and rock sample X-ray computer tomography (CT) imaging
during saturation (water imbibition). They showed that the experimental results
are consistent with theoretical predictions and numerical simulations.

The relevance for seismic exploration is profound. Seismic low-frequency effects
have been noted with reference to reflections from hydrocarbon-saturated rocks
by authors such as Goloshubin and Korneev (2000), Korneev et al. (2004), Ebrom
(2004), and Chapman et al. (2006). Castagna et al. (2003) showed that instan-
taneous spectral analysis (ISA) can be used as a direct hydrocarbon indicator.
Turgut and Yamamoto (1988) and Yamamoto and Turgut (1988) modeled loss due
to mesoscopic heterogeneities, i.e., the conversion of fast P-wave energy to slow
diffusive modes, in 1D numerical computations of finely layered marine sediments.
The low-frequency content of bright spots (high amplitude anomalies that can indi-
cate the presence of hydrocarbons) can be caused by mesoscopic loss mechanisms,
induced by partial saturation at the gas/oil and gas/water contacts (Rutherford
and Williams, 1989). Another effect that could be explained by this mechanism
is the presence of gas clouds and gas chimneys (a subsurface leakage of gas from
a poorly sealed hydrocarbon accumulation), recorded in offshore seismic sections.
The presence of gas, leaked from the reservoir to the overburden, has the effect
of lowering seismic velocities and increasing seismic attenuation, producing low
signal-to-noise ratio P-wave seismic sections (Carcione, 1998). The explanation is
the presence of patchy saturation in the overburden causing losses of mesoscopic
nature. The S-wave is not affected, since its energy is mainly transported through
the frame of the rocks (Carcione and Picotti, 2006).
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Pride et al. (2004) compared the attenuation and dispersion predicted by the
double-porosity model of Pride and Berryman (2003a,b) to the dataset of Sams
et al. (1997), assuming a well-consolidated sandstone host being embedded by un-
consolidated penny-shaped mesoscopic inclusions. The sealed-sample assumption
in the patchy saturation model is mathematically equivalent to the assumption
that the unit sample is periodically repeated throughout space, as in the initial
works of White (1975) and White et al. (1975), as later extended by Dutta and
Odé (1979a) for the 3D case, and by Vogelaar and Smeulders (2007) for the 1D
case. Johnson (2001) developed an analytical framework for White’s model in both
dimensions. However, even more realistic modeling geometries than White’s con-
figuration, such as a random spatial distribution of a low concentration of spherical
inclusions (Gurevich and Lopatnikov, 1995; Gelinsky et al., 1998; Miiller and Gure-
vich, 2004, 2005a,b; Toms et al., 2006, 2007) are unable to accurately explain the
strong dependence of extensional attenuation on frequency in Massillon sandstone
from the experimental data of Murphy (1982a).

An alternative approach to model the acoustics of partial saturation is by the
introduction of an effective fluid instead of an effective medium cell (Smeulders
and Van Dongen, 1997). Such effective fluid includes the pressure equilibration
effects on the meso-scale as in the White-based models, but it would not fully
incorporate the second, solid, phase. Hence, on the macro-scale, there still exists
a separate solid phase next to an effective fluid phase, so that all characteristics
of Biot’s theory remain intact, though modified. This approach is based on the
treatment of bubbly liquids, where in first-order approximation the bubbles can be
regarded as single scatterers in an infinitely extended liquid host phase (Rayleigh-
Plesset approach). It was shown in many experiments (for a review, see e.g. van
Wijngaarden (1972)) that even in a cloud of bubbles this approach is remarkably
accurate.

1.2 Research challenges

1.2.1 Statement of the problem

The Biot theory is the most general phenomenological theory for wave propagation
through two distinct interpenetrating effective media. However, it is well-known
that the Biot theory is not capable of simultaneously explaining both the velocity
and the attenuation of seismic data measured on many fluid-saturated rocks (Pride
et al., 2004). From a fundamental perspective, perhaps the greatest challenge
in petrophysics is to understand the way a heterogeneity across all length scales



1.2 Research challenges 23

smaller than the acoustic wavelength affects wave propagation (Pride and Masson,
2006).

1.2.2 Scientific objectives

The aim of this research is to extend the model basis of wave propagation to het-
erogeneous porous media. It is a combined theoretical and experimental research
effort to evaluate the current models and to develop additional visco-poro-elastic
ones from low to high frequencies and to design and apply controlled laboratory
experiments for the calibration of these models.

The theoretical part of this research aims to determine a physical model that pre-
dicts the intrinsic attenuation and velocity of longitudinal waves and their relation
to the reservoir properties, such as rock type, porosity, permeability, and satura-
tion, and the fluid properties, such as viscosity, density, and compressibility. In
this part of the research, existing discrepancies with alternative approaches will
be examined and additional wave damping phenomena will be identified and, if
applicable, incorporated in the theory.

The experimental part of this research aims to calibrate the parameters of the
developed models and to validate the model’s predictive value. Since the phenom-
ena involved are frequency-dependent, and scaling is not trivial, experiments are
conducted at ultrasonic and sonic frequencies.

1.2.3 Industrial relevance

There are needs to extract more information from seismic data, especially for
reservoir modeling and time lapse interpretation in order to reduce the uncer-
tainties during the exploration, development and production phase of a reservoir.
Analysis of seismic data suggests that hydrocarbon deposits are often associated
with higher than usual values of attenuation, but this is generally ignored during
amplitude-versus-offset (AVO) analysis (Chapman et al., 2006). These rock and
fluid properties are only accessible in the vicinity of the well from log and/or core
measurements. Seismic data provide three-dimensional information, but generally
only structural images are recovered from the data. To extract more information
from the seismic data, the dependence of wave propagation on the petrophysical
properties is desired. Understanding of the physics that controls wave propaga-
tion in the heterogeneous subsurface is an indispensable tool in the search for
hydrocarbon deposits.
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1.3 Organization of the thesis

The constitution of this dissertation is as follows. After this introductory chapter,
the first three chapters evaluate and, if appropriate, extend and modify existing
theories on wave propagation in homogeneous and heterogeneous porous media.
The following four chapters describe the experimental part of this research.
Chapter two describes the Biot theory. Chapters three and four treat the theory
of wave propagation through fluid-saturated rocks in which also gas is present. In
chapter three, the original theory and an extended one of patchy saturated rocks
are described for a layered geometry of the gas patches filling the pores based on
the initial frameworks of White et al. (1975). In chapter four, this 2D model is
described in 3D by the theories of White (1975) and Johnson (2001) of which the
latter is derived analytically. With basic assumptions, we describe a complimen-
tary model. Also in chapter four, a modified theory of partially saturated media
is described based on the initial framework of Smeulders and Van Dongen (1997).
The constituent effects on velocity and attenuation are compared.

The first chapter of the experimental part is chapter five, which gives a rock-
physical description of the samples of interest. The applicable laboratory equip-
ment is described, together with the data acquisition and processing procedures.
The results involve determination of density, porosity, permeability, and bulk and
shear modulus of 45 natural and synthetic porous materials. In chapter six the
oil-saturated ultrasonic bulk properties are determined by two different labora-
tory set-ups and by two methods. Measurements of velocity and attenuation on
the influence of gas injected in an otherwise liquid-saturated sample are shown
in chapter seven. The final experimental chapter, chapter eight, investigates the
bulk moduli of the described samples at sonic frequencies by means of a Differential
Acoustic Resonance Spectroscopy (DARS) set-up. In chapter nine the conclusions
are itemized.



Chapter 2

Biot theory

2.1 Introduction

Despite earlier descriptions by Zwikker and Kosten (1941) and Frenkel (1944), the
formulation of a comprehensive theory for the mechanical interaction between the
fluid phase and the solid phase in a homogeneous porous material is attributed to
Biot (1956a,b).

One of the most prominent results of Biot’s theory of wave propagation in porous
media is that there are in contrast with the conventional elastic theory three bulk
waves: two compressional and one shear wave. It is generally accepted that the
first experimental validation of the slow wave was by Plona (1980) on artificial
rock composed of glass beads. Since then, important progress has been made
in the field of viscous and thermal interaction (equivalent-fluid models) which
opened new ways for experimental verification. The slow compressional wave was
later also detected in natural rocks, both in air-saturated (Nagy et al., 1990)
and water-saturated ones at ultrasonic frequencies (Kelder and Smeulders, 1997).
Velocity measurements have proven the very broad predictive power of the Biot
theory. Predictions on the damping behavior of these waves, however, are still
poor (Smeulders, 2005).

In this chapter, we will briefly present the acoustic bulk properties of the three
wave types following from the Biot theory. The low- and high frequency limiting
behavior of these waves is given and the Gassmann (1951) theory is discussed, since
this helpful for later use in chapters 3, 4, and 8. The stress-strain relations are given
here, since these are also the starting equations of the theories in chapter 4. The
input parameters of the Biot equations are measured in laboratory experiments
in chapter 5. The velocities and quality factor experimentally measured on oil-
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saturated rocks are compared with the Biot theory in chapter 6.

2.2 Acoustic bulk properties

Consider a fluid-saturated homogeneous poroelastic rock under loading. The total
stress 7;; (solid plus fluid phases) and pore fluid pressure p in terms of the solid
and fluid strains, e;; and €;;, are in the case of isotropic materials

Tij = [(P+Q —2uep + (Q + R)ekdij + 2peij, (2.1)
—¢p = Qegk + Regy. (2.2)

The porosity is ¢ and the shear modulus of the matrix is p. Explicit expressions
of the poroelastic coefficients are given in terms of the bulk moduli of the pore
fluid, the solid, and the matrix Kig,, respectively as (Biot and Willis, 1957)

PKm+(1—9p)K' 4

P = ¢, +§:u’7

K’
= = 2.3

Q 5 (2.3)
K¢

R =
¢

where

;o K’

qb - ¢+Ea

K' = Kiy—9¢), (2.4)

and v = 1 — K,/ K is the so-called Biot coefficient. The bulk modulus of the
matrix is derived from the dry rock density ps and the dry P- and S-wave velocities,

VP dry and vs dry:
Km = (1 - ¢)ps (UI% dry — %Ug dry) . (25)

The shear modulus is independent of the pore fluid, and can therefore be deter-
mined by the dry shear wave velocity (Berryman, 1999):

1= (1= ¢)psv§ ary- (2.6)

Consider, then, the solid and fluid displacements, u and U, in a saturated ho-
mogeneous poroelastic matrix under loading. The fluid can be liquid, gas, or a
gas-liquid mixture. Due to the intrinsic frequency-dependent nature of the viscous
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interaction, it is useful to consider the Biot equations in the frequency domain.
Adopting an exp(iwt) dependence for all relevant quantities, the Biot equations

for the solid and the fluid are (Biot, 1956a,b):
—w?[(p11 + pr2)a+ (pa2 + p12)U] = V-7, (2.7)
o2+ pU] = 6Vp, (2.8)

where the complex density terms are defined as

pi1 = (1 —¢)ps — p12,
p22 = Qpr— p12, (2.9)
pi2 = (1—a&)gpr.

The accent circumflex over a field variable (displacements, particle velocities,
stresses, and pressures) denotes small variations of that variable. The accent
circumflex over the dependencies of these field variables (such as strains, etc) is
omitted. The solid and fluid densities are psr. The dynamic tortuosity, &, de-
scribing the transition from the viscous to the inertia-dominated regime is given
by Johnson et al. (1987):

& = oo (1—1,/%<%+é>>, (2.10)

where . is the real-valued tortuosity. The critical Biot frequency, describing this
transition, is

on

WwB = )
koo pt

(2.11)

where kg is the permeability and 7 is the fluid viscosity. The dynamic tortuosity
is related to the dynamic permeability k& (Johnson et al., 1987):

o _hows (2.12)
Qoo k iw

We substitute equations (2.1) and (2.2) in (2.7) and (2.8) and assume that the

solution can be written in the frequency-wavenumber domain using an exp(—ik-r)

convention. Here, k is the three-dimensional wavenumber vector, and r is the

three-dimensional position vector. Using standard decomposition techniques (see

Wisse (1999)), the dispersion relation for the squared compressional wave velocity

= (w/k)? is

d264 + d102 +dy =0, (2.13)
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with
dy = PR- Q%
di = —(Ppa2 —2Qp12+ Rp11), (2.14)
dy = piipa — pia-

Solutions of the quadratic equation (2.13) in ¢? yield two complex roots corre-
sponding to the fast and slow compressional waves (j = 1,2):

,  —dy /& — ddods
Cj — .

2.1
2ds (2.15)

1

The phase velocities and intrinsic attenuations® are computed from the wavenum-

bers as

cp = Re(:zk) (2.16)
and

o' — '2;:((;) ‘ . (2.17)

The resulting wave modes including limiting behavior are displayed in figure 2.1.
The rock and fluid properties are given in table 2.1. The wave type in which the
fluid and frame displacements are in-phase has a high velocity and low damping
and is called the fast wave, while the one in which they are out-of-phase has a low
velocity and high intrinsic damping and is accordingly denoted the slow wave. Fast
wave dispersion is minimal. The slow wave velocity, however, increases from zero at
low-frequencies to a constant value at high-frequencies. This transition frequency
from low-frequency diffusive behavior to a high-frequency propagatory behavior
is described by the critical Biot frequency in equation (2.11). In our example
wp/2m = 1.3-10° Hz, which is where the fast wave attains maximum attenuation.
We thus see that for surface seismics and even low-frequency acoustic tools (3 kHz)
phase velocity and attenuation are dominated by the viscosity of the fluid. Since
viscosity is strongly temperature dependent, in a reservoir, 1 can be as low as 0.25
mPa-s for water and has therefore a strong effect on the transition frequency.
Equations (2.7) and (2.8) not only give the complex wavenumbers, but also deter-
mine the fluid-solid displacement ratios (Kelder, 1998):

Q- p12€5 B p1ic; — P
paci — R Q— piac}

; (2.18)

'The quality factor (inverse attenuation) and one of Biot’s poroelastic constants are both
denoted by symbol Q.
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Figure 2.1: Phase velocity (a) and intrinsic attenuation (b) of the compressional waves
predicted by the Biot theory. The fast wave is the upper solid curve in figure
(a) and the lower solid curve in (b). The dotted lines are the low and high-
frequency asymptotes of the fast wave. The slow wave is the lower solid
curve in (a) and the upper solid curve in (b). The dashed lines are the low
and high-frequency asymptotes of the slow wave. The properties of the fully
water-saturated sandstone rock are given in table 2.1.
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Matrix Grains Water

Density p [kg/m?] 2.65-10% 1.0 -10°
Bulk modulus K [Pa] 2.637 -10° 35.0 -10° 2.25 -10°
Viscosity n [Pa-s] 1.0 -1073
Porosity ¢ [-] 0.284

Permeability ko [m?] 1.0 -10713
Shear modulus p [Pa]  1.740 -10°
Tortuosity oo [-] 3.52

Table 2.1: Constituent properties of a fully water-saturated sandstone rock with a rela-
tively weak frame (Johnson, 2001).

The decomposition techniques also provide the dispersion relation for the shear
wave

pp2e — doc® =0, (2.19)

with the straightforward solution
c— P22 (2.20)

The fluid-solid displacement ratio is in this case (Kelder, 1998)

12
B = 7%‘ (2.21)

2.3 Limiting behavior

In the high and low-frequency limit, equations (2.7) and (2.8) are identical to
respectively Darcy’s law and Newton’s second law, or in other words dominated
by viscosity or inertia.

The low-frequency behavior of the Biot theory follows from equations (2.7) and
(2.8) simply by setting to zero all higher-order inertial terms and by taking the
dynamic permeability, k, equal to its steady-state value, ko. Using equation (2.12)

then gives
V-7 = 0, (2.22)
k .
vp = iw(a-10). (2.23)

ng
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The solutions of equations (2.22) and (2.23) are as follows. There are solutions
in which the fluid and solid are locked together: &t = U. In that case the total
stress, equation (2.1), is related to the displacement in the usual way, but with a
new constrained modulus H:

iy = (H — 2p)eprdij + 2peq;, (2.24)
where H = P+2@Q + R. This modulus was originally derived by Gassmann (1951).

Substitution of equations (2.3) in H yields

,YQ

(= 0)/K. T o/K; T

For later use, we also define the so-called Biot-Gassmann bulk modulus Kgg of

H=K,+

Ol

. (2.25)

the saturated rock
Kpg = H — 3. (2.26)

These equations (2.24) thus naturally imply that the compressional and shear
waves should propagate unattenuated with speeds given by

) H

3}13%) c1 =4/ ’y (2.27)
i T

3}1_}115 cg = \/;, (2.28)

with p = (1 — ¢)ps + ¢pr the total density. There are also solutions of equations
(2.22) and (2.23) in which the fluid and solid move out-of-phase. This is seen by
considering plane wave propagation in the x direction, for example. In that case
it can be seen that the fluid-solid displacement ratio § = U /G, with 4@ and U the
displacements in the x direction, is given by

 PiQ
ulgbﬁ?__QJrR'

and

(2.29)

Substitution of (5 in equation (2.23) yields that all relevant quantities obey a
diffusion equation with diffusivity given by
ky PR — Q?

D= ' (2.30)
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The slow wave speed is then given by (w — 0)
co = ViwD. (2.31)

As seen in equation (2.10), in the high-frequency limit the dynamic tortuosity
becomes real-valued, so that the high-frequency limit of the compressional and
shear waves are given by equations (2.15) and (2.20) using & = .

The low and high-frequency asymptotes of the fast and slow compressional waves
are also shown in figure 2.1. In agreement with equation (2.31) the low-frequency

1/2

slow wave velocity is proportional to w'/“. In the high-frequency limit, the slow

wave velocity is independent of frequency, since & = a. The low-frequency

asymptote of the fast wave attenuation is linear with frequency, since there Re(k) o

2. The high-frequency asymptotes of both the fast and slow

1/2

w and |[Im(k1)] x w
wave attenuation are proportional to w™!/2, since Re(k;) o« w and |Tm(k;)| o w
The low-frequency attenuation of the slow wave has a constant value of 2, since
the absolute values of the imaginary and real part are equal.

We finally notice that the low and high-frequency asymptotes of the fast and slow
wave velocities and attenuations intersect at frequencies on the order of magnitude
of WB-

Clearly, Biot’s theory applies to homogeneous porous media. However, if the
medium is heterogeneous at meso-scale, it may also be possible to carry out a nu-
merical study by discretizing the heterogeneous medium with small homogeneous
cells, but this is expensive (Masson et al., 2006). So, in the following two chapters
we investigate macro-models that account for meso-scale heterogeneities.



Chapter 3

Theory of partially saturatled
rocks with layered patches

Abstract

The low-frequency theory of the White model to predict the dispersion and intrin-
sic attenuation in a single porous skeleton saturated with periodic layers of two
immiscible fluids is extended to the full frequency range using the Biot theory. The
extension is similar to the Dutta-Odé model for spherical inhomogeneities. Below
the layer resonance frequency, the acoustic bulk properties for several gas-water
fractions are in good agreement with the original White model. Deviations start
to occur at higher frequencies due to the growing importance of resonance phe-
nomena that were neglected in the original White model. The full model predicts
significantly higher damping at sonic frequencies than the original White model.
We also show that attenuation is significantly dependent on porosity variations.
With realistic rock and fluid properties a maximum attenuation of about 0.3 is

found at seismic frequencies.

3.1 Introduction

Information about the subsurface recovered from sonic, cross well, VSP, and seis-
mic data can be retrieved from the physical mechanisms that control attenuation.
Intrinsic attenuation is the decreasing of the amplitude of the propagating wavelet

'Published in Geophysical Prospecting 55(5), 685-695 (2007).
Note that the notation in the present chapter differs from the original publication to make it
consistent with the other chapters of this dissertation.
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by conversion of its energy into heat. All other loss mechanisms, such as scattering,
interference, spherical divergence, receiver to earth coupling, wave conversion, and
so forth are termed apparent attenuation, and are essentially due to a limitation
in the positioning of the receivers. If we consider the subsurface of interest as a
macroscopically homogeneous porous medium composed of elastic grains fully sat-
urated by a single pore fluid, the expansion and contraction of a passing wave will
cause relative movements between the individual grains and between the grains
and the pore fluid. These movements together with the global flow behavior of
the fluid will dissipate energy from the wave as first reckoned by Biot (1956a,b).
However, it is well-known that the purely viscosity-based damping predicted by
the Biot theory significantly underestimates the level of attenuation observed in
field data in the seismic frequency band (e.g. Sams et al. (1997)). Microscale het-
erogeneities, such as cracks in the individual grains cause squirt flow (Mavko et al.,
2003) and can explain the attenuation observed by Jones (1986) in the laboratory.
The higher ultrasonic velocities of King et al. (2000), measured on sandstones
from hydrocarbon reservoirs with high porosity and a wide range of permeability,
support local flow phenomena owing to the presence of open microcracks. It was
shown (e.g. Pride et al. (2003)) that this squirt mechanism is unable to explain
the attenuation in the seismic frequency band.

Mesoscale heterogeneities larger than the grain size but smaller than the dominant
wavelengths have been found to yield additional loss mechanisms (Pride et al.,
2003). These may either be due to variations in solid grain properties, such as the
grain bulk modulus and solid density, to variations in packing, such as porosity,
permeability, frame bulk modulus, or to saturation by fluids with different proper-
ties, such as density, compressibility, and viscosity. Lithological mixtures of sand
and clay saturated by oil or water and gas are in this way regarded as mesoscale
heterogeneities. Among others, Murphy et al. (1986) and Cadoret et al. (1995)
observed patchy saturation effects on the acoustic properties at laboratory frequen-
cies between 1 and 500 kHz. Compressional wave velocities and attenuation were
measured both in situ (0.2-1.5 kHz) and in the laboratory (200-800 kHz) on poorly
sorted seafloor sediments by Best et al. (2001). The observations of Best et al.
(1994) on water-saturated sandstones and shales with varying amounts of clay and
lime mud support local viscous fluid-flow, due to compliant minerals, as the most
likely loss mechanism at high effective pressures. Recently, Batzle et al. (2006)
measured attenuation from 5 Hz to 800 kHz using forced deformation, resonance,
and ultrasonic techniques, and found the influence of fluid mobility as a possible
dominant mesoscopic loss process between heterogeneous compliant regions.

Immiscible fluids can be modelled as patches of one fluid surrounded by a second
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fluid or by a sequential periodic layering of two pore-fluids within a uniform porous
frame. The patches in the model of White (1975) are equidistant spaced fluid
spheres, while Johnson (2001) treated wave-induced mesoscopic flow without plac-
ing restrictions on the patch geometries. Pride et al. (2004) modelled wave-induced
flow for an arbitrary mesoscopic geometry of patchy saturation within each averag-
ing volume. Gei and Carcione (2003) calibrated a modified empirical fluid-mixing
law proposed by Brie et al. (1995) with the spherical White model at high frequen-
cies to obtain wave velocities and attenuation of gas-hydrate-bearing sediments as
a function of pore-pressure, temperature, frequency and saturation. Miiller and
Gurevich (2005a,b) modelled wave propagation in an inhomogeneous medium by
using the Biot equations with randomly varying coefficients (fluctuations in the
solid phase, drained frame and fluid parameters as a function of position) and so
analysed the effect of wave-induced flow on attenuation and dispersion. Earlier,
one-dimensional results (Gurevich and Lopatnikov, 1995; Gelinsky et al., 1998)
showed that attenuation due to fluid-flow in a randomly layered porous medium
differs significantly from the attenuation in periodically layered media of White
et al. (1975), as homogenized by Norris (1993). Carcione et al. (2003) simulated
the relaxation phenomena of the spherical White model with numerical exper-
iments and found comparable trends. Recently, Brajanovski et al. (2005) used
White’s concept to model the dispersion and attenuation of a porous medium,
permeated by aligned fractures, by considering a periodically layered poroelastic
bimodal medium. They used the results of Norris (1993) in which one of the two
layer thicknesses goes to zero and its porosity essentially goes to one, and the dry
bulk modulus of the fracture goes to zero.

The original White (1975) and White et al. (1975) theories of fluid flow effects
in porous media containing spherical or layered inhomogeneities are restricted to
frequencies w much lower than the critical Biot frequency

on

koaoopf’

w<KLwp = (3.1)
where ¢, a, and kg are the porosity, tortuosity, and permeability of the composite,
and pr and 71 denote the density and viscosity of the pore fluid.

This paper on flow-induced attenuation focuses on the layered geometry of White
et al. (1975), with either two fluids saturating one solid frame or two solid phases
containing a single fluid in all pores. Within this 1D framework, simultaneous
variation in both fluid and solid phase is also possible. White et al. (1975) de-
rived expressions for the acoustic bulk properties of low-frequency compressional
waves travelling perpendicular to the boundaries of a medium, which consists of
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a porous skeleton alternately saturated with two layers of fluids. For wavelengths
long compared to the layer thickness, the zones appear macroscopically isotropic
and homogeneous. They concluded that for alternate saturation with water and
gas, fluid-flow across the boundaries may result in substantial dispersion and at-
tenuation of low-frequency compressional waves. The effects are less significant
for a reduction in contrast between the fluid properties, and hence are less note-
worthy for alternating liquid-liquid saturation, e.g. oil-water, than for liquid-gas
saturation.

Counter-intuitively, no significant dispersion or attenuation was noted by White
et al. (1975) for layers with a different porosity and permeability saturated by
a single fluid. Indeed, other theoretical treatments, such as the double porosity
model (Pride and Berryman, 2003a,b), showed the dependence of dispersion and
attenuation on porosity and permeability. Shapiro and Miiller (1999) showed that
the frequency dependence of the P-wave attenuation coefficients and its anisotropy
are sensitive to fluctuations in permeability.

The main purpose of present paper is twofold: (1) the low-frequency layered White
model is extended to the full frequency range; and (2) the dependence of attenu-
ation and dispersion on variation in medium properties is examined over the full
frequency range and compared with White’s layered model.

First, we introduce the basic poroelastic relationships of the Biot theory, followed
by a description of the geometry of a periodically layered model with the corre-
sponding boundary conditions. Next, the computational procedure to calculate
the forward- and backward-propagating pressure waves of the fast and the slow
Biot wave is treated. This gives rise to a new complex plane-wave modulus for
the entire frequency range, which is compared with the original low-frequency ap-
proximation of White et al. (1975) on attenuation and dispersion. The individual
contributions from Biot’s fast and slow wave to the pore pressure are analysed
throughout the layer, since this will help in understanding the features of the Biot
theory as applied to current model.

3.2 Poroelastic relationships

The relationships between the different complex-valued one-dimensional! ampli-
tudes of the pore-pressure p, the intergranular stress &, the fluid velocity w and
the solid velocity v, follow from the stress-strain relationships of the Biot the-

!Corrected for the error in Vogelaar and Smeulders (2007).
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ory (1956a; 1956b), in the form presented by Jocker et al. (2004)

—lwgp = —ik(Qv + Rw), (3.2)
—iwo = —ik(P't + Q'w), (3.3)
where
/ 1- ¢
p=p_-_-__" 3.4
o v (3.4)
/ - ¢
=0Q0—-—T"R 3.5
Q 5 (3.5)
and
P=A+42u, (3.6)

where 1 denotes the frame shear modulus. An ™! dependence is implicitly un-
derstood. Explicit expressions of the elastic coefficients A, @ and R, are given in
terms of the bulk modulus of the fluid K, the bulk modulus of the solid Ky and
the bulk modulus of the drained matrix K,, by Biot and Willis (1957) as

_ 0K+ (1-¢)K' 2

A (Z), - §M7 (37)
oK'
Q= o (3.8)
¢* K
R = 77 (3.9)
where
K/
/
_ kel 1
¢ =0+ I (3.10)
is an effective porosity and
K' = K (1—¢—§m>, (3.11)
S

is an effective bulk modulus. Combining the stress-strain relationships, equations
(3.2) and (3.3), with the momentum balance equations for the fluid and the solid,
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it is possible to derive the dispersion relation for compressional waves in porous
media. For details we refer the reader to, for example, Smeulders (2005) and
references therein. Defining the complex-valued wave velocity ¢, the dispersion
relation can be written as

(PR — Q%) — (Ppaz + Rp11 — 2Qp12)c® + (p11p22 — pia)c* = 0. (3.12)

The complex-valued frequency-dependent mass density coefficients p11, p12 and
P22, are dependent on the solid density ps, the fluid density pf, the tortuosity aeo,
and the dynamic interaction between the fluid and the solid matrix by Johnson
et al. (1987)

pi1 = (1= ¢)ps — pio — ib(w)/w, (3.13)

p12 = plo + ib(w)/w, (3.14)

pa2 = ¢pt — P — ib(w)/w, (3.15)
where

Pha = —(aoe — 1)dpr. (3.16)

The dynamic interaction coefficient b(w) is defined as

2
bw) = %1 fiize, (3.17)

and wp is the critical Biot frequency defined in equation (3.1). From equa-
tion (3.12), we understand that there are two solutions for the compressional
velocity, viz. ¢; = w/k; for the fast Biot wave with wavenumber k1 and co = w/ks
for the slow Biot wave with wavenumber k2. The Biot theory not only predicts
the wave speeds c;, where j = 1 or 2, but also yields the relationships between the
complex-valued amplitudes. It is convenient to define the fluid-to-solid amplitude

ratio by
. 2
W; puc; — P
Bi=—-2L="2 . (3.18)
Uy Q- P12€5
From equations (3.2) and (3.3), the ratio of solid stress to pore pressure is
s P! 3.
2 = ¢ﬂ’ (3.19)
Dj Q + RB;
and the ratio of the solid velocity to pore pressure is given by
f)j :|:Cj
L —p——7 3.20
pj @+ Rp; (3.20)

where the + sign indicates the propagation direction.
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Figure 3.1: Geometry of a stratigraphy of periodic zones with layer properties a and b,
including a representative element of length L.

3.3 Model geometry and boundary considerations

Consider a fully saturated poroelastic solid with horizontal periodic zones of two
different medium properties. These two different zones are isotropic and homoge-
neous and can be a result of two different saturating fluids. In figure 3.1, the top
of a representative element is chosen in the middle of layer a at x = —L, and the
bottom in the middle of layer b at x = Ly, such that L, + L, = L. By symmetry
there is no fluid flow across the middle of any layer. In other words, neither fluid
can escape from the ’jacketed’ representative element.

When a harmonic pressure wave travels perpendicular to this layering, the layers
will expand and contract. From an external pressure p., on the top and bottom of
the representative element a resulting total strain € is computed. Their ratio gives
the complex plane-wave modulus H*

_Pe

H* =22, (3.21)
€

which is related to an effective complex wavenumber keg by ket = wi/pe/H*, with
the effective medium density pe, defined as

Lm
= — Pm- 3.22
pe mg,b - om (3.22)
The density of layer m is pp, = (1 — ¢&m)psm + GmpPtm, where ps, and pg, are
respectively the solid and fluid densities in layer m, which has porosity ¢,,. The
real part of keg yields the phase velocity ceg = w/Re(kegt), whereas both real and
imaginary parts define the attenuation Q=1 = 2Im(kegr) /Re(kef)-
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The pore fluid pressures in layers a and b are given by

Pa = Afe™F10® 4 A7 eM10% 4 AT e et 4 A eMh2en (3.23)

Py = B e #1074 Byrelku® 4 Bfemkat 4 pretkat (3.24)

with complex pressure coefficients A% or Bf[ for the fast wave and AQi or Bgﬁ for the
slow wave in layer a or b pointing in the £ z-direction. The unknowns are solved
as a boundary value problem using Biot’s theory. System equations (3.23) and
(3.24) can be solved with eight boundary conditions. Continuity of pore pressure
and continuity of intergranular stress at the boundary between media a and b
prescribed that

Pa=pp ataz=0, (3.25)

A

Ga = Op at x = 0. (3.26)

Continuity of volume flux and continuity of solid particle velocity at the boundary
requires that

We =1,  atx=0, (3.27)

~

Vg = Up at © =0, (3.28)

where W,, = G (W — Uy, ). Continuity of total stress at the top and at the bottom
of the representative element implies that

ﬁa + 04 = Pe at x = —L,, (329)

Py + 6y =pe  atx=Ly (3.30)

Finally, the relative velocity should be zero at the top and at the bottom of the
representative element:

We =0 at © = — L, (3.31)

wp =0 at © = L. (3.32)
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3.4 Full frequency solution

The eight unknowns in equations (3.23) and (3.24) can be found from a linear
system in P, written in matrix form as

8
j=1

The coefficients of matrix H;; are obtained from equations (3.18), (3.2) and (3.3)
applied to the boundaries outlined in equations (3.25)-(3.32), where y; is a column
vector of the unknown elements given by

y=(Af, A7, A}, Ay, Bf, By, Bf, By )%, (3.34)
and the column vector z; reads
z=7p.(0, 0, 0, 0, 1, 1, 0, 0)%. (3.35)

Equation (3.33) is solved with the frequency-dependent elements of H;; given in
Appendix A. From the matrix computations in Matlab, the pore-pressure ampli-
tudes A;-t and B;E relative to the effective pressure p. are obtained. With equa-
tions (3.19), (3.20) and (3.23), (3.24), the solid displacements 4, at * = —L, and
up at © = Ly are computed to obtain the complex plane-wave modulus for the full
frequency range

L
H* = Pe- (3.36)

aa|z:7La - ab|z:Lb

The absolute and phase values of the reduced complex plane wave modulus are
plotted as a function of frequency in figure 3.2 for a medium with material proper-
ties as given in table 3.1. The rock and fluid properties correspond to the values of
case 5 of White et al. (1975). The skeleton of case 5 is a highly permeable uncon-
solidated sand, fully saturated with alternate water and gas zones. A gas fraction
of 10% is chosen. We observe that for low frequencies, the absolute value of H*
becomes less than the effective plane-wave modulus H,, owing to the additional
compliance because of fluid exchange across x = 0. When the wavelength becomes
of the same order as the layer thickness, resonance occurs and the medium becomes
extremely compliant. These phenomena are comparable to the so-called passing
and stopping bands in transmittivity computations (e.g. Jocker et al. (2004)). On
increasing the frequency, the medium oscillates out-of-phase with respect to pe
(anti-resonance) and at around 10* Hz, relatively high values for H* are obtained.
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Skeleton Water Gas

ps = 2650 kg/m? pra = 1000 kg/m3 pry, = 70 kg/m?

K, =334 x 10° Pa Kj, = 2.2 x 10° Pa Kg = 9.6 x 10% Pa
ko=1.0x 1072 m? n, =06 x 1072 kg/m/s n, =15 x 107% kg/m/s
¢ = 0.30

Ky = 3.18 x 107 Pa

p = 1.40 x 10°

L=020m

Table 3.1: Properties of the skeleton and fluids of case 5 from White et al. (1975).

Note that these values fall outside the scale of the figures. The phase values have
a maximum around 70 Hz. At high frequency, resonances between 0° and 180°
occur. The model solutions of the original White et al. (1975) theory as derived
in Appendix B, are also plotted; these will be discussed below.

3.5 Analysis of pore-pressure distribution

We analyse the pore pressure distribution in figure 3.3. The separate contributions
of the fast and the slow wave are also plotted. A gas fraction of 20% is chosen.
The rock and fluid properties are given in table 3.1. We note that: (1) The dis-
continuities at the gas-water interface (z = 0) observed in the fast and slow waves
are exactly equal and opposite in sign, so that the net fluid pressure is continuous.
(2) Both the real and imaginary parts of the fluid pressure due to the fast wave
are practically constant for all frequencies, except for high frequency. (3) The
fluid pressure due to the slow wave in the gas-bearing layer is almost independent
of the distance from the interface. However, in the water-bearing layer, it varies
significantly, especially at high frequencies. (4) At low frequencies, the net fluid
pressure approaches a constant value throughout the medium, while at the highest
shown frequencies, the pore-fluid pressure exhibits oscillatory behaviour. Similar
features were reported by Dutta and Odé (1979a,b) on the spherical White model.

3.6 Resulting attenuation and dispersion
The phase velocity and attenuation characteristics from the full model and White’s

model are shown in figure 3.4 for different gas saturations. Different L;/L ratios
are chosen similar to figures 2 and 4 in the original White et al. (1975) paper.
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Figure 3.2: Absolute and phase values of the reduced plane-wave modulus H*/H, as a
function of frequency for the full model (solid curves) and White’s model
(dashed curves). The rock and fluid properties are given in table 3.1. The gas
fraction is 10%. The absolute value of the first anti-resonance maximum is
at approximately 20, while the phase oscillates periodically between zero and
180° (not shown in the figures).
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Figure 3.3: Real and imaginary components of the pore pressure p,, relative to the ef-
fective pressure p, throughout the layers for four indicated frequency values.
The solid curves give the sum of the fast (dotted curves) and the slow (dashed
curves) compressional-wave contributions. The skeleton, gas and water prop-
erties are given in table 3.1. The gas-filled zone comprises 20% of the stack.
Because of symmetry, only the distribution enclosed by the representative el-
ement is shown for water between x = -0.16 m and = = 0 and for gas between
x = 0 and 0.04 m.
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Figure 3.4: Attenuation Q! and phase velocity ceg as a function of frequency for the
full model (solid curves) and White’s model (dashed curves) for several gas

fractions Ly/L. The medium properties are given in table 3.1. The data are

truncated near resonance frequency.
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We observe that for increasing gas fraction, the low-frequency limit of the wave
velocity cog decreases due to the lower stiffness of the system. At very high gas
fractions, the velocity at low frequencies increases again due to the density effect
becoming dominant in this case. The White model gives an accurate prediction
for the velocity in all cases, although for higher frequencies, deviations start to
occur. As was noted (Pride et al., 2002), the attenuation peak is largely due to
the slow-wave-induced diffusion in order to equilibrate the fluid pressure between
the layers. Such attenuation is at a maximum when the penetration length of the
diffusion process is of the order of the layer spacing:

Kk

max ~ — 75 - 3.37
Wma; 77</>L2 ( )

The peak attenuation increases and shifts toward lower frequencies for a decreas-
ing gas fraction from 90% to 10%. For a gas fraction of 1% the damping is less
significant than for 10%, indicating that the maximum effect of fluid-flow is ex-
pected to lie around 5% gas saturation. The figures clearly demonstrate that even
a small amount of gas trapped in a porous water-saturated rock significantly alters
the acoustic properties in the usual seismic frequency band (5-500 Hz). Note that
our full model predicts at least 10% higher damping in the sonic range (0.8-3 kHz)
than White’s model.

The shape of the attenuation curve is typical for a relaxation process, which at
low frequencies increases almost linearly with frequency w up to a maximum value
and then decreases as approximately w2, This low-frequency behaviour has also
been reported for 3D periodic structures (White, 1975; Dutta and Seriff, 1979)
and 3D random structures (Miiller and Gurevich, 2005b). However, the attenu-
ation at low frequencies in periodic layering differs from random layering where
it is proportional to w!/2 (Gurevich and Lopatnikov, 1995). The high-frequency
asymptote has also been found in randomly layered structures and 3D periodic
and random heterogeneities by the same authors, although the scaling is not uni-
versal for any kind of disorder (Miiller and Gurevich, 2005b). Moreover, Johnson
(2001), Pride and Berryman (2003a,b) and Pride et al. (2004) found the same
low- and high-frequency asymptotes for media with regularly distributed identical
inhomogeneities of any shape.

The effect of porosity on attenuation for both models is shown in figure 3.5 for three
different layer fractions. For this purpose, layer a was chosen to have a porosity ¢,
= 0.1 and layer b of ¢, = 0.3, while all other rock parameters remained unaffected.
The entire medium is saturated with water. As seen in figure 3.5, non-negligible
attenuation is observed for both models with a peak attenuation at about 150
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Figure 3.5: Attenuation as a function of frequency for the full model (solid curves) and
White’s model (dashed curves) for zones with different porosities ¢, = 0.1
and ¢, = 0.3. The remaining skeleton and water properties are given in
table 3.1. The fractional thickness of layer b with respect to L indicates the
relative amount L,/ L within the stack. The data are truncated near resonance
frequency.

Hz when the layers with different porosities have identical thicknesses. Again, we
calculate a frequency-dependent underestimation of the intrinsic attenuation for
White’s model with respect to the full theory. Our analysis of both models does
not support the statement of White et al. (1975) that no significant dispersion
or attenuation was noted for any of the relative amounts of two media having
different porosity.

3.7 Conclusions

Inhomogeneities in fluid-saturated porous rocks are introduced by a periodic se-
quence of alternating plane-parallel layers with a length scale much larger than
the typical pore-size. These inhomogeneities have a considerable effect on seismic-
wave propagation and damping. For wavelengths larger than the layer thickness
(low frequencies), an effective frequency-dependent plane-wave modulus was de-
fined by White et al. (1975). It was assumed that local pressure differences due
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to the passing of a seismic wave are counteracted by mesoscopic fluid-flow from
regions of high pore-pressure to regions of low pore pressure. This mesoscopic
equilibration causes extra damping with respect to the Biot global-flow model.
On the basis of the full Biot theory, we extend this model to the higher frequency
range. We compare the extended model with the original White model. When
the wavelength becomes of the same order as the layer thickness, resonance occurs
and the medium becomes extremely compliant. At even higher frequencies, the
medium oscillates out-of-phase with respect to the effective pressure and gives rise
to anti-resonance effects.

The influence of fluid-flow on attenuation is considered in two cases for the layered
White model: (1) a uniform porous medium saturated with a gas-water layering;
and (2) a porous medium having layers of different porosity, but saturated with a
uniform liquid. For case 1, fluid-flow across the boundaries results in large atten-
uation and dispersion in the usual seismic frequency band (5-500 Hz). Maximum
attenuation (up to 0.3) occurs at 70 Hz for around 5% gas saturation. In the sonic
range (0.8-3 kHz), our full model predicts at least 10% higher intrinsic damping
than White’s approximate model. Although for case 2 the peak attenuation is
less pronounced than for a contrast in fluid properties (i.e. case 1), we still ob-
serve a peak attenuation of about 0.013 at 150 Hz when both layers have identical
thicknesses. Again, we calculate a frequency-dependent underestimation of the
damping from White’s model with respect to the full theory. Apparently, at sonic
frequencies, resonance effects become more important; these are not taken into
account in the original White model.
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Appendix A

The elements of H;; in system Z?:l H;jy; = z; with y; and z; specified in equa-
tions (3.34) and (3.35) follow from the values at the boundary locations x = 0, — Ly,
and L; as listed in equations (3.25)-(3.32). The elements h;; of matrix H;; are

hiy = hig =hiz=hyy = 1,
his = hig = hir = his = —1; (3.38)

ha1 = ha2
hag = hag
has = hag
hor = hos
h31 = —h32
hsg = —haa
hss = —hsg
h37 = —hss
ha1 = —has
hag = —haa
has = —hae
hy7 = —hag

¢a
ba
—p

—op

P, + Q.b1a
Qa + Raﬁla ’
P, + Q24
Qa + Raﬂ?a 7
Py + Q6w
Qv+ RpBuy’
Py + Qb

Qv + RpPa’ (3.39)

9 Cla(/Bla - 1)

“ Qa + Raﬂla ’
CQa(/ﬁ2a - 1)
Qa + Ra/@Za ’
sc1p(Bp — 1)
" Qv+ RyBuy’
cap(Bap — 1)
Qv+ Rpfap’

)
¢2
—¢

—¢3 (3.40)

h31
¢a(/81a - 1)’
h33
Pa(f2a — 1)
h3s
ou(Bry — 1)’
h37

0(Bs — 1) (341)
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)

1+ h23 6’Zk2“La

~—~~ ~~ —~~

he2 = hes = hea
(1 — hgs)e~"*ele,
(1 - h26) iklbLb)
(1 — har)

(

ooy L
1 — hag)e™™™;

e*’LkZbLb’

ik1a L
h31€ e,

—tk1aL
h326 la a.7

h33 eik2aLu

hga = hgz = hgs

—tkq1p L
—hase”Feke,

ik L
—hzge™ 1,
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—hzre 2ebn,

_h386ik2bLb'
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Appendix B

A low-frequency approximation of H* was derived by White et al. (1975). It is
easy to show that for static compression of a bimodal porous medium an effective
plane-wave modulus H, can be defined by

L \ 7'
He = Z <m> : (3.46)
m=a,b

The individual moduli H,, are the so-called Gassmann moduli (1951) for layer m,
which are related to the Biot parameters via

H,, = Py, + Ry, + 2Q . (3.47)

Next, it is assumed that due to the external loading p., a pore pressure increase
Bp.pe is induced, where B, is the plane-wave Skempton’s coefficient, related to
the Biot parameters via

o (Pm _ Qm+ Rn
Bm—uljlirb(A >2m— Hod (3.48)

De
where the subscript 2m refers to the slow wave. As a consequence of a contrast in

the medium properties of layers a and b, there will be a pore-pressure discontinuity
(Ba — Bp)pe at © = 0, which is counteracted by fluid-flow across the boundary.
Fluid-flow is described by the wall impedances Z,, as derived in Appendix C:

T = Z—Z. (3.49)

Continuity of volume flux at the boundary yields

~

Wq,

A~

Wy, =0, (3.50)

z=0 z=0

so that the continuity of pore-pressure at the boundary is satisfied by

Baﬁe + Za@ = Bbﬁe - Zbﬁy (351)
and thus
-~ Bb - Ba ~
= ——— . 3.52
Y=z b (3:52)

With 8j, from equation (3.18), the fluid-flow across the boundary creates an extra
matrix displacement described by the parameter

~

Wi
Xjm = =— =
Um,

¢m(/6jm - 1)7 (353)
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which is equal to the negative reciprocal of Skempton’s coefficient B,y,, i.e.

 GwHm
Qm + R

Hence, with equation (3.52), the extra displacement is given by

lim o, = =B (3.54)
w—0

~ ~ Bb Ba; (Bb Ba)2 ~
fr— pr— 3-55
Ugq + Up i w (Za Zb)’L De, ( )

and the strain due to fluid-flow is derived as

_tati (B Bul e (3.50
L, + L (Za + Zb)iw L’ '

€flow

Finally with equation (3.21), we find White’s plane-wave modulus Hj to be

-1
He(By — B,)?

H; =H,|1—
0 ¢ (Za + Zp)iwL

(3.57)
The absolute and phase values of H{ are also plotted in figure 3.2. As expected,
we note that for low frequencies the White approximation is in excellent agreement
with the full solution.

The low-frequency limit of Z,, from equations (3.71) and (3.72) is

. TIm
lim Z,, = ———— 3.58
wli% " kOmk%mLm’ ( )

which means, with equation (3.66), that

: i (naDa | mDp
lim Z, + Z, = — . 3.959
wli% at % w <k0aLa * kObLb) ( )
Substitution into equation (3.57) gives
H.(By — B,)?
lim H; = H, [1 - ;(Da” njl))b (3.60)
v L( koaLa ° kovLe )

From equation (3.57), it is immediately clear that the high frequency limit of
White’s solution is given by

lim H} = H.. (3.61)

w—00

At high frequencies, the fluid has no time to flow and the model obviously reduces
to the case of static compression without fluid exchange.
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Appendix C

The out-of-phase movement between the solid and the fluid is described by slow
Biot waves that propagate in each layer:

Po = AJe7 k2T 1 AT g2 (3.62)

Py = B e e 4 Brethne, (3.63)

For low frequencies, the slow wave satisfies the diffusion equation in terms of pore
fluid pressure, i.e.
op

where the diffusivity D is related to Biot’s phenomenological parameters as (Chan-
dler and Johnson, 1981)

~ PR—Q?

D
boH

(3.65)

in which by = 1¢?/ko is the viscous damping factor. The solution of equation (3.64)

is given by

ke = 1v2(1 1) \/% (3.66)

Fluid flow across the boundary is quantified by the velocity of the fluid relative to
the velocity of the solid frame

Wiy = G (W, — D), (3.67)
and depends on the pressure gradient via Darcy’s law,

W = J“’—mvpm, (3.68)

Tim

so that from equations (3.62) and (3.63), we obtain

B, = lki‘;ﬂ (Aére—ikmzx _ A;eikQaJJ) : (3.69)
A ikopk ; j
Gy, = eanFon <B;-671k2bx _ Bgelk%x) , (3.70)

Ui
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The relative velocity W should be zero at @ = —L, and = = Ly, so that

~

Do =T ot(kouLe) = Za, (3.71)
Wa | z=0 k;Oa 2a

Dol = cot(kap L) = — 7, (3.72)
W | =0 obk2p

with the acoustic impedance Z,,, looking into layer m from the boundary between

the two layers at © = 0.



Chapter 4

Theory of partially saturated
rocks with spherical patches

4.1 Introduction

When a poroelastic solid is saturated with a liquid-gas mixture, additional inter-
action mechanisms than treated in the Biot theory have to be taken into account
to describe wave propagation. In chapter 3, we discussed the effects of a periodic
layering of gas and liquid saturations. However, other geometric configurations
are possible. Here, we model inhomogeneities in the fluid by considering isolated
spherical gas patches in the liquid saturating the matrix and focus on mesoscopic
loss-mechanisms. Patchy theory is concerned with the class of models first pro-
posed by White (1975) and White et al. (1975).

In section 4.2, we consider the geometry of the gas bubbles surrounded by liquid
and formulate an expression to predict its influence on wave propagation. This
expression is based on the boundary conditions as formulated by Deresiewicz and
Skalak (1963). We first treat patchy saturation in the quasi-static Biot context in
section 4.3 and compare this exact solution with a generalized quasi-static theory
as suggested by Johnson (2001). The exact solution using the full Biot theory
proposed by Dutta and Odé (1979a) is reviewed in section 4.5. For a gas bubble,
the acoustic properties are compact over a wide frequency range. This consider-
ably simplifies the computations, and leads to the development of a complimentary
model: the Compact Gas Bubble model in section 4.6. The dependence on medium
properties is treated in section 4.7 in terms of phase velocity and intrinsic attenu-
ation. Finally, in section 4.8, we apply the Rayleigh-Plesset-Biot theory for linear
pressure waves in bubbly liquids to partially saturated porous media and compare
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it with predictions of the generalized quasi-static theory.

The purpose of studying these different models is to understand the physical phe-
nomena involved, to define the relevant input parameters of the models (chapter
5), and to interpret the experiments (chapter 7).

4.2 Physical model

Consider a non-rigid porous medium fully saturated by a fluid that contains gas
bubbles larger than the typical pore size, see figure 4.1. The interaction among
the individual gas bubbles is neglected. When this gas bubble is subjected to
the macroscopic pressure field of a compressional seismic wave (i.e., on a length
scale much larger than the size of the inhomogeneity), the bubble will contract
and expand. These oscillations generate waves on the mesoscale (i.e., on the
length scale of the inhomogeneity), which consume energy from the seismic wave,
causing intrinsic attenuation. The external pressure field is assumed to be spatially
homogeneous at the scale of the inhomogeneity, and the effective (macroscopic)
bulk modulus can be obtained by considering a representative volume comprising
a single gas bubble (radius a) and a liquid shell (radius b) surrounding the bubble.
Radius b is chosen such that the volume of the sphere %ﬂ'b?’ equals the volume of
the unit cell of the cubic lattice (see figure 4.1).

We assume that the porous and permeable solid is describable by the Biot equa-
tions. It is saturated with two different Newtonian fluids, having saturations s,
and sp. At any point in the sample, it is fully saturated with either fluid, so that
sy = 1 —s,. The gas fraction s, = (a/b)3. Throughout this work, subscript a
refers to the gas phase and subscript b to the liquid phase.

The wave-induced pore pressure in the liquid will be different from that in the
gas. The pressures will equilibrate via diffusive mechanisms. The characteristic
frequency is determined by the diffusion time across a characteristic patch size:

we ~ D /b2, (4.1)

where D is the slow wave diffusivity, cf. equation (2.30), in the region with the
liquid.

Solving the Biot equations yields the solid displacement as a function of the applied
pressure and hence, the effective bulk modulus of the representative volume. The
computation of the effective bulk modulus of the representative volume makes only
sense if the frequency is low enough so that the wavelength of the fast compressional
and shear waves are large compared to the dimensions of the bubbles and their
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Figure 4.1: Geometry of a cubic lattice of periodic spherical gas bubbles with radius a,
separated by distance 2b’. Each gas bubble is surrounded by a liquid shell
with radius b, such that the volume of the cube equals the volume of the
sphere Vi = V.

mutual distance. That is the mesoscopic condition w < wy, should hold where

wr, ~ ¢s/b, (4.2)

in which cg is the speed of the shear wave in the region of the liquid.

In the following, the Biot theory of chapter 2 is solved using the appropriate
boundary conditions. These are: continuity of solid displacement u and fluid
displacement U, pressure p and total stress 7 at 7 = a and the condition that at
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r = b the external pressure p. is applied at a sealed pore boundary!:

ug(a) = up(a), (4.3)
Ua(a) Up(a), (4.4)
pa(a) = py(a), (4.5)
Ta(a) (a), (4.6)
up(b) Us(b), (4.7)
) = —pe. (4.8)

By solving the above equations, the field variables are determined uniquely every-
where.

The effective bulk modulus, K (w), can then be deduced via its definition:

K(w) = —Wb(b)pe, (4.9)

where uy(b) is the radial solid displacement at the outer boundary. Once the effec-
tive bulk modulus K is obtained, an effective complex wavenumber is computed

by
12
ki=w,|———, 4.10

where subscript 1 describes the fast wave on the macroscale (the conventional
seismic wave). It is assumed that the shear modulus (on the macroscale) is inde-
pendent of the fluid saturation: u = p, = pp. The total density p is

p=(1—)ps+ d(sppm + Sapta), (4.11)

where pg, denotes the gas (subscript a) or liquid (subscript b) density.

4.3 Exact patchy theory in the quasi-static Biot con-
text

We now consider the response of the representative element to a uniform compres-
sive stress. We presume that the frequency is low enough that the Biot theory is in
its low frequency limit. Thus the fast compressional and shear waves are nondis-
persive and nonattenuating whereas the slow compressional wave is diffusive in
character. The requirement is w < wp where the Biot crossover frequency is given

!Corrected for a typo in Johnson (2001).
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in equation (2.11). The theory presented here assumes that w. < (wp,wr ), so that
one can investigate the crossover region from w < w, to w > w, without violating
the low-frequency approximation.

The starting equations are essentially those of the Biot (1956a,b) theory at low-
frequencies, equations (2.22)-(2.23). It is relatively simple to solve equations
(2.22)-(2.23) if the geometry of the patches is either layered (see chapter 3) or
spherical.

The spherically symmetric solutions to equations (2.22)-(2.23) obey the following

equations:

0 ou  2u ou 2U

5[(P+Q) (§+7>+(R+Q) <§+7>] =0, (4.12)
and

—iwbo(U — u) = % [Q <g_:+27u> +R<({;—(7{+¥>} , (4.13)

where v and U are the radial displacements of the solid and the fluid, respec-
tively. The elastic coefficients are given in equations (2.3) and the dissipation term
bo = n¢?/ko. The solutions for which the fluid motion is locked-on to the solid’s,
u(r)/U(r) = 1, are linear combinations of r and r~2. These are low-frequency fast
wave solutions. The solutions for which u(r)/U(r) = —(P+Q)/(Q + R) are linear
combinations of spherical Bessel functions, ji(kor) and ni(ker), where ko is the
wavenumber of the slow wave, see equation (2.29).

The general solution for the radial direction in each region is therefore written
as (Johnson, 2001)

u(r) = Ar+ 7«52 + (Q + R)[Fji(kor) + Gnq(ker)],

U(r) = Art o — (P4 Q)Fjhar) + Gma(kar)],

_3(@+R), (PR-Q%

p(?“) = % A+ ? ko {F]Q(kjg’r) + Gno(kgr)},

A_4_/;B_4M(Q+R)[
T T

T(T‘) = 3Kpga Fjl (k‘QT’) + Gnl(k‘g?")]. (4.14)

The quantities P, @, R, Kpg, and ko(w) have different values in the two different
regions ¢ and b since they are a function of the pore fluid. Their expressions are
given by equations (2.3) and (2.25). The shear modulus y is identical for both
regions, because one homogeneous continuous matrix comprises both regions.

There are eight arbitrary constants: A, B, F', G in each of the two regions. The
requirement that the particular solution be finite at » = 0 implies B, = 0 and
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G, = 0. The remaining six boundary conditions are given by equations (4.3)-
(4.8). This set was solved numerically by Johnson (2001), but we show here that
an analytical solution is readily available.

The sealed pore condition at the outer boundary, equation (4.7), gives that

J1(kapb)
Gy = —Fy———~.
b bnl(k‘gbb)

This means that all expressions (4.14) in the liquid region can be rewritten using

(4.15)

the auxiliary parameter

fova = jo(kapa) — W(k%a)%- (4.16)

where £ = 0,1 is the order of the spherical Bessel function. Subtraction of the
solid and fluid continuity equations (4.3) and (4.4) at r = a leads to

. H,
Foji(koqa) = belbaﬁba (4.17)

so that the solid continuity equation (4.3) becomes
By,
Aga = Apa + ? + belbaNa (418)
with

N = (By+Qp) — (Ru+ Qu) 2. (4.19)

a

The continuity of total stress and pore pressure at the interface between the regions

now yields that

3a B,
@AaKBGa = —ApKpap — a—Qb — By fisaN,  (4.20)

—3A44(Ra + Qa) +34p(Ry + Qp) = Fy(PyRy — Qf)kapfora(l — ), (4.21)

— 02 1
f=ote <a2a b JOAaT) Jiba (4.22)
Adding equations (4.18) and (4.20) yields the surprisingly simple relationship

A H, = AyH. (4.23)



4.3 Exact patchy theory in the quasi-static Biot context 61

Matrix Grains Water Gas
Density p [kg/m?] 2.65-10% 1.0 -10° 1.0
Bulk modulus K [Pa] 2.637 -10° 35.0 -10° 2.25-10° 1.0 -10°
Viscosity 7 [Pa-s| 1.0 -107% 1.0 -107°
Porosity ¢ [-] 0.284

Permeability ko [m?] 1.0 -10713
Shear modulus g [Pa]  1.740 -10°
Tortuosity oo [-] 3.52

Table 4.1: Constituent properties of the partially saturated sandstone rock with a rela-
tively weak frame (Johnson, 2001).

Combination of equations (4.18), (4.21) and (4.23) yields that

By = —b% A9, (4.24)
with
H, 3N? 11
g = 54 (1_”+ Qf“’a > (4.25)
H, PRy — Qf fova kava 1 — f
The last boundary condition (4.8) finally implies
4
3ApKpGh — b—ng = —Pe, (4.26)
so that with equation (4.24) this becomes
Pe
A= —————. 4.27
’ 3Kpah +4pg (4.27)

The solid displacement at the outer boundary is u(b) = Apb(l — g) and with
equation (4.9), the quasi-static bulk modulus K (w) is

_ Ky + 319
=1,
The parameter set of table 4.1 is chosen to show the effective bulk modulus as a

K () (4.28)

function of frequency in figure 4.2. The gas fraction is 0.1 and b = 0.1 m. The
results are plotted over a wide frequency range to emphasize the limiting behavior.
Analyzing figure 4.2, we infer that the frequency where the slope of |K| and the
phase of K are the highest, is the transition frequency w. ~ D/b?, see equa-
tion (4.1). According to equation (3.37), this is approximated by (Pride et al.,
2004):

o Kk
© T mpb?

(4.29)
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Using the constituent properties of table 4.1, we obtain w./2m = 13 Hz. At this
transition frequency, the Biot slow wave diffusion length equals the characteristic
length of the inhomogeneity (Gurevich and Lopatnikov, 1995). Equation (4.29)
indicates that the mesoscopic loss mechanism moves toward lower frequencies with
increasing viscosity and decreasing permeability. This behavior is opposed to the
Biot relaxation mechanism, whose critical frequency is given by equation (2.11).
Similar behavior is seen in figure 3.2 for the plane wave modulus in the 2D case.

4.3.1 Static limit

In the static limit, the Biot equations of motion reduce to (Dutta and Odé, 1979b)
0

5 (Vow) =0, (4.30)
%(V~w) = 0. (4.31)

Note that we work here with relative displacement w = ¢(U — u). The solutions

for spherically symmetric displacements are

u(r) = Ar+4 Br 2, (4.32)
w(r) = Fr+Gr 2 (4.33)
Hence, we have for the pore pressure and total stress from equations (2.1)-(2.2)
that:
Q+R (Ou 2u R (0w 2w
S AL (e P L 4.34
o <8r . ¢% \ or ) (4:34)
ou 2u  Q+ R [Ow 2w
- B (7 -2 g, 4,
T 8r+( 'u)r+ o) <8r+r>’ (4.35)
and therefore
3(Q+ R) 3R
p = 2T, 2o 4.36
¢ ¢2 ( )
3(Q+ R) 4u

7(r) = 3KpgA+ F— T—33, (4.37)

¢
where we used equation (2.26). We note that the pressure is no longer a function
of r as a result of the displacement functions u and w specified in equations (4.32)
and (4.33). Again, @, R, and Kpg are elastic constants and A, B, F', and G are
yet unknown variables in both regions. A finite solution at r = 0 implies B, = 0
and G, = 0. The remaining six unknowns are determined by using the boundary
conditions (4.3)-(4.8).
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35 — T T

Phase (K) []

Frequency [Hz]

Figure 4.2: Effective bulk modulus as a function of frequency in the quasi-static Biot con-
text. (a) Absolute value of K/Kpgw. (b) Phase value. Exact (solid) and gen-
eralized (dashed) quasi-static bulk modulus from equations (4.28) and (4.70),
respectively. The lower and upper horizontal dotted lines are the limiting
moduli, Kpgw and Kpgn, equations (4.53) and (4.64). The dashed-dotted
curves are low and high-frequency asymptotes, equations (4.68) and (4.69).
The input values are from table 4.1, s, = 0.1 and b = 0.1 m.
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From the continuity of pressure and total stress at the interface, equations (4.5)
and (4.6), we have that

3(Qa + Ra) 3R, 3(Qy + Rs) 3R,
SIS A = Ry = ST Ay = L, (4.38)
a a 4
3 K Ay + L;WF& 3Ky + @Fb - BB, (439)
We note that (see equation (2.4))
@+ R)¢ K
=1— = 4.4
R 1 KS 77 ( 0)

so that this value is identical in both regions, because it does not depend on the
fluid properties. Multiplication of the left and right hand sides of equation (4.38)
by (Q + R)¢/R, and subsequent addition to equation (4.39) yields that

4
KAy = KAy — g%Bb, (4.41)

where we have used that (see equation (2.25))

(Q+ R)?
R

This expression combined with the continuity of solid displacement, A,a = Apa +

Kpa — = K. (4.42)
By/a?, gives
A, = 4 (4.43)
B, = 0. (4.44)

The no-flow condition at the outer boundary, equation (4.7), and the continuity
of relative displacement at r = a, equation (4.4), combine to

G, = —ELb (4.45)
SaFa == —Sbe. (446)
The condition of the external stress at the outer boundary, equation (4.8), now
yields:
3s + R
3 KpanAa — S—“%Fa = pe. (4.47)

Combining with the rewritten equation (4.39)

3 a
3(KBGa — KBGH)Aa + p Qa + Ra + (Qp + Ry) z— F, =0, (4.48)
b
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we find that
1 sp(KBGa — KBCH)
F, = - .. 4.49
3 54(Qp + Ry) KBGa + 56(Qa + Ra)KBGbp (4.49)
1 a a a
A, = L $a(Qb + Rp) + 55(Qa + Ra) (4.50)

3 54(Qp + Ry)KBca + 56(Qa + Ra)KBGbpe'

Using up(b) = Apb in equation (4.9), we have that the effective bulk modulus in
the static limit is given by (using equation (4.42))

% B b B 1
sa(KBap — Km)KBaa + sp(KBaa — Km)KBas (4.51)
sa(KBab — Km) + sp(KBaa — Km)
Using s, + s = 1, this can be rewritten as
K — Kgap(KBGa — Km) + 80 K (KBay — KBGa)' (4.52)

(KBGa — Km) + sa(KBas — KBGa)

Following Johnson (2001), this zero-frequency modulus is called the Biot-Gassmann-
Wood modulus. It was also found by Dutta and Odé (1979b)2. It is clear from
equation (4.52) that in the case of complete liquid saturation, s, = 0, or complete
gas saturation, s, = 1, Kpgw reduces to Kgagp or Kpgq, respectively.

A more accessible form of the modulus Kgqgw is found if we use the expression for
the Biot-Gassmann modulus of equation (2.25):

—1
7_¢+Jﬁ} : (4.53)

Kpaw = Kpa(Kw) = Km + 77 { K, Kw

where the fluid modulus Ky of equation (2.25) is in this case replaced by the
harmonic average Kw of the two fluid moduli in regions a and b (Wood’s formula):

1 Sq Sp

—_— = 4+ —. 4.54
Kw Ki  Kp (4:54)

This was discussed earlier by Dutta and Odé (1979b) and Norris (1993) explicitly
for layered and spherical patches. Johnson (2001) argued that equation (4.53) is
an exact result, independent of the spatial distribution of the fluids. Using the
input of table 4.1 with s, = 0.1, Kpagw is equal to 2.64 GPa. It is the lower bound
of the effective bulk modulus in figure 4.2 and is well-approximated by K, in this
case.

2Corrected for a typo in equation (A-16) of Dutta and Odé (1979b)
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Figure 4.3: Solid (dotted curve), fluid (solid curve) and relative displacement (dashed
curve) relative to the applied external pressure along the radial distance from
the bubble center in the zero-frequency limit. The input parameters are as in
figure 4.2.

Equation (4.44) means that in the zero-frequency limit, the total stress is constant

throughout both regions and equal to the applied external radial stress. The

pore pressure is also constant and a fraction of the external radial stress. From

equations (4.36), (4.42) and (4.49), we find that this fraction is
p 1 (KBGa — Ku)(Kpas — Ki)

lim — = — ,
w—0pe 7 (KBGe — Km)Kpcb + Kmsa(KBch — KBGa)

(4.55)

as also found by Dutta and Odé (1979b)3. In our example, the pore pressure ratio
throughout the unit cell is 1.2 x 1073 for b = 0.1 m. The zero-frequency limit
of the displacements along the radial distance are shown in figure 4.3. We see
that the solid displacement increases linearly with radial distance throughout the
medium. This is also true for the fluid displacement in the gas region. Maximum
fluid displacement occurs at the gas-liquid interface after which it decreases rapidly
with the increasing radial distance to catch up to the solid displacement at r = b.
Similar features were noted by Dutta and Odé (1979b).

3Corrected for a typo in equation (A-26) of Dutta and Odé (1979b)
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4.3.2 No-flow limit

We consider the high-frequency limit of K (w) under the assumption that the fre-
quency is never so high as to violate w < (wg,wy,). This case has been discussed
by White (1975) and Dutta and Odé (1979b). As the frequency of the external
stress becomes higher, the fluid has little time to flow. In case of the no-flow limit,
the equations of motion become:

5 (Vow) =0, (4.56)
w = 0, (4.57)

with the solution

u(r) = Ar + Br—2. (4.58)
Therefore (cf. equations (4.34)-(4.35))
3(Q+ R)
- _ A 4.59
5 : (4.59)
7(r) = 3KgA- i—/;B. (4.60)

Again, B, = 0 and the pore pressure is no longer a function of r. Three boundary
conditions (4.3), (4.6), and (4.8) provide expressions for A,, Ap, and By.
Continuity of total stress and solid displacement at the inner boundary yields that

By
A = Ap+ 3 (4.61)
Kpge — K
B, = —Ayq3—BGe_ BGb (4.62)
H,
Substitution of the above in the total stress condition at the outer boundary yields
that

De
Ap = — ) 4.63
’ 3Kpab + 4psa(KBca — Kpab)/Ha (4.63)
so that the effective bulk modulus in the high-frequency limit is given by
KpapHy + 2use(Kpaa — K
Kooy — JBGeHa + 3184(KBGa BGb). (4.64)

Hy — 54(Kpaa — KBap)

In the case of complete liquid or gas saturation, Kggg reduces to Kgap or Kpga,
respectively. With a uniform frame (i.e., constant p, Ky,, and Ky) the effective
bulk modulus of the medium is in exact agreement with Hill’s (1963) theorem:

1 Sq 1-—s, Sa Sp

= + = + =, 4.65
KBGH+§M Kpaga + %M Kpap + %,u H, H, ( )
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as Norris (1993) argued. In our example, Kpgy = 7.39 GPa is the upper bound
of the effective bulk modulus in figure 4.2.

We realize that although the pore pressure is constant within each phase, it is
discontinuous at the inner boundary. Equations (4.42), (4.59) and (4.61)- (4.63)
then give’:

lim 22 = (Kn6a = En) : (4.66)
w—00 Pe v(KaoHa + 3084(KBca — KBab))
K — KnH,
lim 20 = ( Bab m)Ha . (4.67)
w—00 Pe Y(KBaoHa + 3p84(KBca — KBab))

In our example, the relative gas pressure is 8.6 x 107>, while the relative liquid
pressure is 7.7 x 10~1. This discontinuity at the inner boundary is due to the differ-
ent physical properties of the fluids in each region. However, the total radial bulk
stress is continuous, and since there is no relative fluid-flow, the inner boundary
acts as if it were sealed.

In figure 4.4 we see that in the high-frequency limit, the solid and fluid displace-
ments are equal, and the relative displacement is zero everywhere along the radial
distance. Both fluid and solid move in phase, so there is no net fluid-flow across
the gas-liquid interface. There is a local minimum displacement at » = a and an
absolute minimum displacement at r = b.

4.4 Generalized patchy theory in quasi-static Biot con-
text

Johnson (2001) generalized the theory for spherical gas bubbles to gas patches of
arbitrary shape. By means of high and low-frequency perturbation theory, he was
able not only to define the Biot-Gassmann-Wood and Biot-Gassmann-Hill limits,
but also the asymptotic behavior in both limits. The low-frequency asymptotics
are described by a parameter T, whereas the high-frequency asymptotics are en-
compassed in a parameter G:

hII%)K = Kng[l —wT + ], (468)
lim K = Kpau[l — G(—iw) 2+ .. (4.69)

The most simple curve, obeying both low- and high-frequency asymptotics is then

“Corrected for a typo in equation (A-44) of Dutta and Odé (1979b)
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Figure 4.4: Solid (dotted curve), fluid (solid curve) and relative displacement (dashed
curve) relative to the applied external pressure along the radial distance from
the bubble center in the high-frequency limit. The input values are as in

figure 4.2.
given by:
Kpcgu — KBaw
K = Kpay — , 4.70
1—C+ (/1 —iwr/C ( )
where
Kpcu — KBGW)2
- ) 4.71
( KpeuG (4.71)
and
K - K 3
‘= (Kpcn — Kpaw)” 7 (4.72)

2KBaw T

The parameter 7" generally depends on the geometry of the patches (sample volume
V):

_ ¢* Kpaw

T =
ke V

g(r)®(r)dV, (4.73)
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with the potential ®(r) [m?s] the solution to

—1
V. |—V®(r)| =g(r), 4.74
Ve =) (a.74)
and g(r) [Pa—!] the compressibility function

o(r) = v(1/Kw — 1/K(r))
v+ oKm(1/Kw — 1/Ks)

(4.75)

In the case of a gas-liquid system, g(r) and n(r) only have two distinct values, gq
and 74 in the gas bubble and the shell, respectively. In that case Johnson (2001)
argued that an exact expression for 1" is given by

_ Kpaw¢?

T= 30kob3 (taaa5 - tabang + tbaa2b3 - tbbb5)a (4.76)

where t;; are given by

taa = 3mgh +5(Na — M) gags — 3Nag,

ta = 15mg6(96 — ga),

tha = 5g6[3M96 — (26 + Ma)gal,

tw = 3mgp- (4.77)

Finally, the expression of the real-valued coefficient G in equation (4.71) is

G=VD* [u} S (4.78)
pe |V

The pressures are given by equations (4.66)-(4.67). Expression (4.78) describes

the way in which the would-be discontinuity p, — pp is counterbalanced by a diffu-

sive slow compressional wave which propagates away from the interface into both

adjacent regions. Therefore D* is an effective diffusivity of both phases combined,

specified as

koKBgu

VDo +mvDy]
The diffusivity in both regions D, is given by equation (2.30). The term S/V is

D*

(4.79)

the ratio of the boundary area between the two phases to the sample volume.

In figure 4.2, we plotted the absolute and phase values of the generalized effective
bulk modulus. We see that they are in excellent agreement with the exact curves.
Small deviations do occur, however.
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Johnson (2001) approximated the crossover frequency by equating the low- and
high-frequency expressions for the attenuation Q~!. He found that

1/3 4 2
‘ (KBew — KBch)® Pe V] '

In our example this would lead to w./2m = 70 Hz, which is on the same order
of magnitude as specified by D/b?, leading to 13 Hz (equation (4.29)). Equating
the low and high-frequency asymptotes for K (w) would yield two new cross-over
values as can be seen in figure 4.2, viz. 54 Hz and 15 Hz, respectively. Again, a
correct order-of-magnitude prediction is obtained setting w. = D /b?.

4.5 Exact patchy theory in the full Biot context

Our next aim is to obtain an expression for the effective bulk modulus in terms
of the applied pressure p, using the full Biot theory. Dutta and Odé (1979a)
introduced expressions for the potentials of the solid displacement v = 9®/9r in
the inner sphere (0 < r < a) and argued that a solution to equations (2.7) and
(2.8) could be written as

CDja(T) = Ajjo(/{?ja’l") + A;no(k‘jar). (4.81)
In the surrounding shell (a < r < b) a solution is given by
(bjb(’l“) = Bjjo(k:jbr) + B;no(kiij‘), (482)

where jy and ng denote spherical Bessel and Neumann functions of the zeroth
order and j = 1,2 for the fast and slow wave. A finite displacement at r = 0
implies that A; =0.

It is understood that all field properties may vary from region a to region b. The
six amplitudes A;L

(4.8).

, B;-“, and B}, are determined by the boundary conditions (4.3)-
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Using equations (2.1)-(2.2), this yields in terms of the potentials

0P, | B 0Py
>l = =% 453
j . j
09, B 0P,
[ a,r 4 r=a B ij |: /r } r=a , (4'84)
9?0, 20%,]
A [87“2 +; or |,_, + Z { }
*P;p 2005
= \jp [ 52 T | _ + ; [ ] (4.85)
az@ja 2 8‘1)]@_ 82<I>jb 200,
Ci [ or? +; or |._, Civ [ or? +; or ]T_a’ (4.86)
0Py, B
Xjb |: or :|r:b = 0 (487)
o — s 82(1)]73(6) + gaq)jb + Z 9 aQq)jb (4 88)
Pe = Aib | 7 g2 roor |,._ - Bl o2 —p )
Here, xjn is defined as ¢(3;, — 1) for region n, and
Ajn + 21 = Py + Qn + Bjn(Qn + Ry) (4.89)

are the modified Lamé parameters of region n and 3;, is the fluid-solid ratio in
the region. Moreover,

Qn + ﬁjan
¢

is an effective bulk modulus. Consequently, on substituting the displacement po-

Cjn = (4.90)

tentials in the foregoing conditions, equations (4.83)-(4.88), we can write the linear
system Gx =y, with

x = (AT, A, B, By, By, By)7Y, (4.91)
and
y = pe(0,0,0,0,0,1)T. (4.92)

The elements of G contain the information about the properties of the matrix,
liquid and gas phase and are listed in Appendix A. The solid displacement u(b) at
the outer boundary is

u(b) = a@({;l;(b) _ jb(B;_jl(kjbb) + Bj_nl(kjbb))a (4.93)
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Figure 4.5: Effective bulk modulus as a function of frequency. (a) Absolute value of
K/Kpgw. (b) Phase value. The dashed curve is the exact bulk modulus
resulting from equation (4.93). The dotted curve is the approximate bulk
modulus from section 4.6. The solid curve (exact quasi-static K), the hori-

zontal dashed lines (Kpgw and Kpgu), and the input parameters are as in
figure 4.2.
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Figure 4.6: Absolute value of the solid displacement as a function of frequency and radial
distance from the bubble center. The input parameters are as in figure 4.2.
The gas-water contact is denoted by GWC.

where j; and n1 denote spherical Bessel and Neumann functions of the first order.
Finally, substitution of u(b) in equation (4.9) gives the effective bulk modulus.
Using identical input values as in figure 4.2, the effective modulus using the full
Biot theory is plotted in figure 4.5. Obviously, the full Biot theory gives the same
results as the quasi-static Biot theory as long as the frequency is low enough. The
critical Biot frequency wp/27 from equation (2.11) is 128 kHz. The frequency
wr,/2m in equation (4.2) is approximately 1.5 kHz (since csq = cg ary = 958 m/s
and cgp = 893 m/s). Above 0.4 kHz in figure 4.2a and above 1.5 kHz in figure 4.2b
deviations occur, which are caused by the onset of resonance phenomena. Similar
behavior is discussed in chapter 3.

In figure 4.6, the frequency-dependent solid displacement amplitude is plotted
as a function of the radial distance from the gas bubble center. We observe that
within the gas-saturated zone, the solid displacement increases linearly with radial
distance for all frequencies. This is also true in the liquid-saturated zone at low
frequencies. This is in agreement with figure 4.3 and our theoretical derivation in
section 4.3.2, where we showed that the solid displacement is linearly proportional
to r.
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Figure 4.7: Absolute value of the fluid displacement as a function of frequency and radial
distance from the bubble center. The input parameters are as in figure 4.2.
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Figure 4.8: Absolute value of the reduced pore pressure as a function of frequency and
radial distance from the bubble center. The input parameters are as in fig-
ure 4.2.
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At high frequencies, the solid displacement has a local maximum at the gas-water
contact and an absolute maximum at the external boundary. This is in accordance
with figure 4.4 (note that we plot amplitudes i.e., absolute values here). The solid
displacement at the gas-water contact is not very dependent on frequency.

The result for the frequency-dependent fluid displacement is given in figure 4.7.
The difference in vertical scale with figure 4.6 is about a factor 10. In the gas
region, the fluid displacement also increases linearly with radial distance, at low
frequencies. Maximum fluid displacement is obtained at the gas-water contact for
all frequencies, after which the fluid displacement rapidly decreases with increasing
radial distance. This is described in section 4.3.1 for low frequencies. At the outer
boundary of the shell the fluid displacement is equal to the solid displacement
according to equation (4.7).

The pore pressure along the radial distance is shown in figure 4.8. The continuity
of pore pressure is satisfied at the gas-water contact for all frequencies, according to
equation (4.5). In the gas-saturated region, the pore pressure is approximately zero
for all frequencies, due to the high compressibility of the gas phase. In the liquid-
saturated region the pore pressure increases rapidly with increasing frequency,
until it reaches a plateau for higher frequencies and radial distances.

4.6 Approximate patchy theory in the full Biot context

For a Helmholtz number kj,a < 1, it follows that the matrix within the bubble
surface may be regarded as acoustically compact, and the solid and relative fluid
displacements within the bubble surface are directly proportional to the radial
distance r (Lamb, 1916):

ug(r) = Aar, (4.94)
we(r) = Fyr. (4.95)

This means that the gas pressure is uniform within the bubble. The displace-
ments, stresses and pressure outside the gas bubble remain given in terms of the
potentials by equation (4.82). Using equations (4.34)-(4.35) and (4.94)-(4.95), the
pore pressure and total stress in the gas-bearing region are

3(Qa + Ra) 3R,
a = Aa -

b é 2

3(Qa + Ra)

¢

Consequently, we have six unknown amplitudes x = (A,, F,, B}, B, By, By )T

Fa, (4.96)

Ta = 3KBgadas+ F,. (497)

The six boundary conditions are those given by equations (4.3)-(4.8). We solve
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Figure 4.9: Phase velocity (a) and intrinsic attenuation (b) using permeabilities of 100
mD (solid) and 1 D (dashed).

the system F'x = y with again y = p.(0, 0, 0, 0, 0, 1)T. The elements of I are
given in Appendix B. The effective bulk modulus under these acoustically compact
assumptions is compared with the exact solution in figure 4.5. The approximate
solution is in excellent agreement with the exact solution. We even notice that the
onset of oscillations is beautifully captured by this simplified theory. This proves
that the resonances are affected by the scale of the representative volume b, indeed.

4.7 Dependence on medium parameters

Using the quasi-static solution of section 4.3, we analyze the dependence of the
phase velocity, ¢ = w/Re(k1), and intrinsic attenuation, Q~! = |2Im(k;)/Re(k1)],
on, respectively, permeability, porosity, gas bubble radius, gas fraction, and rock
type in figures 4.9-4.13. We use the constituent properties of table 4.1, with a gas
fraction of 0.01 and gas bubble radius of 0.01 m.

In figure 4.9, the results are shown using a permeability of 100 mD and 1 D. We
observe that the velocity- and attenuation curves are shifted horizontally. This
is in agreement with equation (4.29), where we see that the critical frequency
increases with increasing permeability.
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Figure 4.10: Phase velocity (a) and intrinsic attenuation (b) using porosities of 0.284
(solid) and 0.184 (dashed).

Figure 4.10 shows the results using porosities of 0.284 and 0.184. According to
equation (4.29), a decrease in porosity increases the critical frequency. We see that
the porosity influences both the low- and high frequency speeds. When the porosity
decreases the total density increases (see equation (4.11)). Since Ki, < Kp,
Kpg, is much less influenced by a porosity change than Kpgy, see equation (2.25).
From equation (4.52), we see that (Kpge — Km)/(KBay — KBga) ~ 107°, so
that Kpow =~ Ku. Therefore, the reduction in velocity at low frequencies is
mainly attributed to an increase in total density. With the same reasoning, the
increase in velocity at high frequencies is mainly caused by the increase in Kpayp
in equation (4.65).

Any density increase is not visible in the low-frequency attenuation @', due to the
fact that it equally affects both the imaginary and real parts of the wavenumber.
At high frequencies, however, the change in total density is not the dominant term

and the increase in Kpqp causes the increase in attenuation.

In figure 4.11, we increase the gas bubble radius a from 0.01 m to 0.05 m. We

observe that the shift in critical frequency is in agreement with equation (4.29). We

2

realize that w. oc a™*, so we see that the critical frequency decreases quadratically

with increasing bubble radius (for a constant gas fraction).
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Figure 4.11: Phase velocity (a) and intrinsic attenuation (b) using gas bubble radii of 0.01
m (solid) and 0.05 m (dashed). The gas fraction is still 0.01.

The effects of an increase in gas fraction of a factor 10 is shown in figure 4.12. We
see that the low-frequency velocity slightly increases due to the decrease in density
(pta < pip). Realizing that w, o< s/ % we see that from equation (4.29), the critical
frequency increases with increasing gas fraction. The maximum attenuation value
for a gas fraction of 10 % is slightly less than that for 1 % gas. Similar dependence
was seen earlier in figure 3.4.

We finally compare the acoustics of a weak sandstone rock with a stiffer carbonate
rock. The carbonate properties are taken from White et al. (1975): Ky, = 45.23
GPa, u = 21.19 GPa, ps = 2800 kg/m?, K, = 70 GPa, ¢ = 0.10, ko = 100 mD.
The saturating fluids and gas fraction are unaffected. The results are shown in
figure 4.13, where we notice a significant difference. There is hardly any velocity
dispersion for the carbonate rock. This rock has high dry rock velocities, viz. cp
= 5400 m/s and c¢g = 2900 m/s. It also shows much less attenuation. This is
explained by the fact that in a stiff rock Kpaow =~ Kpgm, so that the diffusive
damping mechanism is effectively suppressed.
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Figure 4.12: Phase velocity (a) and intrinsic attenuation (b) using gas fractions of 0.01
(solid) and 0.1 (dashed). The gas bubble radius remains 0.01 m.
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Figure 4.13: Phase velocity (a) and intrinsic attenuation (b) using a weak sandstone
(solid) and a stiff carbonate rock (dashed).
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4.8 Rayleigh-Plesset-Biot theory

The disadvantage of the previous class of models is that its predicts only one
compressional wave on the (seismic) macro-scale thus fully ignoring the slow Biot
wave. This slow wave is characteristic for saturated porous media and its existence
is validated many times (Smeulders, 2005). To overcome this problem an effective
Rayleigh-Plesset-Biot model was derived by Smeulders and Van Dongen (1997).
The original Rayleigh-Plesset theory for linear pressure waves in bubbly liquids
was applied to partially saturated porous media in a heuristic approach. Here,
we present a more rigorous derivation of the model and discuss its importance for
seismic attenuation by comparing it with the predictions of the generalized patchy
theory, as formulated in section 4.4.
The so-called double-porosity dual-permeability model by Berryman and Wang
(2000) also accounts for the slow compressional wave (in fact, two slow waves).
This model is not treated here, since when reduced to an effective Biot theory (as
formulated by Pride et al. (2004)) the mesoscopic heterogeneity still contains the
sealed outer boundary assumption.
Consider, then, a partially saturated rock in which the solid and fluid displacements
u and U are describable by the Biot equations (2.7) and (2.8). The total stress
7;; and pore pressure p are related to the strains in the usual manner by equations
(2.1) and (2.2).
First, consider an isolated gas bubble in an infinitely extended liquid saturating the
matrix, see figure 4.8b. This geometry is essentially different from that in figure
4.8a, where the liquid shell is sealed at its outer boundary at r = b. When the
liquid part is subjected to an oscillatory macroscopic pressure po, of the seismic
wave (2m/k > b), the mesoscopic gas bubble will act as a local sound source
and dissipate energy of the seismic wave. Mesoscopic waves are excited at the
gas-liquid interface, where continuity relations should be satisfied. We aim to
characterize gas bubble dynamics by means of the effective compressibility of the
fluid. Following Smeulders and Van Dongen (1997), we relate the change in gas
volume to the liquid pressure po, far away from the bubble:

1 1 9V,

- . 4.98
K, Vi Opoo ( )

The effective compressibility of the gas K. le is essentially different from the usual

gas compressibility, defined as

1 1 0V,
= —— 4.99
Ky, Va apa ’ ( )
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Figure 4.14: Representative geometry of a gas bubble (r = a) surrounded by liquid sat-
urating a porous background material. (a) Sealed liquid outer surface. (b)
Rayleigh-Plesset-Biot approach.

where p, is the gas pressure. This gas compressibility was earlier used in, e.g.,
equation (4.54). It is straightforward to write an expression for the effective fluid
compressibility K ;1 = —0Vi/(Vidpeo) in terms of the effective compressibility of
the gas and the compressibility of the liquid K, U= 9V, /(Vy0pso), from purely
kinematic considerations:

1 _ % S
_f(f f(fa be,

(4.100)

since Vy =V, + V, and s, = V,,/V;. To compute K¢, within a system of spherical
coordinates, it is convenient to define potential functions for the solid matrix and
liquid outside the gas bubble (subscript b) as

up(r) = ZV(I%;,,

Jj=1,2

Up(r) = > VT, (4.101)

7j=1,2

In this region we assume spherical waves:

r®y, = Bjexp(—ikjr),
r\I/jb = ﬁijjeXp(—i/{?ij), (4_102)

where kjj, are the compressional wavenumbers in region b. Equation (2.21) provides
the fluid-to-solid displacement ratios 3 in region b.

In the region occupied by the gas and the solid matrix, however, we assume that the
pore pressure has ample time to equilibrate. The characteristic time of pressure
equilibration is 7. = a%/D,, where D, is the viscous gas diffusivity, which is
well approximated by koK,/(n.¢), with permeability ky and gas viscosity 7q,
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see equation (2.30). As the gas is much more compressible than the liquid, this
assumption seems reasonable. Pressure and stress being uniform within the gas
bubble, all displacements are linearly proportional to the radial coordinate r, see
equations (4.94)-(4.95):

ua(r) = A,
wa(r) = ¢(Ua(r) —ua(r)) = Far, (4.103)

where A, and F, are arbitrary constants. We introduce the relative fluid displace-
ment w, because it is essentially the variable that should satisfy the continuity
condition over the gas-liquid interface (r = a). At this interface also continuity
of solid displacement, total stress, and pore pressure should be satisfied. These
boundary conditions are identical to the ones by Dutta and Odé (1979a), see
equations (4.3)-(4.6), but are essentially different from the ones by Smeulders and
Van Dongen (1997), who implicitly assumed continuity of solid velocity gradient
instead of continuity of total stress. Introducing the liquid pressure variations at
the bubble surface py, and defining xj, = ¢(Bj, — 1), we find for the boundary
conditions that:

ad, = -— Z +ijba ————Bjexp(—ikja),
j=1,2
afF, = -— Z MBjexp(—ikﬂ,a),
j—12
3KBGQAQ+3(Q“%;“RI)FQ = — Z 23 Bjexp(—ikjpa), (4.104)
j=1,2
73(@1; Ra)AaJr%Fa = —po,

where we used the Biot-Gassmann modulus in the gas bubble region, Kpgq, given
by equation (2.26). The wave parameters
Ziy, = [Py + Bj5(Qv + Rp) + Qu]k3pa” — 4u(1 + ikjpa), (4.105)

are defined in the liquid region at the gas bubble surface. From the above system
it is straightforward to show that

3
—a2a A .
Bl = ——— k
1 ale__alepoeXp(Z]ba)7
3
By = — % 5oexp(ikapa), (4.106)

albg — agbl
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where
aj = 3(1+ikjpa) |:KBGa + W} — Zjb,
b = 3(1+ k) [(Qa;Ra) N ngf“]- (4.107)

Substituting equations (4.106) into (4.102), the wavefield in the liquid is now fully
defined as a function of the dynamic pressure pg. Next, we investigate the phase
shift and amplitude difference between pg and the pressure po, far away from the
bubble. The fluid equation (2.8) is integrated over the liquid from 7 = a to infinity:

w?(p12®p + p22 W)}, = (P0 — Poo)- (4.108)

Substitution of the expressions for the densities and using equations (4.102) and
(4.106), we find that

d2 — a2d1
o =10 (1 — ppau?2ii2— 2% 4.109
Poo = Do ( e ) (4.109)
where
dj = Bjp + (Bjp — 1)(a — 1). (4.110)

Equation (4.109) is a modified Rayleigh-Plesset equation, which was originally
derived to describe the oscillating behavior of gas bubbles in a surrounding liquid
without a porous background matrix (Van Wijngaarden, 1972). Using equations
(4.98) and (4.99) yields that

~ do — aod
Ky = Kpo (1 — pppa2e?882 7920 (4.111)
a162 — a2b1

We have implicitly used that the liquid pressure py at the bubble surface equals
the gas pressure inside the bubble p,. This is not generally true, as also thermal
effects (Champoux and Allard, 1991) and surface tension have to be taken into
account. We choose not to consider these to allow a direct comparison with the
generalized patchy model. In the limiting case of a compressible gas bubble in
an incompressible liquid saturating an incompressible porous matrix, the factor
(a1dy — aady)/(a1by — agby) tends to %d/Kfa, so that

be,llgn:oo Kio = Kgy — %dpfbaQuﬂ. (4.112)
With respect to the original Rayleigh-Plesset expression, the dynamic tortuosity
& is added, which takes into account the viscous friction originating from the
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oscillating gas bubble squeezing the incompressible liquid through the pores. The
full expression (4.111) also accounts for the acoustic energy that is radiated away
from the gas bubble by means of the two spherical Biot waves.

Substitution of K, into equation (4.100) yields the effective fluid modulus K; of
the mixture. Its absolute and phase value, together with the effective bulk modulus
of the gas are shown in figure 4.15. We used the input values as in table 4.1. In
the low-frequency limit Ky, approaches K¢,, so that K is in the the Woods limit,
see equation (4.54). The high-frequency limit (still maintaining 27/k > b) of K is
K,/ sp, which implies that the gas bubble cannot keep up with the exerted pressure
variations and becomes extremely stiff. Then the gas bubble is resonating almost
completely out-of-phase with respect to the effective fluid.

Following Van Wijngaarden (1972), we now assume that in a gas-liquid mixture the
same relation (4.109) exists between py and po as exists between the pressure in an
isolated oscillating bubble and the pressure far away. We now obtain the effective
poroelastic coefficients in equations (2.3), which are subsequently used in equation
(2.15) to calculate the two effective compressional waves at the macroscopic level.
In figure 4.16, we compare the present model with the generalized patchy model.
In contrast to the generalized patchy model, the present model does predict the
existence of the slow compressional Biot wave. As in the original Biot theory,
the slow wave is diffusive at low frequencies and becomes propagatory at higher
frequencies. The slow wave attenuation is significantly higher than that of the fast
(seismic) wave. These features are in agreement with the fully-saturated curves in
figure 2.1. Maximum slow wave attenuation is now reached around 0.2 Hz when
the gas bubbles oscillate out-of-phase with respect to the applied liquid pressure
variation peo.

The velocity of the seismic wave is hardly different from that predicted by the
generalized patchy model. The attenuation of the seismic wave, however, is signif-
icantly higher in the seismic range (below 50 Hz). This is due to the fact that in the
present theory the seismic energy is allowed to be dissipated through two spheri-
cal waves on the mesoscale, whereas in the generalized patchy model the energy is
confined in the spherical shell (according boundary condition (4.8)). Apparently,
upon inclusion of the slow wave in the theory on the macroscale, the signature of
the fast wave changes. Dependent on the rock and fluid properties, the intrinsic
attenuation is higher at low frequencies than predicted by the generalized patchy
model. At higher frequencies, the predicted attenuation is comparable to that
predicted by the generalized patchy model. At these frequencies, the out-of-phase
motion of the gas bubbles with respect to the applied pressure diminishes. The
frequency where maximum attenuation of the seismic wave is obtained, is well
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Figure 4.15: Absolute (a) and phase value (b) of the bulk modulus of the fluid. The solid
curve is the effective bulk modulus of the mixture K;. The upper dashed
line is Kp/sp; the lower dashed line is the static limit of K; (where Ko
equals Kf, in equation 4.100). The dashed-dotted curve is Ki,. Gas fraction
Sq = 0.1 and a = 0.046 m.
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Phase velocity (a) and intrinsic attenuation (b) of the fast (seismic) and slow
compressional wave. The Biot slow wave is the lower solid curve in (a) and
the upper solid curve in (b). The seismic wave from the generalized patchy
theory is dashed. Gas fraction s, = 0.1 and a = 0.046 m.
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approximated by w./2m from equation 4.29.

We conclude that the present model predicts two compressional Biot waves and
that the seismic attenuation is considerably higher than in the generalized patchy
model, since we also take slow-wave effects on the macroscale into account.

Appendix A - Matrix elements of the exact patchy model
in the full Biot context

Dutta and Odé (1979a) neglected the complex frequency-dependent viscous inter-
action between the solid and the fluid in both regions. We use the coefficients from
the full Biot theory as treated earlier. The elements of matrix G are

—g11 = kiaji(kraa),
—g12 = koaj1(koaa),
g13 = kuwji(kna)
(kawa)

klba)a
kopa): (4.113)

Y

g1a = kaji(kwa

I

g15 = ki

—_~ o~

g6 = kapny

921 = Xla911,
922 = X2a912;
923 = X1b913;
924 = X2b914,
925 = X1b915,

926 = X2b916; (4.114)
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in which jo and no are second order spherical Bessel and Neumann functions.

Appendix B - Matrix elements of the approximate patchy
model in the full Biot context

The elements of F' are given by:

fu = a,

fiz =0, (4.119)

fa1 = fia,

fa2 = fu, (4.120)

far = 3Kgca,

fz2 = 3(Qa+ Ra)/é, (4.121)

fa = fa,

fi2 = f32/7, (4.122)
and f;; = g;; for ¢ = 1,...,6 and j = 3,...,6 remain unchanged as defined in

Appendix A.



Chapter 5

Rock-physical sample
description

5.1 Introduction

In this chapter we experimentally determine the dry rock physical properties of 45
porous samples. The parameters needed for the models in chapters 2, 3, and 4 are:
density, porosity, permeability, bulk modulus and shear modulus. We calibrate
density and velocity measurements with five reference solids. The measured rock
and solid properties are used in the chapters 6, 7, and 8. The measurements
discussed in this chapter were acquired at the Rock Physics Laboratory of Stanford
University.

5.2 Sample selection and sample preparation

For our study, we use a set of 50 samples: 45 porous samples and five reference solid
samples. The reference solids are Aluminum, Teflon, PVC, Lucite, and Delrin.
The 45 porous samples comprise 38 natural rocks and seven man-made materi-
als. The natural materials are all of sedimentary origin and consist of two chalk
samples, 26 sandstone samples collected from known quarries or outcrops, and ten
sandstones from an unknown location. The set of man-made materials consists of
two fused glass beads samples, one brick, and four synthetic rocks of glued sand
grains: two are coarsely grained (grainsize 300-350 pum) and two are finely grained
(grainsize 250-300 pm). The sample identification and lithologies are given in
table 5.1.
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Rock physical sample description

Sample Lithology Pdry ko 10)

ID [kg/m”] [mD] %]

CHKO03 Chalk 1924 + 5 1.08 £ 0.06  28.30 £ 0.01
CHKO04 Chalk 1920 £ 8 1.07 £ 0.08  28.22 £+ 0.01
SSA04  Berea sandstone 3 gray 2086 + 1 362 + 18 20.80 + 0.01
SSA11  Berea sandstone 3 gray 2085 + 1 310 £ 0 21.26 £ 0.02
SSB04  Berea sandstone 4 yellow 1804 £ 1 6029 + 301  30.28 £+ 0.01
SSB0O7  Berea sandstone 4 yellow 1847 £ 1 2748 £ 6 28.56 + 0.01
SSB0O8  Berea sandstone 4 yellow 1823 £ 2 4002 + 3 29.85 + 0.01
SSB09  Berea sandstone 4 yellow 1854 £ 2 2650 4+ 12 28.43 + 0.01
SSC05  Boise sandstone 2317 + 2 0.74 +£0.04 11.75 + 0.04
SSC06  Boise sandstone 2208 + 1 0.95 + 0.05 12.16 + 0.03
SSF02  Unknown nat. sandstone 1930 + 1 2666 + 26 26.78 + 0.01
SSF03  Unknown nat. sandstone 1942 + 1 2517 + 18 26.51 + 0.01
SSF04  Unknown nat. sandstone 1935 + 2 2131 £ 15 26.61 £+ 0.03
SSGO1  Unknown nat. sandstone 2004 £ 1 1862 £+ 12 24.29 + 0.01
SSG02  Unknown nat. sandstone 2025 + 3 289 +1 23.33 + 0.01
YBEO3 Berea 5 par. to bedding 2111 £ 5 182 &£ 1 18.94 £ 0.02
VIFO1  Fine syn. sandstone 1603 £ 7 11928 £ 137 37.99 4+ 0.02
VIF02  Fine syn. sandstone 1595 +£9 12809 + 753  38.33 £+ 0.03
VIC05  Coarse syn. sandstone 1497 £ 10 25557 £ 2783 42.86 £ 0.03
VIC06  Coarse syn. sandstone 1517 &+ 12 27743 + 2603 41.99 + 0.02
QUEO9 Unknown nat. sandstone 2067 £ 7 2214 + 43 21.89 £+ 0.01
QUE10 Unknown nat. sandstone 2059 £ 7 2441 + 16 22.20 4+ 0.03
B1P13 Berea 1 par. to bedding 2132 £ 4 330 £ 3 20.06 + 0.05
B1P14 Berea 1 par. to bedding 2125 £ 7 315 £ 3 20.41 + 0.12
CAS16  Castlegate sandstone 2159 + 2 5.51 £0.01  18.66 £+ 0.03
CAS17  Castlegate sandstone 2135 £ 5 5.02 £0.02 19.54 + 0.03
BIN20 Berea 1 norm. to bedding 2119 4+ 3 206 £ 1 20.62 + 0.01
B1N21 Berea 1 norm. to bedding 2134 £+ 3 212 £ 6 19.92 £ 0.04
COL23 Colton sandstone 2338 + 8 0.53 + 0.00 12.04 + 0.03
COL25 Colton sandstone 2357 + 4 0.77 £ 0.03 11.44 + 0.03
BEN27 Bentheimer sandstone 2010 £ 7 1151 £ 4 24.11 4+ 0.02
BEN28 Bentheimer sandstone 2010 + 2 1149 £+ 21 24.13 £+ 0.01
B2P30 Berea 2 par. to bedding 2144 £+ 2 161 £ 1 19.52 £ 0.01
B2N32 Berea 2 norm. to bedding 2164 £ 3 92.7 £ 1.7 19.03 £ 0.02
B2N33 Berea 2 norm. to bedding 2148 + 2 106 + 2 19.36 + 0.02

(continues)
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(continued)
Sample Lithology Pdry ko 0]
ID [kg/m?] [mD] (%]
FEL36  Felser sandstone yellow 2039 + 4 10.1 £ 0.1 23.02 £ 0.02
FEL37  Felser sandstone yellow 2048 £+ 3 9.13 £0.02 22.67 + 0.04
NIV44  Nivelsteiner sandstone 1847 + 1 6544 + 132 30.18 + 0.02
NIV45  Nivelsteiner sandstone 1809 + 2 8056 + 82 31.65 + 0.03
UNK50  Unknown nat. sandstone 2245 4+ 2 0.09 £ 0.00 15.84 + 0.05
UNK51  Unknown nat. sandstone 2246 + 2 0.20 £ 0.01  15.76 + 0.06
NN356 Unknown nat. sandstone 2195 + 3 1.50 £ 0.08  16.99 4+ 0.04
NN458  Brick red 2225 + 1 5.76 £ 0.19 15.75 + 0.02
GL160 Glass beads 1 1884 £2 17935 4+ 1031 34.02 4+ 0.01
GL261  Glass beads 2 1895 + 3 18324 + 613  35.57 £+ 0.01

Table 5.1: Rock physical properties of the porous materials
under study obtained from independent laboratory measure-
ments: pgry is the density of the dry rock, kg is the Klinken-
berg corrected permeability, and ¢ is the porosity. The error
is the standard deviation of the measurements. (Nat. = nat-
ural; syn. = synthetic; par. = parallel; norm. = normal.)

The choice for this specific set was motivated by its large variety in density, poros-
ity, permeability, and ultrasonic velocities (Heller, 2006). All samples are assumed
to be of homogeneous isotropic composition (Kelder, 1998). The samples and ref-
erence solids are plane-parallel cylindrical cores, typically 3.8 cm (1.5 inch) long
with a diameter of 2.5 cm (1.0 inch). The shape of the samples is dictated by the
cylindrical dimensions of the sample chamber of the porosimeter and permeameter.
After cutting the cores to proper length, the samples were rinsed with water and
dried at room temperature. Then they were oven-dried at 85°C for two days
and cooled down to room temperature in a desiccator to prevent exposure to
atmospheric moisture. Density, porosity and permeability are measured directly
on oven-dried samples. Several investigators found the first few percent of fluid
saturation added to an ultra dry rock will lower the frame moduli (Murphy, 1982b;
Knight and Dvorkin, 1992; Cadoret, 1993). Velocities calculated from ultra dry
samples will be too high, because the first few mono layers of water chemically
weaken the rock (Clark et al., 1980). To avoid artifacts of ultra dry rocks, the
ultrasonic measurements are performed on dry samples which are acclimatized to
the atmospheric humidity.
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Measured values Literature values

Solid p vp vg p vp Vs

[kg/m?®] [m/s] [m/s] | [kg/m’] [m/s] [m/s]
Aluminum 2714 6403 3153 | 2750 £ 50 6375 4+ 125 3085 4 45
Teflon 2168 1334 511 | 2170 & 130 1400 + 50 550
PVC 1383 2315 1081 | 1365 £ 15 2340 + 40 1060
Lucite* 1181 2671 1334 | 1225 £ 45 2690 + 80 1240 + 120
Delrin 1421 2397 1003 1420 2430 960

*Including values for Plexiglas and Perspex.

Table 5.2: Measured material properties of reference solids compared to their literature
values. The density p and compressional and shear wave velocities vp and vg
are measured using the conventional techniques discussed in the text. The
literature values are from Selfridge (1985), Kundu (2003), Kumar et al. (2003)
and K-Mac Products (2008).

5.3 Density and porosity

The bulk densities of the dry samples and reference solids are measured by the
mass-to-bulk volume ratio. The bulk volume is calculated from the sample length
and diameter. The sample diameter and length are measured five times using
a digital caliper. The weight is measured three times for each sample using a
standard digital balance. The measured densities of the dry rock samples range
from 1497 (VIC05) to 2357 kg/m? (COL25) as shown in table 5.1. The results
for the reference solids are compared with literature values in table 5.2 and show
good agreement.

The porosity of each sample is measured from the volume occupied by the grains
using a standard porosimeter (Frank Jones, Tulsa, OK), see figure 5.1. The mea-
surement is based on Boyle’s law, which states that the product of pressure and
volume of an ideal gas is constant at constant temperature. The set-up consists
of a sample chamber connected to a high-pressure Helium cylinder. After the
sample is placed in the sample chamber under atmospheric conditions, 100 psi
(approximately 7 bars) Helium is released into the sample chamber until pressure
equilibration. After the pressure is measured, the sample chamber is equilibrated
to atmospheric pressure. This process is repeated three times for each sample (the
pressure usually drops to 70 psi). From the pressure changes on the porous sample
and the pressure changes on a reference plug (billet) with a known volume one can
calculate the matrix volume, assuming no unconnected pore volume. The results
are shown in table 5.1. The measured porosities vary from 0.11 (COL25) to 0.43
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(VICO05). The relative error in porosity is less than 0.1 percent.

Figure 5.2 graphically displays the measurement set. We notice that we capture
a wide range of porosity and density values. The density of the solid grains is
calculated from the density of the dry sample and the measured porosity: pdry =
(1 — ¢)ps. The density of the solid grains lies between 2586 and 2683 kg/m? for
all samples, except for the grain densities of the two glass samples, GL160 and
GL261, which are 2856 and 2941 kg/m3, respectively. The relative error in solid
grain density is 0.1 percent.

5.4 Permeability

Permeability measurements are carried out using the Ultraperm-400 permeameter
(Core Laboratories Instruments, Carrolton, TX), see figure 5.1. The sample is
placed in an aluminum Hassler type core holder at 200 psi (approximately 14
bars) confining pressure (air). The measurement uses Darcy’s law to calculate
the gas (Nitrogen) permeability ko from the measured flow rate @ and up- and
downstream pressures P; and Ps:

2P QnL

Ko = oy
A(PE - P3)

(5.1)
where L and A are respectively the length and cross-sectional area of the sample
and 7 is the viscosity of Nitrogen.

Very low-permeable samples (< 1 mD) are measured using a single point, when the
differential pressure over the sample length is stable with the flow over the sample
area. For higher-permeable sample (> 1 mD), the so-called Klinkenberg correction
is used. Klinkenberg (1941) described permeability to a gas to be dependent upon
molecular free path, mean pressure and temperature. If five apparent permeabili-
ties kapp are measured at various mean pressures P, the Klinkenberg factor b and
the true permeability kg are found from the slope and extrapolated interception
at infinite mean pressure (1/P,, = 0) using linear regression:

Eapp = ko (1 + P%n) . (5.2)
In figure 5.4, the Klinkenberg correction is exemplified for a typical rock (YBE03).
Klinkenberg-corrected permeabilities with R? (coefficient of determination) lower
than 0.90 are rejected. The permeability of each sample is measured three to five
times. The results are shown in table 5.1. The samples cover a range from 0.09 mD
(UNK50) to 28 D (VIC06). The permeameter allows for accurate determination of



96 Rock physical sample description

permeability over the range of 0.01 mD to 15 D (Core Laboratories Instruments,
2000). Therefore, the permeabilities of VIC05, VIC06, GL160, and GL261 are
considered not to be accurate. The relative error in permeability is 2.5 percent.
In figure 5.3, we show a porosity-permeability crossplot. Clearly a trend is vis-
ible, but also outlyers can be identified. There are many porosity-permeability
relationships suggested in literature. Bourbié et al. (1987) discuss a form of the
Carman-Kozeny relationship:

ko oc £2¢™, (5.3)

where /¢ is the characteristic grain or pore dimension (Mavko et al., 2003). In
figure 5.3, we fit our data to the Carman-Kozeny relation and find that n = 9.0
and ¢ = 321 pm. For our low-permeable (< 10 mD) materials the data show a large
scattering and a relationship is ambiguous. The high-porosity low-permeable chalk
samples clearly deviate most. A fit to high-permeable (> 10 mD) samples only
gives n = 6.6 and £ = 112 pm. Bourbié et al. (1987) observed experimentally n to
vary from 3 for high porosities to 8 for low porosities on very clean Fontainebleau
sandstones with a grain diameter around 250 pm.

5.5 Elastic moduli

Ultrasonic experiments are conducted to determine the bulk and shear modulus of
the dry samples. Dry compressional and shear wave measurements are performed
at room conditions using a standard pulse transmission bench-top set-up as shown
in figure 5.5.

The experimental set-up to measure velocity consists of a pulse generator (Pana-
metrics Pulser Receiver model 5055 PR) and a four-channel digitizing oscilloscope
(Tektronix TDS 420A), connected to a computer with a PCI-GPIB cable. Using
molasses to enhance the transducer-sample coupling, the set-up conducts measure-
ments in the sample length direction. The aluminum holders of the piezoelectric
transducers provide a backing of about 300 g. T'wo transducer pairs with a flat ele-
ment diameter of 0.5 inch (Panametrics-PZT V103 and V154) allow measurements
of the compressional and shear wave velocity at 1.0 and 2.25 MHz, respectively.
The system delay is calibrated by face-to-face measurements of the transducers
and is 380 ns for the P-wave transducers and 360 ns for the S-wave pair. Velocity
calibration is accomplished by using aluminum solids of different lengths. The rel-
ative error in vp and vg are 0.2 % and 0.9 %, respectively, for the aluminum solids.
The actual error in the velocity measurements is estimated to be 1%, because of
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Figure 5.1: Photo of the porosimeter and permeameter. On the left is the core holder (1)
of the permeameter (2). The tubes provide Nitrogen from the cylinder (3).
On the right we see the set-up of the porosimeter (4), which is connected to
the Helium cylinder (5). On top of the permeameter is a desiccator contain-
ing some samples (6). These set-ups are at the Rock Physics Laboratory of
Stanford University.

operator error in picking the first arrival time. The velocities for the reference
solids are in agreement with the values from literature, as shown in table 5.2.
The dry velocity results for the porous samples are given in table 5.3 together
with the bulk and shear modulus, Ky, and p, respectively. The elastic moduli are
calculated from the dry velocities using equations (2.5) and (2.6). In the table we
observe that vp > vg for all samples, while K, > u for about 80 % of the samples.
Similar percentages have been reported by Wisse (1999).

There is a wide variety of published vp/vg relations, see Castagna et al. (1993)
for a review. In general, high vp/vg ratios correspond to unconsolidated sedi-
ments, while medium and low vp/vg ratios correspond to dry consolidated sedi-
ments (Bourbié et al., 1987).
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Figure 5.4: Apparent permeability ka.p, as a function of inverse mean pressure 1/P,, for
a Berea rock (YBE03). Each symbol denotes one experiment in which the
apparent permeability is measured at five different mean pressures. The true
permeability kg of each experiment is obtained by linear regression (fitted
lines). The permeability of the sample (table 5.1) is the average of the five
experiments. The dotted line is fitted to the diamonds (R? = 0.97). The solid
line with dots is fitted to the stars (R? = 0.97). The dashed line to the circles
(R? = 0.97). The solid line to the squares (R? = 0.92). The dashed-dotted
line to the triangles (R? = 0.94). The unit ’psia’ (pounds-force per square
inch absolute) is the gauge pressure plus local atmospheric pressure.
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Figure 5.5: Photo of the ultrasonic bench-top set-up. A sample (1) is clamped between
two identical P-wave transducers (2) and (3). The sending transducer is con-
nected to the pulse generator (4), while the receiving transducer is connected
to the oscilloscope (5). A pair of S-wave transducers (6) is visible on the
table. The hot plate (7) is used to melt molasses (8), which is used to en-
hance transducer-sample coupling. On the left hand side we see a container
with samples (9). This set-up is at the Rock Physics Laboratory of Stanford
University.
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Sample ID UP dry VS dry K 7
[m/s] [m/s] [GPal [GPal

CHKO03 4524 £+ 208 2537 £ 67 22.86 + 3.68 12.38 £ 0.65
CHKO04 4499 + 204 2519 £ 65 22.61 £ 3.59 12.19 £+ 0.63
SSA04 2804 + 86 1934 +£39 7.06 +1.08 7.80 + 0.31
SSA11 2841 + 108 1966 + 52 6.09 + 1.35  8.06 + 0.43
SSB04 3511 + 128 2164 +£49 10.98 &+ 1.66 8.45 £ 0.38
SSBO7 3928 + 157 2417 £ 60 14.11 +2.34 10.79 £ 0.54
SSBO08 3486 + 125 2151 +48 10.90 + 1.63 8.44 £+ 0.38
SSB09 3889 + 154 2329 + 56 14.64 4+ 2.27 10.05 £ 0.48
SSCO05 3301 £ 112 1920 £ 38 13.86 = 1.75 8.54 + 0.34
SSCO06 3199 £ 105 1926 +£39 12.15 £+ 1.58 &.53 +0.34
SSF02 2417 £ 60 1473 £23 5.69 £ 0.58 4.19 £ 0.13
SSF03 2534 &£ 67 1512 £24 6.55 £ 0.67 4.44 + 0.14
SSF04 2454 + 77 1552 £ 31 5.43 £0.75  4.66 £+ 0.19
SSGO1 2822 + 82 1801 £34 7.30+£0.96 6.50 + 0.24
SSG02 3012 £ 93 1842 +£35 9.21 +£1.16 6.87 4+ 0.26
YBEO03 3223 + 134 2180 £ 62 855+ 1.92 10.04 £ 0.57
VIFO1 2240 £ 53 1476 £ 23  3.39 + 0.39 3.49 £ 0.11
VIF02 2298 +£ 55 1513 £ 24 3.55 + 0.42 3.65 £ 0.12
VICO05 1553 £26 1018 =11 1.54 £ 0.13 1.55 £ 0.03
VIC06 1585 £ 27 1033 £ 11 1.65 £ 0.13 1.62 £+ 0.04
QUE09 2865 + 8 1826 £35 7.78 = 1.05 6.89 + 0.26
QUEI10 2766 £ 80 1799 £34 6.87 £0.95 6.67 &+ 0.25
B1P13 3068 & 98 1875 £ 37 10.08 + 1.32  7.50 £ 0.30
B1P14 2906 &= 88 1824 +£35 853 +£1.12 7.07 £ 0.27
CAS16 2692 + 76 1858 £36 5.72 £ 0.93  7.45 + 0.29
CAS17 2728 £ 77 1864 £ 36 6.00 £ 0.94 7.41 4+ 0.29
B1IN20 2865 + 86 1881 £37 7.40 +1.08 7.50 + 0.30
B1N21 2862 £ 85 1879 £ 37 7.43 + 1.09 7.54 £ 0.30
COL23 3155 £ 103 1919 £39 11.79 &£ 1.57 8.61 = 0.35
COL25 3449 £ 123 2191 £ 50 12.95 & 2.07 11.32 £ 0.52
BEN27 3520 &+ 128 2275 £ 54 11.03 £ 1.88 10.41 £+ 0.50
BEN28 3517 £ 128 2273 £54 11.02 £ 1.87 10.39 £+ 0.49
B2P30 3158 & 104 1941 + 40 10.62 & 1.44 8.08 £ 0.33
B2N32 3100 £ 100 1938 £ 40 9.97 + 1.38  8.12 + 0.33
B2N33 3050 £ 97 1879 £37 9.87 +£1.30 7.59 + 0.30

(continues)
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(continued)
Sample ID VP dry VS dry K "
[m/s] [m/s] [GPa| [GPal

FEL36 3272 +£ 111 2072 £ 45 10.15 £ 1.53 8.75 & 0.38
FEL37 3271 £ 111 1963 £ 40 11.39 &£ 1.52 7.89 + 0.33
NIV44 2807 £ 88 1973 +£41 5.92+0.99 7.19 + 0.30
NIV45 2692 + 76 1821 £35 5.11 +£0.77  6.00 + 0.23
UNK50 3783 £+ 148 2472 £ 64 13.84 +2.62 13.71 £ 0.71
UNK51 3662 £+ 138 2457 £ 63 12.03 &£ 2.38 13.56 = 0.70
NN356 3507 £ 128 2294 £ 55 11.58 &+ 2.04 11.56 £ 0.56
NN458 4437 £ 202 2912 £ 88 18.65 + 4.14 18.86 £ 1.14
GL160 2750 £ 80 1675 £30 7.20 +£0.85 5.29 + 0.19
GL261 2908 4+ 102 1720 £36 855 £ 1.15 5.60 £ 0.24

Table 5.3: Dry rock velocities and bulk moduli of the porous

materials under study from ultrasonic bench-top measure-

ments. The measured velocities vp gry and vs ¢ry denote, re-

spectively, the compressional and shear wave velocity of a

dry sample. The bulk and shear modulus, K, and u, are

calculated using equations (2.5) and (2.6), respectively, and

the densities of table 5.1. The relative error in the velocities

reflects an uncertainty of 0.4 us in picking the first arrival

times. The relative error in the elastic moduli is solely at-

tributed to an error in the velocities.
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Chapter 6

Ultrasonic measurements of oil
and oil-saturated porous media

6.1 Introduction

Ultrasonic techniques are used extensively to extract material properties in such
different areas as petrophysics, non-destructive testing, and echocardiography. In
these techniques, the phase velocity, attenuation and the reflection and transmis-
sion coeflicients are determined as a function of frequency. In the present chapter,
we measure the oil-saturated acoustic bulk properties of the set of 45 samples
which we described previously. First, we characterize the properties of the silicone
oil (5 ¢St Dow Corning 200 fluid). Then, we measure the fast compressional and
shear wave velocities and fast compressional quality factor of the saturated sam-
ples and compare the results with predictions from the Biot theory of chapter 2.
We use the measured rock properties of chapter 5.

6.2 Wavefield characterization

6.2.1 Introduction

Acoustic radiation from a baffled planar piston is a canonical acoustic problem
already investigated by Rayleigh (1896). In this problem, a circular piston with
radius a and surface S, vibrates uniformly within a rigid baffle at a radial frequency
w with normal velocity amplitude vy in a homogeneous fluid with a sound speed c¢¢
and density pr. The resulting radiated pressure p is given by the Rayleigh integral



106 Ultrasonic measurements of oil and oil-saturated porous media

=3
=
oy

(a) (b)

Figure 6.1: Schematic geometry and notation of the variables. A piston of radius a,
centered at the origin radiates into an infinite half-space. The distance from
the field point P(p) to the surface element d S(7) is R. (a) Off-axial field point
P(p), where R = |p—7]. (b) Axial field point P(z), with R = v/22 + r2, where
z is the distance along the piston symmetry axis.

of the first kind (Berkhout, 1987):

. ik
p(7,w) = zwpfvo/sexp( i fR)dS7 (6.1)

27 R

where R = |p' — 7] is the distance from a field point P(p) to a point on the piston
surface 7, see figure 6.1a.

The Rayleigh integral actually represents Huygens’ principle stating that every
point may be considered as the source of an outgoing spherical wave, and that the
field can be constructed from the superposition of these waves.

6.2.2 Transducer wavefield measured at a point

The integral (6.1) can be evaluated for the case that the field point is located on
the symmetry axis z. In this case, R = v/22 + r2 as shown figure 6.1b, and we find
that

p ik /27r /a exp(—ik¢R)
— =" —— " rdrdep, 6.2
po  2mJo Jo R 4 (6.2)

where we set pg = prervg and ky = w/cr (Mast and Yu, 2005). Recognizing that
rdr = RdR, this integral can be evaluated to give

L exp(—iksz) — exp(—ikey/ 22 + a?), (6.3)

bo



6.2 Wavefield characterization 107

which can be interpreted analytically. We obtain (Jocker, 2005)

ik
Lo exp<—u< z2+a2+z>)><
Po 2

[exp (; (\/T—)) ~exp (ﬁ (m_z))]

so that

’ p(z)

Po

_ ‘zsm (% (m_zm. (6.5)

We plot |p(z)/pol| in figure 6.2. The near field (Fresnel zone) indicates the region
close to the source where constructive and destructive interference occurs between
waves emerging from different points on the surface of the radiator. The location
where interference no longer occurs is the far field (Fraunhofer zone). The pattern
of consecutive maxima and minima, characteristic for the Fresnel zone, is clearly
visible. This pattern, as first discussed by Seki et al. (1956), is followed by a steady
pressure decline in the Fraunhofer zone.

In equation (6.3), we notice that the pressure field along z is a simple plane wave
modified by an edge wave with opposite polarity. For an axial observation point
the travel difference between a plane wave and an edge wave is v/22 + a2 — z. The
transition distance from the Fresnel to the Fraunhofer zone, zp, is defined by this
distance being equal to A/2 or 7 /k¢. The position of the last maximum of |p(z)/po|
also defines this distance, which is approximated by

2

A (6.6)
For a circular piston with a half-inch diameter (¢ = 6.35 mm) vibrating at its
center frequency of 1 MHz in silicone oil (¢ = 979.0 m/s, see section 6.3), zp is 41
mm.
In figure 6.2, we also show the results of an acoustic experiment in which the wave
field emitted by a flat-faced transducer (Panametrics-PZT V103) is captured by
a broadband needle hydrophone (Speciality Engineering Associates, type PZT-
744-1000). Measurements of relatively large changes in the ultrasonic signal over
relatively small distances considered in the near field requires very accurate mea-
sures and stable experimental conditions. From the experimental data we observe
a transition distance zp = 49 mm.
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Figure 6.2: Pressure at 1 MHz as a function of the distance z in oil. The experimental
data (dots) are acquired using transducer source with a radius of 6.35 mm
and a needle hydrophone receiver (1 mm frontal diameter). The theoretical
data (solid curve) represent the pressure emitted from a piston source with
an effective radius of 6.93 mm as detected by a point receiver. The data are
normalized by pg.
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The assumption that the transducers used in the experiment can be represented as
an ideal piston source and an ideal point receiver in the derivation of equation (6.5)
is not adequately fulfilled in practice. In reality, the surface of the transducer is
clamped at the edges, so that the effective vibrating radius is not exactly the
measured 6.35 mm. From zp fitting, we find an effective source radius of 6.93 mm.

6.2.3 Transducer wavefield measured over a surface

The theory described heretofore dealt with ascertaining a description of the on-
axial point pressure within the radiated field of a planar acoustic source. In case of
a coaxially aligned source and receiver with an identical plane-circular element with
radius a, the averaged received pressure is obtained by integrating the pressure over

the receiving surface:

=~ /5 pds. (6.7)
From this expression, Williams (1951) derived an expression for the acoustic pres-
sure in terms of a plane-wave component and an edge-diffraction integral term.
An approximation to Williams exact integral expression for z > 2a was obtained
by Bass (1958). Later, Williams (1970) extended Bass’s approximate results to
higher order!:

R
where

b= (1-2- L) o+ snc)),

)

in which n = (¢/(kfa))?, ¢ = 1ks (\/ 22 + 4a? — z) and Jyp and J; are Bessel func-
tions of the zeroth and first order.

A simpler closed-from expression for the diffraction correction, provided that
Vkea > 1, is given by Rogers and Van Buren (1974):

(Y] o () o (5] o () (2]

(6.10)

!Corrected for a typo in Bass’s (1958) result.
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By differentiating equation (6.10) with respect to z, we find that |(p/po)| has
maxima when z is a root of Jy(kfa?/z) = sin(kta?/z). The largest value of z for
which |(p/po)| has a maximum is approximated by:

T—1

T (6.11)

2F R k:fa2

This gives zp = 97 mm for a circular piston (¢ = 6.35 mm) vibrating at 1 MHz
in oil. The absolute value of the normalized pressure is shown in figure 6.3 for
the approximations by Williams (1970) and by Rogers and Van Buren (1974) for
a circular piston set. Especially in the far field the theoretical approximations
coincide, but in the near field discrepancies are visible.

From an laboratory experiment with identical half-inch diameter transducers in oil,
we observe the last maximum at 82 mm in figure 6.3. The least squares difference
along z between the theory of Rogers and Van Buren (1974) and the experiment
is at minimum for an effective radius of 6.06 mm for both transducers.

Again, the pattern of consecutive maxima and minima though less pronounced
compared with the needle measurements, is clearly visible in theory and experi-
ment. It seems that the interference pattern in the experiment is not complete.
This can be explained by the fact that the theory is based on continuous waves,
while in practice we use transient signals. The steady pressure decline is also less
pronounced compared to the needle measurements, due to the averaging effects
over the size of the receiving transducer.

For both sets, the mismatch between theory and experiment is severe in the near
field, but however in the far field the agreement is excellent. In the near field,
the decrease in signal amplitude is due to interference and diffraction, whereas in
the far field it is mainly caused by divergence and diffraction. Apparently, upon
incorporating an effective radius, the intrinsic loss of the silicone oil is a negligible
fraction of the total loss, which validates k¢ to be real-valued. Similar conclusions
were drawn by Jocker (2005) in an experiment with 500 kHz transducers (radius
12.7 mm) in water.

6.3 Ultrasound measurements on oil

We determine the speed of sound in silicone oil in an Ultrasound Tank (UST).
The set-up is depicted in figure 6.4. The UST is an oil-filled 30 x 40 x 15 cm
plastic container. Two identical 1 MHz, 0.5” diameter ultrasound (US) transducers
(Panametrics PZT V103) are mounted in oil on an automated positioning system,
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Figure 6.3: Pressure at 1 MHz as a function of the distance z in oil. The experimental
data (dots) are acquired using two identical transducers with a radius of 6.35
mm. The theoretical approximations by Williams (1970) (dashed curve) and
Rogers and Van Buren (1974) (solid curve) represent the pressure from a
piston set with an effective radius of 6.06 mm. The data are normalized by
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Figure 6.4: Ultrasound Tank (UST) acquisition set-up. Source and receiver are denoted
by S and R, respectively. The partially saturated rock sample applies to the
measurements in chapter 7.

facing each other. The distance between the transducer faces can be set within
0.1 mm accuracy.

A waveform generator (HP Agilent 33220A) generates a single 1 MHz sine wavelet
burst with a peak-peak amplitude of 100 mV, which is directly fed to the US
emitter. The period between two successive bursts is 10 ms, i.e. the repetition
rate is 100 shots/s. A running average over 1024 bursts is captured by a digital
oscilloscope (Yokogawa DL 9140) in a time window of 100 us with a sampling
interval of 2 ns. The Nyquist frequency of 250 MHz prevents aliasing within the
considered bandwidth 0.5 to 1.5 MHz. The oscilloscope communicates through an
USB cable with a computer, where a Labview program coordinates the triggering
and saves the binary data. Each averaged trace is stored in a separate file. During
the course of the experiment the variation in fluid temperature is registered by a
thermocouple (Thermo Electric, The Netherlands, model IDC-420042).

Figure 6.5 shows the recorded snapshots for four different transducer distances.
The duration of the experiment is less than one hour and is performed at a tem-
perature of 17.3 &= 0.1 °C and at ambient pressure. The arrival time of the first
pulse increases with increasing source-receiver distance. As expected, its ampli-
tude decreases due to geometric spreading. The arrival time of the maximum pulse
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Figure 6.5: Time signals of an acoustic experiment at 1 MHz in a silicone oil liquid using
four different source-receiver distances: (a) dp = 85 mm, (b) d; = 115 mm,
(¢) da = 145 mm, (d) d3 = 175 mm.

amplitude is automatically captured for each trace. Using the six combinations in
source-receiver distance, this gives an average velocity of 979.5 + 0.9 m/s in the
silicone oil.

Another method to determine the velocity is by Spectral Ratio Data Analysis
(SRDA, Toksoz et al., 1979). The Fourier transform of a zero-padded discretized
time series is denoted R(w). With a time harmonic dependence e™! implicitly
understood, the reference signal Ry(w) received at distance dy from the source,
is expressed in the frequency domain in terms of the source signal S(w) as a
unidirectional planar wave

Ry(w) = S(w) exp(—ikedy), (6.12)

where k¢ is the wavenumber in oil. We consider the silicone oil non-attenuative
and non-dispersive. A signal emitted by the same source after propagating over
distance d,, then is

R, (w) = S(w) exp(—ikedy,). (6.13)
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Figure 6.6: Averaged acoustic bulk properties of an acoustic experiment in a non-
attenuating silicone oil liquid using four different source-receiver distances.
(a) Wavenumber. (b) Phase velocity. Errors are attributable to the accuracy
in the distance.

Dividing equation (6.13) by equation (6.12) yields

Ry (w)
Ro (w)

= exp (—ik¢(d,, — dp)) . (6.14)

Its phase gives the wavenumber ky:

ke(w) = —ﬁphase (2355;) : (6.15)

Unwrapping removes the ambiguity in phase angles. The wavenumber and the
phase velocity ¢ = w/ky in oil, averaged over four different source-receiver distances
are given in figure 6.6. The average wavenumber increases linearly with frequency
from 0 to 1.5 MHz. The inaccuracies are small. Hence, the average phase velocity
is constant over the frequency band that we consider. Its average value is 978.5 +

0.1 m/s, which is in excellent agreement with the velocity obtained from the first
arrival times.
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6.4 Saturated rock measurements

The same samples were used as in chapter 5. The molasses was rinsed from the
sample faces with water. Next, all samples were dried in the oven again and
evacuated in a vacuum chamber. The vacuum chamber also holds a container
filled with silicone oil. The chamber is depressurized for several hours using a
vacuum pump (Welch, model 8907A). When the pressure, measured with a vacuum
meter (Terranova, model 924A) is below 0.1 Torr (13 Pa), the sample is carefully
immersed in the oil. Finally, the chamber is disconnected from the pump and
equilibrated to atmospheric pressure.

We measure the velocity and quality factor (inverse attenuation) of the set of 45
natural and artificial rocks that are now saturated with oil. We use two different
ultrasonic acquisition methods namely the conventional contact ultrasonics (CCU)
of chapter 5, and non-contact ultrasonics (NCU). The former method uses the
set-up described in section 5.5, where two ultrasound transducers gently clamp
the sample from above and below. The difference is that now the samples are
oil-saturated, whereas they were dry in section 5.5. Because of the relatively
high viscosity of the oil, we assume that the samples remain fully saturated while
undergoing CCU. Indeed, we noticed only minimal oil leakage from the samples.
Note that no sealing or sleeving of the samples was applied. CCU measurements of
the compressional and shear wave speeds are given in table 6.1 and 6.2, respectively.
These data are based on first arrival detection.

In table 6.1, also NCU data are given. These are acquired in the oil-filled Ultra-
sound Tank (UST) depicted in figure 6.4. The transducer faces are 90.3 mm apart.
We use the same electronics, burst rate, and sampling frequency as in section 6.3.
The only difference is that the source signal is now pre-amplified with a broadband
power amplifier (E&I 240L) at 50 dB input gain. The samples are positioned in a
sample holder in between both transducers (see figure 6.4). Similar transmission
set-ups have been used by, among others, Plona (1980) and Kelder and Smeulders
(1997).

The experimental procedure is a two-step process: first, the acoustic properties
are measured on a sample of length £y3. Then, the sample is cut into two pieces of
length /1 and ¢, whose acoustic properties are measured as well. The lengths ¢,
and ¢y are approximately 2/3 and 1/3 of the original length ¢y. The exact lengths
are measured with a digital caliper.
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Sample ID Compressional wave velocity [m/s]
CCU-FADA NCU-FADA NCU-SRDA Biot

CHKO03 3414 £+ 120 3461 £ 44 3461 £ 36 4393 £ 237
CHKO04 3435 £ 121 3447 £ 223 3322 £ 277 4370 + 233
SSA04 3033 £ 94 2995 £ 126 2968 + 130 2981 £ 100
SSA11 3053 £ 125 3014 £ 294 2999 £ 272 2939 +£ 130
SSB04 2908 + 88 2806 + 40 2746 £ 48 3435 £ 150
SSBO7 3308 +£ 112 3248 +£ 119 3275 £ 122 3819 £ 187
SSB08 3012 £ 93 2921 £ 35 2865 £ 99 3415 £ 146
SSB09 3252 £+ 108 3178 £ 37 3119 £ 31 3781 £ 180
SSC05 3484 + 124 3529 £+ 20 3505 £ 2 3396 + 112
SSC06 3432 £ 120 3243 £ 72 3271 £ 63 3318 £ 106
SSF02 2618 £ 71 2670 £ 115 2678 £ 107 2507 £ 64
SSF03 2717 £ 77 2550 £ 6 2507 £ 121 2604 £ 70
SSF04 2578 £ 85 2490 £ 102 2507 + 44 2545 + 84
SSGO1 2865 + 84 2809 + 28 2755 £ 67 2876 £ 93
SSG02 3216 +£ 105 3224 +£ 349 3177 £ 162 3039 + 102
YBEO3 3295 £ 140 3093 £ 150 3110 £ 119 3287 £ 173
VIFO01 2324 4+ 57 2190 + 124 2174 £ 191 2292 £ 70
VIF02 2356 £ 58 2301 + 48 2196 + 130 2339 £ 75
VICO05 1851 £+ 37 1621 4+ 364 1688 + 327 1708 £ 27
VICO06 1702 £+ 31 1528 4+ 352 1648 + 442 1737 £+ 28
QUE09 3003 £94 3088 £ 149 3121 4+ 100 2934 £ 96
QUE10 2989 £+ 93 2911 £ 199 2964 £ 232 2852 £ 91
B1P13 3094 £ 100 3178 £ 115 3191 £ 127 3114 £ 107
B1P14 3049 £ 97 3039 £ 181 3070 £ 149 2979 £ 97
CAS16 2773 £ 80 2615 + 18 2665 + 56 2844 + 94
CAS17 2941 + 89 2878 £ 8 2888 + 10 2860 £ 95
B1N20 30563 £ 97 2996 £ 374 2897 £ 291 2952 £ 98
B1N21 3001 £ 94 3126 + 19 3173 £ 36 2957 £ 97
COL23 3384 £ 119 3337 £ 151 3347 £ 125 3282 £ 105
COL25 35681 £ 133 3591 £ 162 3587 + 133 3550 £ 132
BEN27 3588 £ 133 3466 £ 244 3612 £ 74 3489 £ 154
BENZ28 3685 + 133 3408 £ 173 3415 + 146 3486 £ 154
B2P30 3269 £ 111 3204 £ 38 3243 £41 3198 £ 114
B2N32 3264 £ 111 3293 £ 136 3321 £ 147 3156 £ 111
B2N33 3208 £ 107 3232 £ 159 3248 £ 154 3107 £ 106

(continues)
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(continued)
Sample ID Compressional wave velocity [m/s]
CCU-FADA NCU-FADA NCU-SRDA Biot

FEL36 3330 £ 115 3228 + 36 3212 £ 36 3273 £ 128
FEL37 3271 £ 111 3189 £ 153 3180 £ 136 3265 + 123
NIV44 3143 £ 103 3237 £ 93 3227 £ 76 2908 £ 115
NIV45 2949 + 91 3012 £ 249 3003 £ 214 2719 £ 104
UNK50 3944 + 161 3852 £ 88 3873 £ 81 3793 £ 176
UNK51 3811 + 149 3784 + 126 3795 £ 98 3697 £ 165
NN356 3442 + 123 3499 + 40 3500 £ 31 3541 £ 149
NN458 4334 £193 4168 £ 268 4171 £ 221 4382 £ 250
GL160 2393 + 61 2115 £ 29 2195 £ 60 2737 £ 91
GL261 2461 £ 73 2382 £ 56 2426 £ 31 2866 £+ 116

Table 6.1: Compressional wave velocities of natural and artifi-
cial rocks fully saturated with silicone oil. The CCU velocity
is acquired using the benchtop set-up (Conventional Contact
Ultrasonics). The NCU velocities are acquired in the ultra-
sound tank (Non-Contact Ultrasonics). The FADA velocities
are obtained from First Arrival Data Analysis. The SRDA
velocity is from Spectral Ratio Data Analysis at 1 MHz. The
error in the CCU velocity arises from the accuracy in arrival
time. The error in the NCU velocities arises from averaging
over three different sample lengths. Biot velocity denotes the
high-frequency limit of the Biot (1956a,b) theory. The error
in the predicted Biot velocity is attributed to the uncertainty
in the elastic moduli, Ky, and u, from table 5.1.

As we have now three sample lengths available, it is straightforward to compute
the NCU compressional wave velocity cp from the first arrival times:

1 1 At

— == 6.16

cp ¢ AL ( )
where At is the time lag between first arrivals of two samples having length differ-
ence Af. As we know how far the transducer faces are apart, we can independently
determine ¢f. It was found to be 979.8 £ 0.1 m/s at 20.4 £ 0.1 °C, which is in
agreement with previous first arrival time results, considering different tempera-

tures.
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Sample ID  Shear wave velocity [m/s]

Quality factor [-]

CCU-FADA Biot NCU-SRDA Biot

CHKO03 2134 £ 50 2432 £ 64 41 £ 15 2969 + 151
CHKO04 2172 £ 51 2415 £ 63 32 £ 22 3012 £ 153
SSA04 1915 £+ 39 1873 £ 37 7.1 +£0.7 705 £ 92
SSA11 1888 £ 51 1902 £ 51 5.2 £0.3 638 £ 116
SSB04 2068 + 47 2072 £ 47 9+1 381 £+ 24
SSBO7 2299 £ 57 2318 £ 58 9+2 300 £ 18
SSB08 2069 £ 46 2061 + 46 8+ 2 339 + 22
SSB09 2219 £53 2234 £ 54 13£7 300 £+ 18
SSCO05 1980 + 43 1882 £ 38 5.7+ 0.2 10450 £ 1928
SSC06 1987 + 43 1887 + 38 4.8 £0.1 9137 £ 1752
SSF02 1484 + 24 1416 £ 22 5+ 2 911 £+ 104
SSF03 1537 + 26 1454 £+ 23 5.2 £ 0.7 802 + 85
SSF04 1585 £ 34 1493 + 30 o+ 2 822 £ 119
SSGO1 1751 + 33 1736 £ 32 7TE2 805 £ 86
SSG02 1807 £ 35 1778 £ 34 17 £ 18 333 £33
YBEO3 2118 £ 62 2115 £ 70 8.2+£0.1 570 £+ 112
VIFO01 1464 + 23 1406 £ 28 11+1 414 + 44
VIF02 1489 +£ 24 1441 £+ 30 11 +£ 2 385 = 39
VICO05 894 £ 9 969 = 11 5+ 3 1284 £+ 215
VIC06 897 £ 9 984 £ 11 5+ 4 1346 £+ 217
QUEO09 1808 £ 36 1765 £+ 34 5.5 £0.7 1305 £ 156
QUE10 1782 £+ 35 1739 £+ 33 4.2 £ 0.2 1421 £+ 181
B1P13 1875 £ 39 1817 + 36 5.9 £ 0.1 651 £ 76
B1P14 1789 £+ 35 1767 £ 34 6.5+ 0.9 688 £ 87
CAS16 1858 £ 38 1804 + 40 7T£2 1956 £ 405
CAS17 1882 +£ 38 1808 + 40 71£0.5 1892 £ 349
BIN20 1862 + 38 1822 £ 36 7T+£2 560 £ 75
BIN21 1842 £ 37 1822 £+ 36 6.7 £ 0.9 669 £ 94
COL23 1939 £+ 41 1881 £ 38 79 £0.3 17862 £ 3668
COL25 2191 £ 53 2150 £ 49 9.5+ 0.1 9840 £ 1966
BEN27 2195 £ 53 2194 + 52 10+ 1 451 + 39
BEN28 2143 £ 50 2192 £52 10.7 £ 0.3 449 £+ 39
B2P30 1961 + 42 1883 + 38 6.7 £ 0.4 470 £ 55
B2N32 1958 + 42 1881 £ 38 6+1 411 £+ 52
B2N33 1938 £+ 41 1823 £+ 36 5.9 £ 0.1 423 + 52

(continues)
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(continued)
Sample ID  Shear wave velocity [m/s] Quality factor [-]
CCU-FADA Biot NCU-SRDA Biot
FEL36 1984 £ 43 2001 + 44 7.0£0.5 494 + 49
FEL37 1984 £ 43 1896 + 39 7.5 £0.2 536 £ 51
NIV44 1952 £ 42 1890 + 44 32+ 14 950 £ 53
NIV45 1821 + 36 1743 £ 41 14 +£ 2 560 £ 60
UNKS50 2407 £ 64 2410 £ 63 94 +£05 53451 £ 7089
UNKS51 2394 + 63 2396 £+ 61 9.4 +£0.5 26960 £ 3800
NN356 2186 £ 53 2233 £ 54 10.2 £ 0.3 3547 £ 468
NN458 2824 + 88 2838 £ 86 19 £3 683 £ 81
GL160 1589 £ 28 1606 £ 29 8+1 D77 £ 42
GL261 1584 + 32 1649 £+ 35 11+£3 448 + 32

Table 6.2: Shear wave velocities and quality factors of natu-
ral and artificial rocks fully saturated with silicone oil. The
notation is as in table 6.1. The quality factors are measured
(NCU-SRDA) and calculated (Biot) at 1 MHz.

As an example, figure 6.7 gives the recorded time signals from a Castlegate sand-
stone (CAS17) for three different sample lengths that are used to determine the
first arrival speed. A CCU-NCU cross plot of the first arrival speeds of all samples
is given in figure 6.8. We find excellent agreement.

An important advantage of the NCU measuring method over the CCU method
is that the former allows Spectral Ratio Data Analysis (SRDA) as opposed to
First Arrival Data Analysis (FADA), that we have used so far. SRDA not only
allows the determination of the wave speeds, but also of the attenuation properties.
Moreover, both the speed and attenuation are obtained as a function of frequency.
SRDA proceeds as follows. Using a sample with the initial length £y, the received
signal Ry(w) at normal incidence is dependent on the source-receiver distance d,
the source signal S(w) and the transmission coefficients Ti, (w) and Tout(w) at the
oil-rock and rock-oil interface

Ro(w) = S(w)Tin exp(—ikly) Tous exp(—ike(d — £p)), (6.17)

where k = k, + ik; is the wavenumber of the sample having real and imaginary
parts k, and k;, respectively. We repeat the measurements on the identical sample
of length ¢,,. The received signal then is

R, (w) = S(w)Tiy exp(—ikly,) Tout exp(—ike(d — £y,)). (6.18)
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Figure 6.7: Time signals acquired from an acoustic experiment at 1 MHz on a fully sat-
urated Castlegate rock in a silicone oil liquid using three different sample
thicknesses: (a) 37.7 mm, (b) 23.9 mm, (c¢) 10.6 mm. Note the difference in
vertical scale.

The ratio of equation (6.18) and (6.17) separates the bulk characteristics from the
source term, the source-receiver distance, and transmissions coefficients:

R, (w)
Ro(w)

= exp(k;(bo — £y)) exp(—i(ks — k) (o — 1)), (6.19)

where we considered ks = w/c; to be the real-valued wavenumber in oil. The real
and imaginary parts of the sample wavenumbers are now given by

1 R, (w)
ki(w) - gnln ’ Ro@) |’ (6.20)
and
kr(w) = ke — - Enphase (ZZE:§> . (6.21)

We calculate k; and k. using the three possible combinations in sample length.
The corresponding measured phase velocities cp = w/k, (equation (2.16)) and
quality factors Q = k,/2k; (cf. equation (2.17)) are shown in figure 6.9 for the
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Figure 6.8: Compressional wave velocities acquired with the ultrasonic tank (NCU) versus
the velocities obtained from the benchtop set-up (CCU). The velocities are
determined by First Arrival Data Analysis (FADA). The velocities and errors

are given in table 6.1.
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Figure 6.9: Acoustic bulk properties of a fully saturated Castlegate rock in a silicone oil
liquid averaged over three different sample thicknesses. The data are acquired
in the ultrasound tank with Non-Contact Ultrasound (NCU) using Spectral
Ratio Data Analysis (SRDA). (a) Phase velocity. (b) Quality factor.

CAS17 sample. In the range 0.4 - 1.2 MHz, we observe that the measured speed is
almost constant at 2888 + 10 m/s. We also find that @ = 7.1£0.5, being virtually
independent of frequency. An overview of all SRDA data is given in tables 6.1 and
6.2 as well. A cross plot of SRDA against FADA speeds is given in figure 6.10.
Both data sets are from non-contact measurements in the Ultrasound Tank. Again
the agreement is excellent.

We finally compare our experimental data against the Biot theory. The input
data for the Biot theory are obtained from independent experiments described
in chapter 5. Tortuosity as is determined from the so-called Humble equation,
which is an often used version of Archie’s equation for sands:

Qoo = ap' ™™, (6.22)

with parameters a = 0.62 and m = 2.15 (Schon, 1996; Glover, 2009). We used
here that the tortuosity a is related to the formation factor F: an = F(¢)¢
(Bourbié et al., 1987). The formation factor is empirically related to porosity in
brine-saturated clean (no shale) reservoir rocks: F' = ¢~™ (Mavko et al., 2003).
We used these empirical values for all samples, except for our chalk samples, where
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Figure 6.10: Compressional wave velocities measured from First Arrival Data Analysis
(FADA) versus the velocities obtained from Spectral Ratio Data Analy-
sis (SRDA). The velocities are acquired in the ultrasound tank with Non-
Contact Ultrasound (NCU). The velocities and errors are given in table 6.1.
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we use a = 1 and m = 1.7, which are mean values for chalky limestones (Schon,
1996). Mavko et al. (2003) note that carbonates show a wide range of variation and
have m values as high as 5. Our derived tortuosity values are comparable to those
reported from electrical resistivity experiments on natural sandstones (Kelder,
1998) and fused glass beads (Jocker, 2005). For the bulk modulus of the solid
grains, Ky, we simply assume the common grain bulk moduli of calcite (Kg =
70 GPa) for the chalk samples and quartz (Ks = 37 GPa) for all other samples
(Mavko et al., 2003).

The viscosity of the oil is measured with a standard viscometer (Brookfield Engi-
neering Laboratories, Stoughton, MA). We find n = 6.0 £ 0.2 mPas. The density
of the oil is 916 + 1 kg/m?, measured with a standard hydrometer (Class L). The
Biot predictions are listed in tables 6.1 and 6.2.

A cross plot of CCU compressional wave speeds versus theoretical values is given
in figure 6.11, and a cross plot of CCU shear wave speeds versus theory is given
in figure 6.12. The agreement is generally very good and within experimental
error. For the compressional wave, the glass (GL160 and GL261), chalk (CHKO03
and CHKO04), and Berea (SSB04, 07, 08, 09) samples show distinct discrepancies
between experiment and theory. For the shear wave, this is only the case for the
chalk samples.

Two notes have to be made on the quality factor comparison. First, the Biot
theory predicts the quality factor to be linearly dependent on frequency. This is
not substantiated in our experiments (see figure 6.9 for example). We measure that
the quality factor is almost constant in our frequency domain. We therefore chose
to tabulate the theoretical attenuation at 1 MHz, which is the center frequency of
our transducers. Second, comparing these values with the measured ones in table
6.2, we find that the attenuation is severely underestimated by Biot theory.

A cross plot of the measured and predicted attenuation is shown in figure 6.13.
No agreement between measured and predicted attenuation is visible. It is well-
known that the Biot theory does not adequately predict the level of attenuation
measured in the practice. Similar disagreement between measured and predicted
attenuation was reported by Kelder (1998) on a set of water-saturated rocks.
Mesoscale heterogeneities in the frame can be used to explain these discrepancies
in terms of a double porosity model (Pride et al., 2004). As the theory is similar
for frame and fluid heterogeneities, we chose to study fluid heterogeneities be-
cause they can be realized more efficiently under repeatable laboratory conditions.
Another effect that explains high attenuation at ultrasonic frequencies measured
under atmospheric conditions is squirt-flow (O’Connell and Budiansky, 1974; Bu-
diansky and O’Connell, 1976). There, the heterogeneity is at the microscopic grain
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Figure 6.11: Measured compressional wave velocities from First Arrival Data Analysis
using the benchtop set-up (CCU-FADA) versus the predicted velocities by
the Biot (1956a,b) theory. The samples are fully saturated with silicone oil.
The velocities and errors are given in table 6.1.
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Figure 6.12: Measured shear wave velocities from First Arrival Data Analysis using the
benchtop set-up (CCU-FADA) versus the predicted velocities by the Biot
(1956a,b) theory. The samples are fully saturated with silicone oil. The
velocities and errors are given in table 6.2.
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scale, for example as broken grain contacts and/or as microcracks in the grains.
When a wave squeezes a rock having such grain-scale damage, the cracks respond
with a greater fluid pressure than the main pore space resulting in a flow from
crack to pore (Pride et al., 2004). Microscopic heterogeneities are characterized
by their crack aspect ratio, i.e., by their width and length. An independent labo-
ratory measurement of this ratio is cumbersome, and therefore this ratio is often
used in literature as a fitting parameter (Mavko et al., 2003). However, in this the-
sis we compare wave experiments with theoretical models based on independently
measured input parameters. In the next chapter we consider fluid heterogeneities
to be the dominant attenuation mechanism.
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Chapter 7

Laboratory measurements on
partially saturated rocks

7.1 Introduction

We experimentally show the dependence of the fast compressional wave velocity
and attenuation on partial gas saturation. First, we quantify the size, shape and
distribution of injected air volumes in section 7.2. In section 7.3, we measure the
phase velocity and quality factor as function of ultrasonic frequency and air volume
fraction and compare these with theoretical predictions of chapter 4. In section 7.4,
we compare the predicted attenuation from our models (chapter 4) with resonant
bar measurements from literature for a partially saturated Massillon sandstone.

7.2 Visualisation experiment on a partially saturated
sample

We quantify the size, shape and distribution of injected air volumes in a visuali-
sation experiment. We fill a perspex container with unconsolidated crushed glass.
Next, this crushed glass is saturated with light mineral oil (Marcol 82, ExxonMo-
bil). The viscosity of the oil, measured with a viscometer (Brookfield Engineering
Laboratories, Stoughton, MA), is 24.2 + 0.2 mPa-s at 23.3 °C. The measured den-
sity and sound velocity of oil at 23.3 °C are 845 + 1 kg/m? and 1413 + 1 m/s,
respectively. The viscosity and density values are in agreement with the specifi-
cations provided by the manufacturer. The glass parts are angular and sifted to
obtain a grain size between 1.2 - 1.6 mm. The porosity of the sample is very high
at 53 £ 1 % due to the angularity of the crushed glass parts. Marcol 82 oil is
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Picture No. Diameter [mm] Vgas [1l]  Vinj [¢l] Remark

7.1b 2.3 +0.2 3+1 3
7.1c 3.5+0.1 12 4+ 2 13
7.1d 3.8+0.1 15+ 2 33 Breakthrough
7.1e 83 Non-spherical
7.1f 283 Non-spherical

Table 7.1: Dimensions of the injected gas pockets corresponding to the oil-saturated un-
consolidated crushed glass sample in figure 7.1. The gas volume V4, is calcu-
lated from the measured gas pocket diameter. The injected volume Vi,j is read
from the syringe calibration.

chosen since it has an identical refractive index (n = 1.464-1.470) as the glass, to
ensure that the sample is optically transparent.

The needle of a syringe (Microlance 3) is inserted in the saturated glass sample.
The outer diameter of the needle is 1.20 mm. We now inject air in the sample
through the needle. The injected air volume is directly read from the syringe
calibration. The results of this experiment are displayed in figure 7.1. Figure 7.1a
is the state prior to air injection. Upon injecting 3 ul of air, we observe a pocket of
gas at the tip of the needle, see figure 7.1b. In figure 7.1c, we inject an additional
amount of 10 ul air. The gas pockets are approximately spherical in shape with
an effective diameter of 2.3 £ 0.2 mm in figure b and 3.5 + 0.1 mm in figure c.
In figure 7.1d, the total amount of injected air is 33 ul. Breakthrough is observed
when some air escapes upwards along the needle. The diameter of the gas pocket
is now approximately 3.8 £+ 0.1 mm. When another additional 50 pl air is injected,
the pocket grows but looses its sphericity. In the last picture, an extra amount of
200 pl is injected. The gas pocket shrinks because the injected air and the air in
place escape along the needle.

From the measured diameters and porosity, we calculate the gas volumes in place

Vias = SmR3¢. 7.1
g 3

The calculated gas volumes and the injected gas volumes are given in table 7.1.
The difference between the calculated and injected volume is an estimate for the
amount of escaped air. The difference increases with increasing injected air volume.
From the experiment we conclude that injection is an appropriate means to create
a gas pocket within a liquid-saturated porous material. As a reasonable approxi-
mation, the gas pocket may be assumed spherical. This implies that the injected
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()

Figure 7.1: Photo gallery on air injection in a fully oil-saturated crushed glass sample.
(a) Initial state (full saturation) including a length scale. The gas pocket
diameter in (b) is 2.3 £ 0.2 mm, in (¢) 3.5 £ 0.1 mm, and in (d) 3.8 £ 0.1
mm. The gas pockets in (e) and (f) are non-spherical.
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Matrix Grains Water Air
Density p [kg/m?] 2618 £1 998 £1 1.29
Bulk modulus K [Pa] 1.60 & 0.13 -10°  37.0 -10° 2.16 -10°  1.52 -10°
Viscosity 7 [Pa-s| 1.0 1073 17.1 1076
Porosity ¢ [-] 0.42

Permeability ko [m?]  26.7 + 2.7 -10712
Shear modulus p [Pa]  1.58 + 0.04 -10°
Tortuosity s [-] 1.66 £+ 0.01

Table 7.2: Constituent properties of a partially saturated synthetic sandstone. The matrix
and grain properties are from the values of VIC05 and VIC06 as measured in
chapter 5. The density and wave speed of water are measured. The viscosity
of water and the values for air are from literature (Verbeek et al., 1986).

air volume gives a reasonable estimate for the bubble diameter. Care has to be
taken to avoid gas breakthrough.

7.3 Ultrasonic measurements on a partially saturated
rock

We apply Spectral Ratio Data Analysis (SRDA) on the signals measured on a
partially saturated sample, which is cut from the coarse-grained synthetic sand-
stone block from which also samples VIC05 and VIC06 are obtained, see chapter
5. Because of the small variability in the properties of samples VIC05 and VICO06,
we can assume the synthetic sandstone to be reasonably homogeneous.

Sample preparation and saturation procedure are similar as described in sec-
tions 5.2 and 6.4. The initial sample length £; is 26.3 + 0.1 mm; the shorter sample
length ¢ is 14.6 4+ 0.1 mm; the diameter is 39.0 & 0.1 mm. A one-millimeter hole
is drilled from the cylindrical edge to the sample’s center in which a 40 mm syringe
(Microlance 3) is glued with a silicone elastomer (CAF 4, Rhodia Group). The
outer diameter of the needle is again 1.20 mm.

The experimental set-up is identical to the one described in section 6.4. Here, we
use flat one-inch transducers (Panametrics-PZT V301) with a center frequency of
500 kHz. The source-receiver distance d is 158.7 £ 0.1 mm. The saturating fluid
is tap water. The velocity in water averaged over four first arrival times is 1471.7
+ 0.3 m/s at a temperature of 21.0 £ 0.2 °C. This velocity value is in agreement
with literature (Del Grosso and Mader, 1972).

The measured time signals acquired on the fully water-saturated synthetic sand-
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Figure 7.2: Time signals acquired from an acoustic experiment at 500 kHz on a fully
saturated sandstone in water using two different sample thicknesses. (a) 26.3
mm and (b) 14.6 mm.

stone over the two different lengths are given in figure 7.2. We measure the arrival
times of the signal maxima and minima. This gives an average velocity of 1937 +
23 m/s.

Denoting the initial sample length ¢35 and the shorter length ¢, the real and imag-
inary parts of the wavenumber for the fully water-saturated sample are computed
through SRDA. The corresponding phase velocities and quality factors are shown
in figure 7.3. The phase velocity is almost constant over the shown frequency band
with a value of 1926 4+ 11 m/s, which is in good agreement with the first arrival
measurements. Hence, the wavelength at 500 kHz is 3.9 mm in the fully-saturated
sample. The quality factor shows to be dependent on frequency with a value of 8.2
+ 0.2 at 500 kHz. The errors reflect the accuracy in sample lengths. Using the dry
rock properties of table 7.2, the high-frequency limit of the Biot theory predicts a
velocity of 2044 + 50 m/s, which is slightly higher than the experimental values.

We now carefully inject different amounts of air in the fully water-saturated sand-
stone sample. In steps, we inject the cumulative gas volumes 0.3 ml, 0.6 ml, 1.0
ml, 2.0 ml, 3.0 ml and 5.0 ml. Breakthrough is not observed at injected volumes of
0.3 ml, 0.6 ml, and 1.0 ml. With a porosity of 42 % for the sandstone, we calculate
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Figure 7.3: Acoustic bulk properties of a fully water-saturated synthetic sandstone in
water measured over two different sample thicknesses. (a) Phase velocity. (b)
Quality factor. The error bars arise from averaging over the shown frequencies.

the bubble radii from equation (7.1). The calculated air bubble radii in the par-
tially saturated sandstone are given in table 7.3, where also the corresponding gas
fractions are summarized. The gas fraction is defined as the gas-to-pore volume
ratio. As in the visualisation experiments, we only consider the situations prior to
gas breakthrough properly described by spherical pockets.

With the gas pocket in place, acoustic transmission experiments are performed.

Vinj (ml] @ [mm] s, [-] Remarks
0.3 5.3 0.02
0.6 6.8 0.04
1.0 8.2 0.07
2.0 Breakthrough
3.0 Breakthrough
5.0 Breakthrough

Table 7.3: Radii and gas fractions of the injected air bubbles in the partially water-
saturated sandstone. As before, it is not likely that the gas pockets will retain
a spherical shape upon breakthrough.
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The effect of partial air saturation in the time domain signals is obvious in fig-
ure 7.4. We observe that upon air injection the signal amplitude decreases. The
most significant decrease occurs from 0.6 to 1.0 ml injected air volume.

We assume that the transmission coefficients at the water-rock and the rock-water
interface are not altered by the presence of gas located in the center of the sample.
We write for the received signal R{j(w) through a partially saturated sample with
length £g:

RE)(W) = S(w)T’ine—ik/zOToute_ikf(d_eo)a (72)

where k' = k. + ik, is the wavenumber of the partially saturated sample and k¢
is obviously the wavenumber in water. The source term S, the source-receiver
distance d, the transmission coefficients 7', the trajectory through the water, and
any effect due to the presence of the syringe are identical to the fully saturated
case and are eliminated by taking the ratio of the fully and partially saturated

signals:
Ry(w) Lo(kl—k;) —ilo (k. —
— clo(ki—ki) o —ibo(kl.—kr) 7.3
Ro(w) (73)
The wavenumbers in the partially saturated rock are then given by
1. |R{(w)
K(w) = ki(w +—ln‘0—‘, 74
(@) = ki(w) + zln [0S (7.4
and
1 R{(w)
k;w:krw——hase( 0 ), 7.5
() =y (@) — pphase ( 30 (75)

where k; and k. are the fully saturated wavenumbers determined from equa-
tions (6.20)-(6.21).

The phase velocities of the partially saturated rock w/k,. are shown in figure 7.5.
The phase velocities of all partially saturated samples are slightly higher than that
of the fully saturated sample. The quality factors k,./2k] are shown in figure 7.6.
The quality factor decreases with increasing gas fraction, as expected from figure
4.12. The quality factor also varies with the frequency. For the first three gas
fractions there is a peak attenuation at approximately 500 kHz. For the latter three
gas injections, the quality factor gradually increases with increasing frequency. At
low frequencies the quality factor is significantly more affected by an increasing
air volume than at higher frequencies.

We finally compare in figure 7.7 the experimental results with predictions of the
generalized quasi-static patchy model and of the Rayleigh-Plesset-Biot model as
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Figure 7.4: Time signals acquired from an acoustic experiment at 500 kHz on a par-
tially saturated sandstone. The solid curve denotes the fully water-saturated
measurement. The dashed curves denote the partial gas-saturated state with
cumulative injected air volumes of (a) 0.3 ml. (b) 0.6 ml. (¢) 1.0 ml. (d) 2.0
ml. (e) 3.0 ml. (f) 5.0 ml.
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Figure 7.5: Phase velocities calculated from an acoustic experiment on a partially satu-
rated sandstone. The solid curve is the fully saturated measurement. The
dashed curves denote the partial gas saturated state with cumulative injected
air volumes of (a) 0.3 ml. (b) 0.6 ml. (¢) 1.0 ml. (d) 2.0 ml. (e) 3.0 ml. (f)
5.0 ml.
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Figure 7.6: Quality factors calculated from an acoustic experiment on a partially satu-

rated sandstone. The solid curve is the fully saturated measurement. The
dashed curves denote the partial gas saturated state with cumulative injected
air volumes of (a) 0.3 ml. (b) 0.6 ml. (¢) 1.0 ml. (d) 2.0 ml. (e) 3.0 ml. (f)
5.0 ml.
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Matrix Grains Water Air
Density p [kg/m?] 2660 997 1.1
Bulk modulus K [Pa]  9.26 -10°  35.0 -10° 2.25-10° 0.8 -10°
Viscosity 7 [Pa-s| 1.0 -107* 17.1 -1076
Porosity ¢ [-] 0.23

Permeability ko [m?] 737 -10715
Shear modulus x [Pa]  6.14 -10°

Table 7.4: Constituent properties of a partially saturated Massillon sandstone (Murphy,
1982a,b, 1984; Lumley et al., 1997).

described in sections 4.4 and 4.8, respectively. Only measurements prior to gas
breakthrough are shown. It is interesting to note that the generalized model and
the Rayleigh-Plesset-Biot model predict opposite velocity trends for increasing
saturation, at 500 kHz. The measured data are more or less independent of sat-
uration. Overall, the generalized model gives a slightly better estimate for the
velocities. This is definitely true for the quality factor. The predictions of the
generalized model are in excellent agreement with the laboratory data, whereas
the Rayleigh-Plesset-Biot model predictions are much too high, i.e. this model
predicts too low attenuation at ultrasonic frequencies. We note, however, that the
wavelength is on the order of the inhomogeneity, so that additional attenuation
mechanisms might contribute.

7.4 Literature data on partially saturated rocks

An extensive experimental study on wave attenuation in partially saturated media
was published by Murphy (1982a). The Massillon rock samples in Murphy’s study
are medium-grained high-porosity sandstones. These rock and fluid properties,
measured with standard techniques, are given in table 7.4.

The extensional attenuation is measured by Murphy using a resonant bar technique
described in detail by Winkler and Nur (1982). A horizontal rock cylinder is
made to resonate using electromagnets at both ends while being supported at the
center. Signal detection is through two crystal phonograph pickups. The driving
voltage is set at resonant frequency. After cutting the voltage, the vibration decay
with time is analysed. A frequency range of 0.6 to 6 kHz is obtained using bars
of various lengths and by exciting higher harmonics. The water saturation is
controlled within an accuracy of 2% by a drying procedure in a humidity chamber.
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Figure 7.7: Comparison of the theoretical and experimentally measured acoustic bulk

properties of a partially saturated sandstone at 500 kHz. (a) Phase velocity.
(b) Quality factor. The experimental data (circles) are from figures 7.5 and 7.6
for the different gas fractions of table 7.3. The input values of the Rayleigh-
Plesset-Biot partially saturation model (solid curves) and generalized quasi-
static patchy model (dashed curves) are given in table 7.2.
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Murphy reported signal-to-noise problems with combinations of high loss, higher
harmonics, and high frequency (> 4 kHz). He estimated the inaccuracy of the
attenuation measurements to be 10%.

Murphy’s attenuation results are reproduced for gas fractions of 9% in figure 7.8a
and of 25% in figure b and compared with our theoretical models of chapter 4.
Unfortunately, in Murphy’s paper no gas bubble radius was given. We therefore
use this as a fitting parameter. For a gas fraction of 9%, this yields a gas bubble
radius of 1.1 cm for the Rayleigh-Plesset-Biot model and 1.6 cm for the generalized
patchy model. It appears that the Rayleigh-Plesset-Biot model works better in
predicting attenuation at sonic frequencies.

For a gas fraction of 25%, the best fit yields a gas bubble radius of 2.0 cm for the
Rayleigh-Plesset-Biot model and 4.2 cm for the generalized model. Here it can be
seen that the generalized model is not able to predict the measured attenuation.
Changing the gas bubble radius does not affect the amplitude of the attenuation,
as also illustrated in figure 4.11, so in this model it is impossible to obtain a better
fit. The Rayleigh-Plesset-Biot model, however, is significantly better. Most values
are accurately matched, and the deviation at higher frequencies is small.

For the shown cases, it appears that the Rayleigh-Plesset-Biot model is quite
accurate in the sonic frequency range, whereas the generalized model is better for
much higher frequencies (see section 7.3).
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Figure 7.8: Comparison of the theoretical and experimentally measured attenuation of
a partially saturated Massillon sandstone. The gas fraction is 9 % in (a)
and 25 % in (b). The experimental data are from Murphy (1982a) using a
resonant bar technique. The predicted attenuations are least-squares fits to
the Rayleigh-Plesset-Biot model (solid curves) and to the generalized model
(dashed curves). The input values are given in table 7.4.



Chapter 8

DARS measurements

8.1 Introduction

Acoustic Resonance Spectroscopy is an established methodology, that is used by
the National Bureau of Standards to measure the velocity and quality factor of
fluids (Harris, 1996). Harris (1996) proposed to adapt this method to measure the
velocity and quality factor of sound in rocks in the sonic frequency range.

The Differential Acoustic Resonance Spectroscopy (DARS) is an experimental
method based on the change in the acoustic resonance frequency of a fluid-filled
tube due to the introduction of a foreign object in a tube. The resonance fre-
quency of the fluid-filled tube is proportional to the ratio of the sound velocity in
the surrounding medium and the length of the cylinder. For example, for liquids
with velocities in the order of 1000 to 1500 m/s, the resonance frequency of a 0.5
m open-ended cylinder is 1000 - 1500 Hz. For gases, the same cylinder resonates
at approximately 300 Hz.

Applications of this experimental method involve the estimation of the acoustic
attenuation of porous rocks by Harris et al. (2005), the estimation of the flow prop-
erties of porous rocks by Xu et al. (2006) and Xu (2007), and the determination of
the physical mechanism responsible for the measured compressibility by Vogelaar
et al. (2008).

The purpose of this chapter is to demonstrate that the DARS set-up provides a
complementary technique to measure the sample bulk modulus at low frequencies
(1 kHz). The DARS measurements discussed in this chapter were acquired at the
Seismic Wave Physics Laboratory of Stanford University.
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8.2 Laboratory set-up and acquisition procedure

The length of the tube and the sound velocity determine the resonance frequency
of the system. In our experiment, we use 5 ¢St Dow Corning 200 silicone oil to fill
the tube. The density and viscosity of the oil are independently measured to be
916 £+ 1 kg/m? and 6.0 & 0.2 mPa-s, see chapter 6. We measure the temperature
(Springfield, Precisetemp) in the oil prior to every resonance experiment. The
average temperature over 119 experiments is 23.7 + 0.4 °C. During the course
of an experiment, temperature variations were always below 0.1 °C. Variations
in temperature influence the velocity, density and viscosity of the oil. We apply
a linear relationship between temperature and velocity ¢y [m/s] and temperature
and density pp [kg/m?], inferred from the silicone oil information sheet (Clearco
Products, 2006)

co = —3.00T + 1046.7,
po = —0.975T + 937.6, (8.1)

where T is the oil temperature in °C. We remark that the velocity-temperature
relationship is not in agreement with the one by Xu (2007), who used a slope of
-2.81 and an offset of 1051.8. Using equations (8.1), we have a direct relationship
between fluid temperature and fluid compressibility (inverse bulk modulus)

ko = (—8.8T% 4 15 x 10372 — 7.0 x 10°T + 1.0 x 10%)~1. (8.2)

Using T' = 23.7 & 0.4 °C yields an average oil compressibility of 1.149 + 0.003 x
107% Pa~ 1,

The oil fills 64 cm of a 23 x 23 x 70 cm tank (inner dimensions) having 13 mm
thick perspex walls. The cylinder is composed of solid Aluminum and has a length
of 38.1 cm, an inner radius of 3.9 cm, and a wall thickness of 8 mm.

A schematic lay-out of the laboratory equipment is shown in figure 8.1. Explana-
tory photographs of the DARS set-up and the cylinder in detail are shown in
figures 8.2 and 8.3.

Two piezoelectric ceramic frequency discs (Sensor Technology Ltd.) are used to
excite vibrations in the oil. The sources are embedded in the wall in the middle
of the cylinder facing each other. The sources are connected to a source amplifier
(Krohn-Hite, model 7500).

A small calibrated hydrophone (Briiel & Kjeer, type 8103) is used to measure the
pressure. The receiver can be attached to the inner surface of the cylinder in
the source plane at 90° from the sources. The received signal is amplified by a
high-sensitivity charge amplifier (Briiel & Kjeer, type 2635) with a gain of 31.6 dB.
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Figure 8.1: Schematic lay-out of the DARS set-up. The rectangular box is the oil-filled
container in which a hollow cylinder is hung. The two sources are drawn as
two opposite open circles in the cylinder wall, whereas the receiver is schema-
tized as a bullet at 90° from the sources. The test object (small cylindrical
sample) is hung on a thin nylon wire in the sources-receiver plane (the so-
called pressure antinode), but can be moved vertically along the axis of the
cylinder using the step motor. The data acquisition equipment is described
in the text. The drawing is not to scale.

Both the amplifier of the sources and of the receiver are connected to a lock-in
amplifier (Stanford Research Systems, model SR850 DSP). A lock-in amplifier is a
phase-sensitive detector that singles out the component of the signal at a specific
reference frequency and phase. Noise and background signals at frequencies other
than the reference frequency are suppressed. The internal oscillator of the lock-in
amplifier is also used as a function generator to excite the sources.

The settings of the lock-in amplifier are controlled and automated by a computer
program (Labview National Instruments). The lock-in amplifier covers a frequency
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Figure 8.2: Photo of the DARS set-up. In front we observe the hollow cylinder (1) sub-
merged in the oil-filled perspex container (2). The blue and black cables (3)
provide power to the frequency discs (sources not visible); the curly white
cable (4) is connected to the hydrophone (receiver not visible). On the most
left is the step motor frame (5) visible including the nylon wire over the pulley
sheaves (6). At the back, we observe the stepper motor apparatus (7) and
the charge amplifier (8) on top of the lock-in amplifier (9); on the right is the
source amplifier (10). This set-up is at the Seismic Wave Physics Laboratory
of Stanford University.
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Figure 8.3: Top-view photo of the cylindrical resonator. We observe the submerged cylin-
der (1), including the connections (2) attached to the perspex container. The
blue and black source cables (3) provide power to the frequency discs (4), of
which only the center ones are operative in our experiment. The white cable
(5) is connected to the hydrophone (6), which is attached to the cylinder’s
inner wall. A rock sample (7) is hung at the nylon wire along the axis of the
cylinder. This set-up is at the Seismic Wave Physics Laboratory of Stanford
University.

sweep from 1035 to 1135 Hz with a sample rate of 128 shots/s and a scan length
of 30 s to select the resonance curve of the first mode. Hence, 3840 data points
are acquired each time.

The tested sample is moved vertically along the axis of the cylinder by the step
motor (Arrick Robotics, model MD-2A). The step motor is computer-controlled
(Labview) and provides an accurate and repeatable positioning of the sample. A
typical measurement covers 93 sample positions along the axis of the cylinder,
sampled at 70 mm intervals from above the bottom of the container to below the

7th

oil-atmosphere surface, in such a way that the 47"" position is exactly in the middle
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of the cylinder.

The first measurement is over the empty, fluid-filled, cylinder. In this way, we
build for each tested sample a data file containing 94x3840 data points. Clearly,
the typical output is the pressure as a function of frequency and sample position.

8.3 Tube resonance

In the following we derive a theoretical approximation of the pressure field within
the tube, which we compare with the one acquired by the laboratory experiment.
The experiment is illustrated by the photo of figure 8.4. We move the hydrophone
through the cylinder from the bottom of the container to the top and measure the
acoustic pressure at 1 cm intervals along the cylinder’s axis. At each position, the
acoustic pressure is measured as a function of the frequency.

The ceramic discs generate vibrations in the fluid with a velocity amplitude V4. For
symmetry reasons, only half of the tube has to be taken into account. The tube’s
half-length is denoted L. Assuming that the tube is filled with an attenuative fluid
(complex-valued velocity ¢p and density pg), the pressure and velocity distribution
over the tube can be written as

= Pt exp(—ikex) + P~ exp(iker), (8.3)
pocod = Pt exp(—iker) — P~ exp(iker),

3>

with = the axial coordinate having its origin at the symmetry plane, and k; the
wavenumber of the quasi-1D wave in the tube.

Substitution of the boundary conditions v = Vp at t = 0 and p = 0 at x = L
(pressure release surface) yields that

sin k¢(L — x)

cos k¢ (8:5)

P = 1pocoVo

This means that the pressure in the symmetry plane x = 0 can be written as

Do {1+ ﬁ exp(ik;fL) — exp(—ika)
POCer N Cr exp(ik:fL) + exp(—ika)’

(8.6)

where ¢; and ¢, are the imaginary and real parts of ¢y, respectively. For non-
attenuative media (¢; = 0), it is easy to show that system resonance will occur
at f, = (2n + 1)¢, /AL, for n = 0,1,2,.... For our system this would mean that
fo = 1280.3 Hz. However, in the laboratory we measure a resonance frequency of
1086.1 Hz. The difference is caused by the fact that the boundary condition p = 0
at © = L is not met exactly. Following Pierce (1989), the simplest end correction
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is to take the pressure release surface at x = L + AL. From our experiments, we
find that AL = 3.4 cm.

Figure 8.5 gives a typical resonance curve. The theoretical line is from equation
(8.6), where L is replaced by L + AL, so that the resonance frequency is now in
agreement with the measured resonance frequency. A small amount of damping
(¢i = 3.1 m/s) is added to obtain a perfect match between theory and experi-
ment. Interestingly, the introduction of damping does not change the resonance
frequency, which is only determined by the non-attenuative part ¢, and the length
of the tube.

We now investigate equation (8.6) more closely. Applying Taylor expansion in
frequency to k¢L yields that kL = kgL + AkeL is equal to

Cp — G Af)
keL =2nfol | ——— ) |1+ — |, 8.7
' /o ( |col? ) ( fo (8.7)
where f = fo+ Af. As we expand around fy = ¢, /4L, it is easily found that
e A
keL ~ Lr (1 - 5) (1 + —f> : (8.8)
Cr Jo

for ¢; < ¢,.. This implies that in first order approximation kgL = %71'(1 —ici/cy)
and Akel = %TI'Af/fo.
Taylor expansion of equation (8.6) yields that

]30 ~ (1 z'ci (1 + QiAka) eXp(QikfoL) -1 (8 9)
pocrVo ¢r ) (14 2iAkeL) exp(2ikpL) +1° '
Subsequent substitution of the expressions for kgL and Ak¢L yields that
Po ici\ L+imAf/fo+exp(—mei/er)
~ |1+ — : . (8.10)
pOCr‘/O Cr 1+ Zﬂ-Af/fO - eXp(_ﬂ—ci/cr)
For Af =0, we find that
Do ici| 2 —meifer  2—mei/ey
~ |1+ — ~ . 8.11
pocrVo ‘ Cr 7TC¢/C7~ 7"'Ci/cr ( )
Denoting this value the amplitude A, we find that
L2 A2 4 (M&)z
Do - fo ¢ (8 12)
pocrVo '

5
Af cr
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Figure 8.4: Photo of the cylindrical resonator and hydrophone. The tip of the hydrophone
(1) is visible at the bottom end of the container. Its white cable (2) is along the
axis of the cylinder. The hydrophone is carefully guided upward through the
plastic sleeve (3) with intervals of 1 cm. The remaining features are discussed
in figures 8.2 and 8.3. This set-up is at the Seismic Wave Physics Laboratory
of Stanford University.
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Figure 8.5: Squared sound pressure at a pressure antinode (z = 0) in the vicinity of the
resonant frequency. The solid curve is the theoretical response of a system
given by equation (8.6) using ¢, = 975.6 m/s and ¢; = 3.1 m/s. The dots
are the experimentally measured responses of an oil-filled DARS system. The
length of the arrow is the width of the curve at half power 2Af/ fy or atten-
uation @~ 1. The two vertical dotted lines are at 1+ Af/fy. Both pressures
are normalized by their maximum amplitude. The frequency is normalized by
the resonance frequency.

We note that for Afc, = foc;, we have that

2
~ 1A (8.13)

A~

Pbo
POCr Vo

for large A. The width of the curve at |pg/poc.Vo|?> = %AQ equals 2¢; /¢, which
is by definition equal to 1/Q. The quality factor @ of our oil-filled system is then
approximately 157. We note that this set-up is excellently suited to measure the
quality factor of the resonator.

Next, we measure the pressure over the tube length at resonant frequency. In
figure 8.6 we show the theoretical and measured responses at resonance frequency
(1086 Hz). The theoretical curve is computed from equation (8.5), with L replaced
by L + AL. Note that the measurements were extended outside the tube. In
the tube, discrepancies between theory and experiment exist. Most notable is the

symmetry disturbance of the experiments. This is probably due to the hydrophone
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Figure 8.6: Pressure along the axis of the cylinder at resonant frequency (1086 Hz). The
solid curve is the theoretical response of a system given by equation (8.5). The
dots are the experimentally measured response of an oil-filled DARS system.
Both responses are normalized by their maximum value. The actual ends of
the cylinder are at z = +19 cm.

cable that is completely outside the tube at x = 19 cm and completely inside at
z = —19 cm.

The combined dependence of the experimental and theoretical pressure fields on
position and frequency is shown by the iso-bar contours (pressure amplitudes) in
figure 8.7. In figure 8.7a, the maximum pressure for a certain position is always at
resonance frequency. The iso-bar contours from the experiment in figure 8.7b are
somewhat distorted. The maximum pressure for a certain position varies slightly
with frequency as shown by the dots. This means that not only the symmetry in
position is disturbed, but also the frequency symmetry.

8.4 Pressure perturbation
Morse and Ingard (1968) derived an expression for the perturbed normal mode due

to the scattering of a small object of volume Vg within a resonator of volume V4.
The foreign object has density ps and compressibility kg, different from the values
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in the surrounding medium pg and kg, respectively. The perturbed resonance
frequency is determined by the rms pressure-amplitude distribution p and the
velocity-amplitude distribution v over the sample (Morse and Ingard, 1968; Harris,
1996; Xu, 2007)

2 2

ws — o 1 Vs 2 2.2 2 3

= -~ —— ) 1) , V A 8.14
2 AV, [0 (p)* + 8p(p5cgv®)] s < (8.14)

where A is a calibration coefficient. The brackets around a quantity define the

averaging operator

"=/ v (5.15)

One part of the change in resonance frequency in equation (8.14) is proportional
to the difference in compressibility 6:

5, = SR (8.16)
Ko

The other term is proportional to the difference in density 6,,:

5, = BP0 (8.17)
Ps
If the object is heavier and stiffer than the displaced fluid, ps > pg and kg < ko, the
first term on the right-hand-side in equation (8.14) tends to increase the resonance
frequency and the second term tends to decrease the resonance frequency. When
the measurements are performed at a pressure antinode (x = 0), the second term
on the right-hand-side of equation (8.14) may be neglected and we write

2 2 2
wg —Wp (p)* Vs
~ — — 0. 8.18
w2 AV (8.18)

Introducing a sample in the tube at a pressure antinode will thus change the reso-
nance frequency. An example is given in figure 8.8, where a cylindrical Aluminum
sample is used with a length of 3.7 cm and a diameter of 2.5 cm. The pressures are
measured with the hydrophone mounted at the wall. We notice that the resonance
frequency shifts from 1083 Hz to 1092 Hz due to the introduction of the sample.
The change in frequency is related to the change in compressibility of the system,
while the change in half-power line width is related to the change in quality factor
of the system.
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Figure 8.7: Iso-bar contours (pressure amplitudes) as a function of position and frequency.
(a) The theoretical pressure is given by equation (8.5). (b) The experimental
pressure is the measured response of an oil-filled DARS system. The dots rep-
resent the measured position-dependent resonant frequency (maximum pres-
sure). Both responses are normalized by their maximum value.
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Figure 8.8: Squared acoustic response at £ = 0 due to the presence of an Aluminum cylin-
der in the center of the tube « = 0 (dashed curve). The unperturbed pressure
(solid curve) is the measured response at = 0 in an oil-filled cylinder. Both
pressures are normalized by the unperturbed peak amplitude, which has an
absolute value of 58 mV at 1083 Hz. The absolute value of the perturbed
peak is 54 mV at 1092 Hz. The arrows denote the width of the curves at
half-power.

Equation (8.18) means that a linear dependence between (w3 —w?)/wg and Vs may
be expected, where the sample size rather than the sample shape is involved. This
is tested for a series of Aluminum and Lucite samples with different dimensions,
tabulated in table 8.1. These measurements were performed by Xu (2007). In
figure 8.9, the relative squared resonance frequency is plotted as a function of
the sample volume of these solids. Obviously, the slopes are different due to the
difference in compressibility.

In the figure, we observe a strong linear correlation for both samples, indeed. We
see that the sample volume rather than the sample shape determines the resonant
frequency. We infer from this observation that the average acoustic pressure over
the sample surface is approximately constant. Xu (2007) concluded that the small
fluctuations around the trend line for samples with fixed diameter but varying
lengths, indicate that the pressure distribution over the sample body is slightly
varying with sample length. In addition, the results for samples with fixed length
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Ls [em] Ds [em] Vs [em?®]  wan/27 [Hz]  wpee/27m [Hz]

5.08 2.54 25.74 1096 1094
5.08 2.79 31.15 1098 1096
5.08 3.05 37.07 1101 1098
5.08 3.30 43.50 1105 1101
5.08 3.56 50.45 1108 1103
5.08 3.81 97.92 1113 1107
2.54 3.81 28.96 1098 1095
3.05 3.81 34.75 1100 1098
3.56 3.81 40.54 1103 1100
4.06 3.81 46.33 1106 1102
4.57 3.81 52.12 1109 1104

Table 8.1: Values of the dimensions and resonant frequency of two reference solids. The
samples lengths Lg and diameters Dg are measured. Subscript S denotes
sample. The volume-dependent resonant frequencies at x = 0 for Aluminum
and Lucite are way, /27 and wrye/27, respectively. The resonant frequency of
the oil-filled cylinder wp/27 is here 1083 Hz. The measurements are acquired
by Xu (2007).

but varying diameter indicate that the pressure variation in the radial direction
can be ignored. The slopes of the fitted lines through the origin are estimates for
the value 6, (p)2/A in equation (8.18).

We also investigate the dependence on sample stiffness of five different solids.
Their properties are given in table 5.2. Prior to each measurement of the resonant
frequency of the tested samples, we measure the resonant frequency of the oil-filled
cylinder. The resulting frequencies are shown in table 8.2.

We now calculate the compressibility of the solids predicted by the DARS method.
Rewriting equation (8.16) using equation (8.18) gives

ks = (1 + Axés)rko, (8.19)
where
2 2
w§ —wi Vo
— _= 8.20
£S wg VS’ ( )

is the measured volume-normalized frequency perturbation for sample S. Coefli-
cient A, is equal to —A/(p)2. Using the five solid reference samples we find that
A, = —0.594 £+ 0.004.
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Relative squared resonance frequency at z = 0 as a function of the sample
volume and sample shape for two reference solids: Aluminum (&> (fixed length)
and < (fixed diameter)) and Lucite (A (fixed length) and v (fixed diameter)).
The lengths, diameters, volumes and resonant frequencies are tabulated in
table 8.1. The lines are linear least-squares fits to all data points, yielding R?
statistics of 0.999 for Aluminum and 0.998 for Lucite, respectively.

Solid  wp/27  ws/2m Vs KDARS KUS

[Hz] [Hz] [cm?)] [GPa™1] [GPa™1]
Alum 1083.0 1092.4 19.27 &+ 0.01 0.006 £ 0.007 0.013 £ 0.001
Teflon 1083.8 1090.2 19.20 £ 0.01 0.367 £ 0.005 0.345 + 0.017
PVC 1082.7 1090.5 19.21 +£0.01 0.190 £ 0.006 0.190 £+ 0.009
Lucite 1082.9 1090.8 19.17 +0.02 0.179 £ 0.007 0.178 4+ 0.009
Delrin  1083.3 1091.2 19.16 & 0.01 0.172 £ 0.007 0.160 4 0.008

Table 8.2: Experimental results of the reference solids. The resonant frequencies wy and

wg are the oil-filled and sample-loaded values at the pressure antinode, respec-

tively. The volume of the resonating cylinder V; is 1855 cm?®. The ultrasonic

compressibilities kyg are calculated from table 5.2. The DARS compressibili-
ties kpars are calculated using equation (8.19). Errors are attributed to the
uncertainty in A.
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Figure 8.10: Compressibilities of the reference solids calculated by the DARS method and
by ultrasound. The values are given in table 8.2.
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Figure 8.11: Acoustic pressure at + = 0 as a function of the sample position at a fixed
frequency: 1083 Hz (solid curve), 1092 Hz (dashed curve), and 1078 Hz
(dashed-dotted curve). All pressures are normalized by the unperturbed
resonant pressure at = 0, i.e. 1083 Hz. The tested sample is an Aluminum
solid. Point A at (0, 1) refers to the unperturbed pressure. Point B is
the perturbed pressure at x = 0. Points C are the perturbed pressures at
z = =*£19 cm.
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Figure 8.12: Iso-bar plot of the change of the resonance frequency due the position of
the sample in a resonant experiment. The unperturbed frequency response
(empty measurement) is represented by the short segments at 2 = 0. The
unperturbed maximum pressure is denoted with point A at (0, 1083). The
perturbed frequency for an Aluminum sample moved over x = +32 cm is
represented by the remaining contours. Both pressures are normalized by
the unperturbed pressure peak. Point B is the antinode at 1092 Hz. Points
C are the perturbed pressure nodes at 1078 Hz.

The DARS compressibility values and the compressibilities determined by ultra-
sound are given in table 8.2 and cross-plotted in figure 8.10. Within the measure-
ment accuracy, the compressibilities for all solids determined by the two methods
are in excellent agreement, indicating that the experimental resonant set-up, ac-
quisition procedure, and corresponding theory are capable to estimate the com-
pressibility for the tested nonporous materials.

In the next section, we apply these findings to porous samples.

8.4.1 Dependence on sample location

Next, we determine the pressure dependency at x = 0 on the sample position.
From equation (8.14), we see that if the sample is near a pressure maximum for
the unperturbed standing wave, the compressibility perturbation §, predominates
the shift in resonant frequency (Morse and Ingard, 1968). Then, p > pocotv and
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wg > wq. If the sample is near a pressure node, where pocod > p, the density
perturbation J, predominates the shift in resonant frequency and ws < wp.

The perturbed pressure plot of an Aluminum sample is shown in figure 8.11 for
several frequencies. The pressures are normalized by the unperturbed pressure.
The pressure at x = 0 measured at the unperturbed resonance frequency (1083
Hz) drops dramatically when the sample is introduced at = = 0. If the frequency is
set at 1092 Hz, a new maximum is obtained (point B), which is slightly lower than
the unperturbed maximum (point A). If measured at a lower frequency (1078 Hz),
the pressure at x = 0 decreases even more. Next, if the sample is moved through
the cylinder at constant frequency, a typical pattern of minima and maxima occurs.

The combined picture is given in figure 8.12. We plot the pressure as a function
of the sample position and frequency. The maximum pressure of the unperturbed
measurement is denoted by point A. We see from figure 8.12 that the pressure
denoted by point B, is a local minimum, since two absolute maxima, denoted by
points C, are seen at the ends of the tube at (£19,1078). These absolute maxima
correspond to the pressure nodes.

We finally plot the change in resonant frequency between each empty and Alu-
minum sample-loaded measurement (w3 — wi)/wg in figure 8.13 as a function of
the sample position. In the middle of the cylinder, x = 0, the sample’s smaller
compressibility leads to a positive shift in frequency. At the ends of the cylinder,
x = 19, the sample’s higher density results in a negative frequency shift. This is
in accordance with equation (8.14), where the pressure or the velocity dominates.
In addition, we observe that the stiff solids (e.g. Aluminum) produce systemati-
cally a larger shift in resonant frequency than the softer ones (e.g. Teflon).

8.5 Porous medium compression

We derive the quasi-static expression for the bulk modulus of a saturated spherical
sample with open pores due to an external fluid pressure p.. This is done to predict
the DARS measurements on porous samples. The bulk modulus of the sample is
(cf. equation (4.9))

; (8.21)

where 4(a) is the radial solid displacement at the sample’s surface having radius
a. The equations for the solid displacement i, pore pressure p, and total stress 7
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Figure 8.13: Relative squared resonance frequency as a function of the position of the
sample in a resonant experiment. The frequency change is between an oil-
filled wy and sample-loaded measurement wg as given in table 8.2. The
cylinder is located between £19 cm. The tested solids, Aluminum (), Delrin
(o), Lucite (O), PVC (—), and Teflon (e) have the measured properties of
table 5.2.

are simply retrieved from equations (4.14):

a(r) = Ar+(Q+ R)Fji(kor), (8.22)
_ 02
7(r) = 3KpgA-— ijl(kgr). (8.24)

There are two arbitrary constants: A and F. The two boundary conditions at the

open porous surface (r = a) are p(a) = p. and 7(a) = —p., which yields
3Q+R PR —Q? , .
— (Q )A + ( Q )kiszo(kiza) = Pe, (825)
¢ ¢
4 +R) . R
3KpgA — Mml(l@a) = —Pe. (8.26)

Adding both equations gives

_ 4@+ R)ji(kea)/a — (PR — Q)kzjo(k2a) /¢

A 3Knc —3(Q + R)/9

F. (8.27)
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Figure 8.14: Frequency-dependent bulk modulus for a Bentheimer sandstone sample
(BEN27). The bulk modulus is normalized by the Biot-Gassmann modu-
lus.

Subsequent substitution into equation (8.25) yields

Q+ R — Ko .

P 1@+ R (kaa)ja — (PR — Q) Knahajo(kaa) (828)

Substitution of these constants into equation (8.22) gives for equation (8.21)

_ (PR - QQ)KngQajO(kza) — 4#(@ 4 R)2j1(k2a)
S (PR — Q?)ksajo(k2a) —3(Q + R)(Hp — Q — R)j1(ksa) (8.29)

The frequency-dependent bulk modulus is shown in figure 8.14 for an arbitrary

sample (BEN27). From the measured properties in chapter 5 we have Kpg = 12.75
GPa. The sample radius is approximated by a = {/3Vg/4m.

From the figure we infer that at low frequencies the bulk modulus of the sample
goes to the bulk modulus of the solid grains Ky = 37 GPa. At high frequencies
the compressibility of the sample goes to the Biot-Gassmann modulus Kpg.

Xu (2007) followed an alternative approach to predict the DARS measurements
on porous samples. He considered micro-scale fluid flow through the surface of
the sample to release the differential pressure across the surface boundary. Ac-
cordingly, he described this dynamic flow phenomenon as a quasi-static diffusion
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Figure 8.15: Schematic representation of the dependency of the fluid flux on sample sur-
face conditions under loading. The dashed contours represent the initial size
of the compressible porous sample prior to loading. The arrows indicate the
pore-fluid flow direction under pressure load. (a) Porous sample with open
outer pores. The pore fluid is free to move in radial and longitudinal direc-
tion in the surrounding fluid. (b) Porous sample with cylindrically sealed
outer surface. The pore fluid is free to move in longitudinal direction only.
(c) Completely sealed porous sample. Fluid flow is restricted.

process. He found that effective compressibility of a fluid-saturated porous mate-
rial under periodic loading is the superposition of the wet-frame compressibility
(inverse Gassmann modulus) and a contribution from the amount of fluid flowing
in and out of the sample.

8.6 DARS results porous samples

The set of investigated porous samples is the variety of consolidated natural and
artificial rocks, studied in chapter 5 and 6. Their rock physical properties, mea-
sured with the conventional methods are given in tables 5.1 and 5.3. All samples
are fully saturated with 5c¢St silicone oil, which is identical to the fluid filling the
container. For the purpose of this experiment, the pores of the tested samples are
initially open, so that the pore-fluid can communicate with the surrounding fluid,
see figure 8.15a.

We compare the data from the DARS technique with the conventional ultrasonic
method from which the dry and saturated ultrasonic bulk moduli are calculated
(see chapters 5 and 6). In addition, the Biot-Gassmann modulus Kpg is calculated
using Gassmann’s equation (2.26). The results are listed in table 8.3.

We first measure the resonant frequency of the empty cylinder, followed by the
equidistant measurements of the sample-loaded cylinder at various positions along
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the cylinder’s axis. The empty and sample-loaded frequency at the middle position
are used to calculate g from equation (8.20), where the Vg is the bulk volume of
the porous sample.

We apply equation (8.19) with temperature-corrected kg to calculate the DARS
bulk modulus of the porous samples. The results are shown in the first column of
table 8.3. We observe a large variety in bulk moduli.

The bulk moduli estimated using the DARS method are compared with the dry
ultrasonic bulk moduli in figure 8.16a. From the figure it is obvious that the bulk
moduli calculated by the two methods are generally in disagreement.

It can be argued that the disagreement is attributable to the saturated state of
the DARS-measured samples. The cross plot of the measured wet ultrasonic bulk
moduli in figure 8.16b now shows that the distance off the 45° line is even larger
than for the dry ultrasonic bulk moduli. In the figure, we observe that the DARS
bulk modulus is higher than the measured wet ultrasonic bulk modulus for all
samples.

Xu et al. (2006) estimated the flow properties in porous media with a model for
dynamic diffusion and related the effective compressibility (measured with DARS)
to permeability. He found that the permeability of the sample greatly influences
the DARS-compressibility.

To further investigate this claim, we carefully seal the outer cylindrical surface of
the porous samples by means of an exopy resin (Devcon 2-Ton Clear Epoxy). The
top and bottom of the sample are left open, see figure 8.15b.
DARS-measurements on these partially sealed porous samples show a higher bulk
modulus Kpar¢ than DARS-measurements on the samples with open pores Kopen-
Obviously, partially sealed samples are stiffer than samples with open outer pores.
The partially-sealed bulk modulus is plotted against the dry-rock and, respectively,
the oil-saturated ultrasonic bulk modulus in figure 8.17.

Finally, we completely seal several porous samples. The bulk moduli of these
completely sealed samples are also given in table 8.3. The relations to the dry and
wet ultrasonic bulk modulus are shown in figure 8.18.

There is a reasonable agreement between K, and Kyet. The agreement between
Kyea and Kpg is even better. With reference to section 8.5, we note that the
measured bulk moduli by DARS are generally not close to K. This is probably
because the bulk modulus is described by the relative fluid displacement instead
of the solid displacement: ¢U(a) + (1 — ¢)i(a), where U(a) is the radial fluid
displacement at the sample’s surface.

Apparently, the bulk modulus measured with DARS is dependent on whether or
not the pore fluid is allowed to communicate with the surrounding fluid. The fluid
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flux is illustrated in figure 8.15. The mechanism responsible for the bulk modulus
measured with the DARS set-up is a combination of bulk modulus of the saturated
frame and fluid flow, while the dry bulk modulus measured by ultrasound is a direct
measure of the bulk modulus of the frame.

Future work on DARS should concentrate on verifying the validity of the rela-
tive fluid displacement assumption and quantifying the quality factor of porous
samples.
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Sample ID Kopen Kpart Keal Kyet Kpa
[GPa] [GPa) [GPa] [GPa] [GPa]

CHKO03 109 +24 126 +£34 426 £234 122+06 242 +1.2
CHKO04 116 £ 2.8 19.3 £6.8 120 £ 06 24.0+ 1.1
SSA04 41+04 68+£1.0 8.7+1.6 98+ 05 96=+05
SSA11 49+£05 78=£13 104 £ 05 88=*04
SSB04 27+£01 34+£02 5.7+ 03 124+ 0.6
SSBO7 30£02 42+£04 143+40 82+04 153+0.7
SSBO08 29+£02 39403 71+£03 123 +£0.6
SSB09 3.0£02 46=+04 8.5 £04 15.7+£0.7
SSCO05 102+22 13034 176+£58 16.8+0.8 16.5£0.8
SSC06 6.3+09 119429 15.7 £ 0.7 15.1 £0.7
SSF02 29+02 414+£04 6.9 £ 1.0 85+04 T79+04
SSF03 27+0.1 434+04 93+£04 87+04
SSF04 31+02 46+£05 7203 7.7+£04
SSGO1 3302 54£06 10121 92+£04 95+£05
SSGO02 34£02 53£06 134+£06 11.2+£0.5
YBEO3 56 £07 80+£14 11.0+25 11.1£+£05 11.1 +£0.5
VIFO01 23+01 27+01 6.0 £ 0.8 5.0+ 0.2 52£02
VIF02 22401 27+01 51+£0.2 54403
VIC05 19+£01 24+£0.1 3.7+ 0.3 454+02 34+02
VIC06 1.9+01 22+£0.1 35+£02 35102
QUE09 33£02 524+£06 103+£22 106+05 10.1+£0.5
QUE10 43+£04 4.6 =+0.5 106 £05 93+£04
B1P13 5506 T72+1.1 98+20 11.3+£05 123 £0.6
B1P14 54+£06 63+£09 116 £0.6 109 £ 0.5
CAS16 93+£18 11.0+£25 91+£138 72+03 88+04
CAS17 7T3+£12 88+£17 91+£04 89+04
B1N20 43+04 65+£09 824+14 10.8£0.5 99=+x0.5
B1IN21 43+04 T72+£1.1 104 = 0.5 10.1 £0.5
COL23 91+18 103+22 13.0+34 158+0.8 148 +£0.7
COL25 9.7+20 119+ 29 158 £0.8 159+ 0.8
BEN27 34+£02 59+08 136+£37 1444+07 127+£0.6
BEN28 34+£02 594038 15.0 £ 0.7 12.7 + 0.6
B2P30 9.5 £07 77+£13 9.7+£20 129+06 128 £0.6
B2N32 62+£08 96=£20 115+27 13.0+£06 123 +0.6
B2N33 5.5 £0.7 102+ 2.2 123 £ 06 121 £0.6

(continues)
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(continued)
Sample ID Kopen Kpart Keal Kot Kpa
[GPa] [GPa) [GPa] [GPa] [GPa]
FEL36 64+09 68+£1.0 92+18 13.1+06 121 +£0.6
FEL37 6.0+ 08 6.6+£09 123+ 06 13.2 £ 0.6
NIV44 3202 33£02 121+30 102+£05 7904
NIV45 28+ 01 34+£02 90£04 71+£03
UNK50 85+£15 129+£34 141+39 187+09 159+0.8
UNKS51 89+£17 127+ 3.2 164 £ 08 144 £0.7
NN356 93+£18 93+£18 129+33 1294+0.6 139 +0.7
NN458 13.6 £3.7 155£46 183 +£6.2 193+09 200=x1.0
GL160 2501 29=+02 5.0 £ 0.5 5.2+£0.2 88+04
GL261 25+£01 29=+02 5.6 £ 0.7 6.0+ 0.3 10.0 £ 0.5

Table 8.3: Bulk moduli of the fully-saturated samples. Mod-
uli Kopen, Kpart, and Kgea are determined using the DARS
method with different surface conditions. Their error reflects

the uncertainty in coefficient A,,. Moduli Kyt and Kpg are

determined from ultrasonic measurements.
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Chapter 9

Conclusions

The aim of this research was to extend the Biot concept of wave propagation in
fluid-saturated porous media to heterogeneous porous media with special atten-
tion to attenuation in the seismic frequency band. This thesis focuses on fluid
inhomogeneities, i.e., partially saturated porous media. The inhomogeneities are
on the mesoscopic scale, i.e., larger than the typical pore size but smaller than the
wavelength. Frame inhomogeneities are not considered. The conclusions are as
follows:

1. Local pressure differences due to the passing of a sound wave in a fluid-
saturated porous medium with a mesoscale contrast in constituent proper-
ties are counterbalanced by fluid flow (White theory). We extended White’s
theory for layered inhomogeneities in porous media to higher frequencies.
This extended theory is then comparable to Dutta-Odé’s theory for spheri-
cal gas fractions in porous media. It was found that resonance effects become
important when the size of the inhomogeneity has the order of magnitude
of the wavelength. This behavior was fully neglected in the White’s origi-
nal papers. However, when the frequency is smaller than the critical Biot
frequency, and the wavelength larger than the size of the inhomogeneity,
low-frequency Biot theory can effectively be applied. It is assumed that the
frequencies are so low that the dynamic permeability is equal to the Darcy
permeability. Moreover, all acceleration terms in the Biot equations can
safely be neglected. In this way it is possible to determine an effective dy-
namic bulk modulus. Following Johnson, it can be shown that the so-called
patchy saturation theory describes the transition from low-frequency Wood-
like behavior toward high-frequency Hill-like behavior. We demonstrated
that our exact analytical solution to patchy saturation in the quasi-static
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Biot context is in exact agreement with the generalized (Johnson) model.

The problem with the patchy saturation model is that it is based on the
assumption of sealed boundary conditions. These are imposed because of the
inherent assumption of regular unit cell distributions. For dilute gas-liquid
mixtures the so-called Rayleigh-Plesset-Biot approach is more suited. Here it
is assumed that in first order approximation the gas bubbles do not interact
and that they radiate energy into the infinitely extended surrounding liquid.
We modified the Rayleigh-Plesset-Biot assumption for porous media, and
we compared the outcome of the computations with the patchy saturation
model. We found that the attenuation of the fast Biot wave was significantly
larger than predicted by the patchy saturation model, for relevant seismic
frequencies, gas saturations, and gas bubble radii. Moreover, the second, slow
Biot wave is naturally incorporated in the Rayleigh-Plesset-Biot approach,
which is not the case for the patchy saturation model.

Applying the Rayleigh-Plesset-Biot model to the literature data of Murphy,
we were able to get a very good match between the reported attenuation
values and the theoretical predictions. This was not the case for the patchy
saturation model. The frequency range in Murphy’s data was from 0.6 to 6
kHz.

. Using a gas-injection technique, we measured the ultrasound velocity and

attenuation of partially saturated porous rocks. The effectiveness of the in-
jection technique was tested in an independent visualization set-up. For the
determination of the phase velocities and the attenuation coefficients, the
Spectral Ratio Data Analysis technique was used. Under our experimen-
tal conditions, conducted at 500 kHz, we found that the patchy saturation
model gave a better prediction of the measured attenuation values than the
Rayleigh-Plesset-Biot approach. We note, however, that squirt-flow mecha-
nisms may play an important additional role in this frequency range. This
mechanism was not taken into account here.

By means of ultrasound experiments in oil using either a needle hydrophone
or a transducer receiver, we successfully validated far and near-field wave
theory when an effective source radius is introduced. This accounts for non-
planar behavior of the piston source, and for transient effects. As the theory
is based on the continuous wave assumption, discrepancies are bound to occur
as the wavelets simply do not have enough time for complete diffraction. Still,
the agreement between experiment and theory is not sufficiently close to be
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able to determine the intrinsic losses in the silicone oil. Using Spectral Ratio
Data Analysis (SRDA), however, it is possible to exactly determine the wave
speed in the oil. For this, two identical planar transducers are used as source
and receiver.

. Differential Acoustic Resonance Spectroscopy (DARS) experiments on non-
porous samples confirm the perturbation theory. DARS can thus be used
successfully to determine the compressibility of those samples at tube reso-
nance frequencies (around 1 kHz). The compressibility of porous samples,
however, is determined by the relative fluid motion at the sample outer wall.
If the sample is sealed, the closed-pore boundary conditions apply, and the
Gassmann modulus of the sample is measured. This leaves open the question
whether DARS can be used for measuring sample attenuation, and whether
reservoir properties, such as permeability and gas volume content, can be
extracted from seismically measured attenuation.



174 Conclusions




Bibliography

Anderson, A. L. and L. D. Hampton (1980a). Acoustics of gas-bearing sediments.
1. Background. Journal of the Acoustical Society of America 67(6), 1865-1889.

Anderson, A. L. and L. D. Hampton (1980b). Acoustics of gas-bearing sediments. 2.
Measurements and models. Journal of the Acoustical Society of America 67(6),
1890-1903.

Arntsen, B. and J. M. Carcione (2001). Numerical simulation of the Biot slow
wave in water-saturated Nivelsteiner sandstone. Geophysics 66(3), 890-896.

Bass, R. (1958). Diffraction effects in the ultrasonic field of a piston source. Journal
of the Acoustical Society of America 30(7), 602-605.

Batzle, M. L., D. H. Han, and R. Hofmann (2006). Fluid mobility and frequency-
dependent seismic velocity - direct measurements. Geophysics 71(1), N1-N9.

Bedford, A. and M. Stern (1983). A model for wave-propagation in gassy sedi-
ments. Journal of the Acoustical Society of America 73(2), 409-417.

Berkhout, A. J. (1987). Applied seismic wave theory. Elsevier, Amsterdam.

Berryman, J. G. (1999). Origin of Gassmann’s equations. Geophysics 64(5),
1627-1629.

Berryman, J. G., L. Thigpen, and R. C. Y. Chin (1988). Bulk elastic wave-
propagation in partially saturated porous solids. Journal of the Acoustical So-
ciety of America 84(1), 360-373.

Berryman, J. G. and H. F. Wang (1995). The elastic coefficients of double-porosity
models for fluid transport in jointed rock. Journal of Geophysical Research-Solid
Earth 100(B12), 24611-24627.



176 BIBLIOGRAPHY

Berryman, J. G. and H. F. Wang (2000). Elastic wave propagation and attenuation
in a double-porosity dual-permeability medium. International Journal of Rock
Mechanics and Mining Sciences 37(1-2), 63-78.

Best, A. I., Q. J. Huggett, and A. J. K. Harris (2001). Comparison of in situ and
laboratory acoustic measurements on Lough Hyne marine sediments. Journal
of the Acoustical Society of America 110(2), 695-709.

Best, A. 1., C. McCann, and J. Sothcott (1994). The relationships between the
velocities, attenuations and petrophysical properties of reservoir sedimentary-
rocks. Geophysical Prospecting 42(2), 151-178.

Biot, M. A. (1956a). Theory of propagation of elastic waves in a fluid-saturated
porous solid: I. Low frequency range. Journal of the Acoustical Society of Amer-
ica 28, 168-178.

Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid-saturated
porous solid: II. High frequency range. Journal of the Acoustical Society of
America 28, 179-191.

Biot, M. A. (1962a). Generalized theory of acoustic propagation in porous dissi-
pative media. Journal of the Acoustical Society of America 34(9), 1254-1264.

Biot, M. A. (1962b). Mechanics of deformation and acoustic propagation in porous
media. Journal of Applied Physics 33(4), 1482-1498.

Biot, M. A. and D. G. Willis (1957). The elastic coefficients of the theory of
consolidation. Journal of Applied Mechanics 24, 594—601.

Birch, F. (1975). Velocity and attenuation from resonant vibrations of spheres of
rock, glass, and steel. Journal of Geophysical Research 80(5), 756-764.

Bourbié, T., O. Coussy, and B. Zinszner (1987). Acoustics of Porous media. In-
stitut Francais du Petrole Publications, Gulf Publishing Co.

Bourbie, T. and B. Zinszner (1985). Hydraulic and acoustic properties as a function
of porosity in Fontainebleau sandstone. Journal of Geophysical Research-Solid
FEarth and Planets 90(NB13), 1524-1532.

Brajanovski, M., B. Gurevich, and M. Schoenberg (2005). A model for P-wave
attenuation and dispersion in a porous medium permeated by aligned fractures.
Geophysical Journal International 163(1), 372-384.



BIBLIOGRAPHY 177

Brandt, H. (1960). Factors affecting compressional wave velocity in unconsolidated
marine sand sediments. Journal of the Acoustical Society of America 32(2),
171-179.

Brie, A., F. Pampur, A. Marsala, and O. Meazza (1995). Shear sonic interpreta-
tion in gas-bearing sands. Society of Petroleum FEngineers - Annual Technical

Conference, Paper 30595, 701-710.

Budiansky, B. and R. J. O’Connell (1976). Elastic-moduli of a cracked solid.
International Journal of Solids and Structures 12(2), 81-97.

Cadoret, T. (1993). Effet de la saturation eau/gaz sur les propriétés acoustiques
des roches - Etude aux fréquences sonores et ultrasonores. These, Université de
Paris VII.

Cadoret, T., D. Marion, and B. Zinszner (1995). Influence of frequency and fluid
distribution on elastic-wave velocities in partially saturated limestones. Journal
of Geophysical Research - Solid Farth 100(6), 9789-9803.

Cadoret, T., G. M. Mavko, and B. Zinszner (1998). Fluid distribution effect on
sonic attenuation in partially saturated limestones. Geophysics 63(1), 154-160.

Carcione, J. M. (1998). Viscoelastic effective rheologies for modelling wave prop-
agation in porous media. Geophysical Prospecting 46(3), 249-270.

Carcione, J. M., B. Gurevich, and F. Cavallini (2000). A generalized Biot-
Gassmann model for the acoustic properties of shaley sandstones. Geophysical
Prospecting 48(3), 539-557.

Carcione, J. M., H. B. Helle, and N. H. Pham (2003). White’s model for wave
propagation in partially saturated rocks: Comparison with poroelastic numerical
experiments. Geophysics 68(4), 1389-1398.

Carcione, J. M. and S. Picotti (2006). P-wave seismic attenuation by slow-wave
diffusion: Effects of inhomogeneous rock properties. Geophysics 71(3), O1-08.

Castagna, J. P., M. L. Batzle, and T. K. Kan (1993). Rock physics: The link
between rock properties and AVO response. Number 8. J. P. Castagna and M.
Backus, eds., Offset-dependent reflectivity: Theory and practice of AVO analy-
sis, Investigations in Geophysics.



178 BIBLIOGRAPHY

Castagna, J. P., S. Sun, and R. W. Seigfried (2003). Instantaneous spectral anal-
ysis: detection of low-frequency shadows associated with hydrocarbons. The
Leading Edge 22(2), 120-127.

Champoux, Y. and J.-F. Allard (1991). Dynamic tortuosity and bulk modulus in
air-saturated porous-media. Journal of Applied Physics 70(4), 1975-1979.

Chandler, R. N. and D. L. Johnson (1981). The equivalence of quasistatic flow in
fluid-saturated porous-media and Biot’s slow-wave in the limit of zero frequency.
Journal of Applied Physics 52(5), 3391-3395.

Chapman, M., E. R. Liu, and X. Y. Li (2006). The influence of fluid-sensitive
dispersion and attenuation on AVO analysis. Geophysical Journal Interna-
tional 167(1), 89-105.

Clark, V. A., B. R. Tittmann, and T. W. Spencer (1980). Effect of volatiles on
attenuation (Q~!) and velocity in sedimentary rocks. Journal of Geophysical
Research 85(10), 5190-5198.

Clearco Products (2006).  Product information sheet, Figure 1 - Viscosity-
temperature relationships. www.clearcoproducts.com.

Core Laboratories Instruments (2000). Technical Specifications Ultraperm-400 per-
meameter.

Del Grosso, V. A. and C. W. Mader (1972). Speed of sound in pure water. Journal
of the Acoustical Society of America 52(5), 1442-1446.

Deresiewicz, H. and R. Skalak (1963). On uniqueness in dynamic poroelasticity.
Bulletin of the Seismological Society of America 53, 783—788.

Diallo, M. S., M. Prasad, and E. Appel (2003). Comparison between experimen-
tal results and theoretical predictions for P-wave velocity and attenuation at
ultrasonic frequency. Wave Motion 37(1), 1-16.

Domenico, S. N. (1976). Effect of brine-gas mixture on velocity in an unconsoli-
dated sand reservoir. Geophysics 41(5), 882-894.

Dutta, N. C. and H. Odé (1979a). Attenuation and dispersion of compressional
waves in fluid-filled porous rocks with partial gas saturation (White model). 1.
Biot theory. Geophysics 44 (11), 1777-1788.



BIBLIOGRAPHY 179

Dutta, N. C. and H. Odé (1979b). Attenuation and dispersion of compressional
waves in fluid-filled porous rocks with partial gas saturation (White model). 2.
Results. Geophysics 44 (11), 1789-1805.

Dutta, N. C. and A. J. Seriff (1979). White model of attenuation in rocks with
partial gas saturation. Geophysics 44 (11), 1806-1812.

Dvorkin, J., G. M. Mavko, and A. Nur (1995). Squirt flow in fully saturated rocks.
Geophysics 60(1), 97-107.

Dvorkin, J. and A. Nur (1993). Dynamic poroelasticity - A unified model with the
squirt and the biot mechanisms. Geophysics 58(4), 524-533.

Ebrom, D. (2004). The low frequency gas shadow on seismic sections. The Leading
Edge 23(8), T72-775.

Frenkel, J. (1944). On the theory of seismic and seismo-electric phenomena in a
moist soil. Journal of Physics USSR 8(4), 230-241.

Gardner, G. H. F., M. R. J. Wyllie, and D. M. Droschak (1964). Effects of pressure
+ fluid saturation on attenuation of elastic waves in sands. Journal of Petroleum
Technology 16(2), 189-193.

Garg, S. K. and A. H. Nayfeh (1986). Compressional wave-propagation in liquid
and or gas saturated elastic porous-media. Journal of Applied Physics 60(9),
3045-3055.

Gassmann, F. (1951). Uber die Elastizitit poroser Medien. Vierteljahresschrift
Naturforschenden Gesellschaft Zirich 96, 1-23.

Gei, D. and J. M. Carcione (2003). Acoustic properties of sediments saturated
with gas hydrate, free gas and water. Geophysical Prospecting 51(2), 141-157.

Gelinsky, S., S. A. Shapiro, T. M. Miiller, and B. Gurevich (1998). Dynamic
poroelasticity of thinly layered structures. International Journal of Solids and
Structures 35(34), 4739-4751.

Gist, G. A. (1994a). Fluid effects on velocity and attenuation in sandstones.
Journal of the Acoustical Society of America 96(2), 1158-1173.

Gist, G. A. (1994b). Interpreting laboratory velocity-measurements in partially
gas-saturated rocks. Geophysics 59(7), 1100-1109.



180 BIBLIOGRAPHY

Glover, P. (2009). What is the cementation exponent? A new interpretation. The
Leading Edge 28(1), 82-85.

Goloshubin, G. M. and V. A. Korneev (2000). Seismic low-frequency effects from
fluid-saturated reservoir. Ezxpanded Abstracts, 70th SEG Annual Meeting, 1-4.

Gregory, A. R. (1976). Fluid saturation effects on dynamic elastic properties of
sedimentary-rocks. Geophysics 41(5), 895-921.

Gurevich, B. and S. L. Lopatnikov (1995). Velocity and attenuation of elastic-
waves in finely layered porous rocks. Geophysical Journal International 121(3),
933-947.

Harris, J. M. (1996). Differential Acoustical Resonance Spectroscopy. Seismic
Tomography Project Annual Report, Paper F, Stanford University.

Harris, J. M., Y. Quan, and C. Xu (2005). Differential Acoustical Resonance
Spectroscopy: An experimental method for estimating acoustic attenuation in
porous media. FEzpanded Abstracts, 75th SEG Annual Meeting Houston 2/,
1569-1572.

Helle, H. B., N. H. Pham, and J. E. M. Carcione (2003). Velocity and attenuation
in partially saturated rocks: poroelastic numerical experiments. Geophysical
Prospecting 51(6), 551-566.

Heller, H. K. J. (2006). Personal correspondence.

Hill, R. (1963). Elastic properties of reinforced solids - Some theoretical principles.
Journal of the Mechanics and Physics of Solids 11(5), 357-372.

Hornby, B. E. and W. F. Murphy (1987). v,/vs in unconsolidated oil sands - Shear
from Stoneley. Geophysics 52(4), 502-513.

Jocker, J. (2005). Ultrasonic wave propagation in heterogeneous elastic and poroe-
lastic media. Dissertation, Delft University of Technology.

Jocker, J., D. M. J. Smeulders, G. G. Drijkoningen, C. van der Lee, and A. Kalfs-
beek (2004). Matrix propagator method for layered porous media: Analytical
expressions and stability criteria. Geophysics 69(4), 1071-1081.

Johnson, D. L. (2001). Theory of frequency dependent acoustics in patchy-
saturated porous media. Journal of the Acoustical Society of America 110(2),
682-694.



BIBLIOGRAPHY 181

Johnson, D. L., J. Koplik, and R. Dashen (1987). Theory of dynamic permeability
and tortuosity in fluid-saturated porous-media. Journal of Fluid Mechanics 176,
379-402.

Johnston, D. H., M. N. Toks6z, and A. Timur (1979). Attenuation of seismic waves
in dry and saturated rocks. Part 2. Mechanisms. Geophysics 44 (4), 691-711.

Jones, T. D. (1986). Pore fluids and frequency-dependent wave-propagation in
rocks. Geophysics 51(10), 1939-1953.

Jones, T. D. and A. Nur (1983). Velocity and attenuation in sandstone at elevated-
temperatures and pressures. Geophysical Research Letters 10(2), 140-143.

K-Mac Products (2008). Product information sheet. www.k-mac-plastics.com.

Kelder, O. (1998). Frequency-dependent wave propagation in water-saturated
porous media. Dissertation, Delft University of Technology.

Kelder, O. and D. M. J. Smeulders (1997). Observation of the Biot slow wave in
water-saturated Nivelsteiner sandstone. Geophysics 62(6), 1794-1796.

King, M. S., J. R. Marsden, and J. W. Dennis (2000). Biot dispersion for P-
and S-wave velocities in partially and fully saturated sandstones. Geophysical
Prospecting 48(6), 1075-1089.

Kjartansson, E. (1979). Constant Q-wave propagation and attenuation. Journal
of Geophysical Research 84(NB9), 4737-4748.

Klimentos, T. and C. McCann (1990). Relationships among compressional wave
attenuation, porosity, clay content, and permeability in sandstones. Geo-
physics 55(8), 998-1014.

Klinkenberg, L. J. (1941). The permeability of porous media to liquids and gases.
Drilling and Production Practice, American Petroleum Institute, 200-213.

Knight, R. and J. Dvorkin (1992). Seismic and electrical-properties of sand-
stones at low saturations. Journal of Geophysical Research-Solid Earth 97(B12),
17425-17432.

Knight, R., J. Dvorkin, and A. Nur (1998). Acoustic signatures of partial satura-
tion. Geophysics 63(1), 132-138.



182 BIBLIOGRAPHY

Knight, R. and R. Nolen-Hoeksema (1990). A laboratory study of the dependence
of elastic wave velocities on pore scale fluid distribution. Geophysical Research
Letters 17(10), 1529-1532.

Korneev, V. A.; G. M. Goloshubin, T. M. Daley, and D. B. Silin (2004). Seismic
low-frequency effects in monitoring fluid-saturated reservoirs. Geophysics 69(3),
522-532.

Kumar, A., T. Jayakumar, B. Raj, and K. Ray (2003). Correlation between
ultrasonic shear wave velocity and Poisson’s ratio for isotropic solid materials.
Acta Materialia 51, 2417-2426.

Kundu, T. (2003). Ultrasonic Nondestructive Evaluation: Engineering and Bio-
logical Material Characterization. CRC Press, Florida, USA.

Lamb, H. (1916). Statics. Reprinted by Cambridge University Press, Cambridge,
United Kingdom, 1960.

Lebedev, M., J. Toms, B. Clennell, M. Pervukhina, V. Shulakova, L. Paterson,
T. M. Miiller, B. Gurevich, and F. Wenzlau (2009). Direct laboratory observa-
tion of patchy saturation and its effects on ultrasonic velocities. The Leading
Edge 28(1), 24-27.

Lockner, D. A., J. B. Walsh, and J. D. Byerlee (1977). Changes in seismic ve-
locity and attenuation during deformation of granite. Journal of Geophysical
Research 82(33), 5374-5378.

Lopatnikov, S. L. and P. Y. Gorbachev (1987). Propagation and attenuation
of longitudinal-waves in a partially gas-saturated porous-medium. Izvestiya
Akademii Nauk SSSR Fizika Zemli (8), 78-86.

Lucet, N. and B. Zinszner (1992). Effects of heterogeneities and anisotropy on
sonic and ultrasonic-attenuation in rocks. Geophysics 57(8), 1018-1026.

Lumley, D., D. Beve, J. Ji, and S. Talas (1997). Lab measurements of elastic veloc-
ities in dry and saturated Massillon sandstone. Stanford Exploration Project,
Stanford University.

Mason, W. P., K. J. Marfurt, D. N. Beshers, and J. T. Kuo (1978). Internal friction
in rocks. Journal of the Acoustical Society of America 63(5), 1596-1603.



BIBLIOGRAPHY 183

Masson, Y. J., S. R. Pride, and K. T. Nihei (2006). Finite difference modeling
of Biots poroelastic equations at seismic frequencies. Journal of Geophysical
Research 111(1), B10305.1-B10305.13.

Mast, T. D. and F. Yu (2005). Simplified expansions for radiation from a baffled
circular piston. Journal of the Acoustical Society of America 118(6), 3457-3464.

Mavko, G. M. (1979). Frictional attenuation - Inherent amplitude dependence.
Journal of Geophysical Research 84(9), 4769-4775.

Mavko, G. M., T. Mukerji, and J. Dvorkin (2003). The rock physics Handbook:
Tools for Seismic Analysis in Porous Media. Cambridge University Press, New
York.

Mavko, G. M. and A. Nur (1979). Wave attenuation in partially saturated rocks.
Geophysics 44(2), 161-178.

Miksis, M. J. (1988). Effects of contact line movement on the dissipation of waves
in partially saturated rocks. Journal of Geophysical Research - Solid Farth and
Planets 93(6), 6624-6634.

Mochizuki, S. (1982). Attenuation in partially saturated rocks. Journal of Geo-
physical Research 87, 8598-8604.

Morse, P. M. and K. U. Ingard (1968). Theoretical acoustics. McGraw-Hill Inc.,
New, York.

Miiller, T. M. and B. Gurevich (2004). One-dimensional random patchy saturation
model for velocity and attenuation in porous rocks. Geophysics 69(5), 1166—
1172.

Miiller, T. M. and B. Gurevich (2005a). A first-order statistical smoothing approx-
imation for the coherent wave field in random porous random media. Journal
of the Acoustical Society of America 117(4), 1796-1805.

Miiller, T. M. and B. Gurevich (2005b). Wave-induced fluid flow in random porous
media: Attenuation and dispersion of elastic waves. Journal of the Acoustical
Society of America 117(5), 2732-2741.

Murphy, W. F. (1982a). Effects of microstructure and pore fluids on the acoustic
properties of granular sedimentary materials. Dissertation, Stanford University.



184 BIBLIOGRAPHY

Murphy, W. F. (1982b). Effects of partial water saturation on attenuation in
Massilon sandstone and Vycor porous-glass. Journal of the Acoustical Society
of America 71(6), 1458-1468.

Murphy, W. F. (1984). Acoustic measures of partial gas saturation in tight sand-
stones. Journal of Geophysical Research 89(NB13), 1549-1559.

Murphy, W. F.; K. W. Winkler, and R. L. Kleinberg (1984). Frame modulus
reduction in sedimentary-rocks - The effect of adsorption on grain contacts.
Geophysical Research Letters 11(9), 805-808.

Murphy, W. F., K. W. Winkler, and R. L. Kleinberg (1986). Acoustic relaxation
in sedimentary-rocks - Dependence on grain contacts and fluid saturation. Geo-
physics 51(3), 757-766.

Nagy, P. B., L. Adler, and B. B. P. (1990). Slow wave propagation in air-filled
porous materials and natural rocks. Applied Physics Letters 56(25), 2504-2506.

Norris, A. N. (1993). Low-frequency dispersion and attenuation in partially satu-
rated rocks. Journal of the Acoustical Society of America 94 (1), 359-370.

O’Connell, R. J. and B. Budiansky (1974). Seismic velocities in dry and saturated
cracked solids. Journal of Geophysical Research 79(35), 5412-5426.

Palmer, I. D. and M. L. Traviolia (1980). Attenuation by squirt flow in undersat-
urated gas sands. Geophysics 45(12), 1780-1792.

Pham, N. H., J. M. Carcione, H. B. Helle, and B. Ursin (2002). Wave velocities
and attenuation of shaley sandstones as a function of pore pressure and partial
saturation. Geophysical Prospecting 50(6), 615—627.

Pierce, A. D. (1989). Acoustics: An introduction to its physical principles and
applications (2" ed.). Acoustical Society of America, Woodbury, New York.

Plona, T. J. (1980). Observation of a 2nd bulk compressional wave in a porous-
medium at ultrasonic frequencies. Applied Physics Letters 36(4), 259-261.

Pride, S., J. Harris, D. Johnson, A. Mateeva, K. Nihei, R. Nowack, J. Rector,
H. Spetzler, R. Wu, T. Yamamoto, J. Berryman, and M. Fehler (2003). Perme-
ability dependence of seismic amplitudes. The Leading FEdge 6, 518-525.

Pride, S. R. and J. G. Berryman (2003a). Linear dynamics of double-porosity
dual-permeability materials. I. Governing equations and acoustic attenuation.
Physical Review E 68(3), 036603.01-036603.10.



BIBLIOGRAPHY 185

Pride, S. R. and J. G. Berryman (2003b). Linear dynamics of double-porosity dual-
permeability materials. II. Fluid transport equations. Physical Review E 68(3),
036604.01-036604.10.

Pride, S. R., J. G. Berryman, and J. M. Harris (2004). Seismic attenuation due
to wave-induced flow. Journal of Geophysical Research 109(1), B01201.01-
B01201.19.

Pride, S. R. and Y. J. Masson (2006). Acoustic attenuation in self-affine porous
structures. Physical Review Letters 97(18).

Pride, S. R., E. Tromeur, and J. G. Berryman (2002). Biot slow-wave effects in
stratified rock. Geophysics 67(1), 271-281.

Rayleigh, J. W. S. (1896). The theory of sound, Volume 2. Reprinted by Dover,
New York, 1945.

Rogers, P. H. and A. L. Van Buren (1974). Exact expression for Lommel diffraction
correction integral. Journal of the Acoustical Society of America 55(4), 724-728.

Rutherford, S. R. and R. H. Williams (1989). Amplitude-versus-offset variations
in gas sands. Geophysics 54 (6), 630-688.

Sams, M. S., J. P. Neep, M. H. Worthington, and M. S. King (1997). The mea-
surement of velocity dispersion and frequency-dependent intrinsic attenuation
in sedimentary rocks. Geophysics 62(5), 1456-1464.

Savage, J. C. and H. S. Hasegawa (1967). Evidence for a linear attenuation mech-
anism. Geophysics 32(6), 1003-1014.

Schon, J. H. (1996). Physical properties of rocks: fundamentals and principles of
petrophysics, Volume 18. Handbook of Geophysical Exploration. Elsevier Science
Ltd, Oxford, UK.

Seki, H., A. Granato, and R. Truell (1956). Diffraction effects in the ultrasonic
field of a piston source and their importance in the accurate measurement of
attenuation. Journal of the Acoustical Society of America 28(2), 230-238.

Selfridge, A. R. (1985). Approximate material properties in isotropic materials.
IEEE Transactions on Sonics and Ultrasonics 32(3), 381-394.

Shapiro, S. A. and T. M. Miiller (1999). Seismic signatures of permeability in
heterogeneous porous media. Geophysics 64 (1), 99-103.



186 BIBLIOGRAPHY

Smeulders, D. M. J. (2005). Experimental evidence for slow compressional waves.
Journal of Engineering Mechanics 131(9), 908-917.

Smeulders, D. M. J. and M. E. H. Van Dongen (1997). Wave propagation in porous
media containing a dilute gas-liquid mixture: Theory and experiments. Journal

of Fluid Mechanics 343, 351-373.

Stoll, R. D. (1985). Marine sediment acoustics. Journal of the Acoustical Society
of America 77(5), 1789-1799.

Stoll, R. D. and G. M. Bryan (1970). Wave attenuation in saturated sediments.
Journal of the Acoustical Society of America 47(5), 1440-1447.

Tittmann, B. R., V. A. Clark, J. M. Richardson, and T. W. Spencer (1980).
Possible mechanism for seismic attenuation in rocks containing small amounts
of volatiles. Journal of Geophysical Research 85(10), 5199-5208.

Toksoz, M. N., C. H. Cheng, and A. Timur (1976). Velocities of seismic-waves in
porous rocks. Geophysics 41(4), 621-645.

Toksoz, M. N., D. H. Johnston, and A. Timur (1979). Attenuation of seismic
waves in dry and saturated rocks. Part 1: Laboratory measurements. Geo-
physics 44 (4), 681-690.

Toms, J., T. M. Miiller, R. Ciz, and B. Gurevich (2006). Comparative review
of theoretical models for elastic wave attenuation and dispersion in partially
saturated rocks. Soil Dynamics and Farthquake Engineering 26(6-7), 548-565.

Toms, J., T. M. Miiller, and B. Gurevich (2007). Seismic attenuation in porous
rocks with random patchy saturation. Geophysical Prospecting 55(5), 671-678.

Turgut, A. and T. Yamamoto (1988). Synthetic seismograms for marine-sediments
and determination of porosity and permeability. Geophysics 53(8), 1056-1067.

Verbeek, G., J. B. Broens, W. Kranendonk, F. J. Van de Puijl, J. L. Sikkema, and
C. W. Stam (1986). Binas. Wolters-Noordhoff Groningen.

Vogelaar, B. B. S. A. and D. M. J. Smeulders (2007). Extension of White’s layered
model to the full frequency range. Geophysical Prospecting 55(5), 685-695.

Vogelaar, B. B. S. A., D. M. J. Smeulders, and J. M. Harris (2008). Differential
Acoustic Resonance Spectroscopy (DARS) measurements. Eztended Abstracts,
70th EAGE Conference Rome, 1038.



BIBLIOGRAPHY 187

White, J. E. (1975). Computed seismic speeds and attenuation in rocks with
partial gas saturation. Geophysics 40(2), 224-232.

White, J. E., N. Mikhaylova, and F. Lyakhovitskiy (1975). Low-frequency seismic-
waves in fluid-saturated layered rocks. [lzvestija Academy of Sciences USSR,
Physics of Solid Farth 11, 654-659.

Wijngaarden van, L. (1972). One-dimensional flow of liquids containing small gas
bubbles. Annual Review of Fluid Mechanics 4, 369-395.

Williams, A. O. (1951). The piston source at high frequencies. Journal of the
Acoustical Society of America 23(1), 1-6.

Williams, A. O. (1970). Integrated signal on circular piston receiver centered in a
piston beam. Journal of the Acoustical Society of America 48(1), 285-289.

Winkler, K. W. (1979). The effects of pore fluids and frictional sliding on seismic
attenuation. Dissertation, Stanford University.

Winkler, K. W. (1983). Frequency-dependent ultrasonic properties of high-porosity
sandstones. Journal of Geophysical Research 88(NB11), 9493-9499.

Winkler, K. W. (1985). Dispersion analysis of velocity and attenuation in Berea
sandstone. Journal of Geophysical Research-Solid Earth and Planets 90(NBS),
6793-6800.

Winkler, K. W. (1986). Estimates of velocity dispersion between seismic and
ultrasonic frequencies. Geophysics 51(1), 183-189.

Winkler, K. W. and W. F. Murphy (1995). Rock physics and phase relations - A
handbook of physical constants. American Geophysical Union.

Winkler, K. W. and A. Nur (1979). Pore fluids and seismic attenuation in rocks.
Geophysical Research Letters 6(1), 1-4.

Winkler, K. W. and A. Nur (1982). Seismic attenuation - Effects of pore fluids
and frictional sliding. Geophysics 47(1), 1-15.

Winkler, K. W., A. Nur, and M. Gladwin (1979). Friction and seismic attenuation
in rocks. Nature 277(5697), 528-531.

Wisse, C. J. (1999). On frequency dependence of acoustic waves in porous cylinders.
Dissertation, Delft University of Technology.



188 BIBLIOGRAPHY

Xu, C. (2007). Estimation of effective compressibility and permeability of porous
materials with Differential Acoustic Resonance Spectroscopy. Dissertation, Stan-
ford University.

Xu, C., J. M. Harris, and Y. Quan (2006). Estimating flow properties of porous
media with a model for dynamic diffusion. Ezpanded Abstracts, 76th SEG An-
nual Meeting New Orleans 25, 1831-1835.

Yamamoto, T. and A. Turgut (1988). Acoustic-wave propagation through porous-
media with arbitrary pore-size distributions. Journal of the Acoustical Society
of America 83(5), 1744-1751.

Yin, C.-S., M. L. Batzle, and B. J. Smith (1992). Effects of partial liquid/gas
saturation on extensional wave attenuation in Berea sandstone. Geophysical
Research Letters 19, 1399-1402.

Zwikker, C. and C. W. Kosten (1941). Extended theory of the absorption of sound
by compressible wall-coverings. Physica (Amsterdam) 8(9), 968-978.



Samenvatting

De eigenschappen van de porievloeistof en de vaste stof beinvloeden de voortplan-
ting van geluidsgolven door poreuze materialen. Geluidssnelheid en reistijden wor-
den veel gebruikt voor de beeldvorming van de ondergrond en voor het voorspellen
van de petrofysische eigenschappen, zoals porositeit, vlioeistoftype en verzadigings-
graad. De demping (het verlies van golfenergie) wordt echter zelden toegepast bij
deze voorspellingen.

In dit proefschrift wordt verslag gelegd van de invloed van vloeistofheterogeni-
teiten (gasbellen) op de golfdemping in vloeistofverzadigde poreuze materialen.
Het is duidelijk dat de Biot theorie de snelheden op seismische en ’crosswell’
frequenties (1-1000 Hz) nauwkeurig kan voorspellen, terwijl de demping in hoge
mate onderschat wordt. Deze afwijking is hoofdzakelijk toe te schrijven aan he-
terogeniteiten op mesoschaal in de vaste stof (bijvoorbeeld kleilaagjes) en in de
vloeistof (bijvoorbeeld gasbellen of gaslagen). De term mesoschaal moet gezien
worden als zijnde groter dan de karakteristieke porieschaal maar kleiner dan de
seismische golflengte. De heterogeniteiten kunnen als groep in zijn geheel worden
beschreven met drukvereffeningsmodellen. De passerende seismische golf veroor-
zaakt plaatselijke drukverschillen tussen gas en vloeistof. Deze drukverschillen
worden geégaliseerd door vloeistof- en gasstroming op de mesoschaal. Voor he-
terogeniteiten in de vaste stof staan deze modellen bekend als ’double-porosity’
modellen, terwijl ze voor heterogeniteiten in de vloeistof 'patchy saturation’ mo-
dellen heten.

"Patchy saturation’ modellen nemen de langzame Biotgolf op de mesoschaal mee in
de beschouwingen aangezien het vereffenen van drukverschillen een diffusief pro-
ces is. FEchter op de macroschaal komt de langzame Biotgolf niet meer voor in
de modellen. Op deze schaal planten de seismische golven zich voort en wordt
de demping bepaald door visceuze vloeistofstroming onder invloed van drukver-
schillen op de schaal van de golflengte. We hebben de invloed van de frequentie
in ’patchy saturation’ modellen onderzocht voor gaslaagjes in poreuze materialen.
We hebben gevonden dat voor lagere frequenties dan de kritische Biot frequentie



de traagheidstermen kunnen worden verwaarloosd en dat de dynamische perme-

abfaccenten op ‘een’
resoneren bij nogere requendjes. Het ‘patchy saturation’ model beschrijft de over-

derd door de Darcy permeabiliteit. Het systeem gaat

gang van laagfrequent gedrag'zoals beschreven door Wood (volledige drukvereffe-
ning) naar hoogfrequent gedrag\zoals beschreven door Hill, waarbij deze hoge fre-
quenties wel lager dienen te worden verondersteld dan de kritische Biotfrequentie.
In deze frequentielimiet is er geen Ynassa-uitwisseling mogelijk tussen de vloeistof-

en de gasfase, omdat er eenvoudigwég niet voldoende tijd is om een drukevenwicht

?)'

Een alternatief voor het ’patchy satukation’ model is het Rayleigh-Plesset-Biot

tot stand te brengen (’'frozen situatio

concept. Hierbij wordt op de macroschail nog steeds onderscheid gemaakt tussen
het fluidum en de vaste stof, omdat er\alleen een middeling plaatsvindt over
het fluidum. Dit fluidum bestaat dan ui
Rayleigh-Plesset-Biot model voorspelt twe

de vloeistof, en de gasbelletjes. Het
rukgolven op de seismische schaal,
terwijl het pachy saturation model er maar een voorspelt. Ook vonden we dat de
seismische golf sterker gedempt wordt dan in het patchy saturation model. Een
uitstekende overeenkomst tussen de theoretisch en experimenteel verkregen dem-
ping werd gevonden voor een uit de literatuur bekend resonantie-experiment met

poreuze gesteentemonsters tussen de 0.6 en trema op tweede e |

Door middel van een gasinjectietechniek;hebben we in een met olie verzadigd
poreus monstertje een enkele gasbel gecreeérd. De procedure is getest door middel
van het aanbrengen van een vloeistof in de porién met gelijke brekingsindex als
die van de vaste stof. We vonden in dit geval dat het patchy saturation model bij
500 kHz een beter voorspelling gaf dan het Rayleigh-Plesset-Biot model. Echter,
stroming op een veel kleinere microschaal (zogenaamde ’squirt flow’) kan ook bij-
dragen aan de demping bij deze frequenties. De dempingsmetingen werden uit-
gevoerd met behulp van spectraalanalyse, waarbij in het experiment gebruik werd
gemaakt van twee overigens identieke monstertjes van verschillende lengte. De
fasesnelheden van 45 natuurlijke gesteenten en synthetische poreuze materialen,
die ook op deze manier werden gemeten, werden gekalibreerd met de standaard
ultrasone metingen gebaseerd op eerste aankomsttijd. We hebben gevonden dat
voor de fasesnelheden de Biottheorie nauwkeurig is, maar dat deze voor de dem-
ping onjuiste waarden voorspelt. Bij deze frequenties spelen heterogeniteiten op
mesoschaal waarschijnlijk geen noemenswaardige rol, omdat de heterogeniteiten
op de veel kleinere microschaal (haarscheurtjes in de korrels of gebroken cemen-
tatiecontacten) overheersen. Dit vraagstuk ligt echter buiten het kader van dit
proefschrift.

Dezelfde 45 monstertjes zijn ook gebruikt bij ’Differential Acoustic Resonance
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Spectroscopy’ (DARS) metingen. De samendrukbaarheid van een monstertje wordt
in deze experimenten bepaald door de verandering in resonantiefrequentie van
een buis als gevolg van het inbrengen van het monstertje. DARS experimenten
aan niet-poreuze monstertjes bevestigden de verstoringstheorie van Morse en In-
gard. We vonden een goede overeenkomst tussen de Gassmann en DARS modu-
lus voor afgedichte poreuze monstertjes. Voor monstertjes met open porién, kon
de DARS modulus niet worden geinterpreteerd in termen van de vaste stof- en
vloeistof-modulus, omdat de samendrukbaarheid wordt gegeven door de relatieve
vloeistofbeweging aan de rand van het monstertje. Het kwantificeren van de dem-
ping van de poreuze monstertjes gebaseerd op realistische in-situ omstandigheden
(samengeperste multi-componenten monstertjes) volgens de DARS methode moet
in de toekomst leiden tot een betere toepassing van de gemeten demping van seis-
mische signalen voor de beschrijving van het reservoir.
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